Universidade Federal de Santa Catarina Universidade Virtual do Maranhão

Operadores Lineares Homotetia e Rotação no \mathbb{R}^2 e \mathbb{R}^3 . Imagem de triângulos por estes operadores

Por

Nemésio Rodrigues da Silva Filho e Rubens Lopes Netto

Especialização em Matemática - Pólo de Brejo - MA

Orientador: Prof. Dr. Roberto Corrêa da Silva

Operadores Lineares Homotetia e Rotação no \mathbb{R}^2 e \mathbb{R}^3 . Imagem de triângulos por estes operadores

Monografia apresentada ao curso de Pósgraduação da Universidade Federal de Santa Catarina, para obtenção do grau de Especialista em Matemática.

Orientador: Prof. Dr. Roberto Corrêa da Silva

A todos aqueles que desejam conhecer um pouco mais sobre OPERADORES LINEARES HOMOTETIA E ROTAÇÃO NO \mathbb{R}^2 E \mathbb{R}^3 E IMAGENS DE TRIÂNGULOS POR ESTES OPERADORES como uma possibilidade facilitadora do processo ensino-aprendizagem.

Agradecimentos

Agradecemos:

A Deus, que em seu infinito amor sempre nos amparou nos momentos de dificuldade;

Aos nossos familiares e amigos, pelo apoio incondicional;

À Universidade Federal de Santa Catarina e a Universidade Virtual do Maranhão, pela excelência na formação;

Ao nosso orientador, Professor Doutor Roberto Corrêa da Silva;

A todos os nossos professores, pela segura orientação;

A nossos colegas de curso Geordane Vasconcelos de Aguiar, Joel Castelo Branco e Joubert Jorge Lima Viana, que passaram a ser amigos e não apenas colegas.

Àqueles que, direta ou indiretamente, contribuíram para a realização deste trabalho.

"Um conceito é ferramenta quando o interesse é focalizado sobre seu uso para resolver um problema."

(R. Douady)

Resumo

Neste trabalho centramos as atenções nas imagens de vetores e triângulos obtidas pelos operadores homotetia e rotação no \mathbb{R}^2 e \mathbb{R}^3 . Definimos de forma explícita o operador homotetia em relação a cada eixo tanto no \mathbb{R}^2 quanto no \mathbb{R}^3 e, ainda, a homotetia independente em cada eixo; o mesmo fizemos com o operador rotação e, também, definimos as imagens de triângulos por estes operadores. Esta determinação levou-nos a estudar um pouco mais dos demais operadores lineares e algumas propriedades dos triângulos. Os resultados foram utilizados na determinação explícita de imagens de vetores e triângulos, sendo estes representados até pelas matrizes canônicas associadas.

Palavras-chave: Operadores Lineares, Homotetia, Rotação, Imagem, Matriz Canônica, Vetor, Triângulo.

Sumário

Introdução	1
1. Operador Linear Homotetia	2
1.1. Operador Homotetia de razão k (dilatação ou contração)	2
1.2. Dilatação ou contração na direção dos eixos	13
1.3. Dilatação independente em cada eixo	26
2. Operador Linear Rotação	33
2.1. Operador Rotação no \mathbb{R}^2 em torno da origem	33
2.2. Operador Rotação no \mathbb{R}^3 em torno de um eixo coordenado	37
2.2.1. Operador Rotação no \mathbb{R}^3 em torno do eixo dos x	37
2.2.4. Operador Rotação no \mathbb{R}^3 em torno do eixo dos y	40
2.2.7. Operador Rotação no \mathbb{R}^3 em torno do eixo dos z	43
3. Imagem de Triângulos pelos Operadores Homotetia e Rotação no $\mathbb{R}^2\mathrm{e}\mathbb{R}^3$	49
3.1. Exemplo: Operador Homotetia	49
3.2. Exemplo: Operador Rotação	49
3.3. Imagem de triângulos pelo Operador Homotetia no \mathbb{R}^2 e \mathbb{R}^3	50
3.4. Imagem de triângulos pelo Operador Rotação no \mathbb{R}^2 e \mathbb{R}^3	55
4. Conclusão	59
5. Referências Bibliográficas	60

Introdução

Neste trabalho focalizamos os operadores lineares homotetia e rotação no \mathbb{R}^2 e \mathbb{R}^3 e imagem de triângulos por estes operadores.

No capítulo 1 são definidos: Operador Homotetia de razão k (dilatação ou contração), Dilatação ou contração na direção dos eixos e Dilatação independente em cada eixo. Deduzimos de forma explícita os operadores complementando com suas representações gráficas e pelas matrizes canônicas associadas.

No capítulo 2 são definidos: Operador Rotação no \mathbb{R}^2 em torno da origem e Operador Rotação no \mathbb{R}^3 em torno de um eixo coordenado (do eixo x, eixo y e eixo z) também reforçados por suas representações gráficas e pelas matrizes canônicas associadas.

No capítulo 3 são definidos: Imagem de triângulos pelo Operador Homotetia no \mathbb{R}^2 e \mathbb{R}^3 e Imagem de triângulos pelo Operador Rotação no \mathbb{R}^2 e \mathbb{R}^3 . Demonstramos, ainda, algumas propriedades da congruência e da semelhança de triângulos.

1. Operador Linear Homotetia

Consideraremos neste trabalho conhecidas as definições de espaço vetorial, base, dimensão, transformação e operador linear, como exposto em [1], [2] e [3].

Neste capítulo veremos operador linear homotetia e alguns exemplos gráficos de operadores deste tipo.

1.l. Operador Homotetia de razão k (dilatação ou contração)

1.1.1. Definição: Um Operador Homotetia de razão k é um operador linear T: Rⁿ → Rⁿ da forma T(v) = kv onde v∈ Rⁿ e k ∈ R e k é fixado. Isto é, cada vetor do Rⁿ é levado num vetor de mesma direção, mesmo sentido ou sentido oposto e módulo maior ou menor, dependendo do valor de k.

Notação: para vetores do \mathbb{R}^n podemos escrever na forma:

$$T: \mathbb{R}^n \to \mathbb{R}^n$$
$$\mathbf{v} \mapsto \mathbf{k}\mathbf{v}$$

ou, pela matriz de T na base canônica, sendo construída da seguinte forma:

Sejam $v = (x_1, x_2, ..., x_n)$ um vetor do \mathbb{R}^n e $B = \{(1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1)\}$ base canônica do \mathbb{R}^n , a matriz do operador linear T em relação à base canônica B é :

Aplicando os vetores da base canônica do \mathbb{R}^n ao operador T, tem-se:

- T(1, 0, ..., 0) = k(1, 0, ..., 0) = (k, 0, ..., 0)
- T(0, 1, ..., 0) = k(0, 1, ..., 0) = (0, k, ..., 0): : : : :
- T(0, 0, ..., 1) = k(0, 0, ..., 1) = (0, 0, ..., k)

Assim, a matriz da aplicação dos vetores da base canônica do \mathbb{R}^n ao operador T é:

$$[T]_{B} = \begin{bmatrix} k & 0 & \cdots & 0 \\ 0 & k & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & k \end{bmatrix}$$

Escrevendo o vetor $v = (x_1, x_2, ..., x_n)$ como combinação linear dos vetores da base canônica do \mathbb{R}^n , teremos:

•
$$\mathbf{v}_B = (x_1, x_2, ..., x_n) = x_1(1, 0, ..., 0) + x_2(0, 1, ..., 0) + ...$$

 $\dots + x_n(0, 0, ..., 1)$

Daí, a matriz da combinação linear do vetor $v = (x_1, x_2, ..., x_n)$ em relação aos vetores da base canônica do \mathbb{R}^n é:

$$\begin{bmatrix} \mathbf{v} \end{bmatrix}_B = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Finalmente, a matriz da aplicação do vetor $v = (x_1, x_2, ..., x_n)$ ao operador T em relação à base canônica do \mathbb{R}^n é dada pelo produto da matriz da aplicação dos vetores da base canônica do \mathbb{R}^n ao operador T pela matriz da combinação linear do vetor $v = (x_1, x_2, ..., x_n)$ em relação aos vetores da base canônica do \mathbb{R}^n :

$$[T(v)]_B = [T]_B \cdot [v]_B$$
, isto é,

$$[T(\mathbf{v})]_{B} = \begin{bmatrix} k & 0 & \cdots & 0 \\ 0 & k & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & k \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}$$

Podemos caracterizar algumas situações especiais para homotetia como segue:

- **1.1.2.** Se |k| > 1, o operador faz com que o vetor sofra uma dilatação;
- **1.1.3.** Exemplo:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
$$v \mapsto 4v$$

ou
$$T(x, y) = 4(x, y) = (4x, 4y)$$

ou, pela matriz de T em relação à base canônica:

Aplicando os vetores da base canônica do \mathbb{R}^2 ao operador T, tem-se:

•
$$T(1, 0) = 4(1, 0) = (4, 0)$$

•
$$T(0, 1) = 4(0, 1) = (0, 4)$$

Então, a matriz da aplicação dos vetores da base canônica do \mathbb{R}^2 ao operador T é:

$$[T] = \begin{bmatrix} 4 & & 0 \\ 0 & & 4 \end{bmatrix}$$

Escrevendo o vetor (x,y) como combinação linear dos vetores da base canônica do \mathbb{R}^2 , teremos:

•
$$(x,y) = x(1,0) + y(0,1) = (x,y)$$

Assim, a matriz da combinação linear do vetor (x, y) em relação aos vetores da base canônica do \mathbb{R}^2 é:

$$[(x,y)] = \begin{bmatrix} x \\ y \end{bmatrix}$$

Portanto, a matriz da aplicação do vetor (x,y) ao operador T em relação à base canônica do \mathbb{R}^2 é dada pelo produto da matriz da aplicação dos vetores da base canônica do \mathbb{R}^2 ao operador T pela matriz da combinação linear do vetor (x,y) em relação aos vetores da base canônica do \mathbb{R}^2 :

$$[T(x,y)] = [T] \cdot [(x,y)] = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

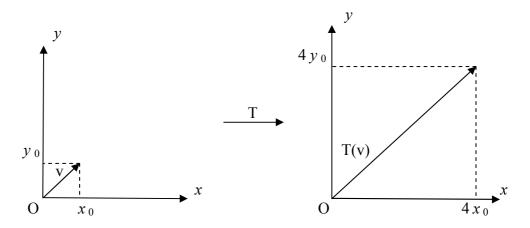


Figura 1.1.3

1.1.4. Exemplo:

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
$$v \mapsto 3v$$

ou
$$T(x, y, z) = 3(x, y, z) = (3x, 3y, 3z)$$

ou, pela matriz de T em relação à base canônica:

Aplicando os vetores da base canônica do \mathbb{R}^3 ao operador T, tem-se:

- T(1, 0, 0) = 3(1, 0, 0) = (3, 0, 0)
 T(0, 1, 0) = 3(0, 1, 0) = (0, 3, 0)
 T(0, 0, 1) = 3(0, 0, 1) = (0, 0, 3)

Então, a matriz da aplicação dos vetores da base canônica do $\,\mathbb{R}^{3}\,$ ao operador $\,$ é:

$$[T] = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Escrevendo o vetor (x, y, z) como combinação linear dos vetores da base canônica do \mathbb{R}^3 , teremos:

•
$$(x,y,z) = x(1,0,0) + y(0,1,0) + z(0,0,1) = (x,y,z)$$

Assim, a matriz da combinação linear do vetor (x, y, z) em relação aos vetores da base canônica do \mathbb{R}^3 é:

$$[(x,y,z)] = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Portanto, a matriz da aplicação do vetor (x, y, z) ao operador T em relação à base canônica do \mathbb{R}^3 é dada pelo produto da matriz da aplicação dos vetores da base canônica do \mathbb{R}^3 ao operador T pela matriz da combinação linear do vetor (x, y, z) em relação aos vetores da base canônica do \mathbb{R}^3 :

$$[T(x,y,z)] = [T] \cdot [(x,y,z)] = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

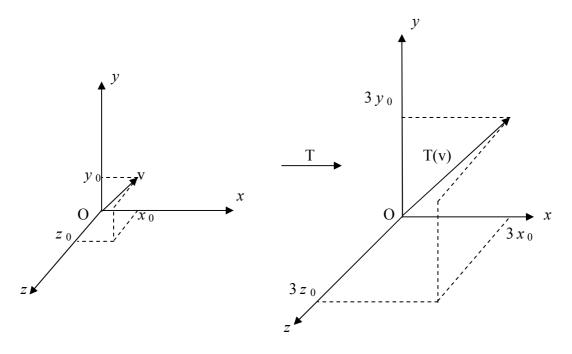


Figura 1.1.4

1.1.5. Se |k| < 1, o operador faz com que o vetor sofra uma contração;

1.1.6. Exemplo:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$v \mapsto \frac{1}{4}v$$

ou,
$$T(x,y) = \frac{1}{4}(x, y) = (\frac{1}{4}x, \frac{1}{4}y)$$

ou, pela matriz de T em relação à base canônica:

•
$$T(1,0) = \frac{1}{4}(1,0) = (\frac{1}{4},0)$$

•
$$T(0, 1) = \frac{1}{4}(0, 1) = (0, \frac{1}{4})$$

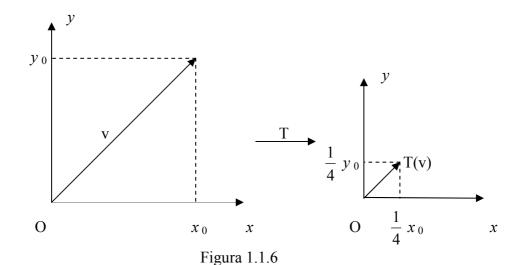
$$[T] = \begin{bmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}$$

•
$$(x, y) = x(1, 0) + y(0, 1) = (x, y)$$

$$[(x,y)] = \begin{bmatrix} x \\ y \end{bmatrix}$$

Portanto:

$$[T(x,y)] = [T] \cdot [(x,y)] = \begin{bmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{4} \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$



1.1.7. Exemplo:

T:
$$\mathbb{R}^3 \to \mathbb{R}^3$$

 $v \mapsto \frac{1}{3}v$
ou, $T(x, y, z) = \frac{1}{3}(x, y, z) = (\frac{1}{3}x, \frac{1}{3}y, \frac{1}{3}z)$

ou, pela matriz de T em relação à base canônica:

•
$$T(1, 0, 0) = \frac{1}{3}(1, 0, 0) = (\frac{1}{3}, 0, 0)$$

•
$$T(0, 1, 0) = \frac{1}{3}(0, \frac{1}{3}, 0) = (0, \frac{1}{3}, 0)$$

•
$$T(0, 0, 1) = \frac{1}{3}(0, 0, \frac{1}{3}) = (0, 0, \frac{1}{3})$$

Então,

$$[T] = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$$

•
$$(x,y,z) = x(1,0,0) + y(0,1,0) + z(0,0,1) = (x,y,z)$$

Assim,

$$[(x,y,z)] = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$[T(x,y,z)] = [T] \cdot [(x,y,z)] = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

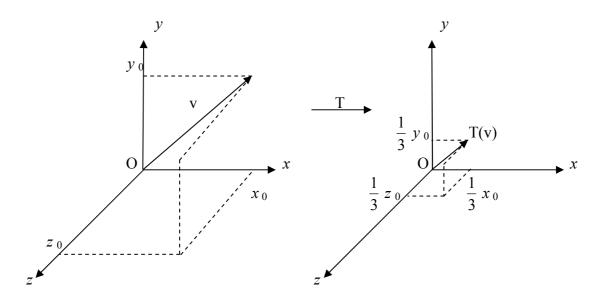


Figura 1.1.7

- **1.1.8.** Se k = 1, o operador resulta na transformação identidade I;
- **1.1.9.** Exemplo:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
$$\mathbf{v} \mapsto \mathbf{1}\mathbf{v}$$

ou
$$T(x, y) = 1(x, y) = (x, y)$$

ou, pela matriz de T em relação à base canônica:

•
$$T(1, 0) = 1(1, 0) = (1, 0)$$

•
$$T(0, 1) = 1(0, 1) = (0, 1)$$

Então,

$$[T] = \begin{bmatrix} 1 & & 0 \\ 0 & & 1 \end{bmatrix}$$

•
$$(x,y) = x(1,0) + y(0,1) = (x,y)$$

Assim,

$$[(x,y)] = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$[T(x,y)] = [T] \cdot [(x,y)] = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

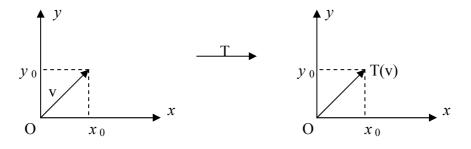


Figura 1.1.9

1.1.10. Exemplo:

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
$$v \mapsto 1v$$

ou
$$T(x, y, z) = 1(x, y, z) = (x, y, z)$$

ou, pela matriz de T na base canônica:

•
$$T(1, 0, 0) = 1(1, 0, 0) = (1, 0, 0)$$

•
$$T(0, 1, 0) = 1(0, 1, 0) = (0, 1, 0)$$

•
$$T(0, 0, 1) = 1(0, 0, 1) = (0, 0, 1)$$

Então,

$$[T] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

•
$$(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1) = (x, y, z)$$

Assim,

$$[(x,y,z)] = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$[T(x,y,z)] = [T] \cdot [(x,y,z)] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

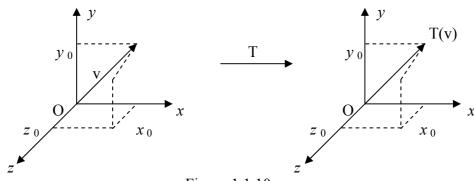


Figura 1.1.10

- **1.1.11.** Se k < 0, o operador faz com que o vetor troque de sentido.
- **1.1.12.** Exemplo:

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
$$\mathbf{v} \mapsto -1\mathbf{v}$$

ou
$$T(x, y) = -1(x, y) = (-x, -y)$$

ou, pela matriz de T na base canônica:

•
$$T(1, 0) = -1(1, 0) = (-1, 0)$$

•
$$T(0, 1) = -1(0, 1) = (0, -1)$$

Então,

$$[T] = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

•
$$(x,y) = x(1,0) + y(0,1) = (x,y)$$

Assim,

$$[(x,y)] = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$[T(x,y)] = [T] \cdot [(x,y)] = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

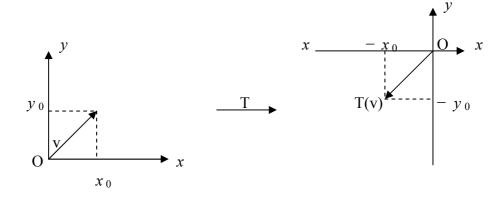


Figura 1.1.12

1.1.13. Exemplo:

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
$$v \mapsto -2v$$

ou
$$T(x, y, z) = -2(x, y, z) = (-2x, -2y, -2z)$$

ou, pela matriz de T na base canônica:

•
$$T(1, 0, 0) = -2(1, 0, 0) = (-2, 0, 0)$$

•
$$T(0, 0, 1) = -2(0, 0, 1) = (0, 0, -2)$$

Então,

$$[T] = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

•
$$(x,y,z) = x(1,0,0) + y(0,1,0) + z(0,0,1) = (x,y,z)$$

Assim,

$$[(x,y,z)] = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$[T(x,y,z)] = [T] \cdot [(x,y,z)] = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

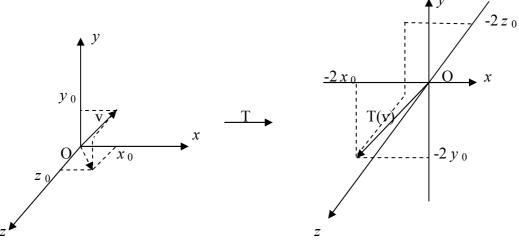


Figura 1.1.13

1.2. Dilatação ou contração na direção dos eixos.

1.2.1. Definição: Dilatação ou contração na direção dos eixos é um operador linear T: $\mathbb{R}^n \to \mathbb{R}^n$ da forma

 $T(x_1, x_2, x_3, ..., x_k, x_{k+1}, ..., x_n) = (x_1, x_2, x_3, ..., \alpha x_k, x_{k+1}, ..., x_n)$, com $\alpha \in \mathbb{R}$, fixado,

ou, pela matriz de T em relação à base canônica:

é:

Aplicando os vetores da base canônica do \mathbb{R}^n ao operador T, tem-se:

- T(1, 0, 0, ..., 0, 0, ..., 0) = 1(1, 0, 0, ..., 0, 0, ..., 0) = (1, 0, 0, ..., 0, 0, ..., 0)
- T(0, 1, 0, ..., 0, 0, ..., 0) = 1(0, 1, 0, ..., 0, 0, ..., 0) = (0, 1, 0, ..., 0, 0, ..., 0)

- T(0, 0, 0, ..., 0, 1, ..., 0) = 1(0, 0, 0, ..., 0, 1, ..., 0) = (0, 0, 0, ..., 0, 1, ..., 0)

Assim, a matriz da aplicação dos vetores da base canônica do \mathbb{R}^n ao operador T

$$[T] = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 1 \end{bmatrix}$$

Escrevendo o vetor $(x_1, x_2, x_3, ..., \alpha x_k, x_{k+1}, ..., x_n)$ como combinação linear dos vetores da base canônica do \mathbb{R}^n , teremos:

•
$$(x_1, x_2, x_3, ..., x_k, x_{k+1}, ..., x_n) = x_1 (1, 0, 0, ..., 0, 0, ..., 0) + ...$$

 $... + x_2 (0, 1, 0, ..., 0, 0, ..., 0) + x_3 (0, 0, 1, ..., 0, 0, ..., 0) + ...$
 $... + x_k(0, 0, 0, ..., 1, 0, ..., 0) + x_{k+1}(0, 0, 0, ..., 0, 1, ..., 0) + ...$
 $... + x_n(0, 0, 0, ..., 0, 0, ..., 1) = (x_1, x_2, x_3, ..., x_k, x_{k+1}, ..., x_n)$

Daí, a matriz da combinação linear do vetor $(x_1, x_2, x_3, ..., x_k, x_{k+1}, ..., x_n)$ em relação aos vetores da base canônica do \mathbb{R}^n é:

$$[(x_{1}, x_{2}, x_{3}, ..., x_{k}, x_{k+1}, ..., x_{n})] = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{k} \\ x_{k+1} \\ \vdots \\ x_{n} \end{bmatrix}$$

Portanto, a matriz da aplicação do vetor $(x_1, x_2, x_3, ..., x_k, x_{k+1}, ..., x_n)$ ao operador T em relação à base canônica do \mathbb{R}^n é dada pelo produto da matriz da aplicação dos vetores da base canônica do \mathbb{R}^n ao operador T pela matriz da combinação linear do vetor $(x_1, x_2, x_3, ..., x_k, x_{k+1}, ..., x_n)$ em relação aos vetores da base canônica do \mathbb{R}^n :

$$[T(x_1, x_2, x_3, ..., x_k, x_{k+1}, ..., x_n)] = [T] \cdot [(x_1, x_2, x_3, ..., x_k, x_{k+1}, ..., x_n)] =$$

$$= \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_k \\ x_{k+1} \\ \vdots \\ x_n \end{bmatrix}$$

Observemos que:

- se $\alpha > 1$, o operador faz com que o vetor sofra uma dilatação;
- se $0 < \alpha < 1$, o operador faz com que o vetor sofra uma contração.
- **1.2.2.** Exemplo: Dilatação na direção do eixo dos x, no \mathbb{R}^2 :

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$

(x,y) \mapsto (3x, y)

ou, pela matriz de T em relação à base canônica:

Aplicando os vetores da base canônica do \mathbb{R}^2 ao operador T, tem-se:

•
$$T(1, 0) = 3(1, 0) = (3, 0)$$

•
$$T(0, 1) = 1(0, 1) = (0, 1)$$

Então, a matriz da aplicação dos vetores da base canônica do $\,\mathbb{R}^{\,2}\,$ ao operador T é:

$$[T] = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$$

Escrevendo o vetor (x, y) como combinação linear dos vetores da base canônica do \mathbb{R}^2 , teremos:

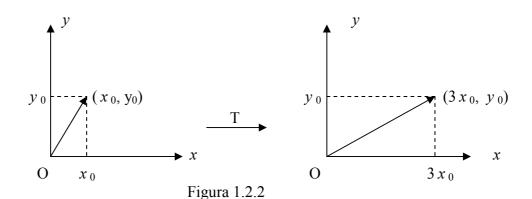
•
$$(x,y) = x(1,0) + y(0,1) = (x,y)$$

Assim, a matriz da combinação linear do vetor (x, y) em relação aos vetores da base canônica do \mathbb{R}^2 é:

$$[(x,y)] = \begin{bmatrix} x \\ y \end{bmatrix}$$

Portanto, a matriz da aplicação do vetor (x,y) ao operador T em relação à base canônica do \mathbb{R}^2 é dada pelo produto da matriz da aplicação dos vetores da base canônica do \mathbb{R}^2 ao operador T pela matriz da combinação linear do vetor (x,y) em relação aos vetores da base canônica do \mathbb{R}^2 :

$$[T(x,y)] = [T] \cdot [(x,y)] = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$



1.2.3. Exemplo: Contração na direção do eixo dos x, no \mathbb{R}^2 :

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \mapsto (\frac{1}{2}x, y)$

ou, pela matriz de T em relação à base canônica:

•
$$T(1, 0) = \frac{1}{2}(1, 0) = (\frac{1}{2}, 0)$$

•
$$T(0, 1) = 1(0, 1) = (0, 1)$$

Então,

$$[T] = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{bmatrix}$$

•
$$(x,y) = x(1,0) + y(0,1) = (x,y)$$

Assim,

$$[(x,y)] = \begin{bmatrix} x \\ y \end{bmatrix}$$

Portanto:

$$[T(x,y)] = [T] \cdot [(x,y)] = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

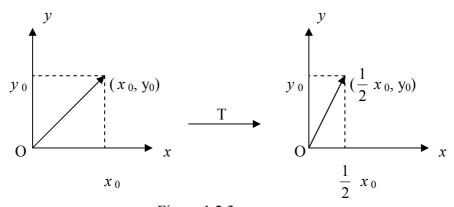


Figura 1.2.3

1.2.4. Exemplo: Dilatação na direção do eixo dos x, no \mathbb{R}^3 :

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
$$(x, y, z) \mapsto (2x, y, z)$$

ou, pela matriz de T em relação à base canônica:

Aplicando os vetores da base canônica do \mathbb{R}^3 ao operador T. tem-se:

- T(1, 0, 0) = 2(1, 0, 0) = (2, 0, 0)
- T(0, 1, 0) = 1(0, 1, 0) = (0, 1, 0)
 T(0, 0, 1) = 1(0, 0, 1) = (0, 0, 1)

Então, a matriz da aplicação dos vetores da base canônica do \mathbb{R}^3 ao operador T é:

$$[T] = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Escrevendo o vetor (x, y, z) como combinação linear dos vetores da base canônica do \mathbb{R}^3 , teremos:

•
$$(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1) = (x, y, z)$$

Assim, a matriz da combinação linear do vetor (x, y, z) em relação aos vetores da base canônica do \mathbb{R}^3 é:

$$[(x,y,z)] = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Portanto, a matriz da aplicação do vetor (x, y, z) ao operador T em relação à base canônica do \mathbb{R}^3 é dada pelo produto da matriz da aplicação dos vetores da base canônica do \mathbb{R}^3 ao operador T pela matriz da combinação linear do vetor (x, y, z) em relação aos vetores da base canônica do \mathbb{R}^3 :

$$[T(x,y,z)] = [T] \cdot [(x,y,z)] = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

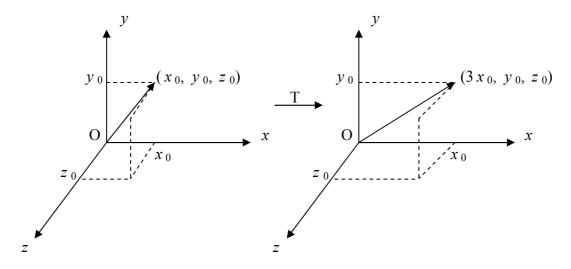


Figura 1.2.4

1.2.5. Exemplo: Contração na direção do eixo dos x, no \mathbb{R}^3 :

T:
$$\mathbb{R}^3 \to \mathbb{R}^3$$

 $(x, y, z) \mapsto (\frac{1}{3} x, y, z)$

ou, pela matriz de T em relação à base canônica:

•
$$T(1, 0, 0) = \frac{1}{3} (1, 0, 0) = (\frac{1}{3}, 0, 0)$$

•
$$T(0, 0, 1) = I(0, 0, 1) = (0, 0, 1)$$

Então,

$$[T] = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

•
$$(x,y,z) = x(1,0,0) + y(0,1,0) + z(0,0,1) = (x,y,z)$$

Assim,

$$[(x,y,z)] = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Portanto:

$$[T(x,y,z)] = [T] \cdot [(x,y,z)] = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

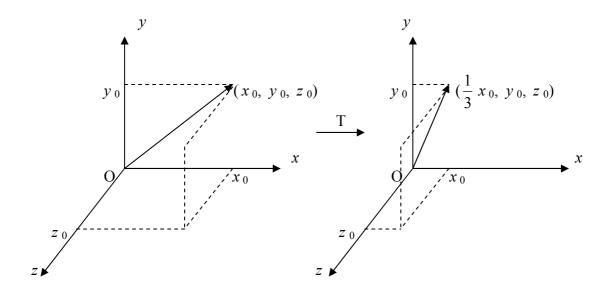


Figura 1.2.5

1.2.6. Exemplo: Dilatação na direção do eixo dos y, no \mathbb{R}^2 :

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \mapsto (x,2y)$

ou, pela matriz de T em relação à base canônica:

•
$$T(1, 0) = 1(1, 0) = (1, 0)$$

•
$$T(0, 1) = 2(0, 1) = (0, 2)$$

$$[T] = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

•
$$(x,y) = x(1,0) + y(0,1) = (x,y)$$

$$[(x,y)] = \begin{bmatrix} x \\ y \end{bmatrix}$$

Portanto:

$$[T(x,y)] = [T] \cdot [(x,y)] = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

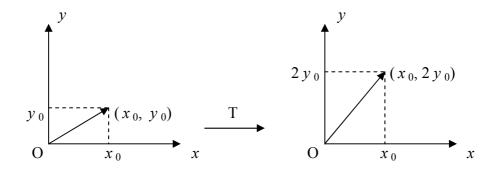


Figura 1.2.6

1.2.7. Exemplo: Contração na direção do eixo dos y, no \mathbb{R}^2 :

T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \mapsto (x, \frac{1}{4}y)$

ou, pela matriz de T em relação à base canônica:

•
$$T(1, 0) = 1(1, 0) = (1, 0)$$

•
$$T(0, 1) = \frac{1}{4}(0, 1) = (0, \frac{1}{4})$$

$$[T] = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{4} \end{bmatrix}$$

•
$$(x,y) = x(1,0) + y(0,1) = (x,y)$$

$$[(x,y)] = \begin{bmatrix} x \\ y \end{bmatrix}$$

Portanto:

$$[T(x,y)] = [T] \cdot [(x,y)] = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{4} \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

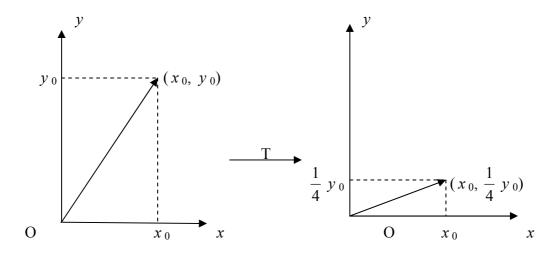


Figura 1.2.7

1.2.8. Exemplo: Dilatação na direção do eixo dos y, no \mathbb{R}^3 :

T:
$$\mathbb{R}^3 \to \mathbb{R}^3$$

 $(x, y, z) \mapsto (x, 4y, z)$

ou, pela matriz de T em relação à base canônica:

•
$$T(0, 1, 0) = 4(0, 1, 0) = (0, 4, 0)$$

•
$$T(0, 0, 1) = I(0, 0, 1) = (0, 0, 1)$$

$$[T] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

•
$$(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1) = (x, y, z)$$

$$[(x,y,z)] = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Portanto:

$$[T(x,y,z)] = [T] \cdot [(x,y,z)] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

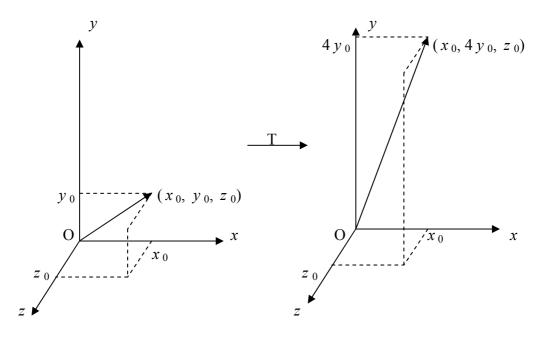


Figura 1.2.8

1.2.9. Exemplo: Contração na direção do eixo dos y, no \mathbb{R}^3 :

T:
$$\mathbb{R}^3 \to \mathbb{R}^3$$

 $(x, y, z) \mapsto (x, \frac{1}{2} y, z)$

ou, pela matriz de T em relação à base canônica:

•
$$T(1, 0, 0) = 1(1, 0, 0) = (1, 0, 0)$$

•
$$T(0, 1, 0) = \frac{1}{2}(0, 1, 0) = (0, \frac{1}{2}, 0)$$

•
$$T(0, 0, 1) = 1(0, 0, 1) = (0, 0, 1)$$

Então,

$$[T] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

•
$$(x,y,z) = x(1,0,0) + y(0,1,0) + z(0,0,1) = (x,y,z)$$

Assim,

$$[(x,y,z)] = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Portanto:

$$[T(x,y,z)] = [T] \cdot [(x,y,z)] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

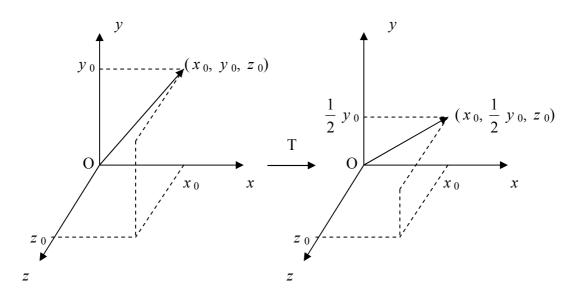


Figura 1.2.9

1.2.10. Exemplo: Dilatação na direção do eixo dos z:

T:
$$\mathbb{R}^3 \to \mathbb{R}^3$$

 $(x, y, z) \mapsto (x, y, 3z)$

ou, pela matriz de T em relação à base canônica:

•
$$T(1, 0, 0) = 1(1, 0, 0) = (1, 0, 0)$$

•
$$T(0, 1, 0) = 1(0, 1, 0) = (0, 1, 0)$$

•
$$T(0, 0, 1) = 3(0, 0, 1) = (0, 0, 3)$$

Então,

$$[T] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

•
$$(x,y,z) = x(1,0,0) + y(0,1,0) + z(0,0,1) = (x,y,z)$$

Assim,

$$[(x,y,z)] = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$[T(x,y,z)] = [T] \cdot [(x,y,z)] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

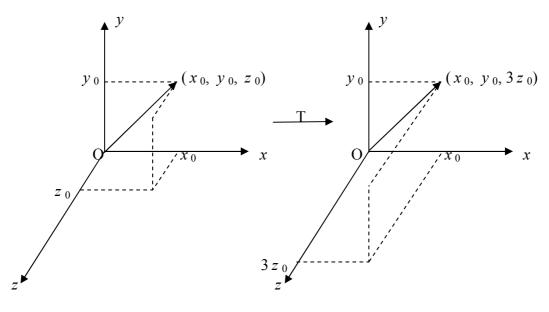


Figura 1.2.10

1.2.11. Exemplo: Contração na direção do eixo dos z:

T:
$$\mathbb{R}^3 \to \mathbb{R}^3$$

 $(x,y,z) \mapsto (x, y, \frac{1}{3}z)$

ou, pela matriz de T em relação à base canônica:

•
$$T(1, 0, 0) = 1(1, 0, 0) = (1, 0, 0)$$

•
$$T(0, 1, 0) = 1(0, 1, 0) = (0, 1, 0)$$

•
$$T(1, 0, 0) = 1(1, 0, 0) = (1, 0, 0)$$

• $T(0, 1, 0) = 1(0, 1, 0) = (0, 1, 0)$
• $T(0, 0, 1) = \frac{1}{3}(0, 0, 1) = (0, 0, \frac{1}{3})$

Então,

$$[T] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$$

•
$$(x,y,z) = x(1,0,0) + y(0,1,0) + z(0,0,1) = (x,y,z)$$

Assim,

$$[(x,y,z)] = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$[T(x,y,z)] = [T] \cdot [(x,y,z)] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

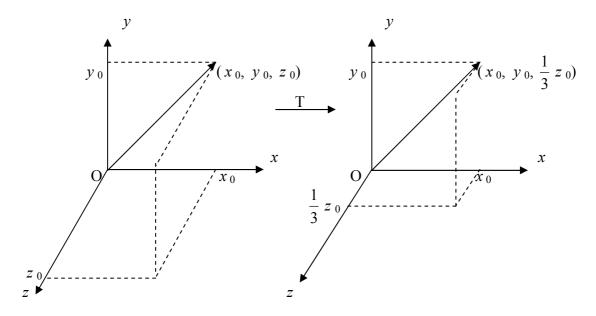


Figura 1.2.11

1.3. Homotetia independente em cada eixo.

1.3.1. Definição: Homotetia independente em cada eixo é um operador linear T: $\mathbb{R}^n \to \mathbb{R}^n$ da forma

 $T(x_1, x_2, x_3, ..., x_n) = (\alpha_1 x_1, \alpha_2 x_2, \alpha_3 x_3, ..., \alpha_n x_n), \text{ com } \alpha_i \in \mathbb{R},$ fixados,

ou, pela matriz de T em relação à base canônica:

Aplicando os vetores da base canônica do \mathbb{R}^n ao operador T, tem-se:

- $T(1, 0, 0, ..., 0) = \alpha_1(1, 0, 0, ..., 0) = (\alpha_1, 0, 0, ..., 0)$
- $T(0, 1, 0, ..., 0) = \alpha_2(0, 1, 0, ..., 0) = (0, \alpha_2, 0, ..., 0)$
- $T(0, 0, 1, ..., 0) = \alpha_3(0, 0, 1, ..., 0) = (0, 0, \alpha_3, ..., 0)$: : : : : : : :
- $T(0, 0, 0, ..., 1) = \alpha_n (0, 0, 0, ..., 1) = (0, 0, 0, ..., \alpha_n)$

Assim, a matriz da aplicação dos vetores da base canônica do \mathbb{R}^n ao operador T é:

$$[T] = \begin{bmatrix} \alpha_1 & 0 & 0 & \cdots & 0 \\ 0 & \alpha_2 & 0 & \cdots & 0 \\ 0 & 0 & \alpha_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha_n \end{bmatrix}$$

Escrevendo o vetor $(x_1, x_2, x_3, ..., x_n)$ como combinação linear dos vetores da base canônica do \mathbb{R}^n , teremos:

•
$$(x_1, x_2, x_3, ..., x_n) = x_1 (1, 0, 0, ..., 0) + x_2 (0, 1, 0, ..., 0) + x_3 (0, 0, 1, ..., 0) + ...$$

 $... + x_n(0, 0, 0, ..., 1) = (x_1, x_2, x_3, ..., x_n)$

Daí, a matriz da combinação linear do vetor $(x_1, x_2, x_3, ..., x_n)$ em relação aos vetores da base canônica do \mathbb{R}^n é:

$$[(x_1, x_2, x_3, ..., x_n)] = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}$$

Portanto, a matriz da aplicação do vetor $(x_1, x_2, x_3, ..., x_n)$ ao operador T em relação à base canônica do \mathbb{R}^n é dada pelo produto da matriz da aplicação dos vetores da base canônica do \mathbb{R}^n ao operador T pela matriz da combinação linear do vetor $(x_1, x_2, x_3, ..., x_n)$ em relação aos vetores da base canônica do \mathbb{R}^n :

$$[T(x_1, x_2, x_3, ..., x_n)] = [T].[(x_1, x_2, x_3, ..., x_n)] =$$

$$= \begin{bmatrix} \alpha_1 & 0 & 0 & \cdots & 0 \\ 0 & \alpha_2 & 0 & \cdots & 0 \\ 0 & 0 & \alpha_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}$$

1.3.2. Dilatação independente em cada eixo no \mathbb{R}^2 :

1.3.3. Exemplo: T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$
 $(x,y) \mapsto (2x,3y)$

ou, pela matriz de T em relação à base canônica:

Aplicando os vetores da base canônica do \mathbb{R}^2 ao operador T, tem-se:

•
$$T(1, 0) = 2(1, 0) = (2, 0)$$

•
$$T(0, 1) = 3(0, 1) = (0, 3)$$

Então, a matriz da aplicação dos vetores da base canônica do $\,\mathbb{R}^{\,2}\,$ ao operador T é:

$$[T] = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

Escrevendo o vetor (x, y) como combinação linear dos vetores da base canônica do \mathbb{R}^2 , teremos:

•
$$(x,y) = x(1,0) + y(0,1) = (x,y)$$

Assim, a matriz da combinação linear do vetor (x, y) em relação aos vetores da base canônica do \mathbb{R}^2 é:

$$[(x,y)] = \begin{bmatrix} x \\ y \end{bmatrix}$$

Portanto, a matriz da aplicação do vetor (x,y) ao operador T em relação à base canônica do \mathbb{R}^2 é dada pelo produto da matriz da aplicação dos vetores da base canônica do \mathbb{R}^2 ao operador T pela matriz da combinação linear do vetor (x,y) em relação aos vetores da base canônica do \mathbb{R}^2 :

$$[T(x,y)] = [T] \cdot [(x,y)] = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

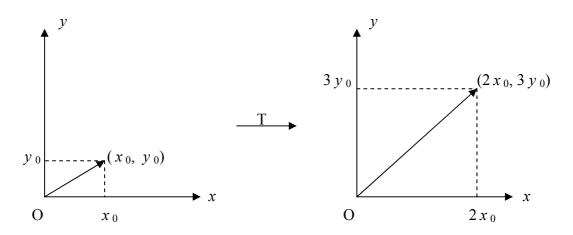


Figura 1.3.3

1.3.4. Contração independente em cada eixo no \mathbb{R}^2 :

1.3.5. Exemplo: T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$
 $(x,y) \mapsto (\frac{1}{4}x, \frac{1}{3}y)$

ou, pela matriz de T em relação à base canônica:

•
$$T(1, 0) = \frac{1}{4}(1, 0) = (\frac{1}{4}, 0)$$

•
$$T(0, 1) = \frac{1}{3}(0, 1) = (0, \frac{1}{3})$$

Então,

$$[T] = \begin{bmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{3} \end{bmatrix}$$

•
$$(x,y) = x(1,0) + y(0,1) = (x,y)$$

Assim,

$$[(x,y)] = \begin{bmatrix} x \\ y \end{bmatrix}$$

Portanto:

$$[T(x,y)] = [T] \cdot [(x,y)] = \begin{bmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{3} \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

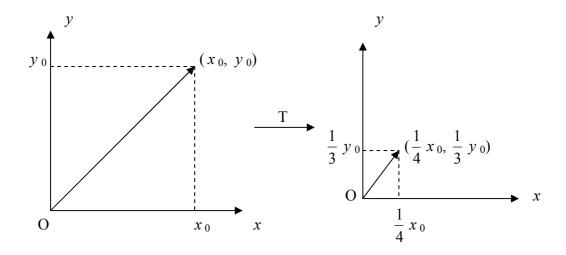


Figura 1.3.5

1.3.6. Dilatação independente em cada eixo no \mathbb{R}^3 :

1.3.7. Exemplo: T:
$$\mathbb{R}^3 \to \mathbb{R}^3$$
 $(x, y, z) \mapsto (2x, 3y, 4z)$

ou, pela matriz de T em relação à base canônica:

Aplicando os vetores da base canônica do \mathbb{R}^3 ao operador T, tem-se:

- T(1, 0, 0) = 2(1, 0, 0) = (2, 0, 0)
- T(0, 1, 0) = 3(0, 1, 0) = (0, 3, 0)
 T(0, 0, 1) = 4(0, 0, 1) = (0, 0, 4)

Então, a matriz da aplicação dos vetores da base canônica do \mathbb{R}^3 ao operador T é:

$$[T] = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

Escrevendo o vetor (x, y, z) como combinação linear dos vetores da base canônica do \mathbb{R}^3 , teremos:

•
$$(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1) = (x, y, z)$$

Assim, a matriz da combinação linear do vetor (x, y, z) em relação aos vetores da base canônica do \mathbb{R}^3 é:

$$[(x, y, z)] = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Portanto, a matriz da aplicação do vetor (x, y, z) ao operador T em relação à base canônica do \mathbb{R}^3 é dada pelo produto da matriz da aplicação dos vetores da base canônica do \mathbb{R}^3 ao operador T pela matriz da combinação linear do vetor (x,y,z) em relação aos vetores da base canônica do \mathbb{R}^3 :

$$[T(x,y,z)] = [T] \cdot [(x,y,z)] = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

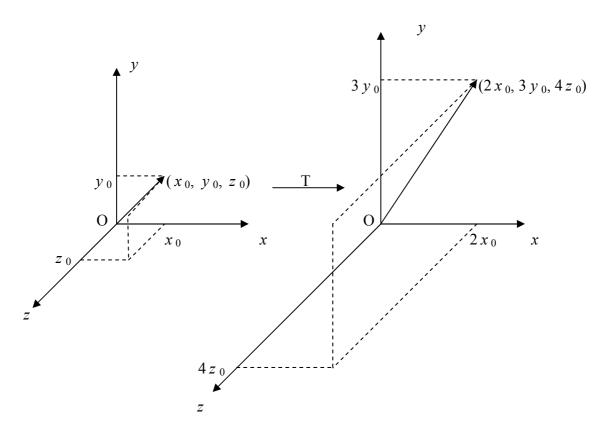


Figura 1.3.7

1.3.8. Contração independente em cada eixo no \mathbb{R}^3 :

1.3.9. Exemplo: T:
$$\mathbb{R}^3 \to \mathbb{R}^3$$
 $(x, y, z) \mapsto (\frac{1}{2} x, \frac{1}{3} y, \frac{1}{4} z)$

ou, pela matriz de T na base canônica:

•
$$T(1, 0, 0) = \frac{1}{2}(1, 0, 0) = (\frac{1}{2}, 0, 0)$$

•
$$T(0, 1, 0) = \frac{1}{3}(0, 1, 0) = (0, \frac{1}{3}, 0)$$

•
$$T(0, 0, 1) = \frac{1}{4}(0, 0, 1) = (0, 0, \frac{1}{4})$$

Então,

$$[T] = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{4} \end{bmatrix}$$

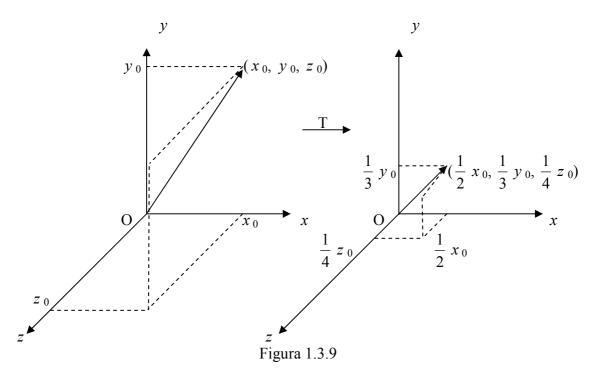
•
$$(x,y,z) = x(1,0,0) + y(0,1,0) + z(0,0,1) = (x,y,z)$$

Assim,

$$[(x,y,z)] = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Portanto:

$$[T(x,y,z)] = [T] \cdot [(x,y,z)] = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{4} \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$



2. Operador Linear Rotação

Neste capítulo definiremos operador rotação no \mathbb{R}^2 e \mathbb{R}^3 e daremos alguns exemplos.

2.1. Operador Rotação no \mathbb{R}^2 em torno da origem

2.1.1. Definição: **Um Operador Rotação no plano em torno da origem** é um operador linear $T_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ da forma $T_{\theta}(x,y) = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta), \theta$ real e fixado, que faz cada vetor descrever um ângulo θ no sentido anti-horário.

Esse operador também pode ser representado por sua matriz na base canônica:

Aplicando os vetores da base canônica do \mathbb{R}^2 ao operador T θ , tem-se:

- $T_{\theta}(1,0) = (1.\cos\theta 0.\sin\theta, 1.\sin\theta + 0.\cos\theta) = (\cos\theta, \sin\theta)$
- $T_{\theta}(0, 1) = (0.\cos\theta 1.\sin\theta, 0.\sin\theta + 1.\cos\theta) = (-\sin\theta, \cos\theta)$

Então, a matriz da aplicação dos vetores da base canônica do \mathbb{R}^2 ao operador T θ é:

$$[T_{\theta}] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Escrevendo o vetor (x, y) como combinação linear dos vetores da base canônica do \mathbb{R}^2 , teremos:

•
$$(x,y) = x(1,0) + y(0,1) = (x,y)$$

Assim, a matriz da combinação linear do vetor (x, y) em relação aos vetores da base canônica do \mathbb{R}^2 é:

$$[(x,y)] = \begin{bmatrix} x \\ y \end{bmatrix}$$

Portanto, a matriz da aplicação do vetor (x,y) ao operador T_{θ} em relação à base canônica do \mathbb{R}^2 é dada pelo produto da matriz da aplicação dos vetores da base canônica do \mathbb{R}^2 ao operador T_{θ} pela matriz da combinação linear do vetor (x,y) em relação aos vetores da base canônica do \mathbb{R}^2 :

$$[T_{\theta}(x, y)] = [T_{\theta}].[(x, y)] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}. \begin{bmatrix} x \\ y \end{bmatrix}$$

2.1.2. Justificativa de que T $_{\theta}$ realmente realiza uma rotação de vetores geométricos no plano de ângulo θ no sentido anti-horário.

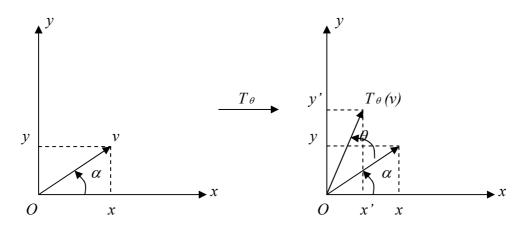


Figura 2.1.2

 $x' = r \cos(\alpha + \theta) = r \cos \alpha \cos \theta - r \sin \alpha \sin \theta$, sendo $r \circ m \acute{o} dulo de v$.

 $Mas \ r \ cos \alpha = x \ e \ r \ sen \alpha = y.$

Então, $x' = x \cos \theta - y \sin \theta$.

Analogamente, $y' = r \operatorname{sen} (\alpha + \theta) = r (\operatorname{sen} \alpha \cos \theta + \cos \alpha \operatorname{sen} \theta) = x \operatorname{sen} \theta + y \cos \theta$.

Logo, sendo feita a rotação as coordenadas são dadas por $x' = r \cos(\alpha + \theta)$ e $y' = r \sin(\alpha + \theta)$.

Essas contas mostram que x' e y' são as coordenadas polares do vetor (x, y) rotacionado.

Assim, $T_{\theta}(x, y) = (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta)$ ou por sua matriz na base canônica:

$$[T_{\theta}(x, y)] = \begin{bmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$
([2], pg. 149)

- **2.1.3.** Exemplo: Consideremos o caso particular onde $\theta = \frac{\pi}{2}$ para determinar a imagem do vetor $\mathbf{v} = (x, y)$. Neste caso, $\sin \theta = 1$ e $\cos \theta = 0$.
- $T_{\frac{\pi}{2}}(1,0) = (1.\cos\frac{\pi}{2} 0.\sin\frac{\pi}{2}, 1.\sin\frac{\pi}{2} + 0.\cos\frac{\pi}{2}) = (\cos\frac{\pi}{2}, \sin\frac{\pi}{2}) = (0,1)$

•
$$T_{\frac{\pi}{2}}(0, 1) = (0.\cos\frac{\pi}{2} - 1.\sin\frac{\pi}{2}, 0.\sin\frac{\pi}{2} + 1.\cos\frac{\pi}{2}) = (-\sin\frac{\pi}{2}, \cos\frac{\pi}{2}) = (-1, 0)$$

Então,

$$\begin{bmatrix} T_{\frac{\pi}{2}} \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

•
$$(x,y) = x(1,0) + y(0,1) = (x,y)$$

Assim,

$$[(x,y)] = \begin{bmatrix} x \\ y \end{bmatrix}$$

Portanto:

$$\left[T_{\frac{\pi}{2}}(x,y)\right] = \begin{bmatrix} T_{\frac{\pi}{2}} \\ T_{\frac{\pi}{2}} \end{bmatrix} \cdot \left[(x,y)\right] = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

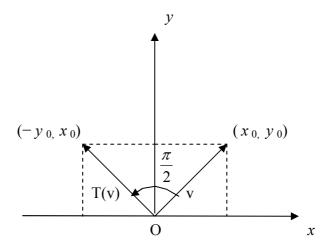


Figura 2.1.3

2.1.4. Exemplo: Determinar a imagem do vetor v = (2, 3) pela rotação de $\theta = \pi$.

Resolução:

- $T_{\pi}(1,0) = (1.\cos \pi 0.\sin \pi, 1.\sin \pi + 0.\cos \pi) = (\cos \pi, \sin \pi) = (-1,0)$
- $T_{\pi}(0, 1) = (0.\cos \pi 1.\sin \pi, 0.\sin \pi + 1.\cos \pi) = (-\sin \pi, \cos \pi) = (0, -1)$

Então,

$$\begin{bmatrix} T_{\pi} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

•
$$(2,3) = 2(1,0) + 3(0,1) = (2,3)$$

Assim,

$$[(2,3)] = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Portanto:

$$[T_{\pi}(2,3)] = [T_{\pi}].[(2,3)] = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}.\begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$$

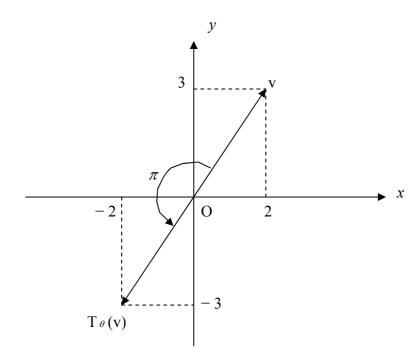


Figura 2.1.4

- 2.2. Operador Rotação no \mathbb{R}^3 em torno de um eixo coordenado
 - **2.2.1.** Operador Rotação no \mathbb{R}^3 em torno do eixo dos x
 - **2.2.2. Definição**: Um Operador Rotação no espaço em torno do eixo dos x é um operador linear T $\theta: \mathbb{R}^3 \to \mathbb{R}^3$ da forma

$$T_{\theta}(x, y, z) = (x, y \cos \theta - z \sin \theta, y \sin \theta + z \cos \theta), \theta \text{ real e fixado.}$$

Esse operador também pode ser representado por sua matriz na base canônica:

Aplicando os vetores da base canônica do \mathbb{R}^3 ao operador T θ , tem-se:

- $T_{\theta}(1, 0, 0) = (1, 0.\cos\theta 0.\sin\theta, 0.\sin\theta + 0.\cos\theta) = (1, 0, 0)$
- $T_{\theta}(0, 1, 0) = (0, 1.\cos\theta 0.\sin\theta, 1.\sin\theta + 0.\cos\theta) = (0, \cos\theta, \sin\theta)$
- $T_{\theta}(0, 0, 1) = (0, 0.\cos\theta 1.\sin\theta, 0.\sin\theta + 1.\cos\theta) = (0, -\sin\theta, \cos\theta)$

Então, a matriz da aplicação dos vetores da base canônica do \mathbb{R}^3 ao operador T θ é:

$$\begin{bmatrix} T_{\theta} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -sen\theta \\ 0 & sen\theta & \cos \theta \end{bmatrix}$$

Escrevendo o vetor (x, y, z) como combinação linear dos vetores da base canônica do \mathbb{R}^3 , teremos:

•
$$(x,y,z) = x(1,0,0) + y(0,1,0) + z(0,0,1) = (x,y,z)$$

Assim, a matriz da combinação linear do vetor (x, y, z) em relação aos vetores da base canônica do \mathbb{R}^3 é:

$$[(x,y,z)] = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Portanto, a matriz da aplicação do vetor (x,y,z) ao operador T_{θ} em relação à base canônica do \mathbb{R}^3 é dada pelo produto da matriz da aplicação dos vetores da base canônica do \mathbb{R}^3 ao operador T_{θ} pela matriz da combinação linear do vetor (x,y,z) em relação aos vetores da base canônica do \mathbb{R}^3 :

$$[T_{\theta}(x, y, z)] = [T_{\theta}].[(x, y, z)] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -sen\theta \\ 0 & sen\theta & \cos \theta \end{bmatrix}.\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

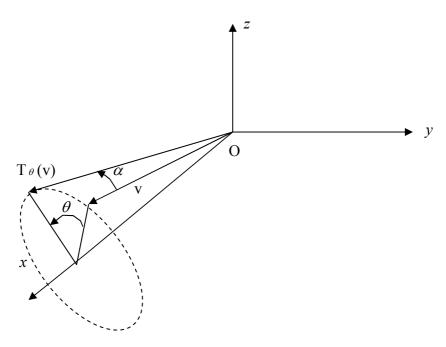


Figura 2.2.2

Para "conferir" se T representa a rotação de um ângulo θ em torno do eixo dos x, observemos o seguinte:

a) T gira de θ , em torno da origem O, os pontos do plano x=0 (plano y O z), pois:

$$T(0, y, z) = (0, y\cos\theta - z\sin\theta, y\sin\theta + z\cos\theta)$$

e:

b) T não altera os pontos do eixo dos x, pois:

$$T(x, 0, 0) = (x, 0, 0)$$

2.2.3. Exemplo: Determinar a imagem do vetor v = (3, 4, 5) pela rotação de $\theta = \frac{\pi}{2}$ em torno do eixo dos x.

Resolução:

•
$$T_{\frac{\pi}{2}}(1, 0, 0) = (1, 0.\cos \frac{\pi}{2} - 0.\sin \frac{\pi}{2}, 0.\sin \frac{\pi}{2} + 0.\cos \frac{\pi}{2}) = (1, 0, 0)$$

•
$$T_{\frac{\pi}{2}}(0, 1, 0) = (0, 1.\cos\frac{\pi}{2} - 0.\sin\frac{\pi}{2}, 1.\sin\frac{\pi}{2} + 0.\cos\frac{\pi}{2}) =$$

= $(0, \cos\frac{\pi}{2}, \sin\frac{\pi}{2}) = (0, 0, 1)$

•
$$T_{\frac{\pi}{2}}(0, 0, 1) = (0, 0.\cos\frac{\pi}{2} - 1.\sin\frac{\pi}{2}, 0.\sin\frac{\pi}{2} + 1.\cos\frac{\pi}{2}) =$$

= $(0, -\sin\frac{\pi}{2}, \cos\frac{\pi}{2}) = (0, -1, 0)$

Então,

$$\begin{bmatrix} T_{\frac{\pi}{2}} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

•
$$(3, 4, 5) = 3(1, 0, 0) + 4(0, 1, 0) + 5(0, 0, 1) = (3, 4, 5)$$

Assim,

$$[(3, 4, 5)] = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$$

Portanto:

$$[T_{\frac{\pi}{2}}(3,4,5)] = \begin{bmatrix} T_{\frac{\pi}{2}} \end{bmatrix} . [(3,4,5)] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} . \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 3 \\ -5 \\ 4 \end{bmatrix}$$

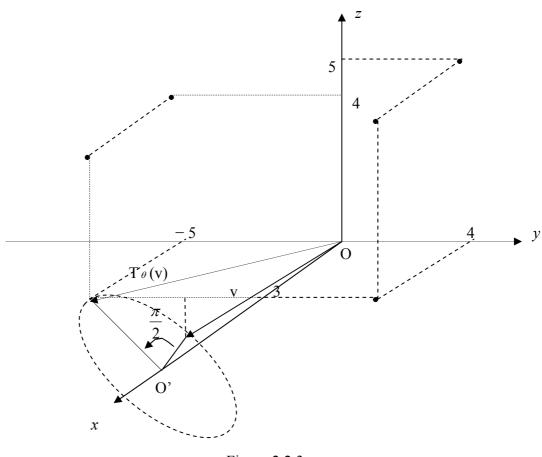


Figura 2.2.3

2.2.4. Operador Rotação no \mathbb{R}^3 em torno do eixo dos y

2.2.5. Definição: Um Operador Rotação no espaço em torno do eixo dos y é um operador linear $T_{\theta} \colon \mathbb{R}^3 \to \mathbb{R}^3$ da forma

$$T_{\theta}(x, y, z) = (x \cos \theta - z \sin \theta, y, x \sin \theta + z \cos \theta), \theta \text{ real e}$$
 fixado,

Esse operador também pode ser representado por sua matriz na base canônica:

Aplicando os vetores da base canônica do $\,\mathbb{R}^3\,$ ao operador T $_{\theta}$, tem-se:

- $T_{\theta}(1, 0, 0) = (1.\cos\theta 0.\sin\theta, 0, 1.\sin\theta + 0.\cos\theta) = (\cos\theta, 0, \sin\theta)$
- $T_{\theta}(0, 1, 0) = (0.\cos \theta 0.\sin \theta, 1, 0.\sin \theta + 0.\cos \theta) = (0, 1, 0)$
- $T_{\theta}(0, 0, 1) = (0.\cos\theta 1.\sin\theta, 0, 0.\sin\theta + 1.\cos\theta) = (-\sin\theta, 0, \cos\theta)$

Então, a matriz da aplicação dos vetores da base canônica do \mathbb{R}^3 ao operador T $_{ heta}$

$$[T_{\theta}] = \begin{bmatrix} \cos \theta & 0 & -sen\theta \\ 0 & 1 & 0 \\ sen\theta & 0 & \cos \theta \end{bmatrix}$$

Escrevendo o vetor (x, y, z) como combinação linear dos vetores da base canônica do \mathbb{R}^3 , teremos:

•
$$(x,y,z) = x(1,0,0) + y(0,1,0) + z(0,0,1) = (x,y,z)$$

Assim, a matriz da combinação linear do vetor (x, y, z) em relação aos vetores da base canônica do \mathbb{R}^3 é:

$$[(x, y, z)] = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Portanto, a matriz da aplicação do vetor (x, y, z) ao operador T_{θ} em relação à base canônica do \mathbb{R}^3 é dada pelo produto da matriz da aplicação dos vetores da base canônica do \mathbb{R}^3 ao operador T_{θ} pela matriz da combinação linear do vetor (x, y, z) em relação aos vetores da base canônica do \mathbb{R}^3 :

$$[T_{\theta}(x, y, z)] = [T_{\theta}].[(x, y, z)] = \begin{bmatrix} \cos \theta & 0 & -sen\theta \\ 0 & 1 & 0 \\ sen\theta & 0 & \cos \theta \end{bmatrix}. \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

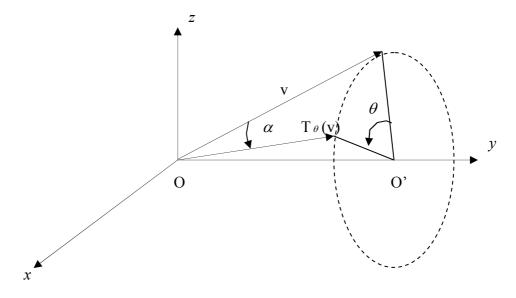


Figura 2.2.5

Para "conferir" se T representa a rotação de um ângulo θ em torno do eixo dos y, observemos o seguinte:

a) T gira de θ , em torno da origem O, os pontos do plano y = 0 (plano x O z), pois:

$$T(x, 0, z) = (x\cos\theta - z\sin\theta, 0, x\sin\theta + z\cos\theta)$$

e:

b) T não altera os pontos do eixo dos y, pois:

$$T(0, y, 0) = (0, y, 0)$$

2.2.6. Exemplo: Determinar a imagem do vetor v = (2, 2, 3) pela rotação de $\theta = \pi$ em torno do eixo dos y.

Resolução:

- $T_{\pi}(1, 0, 0) = (1.\cos \pi 0.\sin \pi, 0, 1.\sin \pi + 0.\cos \theta) = (\cos \pi, 0, \sin \pi) = (-1, 0, 0)$
- $T_{\pi}(0, 1, 0) = (0.\cos \pi 0.\sin \pi, 1, 0.\sin \pi + 0.\cos \theta) = (0, 1, 0)$
- $T_{\pi}(0, 0, 1) = (0.\cos \pi 1.\sin \pi, 0, 0.\sin \pi + 1.\cos \theta) = (-\sin \pi, 0, \cos \pi) = (0, 0, -1)$

Então,

$$[T_{\pi}] = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

•
$$(2, 2, 3) = 2(1, 0, 0) + 2(0, 1, 0) + 3(0, 0, 1) = (2, 2, 3)$$

Assim,

$$[(2,2,3)] = \begin{bmatrix} 2\\2\\3 \end{bmatrix}$$

Portanto:

$$[T_{\pi}(2,2,3)] = [T_{\pi}].[(2,2,3)] = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \\ -3 \end{bmatrix}$$

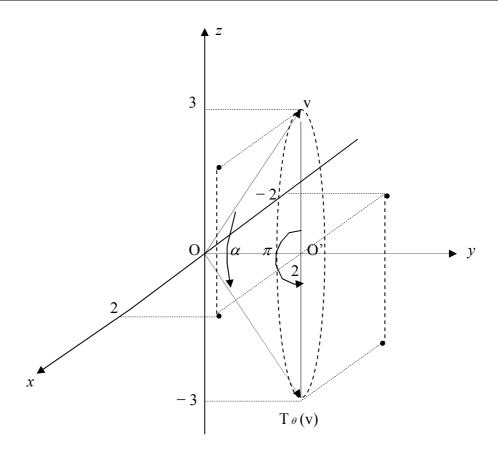


Figura 2.2.6

2.2.7. Operador Rotação no \mathbb{R}^3 em torno do eixo dos z

2.2.8. Definição: Um Operador Rotação no espaço em torno do eixo dos z é um operador linear T $\theta: \mathbb{R}^3 \to \mathbb{R}^3$ da forma

$$T_{\theta}(x, y, z) = (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta, z), \theta \text{ real e fixado,}$$

Esse operador também pode ser representado por sua matriz na base canônica:

Aplicando os vetores da base canônica do \mathbb{R}^3 ao operador T θ , tem-se:

- $T_{\theta}(1, 0, 0) = (1.\cos \theta 0.\sin \theta, 1.\sin \theta + 0.\cos \theta, 0) = (\cos \theta, \sin \theta, 0)$
- $T_{\theta}(0, 1, 0) = (0.\cos\theta 1.\sin\theta, 0.\sin\theta + 1.\cos\theta, 0) = (-\sin\theta, \cos\theta, 0)$
- $T_{\theta}(0, 0, 1) = (0.\cos\theta 0.\sin\theta, 0.\sin\theta + 0.\cos\theta, 1) = (0, 0, 1)$

Então, a matriz da aplicação dos vetores da base canônica do $\,\mathbb{R}^{3}\,$ ao operador T $_{ heta}$

$$\begin{bmatrix} T_{\theta} \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Escrevendo o vetor (x, y, z) como combinação linear dos vetores da base canônica do \mathbb{R}^3 , teremos:

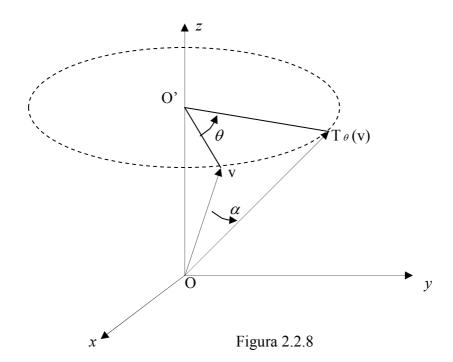
•
$$(x,y,z) = x(1,0,0) + y(0,1,0) + z(0,0,1) = (x,y,z)$$

Assim, a matriz da combinação linear do vetor (x, y, z) em relação aos vetores da base canônica do \mathbb{R}^3 é:

$$[(x,y,z)] = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Portanto, a matriz da aplicação do vetor (x, y, z) ao operador T_{θ} em relação à base canônica do \mathbb{R}^3 é dada pelo produto da matriz da aplicação dos vetores da base canônica do \mathbb{R}^3 ao operador T_{θ} pela matriz da combinação linear do vetor (x, y, z) em relação aos vetores da base canônica do \mathbb{R}^3 :

$$[T_{\theta}(x, y, z)] = [T_{\theta}].[(x, y, z)] = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}.\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$



Para "conferir" se T representa a rotação de um ângulo θ em torno do eixo dos z, observemos o seguinte:

a) T gira de θ , em torno da origem O, os pontos do plano z = 0 (plano x O y), pois:

$$T(x, y, 0) = (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta, 0)$$

e:

b) T não altera os pontos do eixo dos z, pois:

$$T(0, 0, z) = (0, 0, z)$$

2.2.9. Exemplo: Determinar a imagem do vetor v = (2, 3, 4) pela rotação de $\theta = \frac{\pi}{2}$ em torno do eixo dos z.

Resolução:

•
$$T_{\frac{\pi}{2}}(1, 0, 0) = (1.\cos\frac{\pi}{2} - 0.\sin\frac{\pi}{2}, 1.\sin\frac{\pi}{2} + 0.\cos\frac{\pi}{2}, 0) =$$

= $(\cos\frac{\pi}{2}, \sin\frac{\pi}{2}, 0) = (0, 1, 0)$

•
$$T_{\frac{\pi}{2}}(0, 1, 0) = (0.\cos\frac{\pi}{2} - 1.\sin\frac{\pi}{2}, 0.\sin\frac{\pi}{2} + 1.\cos\frac{\pi}{2}, 0) =$$

= $(-\sin\frac{\pi}{2}, \cos\frac{\pi}{2}, 0) = (-1, 0, 0)$

•
$$T_{\frac{\pi}{2}}(0, 0, 1) = (0.\cos\frac{\pi}{2} - 0.\sin\frac{\pi}{2}, 0.\sin\frac{\pi}{2} + 0.\cos\frac{\pi}{2}, 1) = (0, 0, 1)$$

Então,

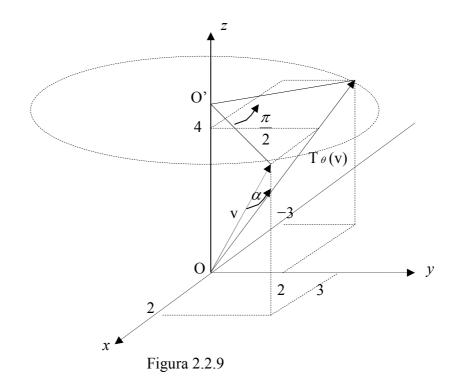
•
$$(2, 3, 4) = 2(1, 0, 0) + 3(0, 1, 0) + 4(0, 0, 1) = (2, 3, 4)$$

Assim,

$$[(2,3,4)] = \begin{bmatrix} 2\\3\\4 \end{bmatrix}$$

Portanto:

$$[T_{\frac{\pi}{2}}(2,3,4)] = \begin{bmatrix} T_{\frac{\pi}{2}} \end{bmatrix} . [(2,3,4)] = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} . \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \\ 4 \end{bmatrix}$$



Observação:

Nos itens 2.2.2, 2.2.5 e 2.2.8 o ângulo θ corresponde ao ângulo central cujos lados interceptam, na circunferência de centro O', um arco de medida θ . Esse ângulo θ não é o ângulo α formado pelos vetores v e T $_{\theta}$ (v), mas sim, o ângulo descrito pelo vetor v na rotação em torno da origem.

2.2.10. <u>Teorema</u>: Se T é um operador linear no \mathbb{R}^n ortogonal tal que o determinante de $[T]_{can}$ é igual a 1, então T é uma rotação no \mathbb{R}^n . ([1], pg. 257 e 258)

Demonstração: Faremos a demonstração para n = 2. Como can é uma base ortonormal do \mathbb{R}^n e T é um operador ortogonal, então a matriz

$$[T]_{can} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

é uma matriz ortogonal.

Logo,

$$[T]^{t} \cdot [T] = I \Rightarrow$$

$$\Rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow$$

$$\Rightarrow \begin{bmatrix} a^{2} + b^{2} & ac + bd \\ ac + bd & c^{2} + d^{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow$$

$$\Rightarrow \begin{cases} a^{2} + b^{2} = 1 & (I) \\ c^{2} + d^{2} = 1 & (II) \\ ac + bd = 0 & (III) \end{cases}$$

- $ac + bd = \langle (a, b), (c, d) \rangle = 0$ (comprovado na equação III).
- $\sqrt{\langle (a,b), (a,b) \rangle} = \sqrt{a^2 + b^2} = \sqrt{1} = 1$ (com base na equação I)
- $\sqrt{\langle (c,d),(c,d)\rangle} = \sqrt{c^2 + d^2} = \sqrt{1} = 1$ (com base na equação II)

Com base no sistema concluímos que os vetores (a, b) e (c, d) são unitários e ortogonais entre si. Portanto, usando trigonometria, existe um ângulo θ tal que $\cos \theta = a$ e $\sin \theta = b$ e (c, d) = \pm ($\sin \theta$, $\cos \theta$), isto é, o vetor (c, d) que é a segunda coluna da matriz [T]_{can} é igual a menos um ou mais um vezes $\sin \theta$ e $\cos \theta$. Logo a matriz de T em relação à base B pode ter duas formas:

$$[T]_{B} = \begin{bmatrix} \cos \theta & -sen \theta \\ sen \theta & \cos \theta \end{bmatrix} \quad \text{ou} \qquad [T]_{B} = \begin{bmatrix} \cos \theta & sen \theta \\ sen \theta & -\cos \theta \end{bmatrix}$$

mas por outra hipótese o determinante da matriz deve ser igual a 1, sobrando assim uma única alternativa para a matriz $[T]_B$ que é dada por cos e sen como na matriz rotação:

$$[T]_{B} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

pois neste caso teremos:

$$\det([T]_B) = \cos^2 \theta + \sin^2 \theta = 1 \quad \blacksquare$$

3. Imagem de Triângulos pelos Operadores Homotetia e Rotação no \mathbb{R}^2 e \mathbb{R}^3 .

A imagem de figuras geométricas por operadores lineares é importante na computação gráfica, por exemplo em programas tipo CAD.

Daremos alguns exemplos somente para ilustrar geometricamente, mais adiante daremos exemplos numéricos.

3.1. Exemplo: Imagem de uma figura do \mathbb{R}^3 obtida pelo operador homotetia.

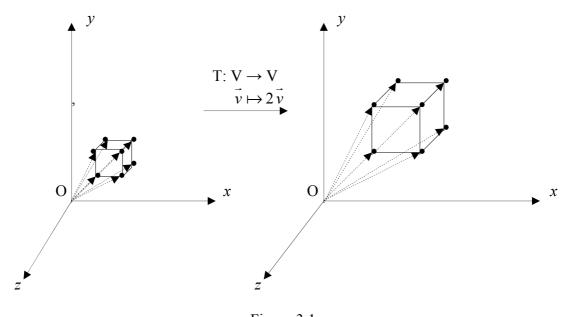


Figura 3.1

3.2. Exemplo: Imagem de uma figura do \mathbb{R}^3 obtida pelo operador rotação.

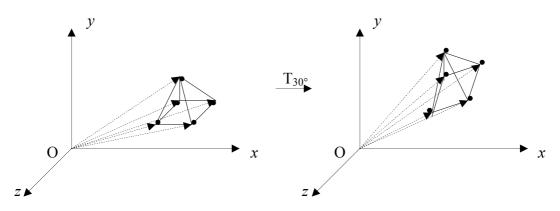


Figura 3.2

- 3.3. Imagem de triângulos pelo Operador Homotetia no \mathbb{R}^2 e \mathbb{R}^3
 - **3.3.1.** Proposição: No espaço vetorial \mathbb{R}^2 , o operador homotetia leva triângulo em triângulo, cujos ângulos internos dos triângulos são congruentes e as medidas dos lados são multiplicadas pelo fator k.

Demonstração: Seja o triângulo $\triangle ABC$ formado pelos vértices $A(x_A, y_A)$, $B(x_B, y_B)$ e $C(x_C, y_C)$, no \mathbb{R}^2 . A sua imagem obtida pelo operador homotetia T(x,y) = k(x,y), $k \in \mathbb{R}$, é:

Aplicando os pontos A, B e C ao operador T, tem-se:

•
$$T(A) = T(x_A, y_A) = k(x_A, y_A) = (k x_A, k y_A)$$

•
$$T(B) = T(x_B, y_B) = k(x_B, y_B) = (k x_B, k y_B)$$

•
$$T(C) = T(x_C, y_C) = k(x_C, y_C) = (k x_C, k y_C)$$

Assim, graficamente teremos:

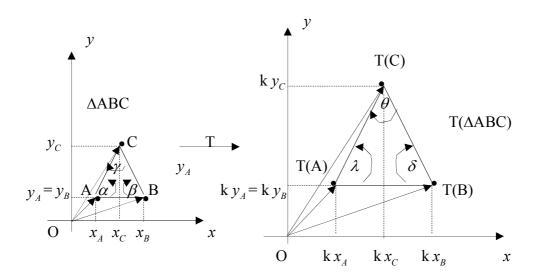


Figura 3.3.1

Observe que a medida do lado \overline{AB} , representada por d_{AB} , é igual à medida do lado $\overline{T(A)T(B)}$, representado por $d_{T(A)T(B)}$, dividido por k, ou seja,

$$d_{\rm AB} = \frac{d_{T(A)T(B)}}{k} \, .$$

De fato,

$$(I) \qquad \frac{d_{T(A)T(B)}}{k} = \frac{\sqrt{(kx_B - kx_A)^2 + (ky_B - ky_A)^2}}{k} =$$

$$= \frac{\sqrt{(k^2x_B^2 - k^3x_Ax_B + k^2x_A^2) + (k^2y_B^2 - k^3y_Ay_B + k^2y_A^2)}}{k} =$$

$$= \frac{\sqrt{k^2(x_B^2 - kx_Bx_A + x_A^2) + k^2(y_B^2 - ky_By_A + y_A^2)}}{k} =$$

$$= \frac{\sqrt{k^2(x_B - x_A)^2 + k^2(y_B - y_A)^2}}{k} = \frac{\sqrt{k^2[(x_B - x_A)^2 + (y_B - y_A)^2]^2}}{k} =$$

$$= \frac{\sqrt{k\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}}}{k} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = d_{AB}.$$

Pode-se trabalhar analogamente, dois a dois, para se demonstrar que a medida do lado \overline{BC} , representada por d_{BC} , é igual à medida do lado $\overline{T(B)T(C)}$, representado por $d_{T(B)T(C)}$, dividido por k, e que a medida do lado \overline{AC} , representada por d_{AC} , é igual à medida do lado $\overline{T(A)T(C)}$, representado por $d_{T(A)T(C)}$, dividido por k.

Para determinação do $\cos \lambda$, sendo λ o ângulo formado pelos segmentos $\overline{T(A)T(B)}$ e $\overline{T(A)T(C)}$, aplicaremos a lei dos cossenos. Assim:

$$(d_{T(B)T(C)})^2 = (d_{T(A)T(B)})^2 + (d_{T(A)T(C)})^2 - 2.(d_{T(A)T(B)}).(d_{T(A)T(C)}).\cos \lambda$$

ou, colocando-se a equação acima em função de $\cos \lambda$:

$$(II) \quad \cos \lambda = \frac{(d_{T(B)T(C)})^{2} - (d_{T(A)T(B)})^{2} - (d_{T(A)T(C)})^{2}}{-2(d_{T(A)T(B)})(d_{T(A)T(C)})} =$$

$$= \frac{(\sqrt{(kx_{C} - kx_{B})^{2} + (ky_{C} - ky_{B})^{2}})^{2} - (\sqrt{(kx_{B} - kx_{A})^{2} + (ky_{B} - ky_{A})^{2}})^{2} - (\sqrt{(kx_{C} - kx_{A})^{2} + (ky_{C} - ky_{A})^{2}})^{2}}{-2(\sqrt{(kx_{B} - kx_{A})^{2} + (ky_{B} - ky_{A})^{2}})(\sqrt{(kx_{C} - kx_{A})^{2} + (ky_{C} - ky_{A})^{2}})} =$$

$$= \frac{(\sqrt{k^{2}[(x_{C} - x_{B})^{2} + (y_{C} - y_{B})^{2}]})^{2} - (\sqrt{k^{2}[(x_{B} - x_{A})^{2} + (y_{B} - y_{A})^{2}]})^{2} - (\sqrt{k^{2}(x_{C} - x_{A})^{2} + (y_{C} - y_{A})^{2}}])^{2}}{-2(\sqrt{k^{2}[(x_{B} - x_{A})^{2} + (y_{B} - y_{A})^{2}]})(\sqrt{k^{2}[(x_{C} - x_{A})^{2} + (y_{C} - y_{A})^{2}]})^{2}} =$$

$$= \frac{(k\sqrt{[(x_{C} - x_{B})^{2} + (y_{C} - y_{B})^{2}]})^{2} - (k\sqrt{[(x_{B} - x_{A})^{2} + (y_{B} - y_{A})^{2}]})^{2} - (k\sqrt{(x_{C} - x_{A})^{2} + (y_{C} - y_{A})^{2}]})^{2}}{-2(k\sqrt{[(x_{B} - x_{A})^{2} + (y_{B} - y_{A})^{2}]})(k\sqrt{[(x_{C} - x_{A})^{2} + (y_{C} - y_{A})^{2}]})} =$$

$$=\frac{k^2(\sqrt{[(x_C-x_B)^2+(y_C-y_B)^2]})^2-k^2(\sqrt{[(x_B-x_A)^2+(y_B-y_A)^2]})^2-k^2(\sqrt{(x_C-x_A)^2+(y_C-y_A)^2]})^2}{-2k^2(\sqrt{[(x_B-x_A)^2+(y_B-y_A)^2]})(\sqrt{[(x_C-x_A)^2+(y_C-y_A)^2]})}=\\ =\frac{k^2[(\sqrt{[(x_C-x_B)^2+(y_C-y_B)^2]})^2-(\sqrt{[(x_B-x_A)^2+(y_B-y_A)^2]})^2-(\sqrt{(x_C-x_A)^2+(y_C-y_A)^2]})^2]}{-2k^2(\sqrt{[(x_B-x_A)^2+(y_B-y_A)^2]})(\sqrt{[(x_C-x_A)^2+(y_C-y_A)^2]})}=\\ =\frac{(\sqrt{[(x_C-x_B)^2+(y_C-y_B)^2]})^2-(\sqrt{[(x_B-x_A)^2+(y_B-y_A)^2]})^2-(\sqrt{(x_C-x_A)^2+(y_C-y_A)^2]})^2}{-2(\sqrt{[(x_B-x_A)^2+(y_B-y_A)^2]})(\sqrt{[(x_C-x_A)^2+(y_C-y_A)^2]})}=\\ =\frac{(d_{BC})^2-(d_{AB})^2-(d_{AC})^2}{-2(d_{AB})(d_{AC})}=\cos\alpha\;.$$

Logo, $\lambda \cong \alpha$.

De forma análoga se demonstra que $\theta \cong \gamma$ e $\delta \cong \beta$.

Observação: Por similaridade se demonstra esta proposição no \mathbb{R}^3 .

3.3.2. Exemplo: Dado o triângulo $\triangle ABC$, de vértices A(1, 1), B(3, 1) e C(2, 3). Determinar sua imagem pelo operador T: $\mathbb{R}^2 \to \mathbb{R}^2$ tal que T(x, y) = 2(x, y).

Resolução:

Aplicando os pontos A, B e C ao operador T, tem-se:

- T(A) = T(1, 1) = 2(1, 1) = (2, 2)
- T(B) = T(3, 1) = 2(3, 1) = (6, 2)
- T(C) = T(2, 3) = 2(2, 3) = (4, 6)

Assim, graficamente teremos:

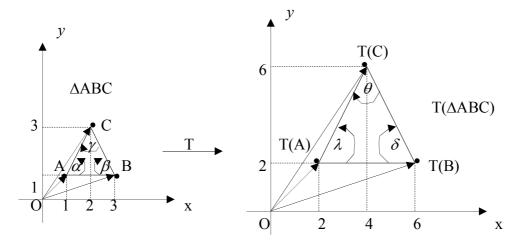


Figura 3.3.2

Observações:

• $\alpha \cong \lambda$, $\beta \cong \delta$ e $\gamma \cong \theta$;

•
$$\frac{AB}{T(A)T(B)} = \frac{BC}{T(B)T(C)} = \frac{AC}{T(A)T(C)}$$
.

3.3.3. Exemplo: Dado o triângulo ΔDEF , de vértices D(1, 2, 1), E(3, 2, 1) e F(2, 3, 2). Determinar sua imagem pelo operador T: $\mathbb{R}^3 \to \mathbb{R}^3$ tal que T(x, y, z) = 3(x, y, z).

Resolução:

Aplicando os pontos D, E e F ao operador T, tem-se:

- T(D) = T(2, 2, 1) = 3(2, 2, 1) = (6, 6, 3)
- T(E) = T(5, 2, 1) = 3(5, 2, 1) = (15, 6, 3)
- T(F) = T(3, 5, 2) = 3(3, 5, 2) = (9, 15, 6)

Assim, graficamente teremos:

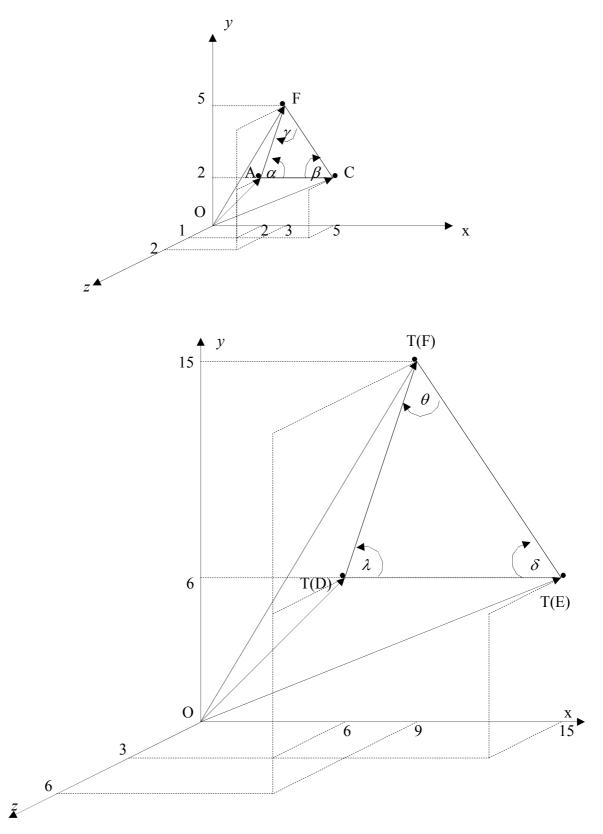


Figura 3.3.3

Observações:

- $\alpha \cong \lambda$, $\beta \cong \delta$ e $\gamma \cong \theta$;
- $\frac{DE}{T(D)T(E)} = \frac{EF}{T(E)T(F)} = \frac{DF}{T(D)T(F)}$.
- 3.4. Imagem de triângulos pelo Operador Rotação no $\,\mathbb{R}^2\,\mathrm{e}\,\,\mathbb{R}^3\,$
 - **3.4.1.** Proposição: No operador rotação, considerando-se o espaço vetorial \mathbb{R}^2 , o triângulo obtido como imagem é congruente ao triângulo submetido à transformação, conservando os ângulos internos e as medidas dos lados.

Demonstração: Seja o triângulo ΔABC formado pelos vértices $A(x_A, y_A)$, $B(x_B, y_B)$ e $C(x_C, y_C)$, no \mathbb{R}^2 . A sua imagem obtida pelo operador rotação $T_{\theta}(x, y) = (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta)$ é:

(I)
$$\|T_{\theta}(x,y)\| = \|(x\cos - y \sin , x \sin + y \cos)\| =$$

$$= \sqrt{(x\cos \theta - y \sin \theta , x \sin \theta + y \cos \theta) \cdot (x\cos \theta - y \sin \theta , x \sin \theta + y \cos \theta)} =$$

$$= \sqrt{(x\cos \theta - y \sin \theta)^2 + (x \sin \theta + y \cos \theta)^2} =$$

$$= \sqrt{x^2\cos^2 \theta - 2x\cos \theta \cdot y \sin \theta + y^2 \sin^2 \theta + x^2 \sin^2 \theta + 2x \sin \theta \cdot y \cos \theta + y^2 \cos^2 \theta} =$$

$$= \sqrt{x^2(\sin^2 \theta + \cos^2 \theta) + y^2(\sin^2 \theta + \cos^2 \theta) - 2x \sin \theta \cdot y \cos \theta} + 2x \sin \theta \cdot y \cos \theta} =$$

$$= \sqrt{x^2.1 + y^2.1} = \sqrt{x^2 + y^2} = \sqrt{(x, y).(x, y)} = \|(x, y)\|$$

Logo, o operador T faz com que todos os pontos do triângulo sejam rotacionados em um ângulo θ , mas conserva seus módulos, o que garante a igualdade das medidas dos lados correspondentes.

(II)
$$\cos \lambda = \frac{(d\tau_{\theta(B)}\tau_{\theta(C)})^2 - (d\tau_{\theta(A)}\tau_{\theta(B)})^2 - (d\tau_{\theta(A)}\tau_{\theta(C)})^2}{-2(d\tau_{\theta(A)}\tau_{\theta(B)})(d\tau_{\theta(A)}\tau_{\theta(C)})} =$$

Por (I) sabe-se que:

$$dT\theta(A)T\theta(B) = d_{AB}$$

$$dT_{\theta}(B)T_{\theta}(C) = d_{BC}$$
$$dT_{\theta}(A)T_{\theta}(C) = d_{AC}$$

Então,

$$\cos \lambda = \frac{(d_{T\theta(B)T\theta(C)})^2 - (d_{T\theta(A)T\theta(B)})^2 - (d_{T\theta(A)T\theta(C)})^2}{-2(d_{T\theta(A)T\theta(B)})(d_{T\theta(A)T\theta(C)})} = \frac{(d_{BC})^2 - (d_{AB})^2 - (d_{AC})^2}{-2(d_{AB})(d_{AC})} =$$

$$= \frac{(d_{BC})^2 - (d_{AB})^2 - (d_{AC})^2}{-2(d_{AB})(d_{AC})} = \cos \alpha.$$

Logo, $\lambda \cong \alpha$.

De forma análoga se demonstra que $\theta \cong \gamma$ e $\delta \cong \beta$.

Observação: Por similaridade se demonstra esta proposição no \mathbb{R}^3 .

3.4.2. Exemplo: Dado o triângulo \triangle ABC, de vértices A(1, 2), B(4, 2) e C(2, 4). Determinar sua imagem pelo operador T: $\mathbb{R}^2 \to \mathbb{R}^2$ tal que $T_{90^\circ}(x, y) = (x \cos 90^\circ - y \sin 90^\circ, x \sin 90^\circ + y \cos 90^\circ)$.

Resolução:

Aplicando os pontos A, B e C ao operador T, tem-se:

- $T_{90^{\circ}}$ (A) = $T_{90^{\circ}}$ (1, 2) = $(1\cos 90^{\circ} 2\sin 90^{\circ}, 1\sin 90^{\circ} + 2\cos 90^{\circ}) = (1.0 2.1, 1.1 + 2.0) = (-2, 1)$
- $T_{90^{\circ}}$ (B) = $T_{90^{\circ}}$ (4, 2) = $(4\cos 90^{\circ} 2\sin 90^{\circ}, 4\sin 90^{\circ} + 2\cos 90^{\circ})$ = (4.0 2.1, 4.1 + 2.0) = (-2, 4)
- $T_{90^{\circ}}$ (C) = $T_{90^{\circ}}$ (3, 4) = $(3\cos 90^{\circ} 4\sin 90^{\circ}, 3\sin 90^{\circ} + 4\cos 90^{\circ})$ = (2.0 4.1, 2.1 + 4.0) = (-4, 3)

Assim, graficamente teremos:

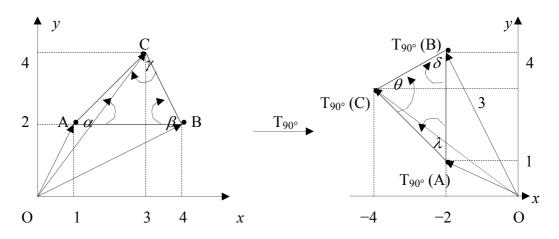


Figura 3.4.2

Observações:

- $\alpha \cong \lambda$, $\beta \cong \delta$ e $\gamma \cong \theta$;
- $AB = T_{90^{\circ}}(A)T_{90^{\circ}}(B)$, $BC = T_{90^{\circ}}(B)T_{90^{\circ}}(C)$ E $AC = T_{90^{\circ}}(A)T_{90^{\circ}}(C)$.
 - **3.4.3.** Exemplo: Dado o triângulo ΔDEF , de vértices D(1, 2, 2), B(6, 2, 5) e C(4, 3, 3). Determinar sua imagem pelo operador T: $\mathbb{R}^3 \to \mathbb{R}^3$ tal que $T_{180^\circ}(x,y,z) = (x\cos 180^\circ y \sin 180^\circ, x \sin 180^\circ + y \cos 180^\circ, z)$, em torno do eixo das cotas.

Resolução:

Aplicando os pontos D, E e F ao operador T, tem-se:

- $T_{180^{\circ}}$ (D) = $T_{180^{\circ}}$ (3, 3, 2) = $(3\cos 180^{\circ} 3\sin 180^{\circ}, 3\sin 180^{\circ} + 3\cos 180^{\circ}, 2) = (3.(-1) 3.0, 3.0 + 3.(-1), 2) = (-3, -3, 2)$
- $T_{180^{\circ}}$ (E) = $T_{180^{\circ}}$ (10, 4, 5) = (10cos180° 4sen180°, 10sen180° + $+ 4\cos180^{\circ}$, 5) = (10.(-1) 4.0, 10.0 + 4.(-1), 5) = (-10, -4, 5)
- $T_{180^{\circ}}$ (F) = $T_{180^{\circ}}$ (4, 7, 3) = $(4\cos 180^{\circ} 7\sin 180^{\circ}, 4\sin 180^{\circ} + 7\cos 180^{\circ}, 3) = (4.(-1) 7.0, 4.0 + 7.(-1), 3) = (-4, -7, 3)$

Assim, graficamente teremos:

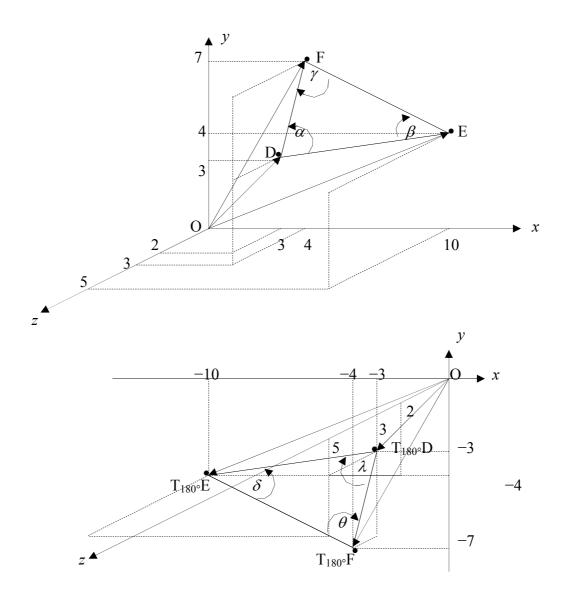


Figura 3.4.3

Observações:

- $\alpha \cong \lambda$, $\beta \cong \delta$ e $\gamma \cong \theta$;
- DE = $T_{180^{\circ}}$ (D) $T_{180^{\circ}}$ (E), EF = $T_{180^{\circ}}$ (E) $T_{180^{\circ}}$ (F) E DF = $T_{180^{\circ}}$ (D) $T_{180^{\circ}}$ (F).

Analogamente se obtém imagens de triângulos pelo operador rotação no \mathbb{R}^3 em torno dos eixos das abscissas e das ordenadas.

3. Conclusão

Neste trabalho estudamos um pouco sobre operadores homotetia e rotação no \mathbb{R}^2 e \mathbb{R}^3 e imagens de triângulos por estes operadores. Tínhamos como objetivo reunir algumas das principais características destes operadores e de sua aplicação em triângulos. Começamos caracterizando o operador homotetia de razão k (dilatação ou contração) no \mathbb{R}^2 e no \mathbb{R}^3 , em seguida tratamos do operador rotação, também no \mathbb{R}^2 e no \mathbb{R}^3 e, ainda, demonstramos a imagem destes operadores em triângulos. Definimos cada operador e exemplificamos cada um dos casos particulares em relação aos dois espaços, \mathbb{R}^2 e \mathbb{R}^3 , sendo representados pelas transformações, por matrizes e graficamente.

Este trabalho nos permitiu descrever de uma forma bem simples, utilizando-se de uma linguagem técnica, mas de fácil compreensão e bem objetiva, permitindo que todos os interessados pelo estudo destes operadores possam usá-la como fonte de pesquisa, principalmente alunos graduandos em Matemática.

As várias representações utilizadas nos exemplos - transformação, matrizes e gráficos - permitem uma visão geral da aplicação destes operadores em vetores e triângulos.

Como trabalho futuro, pretendemos ampliar este trabalho estudando a utilização destes operadores em programas computacionais, como o CAD e o Cabrigéomètre II.

4. Referências Bibliográficas

- [1] BOLDRINI, Costa e FIGUEIREDO, Wetzler, Álgebra Linear, 3a edição, Harbra, São Paulo, 1980.
- [2] CALLIOLI, Carlos A, DOMINGUES Hygino H. e COSTA, Roberto C. F, Álgebra Linear e Aplicações, 6a edição reformulada, Atual, São Paulo, 1990.
- [3] STEINBRUCH, Alfredo e WINTERLE, Paulo, Álgebra Linear, 2a edição, Pearson Makron Books, São Paulo, 1987.