

UNIVERSIDADE FEDERAL DE SANTA CATARINA

Felipe Marin

ANÁLISE DE SISTEMAS DE ALIMENTAÇÃO COM AUXÍLIO DE SIMULAÇÃO DE INJEÇÃO

Monografia submetida ao Curso de Engenharia Automotiva da Universidade Federal de Santa Catarina para a obtenção do Grau de Engenheiro Automotivo

Orientador: Prof. Dr. Carlos Maurício Sacchelli

Joinville 2014 Ficha de identificação da obra elaborada pelo autor

através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Marin, Felipe Análise de sistemas de alimentação com auxilio de simulação de injeção / Felipe Marin ; orientador, Carlos Maurício Sacchelli - Florianópolis, SC, 2014. 96 p.
Trabalho de Conclusão de Curso (graduação) -Universidade Federal de Santa Catarina, Campus Joinville. Graduação em Engenharia Automotiva.
Inclui referências

Engenharia Automotiva. 2. Polímeros injetados. 3. Indústria automotiva. 4. Simulação de injeção com canais de entrada capilar. 5. Software CAE, Moldflow. I. Sacchelli, Carlos Maurício . II. Universidade Federal de Santa Catarina. Graduação em Engenharia Automotiva. III. Título. Felipe Marin

ANÁLISE DE SISTEMAS DE ALIMENTAÇÃO COM AUXÍLIO DE SIMULAÇÃO DE INJEÇÃO

Esta Monografia foi julgada adequada para obtenção do Título de "Engenheiro Automotivo" e aprovada em sua forma final pelo Curso de Engenharia Automotiva.

Joinville, 23 de julho de 2014.

Prof. Leonel Rincon Cancino Dr. Coordenador do Curso

Banca Examinadora:

Carlos Maurício Sacchelli, Dr. Orientador Universidade Federal de Santa Catarina

Adriano Fagali de Souza, Dr. Universidade Federal de Santa Catarina

Kelly Patrícia Dias, M.Eng. Instituto Federal de Santa Catarina

Este trabalho é dedicado aos meus colegas e amigos, professores, aos meus queridos pais.

AGRADECIMENTOS

Agradeço aos meus pais Gilmar Marin e Neusa Maria Fontana Cardoso por todo o ensino que me propiciaram, a minha irmã Carolina pelo apoio e companhia desde os primeiros anos de escola e a minha namorada Grasielle pela compreensão pelos momentos ausentes apoio nos estudos.

Agradeço aos meus professores da Universidade Federal de Santa Catarina, em especial ao Cristiano Vasconcellos Ferreira, coordenador por boa parte de minha graduação do curso de Engenharia Automotiva e meu tutor no Programa de Educação Tutorial e ao meu orientador Carlos Mauricio Sacchelli com quem muito aprendi.

Agradeço a Universidade Federal de Santa Catarina pela oportunidade de me engrandecer intelectualmente, aos meus amigos e colegas e principalmente a Deus.

RESUMO

Devido a várias razões econômicas e tecnológicas, os materiais poliméricos passaram a ocupar um lugar de destaque nos últimos anos como um dos materiais mais utilizados na indústria e principalmente no setor automotivo, tendo como vantagem principal suas propriedades mecânicas, facilidade de processamento que resulta em um baixo custo do produto final com formas complexas e sua baixa densidade, que propicia uma redução de peso no automóvel levando a uma redução do consumo de combustível. Para a obtenção de um produto injetado é necessário o uso de um molde de injeção que pode ser definido como o modelo negativo mais cavidades, além dos sistemas de alimentação, refrigeração, extração e de saída de gases. O sistema de alimentação é responsável por conduzir o material fundido até as cavidades do molde, ele é composto por canais de injeção, distribuição e de entrada. Na literatura é relatado uma grande quantidade de modelos de canais de entrada, sendo o capilar é um dos mais utilizados, por deixar pouca ou nenhuma marca no produto final. Contudo, existem divergências quanto ao seu correto dimensionamento, assim, este trabalho, o objetivo principal foi de analisar com o auxílio da simulação de injeção o dimensionamento dos canais de entrada do tipo capilar. Para este estudo foram primeiramente projetadas três peças com diferentes complexidades geométricas em um software de modelagem 3D e posteriormente utilizado o software CAE (Computer-Aided Engineering) denominado MoldFlow Plastics Insight 5.0, onde foram simuladas o preenchimento dessas estruturas com um material amorfo e outro semicristalino utilizando diferentes configurações de canal de entrada capilar. Como conclusão pode-se correlacionar forma e material do produto injetado de maneira a sugerir a utilização de certas dimensões para uso do canal de entrada capilar.

Palavras-chave: Polímeros. Industria automotiva. Produto Injetado. Simulação de injeção. Canais de entrda capilar. Software *CAE*. Moldflow.

ABSTRACT

Due to economic and technological reasons, polymeric materials have been occupied a prominent place, in last years, as one of the most used materials in the industry, especially in the automotive sector, the main advantage its mechanical properties, processing facilities that results in a low cost of the final product. This material also possibility manufacture complex shapes with low density, which allows a weight reduction in automobile leading an reduction in fuel consumption. To obtaining an injected product is used an injection mold that contains the negative part model with the injection, cooling, extraction and air outlet systems. The injection system is responsible for conducting the molten material into the mold cavities comprising: injection, distribution and input channels. In the literature has a large number of different input channels reported. The pinpoint gate is one of the most widely used because let soft or no marks in the final product. However, there is no correct size definition for the pinpoint gate. In this study was analyzed with the aid of simulation the dimensions of it. Was projected three pieces with different geometrical complexities in a 3D modeling software. Using a CAE (Computer-Aided Engineering) software demined Moldflow Plastics Insight 5.0 to simulate the fill and the cooling of these structures. In the simulation was studied the influence of two polymers materials, an amorphous and a semi-crystalline using different configuration of the pinpoint gate. As a conclusion, was possible correlate the shape with the material of injection product in manner to suggest the use of certain dimensions on pinpoint gate.

Keywords: Polymers. Automotive industry. Injected product. Injection simulation. Pinpoint gate. CAE software. Moldflow.

LISTA DE FIGURAS

Figura 1 - Total de vendas de veículos automotores nos últimos anos 5
Figura 2 - Distribuição dos Trabalhadores do Setor Automotivo no Brasil em 20107
Figura 3 - Monômeros que formam o ABS 14
Figura 4 - Monômero e estrutura do poliacetal15
Figura 5 - A figura mostra o ciclo de vida de um polímero termoplástico na parte superior e na
inferior o processamento de um polímero termofixo17
Figura 6 - Representação do ciclo de Injeção. (a) Aquecimento do material, (b) Preenchimento
das cavidades e (c) Desmoldagem
Figura 7 - Classificação dos parâmetros de injeção 19
Figura 8 - a) Esquematização de um molde simples de duas cavidades para injeção de
termoplásticos, legendas na tabela 6. b) Conjunto injetado em um ciclo de injeção: peça e galhos
(canal de injeção, canais de distribuição ou alimentação e ponto de injeção)23
Figura 9 - Ciclo de injeção e dissipação de calor
Figura 10 - Mecanismo da distorção geométrica causado pelo desbalanceamento do canal de
refrigeração25
Figura 11 - Modelos de sistemas de refrigeração. a) Circuito tipo placa de refrigeração b) Circuito
em espiral. c) Helicoidal simples. d) Helicoidal dupla25
Figura 12 - Modelo de sistemas de refrigeração. a) Circuito em cascata. b) Com insertos ou
barras condutoras de calor
Figura 13 - Saída de gases pontual27
Figura 14 - Cavidade com saída de gases
Figura 15 - Representação do canal de alimentação de um molde de injeção
Figura 16 - Distribuição de cavidades geometricamente balanceadas
Figura 17 - Canal de distribuição com poço frio
Figura 18 - Melhor localização do ponto de injeção em relação a diferentes espessuras do
produto
Figura 19 - Canal de entrada capilar
Figura 20 - Canal de entrada em aba
Figura 21 - Canal de entrada em anel
Figura 22 - a) Canal de entrada submarino. b) Cotas características do canal submarino
Figura 23 - Canal de entrada restrita retangular
Figura 24 - Frente do fluxo de Injeção e camada congelada
Figura 25 - Aparelhamento entre nós de superfícies opostas
Figura 26 - Malha de elementos finitos (FEM) com elementos triangulares
Figura 27 - Placa plana com espessura de 2 mm à esquerda e 3 mm à direita41

Figura 28 - Caixa com uma cavidade e espessura de 2 mm à esquerda e 3 mm à direita 42
Figura 29 - Caixas com 9 cavidades e espessura de 2 mm à esquerda e 3 mm à direita
Figura 30 - Placa 130 x 110 x 3 milímetros com malha gerada
Figura 31 - Posicionamento dos canais de injeção na placa com 3mm e na caixa com nove
cavidades com 3mm de espessura
Figura 32 - Tempo de injeção da caixa com nove cavidades e 3 mm de espessura
Figura 33 - Sistema de alimentação45
Figura 34 - Temperatura do fluido refrigerante após injeção de 2 placas de espessura de 2mm e
material ABS (Cycolac AM)
Figura 35 - Tempos médios de resfriamento de cada tipo de peça e material
Figura 36 - Comparação da dinâmica de resfriamento da caixa com 9 cavidades. a) Tempo de
resfriamento para espessura de 3mm. b) Tempo de resfriamento espessura 2mm
Figura 37 - Tempos médios de preenchimento mais tempo para resfriar cada tipo de peça e
material
Figura 38 - Distribuição do peso médio do canal de injeção para cada peça50
Figura 39 - Força de fechamento médio de acordo com cada peça injetada
Figura 40 - Gráfico das pressões de injeção. a) Pressão de injeção pecas com material POM e
parede com 2mm de espessura. b) Pressão de injeção de peças com material POM e 3mm. c)
Pressão de injeção de peças em ABS e 2mm. d) Pressão de injeção peças em ABS e 3mm 52
Figura 41 - Gráfico das taxas máximas de cisalhamento. a) Material POM e parede com 2mm de
espessura. b) Material POM e 3mm. c) Material ABS e 2mm. d) Material ABS e 3mm
Figura 42 - Tensão máxima de cisalhamento na parede. a) Material POM com espessura de
parede de 2mm. b) Material POM com espessura de 3mm. c) Material ABS com espessura de
2mm. d) Material ABS espessura de 3mm
Figura 43 - Pressão de injeção placa POM espessura de 2 mm67
Figura 44 - Pressão de injeção placa ABS espessura de 2 mm67
Figura 45 - Pressão de injeção placa POM espessura de 3 mm
Figura 46 - Pressão de injeção placa ABS espessura de 3 mm
Figura 47 - Pressão de injeção caixa com uma cavidade em POM e espessura de 2mm
Figura 48 - Pressão de injeção caixa com uma cavidade em ABS e espessura de 2mm
Figura 49 - Pressão de injeção caixa com uma cavidade em POM e espessura de 3 mm70
Figura 50 - Pressão de injeção caixa com uma cavidade em ABS e espessura de 3 mm
Figura 51 - Pressão de injeção caixa com nove cavidades em POM e espessura de 2 mm71
Figura 52 - Pressão de injeção caixa com nove cavidades em ABS e espessura de 2 mm71
Figura 53 - Pressão de injeção caixa com nove cavidades em POM e espessura de 3 mm 72
Figura 54 - Pressão de injeção caixa com nove cavidades em ABS e espessura de 3 mm 72
Figura 55 - Taxa máxima de cisalhamento placa POM espessura de 2 mm
Figura 56 - Taxa máxima de cisalhamento placa ABS espessura de 2 mm

Figura 57 - Taxa máxima de cisalhamento placa POM espessura de 3 mm	74
Figura 58 - Taxa máxima de cisalhamento placa ABS espessura de 3 mm	74
Figura 59 - Taxa máxima de cisalhamento caixa com uma cavidade em POM e espessura	de
2mm	75
Figura 60 - Taxa máxima de cisalhamento caixa com uma cavidade em ABS e espessura	de
2mm	75
Figura 61 - Taxa máxima de cisalhamento caixa com uma cavidade em POM e espessura de	e 3
mm	76
Figura 62 - Taxa máxima de cisalhamento caixa com uma cavidade em ABS e espessura de	e 3
mm	76
Figura 63 - Taxa máxima de cisalhamento caixa com nove cavidades em POM e espessura de	e 2
mm	77
Figura 64 - Taxa máxima de cisalhamento caixa com nove cavidades em ABS e espessura de	e 2
mm	77
Figura 65 - Taxa máxima de cisalhamento caixa com nove cavidades em POM e espessura de	ə 3
mm	78
Figura 66 - Taxa máxima de cisalhamento caixa com nove cavidades em ABS e espessura de	e 3
mm	78
Figura 67 - Taxa máxima de cisalhamento placa POM espessura de 2 mm	79
Figura 68 - Taxa máxima de cisalhamento placa ABS espessura de 2 mm	79
Figura 69 - Taxa máxima de cisalhamento placa POM espessura de 3 mm	80
Figura 70 - Taxa máxima de cisalhamento placa ABS espessura de 3 mm	80
Figura 71 - Taxa máxima de cisalhamento caixa com uma cavidade em POM e espessura	de
2mm	81
Figura 72 - Taxa máxima de cisalhamento caixa com uma cavidade em ABS e espessura	de
2mm	81
Figura 73 - Taxa máxima de cisalhamento caixa com uma cavidade em POM e espessura de	e 3
mm	82
Figura 74 - Taxa máxima de cisalhamento caixa com uma cavidade em ABS e espessura de	э З
mm	82
Figura 75 - Taxa máxima de cisalhamento caixa com nove cavidades em POM e espessura de	ə 2
mm	83
Figura 76 - Taxa máxima de cisalhamento caixa com nove cavidades em ABS e espessura de	e 2
mm	83
Figura 77 - Taxa máxima de cisalhamento caixa com nove cavidades em POM e espessura de	э3
mm	84
Figura 78 - Taxa máxima de cisalhamento caixa com nove cavidades em ABS e espessura de	e 3
mm	84

LISTA DE TABELAS

Tabela 1 - Aplicação de polímeros na indústria automotiva	8
Tabela 2 - Vantagens e desvantagens do uso de plástico nos automóveis em substituição	de
outros materiais	11
Tabela 3 - Classificação dos plásticos quanto a sua aplicação	13
Tabela 4 - Propriedades do ABS	14
Tabela 5 - Propriedades do POM	16
Tabela 6 – Componente do molde da figura 9	23
Tabela 7 - Recomendação de dimensionamento para o canal capilar.	32
Tabela 8 - Tabela de referência para o dimensionamento de os canais de entrada	36
Tabela 9 - Características das malhas para cada geometria.	43
Tabela 10 - Tabelas com as combinações dos parâmetros de simulação	46
Tabela 11 - Placa de POM com 2 milímetros de espessura.	47
Tabela 12 - Propriedades máximas dos materiais utilizados no estudo.	55
Tabela 13 - Configurações que ultrapassaram na simulação a taxa	55
Tabela 14 - Resultados placa de POM com 2 milímetros de espessura	61
Tabela 15 - Resultados placa de ABS com 2 milímetros de espessura	61
Tabela 16 - Resultados placa de POM com 3 milímetros de espessura	62
Tabela 17 - Resultados placa de ABS com 3 milímetros de espessura	62
Tabela 18 - Resultados caixa de uma cavidade de POM com 2 milímetros de espessura	63
Tabela 19 - Resultados caixa de uma cavidade de ABS com 2 milímetros de espessura	63
Tabela 20 - Resultados caixa de uma cavidade de POM com 3 milímetros de espessura	64
Tabela 21 - Resultados caixa de uma cavidade de ABS com 3 milímetros de espessura	64
Tabela 22 - Resultados caixa com 9 cavidades de POM com 2 milímetros de espessura	65
Tabela 23 - Resultados caixa com 9 cavidades de ABS com 2 milímetros de espessura	65
Tabela 24 - Resultados caixa com 9 cavidades de POM com 3 milímetros de espessura	66
Tabela 25 - Resultados caixa com 9 cavidades de ABS com 3 milímetros de espessura	66

LISTA DE ABREVIATURAS E SIGLAS

- ABS Acrilonitrila Butadieno Estireno
- CAE Engenharia Auxiliada por Computador (Computer-aided engineering)
- FEM Finite Elements Mesh
- L Comprimento do canal
- IPI Imposto sobre produtos industrializados
- POM Poliacetal (Polióxido de metila)
- UV Ultra violeta
- Ø Diâmetro do canal
- 1c Uma cavidade
- 9c Nove cavidades

SUMÁRIO

1	INTRODUÇÃO	. 2
1.1	OBJETIVOS	. 4
2	REVISÃO DE LITERATURA	. 5
2.1	Indústria automotiva	. 5
2.2	Aplicação de polímeros na indústria automotiva	. 8
2.3	Classificação de polímeros	11
2.4	Processamento de polímeros termoplásticos	16
2.5	Injeção de polímeros termoplásticos	18
2.6	Características e parâmetros de injeção	19
2.7	Ciclo de injeção	21
2.8	Moldes para injeção de termoplásticos	22
2.9	Sistemas de alimentação	27
2.10	Software CAE	36
2.11	Moldflow	37
3	SIMULAÇÃO	41
4	RESULTADOS	47
5	CONCLUSÃO	56
REF	ERÊNCIAS	57
ANE	XO A – RESULTADOS DAS SIMULAÇÕES	61
ANE	XO B – GRÁFICOS DOS RESULTADOS DAS SIMULAÇÕES	67

1 INTRODUÇÃO

A aplicação de polímeros na indústria vem aumentando de forma considerável, principalmente na indústria automotiva e suas terceirizadas, tal uso é decorrente de vantagens como uma maior processabilidade, menor densidade, absorção de impacto e vibrações esses fatores salientam a importância do estudo dessa classe de material para substituição de materiais tradicionais.

Os processos mais utilizados de transformação deste tipo de material são a extrusão, injeção, conformação direta, sopro, termoformagem, centrifugação, dentre eles o processo de injeção recebe um grande destaque.

O processo de injeção é um dos principais métodos de transformação de polímeros, sua abrangência global e a competitividade do ramo marcaram as últimas décadas com uma grande quantidade de investimento em pesquisa de materiais e estudo do processo. (FUH et all, 2004).

A máquina que realiza a injeção de polímeros é a injetora, ela é composta por uma unidade de injeção onde fica o fuso, o alimentador e o sistema de aquecimento do polímero e uma unidade de fechamento. A unidade de fechamento pode ter acionamento hidráulico, mecânico ou elétrico e ele é responsável por garantir que o molde fique fechado durante a fase de injeção e recalque.

Dentre os componentes da injetora o molde de injeção merece uma maior atenção. Nele estão posicionados os sistemas de alimentação, refrigeração, extração, saída de gases e a cavidade da peça. A necessidade de garantir precisão geométrica, resistência mecânica e durabilidade tornam seu projeto e confecção bastante complexo.

No molde está localizado o sistema de alimentação que é responsável por conduzir o material fundido até a cavidade do molde. Ele é dividido em canal de injeção, de distribuição principal e secundário e de entrada. No projeto do molde o sistema de alimentação é crítico, pois seu incorreto dimensionamento gera defeitos de fabricação do produto. (CRUZ, 2002).

Existem várias configurações de canais de entrada, submarino, restrito, em aba, em disco, flash e o capilar que é muito utilizado por deixar um bom acabamento no produto e fácil remoção do canal de alimentação.

Na literatura não há um consenso no dimensionamento dos canais de entrada, assim, neste trabalho serão estudados com auxílio de software o canal de entrada mais utilizado na indústria: o capilar.

O emprego de recursos computacionais é crescente no projeto de peças de engenharia, suas principais vantagens são a possibilidade de um estudo de baixo custo e

não destrutivo, facilidade de modificações e estudos iterativos que geram ganho significativos de tempo.

Atualmente as grandes empresas do setor automotivo utilizam simulações computacionais para desenvolvimento de produtos e pesquisa e melhoria de processos. A crescente exigência na redução dos custos de produção, otimização de processos e melhoria continua da qualidade dos produtos tem colaborado para incorporar a simulação numérica no cotidiano nessas grandes empresas. No processamento de polímeros os principais softwares empregados atualmente são MAPS-3D, Autodesk Moldflow, SolidWorks Plastics, Simpoe-Mold, 3D TIMON®, e Moldex3D.

Este trabalho discutirá no primeiro capítulo sobre a aplicação de polímeros injetados no setor automotivo, o processamento de polímeros termoplásticos, injeção de polímeros termoplásticos, o molde de injeção e o software CAE utilizado no estudo. No segundo e terceiro capitulo serão apresentadas as simulações e resultados obtidos respectivamente.

1.1 OBJETIVOS

A grande variedade de polímeros existentes e o emprego em diversas áreas tecnológicas justificam os inúmeros estudos de processamento de polímeros. A aplicação de polímeros injetados cresceu muito nas últimas décadas principalmente no setor automotivo. A grande capacidade de produção desse processo é um dos principais fatores de seu sucesso, fatores como redução de peso, bom acabamento superficial, confiabilidade, produção de peças com geometrias complexas, velocidade e custo de produção também contribuíram para sua acessão.

O uso de software *CAE* no contexto da economia global para estudos de engenharia, com a injeção de polímeros, vem se mostrando extremamente interessante, pois cada vez mais o mercado exige menores tempos e custos de produção. Esses softwares possibilitam ensaios não destrutivos com o emprego de métodos computacionais como o de elementos finitos. Outra vantagem desse tipo de desenvolvimento de produtos assistidos por computador são as possibilidades de rápidas mudanças de parâmetros e na geometria dos produtos de forma interativa, quando necessário.

Esse trabalho tem como objetivo principal analisar por meio de simulação de injeção a influência das dimensões dos canais de entrada capilar, variando a forma do produto injetado e tipos de polímeros.

Para este estudo serão escolhidas três formas de produtos com diferentes complexidades geométricas a fim de verificar como variações dos parâmetros construtivos influenciam no produto final. Neste estudo serão analisados dois tipos de materiais, um amorfo (ABS) e outro semi-cristalino (POM), utilizados frequentemente em peças no setor automotivo.

O software utilizado no estudo é o MoldFlow Plastic Insight 5.0, software *CAE* exclusivo para análise de injeções, que permite análise do comportamento através de vários parâmetros, dentre eles: pressão de injeção, tempo de resfriamento, refrigeração, tempo de ciclo, tensão de cisalhamento, taxa de cisalhamento, linhas de solda e saídas de ar.

4

2 REVISÃO DE LITERATURA

2.1 Indústria automotiva

A indústria automotiva movimentou em 2005, 1,9 trilhões de euros e é a principal fonte de renda dos governos com 433,16 bilhões de euros. Emprega mais de 9 milhões de funcionários diretamente e mais de 50 milhões indiretamente sendo uma das maiores economias mundiais. É também o ramo industrial que mais investe em pesquisa e desenvolvimento, aproximadamente 84 bilhões de euros foram investidos no ano de 2013. Em 2003 o total de veículos produzidos no mundo foi de 60.663.225 e em 2013, uma década depois, a produção passou para 87.300.115 um aumento de 43,9%. A figura 1, mostra o crescimento do setor nos últimos anos. (OICA, 2014).

Segundo Casotti e Goldenstein (2008) a indústria automotiva movimenta cerca de 50% do total de borracha, 25% do total de vidro e 15% do total de aço produzidos no mundo. Essa grande quantidade de matéria prima processada agrega ao setor mais de 8 milhões de funcionários apenas para atender essa demanda de material.

Figura 1 - Total de vendas de veículos automotores nos últimos anos. Fonte – OICA (2014) adaptado pelo autor.

A economia em volta da indústria automotiva engloba basicamente toda rede de parques industriais: montadoras, empresas terceirizadas fabricantes de peça e matérias

primas, empresas de logística e concessionárias além de movimentar o setor petroquímico e de infraestrutura rodoviária. (DIAS; SENHORAS, 2005), (LINS; ALVES, 2005).

A indústria automotiva no Brasil começou a se desenvolver em 1953 com o projeto Kombi desenvolvido pela Volkswagen alemã e o projeto GEIA (Grupo Executivo da Industria Automobilística) criado pelo então presidente Juscelino Kubitschek. Nesse período começaram a ser criadas autopeças, oficinas, fundições de ferro e revendas de veículos. Futuramente, em 1956 iniciou a construção de sua fábrica em São Paulo inaugurada em 1959. Em 1957 foi produzido o primeiro veículo brasileiro com mais de 50% de peças nacionais, uma Kombi. Em 1959 lançou o fusca que em 1962 já era líder de mercado. (MARCELINO, 2006).

Quase uma década depois da instalação da Volksvagen no Brasil, em 68, a Chevrolet e a Ford se instalaram no país. E em 76 a Fiat se instalou em Betim. As quatro dominaram o mercado até a década de noventa quando houve abertura do mercado e também importação de novos veículos.

Segundo Dias e Senhoras (2005) até o ano de 1996 apenas nove fabricantes de automóveis estavam instalados no país: Agrale, Fiat, Ford, General Motors, Mercedes-Benz, Scania, Toyota, Volkswagen e Volvo. A partir desse ano um grande número de novas montadoras entraram no país, como a Mitsubish, Pegeout, Citroën e Renault, Honda, BMW, entre outros fatos diretamente ligados a abertura do mercado interno e dinamização da economia.

Recentemente ocorreu a instalação de duas grandes montadoras Chinesas, a Cherry Automobile Co. em 2009 e a JAC Motors em meados de 2011 isso afetou diretamente no mercado automotivo brasileiro. As empresas investiram pesadamente em novas e modernas plantas em território nacional para reduzir taxas como também em projetos de carros com itens de série a um preço baixo e design inovador, forçando as concorrentes a desenvolverem novos projetos mais completos a um custo mais acessível. (BARROSO e ANDRADE, 2012).

No Brasil as quatro principais montadoras que correspondem a mais de 80% dos veículos estão localizadas nas regiões metropolitanas do sul e sudeste com um grande sistema logístico, a figura 2 mostra a distribuição no setor de acordo com seus funcionários. As montadoras nos últimos anos focaram muito na classe emergente através dos automóveis denominados populares (faixa de 25 a 40 mil reais) mas o cenário está em mudança devido a fortes incentivos ao credito, políticas de financiamento e marketing por parte das montadoras e governo. (BARROSO; ANDRADE, 2012), (ALESSI, 2014).

6

Figura 2 - Distribuição dos Trabalhadores do Setor Automotivo no Brasil em 2010. Fonte: CARDOSO et al, 2012.

Outro fato que influenciou a forma de negócio de veículos no Brasil foram as novas leis de segurança, resoluções 311 e 312 do Contran (Conselho Nacional de Trânsito) de 2009, em que especificam que todos os veículos novos saídos de fábrica a partir de 2014, nacionais e importados, deverão ter freios ABS e air-bags frontais. Isso fez com que as montadoras e terceirizadas aplicarem muitos recursos em pesquisa e desenvolvimento para baratear essas tecnologias, e se adequassem progressivamente até o ano de 2014 a partir da onde passam a ser obrigadas por lei.

Atualmente, em junho de 2014, o Brasil é o quinto maior mercado consumidor de veículos e sétimo maior produtor mundial de veículos (dado referente a produção no ano de 2013) produzindo 3,7 milhões de veículo, os maiores produtores em ordem são China (22 mi), EUA (11 mi), Japão (9,6 mi), Alemanha (5,7 mi), Coreia do Sul (4,5 mi) e Índia (3,8 mi) e Brasil. No país esses resultados afetam positivamente a economia e são resultado de fortes incentivos fiscais, economia forte e estável, que propicia um ambiente seguro para investimento estrangeiros e desenvolvimento do mercado de produtos. (OICA, 2014), (ANFAVEA, 2006), (ALESSI, 2014).

2.2 Aplicação de polímeros na indústria automotiva

A tendência de substituição de peças metálicas por polímeros de engenharia tem sido cada vez mais presente na indústria automotiva. Eles vêm ocupando espaço exercendo diversas funções tanto em componentes externas como para-choques como em peças internas desempenhando papel importante no acabamento, design e suporte de outros componentes dos veículos, a tabela 1 mostra algumas das aplicações dos polímeros nos carros atuais.

Os principais polímeros empregados são o polietileno, polipropileno, poliestireno, poli cloreto de vinila (PVC), acrilonitrila butadieno estireno (ABS) e outros citados na tabela 1. São usados de modo geral em para-choques, no painel de instrumentos, frisos de porta, maçanetas, puxadores, recipientes para água, óleo lubrificante, ventoinhas do radiador, caixas de bateria, caixas de água de radiador, tanque de combustível, filtros de gasolina, compartimentos do sistema de alimentação de combustível e outros. De forma combinada com outros materiais os polímeros também estão presente nos compósitos onde atuam como matriz e dão maior tenacidade e resiliência ao compósito.

Polímero	Propriedades	Aplicação
Polietileno de alta densidade (HDPE)	Resistência a calor, resistência a solventes, baixa permeabilidade, boa processabilidade, baixo custo.	Bomba de reserva, caixa do triângulo de emergência, reservatório de água do para-brisa, sistema de distribuição de combustível, tanque de combustível.
Polipropileno (PP)	Alta resistência química a solventes, boa estabilidade dimensional, flexibilidade, durabilidade, baixo custo, excelente balanço impacto/rigidez, boa resistência a intempéries e boa resistência a riscos (abrasão).	Bandeja traseira do porta malas, caixas: da bateria, de calefação, de ferramentas, de primeiros socorros, do cinto de segurança, do retrovisor interno, da central elétrica, calotas, carpetes, cobertura da: bateria (proteção da parte superior), volante, amortecedores, condutos de ar, tampa da rosca de inclinar bancos, console, deposito de fluido de freio, tanque de agua do motor, cobertura do freio de mão, estribo de acesso das portas, frisos laterais, grades de circulação do ar, quebra sol, painéis das portas, porta luvas, painel de instrumentos, para choques, componentes do rádio, proteção das bordas dos para-lamas, protetor externo de porta, carcaça do radiador, protetor da correia dentada, revestimento das colunas, revestimento dos bancos, spoilers.
Polímeros de líquidos cristalinos (LCP)	Resistência ao calor, retardante de chama, baixa absorção de água, alta resistência mecânica, excelente resistência química, fácil processabilidade.	Conectores, porta-escovas de motores elétricos, suporte da bobina.
Poli-tetraftaleno de butileno (PBT) e PBT de alto impacto (PBT-HI)	Boa resistência mecânica, boa resistência térmica, boa estabilidade dimensional, baixa absorção de água, isolamento elétrico.	Ancoragem dos retrovisores laterais, caixa de conectores do sistema elétrico, calota, carcaça: da bomba do circuito de água para o para-brisa, do motor do sistema de movimentação dos vidros elétricos, do motor dos limpadores de para-brisa, do sistema de ignição (distribuidor) e dos faróis, cinzeiros, elementos de regulagem dos faróis, estojo de fusível, grades, palhetas dos limpadores de para-brisa, para-lama, pistão do servo-freio, porta escovas dos motores elétricos, relés, suporte dos retrovisores laterais, tampa do air-bag, conectores.

Tabela 1 - Aplicação de polímeros na indústria automotiva. (Continua)

Poli óxido de metileno (POM)	Excelente estabilidade dimensional, baixa absorção de água, resistência a fricção, alta resistência a fadiga.	Manivela de movimentação dos vidros das portas, guias dos vidros das portas, limpadores de para-brisa, engrenagens do moto-redutor do limpador do para-brisa, cintos de segurança, ancoragem do cinto de segurança, espelhos retrovisores, coxim e elementos deslizantes, carcaça e engrenagens do sistema de movimentação do espelho, corpo de fechamento da tampa do porta-malas, circuito combustível, boia do carburador, válvulas do sistema de combustível, alavanca de abertura das portas, grampos para isolação de frisos laterais, guias de movimentação do teto solar, parte dos para-choques, alavanca dos bancos dianteiros, alavanca de abertura dos bancos para o porta-malas, alavanca de comando dos para-brisas e setas, tampa dos auto falantes, componentes da transmissão, amortecedores e do sistema de freio, suporte da alavanca das marchas, terminais dos chicotes dos cabos, válvula do servo-freio, sistema de calefação, manivela de teto solar, rotor da bomba d'água, terminal do cabo da embreagem.
Poli-tetrafluoretileno (PTFE)	Alta resistência térmica, resistência a óleos e agentes químicos.	Bomba de combustível elétrica, elemento deslizante do amortecedor, elemento deslizante do freio, guia do pistão do amortecedor.
Poli-sulfeto de fenileno (PPS)	Elevada rigidez, excelentes propriedades mecânicas, excelentes propriedades elétricas, fácil processabilidade, retardamento de chamas.	Carcaça dos faróis, paletas da bomba de vácuo, suporte da bobina, suporte do porta escovas do motor de refrigeração, escaninho do air-bag.
Poli-metacrilato de metila (PMMA)	Transparência, Boa resistência química, alta resistência a intempéries.	Fibras óticas, lanternas, protetores de chuva das janelas.
Poliuretano (PU)	Excepcional resistência a abrasão, absorvedor de energia, isolamento acústico, fácil processabilidade.	Para-choque, estofo dos bancos, coxins, suporte do motor, enchimento do para-choque.
Poliamida (PA)	Boa processabilidade, resistência a tensão, resistência a alta temperatura, excelente estabilidade dimensional.	Dutos de captação de ar, engrenagens, conectores de sistema de injeção, sistema de freio de estacionamento, escaninho do air-bag.
(ABS) Acrilonitrila butadieno estireno	Resistencia a corrosão, alta resistência química, ótima processabilidade, resistência ao impacto, resistência a baixas temperaturas, grande estabilidade dimensional.	Grades, calotas, painel de instrumentos, carcaça das lanternas.
Poli-cloreto de vinila (PVC)	Alta resistência a chama, semelhança a couro, flexibilidade de processamento.	Filtros de ar e de óleo, revestimento dos bancos, painéis do interior, revestimento de fios e cabos elétricos.
Poliamida	Boa resistência a impacto, alta resistência a solventes, boa resistência a alta temperatura, baixa absorção de umidade, fácil colagem e pintura, ótima processabilidade, brilho.	Para lamas.
Policarbonato	Excelente resistência mecânica, excelente resistência química, alta resistência a intempéries, resistência a altas temperaturas, retenção de cor, resistência a radiação ultravioleta.	Painel de instrumentos, para-choques, painel lateral externo, ponteira de para choques, spoilers.
Politereftalato de etileno (PET)	Alta resistência mecânica, alta resistência térmica e química, transparência, alta impermeabilidade e fácil processabilidade.	Carcaça de bombas, carburador, limpador de para-brisas, parte de componentes elétricas.

Tabela 1 - Aplicação de polímeros na indústria automotiva. (Continuação)

Fonte: HEMAIS, 2003 adaptado pelo autor.

Nas últimas décadas houve um aumento significativo na quantidade de polímeros empregados nos veículos de passeio e comerciais, fatores tecnológicos desencadeados pela crise do petróleo de 1973 e 1979 tiveram grande influência na busca por carros mais eficientes e seguros. A redução de peso nos veículos ainda é um dos fatores mais importantes no projeto de um veículo, pois está ligada diretamente com o consumo e desempenho.

O emprego de novos materiais mais leves e que satisfizessem as características mecânicas necessárias resultou num incremento do peso de polímeros embarcados, a quantidade de aproximadamente 30 quilos de polímeros embarcado em 1970 passou para cerca de 180 quilos no final da década de 90. Atualmente 25% do peso dos veículos correspondem a este tipo de material e estima-se que até 2020 em média, 40% do peso total seja correspondente a essa categoria de material. (HEMAIS, 2003) (ANB, 2012).

Os poliméricos mostram-se bastante vantajosos comparados aos materiais tradicionais, como o aço o alumínio e o vidro, citadas na tabela 2. Destacam-se principalmente a sua baixa densidade, absorção de ruídos e vibrações, economia quanto a investimentos para produção e sua alta conformabilidade que permite maior flexibilidade de projeto e formas diversas. Segundo o APME, para cada 100 quilos de peças poliméricas empregadas deixam-se de empregar de 200 a 300 quilos de materiais tradicionais, e isso resulta numa economia média de 7,5% que varia de veículo para veículo.

Os polímeros também estão diretamente ligados a segurança dos veículos modernos, seu emprego em para-choques, air-bags, proteções laterais contra impacto (que não lascam ou fraturam) e cintos de segurança que possibilitaram reduzir significativamente o número de acidentes fatais. (HEMAIS, 2003).

As desvantagens do uso de polímeros na engenharia estão geralmente relacionadas as suas propriedades mecânicas, devido ao tipo de ligação entre moléculas e suas longas cadeias, que quase em todos os materiais polímeros são inferiores aos metais. Outras características como deterioração UV, inflamabilidade e baixa resistência ao impacto limitam o emprego dos polímeros como materiais de engenharia. A tabela 2 apresenta desvantagens do emprego de polímeros para substituição de outros materiais em automóveis. (HEMAIS, 2003), (RIELLO, 2012).

10

Vantagens	Desvantagens
Redução de peso	Deterioração por ação térmica
Redução da emissão de CO2	Deterioração por raios UV
Redução de custos	Inflamabilidade
Redução do tempo de produção	Baixa resistência ao impacto
Menores investimentos em manufatura	Deformação permanente elevada
Aumento da resistência a corrosão	Dificuldade de adesão de película de tinta
Possibilidade de designs mais modernos	Facilidade de machas permanentes
Absorção de ruídos e vibrações	Baixa estabilidade dimensional
Formatos mais complexos	Deformação permanente elevada
Excelente processabilidade	
Melhor uso de espaço	
Isolantes elétricos e acústicos	
Aumento da segurança	
Reciclabilidade	

Tabela 2 - Vantagens e desvantagens do uso de plástico nos automóveis em substituição de outros materiais.

Fonte: HEMAIS, 2003 modificada pelo autor.

2.3 Classificação de polímeros

Vários critérios para classificação dos polímeros são adotados dentre eles os principais são: segundo origem do polímero, tipo de encadeamento, quanto aos monômeros envolvidos. (MANO; MENDES, 2007).

Os polímeros podem ser classificados em sintéticos ou naturais. Os polímeros naturais são aqueles encontrados na natureza como a borracha, a celulose, proteínas, polissacarídeos entre outros. São exemplos de suas aplicações a fabricação de papel, algodão, lã, seda e pneus. Os polímeros sintéticos são aqueles fabricados pelo homem que surgiram da necessidade de se fabricar produtos similares aos polímeros naturais principalmente durante o período das grandes guerras mundiais, onde buscava-se melhoria nas suas propriedades.

Quanto ao tipo de encadeamento, eles são divididos em dois grandes grupos, os termoplásticos e os plásticos encadeados. O grupo dos termoplásticos é dividido por sua vez em polímeros semicristalinos e amorfos. O grupo dos plásticos encadeados contempla os grupos de elastômeros e termo fixos.

Quanto ao número de monômeros envolvidos os polímeros são classificados em homopolímeros e copolímeros. Os homopolímeros são aqueles onde um único mero é predominante em toda cadeia, de forma geral é classificado homopolímero as macromoléculas com mais de 95% de um único tipo de mero. Copolímeros são aqueles que em sua composição apresentam mais de um mero em quantidades significativas. (MANO; MENDES, 2007).

A tabela 3 mostra os principais polímeros comerciais divididos em dois grupos os de uso geral e os de engenharia. A principal diferença entre esses dois grupos está relacionada a propriedade mecânicas dos polímeros, o grupo de polímeros de engenharia apresentam propriedades mecânicas elevadas comparadas ao de usos geral.

Os polímeros mais utilizados para fabricação de peças em diferentes setores são os polímeros termoplásticos de uso geral por apresentarem uma maior facilidade de processamento. Os polímeros de uso geral são aplicados em situações onde não são requeridas propriedades mecânicas, e geralmente eles apresentam um custo inferior aos de engenharia.

Aplicação	Grupo	Principais plásticos	Sigla
		Poliestireno	OS
		Poliestireno de alto impacto	HIPS
		Polipropileno	PP
		Polietileno	PE
	Termoplástico	Copoli (estireno-acrilonitrila)	SAN
		Copoli (acrilinitrila-butadieno-estireno)	ABS
		Copoli (etileno-acetato de vinila)	EVA
		Poli (cloreto de vinila)	PVC
Geral		Poli (acetato de vinila)	PVAC
		Poli (acrilonitrila)	PAN
		Poli (cloreto de vinilideno)	PVDC
		Poli (metacrilato de metila)	PMMA
		Resina epoxídica	ER
		Resina fenol-formoaldeído	PR
	Termorrígidos	Resina de uréia-formoaldeído	UR
		Resina de melamina-formaldeído	MR
		Poliuretanos	PU
	liso neral	Polietileno de altíssimo peso molecular	UHMWPE
		Poli (óxido de metileno)	POM
		Poli (tereftaleno de etileno)	PET
		Poli (tereftaleno de butadieno)	PBT
	g	Policarbonatos	PC
		Poliamidas alifáticas	PA
		Poli(óxido de fenileno)	PPO
		Poli(fluoreto de vilideno)	PVDF
		Poli (tetraflúor-etileno)	PTFE
Engenharia		Poliarilatos	PAR
Ŭ		Poliéster líquido-cristalino	LCP
		Poliamidas aromáticas	PA
		Poli-imidas	PI
	Uso especial	Poli (amida-imida)	PAI
050 especial	000 copeciai	Poli (éter-imida)	PEI
		Poli (éter-cetona)	PEK
		Poli (éter-éter-cetoa)	PEEK
		Poli (éter-sulfona)	PES
		Poli (aril-sulfona)	PAS
		Poli (sulfeto de fenileno)	PPS

Tabela 3 - Classificação dos plásticos quanto a sua aplicação.

Fonte: MANO e MENDES, 2007.

A escolha dos polímeros ABS e Poliacetal (POM), foram feitas analisando suas aplicações no setor industrial com ênfase no setor automotivo. Eles estão entre os principais polímeros utilizados na injeção de peças para o setor, suas principais aplicações são: carcaça da lanterna, calotas, calhas para vidros, maçanetas, válvulas do sistema de

combustível, parte do encaixe do cinto de segurança, componentes do painel de instrumento, parte do para- choque, botões e alavancas entre outros.

ABS

O Acrilonitrila Butadieno Estireno mais conhecido como ABS é um termoplástico composto de três monômeros diferentes acrilonitrila, butadieno e estireno mostrados na figura 3 com formula molecular ($C_8H_8\cdot C_4H_6\cdot C_3H_3N$) n.

Figura 3 - Monômeros que formam o ABS. Fonte: Adaptado de MANO e MENDES (2007).

O ABS está presente em vários componentes dos automóveis como na carenagem tampas de jantes de calotas, são empregados também em motos, ventoinhas, espelhos retrovisores, botões, telefones, mouses, teclados e impressoras, eletrodomésticos, capacetes de segurança, brinquedos e outros.

O ABS é um polímero resistente ao impacto, atóxico, de fácil processamento, com boa estabilidade química e dimensional, boa resistência térmica, elétrica e mecânica. As propriedades do ABS estão descritas na tabela 4.

Tabela 4 - FTOpheudues uu ABS.		
Densidade	1.05 g/cm ³	
Resistência a tração	44 MPa	
Condutividade térmica	0,16 W/mºC	
Resistência ao impacto IZOD 23°C	215 J/m	
Temperatura de fusão	236ºC	
Preço (Cycolac MG37EPX BK4500)	2,88 U\$ / kg – (maio 2014)	

Tabela 4 - Propriedades do ABS.

Fonte: Biblioteca Moldflow Plastics Insight e ZAUBA, 2014.

• POLIACETAL (POM)

O Poli(oxido de metila) POM também conhecido como Poliacetal, é um polímero proveniente de formaldeído, com característica que o possibilitam aplicações de engenharia descoberto em 1956. Sua formula é (CH₂O)_n mostrado na figura 4 e algumas de suas propriedades são mostradas na tabela 5.

$$\left(\begin{array}{c} & & \\ & &$$

Figura 4 - Monômero e estrutura do poliacetal. Fonte: SACCHELLI; BOM, 1999.

As principais propriedades do POM são (MANO, 2007), (MANRICH, 2005), (SACCHELLI; BOM, 1999):

- Excelente estabilidade dimensional;
- Elevada rigidez;
- Boa resistência ao impacto e tração;
- Alta resistência a flexão;
- Baixo coeficiente de atrito;
- Absorve vibrações;
- Baixíssima absorção de umidade;
- Ótima retenção de propriedades e estabilidade dimensional por longos períodos a

temperatura de 105ºC em ar e 83ºC em água;

- Contração na faixa de 1,8% a 2,2 % para paredes de espessura de 3,0 m;
- Boa resistência mecânica;
- Boa resistência dielétrica;
- Tenacidade, mesmo em baixa temperatura;
- Alto módulo de elasticidade;
- Elevada resistência a agentes químicos.

Tabela 5 - FTOphedades do FOM.	
Densidade	1.41 g·cm⁻³ (20 °C)
Módulo de cisalhamento	619 MPa
Modulo de Elasticidade	1740 MPa
Condutividade térmica	0,31 W/mºC
Temperatura de fusão	178 <i>°</i> C
Aparência	Branca cristalina e solida
Preço (CELCON M90 CF2001)	1,47 U\$ / kg (jun. 2014)

Tabela 5 - Propriedades do POM.

Fonte: Biblioteca Moldflow Plastic Insight 5.0 e ZAUBA, 2014.

2.4 Processamento de polímeros termoplásticos

Alguns conceitos são importantes para podermos compreender melhor o processo de transformação de polímeros.

Os polímeros termoplásticos são plásticos com a capacidade de amolecer e fluir quando sujeitos a um aumento de temperatura e/ou pressão. Quando estes voltam as condições iniciais, o polímero novamente solidifica e fica com a forma final de quando moldado. Após isso se uma nova aplicação de temperatura e/ou pressão ocorrer ele volta a amolecer e fluir. Por isso as transformações em termoplásticos são consideradas reversíveis, o que garante a essa classe a característica de reciclabilidade. São exemplos de termoplásticos o polipropileno (PE), poliestireno (PS) e a poliamida (Náilon). (CANEVAROLO, 2010).

A figura 5 apresenta um ciclo de transformação de um polímero termoplástico e o compara com o processo de transformação dos termofixos. Os polímeros termofixos também conhecidos como termorrígidos são plásticos que aplicando uma determinada temperatura e pressão, amolecem e fluem, adquirindo a forma do molde desejado. Diferentemente dos termoplásticos ocorre a formação de ligações cruzadas entre cadeias poliméricas e após solidificar não é possível fundir, a temperatura e pressão apenas causa degradação do material, dessa forma os polímeros termorrígidos são insolúveis infusíveis e não recicláveis. Dessa forma no quesito de processamento de polímeros normalmente busca se utilizar polímeros termoplásticos. (CANEVAROLO, 2010).

Figura 5 - A figura mostra o ciclo de vida de um polímero termoplástico na parte superior e na inferior o processamento de um polímero termofixo.

Fonte: PEREIRA, 2009.

O estado de fusão é caracterizado por apresentar o material na forma viscosa e com cadeias altamente aleatórias, porém em polímeros diferentemente de nos sólidos cerâmicos e metálicos o aumento da temperatura pode causar degradação do material, e a essa temperatura chamamos de temperatura de fusão cristalina (T_m). Dessa forma existe uma temperatura máxima de trabalho para cada tipo de polímero. (CALLISTER, 2002).

Os materiais podem apresentar três tipos de deformações: por cisalhamento, compressão ou dilatação ou combinação das duas anteriores. Por cisalhamento através da atuação de uma tensão cisalhante não ocorrendo mudança no volume. Por atuação de uma tensão normal onde ocorre variação do volume e não da forma. Ou alteração tanto do volume quanto da forma, quando tensões tangencias e normais são aplicadas em uma área do corpo. (MANRICH, 2005).

Os principais métodos utilizados para processar e moldar polímeros são a extrusão, injeção, sopro, termoformagem entre outros. Esse trabalho apenas irá estudar a injeção de polímeros um dos mais versáteis e modernos no campo de transformação e processamento de polímeros, sendo assim os outros processos ficarão para um próximo estudo.

2.5 Injeção de polímeros termoplásticos

A injeção de polímeros é um dos processos mais utilizados para transformação de termoplásticos, devido a sua grande capacidade de produção e capacidade de fabricar peças com geometrias complexas. (MANRICH, 2005).

Ele pode ser descrito pela realização de um esforço, geralmente hidráulico em um embolo para que o material plástico aquecido se desloque, figura 6. O movimento hidráulico movimenta a rosca que empurra material através do bico de injeção (mostrado em a) dentro do molde e continua fazendo pressão para garantir perfeito preenchimento (mostrado em b). E por último retorno da rosca para reinicio do processo (mostrado em c). (MICHAELI; POTSCH,1995).

Figura 6 - Representação do ciclo de Injeção. (a) Aquecimento do material, (b) Preenchimento das cavidades e (c) Desmoldagem.

Fonte: MICHAELI e POTSCH,1995.

O processo de injeção não é um processo contínuo, consiste em aquecer os pellets até formar um fluido viscoso, homogeneizar e injetar o material dentro de uma cavidade denominada molde, resfriar e aguardar sua solidificação para então retirar e recomeçar o ciclo de injeção novamente. (MANRICH, 2005).

2.6 Características e parâmetros de injeção

Segundo Brice (1996) os parâmetros de injeção são divididos em quatro grupos, temperatura, pressão, tempo e distância. A figura 7 representa a relação entre esses parâmetros e a hierarquia entre eles, onde os maiores círculos representam uma maior importância.

A temperatura e a pressão são os quesitos mais importantes segundo o autor, pois cada polímero apresenta uma faixa de temperatura na qual suas propriedades favorecem a injeção. Quanto maior a quantidade de energia térmica fornecida maior o número de deslizamento entre as moléculas gerando assim uma condição de maior mobilidade e fluidez do polímero, sendo limitada por uma temperatura de degradação. (BACK, 2001), (BRICE, 1996).

A compressão gerada pela aplicação de pressão ao rotacionar o fuso também fornece energia térmica devido ao atrito gerado entre material e a rosca que se movimentam em velocidades diferentes. A pressão também é presente nos sistemas hidráulicos que fornece força necessária para fechar o molde. (BACK, 2001), (BRICE 1996).

O tempo é dependente diretamente de quanto material deseja-se injetar, viscosidade do polímero e geometria da peça uma vez que maior parte do tempo é gasto esperando a solidificação do material no molde. Os tempos podem ser divididos em tempo de injeção, tempo de recalque, tempo de resfriamento, e tempo de abertura e fechamento do molde. (BACK, 2001), (BRICE 1996).

O último parâmetro, a distância, está diretamente ligada a injeção de material pelo fuso, pois o movimento dele determina quanto material vai ser injetado. O movimento também está diretamente relacionado com o tempo, nesse quesito Manrich (2005) cita o quarto parâmetro como velocidade ao invés de distância.

Figura 7 - Classificação dos parâmetros de injeção. Fonte BRICE, 1997 adaptado por BACK.

As máquinas injetoras e os moldes apresentam variações por apresentarem componentes diferentes como tipo de rosca, pressões no molde e no polímero fundido, velocidades de operação, tipo de canal de alimentação entre outras. As características que devem ser avaliadas são (MANRICH 2005):

 Capacidade de injeção: definida como a quantidade máxima em gramas de um material especificado pelo fabricante, geralmente poliestireno (PS); Capacidade de Plastificação: É a quantidade máxima de material, geralmente PS, que a injetora consegue homogeneizar por unidade de tempo informados pelo fabricante;

• **Pressão de injeção:** As injetoras também são limitadas quanto a pressão que conseguem exercer no polímero para que o mesmo possa completar todas as cavidades do molde. A pressão requerida para encher completamente a cavidade é determinada pela geometria do produto mais os canais de injeção e pela viscosidade do material que é determinada por parâmetros, como peso molecular e a estrutura do polímero, além de variáveis do processo, como temperatura e velocidade de injeção.

• **Pressão de fechamento:** Ela serve para assegurar que o molde permaneça fechado durante a injeção, para isso é necessário que a pressão de fechamento seja maior que a pressão gerada pelo polímero nas cavidades do molde;

 Velocidade de injeção: obtida a partir da quantidade de material injetada pelo tempo de injeção. A velocidade real, a na entrada da cavidade da peça, depende de vários fatores associados ao projeto do molde, principalmente aos ligados aos canais de alimentação. Pressão de recalque: O tempo de pressão de recalque tem a finalidade de compactar o material e compensar a contração térmica sofrida pelo material ao esfriar dentro da cavidade do molde, diminuindo assim a contração final da peça.

• **Contrapressão:** É a resistência que a rosca deve vencer durante sua rotação para transportar e plastificar os grânulos do polímero, como o movimento dela é em um sentido e o material em outro o acúmulo de material gera uma pressão que empurra ela para trás.

 Rotação da rosca: Analisando o funcionamento de uma rosca veremos que esta é responsável pelo transporte do material ao longo do cilindro. A velocidade de rotação da rosca influência diretamente na geração de energia térmica por atrito obtendo assim um maior aquecimento do material, devido à quantidade de energia absorvida a partir do cisalhamento intermolecular.

20

2.7 Ciclo de injeção

A injeção não é um processo continuo, ele ocorre em etapas e é possível identificar dois ciclos que acontecem independentemente. O ciclo da rosca e o ciclo do molde. (MANRICH, 2005).

O ciclo da rosca é dividido em quatro etapas:

1- O polímero é alimentado na injetora através de um funil, que entrega ao início da rosca os pellets. A rosca carrega o polímero para a parte frontal através de seu movimento rotativo. Enquanto ela gira se movimenta, quando retrocede ocorre mais espaço para que o polímero fundido ficar à frente aguardando o avanço para empurrar o polímero nas cavidades do que é controlado por uma válvula na saída do orifício;

2- A rosca para de girar e em vez de atuar como parafuso sem fim, atua como pistão empurrando o material que junto com uma atuação na válvula permite que o material fundido e homogeneizado flua para dentro do molde e preencha as cavidades;

3- A rosca após terminar de empurrar o material para dentro do molde continua aplicando pressão para realização do recalque;

4- Terminando o tempo de recalque a rosca volta a girar e retrocede em direção ao funil recomeçando o ciclo novamente.

O ciclo do molde por sua vez é o descrito (MANRICH, 2005):

1- O molde fechado e vazio recebe a injeção de polímero fundido, terminando a injeção inicia o processo de resfriamento paralelamente com a atuação da pressão de recalque. E a peça inicia seu processo de resfriamento e solidificação.

2- Após a pressão de recalque não ser mais necessária o molde continua fechado para terminar o processo de resfriamento e solidificação, que geralmente é o maior tempo dos ciclos.

3- Assim que o moldado atinge a temperatura especificada em projeto, o molde abre e ejeta as peças juntamente com os canais.

4- O molde então fecha e vazio aguarda o início do novo ciclo de injeção.

21

OTIMIZAÇÃO DOS CICLOS DE INJEÇÃO

Como a injeção é um processo de fabricação de larga escala, é comum buscar sempre trabalhar com o mínimo de material possível, bem como reduzir o tempo de resfriamento que podem chegar a mais de 60% do tempo total de injeção.

Muitos parâmetros não podem ser alterados após aquisição do molde, como número de cavidades, dimensões e número de canais de injeção, tamanho da peça, por isso devem ser gasto muito tempo de projeto na preparação do molde. Parâmetros como temperatura do molde, temperatura do fundido, tempo de preenchimento do molde, variações de tensões sobre o material dentro da cavidade, tempo e pressão de recalque merecem atenção especial no projeto do molde.

Após o molde projetado e instalado é possível otimizar tempos no processo como tempo de fechamento e abertura do molde, de travamento do molde, de extração das peças todos classificados como tempo morto, e outros como tempo de preenchimento do molde, de recalque e de resfriamento. (MANRICH, 2005).

2.8 Moldes para injeção de termoplásticos

Os moldes de injeção, mostrado detalhadamente na figura 8 e tabela 6, é a parte responsável por dar forma a peça injetada, ele normalmente é composto por um sistema de suporte e por uma matriz em aço com cavidades, canais de alimentação, sistema de refrigeração e um sistema de extração normalmente utilizando pinos.

Figura 8 - a) Esquematização de um molde simples de duas cavidades para injeção de termoplásticos, legendas na tabela 6. b) Conjunto injetado em um ciclo de injeção: peça e galhos (canal de injeção, canais de distribuição ou alimentação e ponto de injeção).

Fonte: MANRICH, 2005.

Tabola o	Componente de meide da iguia er	
Numero	Descrição	
1	Largura da montagem das placas	
2	Lado do sistema de extração	
3	Lado do sistema de injeção	
4	Linha de fechamento	
5	Placa base do lado móvel	
6	Bucha do sistema de guia	
7	Pino garra de retorno	
8	Placas extratoras	
9	Eixo extrator central	
10	Pino extrator	
11	Placa de apoio	
12	Bucha/pino guia	
13	Coluna guia	
14	Porta macho	
15	Anel de centrarem	
16	Bucha de injeção	
17	Canal de injeção	
18	Placa base fixa	
19	Calços	
20	Gancho	
21	Cavidade,	
22	Canal de injeção,	
23	Canal de distribuição	
24	Ponto de injecão	

Tabela 6 – Componente do molde da figura 9.	
Numero	Descrição
1	Largura da montagem das placas
2	Lado do sistema de extração
S	Lado do sistema de iniecão

Fonte: Autor.

Para que um molde consiga desempenhar corretamente seu papel ele precisa garantir que seja capaz de injetar polímero em todas as cavidades de acordo com seu projeto, mantendo suas características dimensionais ciclo a ciclo. O molde também deve facilitar o resfriamento do material polimérico dentro das cavidades, e promover extração das peças injetadas. (MANRICH, 2005).

Sistema de refrigeração

O sistema de refrigeração do molde tem como finalidade acelerar o processo de troca térmica e solidificar o polímero fluido que compõem o produto e os canais de alimentação. Em seu projeto deve-se tentar obter uma redução constante na temperatura da peça de forma a tornar o resfriamento total o mais rápido possível. (SILVA, 2009).

A figura 9 apresenta a influência do tempo de cada operação durante a injeção de um produto, observe que o tempo de recalque mais plastificação e refrigeração é o maior. Dessa forma o projeto do sistema de refrigeração deve ser o mais eficiente possível para reduzir os tempos de ciclos e ganhar em produtividade.

Figura 9 - Ciclo de injeção e dissipação de calor. Fonte: SILVA, 2009.

A refrigeração de peças sem uma boa distribuição do fluxo de calor pode gerar defeitos como o empenamento e aumento do tempo de ciclo como mostra a figura 10.

Figura 10 - Mecanismo da distorção geométrica causado pelo desbalanceamento do canal de refrigeração.

Fonte: GUIDE, 2000 citado por SILVA 2009.

O canal de refrigeração normalmente é circular, fabricado por usinagem, para peças com geometrias mais complexas podem ser realizados caminhos que ajudem a homogeneizar o fluxo de calor, para isso normalmente realizam-se mais furos passantes que são tampados com outros materiais para obterem um circuito fechado de refrigeração. Outros tipos de configurações podem ser utilizados para obter uma melhor refrigeração, a figura 11 e 12 apresentam as principais configurações de um canal de refrigeração.

Figura 11 - Modelos de sistemas de refrigeração. a) Circuito tipo placa de refrigeração b) Circuito em espiral. c) Helicoidal simples. d) Helicoidal dupla.

Fonte: BRITO et al, 2004.

Figura 12 - Modelo de sistemas de refrigeração. a) Circuito em cascata. b) Com insertos ou barras condutoras de calor. Fonte: BRITO et al, 2004, STITZ et al, 2002 e SILVA 2009 readaptados pelo autor.

Sistema extrator

O sistema de extração é responsável por retirar de dentro da cavidade do molde a peça injetada e o canal de alimentação. O sistema de extração normalmente é um mecanismo que é acionado junto a abertura do molde por uma placa flutuante que permite a separação automática da peça e dos canais de alimentação. (NISHIMOTO, 2001).

Para obter um bom sistema extrator alguns cuidados devem ser tomados com o projeto da geometria da peça para que existam pontos suficientes e ângulo para fácil remoção do produto e sistema de alimentação de dentro da cavidade.

Saída de gases

O sistema de saída de gases deve ser localizado de acordo com o a direção do fluxo do material. Ele é necessário principalmente em peças com camadas finas que exigem uma alta velocidade de produção para evitar defeitos: como bolhas, falta de preenchimento, linhas de emenda fracas e contração irregular do moldado. A figura 13 e 14 apresentam o modelo de dois canais de saída de gases. (THOMAZI, 2009).

Figura 13 - Saída de gases pontual. Fonte: THOMAZI, 2009.

Figura 14 - Cavidade com saída de gases. Fonte: THOMAZI, 2009.

2.9 Sistemas de alimentação

O sitema de alimentação é responsavel por conduzir o material fundido do bico do até a entrada da cavidade do molde. Ele é dividido em canal de injeçao, canais de distribuição e canal de entrada. A figura 15 apresenta uma configuração de um sistema de alimentação.

Figura 15 - Representação do canal de alimentação de um molde de injeção. Fonte: BEAUMONT, 2004.

Segundo Thomazi (2009) o sucesso no processo de injeção de termoplásticos está diretamente relacionado ao conhecimento do fluxo do material fundido pelos canais e cavidades. Conhecendo o fluxo é possível escolher o(s) ponto(s) de injeção que propiciem a melhor distribuição de fluxo (eficiência do processo) e estética do produto aceitável.

Canal de injeção

O canal de injeção é localizado no molde entre a bucha e os canais de distribuição, ele é o primeiro canal de alimentação a receber o polímero fundido dentro do molde. Sua geometria é bastante limitada, basicamente seu formato é circular com a presença de um ângulo crescente no sentido bucha do molde - canal de distribuição para auxiliar na retirada do canal solidificado após o ciclo de injeção.

Canal de distribuição

O canal de distribuição fica localizado entre o canal de injeção e o canal de entrada. Ele deve ser projetado para distribuir simultaneamente o material em todas as cavidades minimizando assim o tempo de ciclo. A figura 16 mostra alguns tipos de configurações dos canais de distribuição recomendados. (Thomazi, 2009).

Figura 16 - Distribuição de cavidades geometricamente balanceadas. Fonte: Thomazi, 2009 adaptado pelo autor.

O poço frio, representado na figura 17 é uma extensão do canal, ele é recomendado quando houver uma quebra de canal de injeção. Sua função é evitar o congelamento do canal através da absorção da frente de fluxo mais fria.

Figura 17 - Canal de distribuição com poço frio. Fonte: Thomazi, 2009.

A geometria do canal de distribuição pode ser bastante variada, os tipos de canais mais utilizados são: circular, meio circulo, trapezoidal e retângular. Para garantir um fluxo mais uniforme é recomendado que no projeto dos canais que a a área das secções transversais dos canais de distribuição seja igual ou inferior a área da seção do canal de injeção em sua união.

Canal de entrada

O canal de entrada é localizado entre o canal de distribuição e a cavidade da peça, sua função é distribuir / conduzir o material fundido para dentro da cavidade do produto em uma posição específica. Normalmente ele apresenta restrições de áreas com a finalidade de facilitar a separação canal-produto além de garantir economia de material.

Thomazi (2009) sugere que o posicionamento dos pontos de injeção (canal de entrada) seja de preferência nas paredes mais grossas, com o objetivo de minimizar o efeito de congelamento das camadas sobre o fluxo de material conforme mostra a figura 18.

No processo de injeção o material fundido entra em contato com a parede do molde que está em uma temperatura mais baixa, esse contato propicia o resfriamento local do polímero formando uma camada congelada (*Frozen Layer*) que aumenta com o passar do tempo. Com o aumento da camada congelada, diminui-se o caminho de passagem do fluido resultando em um aumento na pressão de injeção e recalque.

Outra recomendação é o posicionamento do canal de entrada seja no centro de gravidade ou centro de massa, porem nem sempre é possível utilizar esse ponto, então recomenda-se a escolha de uma configuração que minimize os caminhos percorridos pelo material fundido. Com esse procedimento tende-se a diminuir os efeitos e aparecimento de linha de solda ou emenda fria que são prejudiciais ao produto final por serem os pontos de junta com maior acumulo de tensão. (THOMAZI, 2009).

Os pontos de entrada de injeção influenciam diretamente na qualidade do produto final, para seu projeto algumas características devem ser levadas em conta (THOMAZI, 2009):

• Peças grandes que necessitam de vários pontos de entrada e estes devem estar próximos o bastante para evitarem perda de pressão;

• Para evitar aprisionamento de gases, o fluxo do material a partir do ponto de entrada deve ser dirigido para as saídas de gases;

• Os pontos de entrada devem estar localizados, preferencialmente, das paredes grossas para finas;

• Os pontos de entrada devem estar localizados em local de pouca solicitação mecânica da peça;

• Os pontos de entrada devem estar localizados de tal forma a minimizar linhas de emenda e qualquer tipo de marca;

Uma parte importante para o projeto do molde é o dimensionamento dos canais de entrada. Contudo na literatura não há um consenso entre os autores em relação ao dimensionamento deles, os principais modelos são mostrados na sequência:

Canal capilar

As principais características do canal capilar (*pinpoint gate*) é sua pequena abertura na entrada da peça, essa característica permite fácil separação dos canais das peças e deixa um bom acabamento na região do ponto de entrada. Na Figura 19 é apresentado o canal capilar e suas principais dimensões, seu comprimento "A" e seu diâmetro "D". (BEAUMONT, 2004).

Figura 19 - Canal de entrada capilar. Fonte: BEAUMONT, 2004. O dimensionamento do canal capilar segundo vários autores é apresentado na tabela 7.

Autor	"A" (mm)	ø "D" (mm)	Outras considerações
Harada (2004)	-	-	Material deve se chocar com parede ou pino ao entrar na peça
Beaumont		40 a 50% da espessura da	
(2004)	0,5 a 1,0	parede	-
			Angulo superior: 10 a 20 graus, raio da esfera da ponta de 1 a
Cruz (2002)	0,5 a 1,5	0,5 a 0,8	3mm
Menges e			Abertura de 90° abaixo do bico, angulo em A de 10°. Tamanho
Mohren			da abertura: $h = 0.3 a 0.6 mm$. Ângulo superior de afinamento: 5
(1993)	0,8 a 1,2	0,7 a 1,2	a 10°
Rosato (1995)	_	Até () 3175	_
Kosato (1995)	Parte angulada 60 a	Att 0,5175	
	Parte angulada, 00 a	0.5 atá 2 (para pagas	
	90 graus. Possul bico	0,5 ale 2 (para peças	
Rees (1995)	reto	grandes)	-

Tabela 7 - Recomendação de dimensionamento para o canal capilar.

Fonte: PASTORELLI, 2012.

Canal em aba

O canal em aba é composto por uma câmara na entrada, que recebe o material de um canal capilar, e oferece uma parede para o material se chocar e evitar efeitos de jateamento (HARADA, 2004). Na Figura 20 está representado o esquema do canal em aba.

Figura 20 - Canal de entrada em aba. Fonte: HARADA, 2004.

Canal em anel

O canal em disco, mostrado na figura 21, é uma variação do canal em anel, utilizado para peças cilíndricas. Esse canal é indicado para peças que requerem boa aparência externa. (CRUZ, 2002).

Figura 21 - Canal de entrada em anel. Fonte: CRUZ, 2002.

• Canal submarino

O canal de entrada submarino ou submarina é um dos mais utilizados pois permite a separação entre canal de injeção e peça de forma automática durante o processo de extração do molde com o uso do pino extrator. Outra vantagem do canal submarinozão suas pequenas dimensões que minimizam as marcas deixadas no produto injetado. Na Figura 22 está representado o canal submarino, com seus respectivos ângulos e medidas. (THOMAZI, 2009), (SACHELLI, 2007).

Figura 22 - a) Canal de entrada submarino. b) Cotas características do canal submarino. Fonte: TOMAZI, 2009 e SACCHELLI, 2009 adaptado pelo autor.

Canal restrito

O canal restrito é utilizado para injeção de peças mais grossas, com espessuras maiores que 6 milímetros com rápida solidificação. É indicado para a fabricação de cabos de escova. Na Figura 23 é representado o canal restrito retangular. (HARADA, 2004).

Figura 23 - Canal de entrada restrita retangular. Fonte: HARADA, 2004.

A tabela 8 apresenta um resumo das características geométricas dos principais canais de entrada. (PASTORELLI, 2012).

	Dimensão	Harada (2004)	Beaumont (2004)	Cruz (2002)	Menges e Mohren (1993)	Rosato (1995)	Rees (1995)	Dym (1982)	Sors, Bardócz e	Centimfe (2003)	Menning (1998)
									Radnóti (1998)		
Capilar	A(mm)	-	0,5 a 1,0	0,5 a 1,5	0,8 a 1,2	-	Ângulo de 60° a 90°		-	-	-
	D(mm)	-	40-50% da parede	0,5 a 0,8	0,7 a 1,2	Até 0,3175	0,5 a 2,0		-	-	-
Aba	A(mm)	0,91	-	-	-	-	-		-	-	-
	B(mm)	Diâmetro do canal de distribuição	-	-	-	-	-		-	-	-
	C(mm)	(1,1)*B/2	-	-	-	-	-		-	-	-
Anel	A(mm)	50-70% da parede	-	-	De 2/3 da parede até 2mm	-	0,1 a 0,15		-	-	-
	B(mm)	-	-	-	0,5 a 1,5	-	-		-	-	-
Disco	A(mm)	-	1,25 da parede	-	Parede + 1,5	-	-		-	-	-
	B(mm)	-	0,5	0,3 a 0,8	1 a 2	-	0,1 a 0,15		-	-	-
	C(mm)	-	-	1 a 2	0,5 a 1,5	-	-		-	-	-
Disco(2)	A(mm)	-	50-70% da parede	0,5 a 2,5 de diâmetro	60-100% da parede						
Submarino	A(mm)	0,8	0,3 a 0,7	0,5 a 1	0,7 a 2,5	-	1,25		0,7 a 2,5	0,2 a 2	-
	B(mm)	-	-	-	3 a 6	-	-		1,5 a 3	-	-
	C(graus)	-	10 a 20	20 a 50	5 a 20	-	-		5 a 20	-	-
	D(graus)	-	30 a 50	45 a 60	20 a 50	-	-		20 a 50	-	-
	E(graus)	-	-	0,5 a 1	2 máx.	-	0,5 a 0,8		2 máx.	-	-
	F(mm)	-	-	-	50 máx.	-	-		50 máx.	-	-
	G(mm)	-	-	2 a 3	-	-	-		-	-	-
Restrito	A(mm)	2,0 a 5,5	-	0,5 a 1,5	-	-	-		-	-	0,6 a 1,2
	B(mm)	0,8 a 2,0	-	3*A	-	-	3*A		-	-	Máx: D-1,5
	C(mm)	2,6 a 6,0	-	1,5 a 3	-	-	0,1 a 0,2		-	-	0,6 a 1,2
	D(mm)	0,6 a 2,8	-	-	-	-	-		-	-	emax + 1,5
Flash	A(mm)	0,5	(0,5 a 0,7).e	-	(0,2 a 0,7).e	-	-	0,041 ou menos	-	-	(0,4 a 0,8) *1,2.e
	B(mm)	0,5 a 0,8	*	-	0,5 a 2,0	-	-	0,051	-	-	1
	C(mm)	De acordo com a peça	*	-	Toda a peça	-	-	-	-	-	-

Tabela 8 - Tabela de referência para o dimensionamento de os canais de entrada.

*Medidas a serem determinadas por simulação, sendo e = espessura da peça. Fonte: PASTORELLI , 2012.

2.10 Software CAE

O termo *CAE*, abreviação do inglês Computer Aided Engineering é traduzido como Engenharia Auxiliada por Computador. Dessa forma são classificados como programas CAE os programas de computadores que tem como finalidade ajudar na solução de problemas de engenharia.

Vários problemas de engenharia podem ser analisados utilizando softwares *CAE*, sendo os mais comuns os de análise estrutural (dinâmicos e estáticos), análises de escoamento, analise modal, transferência de calor e otimização de geometrias. (PEREIRA, 2007).

Os sistemas CAE mais utilizados para simulação do preenchimento de cavidades de moldes são: MAPS-3D, Autodesk Moldflow, SolidWorks Plastics, Simpoe-Mold, 3D TIMON®, e Moldex3D. E para o estudo estrutural das peças normalmente emprega-se softwares como ANSYS, COSMOS WORKS, NASTRAN, ALGOR e ABAQUS. (PEREIRA, 2007).

Segundo Dihlmann (1993) para análises quantitativas do projeto de um molde requer uma grande quantidade de cálculos independente se for utilizado método de cálculo manual ou assistido, porém quando empregamos um software para realizar os cálculos um ganho considerável de tempo é obtido.

Com o aumento da concorrência e exigência de prazos mais curtos para projeto do molde de injeção torna-se essencial o uso de ferramentas que minimizem os tempos de projeto, para realizar todos os cálculos necessários para um projeto seguro e eficaz. Os softwares CAE por possuírem uma interface integrada com outros programas de projeto como o CAD, permitem alterar os projetos de forma fácil e rápida contribuindo ainda mais no emprego dessas ferramentas.

Segundo Pinto (2002), a importância do uso de software CAE pode ser resumida em três pontos:

- Consolidação do conhecimento do processo;
- Redução do número de direcionamento de experimentos;

 Visualização de detalhes do processo difíceis de serem verificados experimentalmente (gradientes de pressão e temperatura, velocidade de preenchimento e outros quesitos dependentes do tempo).

Os sistemas CAE, direcionados para injeção de termoplásticos se bem empregados podem reduzir consideravelmente problemas que podem ocorrer durante o preenchimento de moldes e cavidades. (PINTO, 2002).

36

2.11 Moldflow

O Moldflow Plastics Insight é um software CAE desenvolvido pela Moldflow Corporation em 1974 na Austrália, inicialmente devido ao limitado hardware dos computadores não era possível realizar cálculos complexos ou muito extensos, limitando as geometrias de estudo que inicialmente eram apenas planos. O programa era limitado a cálculos de temperatura do polímero e do molde, tempo de injeção e cálculo de fluxo nos canais de alimentação e cavidades. (PINTO, 2002).

Em 1983 o software foi aperfeiçoado, com os avanços das técnicas de modelagem de elementos e desenvolvimento dos computadores, onde ele passou a contar com ferramentas para estudo de geometrias tridimensionais.

Com o desenvolvimento de novas técnicas numéricas e desenvolvimento dos computadores, permitiu que as novas versões dos softwares, como o Plastic Insight 5.0, mostrassem graficamente distribuições de pressão, tempo de preenchimento, distribuição de temperatura, perfil de velocidades, linhas de solda, forca de fechamento de molde e recalque, empenamento, regiões de acumulo de gases e outros efeitos da modelagem por injeção. Este software visa auxiliar na (NISHIMOTO, 2001):

 Determinação das condições ótimas de processo, tais como, tempo de injeção força de recalque, temperatura de injeção do polímero e do molde, tempo de recalque e de resfriamento, pressão de injeção e perfil de velocidade de avanço da rosca;

• Minimização da espessura das paredes da peça, analisada em relação a injetabilidade da peça;

• Previsão de problemas de processo como linhas de solda, aprisionamentos de ar, degradação da matéria prima, rechupes e empenamentos;

Determinação da força de fechamento necessária da máquina;

• Determinação das melhores configurações do molde, isto é, sistemas de refrigeração, posição dos pontos de injeção, balanceamento de canais de alimentação.

O software também permite estudar de forma interativa o uso de diferentes materiais, um dos resultados que são observados nesta software é o valor da tensão de cisalhamento e taxa de cisalhamento.

A tensão de cisalhamento é um dos pontos críticos pois o polímero quando injetado é forcado a passar em um duto ou cavidade onde sua velocidade na parede é muito menor que no centro do escoamento devido a viscosidade do fluido, como pode ser observado na figura 24. Isto faz com que o material se plastifique em camadas que deslizam umas sobre

37

as outras. A resistência que uma camada infere sobre a outra é conhecida como Tensão de Cisalhamento (Shear Stress). (SACCHELLI, 2013).

Frente do fluxo de injeçao

Figura 24 - Frente do fluxo de Injeção e camada congelada. Fonte: Thomazi, 2009 adaptado pelo autor.

Outra propriedade de importante observação é a taxa de cisalhamento (Shear Rate). Para o preenchimento de canais e cavidades o material precisa se deslocar, durante o fluxo de escoamento existe uma diferença de velocidade entre a camada próximo a parede (estacionaria) e a as camadas deslizantes. A taxa de cisalhamento máxima de um material é definida em função da diferença máxima de velocidades que as camadas do fluido podem alcançar sem degradar o material.

A tensão de cisalhamento e a taxa de cisalhamento estão diretamente ligadas em função da viscosidade do fluido. Em materiais onde a viscosidade não varia com a temperatura, a Tensão de Cisalhamento *(Shear Stress)* é diretamente proporcional à taxa de cisalhamento. Para os polímeros, onde ela varia com a temperatura, uma variação na tensão de cisalhamento produz uma variação na taxa de cisalhamento. (SACCHELLI, 2013).

• Metodologia de cálculo

O MoldFlow Plastics Insight 5.0 que foi utilizado neste trabalho, utiliza o método matemático de elementos finitos para resolver diversas equações matemáticas que caracterizam fisicamente o processo de injeção obtendo como resultado calculos de presões, temperaturas, tempos, tensões e taxas cisalhantes entre outros. Nesse método as equações matemáticas são resolvidas aproximadamente para cada nó da malha gerando uma equação, de forma que no momento da resolução o computador, aplicando as condições de contorno, utiliza métodos matemáticos para obter as soluções de cada equação.

Uma das formas de representação da estrutural da peça é com uma malha do tipo *Fusion*. Nesse modelo são criadas duas superfícies paralelas onde se deseja representar um sólido, a figura 25 mostra a interação entre duas malhas para formar uma superfície. Para se obter bons resultados é recomendado que o pareamento entre a malha dos dois lados seja de 80 a 85 %. (MIRANDA, 2005).

Figura 25 - Aparelhamento entre nós de superfícies opostas Fonte: MIRANDA, 2005.

A figura 26 mostra o resultado da aplicação de uma malha a um corpo de prova polimerico.

Figura 26 - Malha de elementos finitos (FEM) com elementos triangulares. Fonte: MIRANDA (2005) adaptado pelo autor.

Para realizar uma simulação utilizando o software Moldflow, necessita primeiramente de um modelo 3D da peça a ser estudada compativel com o software, recomenda-se utilizar o formato STL, esse formato é uma representação da geometria da peça, nele não são carregadas informações de material, cor, textura ou massa.

Após importar o modelo para o software deve-se gerar a malha e ajustar todos os elementos triângulares o mais proximos de um triângulo equilatero, caso contrário, para uma relação de pontos muito divergente de um triângulo equilátero não é possivel obter um bom resultado

Com a malha gerada, deve-se determinar um ponto de injeção para a peça e selecionar uma material. Aconselha-se estudar o fluxo do material com a simulação Fill e se necessário antes de construir os canais de alimentação modificar o ponto de injeção.

Com o estudo Fill conforme, pode-se duplicar as cavidades de acordo com o numero de cavidades do molde. Após isso inicia-se a modelagem do canal de alimentação, criando nós para depois especificar as dimensoes do canal em que o fluido irá percorrer antes de chegar na peça.

Após implementação do sistema de alimentação deve-se modelar o sistema de refrigeração e regular seus parâmetros. Com o sistema de refrigeração modelado deve-se modificar o tipo de estudo para considerar a influência deste sistema, o método de análise computacional do software utilizado neste trabalho foi o FILL + FLOW + COOL, devido a trabalhos anteriores comprovarem que este método apresenta melhores resultados. (SACCHELLI; CARDOSO, 2007).

3 Simulação

No trabalho realizado por Hermes e Bertol (2006), foi projetado um molde modular para que fosse possível a troca do sistema de alimentação, as cavidades também intercambiáveis utilizadas neste projeto foram idealizadas com diferentes níveis de complexidade, o intuito dessa variação era analisar se uma mudança na geométrica da peça influência em aspectos de processo do produto injetado.

Assim, dando sequência ao estudo de Hermes e Bertol (2006) foram modeladas para a simulação computacional 6 peças utilizando software SolidWorks 2013, sendo:

 Duas Placas planas com dimensões de 130 x 110 com 2 mm de espessura e 130 x 110 com 3 mm, de espessura, mostrados na figura 27;

• Duas caixas com dimensões de 130 x 110 x 20 mm, raios de concordância de 1 mm e espessura de parede de 2 e 3 milímetros mostrados na figura 28;

• Duas caixas com nove cavidades e dimensões de 130 x 110 x 20 mm. Para a caixa com espessura de parede de 2 mm foi utilizado raio de concordância de 2 mm e para a com espessura de 3 mm raio de 1 milímetro. As duas caixas são mostradas na figura 29.

A escolha de objetos com cavidades e paredes esbeltas foi realizada para estudar como o produto é influenciado pelas restrições e expansões presentes nessa estrutura.

Figura 27 - Placa plana com espessura de 2 mm à esquerda e 3 mm à direita. Fonte: Autor.

Figura 28 - Caixa com uma cavidade e espessura de 2 mm à esquerda e 3 mm à direita. Fonte: Autor.

Figura 29 - Caixas com 9 cavidades e espessura de 2 mm à esquerda e 3 mm à direita. Fonte: Autor.

Após modeladas as peças foram salvas em formato STL para realizar a intercambialidade entre os softwares. Esse formato é uma representação pura da geometria da peça, nele não são carregadas informações de material, cor, textura ou massa.

As peças em formato STL foram importadas no Moldflow para iniciar sua análise, o tipo de malha adotada foi o Fusion. As características das malhas geradas conforme cada geometria é mostrada na tabela 9. A figura 30 mostra a malha sobre a placa plana com espessura de 3mm.

Geometria	Espessura (mm)	Número de elementos	Número de nós	Comprimento entre nós (mm)
Посо	2	5700	3021	4,86 ± 0,1
Maca	3	5700	3021	4,87 ± 0,1
Caixa 1 cavidade	2	9848	5095	4,90 ± 0,1
	3	10932	5637	4,90 ± 0,1
Caixa 9	2	17096	8717	4,90 ± 0,1
cavidades	3	13136	7227	4,90 ± 0,1

Tabela 9 - Características das malhas para cada geometria.

Fonte: Autor.

Figura 30 - Placa 130 x 110 x 3 milímetros com malha gerada. Fonte: Autor.

Foi realizada então, a escolha do material a ser injetado. Conforme revisão de literatura foram escolhidos os materiais POM e ABS, devido a Esses materiais possuírem uma grande aplicação em componentes do setor automotivo.

Dentro da biblioteca do *MoldFlow Plastic Insight 5.0*, possuem vários desses polímeros de diferentes fabricantes, que apresentam algumas variações nas propriedades do material. Para esse estudo foram escolhidos os polímeros Cycolac AM da GE Plastics (ABS) e o Celcon M90 da fabricante Ticona (POM), pois espera-se em trabalhos futuros realizar a injeção destes materiais para fins de comparação, entre o resultado computacional e o real.

O Poli(oxido de metila) - M90 é comercializado pela TICONA POLYMERS empresa do grupo HOECHST AG com o nome de Celcon na América, Hostaform na Europa e Duracon na Ásia. (SACCHELLI; BOM, 1990).

Para a escolha do ponto de injeção foram estudados alguns pontos centrais e a estrutura do canal de refrigeração. Analisando o formato das peças, o ponto de entrada foi localizado para que o fluxo de injeção fique direcionando para a dimensão de maior comprimento. A figura 31 mostra o posicionamento dos canais nas peças.

Figura 31 - Posicionamento dos canais de injeção na placa com 3mm e na caixa com nove cavidades com 3mm de espessura.

Fonte: Autor.

Antes de iniciar o estudo dos canais de injeção foram simulados os fluxos de preenchimento das cavidades correspondentes a cada uma das 6 peças. A figura 32 mostram a distribuição de tempo no preenchimento da caixa de nove cavidades com 3mm de espessura com material POM.

Figura 32 - Tempo de injeção da caixa com nove cavidades e 3 mm de espessura. Fonte: Autor.

Após o estudo preliminar de preenchimento da cavidade foram duplicados os objetos, adicionados os canais de alimentação e de refrigeração.

Para o estudo do canal de injeção capilar foram realizadas 50 simulações para cada peça gerando um total de 300 simulações para as 6 peças.

Os canais de alimentação, foram projetados respeitando a distribuição de áreas entre canal de injeção e canal de distribuição. O canal de injeção possui 4 mm de diâmetro na entrada e inclinação de 1º, quando chega em contato com o canal de distribuição ele apresenta diâmetro de 7,75 milímetros. Assim foi escolhido um canal de distribuição de diâmetro de 5,3 o que deu uma relação de áreas na bifurcação de 2,14. A figura 33 mostra a estrutura do canal de injeção, distribuição e poço frio.

Figura 33 - Sistema de alimentação. Fonte Autor.

A tabela 10 mostra quais os parâmetros geométricos e materiais foram empregados no estudo do canal capilar (canal de entrada), esses parâmetros foram escolhidos conforme estudo de literatura de Harada, Beaumont, Cruz, Menges e Mohren, Rosato e Rees feito por Pastorrelli (2012).

Material	Diâmetro do canal (mm)	Comprimento do canal (mm)		Material	Diâmetro do canal (mm)	Comprimento do canal (mm)
		0,5				0,5
	0,5	0,8				0,8
		1			0,5	1
		1,2				1,2
		1,5				1,5
		0,5				0,5
		0,8				0,8
	0,7	1			0,7	1
		1,2	ABS			1,2
		1,5				1,5
	0,9	0,5				0,5
		0,8		ABS	0,9	0,8
POM		1				1
		1,2				1,2
		1,5				1,5
	1,1	0,5				0,5
		0,8				0,8
		1			1,1	1
		1,2				1,2
		1,5	-			1,5
		0,5				0,5
		0,8				0,8
	1,3	1			1,3	1
		1,2				1,2
		1,5				1,5

Tabela 10 - Tabelas com as combinações dos parâmetros de simulação.

Fonte: Autor

Os canais de refrigeração utilizados para as simulações foram iguais. Foram usados 4 canais com 10 milímetros de diâmetro e 361mm de comprimento distanciados 30 milímetros uns dos outros ligados em uma extremidade intercalada e entre o canal inferior e superior uma distância de 50 milímetros. O fluido refrigerante adotado foi a água a 25°C e Reynolds de 10000. A figura 34 mostra a caixa com uma cavidades e espessura de 3 milímetros, os canais de injeção e de refrigeração do molde.

Figura 34 - Temperatura do fluido refrigerante após injeção de 2 placas de espessura de 2mm e material ABS (Cycolac AM). Fonte: Autor.

4 Resultados

Foram realizadas no total 300 simulações variando o material entre POM e ABS e as dimensões do canal de entrada capilar. Após obter todos os resultados, foram passados os dados de comprimento de canal e diâmetro do canal de entrada, tempo de resfriamento do canal de injeção, tempo de resfriamento da peça, tempo de preenchimento, pressão de injeção, força de prensa, taxa máxima de cisalhamento na peça e no canal, tensão de cisalhamento e massa do canal de injeção de acordo com suas respectivas simulações. Esses dados foram passados para tabelas separados conforme tipo de peça e material. A Tabela 10 apresenta uma de 11 tabelas que estão disponíveis no Anexo A desse trabalho.

Comprimen- to do canal [mm]	Diâmetro do canal [mm]	Tempo de resfriamento do canal [s]	Tempo de resfriamento das peças [s]	Tempo de preenchi- mento [s]	Pressão de Injeção [MPa]	Força de fechamento [ton]	Taxa máxima de cisalhamen- to na peça [1/s]	Taxa máxima de cisalhamen- to no canal [1/s]	Ten são de cisalhamen- toMPa]	Massa do sistema de alimenta- ção [g]
	0,5	25,04	2,443	2,5628	168,3310	58,2180	7863,5098	5,9377E+05	0,5881	4,8996
	0,7	25,04	2,447	2,5628	102,6260	57,8661	7610,3501	2,0952E+05	0,5636	4,8871
0,5	0,9	25,04	2,449	2,5628	76,3898	57,8669	7476,2002	9,6775E+04	0,5545	4,8822
	1,1	25,04	2,444	2,5628	75,2119	57,8778	7494,0698	5,3067E+04	0,5586	4,8803
	1,3	25,04	2,437	2,5628	74,6825	57,9856	7524,2100	3,2297E+04	0,5730	4,8796
	0,5	25,04	2,446	2,5628	180,0000	58,0501	7904,3398	5,9739E+05	0,5847	4,8978
	0,7	25,04	2,452	2,5622	96,6524	57,5248	7809,6001	2,1526E+05	0,5566	4,8774
0,8	0,9	25,04	2,460	2,5623	83,6143	57,7744	7574,2900	9,8013E+04	0,5338	4,8699
-	1,1	25,04	2,454	2,5623	76,3870	57,7939	7504,5698	5,3113E+04	0,5388	4,8674
	1,3	25,04	2,441	2,5623	75,5084	57,8654	7502,8398	3,2200E+04	0,5598	4,8664
	0,5	25,04	2,449	2,5619	180,0000	57,8687	7964,2900	6,0226E+05	0,5839	4,8961
	0,7	25,04	2,460	2,5619	121,0120	57,5398	7848,6602	2,1640E+05	0,5451	4,8712
1,0	0,9	25,04	2,469	2,5619	101,7460	57,5536	7641,2998	9,8836E+04	0,5185	4,8616
	1,1	25,04	2,449	2,5619	77,1143	57,7725	7473,0098	5,2921E+04	0,5318	4,8587
	1,3	25,04	2,441	2,5620	76,0424	57,7911	7532,0601	3,2302E+04	0,5473	4,8575
	0,5	25,03	2,452	2,5615	180,0000	57,6909	8212,1699	6,2089E+05	0,5830	4,8936
	0,7	25,04	2,459	2,5616	102,0690	57,5411	7842,4800	2,1648E+05	0,5412	4,8651
1,2	0,9	25,04	2,473	2,5616	95,4799	57,2764	7649,5200	9,9020E+04	0,5130	4,8532
	1,1	25,04	2,452	2,5616	77,7855	57,5865	7591,3999	5,3755E+04	0,5242	4,8495
	1,3	25,04	2,447	2,5617	76,4995	57,6257	7560,7402	3,2410E+04	0,5371	4,8483
-	0,5	25,03	2,456	2,5610	180,0000	57,6033	8315,2197	6,2898E+05	0,5786	4,8902
	0,7	25,04	2,469	2,5610	118,8250	57,2981	7961,8901	2,1992E+05	0,5306	4,8550
1,5	0,9	25,04	2,462	2,5611	81,9348	57,1702	7760,1201	1,0048E+05	0,4986	4,8408
	1,1	25,04	2,460	2,5611	78,6898	57,2681	7598,5298	5,3788E+04	0,5080	4,8361
	1.3	25.04	2.449	2.5611	77.3856	57.6987	7500,4399	3.2175E+04	0.5298	4.8352

Tabela 11	- Placa	de POM	com 2	milímetros	de e	spessura.
-----------	---------	--------	-------	------------	------	-----------

Fonte: Autor

Analisando as tabelas, alguns dos valores mantiveram-se quase que constante. O tempo de preenchimento, resfriamento de peça e canal não alteravam significativamente apenas quando mudava-se a geometria da peça e o material de injeção.

A Figura 35 apresenta os tempos médios de resfriamento de cada tipo de peça e material, como esperado o tempo de resfriamento das peças com maior espessura de parede eram maior que sua geometria equivalente com menor espessura.

Observou-se que o ABS necessita de um tempo maior para diminuir sua temperatura comparado ao POM, isto se deve ao fato que a condutividade térmica do POM utilizado é maior (quase duas vezes) a do ABS. Também é perceptivel observando o a figura 35 que o

tempo de resfriamento é menor para peças com geometria mais simples como na placa plana.

Figura 35 - Tempos médios de resfriamento de cada tipo de peça e material. Fonte: Autor

Observando os tempos de simulação, percebeu-se que o tempo para resfriar a caixa com 9 cavidades é maior para espessura de 2mm como mostra a figura 35.

Analisando os provaveis motivos para esse resultado observou-se que o raio de concordancia esta influenciando significativamente no tempo de resfriamento da caixa com nove cavidades e espessura de 2 milimetros, a figura 36 mostra a comparação entre a refrigeração da caixa com 3 milimetros de espessura de parede e raios de concordancia de 1mm com a referida peça.

O aumento do raio de concordancia em junções de paredes com formato em T ou cruz, como o utilizado nas caixas de nove cavidades, aumenta a concentração de massa no local das uniões das placas e isso para pequenas espessuras implica numa refrigeração menos homogenea.

Figura 36 - Comparação da dinâmica de resfriamento da caixa com 9 cavidades. a) Tempo de resfriamento para espessura de 3mm. b) Tempo de resfriamento espessura 2mm. Fonte: Autor.

Do ponto de vista de processo ideal o tempo de preenchimento mais o tempo de resfriamento são os principais parâmetros que se deve modificar a fim de reduzir o tempo de ciclo, pois geralmente o tempo de ejeção, abertura e fechamento de molde já estão ajustados para máximo desempenho. O gráfico da figura 37 apresenta a soma dos tempos médios de preenchimento com o tempo médio de resfriamento de cada peça.

Fonte: Autor

Os resultados obtidos para o tempo de preenchimento mais resfriamento foram similares aos do tempo de preenchimento. Analisando as duas tabelas e os dados pode se inferir que o tempo de resfriamento é mais significativo que o tempo de preenchimento (no ponto de melhoria do ciclo de injeção), principalmente se trabalhamos com geometrias maiores e mais complexas.

Analisando os resultados das simulações observou-se que existe uma variação significativa da massa do canal de injeção de acordo com a geometria e material utilizado. A figura 38 apresenta a distribuição de massas para cada peça e material utilizado.

Figura 38 - Distribuição do peso médio do canal de injeção para cada peça. Fonte: Autor.

Por apresentar menor densidade o material ABS apresenta uma menor massa de canal de alimentação comparado ao POM. Observou-se que para geometrias mais complexas e espessuras menores existe uma tendencia do aumento da massa do canal de alimentação.

Analisando os parâmetros voltados para dimensionamento de ferramental, pressão de injeção e força de fechamento da matriz. Notou-se que para uma mesma estrutura, com a redução da espessura ocorre um aumento na pressão de injeção e um aumento da força para manter a matriz fechada durante a injeção. A diferença de força de fechamento da matriz pode ser observada na figura 39.

Observando o gráfico 39 pode-se notar que para uma mesma cavidade o material ABS requereu menos do maquinário de injeção que o POM, com exceção das placas planas com 3 mm de espessura.

A figura 40 apresenta o gráfico com as pressões de injeção para as peças divididas por espessura de parede e materiais. Analisando os gráficos, observou-se que com a redução na espessura de parede ocorre um aumento significativo da pressão de injeção requerida.

Também foi observado que a mudança entre material gera variações na pressão de injeção, o material ABS apresentou uma menor pressão de injeção comparado ao POM.

No apêndice A e B desse trabalho é possível visualizar melhor os dados das simulações utilizando nas tabelas e gráficos individuais.

Um dos parametros de importante observação é a taxa de cisalhamento pois ela esta diretamente relacionada com a degradação do material durante a injeção.

Foram observados os dados da taxa de cisalhamento da peça e do canal de alimentação e observou-se que para todos os casos a taxa de cisalhamento do canal era bastante superior ao da peça. Dessa forma foi analisado com mais cuidado apenas a influência da taxa de cisalhamento do canal de alimentação.

A figura 41 apresenta uma comparação da taxa de cisalhamento do canal de alimentação em função do diâmentro do canal de entrada e comprimento do canal.

Analisando as taxas máximas de cisalhamento no canal de alimentação, observou-se que a taxa aumenta para espessuras de paredes menores, isto possivelmente esta relacionado a restrição do fluxo dentro da cavidade, onde é necessário para diâmetros menores maiores pressões, elevando desta maneira a taxa de cisalhamento.

Em relação a influcência do comprimento do canal com a taxa de cisalhamento, observase que esta pouco altera com a variação do comprimento do canal.

Quanto a geometria, observa-se que para as mais complexas como é o caso da caixa com 9 cavidades a taxa de cisalhamento é maior, e ela decresce conforme se simplifica a geometria, possivelmente esta influência se deve a maior restrição da geometria, dificultando o fluxo.

O controle da tensão de cisalhamento é outro ponto importante no produto final, é fundamental garantir que a tensão maxima do material não seja ultrapasada na cavidade da peça para garantir as propriedades mecânicas do produto final.

Não foi realizado o controle das tensões máximas de cisalhamento nos canais pois os canais não tem funcionalidade para o produto final e geralmente são triturados e reciclados ou descartados após a injeção das peças. A figura 42 mostra a variação da tensão de cisalhamento conforme diâmetro, comprimento, material e cavidade injetada.

Figura 42 - Tensão máxima de cisalhamento na parede. a) Material POM com espessura de parede de 2mm. b) Material POM com espessura de 3mm. c) Material ABS com espessura de 2mm. d) Material ABS espessura de 3mm. Fonte: Autor.

Não foi possivel observar uma tendencia certa de aumento ou redução da tensão de cisalhamento maxima na parede em função do comprimento do canal, porém para quase

todas as simulações é possivel observar que para o canal de 0,5 milímetros ocorre um aumento significativo da tensão cisalhante máxima na parede comparado a diâmetros maiores principalmente para canais mais compridos. Também foi possível observar que o ABS apresenta uma menor tensão de cisalhamento máxima na parece comprarado ao POM.

A tabela 12 apresenta as propriedades fornecidas pela biblioteca do software Moldflow, a tensão e taxa de cisalhamento dos dois materiais utilizados no estudo.

Material	Tensão de cisalhamento [MPa]	Taxa de cisalhamento [1/s]
Cycolac AM	0,28	12000
Celcon M90	0,45	40000

Tabela 12 - Propriedades máximas dos materiais utilizados no estudo.

Fonte: Biblioteca do Moldflow.

Comparando os resultados das simulações dos canais de entrada capilar com as propriedades dos materiais observou-se que todas as simulações ultrapassaram a taxa de cisalhamento do material no canal. A tabela 13 apresenta as configurações que ultrapassaram o limite dos materiais.

Tabela 13 - Configurações que ultrapassaram na simulação a taxa cisalhante máxima do material.

Comprimento do canal (mm)	Diâmetro do canal (mm)	Componente	Material	Reprova em Taxa de cisalhamento no canal
Todos	Todos	Place 2mm	POM	Х
Todos	Todos	Flaca Zillill	ABS	Х
Todos	Todos	Diasa 2 mm	POM	Х
Todos	Todos	Flaca 5 mm	ABS	Х
Todos	Todos	Caiva 1a 2mm	POM	Х
Todos	Todos		ABS	Х
Todos	Todos	Coive to 2mm	POM	Х
Todos	Todos	Caixa TC Shim	ABS	Х
Todos	Todos	Caiva 0a 2mm	POM	Х
Todos	Todos	Caixa 90 2000	ABS	Х
Todos	Todos	Coive to 2mm	POM	Х
Todos	Todos	Gaixa TC SIIIIII	ABS	Х

Fonte: Autor.

5 CONCLUSÃO

O estudo de injeção de polímeros utilizando o software Moldflow Plastics Insight 5.0 mostrou que o processo de injeção de peças utilizando o poliacetal (POM) é mais rápido que o uso de ABS principalmente por apresentar um tempo menor para resfriar com as mesmas condições de processo, devido que este material possui a propriedade de condutividade térmica maior que o ABS, onde o POM é cerca de 94% melhor que o ABS. Sugere-se para um próximo trabalho, um estudo do sistema de refrigeração para melhoria do ciclo de injeção.

O ABS apresentou uma vantagem comparada ao POM, em relação a uma menor pressão de injeção e força de fechamento do molde, na peça com menor espessura.

Com esse estudo foi possível observar que para ambos os materiais, a pressão e a força de fechamento da matriz são maiores para as peças com menor espessura. Em relação a pressão e força de fechamento para uma mesma espessura com a geometria diferente, os valores obtidos na simulação demonstram que é necessário uma pressão maior para a geometria do tipo caixa de uma cavidade. Para uma melhor análise da influência destes parâmetros é recomendado também a realização da injeção instrumentada para que seja verificada se os valores obtidos na simulação condizem com os reais.

Analisando as simulações, sugere-se o uso de canais de entrada capilar com maior diâmetro de canal de entrada, superior a 0,9 mm, pois apresentam taxa de cisalhamento significativamente menores podendo serem compatíveis com um maior número de materiais. Também foi possível observar que a tensão de cisalhamento na parede com o emprego de canais de entrada com comprimento de 1,0, 1,2 e 1,5 mm apresentaram tensões levemente menores do que para diâmetros menores.

Observou-se que algumas simulações apresentaram tensões e taxas de cisalhamento superiores ao máximo do valor teórico, sugere-se realizar a injeção instrumentada para verificar estas informações.

Também concluiu-se com este estudo que a injeção de peças com espessuras de parede mais finas apresentam uma taxa e tensão de cisalhamento mais elevada, por esse motivo sugere que espessuras de paredes superiores a 3 milímetros sejam utilizadas para simular objetos que possuam áreas maiores que 130 cm² com apenas um canal de entrada. Sugere-se também para estudos futuros o uso de mais de um canal de entrada para avaliar como podem ser reduzidos os tempos de injeção, resfriamento, pressão de injeção, tensão e taxas de cisalhamento.

REFERÊNCIAS

ALESSI, V. F. **Boletim diário AUTODATA.** Agencia AUTODATA de Notícias - São Paulo. v. 3373, n. 3373, p.1-5, 17 jun. 2014. Disponível em: http://trk.boletim.autodata.

ANFAVEA - Associação Nacional de Fabricantes de Veículos Automotores. "INDUSTRIA AUTOMOBILISTICA BRASILEIRA – 50 anos". São Paulo – SP, p. 8 -18. 2006.

AHRENS, Carlos Henrique; FERREIRA, Aureo Campos. Características desejáveis para a implantação e o emprego de sistemas CAE/CAD/CAM no setor de moldes de injeção de plásticos. UFSC -CTT. Florianópolis, 1994. 204p.

ANB. **Uso de plásticos em veículos cegará a 40% em 2020**, Automotive News Brasil, 2012. Disponível em: http://www.saebrasil.org.br/eventos/premio_jornalismo/2012/formulario/upload/Plasticos.pdf>. Acesso em: 05 mar. 2014.

BARROSO, G., ANDRADE, M. A. R. Industria Automotiva do Brasil – Estratégias da Indústria Automobilística Chinesa no Mercado Brasileiro. IX SEGeT - Simpósio de Excelência em Gestão e Tecnologia. Resende – SP, 2012. 16p.

BEAUMONT, J.P.; NAGEL, R.; SHERMAN, S. **Successful Injection Molding:** Process, Design and Simulation. Munchen: Hanser, 2002. 375p.

BEAUMONT, J. P. **The Runner and Gating Design Handbook**, Munich: Hanser Publishers, 2004. 286p.

BACK, E. Modelo para estimativa de custos nas etapas iniciais do projeto de peças injetadas em plástico. DPPG – UTFPR, Curitiba – PR. 2011. 148p.

BRICE, D. M. **Plastic injection molding: Manufacturing process fundamentals.** Dearborn: Society of Manufacturing Engineers, 1996.

BRICE, D. M. Plastic injection molding: Material selection and product design fundamentals. Dearborn: Society of Manufacturing Engineers, 1997. 380p.

CALLISTER, J; William D.. Ciência e engenharia de materiais: uma introdução. Traduzido por Sérgio Murilo Stamile Soares. 7a Edição. Rio de Janeiro: LTC - Livros técnicos e científicos, 2008. 705 p.

CANEVAROLO J., SEBASTIÃO V. Ciências dos polímeros: um texto básico para tecnólogos e engenheiros. 2 ed. São Paulo: Artliber, 2010. 280p.

CARDOSO, A. et al. A indústria Automobilística no Brasil: Diagnóstico do setor e análise do novo regime automotivo. Subseções DIEESE: Confederação Nacional dos Metalúrgicos da CUT - CNM/CUT, Federação dos Sindicatos Metalúrgicos da CUT/SP – FEM - CUT/SP, Sindicato dos Metalúrgicos do ABC, Sindicato dos Metalúrgicos de Sorocaba e Sindicato dos Metalúrgicos de Taubaté. São Paulo, 2012. 47p.

CASOTTI, B. P. GOLDENSTEIN, M. **Panorama do setor automotivo: as mudanças** estruturais da indústria e as perspectivas para o Brasil. BNDES, Rio de Janeiro, n.28, p.147-188, set. 2008.

CRUZ, S. Moldes de Injeção. Hemus, Curitiba 2002. 242p.

DIHLMANN, C.; FERREIRA, A. C., Simulação e análise do preenchimento de cavidades em moldes para injeção de termoplásticos utilizando método manual e tecnologia CAE/CAD. Universidade Federal de Santa Catarina - CTC. Florianopolis,1993. 153p.

Fuh, J. Y. H.; Zhang, Y. F.; Nee, A.Y.C.; Fu, M.W. "Computer-Aided Injection Mold Design and Manufacture". Marcel Dekker New York, 2004.

HARADA, J. **Moldes para Injeção de Termoplásticos**: Projetos e Princípios Básicos. São Paulo: Artiber, 2004. 308p.

HEMAIS, C. A. **Polímeros e a Indústria Automobilística.** Polímeros: Ciência e Tecnologia, vol.13 n. 2, p 107-114 (2003).

MULLER H., BERTOL C. Estudo dos canais de alimentação para molde de injeção de termoplásticos. Trabalho de Conclusão de Curso. Instituto Superior Tupy. Joinville, 2006.

KOIKE, T. Integração do Projeto e da Fabricação de Moldes para Injeção de Plásticos com o Auxílio de Tecnologias CAD/CAE/CAM. Universidade Federal de Santa Catarina. Florianópolis, 1995. 216p.

LINS H. N., ALVES P. A. A Indústria Automobilística e o Brasil: Uma Abordagem na ótica das cadeias mercantis globais. X Encontro nacional de Economia Política, 2005. 26p.

MANO, E. B., **Polímeros como materiais de engenharia.** São Paulo: E. Blucher, 1991. 197p.

MANO, E. B.; MENDES, L. C., Introdução a polímeros. 2. ed. rev. São Paulo: Edgard Blucher, 2007. 191p.

MANRICH S., 1997. Apostila do Curso de Tecnologia de Injeção de Termoplásticos. DEMa – UFSCar, São Carlos – SP 1997. Não paginado.

MANRICH, S. **Processamento de termoplásticos:** rosca única, extrusão e matrizes, injeção e moldes. São Paulo: Artliber, 2005. 431p.

MARCELINO, R. M. A. Pesquisa como instrumento de Inovação: Estudo de caso FOX. ESPM São Paulo, 2006. Disponível em: http://labs.unopar.br/envi/uploads/File/caso%202-%20FOX.pdf>. Acessado em: 02 jun. 2014.

MENGES, G., MOHREN, P 1986. "How to make Injection Molds". Munich: Hanser Publisher, 1986. 385p.

MICHAELI, W., POTSCH, G., Injection Molding: An Introduction. München: Hanser, Fachbuchverlag, 1995. 195p.

MIRANDA, J, R. Engenharia Auxiliada por Computador – CAE. SOCIESC – Escola Técnica TUPY, Joinville, 2005.

NISHIMOTO, A. R. Simulação Numérica da Injeção de Termoplásticos em Moldes – Estudo Comparativo de Alguns Modelos Computacionais. CEPGEM – UFSC, Florianópolis, 2001. 103p.

OICA - International Organization of Motor Vehicle Manufacturers. Paris - França, 2014. Disponível em: http://www.oica.net/. Acesso em: 04 maio 2014.

PASTORELLI, P. P., SACCHELLI, C. M. Estudo Preliminar do Projeto de Canais de Alimentação em Moldes de Termoplásticos. XXXII Encontro Nacional de Engenharia de Produção – ENEGEP. Bento Gonçalves 2012. 15p.

PASTORELLI, P. P., SACCHELLI, C. M. Study of the Pinpoint Injection Gate with the Aid of Computer Injection Simulation. SAE Technical Paper Series, v. 36, p. 547, 2012.

PEREIRA, F. S. G. **Polímeros: Fundamentos científicos e tecnológicos.** Instituto Federal de Pernambuco. Recife, 2009. 92p.

PEREIRA, L. E. C. Análise por Sistemas CAE de Pontos de Injeção Retangulares para **Moldes Fabricados em Resina Termofixa**. Dissertação de Mestrado, PPGEM – UFSC, Florianópolis, 2007. 109p.

PINTO, S. U. Avaliação de Critérios para a Determinação de Contra tipos de Termoplásticos aplicável em Simulação da Moldagem por Injeção. CEPGEM – UFSC, Florianópolis, 2002. 132p.

RIELLO, N. J. **A evolução dos polímeros na indústria automobilística**. Faculdade Tecnológica de Sorocaba – Curso de Tecnologia em Polímeros. Sorocaba, 2012. 53p.

SACCHELLI, C. M. Cardoso, C. A. **Análise da Simulação de Refrigeração no Processo de Injeção de Termoplásticos.** 8 Congresso Iberoamericano de Engenharia Mecânico. Cuzco, 2007.

SACCHELLI, C. M. **Processo Integrado na Engenharia**: Criação, Projeto e Execução de Moldes de Injeção, com o Uso de Simuladores. Anais IV Congresso Iberoamericano de Ingenieria Mecânica – CIDIM'99. Santiago, 1999.

SACCHELLI, C. M. **Desenvolvimento de Moldes e Matrizes.** Notas de Aula Projeto de ferramentas e dispositivos, 18 mar. 2013. 99 p.

SACCHELLI, C. M., BOM, P. R. Influência da reciclagem sobre as propriedades mecânicas do Poli(oxido de Metila) – POM. XV Congresso Brasileiro de Engenharia Mecânica. Água de Lindóia - SP. 22 - 26 nov. 1999.

SENHORAS, E. M.; DIAS, J. M.: **Tendências da Indústria Automotiva Brasileira: Um Estudo do Caso FIAT**. Disponível em: http://www.ead.fea.usp.br/semead/8semead/resultado/trabalhosPDF/223.pdf>. Acesso em: 02 de junho de 2014.

SILVA, S. L. Sistemática para o projeto do sistema de refrigeração de moldes para injeção de polímeros. UFSC – POSMEC. Florianópolis, 2009. 150p.

STITZ, S; SCHILCK, K.; POOP, M. Estudo Identifica Modos mais Eficientes de Resfriamento do Ferramental de Injeção. Plástico industrial, ano IV n°48, agosto, 2002.

THOMAZI, E. Introdução ao projeto de ferramentas. ETFAR. Farroupilha - RS, 2009. 108p.

ZAUBA. India's import and export data. Disponível em: https://www.zauba.com. Acessado em: 4 jun. 2014.

ZDANSKI P. S. B. VAZ M. Jr, INÁCIO G. R. Análise numérica da troca de calor conjugada em problemas de injeção de polímeros. Departamento de Engenharia Mecânica UDESC, Joinville, 2008. 10p.
ANEXO A – Resultados das simulações

Comprime- nto do canal [mm]	Diâmetro do canal [mm]	Tempo de resfriament o do canal [s]	Tempo de resfriamento das peças [s]	Tempo de preenchi- mento [s]	Pressão de Injeção [MPa]	Força de fechamento [ton]	Taxa máxima de cisalhamen- to na peça [1/s]	Taxa máxima de cisalhamen- to no canal [1/s]	Tensão de cisalhamen- to na parede [MPa]	Massa do sistema de alimenta- ção [g]
	0,5	25,04	2,443	2,5628	168,3310	58,2180	7863,5098	5,9377E+05	0,5881	4,8996
	0,7	25,04	2,447	2,5628	102,6260	57,8661	7610,3501	2,0952E+05	0,5636	4,8871
0,5	0,9	25,04	2,449	2,5628	76,3898	57,8669	7476,2002	9,6775E+04	0,5545	4,8822
	1,1	25,04	2,444	2,5628	75,2119	57,8778	7494,0698	5,3067E+04	0,5586	4,8803
	1,3	25,04	2,437	2,5628	74,6825	57,9856	7524,2100	3,2297E+04	0,5730	4,8796
	0,5	25,04	2,446	2,5628	180,0000	58,0501	7904,3398	5,9739E+05	0,5847	4,8978
	0,7	25,04	2,452	2,5622	96,6524	57,5248	7809,6001	2,1526E+05	0,5566	4,8774
0,8	0,9	25,04	2,460	2,5623	83,6143	57,7744	7574,2900	9,8013E+04	0,5338	4,8699
	1,1	25,04	2,454	2,5623	76,3870	57,7939	7504,5698	5,3113E+04	0,5388	4,8674
	1,3	25,04	2,441	2,5623	75,5084	57,8654	7502,8398	3,2200E+04	0,5598	4,8664
	0,5	25,04	2,449	2,5619	180,0000	57,8687	7964,2900	6,0226E+05	0,5839	4,8961
	0,7	25,04	2,460	2,5619	121,0120	57,5398	7848,6602	2,1640E+05	0,5451	4,8712
1,0	0,9	25,04	2,469	2,5619	101,7460	57,5536	7641,2998	9,8836E+04	0,5185	4,8616
	1,1	25,04	2,449	2,5619	77,1143	57,7725	7473,0098	5,2921E+04	0,5318	4,8587
	1,3	25,04	2,441	2,5620	76,0424	57,7911	7532,0601	3,2302E+04	0,5473	4,8575
	0,5	25,03	2,452	2,5615	180,0000	57,6909	8212,1699	6,2089E+05	0,5830	4,8936
	0,7	25,04	2,459	2,5616	102,0690	57,5411	7842,4800	2,1648E+05	0,5412	4,8651
1,2	0,9	25,04	2,473	2,5616	95,4799	57,2764	7649,5200	9,9020E+04	0,5130	4,8532
	1,1	25,04	2,452	2,5616	77,7855	57,5865	7591,3999	5,3755E+04	0,5242	4,8495
	1,3	25,04	2,447	2,5617	76,4995	57,6257	7560,7402	3,2410E+04	0,5371	4,8483
	0,5	25,03	2,456	2,5610	180,0000	57,6033	8315,2197	6,2898E+05	0,5786	4,8902
	0,7	25,04	2,469	2,5610	118,8250	57,2981	7961,8901	2,1992E+05	0,5306	4,8550
1,5	0,9	25,04	2,462	2,5611	81,9348	57,1702	7760,1201	1,0048E+05	0,4986	4,8408
	1,1	25,04	2,460	2,5611	78,6898	57,2681	7598,5298	5,3788E+04	0,5080	4,8361
	1,3	25,04	2,449	2,5611	77,3856	57,6987	7500,4399	3,2175E+04	0,5298	4,8352

Tabela 14 - Resultados placa de POM com 2 milímetros de espessura.

Fonte: Autor.

Comprime- nto do canal [mm]	Diâmetro do canal [mm]	Tempo de resfriament o do canal [s]	Tempo de resfriamento das peças [s]	Tempo de preenchi- mento [s]	Pressão de Injeção [MPa]	Força de fechamento [ton]	Taxa máxima de cisalhamen- to na peça	Taxa máxima de cisalhamen- to no canal	Tensão de cisalhamen- to na parede [MPa]	Massa do sistema de alimenta- ção [g]
	0.5	75.77	9.242	1 0221	112 7520	56.0094	[1/S]	[1/S]	0.4609	4.0162
	0,3	75,77	0,245	1,9221	60.8400	55,0084	9097,0090	0,04422+05	0,4008	4,0102
0.5	0,7	75,76	0,245	1,9221	69,6499	55,0200	9545 9209	2,4150E+05	0,4414	4,0039
0,5	0,9	75,78	8,246	1,9221	66,2003	55,9757	8205 8604	1,1009L+03	0,4377	3,9990
	1,1	/5,/8	8,243	1,9221	66,3223	55,7717	8395,8604	5,9133E+04	0,4351	3,9978
	1,3	75,78	8,239	1,9221	65,7548	55,7920	8433,7402	3,5963E+04	0,4394	3,9969
	0,5	75,77	8,247	1,9217	173,1580	56,0088	9569,0801	7,2124E+05	0,4668	4,0152
	0,7	75,77	8,247	1,9217	87,6155	55,6691	9028,6299	2,4794E+05	0,4258	3,9965
0,8	0,9	75,77	8,252	1,9217	73,3372	55,6624	8764,2197	1,1291E+05	0,3961	3,9892
	1,1	75,77	8,246	1,9217	67,1808	55,8936	8541,0996	6,0245E+04	0,4117	3,9870
	1,3	75,77	8,241	1,9217	66,3298	55,7023	8338,1904	3,5703E+04	0,4542	3,9860
	0,5	75,76	8,250	1,9214	180,0000	55,7255	9470,2598	7,1360E+05	0,4615	4,0151
	0,7	75,76	8,251	1,9214	94,0612	55,4190	8917,0801	2,4518E+05	0,4183	3,9918
1,0	0,9	75,77	8,253	1,9214	81,2709	55,7248	8861,4902	1,1421E+05	0,3831	3,9827
	1,1	75,76	8,249	1,9215	67,4894	55,5163	8546,9199	6,0186E+04	0,3863	3,9793
	1,3	75,77	8,243	1,9215	66,7469	55,6594	8341,0098	3,5728E+04	0,4412	3,9788
	0,5	75,75	8,252	1,9212	180,0000	55,7787	1,0194E+04	7,6800E+05	0,4668	4,0152
	0,7	75,78	8,253	1,9212	104,6870	55,3307	9203,4404	2,5305E+05	0,4085	3,9863
1,2	0,9	75,76	8,257	1,9212	81,0878	55,4022	8931,0801	1,1509E+05	0,3693	3,9757
	1,1	75,76	8,251	1,9212	67,9433	55,5574	8608,7695	6,0602E+04	0,3707	3,9718
	1,3	75,76	8,242	1,9212	67,1489	55,6368	8517,0498	3,6525E+04	0,4434	3,9712
	0,5	75,74	8,255	1,9208	180,0000	55,7052	1,0475E+04	7,8899E+05	0,4590	4,0132
	0,7	75,75	8,258	1,9208	115,7550	55,2545	9384,4805	2,5817E+05	0,3956	3,9784
1,5	0,9	75,75	8,255	1,9208	84,4953	55,3310	8840,2803	1,1402E+05	0,3536	3,9658
	1,1	75,75	8,254	1,9208	68,5803	55,4707	8733,4404	6,1406E+04	0,3487	3,9605
	1.3	75.75	8.244	1.9209	67.6400	55,4698	8402.3301	3.5852E+04	0.3891	3,9603

Tabela 15 - Resultados placa de ABS com 2 milímetros de espessura.

Comprime- nto do canal [mm]	Diâmetro do canal [mm]	Tempo de resfriament o do canal [s]	Tempo de resfriamento das peças [s]	Tempo de preenchi- mento [s]	Pressão de Injeção [MPa]	Força de fechamento [ton]	Taxa máxima de cisalhamen- to na peça [1/s]	Taxa máxima de cisalhamen- to no canal [1/s]	Tensão de cisalhamen- to na parede [MPa]	Massa do sistema de alimenta- ção [g]
	0,5	25,23	5,582	3,3413	61,1382	23,4833	3988,9299	7,6494E+05	0,4781	4,8381
	0,7	25,23	5,583	3,3413	54,5039	23,5111	3975,0901	2,7168E+05	0,4296	4,8245
0,5	0,9	25,23	5,579	3,3413	51,7590	23,4182	3905,4399	1,2534E+05	0,4129	4,8188
	1,1	25,23	5,576	3,3413	50,4448	23,4302	3866,3701	6,7895E+04	0,4076	4,8164
	1,3	25,23	5,574	3,3413	49,7803	23,4261	3835,2100	4,0778E+04	0,4145	4,8156
	0,5	25,23	5,590	3,3408	68,8231	23,7434	4241,2998	7,9974E+05	0,4572	4,8384
	0,7	25,23	5,591	3,3409	58,1580	23,3904	4069,4600	2,7871E+05	0,4276	4,8166
0,8	0,9	25,23	5,586	3,3409	53,7448	23,2976	3982,2700	1,2810E+05	0,4030	4,8076
	1,1	25,23	5,580	3,3409	51,6257	23,2895	3913,1101	6,8803E+04	0,3933	4,8038
	1,3	25,23	5,577	3,3409	50,7235	23,4143	3876,6499	4,1249E+04	0,4048	4,8027
	0,5	25,22	5,595	3,3405	73,9590	23,6317	4299,7202	8,1209E+05	0,4573	4,8380
	0,7	25,23	5,596	3,3405	60,5259	23,1399	4085,8601	2,8008E+05	0,4236	4,8109
1,0	0,9	25,23	5,590	3,3406	55,0102	23,2065	4015,2400	1,2929E+05	0,3966	4,8001
	1,1	25,23	5,583	3,3406	52,4709	23,3224	3941,8601	6,9395E+04	0,3844	4,7955
	1,3	25,23	5,579	3,3406	51,3055	23,3696	3900,0400	4,1518E+04	0,3983	4,7941
	0,5	25,22	5,600	3,3402	82,1579	23,4125	4309,9702	8,1429E+05	0,4559	4,8372
	0,7	25,22	5,601	3,3403	62,8171	23,3094	4154,1401	2,8520E+05	0,4222	4,8056
1,2	0,9	25,22	5,594	3,3403	56,2863	23,1851	4044,9500	1,3041E+05	0,3905	4,7925
	1,1	25,22	5,585	3,3403	53,2311	23,2675	3966,4199	6,9873E+04	0,3758	4,7870
	1,3	25,23	5,581	3,3403	51,8634	23,2873	3920,9700	4,1771E+04	0,3921	4,7854
	0,5	25,22	5,608	3,3398	94,2907	23,6037	4396,1401	8,3226E+05	0,4568	4,8359
	0,7	25,22	5,607	3,3398	66,3006	23,2455	4215,4702	2,8986E+05	0,4188	4,7973
1,5	0,9	25,22	5,598	3,3398	58,1306	23,1879	4083,2100	1,3179E+05	0,3819	4,7812
	1,1	25,22	5,589	3,3398	54,3312	23,2535	4001,0901	7,0604E+04	0,3632	4,7743
	1,3	25,22	5,584	3,3398	52,6414	23,2721	3939,4399	4,1997E+04	0,3821	4,7723

Tabela 16 - Resultados placa de POM com 3 milímetros de espessura.

Tabela 17 - Resultados placa de ABS com 3 milímetros de espessura.

Comprime- nto do canal [mm]	Diâmetro do canal [mm]	Tempo de resfriament o do canal [s]	Tempo de resfriamento das peças [s]	Tempo de preenchi- mento [s]	Pressão de Injeção [MPa]	Força de fechamento [ton]	Taxa máxima de cisalhamen- to na peça [1/s]	Taxa máxima de cisalhamen- to no canal [1/s]	Tensão de cisalhamen- to na parede [MPa]	Massa do sistema de alimenta- ção [g]
	0,5	76,71	19,11	2,6104	50,9205	24,3802	5267,6899	9,7996E+05	0,3228	3,9599
	0,7	76,71	19,11	2,6104	45,3452	24,2512	5097,3701	3,4465E+05	0,3070	3,9478
0,5	0,9	76,71	19,10	2,6104	43,1164	24,2454	5021,5200	1,5943E+05	0,2964	3,9427
	1,1	76,71	19,10	2,6104	41,9974	24,1899	4960,2900	8,5884E+04	0,2878	3,9407
	1,3	76,71	19,10	2,6104	41,5606	24,2958	4980,3198	5,2273E+04	0,2947	3,9398
	0,5	76,70	19,12	2,6100	57,0000	24,3765	5365,0698	1,0013E+06	0,3254	3,9601
	0,7	76,70	19,11	2,6100	48,1312	24,1751	5195,7998	3,5213E+05	0,3049	3,9414
0,8	0,9	76,70	19,11	2,6100	44,6038	24,1519	5084,9600	1,6180E+05	0,2871	3,9339
	1,1	76,71	19,10	2,6101	42,8732	24,1747	5040,9702	8,7370E+04	0,2753	3,9302
	1,3	76,71	19,10	2,6101	42,1445	24,2214	4986,8198	5,2376E+04	0,2835	3,9291
	0,5	76,69	19,12	2,6098	61,7200	24,3761	5446,9302	1,0178E+06	0,3260	3,9599
	0,7	76,70	19,11	2,6098	49,9520	24,1251	5232,8799	3,5519E+05	0,3032	3,9367
1,0	0,9	76,70	19,11	2,6098	45,5748	24,1067	5140,3101	1,6383E+05	0,2821	3,9278
	1,1	76,70	19,10	2,6098	43,4357	24,1318	4865,6802	8,7785E+04	0,2585	3,9234
	1,3	76,70	19,10	2,6098	42,5247	24,1890	5017,7900	5,2707E+04	0,2757	3,9220
	0,5	76,68	19,12	2,6096	68,4191	24,3404	5491,2202	1,0275E+06	0,3263	3,9595
	0,7	76,69	19,12	2,6096	51,7542	24,0907	5293,6899	3,5996E+05	0,3010	3,9325
1,2	0,9	76,69	19,11	2,6096	46,5120	24,0569	5004,6099	1,6480E+05	0,2698	3,9213
	1,1	76,69	19,10	2,6096	43,9882	24,1044	4888,6899	8,8255E+04	0,2518	3,9165
	1,3	76,69	19,10	2,6096	42,8846	24,1568	4842,5498	5,2949E+04	0,2581	3,9148
	0,5	76,67	19,13	2,6092	77,0747	24,3289	5547,2500	1,0405E+06	0,3259	3,9588
	0,7	76,68	19,12	2,6092	54,3661	23,9668	5308,2900	3,6176E+05	0,2970	3,9255
1,5	0,9	76,68	19,11	2,6092	47,8946	24,0098	5047,3999	1,6635E+05	0,2631	3,9120
	1,1	76,68	19,11	2,6093	44,7905	24,0541	8,9141E+04	8,9141E+04	0,2526	3.9061
1	1.3	76.68	19.10	2,6093	43.4268	24,1270	4864.3398	5.3241E+04	0.2484	3.9040

Comprime- nto do canal [mm]	Diâmetro do canal [mm]	Tempo de resfriament o do canal [s]	Tempo de resfriamento das peças [s]	Tempo de preenchi- mento [s]	Pressão de Injeção [MPa]	Força de fechamento [ton]	Taxa máxima de cisalhamen- to na peça [1/s]	Taxa máxima de cisalhamen- to no canal [1/s]	Tensão de cisalhamen- to na parede [MPa]	Massa do sistema de alimenta- ção [g]
	0,5	25,64	5,260	2,6058	98,8846	77,0032	1936,8600	8,5055E+05	0,3799	4,9064
	0,7	25,64	5,261	2,6058	92,4301	77,1677	1927,2900	3,0827E+05	0,3731	4,8938
0,5	0,9	25,64	5,257	2,6059	89,5832	76,7336	1910,5200	1,4368E+05	0,3682	4,8891
	1,1	25,64	5,254	2,6059	88,2656	76,8712	1892,9100	7,7940E+04	0,3678	4,8871
	1,3	25,64	5,251	2,6059	87,7082	77,2492	1911,1700	4,7639E+04	0,3705	4,8860
	0,5	25,59	5,268	2,6055	106,4140	76,9570	1981,3400	8,6798E+05	0,3790	4,9040
	0,7	25,59	5,269	2,6055	96,1211	77,1175	1951,2600	3,1160E+05	0,3682	4,8849
0,8	0,9	25,59	5,263	2,6055	91,6437	76,6215	1929,3000	1,4477E+05	0,3608	4,8775
	1,1	25,59	5,258	2,6055	89,5412	76,9773	2152,0200	7,9215E+04	0,3492	4,8736
	1,3	25,59	5,255	2,6056	88,4772	77,0756	1907,6000	4,7623E+04	0,3639	4,8726
	0,5	25,57	5,273	2,6053	111,5540	77,2175	1994,4700	8,7326E+05	0,3776	4,9026
	0,7	25,57	5,273	2,6053	98,5064	76,9928	1954,7200	3,1196E+05	0,3654	4,8792
1,0	0,9	25,57	5,267	2,6053	93,1349	76,9289	2126,5500	1,4590E+05	0,3474	4,8696
	1,1	25,57	5,260	2,6053	90,3067	76,7145	2096,9399	7,8799E+04	0,3370	4,8653
	1,3	25,57	5,257	2,6053	88,8977	76,6881	2152,0601	4,7551E+04	0,3491	4,8636
	0,5	25,54	5,278	2,6051	116,3360	76,7381	2026,8400	8,8657E+05	0,3782	4,9007
	0,7	25,54	5,278	2,6051	100,8350	76,4571	1963,5601	3,1343E+05	0,3637	4,8736
1,2	0,9	25,54	5,271	2,6051	94,2365	76,3940	2098,5701	1,4572E+05	0,3355	4,8614
	1,1	25,54	5,263	2,6051	91,1229	76,8700	2112,0200	7,9011E+04	0,3316	4,8565
	1,3	25,54	5,259	2,6051	89,5304	76,9113	2120,1799	4,7694E+04	0,3351	4,8548
	0,5	25,51	5,284	2,6047	123,7740	76,8417	2046,8800	8,9469E+05	0,3762	4,8975
	0,7	25,51	5,284	2,6047	104,2360	76,1649	1969,8400	3,1406E+05	0,3586	4,8638
1,5	0,9	25,51	5,275	2,6047	96,3382	76,6448	2132,2500	1,4810E+05	0,3313	4,8496
	1,1	25,51	5,266	2,6047	92,2296	76,4833	2132,5000	7,9568E+04	0,3278	4,8433
	1,3	25,51	5,261	2,6047	90,2274	76,6112	2136,0400	4,7761E+04	0,3295	4,8414

Tabela 18 -Resultados caixa de uma cavidade de POM com 2 milímetros de espessura.

Tabela 19 - Resultados caixa de uma cavidade de ABS com 2 milímetros de espessura.

Comprime- nto do canal [mm]	Diâmetro do canal [mm]	Tempo de resfriament o do canal [s]	Tempo de resfriamento das peças [s]	Tempo de preenchi- mento [s]	Pressão de Injeção [MPa]	Força de fechamento [ton]	Taxa máxima de cisalhamen- to na peça [1/s]	Taxa máxima de cisalhamen- to no canal [1/s]	Tensão de cisalhamen- to na parede [MPa]	Massa do sistema de alimenta- ção [g]
	0,5	79,14	18,14	1,9804	83,4065	71,3856	3159,5100	1,0103E+06	0,3431	4,0277
	0,7	79,14	18,14	1,9805	78,5439	71,4112	3144,2700	3,6394E+05	0,3164	4,0185
0,5	0,9	79,14	18,13	1,9805	76,6439	71,7098	3136,8501	1,7124E+05	0,3404	4,0147
	1,1	79,14	18,13	1,9805	75,6797	71,8078	3133,3701	9,3166E+04	0,3108	4,0132
	1,3	79,14	18,13	1,9805	74,9659	71,4530	3069,5901	5,5191E+04	0,3384	4,0125
	0,5	78,90	18,14	1,9802	88,9647	71,4136	3182,9399	1,0199E+06	0,3194	4,0252
	0,7	78,90	18,14	1,9802	81,1950	71,4135	3206,7600	3,7205E+05	0,3445	4,0105
0,8	0,9	78,90	18,14	1,9802	78,0381	71,4914	3130,3301	1,7062E+05	0,3112	4,0049
	1,1	78,90	18,13	1,9802	76,3868	71,2650	3114,5701	9,2265E+04	0,3392	4,0023
	1,3	78,90	18,13	1,9802	75,5082	71,5356	3167,0400	5,6419E+04	0,3405	4,0009
	0,5	78,74	18,15	1,9800	92,6323	71,3607	3269,3701	1,0479E+06	0,3459	4,0232
	0,7	78,74	18,14	1,9800	82,8507	71,1623	3118,3601	3,6322E+05	0,3150	4,0054
1,0	0,9	78,74	18,14	1,9800	78,9966	71,5137	3144,3999	1,7133E+05	0,3127	3,9983
	1,1	78,75	18,13	1,9800	76,9771	71,3487	3099,5901	9,1829E+04	0,3114	3,9951
	1,3	78,75	18,13	1,9801	75,7735	71,3500	3120,1499	5,5524E+04	0,3391	3,9937
	0,5	78,60	18,15	1,9798	96,2683	71,2444	3319,5100	1,0630E+06	0,3209	4,0212
	0,7	78,61	18,15	1,9799	84,6498	71,4038	3195,8501	3,7208E+05	0,3164	4,0000
1,2	0,9	78,61	18,14	1,9799	79,9044	71,3794	3197,9199	1,7361E+05	0,3418	3,9915
	1,1	78,61	18,14	1,9799	77,6226	71,5916	3221,2500	9,4903E+04	0,3436	3,9879
	1,3	78,61	18,13	1,9799	76,1284	71,4174	3104,4299	5,5236E+04	0,3115	3,9862
	0,5	78,43	18,16	1,9796	101,7970	71,3753	3370,2600	1,0837E+06	0,3200	4,0179
	0,7	78,44	18,15	1,9796	87,0998	71,0111	3186,3401	3,7227E+05	0,3428	3,9919
1,5	0,9	78,44	18,14	1,9796	81,2471	71,1733	3184,4199	1,7293E+05	0,3427	3,9814
	1,1	78,44	18,14	1,9796	78,4170	71,4889	3182,7300	9,4090E+04	0,3136	3,9769
	1,3	78,44	18,14	1,9796	76,5307	71,1952	3136,8501	5,5561E+04	0,3101	3,9747

Comprime- nto do canal [mm]	Diâmetro do canal [mm]	Tempo de resfriament o do canal [s]	Tempo de resfriamento das peças [s]	Tempo de preenchi- mento [s]	Pressão de Injeção [MPa]	Força de fechamento [ton]	Taxa máxima de cisalhamen- to na peça [1/s]	Taxa máxima de cisalhamen- to no canal [1/s]	Tensão de cisalhamen- to na parede [MPa]	Massa do sistema de alimenta- ção [g]
	0,5	25,76	10,16	3,1855	66,3180	30,6253	3241,7200	9,6577E+05	0,5544	4,8332
	0,7	25,76	10,16	3,1856	60,0447	30,4282	2997,9399	3,5456E+05	0,5392	4,8198
0,5	0,9	25,76	10,15	3,1856	57,4284	30,4047	3164,6399	1,6653E+05	0,5502	4,8142
	1,1	25,76	10,15	3,1856	56,0619	30,3618	3176,7400	9,0648E+04	0,5517	4,8117
	1,3	25,76	10,14	3,1856	55,3078	30,4917	3192,3999	5,5364E+04	0,5521	4,8103
	0,5	25,73	10,17	3,1853	73,7661	30,4742	3209,5500	9,5415E+05	0,5520	4,8341
	0,7	25,74	10,17	3,1853	63,7731	30,3701	3294,4900	3,5408E+05	0,5574	4,8125
0,8	0,9	25,74	10,16	3,1853	59,6007	30,4360	3234,8401	1,6827E+05	0,5537	4,8037
	1,1	25,74	10,15	3,1853	57,4586	30,3881	3207,5200	9,2043E+04	0,5525	4,7995
	1,3	25,74	10,15	3,1853	56,1499	30,2832	1803,0000	5,4566E+04	0,4388	4,7978
	0,5	25,72	10,18	3,1851	78,7357	30,5208	3226,3899	9,5139E+05	0,5524	4,8339
	0,7	25,72	10,17	3,1851	66,2286	30,3284	3211,8999	3,6013E+05	0,5520	4,8075
1,0	0,9	25,73	10,16	3,1851	60,9660	30,3021	1857,1899	1,6599E+05	0,4410	4,7967
	1,1	25,73	10,15	3,1851	58,3535	30,3993	3214,7100	9,1137E+04	0,5530	4,7915
	1,3	25,73	10,15	3,1851	56,7411	30,2537	3075,1001	5,5651E+04	0,5456	4,7894
	0,5	25,72	10,18	3,1849	83,6962	30,5419	3288,2700	9,6932E+05	0,5559	4,8332
	0,7	25,72	10,18	3,1849	68,6048	30,2144	1808,4301	3,5924E+05	0,4369	4,8025
1,2	0,9	25,72	10,17	3,1849	62,3656	30,2025	3216,7700	1,6746E+05	0,5532	4,7895
	1,1	25,72	10,16	3,1850	59,2184	30,2761	1771,1899	9,1264E+04	0,4420	4,7835
	1,3	25,72	10,15	3,1850	57,3436	30,3248	3233,3601	5,5410E+04	0,5539	4,7809
	0,5	25,71	10,20	3,1846	91,1076	30,6001	3344,4500	9,9576E+05	0,5580	4,8318
	0,7	25,71	10,19	3,1846	72,2907	30,2691	3287,1101	3,5823E+05	0,5560	4,7946
1,5	0,9	25,71	10,17	3,1847	64,4630	30,2508	3276,4199	1,6899E+05	0,5553	4,7788
	1,1	25,71	10,16	3,1847	60,4887	30,1565	3178,9600	9,2267E+04	0,5504	4,7715
	1,3	25,71	10,15	3,1847	58,1597	30,2305	1335,7000	5,4936E+04	0,3954	4,7679

Tabela 20 - Resultados caixa de uma cavidade de POM com 3 milímetros de espessura.

Tabela 21 - Resultados caixa de uma cavidade de ABS com 3 milímetros de espessura.

Comprime- nto do canal [mm]	Diâmetro do canal [mm]	Tempo de resfriament o do canal [s]	Tempo de resfriamento das peças [s]	Tempo de preenchi- mento [s]	Pressão de Injeção [MPa]	Força de fechamento [ton]	Taxa máxima de cisalhamen- to na peça [1/s]	Taxa máxima de cisalhamen- to no canal [1/s]	Tensão de cisalhamen- to na parede [MPa]	Massa do sistema de alimenta- ção [g]
	0,5	79,69	35,51	2,4662	52,9648	30,2994	1803,5300	1,1654E+06	0,3430	3,9586
	0,7	79,69	35,51	2,4662	48,3095	30,1965	1742,1600	4,1109E+05	0,3391	3,9483
0,5	0,9	79,70	35,50	2,4662	46,4005	30,1243	2362,3701	1,9609E+05	0,3727	3,9439
	1,1	79,70	35,50	2,4662	45,4794	30,2232	2090,0901	1,0492E+05	0,3558	3,9420
	1,3	79,70	35,50	2,4662	44,9252	30,3533	1750,1300	6,4252E+04	0,3359	3,9409
	0,5	79,57	35,52	2,4660	58,3947	30,2828	1766,9100	1,1698E+06	0,3348	3,9580
	0,7	79,58	35,51	2,4660	50,9199	30,1493	1637,4800	4,2625E+05	0,3343	3,9417
0,8	0,9	79,58	35,51	2,4660	47,9179	30,2965	1699,8400	1,9810E+05	0,3357	3,9348
	1,1	79,58	35,50	2,4660	46,3850	30,1029	1757,4800	1,0675E+05	0,3406	3,9320
	1,3	79,58	35,50	2,4660	45,5084	30,1363	2434,2400	6,5256E+04	0,3874	3,9306
	0,5	79,51	35,52	2,4659	61,9647	30,2446	1848,5800	1,1882E+06	0,3453	3,9574
	0,7	79,52	35,52	2,4659	52,6700	30,1423	2689,4299	4,1578E+05	0,4050	3,9371
1,0	0,9	79,52	35,51	2,4659	48,8905	30,0735	1768,8400	1,9832E+05	0,3409	3,9290
	1,1	79,52	35,50	2,4659	47,0267	30,2001	1755,9000	1,0659E+05	0,3397	3,9252
	1,3	79,52	35,50	2,4659	45,8907	30,1063	2427,1799	6,5267E+04	0,3870	3,9235
	0,5	79,47	35,53	2,4657	65,5724	30,2507	1682,2400	1,1963E+06	0,3357	3,9565
	0,7	79,47	35,52	2,4657	54,3607	30,0130	1774,8900	4,3017E+05	0,3410	3,9326
1,2	0,9	79,48	35,51	2,4657	49,8864	30,1370	1769,7200	2,0216E+05	0,3409	3,9228
	1,1	79,48	35,51	2,4658	47,6172	30,0971	1728,9301	1,1000E+05	0,3388	3,9184
	1,3	79,48	35,50	2,4658	46,2571	30,1139	1609,5200	6,5243E+04	0,3326	3,9164
	0,5	79,42	35,53	2,4655	71,2643	30,1952	1901,5200	1,1882E+06	0,3492	3,9549
	0,7	79,42	35,53	2,4655	56,9269	29,9669	1791,8101	4,2590E+05	0,3421	3,9255
1,5	0,9	79,43	35,52	2,4655	51,2932	30,0371	1800,3800	2,0035E+05	0,3433	3,9137
	1,1	79,43	35,51	2,4656	48,4778	30,0336	1773,7100	1,0907E+05	0,3418	3,9082
	1,3	79,43	35,50	2,4656	46,8347	30,1241	1766,7000	6,4174E+04	0,3351	3,9056

Comprime- nto do canal [mm]	Diâmetro do canal [mm]	Tempo de resfriament o do canal [s]	Tempo de resfriamento das peças [s]	Tempo de preenchi- mento [s]	Pressão de Injeção [MPa]	Força de fechamento [ton]	Taxa máxima de cisalhamen- to na peça [1/s]	Taxa máxima de cisalhamen- to no canal [1/s]	Tensão de cisalhamen- to na parede [MPa]	Massa do sistema de alimenta- ção [g]
	0,5	32,31	14,68	2,9869	86,3285	57,1667	2695,2000	9,5879E+05	0,5087	5,0516
	0,7	32,31	14,68	2,9869	80,0441	56,9297	2635,3101	3,4212E+05	0,4983	5,0380
0,5	0,9	32,31	14,68	2,9869	77,3784	56,8978	2624,8899	1,6134E+05	0,4959	5,0338
	1,1	32,31	14,67	2,9869	76,0914	57,0110	2640,6101	8,9342E+04	0,4954	5,0313
	1,3	32,31	14,68	2,9869	75,2341	56,8338	2619,2300	5,3196E+04	0,4969	5,0298
	0,5	32,32	14,71	2,9866	93,6900	56,8088	2692,4600	9,5654E+05	0,5039	5,0499
	0,7	32,32	14,71	2,9867	83,7107	56,8516	2655,5100	3,4613E+05	0,4947	5,0300
0,8	0,9	32,32	14,69	2,9867	79,5595	56,9275	2613,8999	1,6218E+05	0,4857	5,0219
	1,1	32,32	14,68	2,9867	77,3914	56,8426	2576,5801	8,8184E+04	0,4837	5,0181
	1,3	32,32	14,67	2,9867	76,0568	56,7382	2609,8101	5,3306E+04	0,4930	5,0172
	0,5	32,32	14,72	2,9865	98,6605	56,9336	2698,0300	9,6202E+05	0,5026	5,0492
	0,7	32,32	14,72	2,9865	86,1947	56,9451	2661,8899	3,5017E+05	0,4923	5,0253
1,0	0,9	32,32	14,71	2,9865	80,9180	56,8660	2641,1699	1,6525E+05	0,4873	5,0155
	1,1	32,32	14,69	2,9865	78,2504	56,7452	2561,5901	8,8140E+04	0,4837	5,0098
	1,3	32,32	14,68	2,9865	76,6735	56,8242	2590,9900	5,3192E+04	0,4823	5,0079
	0,5	32,32	14,74	2,9863	103,5570	56,7877	2733,1499	9,7587E+05	0,5030	5,0479
	0,7	32,32	14,74	2,9863	88,5389	56,6843	2650,8000	3,4813E+05	0,4876	5,0193
1,2	0,9	32,32	14,72	2,9863	82,2952	56,7975	2602,1799	1,6382E+05	0,4876	5,0079
	1,1	32,32	14,69	2,9863	79,0439	56,6412	2483,0000	8,8838E+04	0,4995	5,0023
	1,3	32,32	14,68	2,9864	77,2486	56,8403	2610,7500	5,3917E+04	0,4841	4,9997
	0,5	32,32	14,76	2,9860	110,9500	56,8858	2745,5000	9,8397E+05	0,5020	5,0463
	0,7	32,32	14,76	2,9860	92,2116	56,7968	2653,7300	3,5186E+05	0,4931	5,0103
1,5	0,9	32,32	14,73	2,9860	84,2876	56,6482	2545,4800	1,6382E+05	0,4865	4,9955
	1,1	32,32	14,70	2,9861	80,4003	56,7646	2474,6699	8,9586E+04	0,4894	4,9886
	1,3	32,32	14,69	2,9861	78,0222	56,6877	2490,2100	5,3520E+04	0,4830	4,9863

Tabela 22 - Resultados caixa com 9 cavidades de POM com 2 milímetros de espessura.

Tabela 23 - Resultados caixa com 9 cavidades de ABS com 2 milímetros de espessura.

Comprime- nto do canal [mm]	Diâmetro do canal [mm]	Tempo de resfriament o do canal [s]	Tempo de resfriamento das peças [s]	Tempo de preenchi- mento [s]	Pressão de Injeção [MPa]	Força de fechamento [ton]	Taxa máxima de cisalhamen- to na peça [1/s]	Taxa máxima de cisalhamen- to no canal [1/s]	Tensão de cisalhamen- to na parede [MPa]	Massa do sistema de alimenta- ção [g]
	0,5	99,47	53,21	2,2659	72,4644	56,3069	2845,7200	1,1004E+06	0,6076	4,1469
	0,7	99,47	53,20	2,2659	67,8048	55,5721	2764,9099	4,0095E+05	0,6036	4,1371
0,5	0,9	99,47	53,20	2,2659	65,9201	55,6506	2761,4199	1,8793E+05	0,6043	4,1337
	1,1	99,47	53,19	2,2659	64,9897	55,8277	2782,0601	1,0330E+05	0,6049	4,1320
	1,3	99,47	53,18	2,2660	64,4429	56,1246	2792,9800	6,2732E+04	0,6055	4,1315
	0,5	99,52	53,22	2,2657	77,7988	55,5318	2792,5801	1,1150E+06	0,6103	4,1447
	0,7	99,52	53,22	2,2657	70,4015	55,5143	2802,0300	4,0598E+05	0,6049	4,1294
0,8	0,9	99,52	53,20	2,2657	67,2959	55,8916	2767,7900	1,8738E+05	0,6040	4,1243
	1,1	99,52	53,19	2,2657	65,8462	55,4412	2788,1201	1,0267E+05	0,6034	4,1211
	1,3	99,53	53,19	2,2658	64,9597	55,5685	2769,3501	6,1953E+04	0,6032	4,1202
	0,5	99,53	53,23	2,2656	81,3351	55,3595	2803,8101	1,1190E+06	0,6325	4,1432
	0,7	99,54	53,22	2,2656	72,1235	56,5481	2802,5701	4,0686E+05	0,6067	4,1251
1,0	0,9	99,54	53,21	2,2656	68,3286	55,5750	2786,9199	1,8884E+05	0,6042	4,1176
	1,1	99,54	53,19	2,2656	66,4022	56,8733	2824,5801	1,0379E+05	0,6061	4,1149
	1,3	99,54	53,19	2,2656	65,3048	55,8862	2815,9299	6,2629E+04	0,6051	4,1131
	0,5	99,53	53,24	2,2655	84,9153	55,3818	2847,7400	1,1359E+06	0,6154	4,1417
	0,7	99,54	53,23	2,2655	73,7586	55,2793	2805,1299	4,0584E+05	0,6067	4,1197
1,2	0,9	99,54	53,21	2,2655	69,2379	55,2435	2782,4600	1,8785E+05	0,6029	4,1110
	1,1	99,54	53,20	2,2655	66,9648	56,5263	2822,3201	1,0338E+05	0,6051	4,1076
	1,3	99,54	53,19	2,2655	65,6453	55,4220	2781,5300	6,1814E+04	0,6023	4,1054
	0,5	99,52	53,25	2,2653	90,2816	55,3925	2891,0500	1,1538E+06	0,6302	4,1388
	0,7	99,52	53,25	2,2653	76,2961	55,1944	2840,8701	4,1031E+05	0,6066	4,1118
1,5	0,9	99,52	53,22	2,2653	70,6755	55,2617	2820,2400	1,8992E+05	0,6045	4,1013
	1,1	99,53	53,20	2,2653	67,8769	55,3776	2827,3000	1,0393E+05	0,6054	4,0963
	1,3	99,53	53,19	2,2653	66,1175	55,8924	2786,3899	6,1576E+04	0,6023	4,0946

Comprime- nto do canal [mm]	Diâmetro do canal [mm]	Tempo de resfriament o do canal [s]	Tempo de resfriamento das peças [s]	Tempo de preenchi- mento [s]	Pressão de Injeção [MPa]	Força de fechamento [ton]	Taxa máxima de cisalhamen- to na peça [1/s]	Taxa máxima de cisalhamen- to no canal [1/s]	Tensão de cisalhamen- to na parede [MPa]	Massa do sistema de alimenta- ção [g]
	0,5	25,78	13,21	3,1627	65,8991	38,9160	1539,3199	1,5316E+06	0,3257	4,8273
	0,7	25,78	13,22	3,1627	59,7872	30,9723	1495,8400	5,4549E+05	0,2978	4,8110
0,5	0,9	25,78	13,21	3,1627	57,2370	29,7243	1436,6000	2,3847E+05	0,3130	4,8049
	1,1	25,78	13,21	3,1627	55,9912	29,6345	1424,5100	1,3380E+05	0,3047	4,8020
	1,3	25,78	13,21	3,1627	55,2355	28,3800	1478,9900	8,3799E+04	0,3633	4,7996
	0,5	25,77	13,23	3,1625	73,2434	36,0239	1501,6899	1,4514E+06	0,3161	4,8257
	0,7	25,77	13,23	3,1625	63,4663	35,7745	1492,7500	5,4228E+05	0,3258	4,8060
0,8	0,9	25,77	13,22	3,1625	59,4663	28,5559	1431,6500	2,4601E+05	0,2984	4,7939
	1,1	25,77	13,22	3,1625	57,4056	28,3006	1400,8900	1,3183E+05	0,3673	4,7896
	1,3	25,77	13,21	3,1625	56,1723	28,2972	1434,2600	8,1231E+04	0,3226	4,7866
	0,5	25,75	13,23	3,1623	78,1750	39,4095	1488,6700	1,4292E+06	0,3072	4,8265
	0,7	25,75	13,24	3,1623	65,9717	31,7610	1449,6801	5,2674E+05	0,3148	4,7988
1,0	0,9	25,75	13,23	3,1623	60,9046	32,2422	1405,7800	2,3971E+05	0,3317	4,7887
	1,1	25,75	13,22	3,1623	58,3060	28,2154	1394,7400	1,3132E+05	0,3682	4,7818
	1,3	25,76	13,21	3,1623	56,7492	28,1492	1426,1000	8,1257E+04	0,3465	4,7790
	0,5	25,74	13,24	3,1622	83,0928	40,5121	1493,6700	1,4331E+06	0,3083	4,8261
	0,7	25,74	13,25	3,1622	68,4143	32,8929	1475,0800	5,3765E+05	0,2935	4,7946
1,2	0,9	25,74	13,24	3,1622	62,3251	30,9930	1396,9900	2,3822E+05	0,3275	4,7812
	1,1	25,74	13,22	3,1622	59,2049	28,1795	1390,3199	1,3135E+05	0,3464	4,7735
	1,3	25,74	13,22	3,1622	57,4207	28,2846	1425,8000	8,1393E+04	0,3490	4,7700
	0,5	25,72	13,26	3,1620	90,4232	39,9478	1492,3500	1,4371E+06	0,3010	4,8245
	0,7	25,73	13,26	3,1620	72,1418	31,5360	1439,2300	5,2407E+05	0,3100	4,7857
1,5	0,9	25,73	13,25	3,1620	64,4966	29,8200	1400,5400	2,4101E+05	0,3049	4,7698
	1,1	25,73	13,23	3,1620	60,5800	28,1415	1391,0100	1,3116E+05	0,3647	4,7619
	1,3	25,73	13,22	3,1620	58,3263	28,1801	1391,5601	7,9569E+04	0,3664	4,7583

Tabela 24 - Resultados caixa com 9 cavidades de POM com 3 milímetros de espessura.

Tabela 25 - Resultados caixa com 9 cavidades de ABS com 3 milímetros de espessura.

Comprime- nto do canal [mm]	Diâmetro do canal [mm]	Tempo de resfriament o do canal [s]	Tempo de resfriamento das peças [s]	Tempo de preenchi- mento [s]	Pressão de Injeção [MPa]	Força de fechamento [ton]	Taxa máxima de cisalhamen- to na peça [1/s]	Taxa máxima de cisalhamen- to no canal [1/s]	Tensão de cisalhamen- to na parede [MPa]	Massa do sistema de alimenta- ção [g]
	0,5	79,81	47,63	2,4485	52,0114	31,3843	1897,4100	1,7531E+06	0,3841	3,9538
	0,7	79,82	47,63	2,4485	47,5428	28,2300	1833,2200	6,1775E+05	0,3778	3,9425
0,5	0,9	79,82	47,63	2,4485	45,6857	28,1217	1806,0601	2,8657E+05	0,3738	3,9386
	1,1	79,82	47,63	2,4485	44,7669	28,1129	1780,5699	1,5415E+05	0,3746	3,9360
	1,3	79,82	47,63	2,4485	44,2603	28,1586	1781,7500	9,3340E+04	0,3751	3,9349
	0,5	79,72	47,64	2,4483	57,2679	32,4255	1877,7000	1,7339E+06	0,3825	3,9533
	0,7	79,73	47,64	2,4483	50,0999	30,6692	1877,8900	6,3428E+05	0,3804	3,9370
0,8	0,9	79,73	47,63	2,4484	47,2287	28,1920	1815,8700	2,8834E+05	0,3760	3,9292
	1,1	79,73	47,63	2,4484	45,7254	28,1035	1757,8700	1,5274E+05	0,3729	3,9258
	1,3	79,74	47,63	2,4484	44,8869	28,1447	1761,3600	9,2872E+04	0,3739	3,9244
	0,5	79,65	47,65	2,4483	60,8630	31,5292	1870,1600	1,7302E+06	0,3816	3,9519
	0,7	79,65	47,64	2,4483	51,8709	29,3485	1853,3600	6,2582E+05	0,3789	3,9317
1,0	0,9	79,65	47,64	2,4483	48,2062	28,1420	1800,6200	2,8580E+05	0,3760	3,9231
	1,1	79,66	47,63	2,4483	46,3398	28,0764	1747,6100	1,5223E+05	0,3712	3,9193
	1,3	79,66	47,63	2,4483	45,2870	28,1063	1783,8000	9,4218E+04	0,3762	3,9176
	0,5	79,58	47,66	2,4481	64,3765	33,5723	1910,5699	1,7619E+06	0,3847	3,9516
	0,7	79,58	47,65	2,4481	53,5674	28,9195	1823,6200	6,1576E+05	0,3738	3,9271
1,2	0,9	79,59	47,64	2,4481	49,2040	28,1357	1780,3400	2,8309E+05	0,3723	3,9169
	1,1	79,59	47,63	2,4482	46,9621	28,0610	1751,2000	1,5275E+05	0,3716	3,9125
	1,3	79,59	47,63	2,4482	45,6833	28,0558	1787,9200	9,4396E+04	0,3747	3,9105
	0,5	79,49	47,67	2,4480	72,7333	31,1525	1874,9301	1,7315E+06	0,3820	3,9491
	0,7	79,50	47,66	2,4480	56,1518	28,6319	1827,3000	6,1847E+05	0,3760	3,9199
1,5	0,9	79,50	47,64	2,4480	50,6671	28,0844	1825,6899	2,8992E+05	0,3769	3,9077
	1,1	79,50	47,63	2,4480	47,9116	28,0914	1790,4000	1,5706E+05	0,3744	3,9028
	1,3	79,51	47,63	2,4480	46,2998	28,0842	1782,9500	9,4564E+04	0,3745	3,8999

ANEXO B – Gráficos dos resultados das simulações

Figura 43 - Pressão de injeção placa POM espessura de 2 mm. Fonte: Autor.

Figura 44 - Pressão de injeção placa ABS espessura de 2 mm. Fonte: Autor.

Figura 45 - Pressão de injeção placa POM espessura de 3 mm. Fonte: Autor.

Figura 46 - Pressão de injeção placa ABS espessura de 3 mm. Fonte: Autor.

Figura 47 - Pressão de injeção caixa com uma cavidade em POM e espessura de 2mm. Fonte: Autor.

Figura 48 - Pressão de injeção caixa com uma cavidade em ABS e espessura de 2mm. Fonte: Autor.

Figura 49 - Pressão de injeção caixa com uma cavidade em POM e espessura de 3 mm. Fonte: Autor.

Figura 50 - Pressão de injeção caixa com uma cavidade em ABS e espessura de 3 mm. Fonte: Autor.

Figura 51 - Pressão de injeção caixa com nove cavidades em POM e espessura de 2 mm. Fonte: Autor.

Figura 52 - Pressão de injeção caixa com nove cavidades em ABS e espessura de 2 mm. Fonte: Autor.

Figura 53 - Pressão de injeção caixa com nove cavidades em POM e espessura de 3 mm. Fonte: Autor.

Figura 54 - Pressão de injeção caixa com nove cavidades em ABS e espessura de 3 mm. Fonte: Autor.

Figura 55 - Taxa máxima de cisalhamento placa POM espessura de 2 mm. Fonte: Autor.

Figura 56 - Taxa máxima de cisalhamento placa ABS espessura de 2 mm. Fonte: Autor.

Figura 57 - Taxa máxima de cisalhamento placa POM espessura de 3 mm. Fonte: Autor.

Figura 58 - Taxa máxima de cisalhamento placa ABS espessura de 3 mm. Fonte: Autor.

Figura 59 - Taxa máxima de cisalhamento caixa com uma cavidade em POM e espessura de 2mm. Fonte: Autor.

Figura 60 - Taxa máxima de cisalhamento caixa com uma cavidade em ABS e espessura de 2mm. Fonte: Autor.

Figura 61 - Taxa máxima de cisalhamento caixa com uma cavidade em POM e espessura de 3 mm. Fonte: Autor.

Figura 62 - Taxa máxima de cisalhamento caixa com uma cavidade em ABS e espessura de 3 mm. Fonte: Autor.

Figura 63 - Taxa máxima de cisalhamento caixa com nove cavidades em POM e espessura de 2 mm. Fonte: Autor.

Figura 64 - Taxa máxima de cisalhamento caixa com nove cavidades em ABS e espessura de 2 mm. Fonte: Autor.

Figura 65 - Taxa máxima de cisalhamento caixa com nove cavidades em POM e espessura de 3 mm. Fonte: Autor.

Figura 66 - Taxa máxima de cisalhamento caixa com nove cavidades em ABS e espessura de 3 mm. Fonte: Autor.

Figura 67 - Taxa máxima de cisalhamento placa POM espessura de 2 mm. Fonte: Autor.

Figura 68 - Taxa máxima de cisalhamento placa ABS espessura de 2 mm. Fonte: Autor.

Figura 69 - Taxa máxima de cisalhamento placa POM espessura de 3 mm. Fonte: Autor.

Figura 70 - Taxa máxima de cisalhamento placa ABS espessura de 3 mm. Fonte: Autor.

Figura 71 - Taxa máxima de cisalhamento caixa com uma cavidade em POM e espessura de 2mm. Fonte: Autor.

Figura 72 -Taxa máxima de cisalhamento caixa com uma cavidade em ABS e espessura de 2mm. Fonte: Autor.

Figura 73 - Taxa máxima de cisalhamento caixa com uma cavidade em POM e espessura de 3 mm. Fonte: Autor.

Figura 74 - Taxa máxima de cisalhamento caixa com uma cavidade em ABS e espessura de 3 mm. Fonte: Autor.

Figura 75 - Taxa máxima de cisalhamento caixa com nove cavidades em POM e espessura de 2 mm. Fonte: Autor.

Figura 76 - Taxa máxima de cisalhamento caixa com nove cavidades em ABS e espessura de 2 mm. Fonte: Autor.

Figura 77 - Taxa máxima de cisalhamento caixa com nove cavidades em POM e espessura de 3 mm. Fonte: Autor.

Figura 78 - Taxa máxima de cisalhamento caixa com nove cavidades em ABS e espessura de 3 mm. Fonte: Autor.