

## UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE QUÍMICA

## SÍNTESE, CARACTERIZAÇÃO E AVALIAÇÃO DA ATIVIDADE BIOLÓGICA DE NITROCHALCONAS E DE CHALCONAS DERIVADAS DA 6-ACETIL-2H-1,4-BENZOXAZIN-3(4H)-ONA

Marlon Norberto Sechini Cordeiro

Florianópolis 2013

Marlon Norberto Sechini Cordeiro

## SÍNTESE, CARACTERIZAÇÃO E AVALIAÇÃO DA ATIVIDADE BIOLÓGICA DE NITROCHALCONAS E DE CHALCONAS DERIVADAS DA 6-ACETIL-2H-1,4-BENZOXAZIN-3(4H)-ONA

Dissertação de mestrado apresentada ao Programa de Pós-Graduação em Química da Universidade Federal de Santa Catarina como requisito parcial para obtenção do título de **Mestre em Química.** 

Área de concentração: Química Orgânica e Medicinal Orientador: Prof. Dr. Ricardo José Nunes Co-orientadora: Dra. Louise Domeneghini Chiaradia Delatorre

Florianópolis, SC, Brasil 2013

Marlon Norberto Sechini Cordeiro SINTESE, CARACTERIZAÇÃO E AVALIAÇÃO DA ATIVIDADE BIOLÓGICA DE NITROCHALCONAS E DE CHALCONAS DERIVADAS DA 6-ACETIL-2H-1,4-BENZOXAZIN-3(4H)-ONA Esta Dissertação de Mestrado foi julgada e aprovada como requisito parcial para a obtenção do título de Mestre em Química no Programa de Pós-Graduação em Química da Universidade Federal de Santa Catarina. Florianópolis 23 de setembro de 2013. Prof. Dr. Hugo Alejandro Gallardo Olmedo (Coordenador do Programa) BANGA EXAMINADORA: Dra. Louise D. C. Delatorre Prof. Dr. Ricard (Co-orientadora) (Orier Prof. Dr. José Carlos Gesser Prof. Dr. Rogéric (QMC-UFSC) (NIQFAR-UNIVA ast Budlet round Prof. Dra. Inês Maria Costa Brighente (QMC-UFSC)

Ficha de identificação da obra elaborada pelo autor, através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Cordeiro, Marlon Norberto Sechini SÍMTESE, CARACTERIZAÇÃO E AVALIAÇÃO DA ATIVIDADE BIOLÓGICA DE NITROCHALCONAS E DE CHALCONAS DERIVADAS DA 6-ACETIL-2H-1,4-BENZOXAZIN-3(4H)-ONA / Marlon Norberto Sechini Cordeiro; orientador, Ricardo José Nunes; coorientador, Louise Domeneghini Chiaradia Delatorre. -Florianópolis, SC, 2013. 122 p. Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas. Programa de Pós-Graduação em Química.

Inclui referências

1. Química. 2. Chalconas. 3. Tuberculose. 4. Leishmaniose. I. Nunes, Ricardo José. II. Delatorre, Louise Domeneghini Chiaradia. III. Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Química. IV. Título. Gostaria de agradecer imensamente a meus pais pelo apoio durante todo o período de estudos e aprendizado, por todo o carinho e amor incondicional, pela dedicação e compreensão em todos os momentos que não pude estar por perto.

I Bruna por toda a atenção, carinho, compreensão e amor nas mais diversas situações, principalmente nos momentos de adversidade onde conseguiu me fazer perceber que nunca devemos desistir e que dias melhores sempre são possíveis, basta batalharmos para isso.

Á amiga, quase uma irmã, que sempre me apoiou e conflou no trabalho. Lou por todos os conselhos, debates ao longo da realização do trabalho e também pelas broncas e chamadas de atenção sem as quais certamente o trabalho não teria sido concluído só posso dizer meu obrigado de coração.

Hos amigos e colegas dos mais diversos grupos que foram compreensivos quando me ausentei de eventos e sociais, quero agradecer pela compreensão.

Hos meus colegas de laboratório, obrigado pelas conversas e pela jornada que trilhamos juntos, certo de que estas resultaram em bons frutos para todos.

Ho meu orientador Ricardo, só posso agradecer pela compreensão nos momentos de dificuldade, pelo apoio no trabalho e pela conflança na realização deste projeto.

Agradeço aos membros da banca avaliadora, Prof. Dr. Rogério Correa, Prof. Dr. José Carlos Gesser e Prof. Dra. Inés Maria Costa Brighente, por terem aceito o convite e pelas contribuições ao trabalho. À Central de Inálises do Departamento de Química da URSC pelas análises espectroscópicas das chalconas, e aos funcionários do Departamento de Química da URSC, Grace e Jadir, pelo apoio ao longo do mestrado, meu muito obrigado.

Hos professores Hernan Terenzi e Mário Steindel, assim como à suas alunas Angela Carminatti e Milene Moraes meu agradecimento pelo suporte e pela realização dos ensaios biológicos.

I todos aqueles que não citei, mas que de alguma forma passaram por esta jornada ao meu lado, meu muito obrigado.

Dedico este trabalho a pessoa que mais me apoiou em todos os momentos, que compreendeu minhas falhas e defeitos e conseguiu me fazer crescer a cada momento. Bruna, toda batalha fica mais simples ao seu lado... "Os químicos são uma estranha classe de mortais, impelidos por um impulso quase insano a procurar seus prazeres em meio a fumaça e vapor, fuligem e chamas, veneno e pobreza, e no entanto, entre todos esses males, tenho a impressão de viver tão agradavelmente que preferiria morrer a trocar de lugar com o rei da Persia."

Johann Joachim Becher,

Physica Subterranea (1667).

#### **RESUMO**

Este trabalho teve como objetivo a síntese e caracterização de duas séries de chalconas, uma derivada da CH8 (previamente patenteada pelo grupo), contendo o grupo nitro na posição 3 ou 3' (série ML) e a outra derivada da 6-acetil-2H-1.4-benzoxazin-3(4H)-ona (série MN). bem como a posterior avaliação biológica de todos os compostos obtidos. Os compostos da série ML foram avaliados como inibidores das proteínas tirosina fosfatase PtpA e PtpB de Mycobacterium tuberculosis, e não apresentaram atividades significativas. Foram também avaliados como agentes anti-leishmania, e de modo geral observou-se que apresentaram inibição superior a 60% para as formas amastigotas de Leishmania amazonensis. sendo (2E)-1-(4-metoxifenil)-3-(2nitrofenil)prop-2-en-1-ona (ML3) o mais promissor, devido ao seu elevado índice de seletividade quando comparado aos outros compostos do estudo (IS = 15,58). A avaliação dos compostos da série MN revelou 3 chalconas com promissora atividade inibitória das proteínas PtpA e PtpB de *Mycobacterium tuberculosis*, para os quais foram determinados (2E)-6-(3-(3,4-diclorofenil)acriloil)-2Hos valores de IC<sub>50</sub>: benzo[b][1,4]oxazin-3(4H)-ona (MN1) (IC<sub>50</sub> =  $18,44 \pm 4,71$  para PtpB e  $IC_{50} = 28,11 \pm 0,33$  para PtpA), (2E)-6-(3-(4-bromofenil)acriloil)-2Hbenzo[b][1,4]oxazin-3(4H)-ona (MN5) (IC<sub>50</sub> =  $16.71 \pm 0.29$  para PtpA) (2*E*)-6-(3-(3nitrofenil)acriloil)-2H-benzo[b][1,4]oxazin-3(4H)-ona e (MN10) (  $IC_{50}=12,04 \pm 1,90$  para PtpB). O composto com melhor atividade frente a PtpB foi MN10 e frente a PtpA foi MN5.

#### ABSTRACT

This work aimed to objective the synthesis and characterization of two series of chalcones, a derivative of CH8 (previously patented by the group ), containing the nitro group in position 3 or 3' (ML series) and the other derived from 6-acetyl-2H-1,4-benzoxazin-3(4H)-one (MN series), as well as subsequent biological evaluation of all the compounds obtained. The compounds of ML series were evaluated as inhibitors of proteins tyrosine phosphatase PtpA and PtpB of Mycobacterium tuberculosis, and no present significant activities. Also were evaluated as anti-leishmania agents and in general was observed that they presented 60% inhibition superior to amastigote forms of L. amazonensis, being (2E)-1-(4-methoxyphenyl)-3-(2-nitrophenyl)prop-2en-1-one (ML3) most promising due to their high selectivity index as compared to the other compounds of the study (IS=15.58). The evaluation of the compounds of MN series showed 3 chalcones with promising inhibitory activity of the proteins PtpA and PtpB of *Mycobacterium tuberculosis*, for which were determined  $IC_{50}$  values: (2E)-6-(3-(3,4-dichlorophenyl)acryloyl)-2Hbenzo [b][1,4]oxazin-3(4H) -one (MN1) (IC<sub>50</sub>= 18.44 ± 4.71 for PtpB and IC<sub>50</sub>= 28.11 ± 0.33 for PtpA), (2E)-6-(3-(4-bromophenyl)acryloyl)-2Hbenzo[b][1,4]oxazin-3(4H)-one (MN5) (IC<sub>50</sub>= 16.71  $\pm$  0.29 PtpA) and (2E)-6-(3-(3nitrophenyl)acryloyl)-2H-benzo[b][1,4]oxazin-3(4H)-one (MN10) (IC<sub>50</sub>= 12.04  $\pm$  1.90 for PtpB). The compound with better activity in relation to PtpB was MN10 and in relation to PtpA was MN5.

# SUMÁRIO

| ÍNDICE DE FIGURAS                                                  | 14 |
|--------------------------------------------------------------------|----|
| ÍNDICE DE TABELAS                                                  | 16 |
| LISTA DE ABREVIATURAS, SÍMBOLOS E SIGLAS                           | 18 |
| 1 INTRODUCÃO E JUSTIFICATIVAS                                      | 19 |
| 2 REVISÃO DA LITERATURA                                            | 22 |
| 2.1 Chalconas                                                      | 22 |
| 2.1.2 Síntese de Chalconas                                         | 23 |
| 2.2 Tuberculose                                                    | 27 |
| 2.2.1 Proteínas Tirosina Fosfatase PtpA e PtpB de                  | 30 |
| Mycobacterium tuberculosis                                         |    |
| 2.2.2 Compostos Inibidores das Ptps de <i>Mycobacterium</i>        | 32 |
| tuberculosis                                                       |    |
| 2.3 Leishmanioses                                                  | 36 |
| 2.3.1 Chalconas ativas em Leishmaniose                             | 41 |
| 3 OBJETIVOS                                                        | 45 |
| 3.1 Objetivo Geral                                                 | 45 |
| 3.2 Objetivos Específicos                                          | 45 |
| 4. Materiais e MÉTODOS                                             | 46 |
| 4.1 Síntese das Nitrochalconas (Série ML)                          | 47 |
| 4.2 Síntese das Chalconas Derivadas da 6-acetil-2h-1,4-            | 49 |
| benzoxazin-3(4h)-ona (Série MN)                                    |    |
| 4.3 Atividade Inibitória e Seletividade das Chalconas Sintetizadas | 51 |
| Frente às Enzimas PtpA e PtpB de Mycobacterium tuberculosis        |    |
| 4.3.1 PtpA de <i>M. tuberculosis</i> WT (Wildtype): Expressão e    | 51 |
| Purificação                                                        |    |
| 4.3.2 PtpB de M. tuberculosis WT (wildtype): Expressão e           | 52 |
| Purificação                                                        |    |
| 4.3.3 Avaliação da atividade residual das enzimas PtpA e           | 52 |
| PtpB                                                               |    |
| 4.3.4 Determinação dos valores de $IC_{50}$ das                    | 53 |
| chalconas                                                          |    |
| 4.4 Avaliação da atividade de chalconas contra formas              | 53 |
| amastigotas de Leishmania Amazonensis e contra formas              |    |
| promastigotas de Leishmania Braziliensis                           |    |
| 4.4.1 Ensaio de citotoxicidade                                     | 54 |
| 4.4.2 Ensaio colorimétrico para triagem de compostos               | 54 |
| leishmanicidas                                                     |    |

| 4.4.3 Indução da diferenciação de células THP-1          | 55  |
|----------------------------------------------------------|-----|
| 5 RESULTADOS E DISCUSSÃO                                 | 56  |
| 5.1 Discussão dos resultados das sínteses                | 56  |
| 5.1.1 Série ML (Nitrochalconas)                          | 56  |
| 5.1.2 Série MN (derivados da 6-acetil-2H-1,4-benzoxazin- | 70  |
| 3(4H)-ona)                                               |     |
| 5.2 Discussão dos resultados de atividade biológica      | 78  |
| 5.2.1 - Chalconas como inibidores da PtpA e PtpB de      | 78  |
| Mycobacterium tuberculosis                               |     |
| 5.2.2. Chalconas com atividade em macrófagos infectados  | 83  |
| com formas amastigotas de Leishmania amazonensis e com   |     |
| formas promastigotas de Leishmania Braziliensis          |     |
| 6 CONCLUSÕES                                             | 86  |
| 7 PERSPECTIVAS                                           | 87  |
| 8 REFERÊNCIAS BIBLIOGRÁFICAS                             | 88  |
| ANEXOS                                                   | 103 |
|                                                          |     |

## ÍNDICE DE FIGURAS

| 23  |
|-----|
|     |
| 24  |
| 25  |
|     |
| 25  |
|     |
| 26  |
| 26  |
|     |
| 28  |
|     |
| 29  |
|     |
|     |
| 29  |
|     |
| 60  |
| 52  |
|     |
|     |
| 33  |
|     |
|     |
| 54  |
| \$4 |
|     |
|     |
|     |
|     |
| \$5 |
| \$5 |
|     |
|     |
| 6   |
|     |
|     |

|            | (b) formas amastigotas, em corante Giemsa.                          |    |
|------------|---------------------------------------------------------------------|----|
| Figura 19- | Manifestações clínicas das leishmanioses. (A)                       | 37 |
|            | Leishmanios cutânea e (B) Leishmaniose visceral.                    |    |
| Figura 20- | Distribuição da Leishmaniose visceral no mundo.                     | 39 |
| Figura 21- | Distribuição da Leishmaniose cutânea no mundo.                      | 39 |
| Figura 22- | Estruturas químicas dos fármacos utilizados no                      | 41 |
|            | tratamento da leishmaniose. Estibogluconato de sódio                |    |
|            | (a), antimoniato de meglumina (b), isetionato de                    |    |
|            | pentamidina (c), anfotericina B (d) e miltefosina (e)               |    |
| Figura 23- | Compostos ativos em leishmania Amazonensis. (a)                     | 42 |
|            | Licochalcona A, (b) e (c) chalconas isoladas de Piper               |    |
|            | hispidum, (d) DMC e (e) CH8.                                        |    |
| Figura 24- | Chalconas sintéticas publicadas por Bello e                         | 43 |
|            | colaboradores. Atividade leishmanicida (IC <sub>50</sub> ) em       |    |
|            | formas promastigotas de L. Braziliensis. Perfil de                  |    |
|            | citotoxicidade ( $CC_{50}$ ) em células VERO. Índice de             |    |
|            | seletividade (IS) calculado como CC <sub>50</sub> /IC <sub>50</sub> |    |
| Figura 25- | Estrutura dos percursores da série ML e estrutura base              | 56 |
|            | da série. (a) Inibidor publicado por Belo e col. 2011.              |    |
|            | (b) Composto CH8 patentado pelo grupo ( Bergmann                    |    |
|            | e col. 2004). (c) Estrutura base da série ML.                       |    |
| Figura 26- | Espectro de RMN <sup>1</sup> H da chalcona ML7.                     | 59 |
| Figura 27- | Espectro RMN de $^{13}$ C da chalcona ML7.                          | 60 |
| Figura 28- | RMN de <sup>1</sup> H composto MN12.                                | 71 |
| Figura 29- | Árvore de decisão de Topliss, para a otimização de                  | 81 |
|            | substituintes aromáticos: M, é mais ativo; E, é                     |    |
|            | igualmente ativo; L, é menos ativo que o composto                   |    |
|            | anterior da chave.                                                  |    |

## ÍNDICE DE TABELAS

| Tabela 1        | Formas de Leishmania encontradas em humanos e seu          | 38 |
|-----------------|------------------------------------------------------------|----|
|                 | agente causador.                                           | 10 |
| Tabela 2        | Condições reacionais e dados dos compostos da série<br>ML  | 48 |
| Tabela 3        | Condições reacionais e dados dos compostos da série        | 50 |
|                 | MN.                                                        |    |
| Tabela 4        | Informações sobre os compostos da série ML.                | 61 |
| Tabela 5        | Caracterização por RMN <sup>1</sup> H dos compostos ML1,   | 62 |
|                 | ML2 e ML3.                                                 |    |
| Tabela 6        | Caracterização por RMN <sup>13</sup> C dos compostos ML1,  | 63 |
|                 | ML2 e ML3.                                                 |    |
| Tabela 7        | Caracterização por RMN <sup>1</sup> H dos compostos ML4,   | 64 |
|                 | ML5 e ML6.                                                 |    |
| Tabela 8        | Caracterização por RMN 13C dos compostos ML4,              | 65 |
|                 | ML5 e ML6.                                                 |    |
| Tabela 9        | Caracterização por RMN 1H dos compostos ML9,               | 66 |
|                 | ML11 e ML14.                                               |    |
| Tabela 10       | Caracterização por RMN 13C dos compostos ML9,              | 67 |
|                 | ML11 e ML14.                                               |    |
| Tabela 11       | Caracterização por RMN <sup>1</sup> H dos compostos ML18,  | 68 |
|                 | ML20 e ML24.                                               |    |
| Tabela 12       | Caracterização por RMN <sup>13</sup> C dos compostos ML18, | 69 |
|                 | ML20 e ML24.                                               |    |
| Tabela 13       | Informações sobre os compostos série MN                    | 73 |
| Tabela 14       | Caracterização por RMN 'H dos compostos MN1,               | 74 |
|                 | MN2 e MN3.                                                 |    |
| Tabela 15       | Caracterização por RMN 'H dos compostos MN4,               | 75 |
|                 | MN5 e MN8.                                                 |    |
| Tabela 16       | Caracterização por RMN <sup>1</sup> H dos compostos MN10,  | 76 |
|                 | MN11 e MN14.                                               |    |
| Tabela I7       | Caracterização por RMN <sup>-</sup> H dos compostos MN20 e | 77 |
| <b>m</b> 1 1 10 | MN22.                                                      | 70 |
| Tabela 18       | Resultados da atividade das chalconas como                 | /9 |
|                 | Inibidores das proteinas PtpA e PtpB de                    |    |
| Tabal- 10       | Mycobacterium tuberculosis.                                | 00 |
| rabela 19       | valores de $1C_{50}$ para os compostos que foram           | 80 |
|                 |                                                            |    |

15

considerados melhores no estudo inicial.

Tabela 20Resultados de inibição dos compostos da Série ML<br/>em formas amastigotas de Leishmania amazonensis e<br/>formas promastigotas de Leishmania braziliensis.

84

## Lista de Abreviaturas, símbolos e siglas

**µg** – micrograma  $\mu L$  – microlitro  $\mu M$  – micromolar AcOEt – Acetato de Etila ADMET - Administração, distribuição, metabolização, excreção e toxicidade CC<sub>50</sub> - Concentração Citotóxica para 50% da amostra CCD – Cromatografia em Camada Delgada Col. – Colaboradores **DMSO** – Dimetilsulfóxido Hex – Hexano HIV - Vírus da imunodeficiência humana **VERO** - Linhagem celular utilizada nos testes. Hz – Hertz IC<sub>50</sub> – Concentração Inibitória de 50% **IS** - Índice de seletividade IUPAC - União internacional de química pura e aplicada J – Constante de Acoplamento **Ki** - Constante de dissociação. LV - Leishmaniose visceral MHz – Mega hertz MS - Ministério da Saúde Mtb - Mycobacterium tuberculosis N – Concentração Normal nM – Nanomolar OMS - Organização Mundial da saúde **PDB** - Protein data bank. PtpA - Proteína tirosina fosfatase A PtpB - Proteína tirosina fosfatase B PTPs - Proteínas tirosina fosfatases LC - Leishmaniose cutânea **q.s.p** – Ouantidade Suficiente Para **RMN**<sup>13</sup>C - Ressonância Magnética Nuclear de <sup>13</sup>C **RMN**<sup>1</sup>**H** - Ressonância Magnética Nuclear de <sup>1</sup>H SAR - Relação estrutura química atividade biológica SIDA - Síndrome de imunodeficiência adquirida

TB - Tuberculose

## 1. INTRODUÇÃO E JUSTIFICATIVAS

Durante muito tempo a sociedade baseou suas escolhas para o uso de medicamentos em observações, utilizando fatores como o humor das pessoas após seu uso ou então a fluidez do sangue do paciente. Um avanço nesta área começou durante a Idade Média, momento em que começaram a surgir hospitais e cursos de Medicina nas primeiras universidades. Somente no início do século XVIII a farmácia foi reconhecida como uma ciência empírica, baseada nos dados da medicina tradicional, e neste momento esta ciência começou a avaliar os extratos e poções existentes na época para compreender os seus efeitos (CHAST, 2008).

Após mais de dois séculos, podemos dizer que a química medicinal pode ser classificada como um ramo desta ciência que surgiu no passado, uma vez que, assim como a farmacologia, a química medicinal se refere ao estudo dos fármacos, substâncias que já eram descritas em 1857 como agentes que deixavam o organismo em uma condição particular, modificando fisicamente e quimicamente processos que apresentavam alguma alteração (WERMUTH, 2008; BARREIRO, 2008).

Por definição da IUPAC, a química medicinal é uma disciplina baseada na química, envolvendo aspectos das ciências biológicas, médica e farmacêutica, cuja missão é o planejamento, descoberta, invenção, identificação e preparação de compostos biologicamente ativos (protótipos), além do estudo do metabolismo, interpretação do mecanismo de ação a nível molecular e a construção das relações entre a estrutura química e a atividade farmacológica (SAR) (WERMUTH, 2008).

A pesquisa e o desenvolvimento de um fármaco podem ser divididos em três grandes etapas (WERMUTH, 2008):

- Descoberta onde são escolhidos os alvos terapêuticos e realizadas as avaliações da atividade biológica das novas moléculas.
- Otimização onde são estudados métodos de melhoramento dos protótipos escolhidos na etapa anterior, preocupando-se com o aumento da potência, seletividade e redução da toxicidade; deste modo, a etapa normalmente é conhecida como ADMET, por estar diretamente relacionada à forma de administração,

distribuição, metabolização, excreção e toxicidade do composto.

 Desenvolvimento - nesta etapa busca-se aperfeiçoar ainda mais os parâmetros ADMET de um candidato a fármaco, bem como suas características farmacêuticas (sabor, odor, solubilidade), para que seja possível o seu uso clínico. São realizados os estudos de formulações, microemulsões, entre outras formas de administração.

Segundo a Organização Mundial da Saúde (OMS), a prioridade para a pesquisa e o desenvolvimento de novos fármacos devem ser as doenças tropicais consideradas negligenciadas, como Doença de Chagas, dengue, leishmanioses, lepra, filariose, entre outras (WHO, 2013). Além disto, a OMS ainda recomenda a pesquisa por novos agentes para o tratamento da tuberculose, considerada um dos maiores problemas de saúde pública do mundo, sendo a segunda maior causa de mortes por doenças infecciosas, atrás apenas da síndrome de imunodeficiência adquirida (SIDA) (WHO, 2012).

Estas recomendações da OMS surgem em um momento em que é possível observar um aumento na disseminação dos casos de leishmaniose no Brasil. Segundo o Ministério da Saúde, há no país uma endemia de leishmaniose, uma vez que a doença era relatada em 19 unidades da federação em 2003, saltando para 22 unidades federadas em 2011, sendo observado um decréscimo nos casos registrados no Nordeste (90% dos casos em 1990 para 47% dos casos em 2009), associado a surtos em regiões urbanizadas como o Rio de Janeiro, Curitiba, Campo Grande e Palmas (MS, 2011).

Aliada à crescente preocupação com os casos de leishmania, uma publicação do mesmo órgão federativo chama atenção para os casos de tuberculose no país e para o Plano Global para o combate à tuberculose (WHO, 2010), o qual tem o objetivo de reduzir pela metade a incidência da enfermidade até 2015, comparado aos casos relatados em 1990. No Brasil foram notificados aproximadamente 70 mil novos casos de tuberculose em 2012, o que deixa o país em 17º lugar em relação ao número de casos em todo o mundo (MS, 2013).

Com base neste panorama mundial e nacional, este trabalho se justifica pela busca de novos compostos orgânicos que apresentem significante atividade biológica frente a leishmania e tuberculose, compreendendo neste caso a primeira etapa da busca por novos agentes para o tratamento destas enfermidades (WERMUTH, 2008). A escolha da classe de compostos para este estudo é justificável pelo fato das chalconas serem estruturas químicas amplamente conhecidas por sua diversidade de atividades biológicas (DIMMOCK *et al.*, 1999; NI *et al.*, 2004; NOWAKOWSKA *et al.*, 2007), entre elas anti-leishmania (NIELSEN *et al.*, 1998; BOECK *et al.*, 2006; BERGMANN *et al.*, 2004) e anti-tuberculose (SIVAKUMAR, 2010; CHIARADIA *et al.*, 2008; MASCARELLO *et al.*, 2010; CHIARADIA *et al.*, 2012).

#### 2. Revisão da Literatura

#### 2.1 Chalconas

Chalconas são moléculas de cadeia aberta que contêm dois anéis aromáticos ligados por um fragmento enona de três carbonos, ou seja, são cetonas  $\alpha,\beta$ -insaturadas que apresentam o núcleo 1,3-diarilprop-2en-1-ona (AVILA *et al.*, 2008) (Figura 1) e o esqueleto C<sub>6</sub>-C<sub>3</sub>-C<sub>6</sub>, considerado privilegiado no desenho de fármacos (POLINSKY *et al.*, 2008), o que vem lhes conferindo uma grande atenção na química medicinal (ANSARI *et al.*, 2005).

Seus dois estereoisômeros,  $Z \in E$ , são precursores comuns na biossíntese de flavonóides e isoflavonóides. São encontradas em cascas de árvores, frutos, folhas e em raízes de diversas plantas (NI *et al., 2004*), e em maior concentração nas pétalas das flores, onde tem um importante papel na polinização das plantas, pois sua cor amarela atrai insetos e pássaros (ZUANAZZI *et al., 2001*).



Figura 1. Núcleo fundamental das chalconas.

A grande atenção recebida por estes compostos não se restringe a sua estrutura química considerada simples, mas também é resultado da diversidade de atividades farmacológicas que apresentam (DIMMOCK et al., 1999; NI et al., 2004; NOWAKOWSKA et al., 2007). Dentre as atividades biológicas observadas para esta classe de compostos podemos citar antibacteriana (DIMMOCK et al., 1999; NIELSEN et al., 2004), anti-inflamatória (ALCARAZ et al., 2004 ; CHIARADIA et al., 2008), antiviral (NINOMIYA et al., 1990), inibidora das proteínas tirosina fosfatase A e B de Mycobacterium tuberculosis (CHIARADIA et al., 2008; MASCARELLO et al., 2010; CHIARADIA et al., 2012). antifúngica (BOECK et al., 2005; OPLETALOVA & SEDIVY, 1999; LOPEZ et al., 2001; LOPEZ et al., 2003), antimalárica (LI et al., 1995; RAM et al., 2000; DOMINGUEZ et al., 2001; LIU et al., 2001; DOMINGUEZ et al., 2005; LIU et al., 2003), anti-leishmania (NIELSEN et al., 1998; KAYSER & KIDERLEN, 2001; BOECK et al.,

2006; BERGMANN *et al.*, 2004) antioxidante (GACCHE *et al.*, 2008), sequestradora de radicasis livres (LEBEAU *et al.*, 2000), antitumoral (NAM *et al.*, 2003), citotóxico (LAWRENCE *et al.*, 2006; SALUM *et al.*, 2013), anti-mitótico (CHEN *et al.*, 2001; HERENCIA *et al.*, 1998), bem como a propriedade de mediação da glicoproteína P na resistência a múltiplas drogas (DUCKI *et al.*, 1998).

Esta vasta gama de atividades é em grande parte atribuída às inúmeras possibilidades de substituições nos anéis aromáticos das chalconas, pois a metodologia de síntese das mesmas, baseada na condensação de Claisen-Schmidt, possibilita a obtenção de uma grande variedade de compostos, uma vez que existem inúmeros benzaldeídos e acetofenonas comerciais que podem ser combinados, fornecendo a variedade estrutural pretendida (DUCKI *et al.*, 1998).

Estes compostos também tem despertado atenção de cientistas devido a possibilidade de serem utilizados como intermediários para a síntese de sistemas cíclicos mais complexos, como benzodiazepinas, benzotiazepinas, oxazóis, pirazolinas, pirrolinas, pirimidinas e pirazinas (ANSARI *et al.*, 2005).

#### 2.1.2 Síntese de Chalconas

Diversos métodos de síntese de chalconas são descritos na literatura, porém a metodologia mais utilizada é a condensação aldólica (ou de Claisen-Schmidt) (CALVINO *et al.*, 2006). Neste método, realiza-se a condensação de um benzaldeído com uma cetona apropriada em um solvente polar como metanol, com o uso de uma base como catalisador (Figura 2). É um método bastante versátil e conveniente, que confere rendimentos muito variados, desde 5% até 90% (GO *et al.*, 2005).



Figura 2. Síntese de chalcona através da condensação aldólica.

O mecanismo proposto para esta condensação pode ser visto na Figura 3, que é seguida da desidratação em meio básico (Figura 4).

Inicialmente o catalisador básico remove um hidrogênio alfa ácido da cetona, formando assim um carbânion, que pode ser estabilizado por ressonância. A reação continua através de um ataque nucleofílico do carbânion ao carbono da carbonila do aldeído, formando assim um intermediário tetraédrico (íon alcóxido). Ao ser protonado por um hidrogênio da água o íon alcóxido é convertido no produto de condensação e o meio básico é regenerado (Figura 3).



Figura 3. Mecanismo da reação de condensação.

Em seguida, o produto de condensação sofre desidratação básica. Para que isso ocorra, um hidrogênio ácido é abstraído da posição alfa, resultando assim no íon enolato, que por equilíbrio elimina o grupo OH<sup>-</sup>, formando assim a chalcona (Figura 4).



Figura 4. Mecanismo de desidratação do produto de condensação e formação da chalcona.

Diversos outros métodos tem sido estudados por grupos de pesquisas ao redor do mundo para a síntese de chalconas. A obtenção de chalconas através da reação de acoplamento cruzado é uma das novas técnicas que vem sendo utilizada (AL-MASUM *et al.*, 2011). Nesta síntese, um cloreto de benzoíla e estiriltrifluorborato de potássio são acoplados diretamente com o uso de cloreto de paládio como catalisador e aquecimento em microondas, formando a chalcona (Figura 5).



Figura 5. Síntese de chalconas pelo acoplamento cruzado de trifluorborato e cloreto de benzoila.

Outra metodologia para a obtenção das chalconas baseia-se no acoplamento de Suzuki, onde são empregados cloreto de benzoíla e um ácido fenilvinilborônico (Figura 6). Eddarir *et al.*, (2003) estudaram diferentes condições reacionais para este acoplamento, entre elas as condições propostas por McCarthy, em que são utilizados tolueno anidro como solvente, trifenilfosfina de paládio como catalisador e carbonato de césio como base. Nesta proposta reacional os rendimentos observados pelos pesquisadores variaram entre 41 e 93%, indicando ser uma metodologia viável para a síntese de chalconas (Figura 6).



Figura 6. Síntese de chalconas pelo acoplamento de Suzuki.

Narender e Reddy (2007) propuseram a síntese de chalconas através do uso de borotrifluoreterato ( $BF_3 - Et_2O$ ) como catalisador (Figura 7). Os pesquisadores defendem que sua metodologia apresenta diversas vantagens em relação aos métodos clássicos de síntese de chalconas, como a condensação aldólica, que utiliza hidróxido de potássio ou sódio como catalisador, apresenta tempos reacionais elavados (2 a 4 dias) e alta possibilidade de reações paralelas (como a reação de Canizzaro, por exemplo). Na metodologia proposta por Narender and Reddy, os tempos observados para as reações foram de 15 a 150 minutos e não foram observadas reações paralelas. Além disso, o método permite a síntese sem solvente quando os reagentes forem líquidos e possibilita a síntese de compostos que apresentem funções orgânicas sensíveis a reações com bases, como por exemplo, ésteres e amidas (NARENDER *et al.*, 2007).



Figura 7. Síntese de chalconas com o uso de  $BF_3$ - $Et_2O$ , proposta por Narender e Reddy.

Indo de encontro aos princípios da química verde, Srivastava *et al.*, (2008) propuseram uma metodologia de síntese de chalconas com o uso de microondas, usando carbonato de potássio e irradiação com tempos variando de 3-5 minutos. Após este tempo o meio reacional foi dissolvido em etanol e filtrado, e os rendimentos observados variaram entre 80 e 90% (SRIVASTAVA *et al.*, 2008).

Diversas variações da metodologia clássica de síntese de chalconas pela condensação aldólica também foram propostas, nas quais o objeto de estudo normalmente é o catalisador utilizado. Sabe-se que aproximadamente 75% das chalconas sintéticas são obtidas com uso de catalisadores básicos, normalmente soluções de hidróxido de sódio ou potássio com concentrações que variam de 10 a 70% (m/m) (BUKHARI et al.,2013). Entre estas modificaões pode-se observar a proposta de Sebti e col. (2001) que usaram um catalisador sólido, preparado com fosfato e nitrato de sódio a altas temperaturas (900°C), o qual, segundo os autores, conferiu aumentos expressivos nos rendimentos das reações (SEBTI et al., 2001). Outros catalisadores que são reportados na literatura são óxidos básicos, como óxido de alumínio-magnésio, (CLIMENT et al., 2004) e SOCl2/EtOH que produz HCl in situ e portanto promove a síntese pela via ácida (PETROV et al., 2008), além do uso de catalisadores sólidos como sílica funcionalizada ( ROMANELLI et al., 2011).

### 2.2 Tuberculose

A tuberculose (TB) é uma doença infecciosa causada pelo *Mycobacterium tuberculosis* (ou bacilo de Koch), que geralmente afeta os pulmões (TB pulmonar), mas pode também afetar outros locais do organismo (TB extrapulmonar) (WHO, 2012).

É caracterizada por tosse prolongada por mais de três semanas, inicialmente sem febre, seguida de escarro, dores no tórax, fraqueza, perda de peso, febre e suores noturnos. É transmitida pelo ar quando pessoas que estão doentes com TB pulmonar expulsam bactérias através da tosse (WHO, 2012).

Estima-se que no final do século XIX cerca de 20% da população mundial desenvolvia a doença, sendo que em média metade dos enfermos ia a óbito, período no qual a enfermidade chegou a ser conhecida como "a grande peste branca". A descoberta do *Mycobacterium tuberculosis* em 1882 por Robert Koch, a melhoria nas condições sanitárias na década de vinte, e a descoberta do ácido *para*-aminosalicílico e da isoniazida na década de cinquenta, possibilitaram que surgisse esperança quanto à eliminação da doença (DOMINGOS & BARBADO, 2003).

Entretanto, apesar de todos os avanços tecnológicos, a TB ainda é considerada um grave problema de saúde pública em todo o mundo.

Segundo dados do relatório anual da Organização Mundial da Saúde (OMS) sobre a enfermidade em 2012, cerca de 9 milhões de novos casos e 1,4 milhões de óbitos foram registrados no ano de 2011 em decorrência da doença. Dentre os óbitos, aproximadamente 440 mil casos estavam associados a pacientes HIV positivos, o que coloca a TB como a segunda maior causa de mortes por doença infecciosa no mundo, ficando atrás apenas da própria síndrome da imunodeficiência adquirida (SIDA) (WHO, 2012).

No Brasil, aproximadamente 97 mil novos casos da doença foram registrados no ano de 2011, e destes, 17 mil pessoas eram HIV positivos. Foram reportados aproximadamente 5,6 mil óbitos relacionados à TB no mesmo período (WHO, 2012).

Existe a estimativa de que cerca de 200 milhões de pessoas desenvolverão a doença e 35 milhões virão a óbito devido a tuberculose em todo o mundo até o ano de 2020 (NEONAKIS *et al.*, 2008). A Figura 8 mostra a incidência estimada dos casos da doença no mundo para cada 100 mil habitantes.



Figura 8. Estimativa de novos casos de tuberculose por 100mil habitantes em 2011. Fonte: WHO, 2012.

O tratamento quimioterápico atual para a cura da TB associa 4 antibióticos por um período de 6 a 9 meses, tendo como consequência a falta de adesão dos pacientes aos longos regimes prescritos, e devido a isso, a aparição de bacilos resistentes aos antimicrobianos (RUIZ-MANZANO *et al.*, 2008). Dentre os fármacos de primeira escolha utilizados na clínica estão a isoniazida e o etambutol (que agem inibindo a síntese da parede celular bacteriana), a rifampicina (que inibe a síntese de RNA) e a pirazinamida (que tem sua ação devida a um mecanismo ainda desconhecido) (Figura 9).



**Figura 9.** Fármacos de primeira escolha contra tuberculose. (a) isoniazida, (b) pirazinamida, (c) etambutol e (d) rifampicina.

A Figura 10 mostra o perfil mundial dos casos de resistência aos fármacos de primeira escolha no tratamento da TB. Devido a este elevado número de casos de resistência, novas abordagens para o tratamento da TB precisam ser desenvolvidas.



**Figura 10.** Perfil do progresso mundial de cobertura dos casos de resistência aos fármacos entre 1994 e 2011. Fonte: Global Tuberculosis Report 2012.

# 2.2.1 Proteínas tirosina fosfatase PtpA e PtpB de *Mycobacterium tuberculosis*

As fosfatases podem ser definidas como hidrolases que tem como substrato fosfomonoésteres, sendo amplamente distribuídas na natureza (FERREIRA *et al.*, 1999; AOYAMA *et al.*, 2003). Podem ser divididas em 3 grupos principais: as fosfatases alcalinas, as fosfatases ácidas e as proteínas fosfatase (AOYAMA *et al.*, 2003).

As proteínas tirosina fosfatases (PTPs) representam um grande grupo de enzimas responsáveis pela hidrólise dos grupos fosfato ligados a resíduos de tirosina em proteínas. Estruturalmente diversas, estas enzimas podem incluir as do tipo citoplasmática e tipo receptor, que tem a capacidade de transmitir sinais diretamente a enzimas de membrana e citoplasma, controlando diversos processos (ZHANG, 2002).

Diversos estudos bioquímicos e genéticos mostram que as PTPs podem exercer efeitos positivos ou negativos nas vias de sinalização, participando de papéis fisiológicos cruciais em uma variedade de células e tecidos. Uma única PTP pode regular múltiplas vias de sinalização, ou uma via chave pode ser regulada por diversas PTPs (ZHANG, 2001). Com a publicação do genoma do *Mycobacterium tuberculosis*, foi possível identificar a presença de genes de duas proteínas tirosina fosfatases, a proteína tirosina fosfatase A (PtpA) e a proteína tirosina fosfatase B (PtpB) (Figura 11) (COLE *et al.*, 1998).



**Figura 11.** Estrutura 3D das proteínas PtpA (A) e PtpB (B). Fonte: PtpA (PDB *code* 1U2Q) (MADHURANTAKAM *et al.*, 2005) e PptB (PDB *code* 1YWF) (GRUNDER *et al.*, 2005).

Koul e colaboradores (2004) mostraram que estas duas proteínas são secretadas pelo *M. tuberculosis* em macrófagos humanos

infectados, e estão envolvidas em sua sobrevivência no hospedeiro. Alguns elementos críticos na patogenia do *M. tuberculosis* são a sua entrada em macrófagos e a evasão de mecanismos de destruição intracelular. Para cumprir estes objetivos, o *M. tuberculosis* secreta diversas proteínas que modificam as vias de sinalização do hospedeiro, entre elas a PtpA, uma tirosina fosfatase de baixo peso molecular (MADHURANTAKAM *et al.*, 2005).

Bach e colaboradores (2008) relatam que a remoção da PtpA atenua o crescimento do *M. tuberculosis* nos macrófagos humanos, assim como a produção de anticorpos para a PtpA também acarreta neste efeito. O grupo de pesquisas ainda identificou o substrato natural da PtpA no hospedeiro humano, a proteína citoplasmática VPS33B (BACH *et al.*, 2008).

Esta associação entre a PtpA e a VPS33B permitiu aos pesquisadores concluir que a PtpA interfere diretamente no tráfico vesicular, prejudicando a fusão fago-lisossomal em macrófagos infectados por *M. tuberculosis*, através da desfosforilação da VPS33B, uma vez que este é necessário para a entrega do fagossomo ao lisossomo. Estes resultados demonstram que a PtpA é essencial para a persistência intracelular do *M. tuberculosis* (BACH *et al.*, 2008).

Outra proteína tirosina fosfatese secretada pelo *M. tuberculosis* é a PtpB, caracterizada como uma proteína de tripla especificidade que catalisa a desfosforilação de resíduos serina/treonina ou tirosina e fosfoinositídeos (GRUNDER *et al.*, 2005; BERESFORD *et al.*, 2009). Estudos realizados por Zhou e colaboradores (2010) sugeriram o modo de atuação da PtpB em macrófagos, no qual esta proteína pode interferir na via de sinalização ativada por INF- $\gamma$ . Deste modo, a PtpB evita a morte do macrófago ativando a via Akt e bloqueando a atividade da caspase-3, e essa manutenção da célula hospedeira viva parece favorecer a sobrevivência do *M. tuberculosis* e garantir a sua replicação dentro dos macrófagos.

A importância das PTPs na regulação de vários eventos celulares as qualifica como alvos terapêuticos para a descoberta de novos fármacos. Deste modo, devido à importância de PtpA e da PtpB na virulência do *M. tuberculosis*, estas enzimas são alvos promissores para o desenvolvimento de novos agentes para melhorar o tratamento da tuberculose (ZHOU *et al.*, 2010).

# 2.2.2 Compostos inibidores das PTPs de Mycobacterium tuberculosis

O primeiro estudo apresentando inibidores de PtpA foi publicado por Manger e col. no ano de 2005, que em sua pesquisa estudaram análogos dos produtos naturais estevastelinas, roseofilinas e prodigiosinas, obtendo valores de IC<sub>50</sub> entre 8,8 e 28,7  $\mu$ M (Figura 12) (MANGER *et al.*, 2005). Estudos posteriores de inibição da PtpA revelaram que os compostos molibdato, ortovanadato e tungstenado de sódio também são inibidores desta protéina, com valores de IC<sub>50</sub> de 24,5, 28,0 e 30,8  $\mu$ M, respectivamente (MADHURANTAKAM *et al.*, 2008).



**Figura 12.** Inibidores da PtpA de *M. tuberculosis*: (a) análogo da estevastelina, (b) análogo da roseofilina, e (c) análgo da nonilprodigiosina. Fonte: MANGER *et al.*, 2005.

A busca por inibidores de PtpB levou GRUNDNER e col. (2007) a identificar uma sulfonamida com alta especificidade e seletividade para esta enzima, a (oxalilamino-metilieno)-tiofeno sulfonamida (OMTS), com IC<sub>50</sub> de 0,44  $\mu$ M (GRUNDNER *et al.*, 2007). Um estudo realizado por Nören-Müller e col. no ano de 2006, apresentou alguns inibidores da PtpB, dentre eles um derivado indólico com IC<sub>50</sub> de 0,36  $\pm$  0,12  $\mu$ M. Soellner e col. (2007) apresentaram um carboxilato de isoxazol com IC<sub>50</sub> 0,22  $\pm$  0,3  $\mu$ M, sendo este composto o mais ativo inibidor de PtpB publicado até o momento. No ano de 2010, indolin-2-on-3-espirotiazolidinonas foram identificadas como uma nova classe de inibidores potentes, seletivos e competitivos para PtpB, onde o melhor composto apresentou IC<sub>50</sub> de 0,32  $\pm$  0,12  $\mu$ M (VINTONYAK *et al.*, 2010) (Figura 13).



**Figura 13.** Inibidores de PtpB de *M. tuberculosis*: (a) OMTS, (b) derivado indólico, (c) carboxilato de isoxazol e (d) indolin-2-on-3-espirotiazolidinonas.

Em 2008, nosso grupo de pesquisas publicou um trabalho com o estudo de 38 chalconas como possíveis inibidores de PtpA de *M. tuberculosis* (CHIARADIA *et al.*, 2008). Dentre os compostos avaliados, cinco se mostraram mais ativos, com valores de IC<sub>50</sub> variáveis entre 8,4 e 53,7  $\mu$ M (Figura 14). Estas chalconas apresentavam os grupos 1- ou 2-naftil em sua estrutura, o que sugeriu a necessidade de uma parte hidrofóbica e plana no anel A do composto e a presença de um grupo que aumentasse a densidade eletrônica no anel B para a melhor atividade inibitória da PtpA. A continuidade dos estudos com estes compostos mostrou que o modo de inibição da PtpA provocado por estas naftilchalconas é competitivo (com valores de K*i* entre 4,9 e 21,3  $\mu$ M), e assim foi possível construir modelos de interação entre os compostos e o sítio catalítico da PtpA (Figura 15) (MASCARELLO *et al.*, 2010).



Figura 14. Chalconas inibidoras da PtpA de M.tuberculosis.



**Figura 15.** Modelo de interação das naftilchalconas bioativas no sítio ativo da PtpA. Estrutura da proteína destacando a cadeia principal dos resíduos de aminoácidos. As ligações hidrogênio estão ilustradas como linhas tracejadas azuis (MASCARELLO *et al.*, 2010).

Em 2011, nosso grupo de pesquisas identificou quatro sulfonilhidrazonas derivadas da *N*-fenilmaleimida (Figura 16) como inibidoras de PtpB de *M. tuberculosis* (OLIVEIRA *et al.* 2011), compostos que apresentaram mecanismo de inibição competitivo, resultando assim em uma nova classe de compostos com potencial interesse para o desenvolvimento de moléculas para o tratamento da tuberculose.



Figura 16. Sulfonil-hidrazonas inibidoras da PtpB.

No mais recente trabalho do nosso grupo, 100 chalconas foram avaliadas como possíveis inibidores de PtpA e da PtpB de *M. tuberculosis*, e 25 foram descritas como inibidores de PtpA e 11 como inibidores de PtpB (CHIARADIA *et al.*, 2012). Dois compostos (Figura 17) apresentaram excelente atividade e seletividade, respectivamente para PtpB (a) (CI<sub>50</sub> =  $12 \pm 2$ ) e para PtpA (b) ( $15 \pm 4$ ), e foram identificados como inibidores competitivos destas proteínas, sendo possível a realização de estudos de *docking molecular*.



Figura 17. Inibidor da PtpB (a) e inibidor da PtpA (b). Na imagem podem ser vistos os modelos de interação dos inibidores no sítio ativo das proteínas.

A versatilidade, atividade e seletividade desta classe de compostos sugere que as chalconas podem ser consideradas estruturas promissoras para o desenvolvimento de compostos líderes na busca por novos agentes para o tratamento da tuberculose.

Deste modo a idealização da série MN ( derivada 6-acetil-2H-1,4-benzoxazin-3(4H)-ona), vai de encontro com o que foi apresentado, uma vez que a busca pela versatilidade é um dos objetivos desta série. A escolha desta variação pode se justificar pelo acréscimo de um sistema bicíclico contendo uma amida ciclica e um heteroátomo, o que proporciona uma ampla variedade estrutural.

### 2.3 Leishmanioses

As leishmanioses são consideradas um grande problema de saúde pública, pois representam um complexo de doenças com importante espectro clínico e diversidade epidemiológica (MS, 2007).

São provocadas pela contaminação do organismo por protozoários do gênero *Leishmania*, que são transmitidos ao homem pela picada de fêmeas do mosquito da subfamília *Phlebotominae* infectadas após se alimentarem com sangue contaminado de certos vertebrados que agem como reservatórios da doença (WHO, 2008).

Durante seu ciclo de vida, o protozoário passa por duas formas evolutivas (Figura 18): promastigotas (forma não replicativa, infectante, encontrada no intestino do mosquito) e amastigotas (forma replicativa, não-infectante, encontrada na célula fagocítica do hospedeiro vertebrado) (NEVES, 2005).



**Figura 18.** Formas evolutivas de *Leishmania donovani*: (a) formas promastigotas fixadas com corante Giemsa, e (b) formas amastigotas, em corante Giemsa (Fonte: Domínio Público).

A manifestação clínica da doença depende da espécie infectante. As duas principais manifestações clínicas são:

• leishmaniose cutânea (LC): forma mais comum da doença, caracterizada pelo surgimento de lesões ulcerativas, em diferentes quantidades, na pele e regiões expostas do enfermo. A LC ainda tem duas subdivisões: leishmaniose cutâneo-difusa e leishmaniose muco-cutânea.

• *leishmaniose visceral (LV)*: forma mais grave da doença, caracterizada por períodos irregulares de febre, perda considerável de peso, anemia, hepatomegalia e esplenomegalia. Conhecida também como Calazar, é chamada em algumas regiões da Índia de "febre negra" ou "febre mortal".

A Figura 19 apresenta as diferentes manifestações clínicas da doença e a Tabela A mostra as espécies do protozoário que as causam.



Figura 19. Manifestações clínicas das leishmanioses. (A) Leishmaniose cutânea e (B) Leishmaniose visceral. Fonte: Domínio Público.

A forma cutânea deixa cicatrizes e, dependendo da espécie de *Leishmania* infectante, pode evoluir para a *leishmaniose cutânea difusa*, ou leishmaniose tegumentar americana, com consequências desastrosas para a estética do paciente. A leishmaniose visceral, a forma mais grave, é fatal em quase todos os casos se não for tratada, o que pode causar surtos epidêmicos com alta mortalidade (WHO,2008).

Considerada uma doença endêmica em 98 países, a OMS estima que cerca de 35 milhões de pessoas se encontram em risco de contrair leishmaniose, sendo observados cerca de dois milhões de novos casos ao ano, sendo 1,5 milhão destes da forma cutânea e 500 mil da
doença na forma visceral. Provoca aproximadamente 50 mil mortes por ano, além de deixar 2,4 milhões de pessoas incapacitadas devido as complicações (deformações) da forma cutânea (WHO, 2010).

| Formas de Leishmania encontrada em humanos |              |                  |                |              |  |
|--------------------------------------------|--------------|------------------|----------------|--------------|--|
| Subgênero                                  | L.           | L.               | L.(Viannia)    | L.(Viannia)  |  |
|                                            | (Leishmania) | (Leishmania)     |                |              |  |
| Velho                                      | L. dovani    | L. major         |                |              |  |
| Mundo                                      | L. infantum  | L. tropica       |                |              |  |
|                                            |              | L. aethiopica    |                |              |  |
|                                            |              | L. infantum      |                |              |  |
| Novo                                       | L. infantum  | L. infantum      | L.braziliensis | L.           |  |
| Mundo                                      |              | L. mexicana      | L.guyanensis   | braziliensis |  |
|                                            |              | L. venezuelensis | L.panamensis   | L.           |  |
|                                            |              | L. amazonensis   | L. shawi       | panamensis   |  |
|                                            |              |                  | L. naiffi      |              |  |
|                                            |              |                  | L. lainsoni    |              |  |
|                                            |              |                  | L. lindenberg  |              |  |
|                                            |              |                  | L.peruviana    |              |  |
| Manifestação                               | Visceral     | Cutânea          | Cutânea        | Мисо-        |  |
| Clínica                                    |              |                  |                | cutânea      |  |
|                                            |              |                  |                |              |  |

**Tabela 1.** Manifestações clínicas das leishmanioses encontradas em humanos e seu agente causador (Fonte: WHO, 2010).

Em torno de 90% dos casos relatados de leishmania visceral ocorrem no Brasil, Bangladesh, Etiópia, Índia, Nepal e Sudão (Figura 20). Como a distribuição da doença é dinâmica, pode-se observar que fatores climáticos, sociais e econômicos podem ampliar a abrangência dos vetores e consequentemente o números de casos.



Figura 20. Distribuição da Leishmaniose visceral no mundo. Fonte: WHO, 2009a.

Segundo a WHO cerca de 90% dos casos de Leishmaniose cutânea do mundo estão concentrados na Bolívia, Brasil e no Peru. A distribuição dos casos relatados entre 2005 e 2009 no mundo pode ser observada na Figura 21.



Figura 21. Distribuição da Leishmaniose cutânea no mundo. Fonte: WHO, 2009b.

No Brasil, só no ano de 2008, foram registrados 3852 novos casos de LV, sendo 136 casos de co-infecção LV/HIV. Um fator que chama atenção das autoridades do país é o crescente número de casos nas regiões Norte, Sudeste e Centro-oeste, que no ano 2000 representavam apenas 17% dos casos de LV e que passaram a 43% no

ano de 2008. Neste mesmo ano foram registrados aproximadamente 20mil novos casos de leishmaniose tegumentar no país, sendo 95% na forma cutânea, abrangendo todas as regiões do país (SVS, 2010).

O tratamento da leishmaniose é um desafio para os serviços de saúde pública, pois como regra geral, os pacientes infectados residem em regiões isoladas, e precisam enfrentar problemas logísticos como longas distâncias para o centro de tratamento, a falta de transporte, além do custo elevado dos medicamentos (SVS, 2010).

O tratamento de primeira linha, especialmente para a leishmaniose visceral, é caro e deve ser administrado via intravenosa no hospital. Os fármacos de primeira escolha são compostos de antimônio pentavalente como o estibogluconato de sódio e o antimoniato de meglumina (Figura 22). No caso de recaídas ou desenvolvimento de resistência a estes fármacos, os doentes necessitam de tratamento com medicamentos mais tóxicos e mais caros, os medicamentos de segunda escolha, como a Anfotericina B ou a Pentamidina (Figura 22). A Anfotericina B lipossomal quase não tem nenhum efeito colateral, mas é inviável em países em desenvolvimento como o Brasil, devido ao seu elevado custo (cerca de U\$ 1500 ou mais por paciente, segundo dados da OMS (WHO,2010).

Devido a sua incidência predominantemente em países subdesenvolvidos e por acometer principalmente a população pobre, as leishmanioses não despertam o interesse das grandes companhias farmacêuticas para o desenvolvimento de novos agentes terapêuticos para esta enfermidade, e assim, a maior parte dos tratamentos é feita com os medicamentos desenvolvidos há várias décadas.

Um medicamento mais recente que vem sendo utilizado para o tratamento das leishmanias é a miltefosina (hexadecilfosfocolina) (Figura 22), originalmente desenvolvido como antineoplásico (COSTA FILHO *et al.*, 2008).



Figura 22. Estruturas químicas dos fármacos utilizados no tratamento da leishmaniose: estibogluconato de sódio (a), antimoniato de meglumina (b), isetionato de pentamidina (c), anfotericina B (d) e miltefosina (e).

A leishmaniose é uma das doenças tropicais mais negligenciadas, e a OMS definiu como estratégia a necessidade do desenvolvimento de novos medicamentos, que sejam mais baratos, com ciclos de tratamento mais curtos, e que possam ser administrados de forma oral, parental ou tópica.

#### 2.3.1 Chalconas ativas em Leishmaniose

Os primeiros estudos da atividade anti-leishmania de chalconas foram realizados com a licochalcona A (Figura 23), que apresentou efeito inibitório no crescimento das formas amastigota e promastigota de *Leishmania major e L. donovani* em macrófagos humanos parasitados, com baixa citotoxicidade (CHEN *et al.*, 1993; CHEN *et al.*, 1994). O mecanismo de ação desta chalcona foi identificado apenas em estudos posteriores, nos quais se concluiu que o composto atua inibindo as enzimas fumarato redutase e succinato desidrogenase, alterando a estrutura e consequentemente a função das mitocôndrias do protozoário (CHEN *et al.*, 1993; ZHAI *et al.*, 1995; CHEN *et al.*, 2001).

Em 1999, estudos fitoquímicos da planta *Piper aduncum*, conhecida como pimenta de macaco no norte do Brasil, permitiram o isolamento da 2',6'-dihidroxi-4'-metoxichalcona (DMC, Figura 23). Estudos *in vitro* desta chalcona natural contra formas promastigotas e amastigotas de *L. amazonensis* mostraram tratar-se de um composto com atividade significativa, além de ser seletivamente tóxico para os protozoários por não ativar o metabolismo oxidativo dos macrófagos (TORRES-SANTOS *et al.*, 1999).

Estudos posteriores foram realizados com a DMC para a determinação do seu mecanismo de ação em formas promastigotas de *Leishmania amazonensis*, que mostraram que este composto altera a biossíntese de esteroides, o que sugere que seu alvo de ação é diferente de outros inibidores conhecidos (TORRES-SANTOS *et al.*, 2009).

Outro trabalho mostrou a atividade frente a formas amastigota de *Leishmania* de duas chalconas isoladas da fração etanólica de *Piper hispidum*, 2',4'-dihidróxi-6'-metoxichalcona e 2'-hidroxi-3',4',6'- trimetoxichalcona (Figura 23). O composto trimetoxilado foi o mais ativo, e ambos apresentaram leve citotoxicidade (RUIZ *et al.*, 2011).





(b) FA IC50 8µM

(a) FRD IC  $_{50}$  1,2  $\mu M$  ; SDH IC  $_{50}$  19  $\mu M$ 



(c) FA IC<sub>50</sub> 0,8µM





(e) FP IC<sub>50</sub> 0,7 μM; FA IC<sub>50</sub> 15,8μM

**Figura 23.** Compostos ativos em *leishmania amazonensis*. (a) licochalcona A, (b) e (c) chalconas isoladas de *Piper hispidum*, (d) DMC e (e) CH8. FRD = Fumarato redutase, SDH = succinato desidrogenase, FP = formas promastigotas de L. amazonensis; FA = formas amastigotas de *L. amazonensis*. Chalconas sintéticas derivadas da xantoxilina, e muito semelhantes à DMC, foram patenteadas por nosso grupo de pesquisas em 2003, por terem apresentado excelente atividade *in vitro* contra formas promastigotas e amastigotas de *Leishmania amazonensis*. O composto CH8 (Figura 23) foi o mais ativo, uma vez que tratamentos com pequenas doses deste composto em ratos infectados apresentaram melhores resultados que o tratamento com Pentostan (fármaco referência no tratamento de leishmaniose cutânea) (BERGMAM *et al.,* 2004). Os estudos mostraram que as chalconas derivadas da DMC com um grupo nitro na posição 3 do anel B conferiram aumento significativo da atividade leishmanicida (BOECK *et al.,* 2006).

A continuidade dos estudos com chalconas metoxiladas por nosso grupo de pesquisa revelou outros cinco compostos (Figura 24) com atividade significativa em *Leishmania braziliensis* e bons índices de seletividade (BELLO *et al., 2011)*. Os resultados publicados no trabalho mostraram que a posição das metoxilas no anel A, especialmente em *orto*, e a presença de um átomo de cloro no anel B, são importantes para a atividade leishmanicida dos compostos.





**Figura 24.** Chalconas sintéticas com atividade leishmanicida  $(IC_{50})$  em formas promastigotas de *L. braziliensis*. Perfil de citotoxicidade  $(CC_{50})$  em células VERO (linhagem celular utilizada em culturas). Índice de seletividade (IS), calculado como  $CC_{50}/IC_{50}$ .

Os resultados obtidos neste último trabalho estão de acordo com o previamente publicado por Lunardi e col. (2003), que observaram que grupos cloro na posição 4 do anel B aumentavam a atividade das chalconas frente a formas promastigotas de *L. braziliensis* (LUNARDI *et al.*, 2003).

Recentemente, foi realizado um novo estudo, envolvendo 70 chalconas como potenciais agentes leishmanicidas, e dentre os compostos avaliados, 35 apresentaram atividade biológica significativa, com valores de IC<sub>50</sub> entre 1,31 a 32,54  $\mu$ M, onde 8 compostos apresentaram elevado índice de seletividade. A presença de grupos doadores de elétrons (como metoxilas e hidroxilas) no anel A, e grupos retiradores de elétron (como halogênios e grupamento nitro) no anel B, favoreceram a atividade leishmanicida das chalconas (NUNES, 2011).

### **3 OBJETIVOS**

### 3.1 Objetivo geral

Este trabalho tem como objetivo geral a síntese e caracterização de duas séries de chalconas, uma derivada da 6-acetil-2H-1,4-benzoxazin-3(4H)-ona e outra derivada do composto previamente patenteado CH8 (contendo o grupamento nitro na posição 3 do anel A), através de condensação aldólica, para posterior avaliação da atividade biológica dos compostos sintetizados.

## 3.2 Objetivos específicos

• Obtenção e purificação de nitrochalconas derivadas da CH8, com a presença do grupamento nitro na posição 3 do anel A ou anel B.

• Obtenção e purificação de chalconas derivadas da 6-acetil-2H-1,4-benzoxazin-3(4H)-ona.

 $\bullet$  Caracterização química dos compostos obtidos por leitura do ponto de fusão, RMN de  $^{13}$ C e  $^1$ H.

• Análise da atividade inibitória das proteínas tirosina fosfatase PtpA e PtpB de *Mycobacterium tuberculosis* pelas duas séries de compostos sintetizados.

• Determinação da  $IC_{50}$  dos compostos mais ativos nas proteínas tirosina fosfatase PtpA e PtpB de *Mycobacterium tuberculosis*.

• Análise da atividade das nitrochalconas (derivados da CH8) frente a formas amastigotas de *Leishmania amazonensis* e promastigotas de *L. braziliensis*.

• Determinação da IC<sub>50</sub> das nitrochalconas mais ativas em formas amastigotas de *Leishmania amazonensis*.

• Discussão das relações entre a estrutura química e a atividade biológica dos compostos (REA).

### 4. Materiais e Métodos

O progresso das reações, bem como a pureza preliminar dos compostos sintetizados, foram monitorados por cromatografia de camada delgada (CCD), utilizando como comparação os reagentes de partida, em placas de alumínio com sílica gel 60 GF 254 da Merck. Em todos os procedimentos cromatográficos foram utilizados sistemas de gradiente de polaridade de solventes, como Hex/AcOEt (80:20, 75:25 e 50:50). As placas de CCD foram visualizadas com o auxílio de luz ultravioleta ( $\lambda = 254$  e 366 nm), e posteriormente reveladas com pulverização de anisaldeído sulfúrico (0,5 mL anisaldeído, 5 mL ácido sulfúrico concentrado, 10 mL ácido acético glacial e metanol q.s.p. 100 mL).

Os procedimentos de purificação dos compostos obtidos incluíram recristalização com solventes adequados.

O ponto de fusão não corrigido dos compostos foi determinado em aparelho digital de ponto de fusão, MGAPF-301, Microquímica Equipamento Ltda.

As análises químicas necessárias para a caracterização dos compostos foram realizadas na Central de Análises do Departamento de Química da UFSC, sendo os espectros de ressonância magnética nuclear (RMN) de <sup>1</sup>H (200 e 400 MHz) e de <sup>13</sup>C (100 MHz) obtidos em equipamento BRUKER AC-200F ou VARIAN OXFORD AS-400, em clorofórmio deuterado (CDCl<sub>3</sub>), acetona deuterada (acetona-d<sub>6</sub>) ou dimetilsulfóxido deuterado (DMSO-d<sub>6</sub>).

Os reagentes e solventes utilizados neste trabalho apresentam padrão analítico, sendo das marcas comerciais Sigma-Aldrich, Merck e Vetec.

#### 4.1 Síntese das nitrochalconas (série ML)

Foram propostas 16 nitrochalconas (Tabela 2) para a obtenção, através da condensação aldólica entre os respectivos aldeídos e cetonas aromáticas, utilizando 1 mmol de cada reagente, metanol como solvente e hidróxido de potássio  $(50\%_{p/v})$  como catalisador, sob agitação magnética, com tempos reacionais variando de 4 a 24 horas, à temperatura ambiente, conforme descrito por Vogel (1989).

Após o término do período reacional, os compostos foram vertidos em água destilada, e a reação tratada com ácido clorídrico 10% até pH levemente ácido. Os compostos obtidos foram filtrados em funil de Büchner e avaliados por CCD.

As condições reacionais, rendimentos e ponto de fusão dos compostos obtidos, além das estruturas não obtidas, estão relacionados na Tabela 2. As chalconas foram caracterizadas por ponto de fusão, e por ressonância magnética (RMN) de <sup>1</sup>H e de <sup>13</sup>C. A nomenclatura dos compostos obtidos nesta série pode ser vista no anexo 1.

|             | $R_1 \xrightarrow{H} CH_3 +$ |                         | KOH<br>MeOH<br>Ag. Mag.<br>Temp. Ambier | $\mathbf{R}_{1} \stackrel{  }{\underset{  }{ }{\underset{  }{\underset{  }{\underset{  }{\underset{  }{\underset{  }{ }{\underset{  }{\underset{  }{ }{ }{\underset{  }{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }{ }$ | o                | B -         | $\frac{1}{J}$ -R <sub>2</sub> + H <sub>2</sub> O |
|-------------|------------------------------|-------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|--------------------------------------------------|
| Composto    | $\mathbf{R}_1$               | $\mathbf{R}_2$          | MeOH<br>(mL)                            | KOH <sub>50%</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tempo<br>(boras) | Rend. $(%)$ | Pf.                                              |
| ML1         | 2.5-diOCH <sub>2</sub>       | 3-NO2                   | 10                                      | (gotas)<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1101 as)<br>5   | 72          | 102-104                                          |
| ML2         | 2,4-diOCH <sub>3</sub>       | 3-NO <sub>2</sub>       | 10                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                | 87          | 166-167                                          |
| ML3         | 4-OCH <sub>3</sub>           | 3-NO <sub>2</sub>       | 10                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24               | 58          | 178-179                                          |
| ML4         | 3,4-diOCH <sub>3</sub>       | 3-NO <sub>2</sub>       | 13                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24               | 67          | 130-132                                          |
| ML5         | $3,5$ -diOCH $_3$            | 3-NO <sub>2</sub>       | 10                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24               | 94          | 146-148                                          |
| ML6         | $2-OCH_3$                    | 3-NO <sub>2</sub>       | 10                                      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24               | 34          | 102-103                                          |
| ML7         | Н                            | 3-NO <sub>2</sub>       | 10                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12               | 78          | 145-147                                          |
| ML8         | 3,5-diOCH <sub>3</sub> ,4-OH | 3-NO <sub>2</sub>       | 10                                      | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34               | Compos      | sto não obtido.                                  |
| ML9         | 3-OCH <sub>3</sub>           | 3-NO <sub>2</sub>       | 10                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20               | 86          | 160-162                                          |
| ML10        | 3-OCH <sub>3</sub> ,4-OH     | 3-NO <sub>2</sub>       | 10                                      | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36               | Compos      | sto não obtido.                                  |
| ML11*       | 3,4,5-triOCH <sub>3</sub>    | 3-NO <sub>2</sub>       | 10                                      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24               | 95          | 144,2-146,3                                      |
| ML12        | 2-OH                         | 3-NO <sub>2</sub>       | 10                                      | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36               | Compos      | sto não obtido.                                  |
| <b>ML14</b> | 3-NO <sub>2</sub>            | $4-OCH_3$               | 10                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12               | 69          | 156-159                                          |
| ML18        | 3-NO <sub>2</sub>            | $2,5$ -diOCH $_3$       | 10                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24               | 58          | 130-132                                          |
| ML20**      | 3-NO <sub>2</sub>            | 3,4-OCH <sub>2</sub> O- | 10                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                | 35          | 143-145                                          |
| <b>ML24</b> | 3-NO <sub>2</sub>            | $2,6-diOCH_3$           | 15                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24               | 65          | 124-127                                          |

Tabela 2. Condições reacionais e dados dos compostos da série ML.

\*Chalcona sintetizada durante o trabalho de conclusão de curso (CORDEIRO, 2010). \*\*Chalcona sintetizada na tese de Doutorado de Louise D. Chiaradia (CHIARADIA, 2010).

## 4.2 Síntese das chalconas derivadas da 6-acetil-2H-1,4-benzoxazin-3(4H)-ona (série MN)

Foram propostas 16 chalconas derivadas da 6-acetil-2H-1,4benzoxazin-3(4H)-ona, através da condensação aldólica entre 1 mmol da 6-acetil-2H-1,4-benzoxazin-3(4H)-ona e 1 mmol dos respectivos aldeídos, utilizando metanol como solvente e hidróxido de potássio (50%<sub>m/m</sub>) como catalisador, sob agitação magnética, com tempos reacionais variando de 13 a 36 horas, à temperatura ambiente, conforme descrito por Vogel (1989).

Após o término do período reacional, os compostos foram vertidos em água, e a reação tratada com ácido clorídrico 10% até pH levemente ácido. Os compostos obtidos foram filtrados e avaliados por CCD.

As condições reacionais, rendimentos e ponto de fusão dos compostos obtidos, além das estruturas não obtidas, estão relacionados na Tabela 3. As chalconas obtidas foram caracterizadas por ponto de fusão, e por ressonância magnética (RMN) de <sup>1</sup>H. A nomenclatura dos compostos obtidos nesta série pode ser vista no anexo 1.

| O<br>N<br>O | O<br>CH <sub>3</sub> + R <sub>1</sub> -            | H K<br>Ag<br>Temp. | COH O<br>eOH<br>. Mag.<br>Ambiente | H<br>A  | °     | $B$ $R_1 + H_2O$ |
|-------------|----------------------------------------------------|--------------------|------------------------------------|---------|-------|------------------|
| Composto    | R.                                                 | MeOH               | KOH <sub>50%</sub>                 | Tempo   | Rend. | Pf.              |
| Composio    | M                                                  | (mL)               | (gotas)                            | (horas) | (%)   | (°C)             |
| MN1         | 3,4-diCl                                           | 10                 | 10                                 | 14      | 74    | 189-192          |
| MN2         | 4Cl                                                | 10                 | 10                                 | 15      | 55    | 194-196          |
| MN3         | 4-CH <sub>3</sub>                                  | 10                 | 15                                 | 36      | 36    | 185-186          |
| MN4         | 2,6-diCl                                           | 10                 | 10                                 | 16      | 80    | 198-200          |
| MN5         | 4-Br                                               | 10                 | 10                                 | 16      | 62    | 203-204          |
| MN6         | $4-NO_2$                                           | 10                 | 10                                 | 48      | Compo | osto não obtido. |
| MN7         | 4-N(CH <sub>3</sub> ) <sub>2</sub>                 | 10                 | 10                                 | 48      | Compo | osto não obtido. |
| MN8         | 4-F                                                | 10                 | 10                                 | 13      | 37    | 175-176          |
| MN9         | 4-O(CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub> | 10                 | 15                                 | 48      | Compo | osto não obtido. |
| <b>MN10</b> | 3-NO <sub>2</sub>                                  | 10                 | 11                                 | 24      | 88    | 212-213          |
| <b>MN11</b> | 4-OCH <sub>3</sub>                                 | 10                 | 15                                 | 36      | 71    | 234-235          |
| MN12        | Н                                                  | 10                 | 15                                 | 24      | 71    | 198-196          |
| <b>MN14</b> | 3,4,5-triOCH <sub>3</sub>                          | 10                 | 10                                 | 24      | 52    | 252-254          |
| MN17        | 2,4-diCl                                           | 10                 | 12                                 | 24      | 68    | 187-188          |
| <b>MN20</b> | 4-CN                                               | 10                 | 10                                 | 24      | 77    | 170-172          |
| MN22        | $2,5$ -diOCH $_3$                                  | 10                 | 10                                 | 24      | 64    | 158-159          |

Tabela 3. Condições reacionais e dados dos compostos da série MN.

## **4.3** Atividade inibitória e seletividade das chalconas sintetizadas frente às enzimas PtpA e PtpB de *Mycobacterium tuberculosis*

Os experimentos de avaliação da inibição da atividade das enzimas tirosina-fosfatase PtpA e PtpB de *Mycobacterium tuberculosis* pelas chalconas sintetizadas, foram desenvolvidos pela Dra. Louise Domeneghini Chiaradia Delatorre no Centro de Biologia Molecular Estrutural da Universidade Federal de Santa Catarina, sob coordenação do Prof. Dr. Hernán Terenzi. A expressão e purificação das enzimas foram realizadas pela aluna de Doutorado Ângela Camila Orbem Menegatti.

# 4.3.1 PtpA de *M. tuberculosis* WT (wildtype): expressão e purificação

O vetor de expressão pRT28a (QIAGEN), contendo o gene da proteína PtpA de *M. tuberculosis*, foi cedido pelo PhD. Pedro M. Alzari, do Institut Pasteur, Paris. Este vetor foi inserido em *Escherichia coli* BL21(DE3) para produzir proteínas recombinantes com uma cauda de 6 histidinas. As bactérias com o vetor de expressão foram incubadas por 16 horas (*overnight*) em 10 mL de meio Luria-Bertani (LB), contendo 50 µg/mL de canamicina a 37°C.

Para a expressão da proteína, 5 ml de cultura overnight foi transferida para 250 ml de meio LB e incubou-se a 37°C com agitação (140 rpm) até a fase de crescimento exponencial, correspondente a uma densidade ótica de 0,6-0,8 nm. Em seguida, as bactérias foram colocadas a 15°C por 20 min e depois adicionou-se 0,5 mM de isopropil-β-D-tiogalactopiranosideo (IPTG) para a inducão da síntese da proteína. As culturas foram incubadas overnight a 15°C e então recolhidas por centrifugação a 5.000 xg por 30 min; o sedimento foi resuspendido em tampão lysis (20 mM Tris-HCl pH=8.0, 0.5 M NaCl, 10 mM imidazol e 10% glicerol) contendo inibidores de proteases (Amersham Biosciences). As células foram lisadas por sonicação em gelo (Fischer Scientific Model 60 Sonic Dismembrator) e depois centrifugadas a 12.000 xg por 1 hora, a 4°C. As proteínas recombinantes com cauda de histidina na porção N-terminal (His-tag) foram purificadas em condições nativas por cromatografia de afinidade com metal imobilizado (IMAC) (PORATH, 1992). Foram utilizadas colunas His-trap (His Trap HP Kit for purification of histidine tagged proteins,

Amersham Biosciences), carregadas com níquel, conectadas a um sistema ÄKTA (GE Healthcare). A resina foi inicialmente equilibrada com o tampão de lise, e o sobrenadante obtido após a lise e centrifugação dos cultivos foi incubado com a coluna, à temperatura ambiente. Em seguida, a coluna foi lavada com concentrações crescentes de imidazol, desde um tampão sem imidazol até uma concentraçõe final de 500 mM. O imidazol compete quimicamente com a cauda de histidina da proteína recombinante e, ao serem aumentadas as concentrações do imidazol, a proteína é eluída da coluna (MARTINS *et al.*, 2000).

A pureza das frações foi analisada por SDS-PAGE (eletroforese em gel de poliacrilamidadodecil sulfato de sódio) e as frações contendo proteína purificada foram reunidas e dializadas a 4°C, em 4 etapas por 2h em tampão de diálise (tampão D), com concentrações decrescentes de imidazol (150 mM, 75 mM, 35 mM e sem imidazol). O último tampão (tampão D) contêm 20 mM Tris-HCl pH=8,0, 50 mM NaCl, 5 mM EDTA, 20% glicerol e 5 mM DTT (DL-ditiotreitol). As proteínas foram concentradas por ultrafiltração, usando membrana porosa de 10 kDa (Amicon Ultra-15 Millipore) e armazenadas a -80°C.

A concentração da proteína foi determinada por ensaio de Bradford usando, albumina soro bovina como padrão (BRADFORD, 1976).

# **4.3.2** PtpB de *M. tuberculosis* WT (wildtype): expressão e purificação

O vetor de expressão pET28 (QIAGEN), contendo o gene da proteína PtpB de *M.tuberculosis*, foi cedido pelo PhD. Pedro M. Alzari, do Institut Pasteur, Paris. Este vetor foi inserido em *Escherichia coli* BL21(DE3) para produzir proteínas recombinantes com uma cauda de 6 histidinas. As bactérias com o vetor de expressão foram incubadas por 16 horas (*overnight*) em 10 ml de meio Luria-Bertani (LB), contendo 50 g/ml de canamicina a 37°C.

Os procedimentos de expressão, purificação e análise da pureza da proteína recombinante PtpB foram idênticos aos descritos para a PtpA. As frações contendo PtpB recombinante foram associadas, concentradas por centrifugação e armazenadas a -80°C.

#### 4.3.3 Avaliação da atividade residual das enzimas PtpA e PtpB

Os testes de avaliação da inibição enzimática pelas chalconas foram realizados em placas de 96 poços, contendo 5 µl do composto diluído a 1.0 x  $10^{-3}$  M (concentração final de 25  $\mu$ M), 20  $\mu$ l de imidazol 200 mM pH=7,0 (concentração final de 20 mM), água MilliQ q.s.p 198 µl em cada poço, e 2 µl de proteína recombinante diluída. A placa foi mantida por 10 minutos a temperatura ambiente (nos ensaios com a PtpA) ou em estufa a 37°C (nos ensaios com a PtpB), sendo adicionado em seguida 10 µl de p-nitrofenilfosfato [pNPP] 400 mM (concentração final de 40 mM) a cada poco, para início da reação. As enzimas clivam o substrato (pNPP), liberando p-nitrofenol, de cor amarela. A absorbância do p-nitrofenol foi medida em espectrofotômetro UV-VIS para placas de ELISA (TECAN Infinite M200), por 10 minutos a 37°C (a 410 nm com leituras a cada 1 minuto). As proteínas foram usadas nas seguintes concentrações: i) PtpA 115,0 ng/µL e ii) PtpB 93,3 ng/µL, ambas em Tampão D, que contém 20 mM Tris-HCl pH=8,0, 50 mM NaCl, 5 mM EDTA, 20% glicerol e 5 mM DTT).

Controles negativos foram feitos na ausência de enzima ou de compostos, e controles positivos na presença de enzima e DMSO 100% no lugar do composto. O percentual de atividade residual foi calculado pela diferença de Absorbância entre os tempos 7 minutos e 2 minutos, obtido pela média de dois experimentos feitos em triplicata.

#### 4.3.4 Determinação dos valores de IC<sub>50</sub> das chalconas

A inibição dos compostos foi determinada por cálculos de  $IC_{50}$  (concentração necessária para um composto inibir 50% a atividade da enzima original). Os valores de  $IC_{50}$  foram determinados usando concentrações crescentes de inibidor (1, 5, 10, 15, 20, 25, 30, 40, 50, 80 e 100  $\mu$ M) *versus* % de inibição, obtidos pela mesma metodologia do item anterior.

A atividade enzimática foi expressa em valores de percentual de atividade residual comparada ao controle sem inibidor. Os dados experimentais foram analisados com o programa Microsoft Office Excel 7.0 e os valores de  $IC_{50}$  determinados graficamente através da regressão linear de melhor ajuste.

# 4.4 Avaliação da atividade de chalconas contra formas amastigotas de Leishmania amazonensis

Os experimentos para verificação da atividade leishmanicida dos compostos sintetizados foram desenvolvidos pela aluna Doutorado Milene Hoehr de Moraes no Laboratório de Protozoologia, no Departamento de Parasitologia da Universidade Federal de Santa Catarina, sob coordenação do Prof. Dr. Mário Steindel.

#### 4.4.1 Ensaio de citotoxicidade

Células THP-1 foram semeadas em placas de 96 poços  $(4 \times 10^4)$ células/poco) em 180 µL de RPMI completo (suplementado com 10% (v/v) de SBF, 12,5 mM de tampão HEPES (GIBCO, BRL), 100 U/mL penicilina, 100 µg/mL estreptomicina (GIBCO, BRL), 2 mM de Glutamax®, (GIBCO, BRL) 1mM de Piruvato de Sódio (GIBCO, BRL). Em seguida, 20 µL dos compostos diluídos em meio de cultura em concentrações decrescentes de 500 a 15,6 µM foram adicionados sobre as células. Estas foram cultivadas por 72 horas a 37°C e 5% de CO<sub>2</sub>. As placas foram, então, centrifugadas (2.700xg/10 minutos), o sobrenadante foi removido e o sedimento ressuspendido em 50 µL de uma solução de MTT (Sigma-Aldrich, St. Louis) a 3 mg/mL. Na seqüência, as placas foram incubadas a 37°C no escuro durante 4 horas e depois centrifugadas (2.700xg/10 minutos). O sobrenadante foi, então, retirado e o sedimento (sal de formazan) solubilizado em DMSO (100 µL/orifício) por uma hora sob agitação. A densidade óptica foi determinada a 540 nm em equipamento Tecan® modelo Infinite M200. Poços contendo apenas meio de cultura foram utilizados como branco para cada concentração dos compostos ou controles. DMSO 1% (v/v) foi o controle negativo de inibição celular. DMSO 50% foi o controle positivo.

# 4.4.2 Ensaio colorimétrico para triagem de compostos leishmanicidas

Células THP-1 aderentes, diferenciadas em placas de de 96 poços foram infectadas com *L. amazonensis* expressando a enzima  $\beta$ -galactosidase. Após 24 horas de incubação, para permitir a transformação dos promastigotas em amastigotas, as células foram tratadas com 20  $\mu$ L dos compostos diluídos em meio de cultura em diferentes concentrações e as células cultivadas 48 horas a 34°C e 5% de

CO<sub>2</sub>. O sobrenadante foi removido e acrescentado 250  $\mu$ L de PBS contendo CPRG (100  $\mu$ M) e NP-40 0,1% (v/v). A reação foi desenvolvida durante 16 horas a 37°C e lida a 570  $\eta$ m com referência em 630  $\eta$ m em equipamento Tecan® Modelo Infinite M200. Poços contendo células não infectadas foram utilizados como branco para cada concentração de compostos ou controles. DMSO 1% (v/v) foi o controle negativo de inibição de *L. amazonensis*. Anfotericina B 1  $\mu$ M foi o controle positivo.

#### 4.4.3 Indução da diferenciação de células THP-1

Células THP-1 coletadas no 3° ou 4° dia de crescimento foram quantificadas e induzidas à diferenciação em fagócitos aderentes semelhantes a macrófagos conforme descrito por Schwende e col. (1996). Em resumo, em placas de 96 poços, cultivamos 3 x10<sup>4</sup> células/poço em 200  $\mu$ L de meio RPMI completo acrescido de 100  $\mu$ g/mL de Forbol-12-miristato-13-acetato (PMA) por 72 horas a 37°C e 5% de CO<sub>2</sub>.

## 5. RESULTADOS E DISCUSSÃO

#### 5.1 Discussão dos resultados das sínteses

#### 5.1.1 Série ML (nitrochalconas)

As estruturas propostas nesta série (Figura 25) foram baseadas na estrutura da chalcona CH8, previamente patenteada por nosso grupo de pesquisa e na estrutura de outra chalcona publicada por Belo e col. (2011) (Figura 25). Propuseram-se variações no número de metoxilas e na posição das mesmas, bem como a remoção do grupo hidroxila presente na estrutura da CH8. Além disso, para 4 compostos, foi proposta também a mudança do grupamento nitro da posição 3 do anel B para a posição 3 do anel A.



**Figura 25.** Chalconas com atividade anti-leishmania: (a) publicada em Belo e col., 2011. (b) CH8, patentada pelo grupo (Bergmann e col., 2004); (c) e (d) estruturas base da série ML.

Foram realizadas 16 reações na tentativa de obtenção das chalconas propostas, obtendo-se 13 dos compostos previamente planejados. Os resultados podem ser observados na Tabela 4. Das 13 chalconas obtidas, ML24 é inédita, ML18 possui número de registro no CAS (mas não está publicada em nenhum trabalho científico), e 11 estruturas já foram reportadas na literatura (WANG *et al.*, 2009; CAVILL *et al.*, 1954; MEHRA *et al.*, 1956; SINGH *et al.*, 2010; BEGUN *et al.*, 2011; KUMAR *et al.*,2008; BATOVSKA *et al.*, 2007;

FUN et al., 2011; MULCHANDANI et al., 1924; NECKERS et al., 2012).

As 13 chalconas obtidas foram caracterizadas por RMN de <sup>13</sup>C e <sup>1</sup>H, além de leitura do ponto de fusão. Os espectros de RMN <sup>1</sup>H dos compostos inéditos encontram-se no anexo II. As Tabelas 5 a 12 apresentam as atribuições dos sinais dos espectros de RMN para todos os compostos desta série.

As 3 estruturas que não foram obtidas, compostos ML8, ML10 e ML12, apresentam em comum a presença de grupos substituintes hidroxila no anel da acetofenona, o que poderia ser um indício do insucesso, uma vez que nestes compostos poderia ser formado o ânion fenolato que por sua vez pode atacar o benzaldeído. Porém em um trabalho anterior (CORDEIRO, 2010) também não foi obtido sucesso na síntese dos compostos com grupos OH nesta posição, o que reforça que para este padrão de substituição maiores estudos se fazem necessários.

Observando-se as tabelas de caracterização (Tabela 5 a 12), é possível verificar que, de modo geral, os espectros apresentam semelhança em relação aos deslocamentos químicos, com pequenas variações apenas em função dos substituintes e de suas posições.

Optou-se, portanto, por discutir detalhadamente a caracterização química de apenas um composto, o ML7, produto da condensação da acetofenona com o 3-nitrobenzaldeído. Os espectros de RMN de <sup>1</sup>H e de <sup>13</sup>C da chalcona ML7 podem ser observados nas Figuras 26 e 27, respectivamente.

Conforme esperado, o espectro de RMN de <sup>1</sup>H do composto ML7 (Figura 26) apresenta um singleto proveniente do hidrogênio 2 em 8,52 ppm; este deslocamento elevado se deve à vizinhança desta posição ser ocupada por um grupo nitro, o qual desblinda a posição vizinha devido a seu efeito retirador de elétrons. O mesmo efeito pode ser observado no duplo dupleto do hidrogênio 4 em 8,26 ppm, o qual apresentou constantes de acoplamento 8,21 Hz e 1,96 Hz, sendo seu desdobramento ocasionado por um acoplamento a longa distância com o hidrogênio 2 (responsável pela menor constante de acoplamento), e a curta distância com o hidrogênio 5 (responsável pela maior constante de acoplamento). O hidrogênio 5 aparece como um multipleto em 7,63 ppm, e o hidrogênio 6 é observado em 7,93 ppm como um dupleto com constante de acoplamento 7,81 Hz.

Os hidrogênios 2' e 6' do anel A são observados como um dupleto em 8,06 ppm com constante de acoplamento de 7,03 Hz, e os hidrogênios 3' e 5' são observados como um tripleto em 7,55 ppm com constantes de acoplamento de 7,42 e 7,43 Hz. O hidrogênio da posição 4' aparece no mesmo multipleto em 7,63 ppm no qual se observou o sinal do hidrogênio 5 do anel B.

Os hidrogênios  $\alpha \in \beta$  da dupla ligação aparecem como dubletos respectivamente em 7,67 ppm e 7,84 ppm, com constante de acoplamento de 15,63 Hz, caracterizando a configuração *E* da dupla ligação.

No espectro de RMN de <sup>13</sup>C da ML7 (Figura 27), foi possível identificar todos os carbonos da estrutura. O carbono quaternário 1' aparece em 133,95 ppm, os carbonos 2' e 6' em 128,59 ppm, os carbonos 3' e 5' em 128,81 ppm e o carbono 4' em 133,31 ppm. Os carbonos do anel B são encontrados em 136,64 ppm (carbono 1), 124,60 ppm (carbono 2), 151,16 ppm (carbono 3), 124,66 ppm (carbono 4), 130,05 ppm (carbono 5) e 134,33 ppm (carbono 6). O sinal da carbonila, conforme esperado para uma carbonila de cetona conjugada, foi observado em 189,66 ppm, e os carbonos  $\alpha$  e  $\beta$  apresentaram deslocamentos de 122,32 ppm e 141,62 ppm, respectivamente.

Observando os valores de ponto de fusão obtidos experimentalmente para os compostos da série ML, todos apresentaram faixa de variação menor do que 2°C, o que pode servir como indicativo da pureza dos compostos (Tabela 4). Dentre as chalconas que apresentam ponto de fusão reportado na literatura, ML4, ML7 e ML14 apresentam valores distintos aos obtidos experimentalmente, porém, a caracterização pelos espectros de RMN comprova que os compostos são as estruturas propostas. Para os demais compostos, o ponto de fusão experimental foi muito próximo ao valor descrito na literatura. Para os compostos ML6, ML8, ML9 e ML10 não foram encontrados dados de ponto de fusão reportados na literatura.



**Figura 26.** Espectro de RMN <sup>1</sup>H da chalcona ML7. Deslocamento químico em relação ao TMS, solvente utilizado:  $CDCl_3$ . ( ) = J (constante de acomplamento, em Hertz).



|             | o<br>L                      |                           | O<br>∥                 | кон                             |                    | <u>~</u> ~ |              |
|-------------|-----------------------------|---------------------------|------------------------|---------------------------------|--------------------|------------|--------------|
|             | R <sub>1</sub>              | $CH_3 + R_2 \frac{1}{11}$ | H —<br>A<br>Tem        | MeOH<br>Ag. Mag.<br>p. Ambiente | $R_1 \downarrow A$ | B          | $R_2 + H_2O$ |
| Chalc.      | <b>R</b> <sub>1</sub>       | $\mathbf{R}_2$            | PM                     | Rend.                           | Pf. Exp            | Pf. Lit.   | CAS          |
|             |                             |                           | (g.mol <sup>-1</sup> ) | (%)                             | (°C)               | (°C)       |              |
| ML1         | 2,5-di-OCH <sub>3</sub>     | 3-NO <sub>2</sub>         | 313,31                 | 72                              | 102-104            | 104-106    | 130671-90-8  |
| ML2         | $2,4$ -di-OCH $_3$          | 3-NO <sub>2</sub>         | 313,31                 | 87                              | 166-167            | 168-170    | 115043-98-6  |
| ML3         | 4-OCH <sub>3</sub>          | 3-NO <sub>2</sub>         | 283,28                 | 58                              | 178-179            | 182        | 68063-55-8   |
| ML4         | 3,4-di-OCH <sub>3</sub>     | 3-NO <sub>2</sub>         | 313,31                 | 67                              | 130-132            | 126 - 127  | 130671-92-0  |
| ML5         | 3,5-di-OCH <sub>3</sub>     | 3-NO <sub>2</sub>         | 313,31                 | 94                              | 146-148            | 147-148    | 1365644-01-4 |
| ML6         | $2-OCH_3$                   | 3-NO <sub>2</sub>         | 283,28                 | 34                              | 102-103            | N.R.       | 263240-83-1  |
| ML7         | Н                           | 3-NO <sub>2</sub>         | 253,26                 | 78                              | 145-147            | 142-145    | 614-48-2     |
| ML8 3,      | 5-di-OCH <sub>3</sub> ,4-OH | 3-NO <sub>2</sub>         | 32,31                  | NO                              |                    |            | Inédita      |
| ML9         | 3-OCH <sub>3</sub>          | 3-NO <sub>2</sub>         | 283,28                 | 86                              | 160-162            | N.R.       | 59826-48-1   |
| <b>ML10</b> | 3-OCH <sub>3</sub> -4-OH    | 3-NO <sub>2</sub>         | 299,28                 | NO                              |                    | N.R.       | 1287403-14-8 |
| ML11*       | 3,4,5-tri-OCH <sub>3</sub>  | 3-NO <sub>2</sub>         | 343,33                 | 95                              | 144-146            | 147-148    | 127034-16-6  |
| ML12        | 2-OH                        | 3-NO <sub>2</sub>         | 269,26                 | NO                              |                    | 164        | 111425-75-3  |
| <b>ML14</b> | 3-NO <sub>2</sub>           | $4-OCH_3$                 | 283,28                 | 69                              | 156-159            | 167-169    | 73911-01-0   |
| ML18        | 3-NO <sub>2</sub>           | 2,5-di-OCH <sub>3</sub>   | 313,31                 | 58                              | 130-132            | N.R.       | 351339-40-7  |
| ML20**      | 3-NO <sub>2</sub>           | 3,4-OCH <sub>2</sub> O    | 297,27                 | 35                              | 143-145            | 144-146    | 215778-54-4  |
| <b>ML24</b> | 3-NO <sub>2</sub>           | $2,6$ -di-OCH $_3$        | 313,31                 | 65                              | 124-127            |            | Inédita      |

Tabela 4. Informações sobre os compostos da série ML.

\*Chalcona sintetizada durante o trabalho de conclusão de curso (CORDEIRO, 2011). \*\*Chalcona sintetizada na tese de Doutorado de Louise D. Chiaradia (CHIARADIA, 2010). NO = composto não obtido. N.R.= não registrado.

|                            | $\begin{array}{c} 0 & 0 \\ 2 & 1 \\ 3' \\ 4' \\ 5' \\ 0 \end{array} \xrightarrow{\beta} 6' \\ 5' \\ 0 \end{array} \xrightarrow{\beta} 1^2 \\ 4' \\ 5' \\ 6' \\ 5' \\ 6' \\ 5' \\ 6' \\ 5' \\ 6' \\ 5' \\ 6' \\ 5' \\ 6' \\ 5' \\ 6' \\ 5' \\ 6' \\ 5' \\ 6' \\ 5' \\ 6' \\ 5' \\ 6' \\ 5' \\ 6' \\ 5' \\ 6' \\ 5' \\ 6' \\ 5' \\ 6' \\ 5' \\ 6' \\ 6$ | $\begin{array}{c} O & O \\ 3' & \beta \\ 0' & 6' \\ 0' & 4' \\ 5' & 6' \\ 0' & 6 \\ 5 \end{array} \begin{array}{c} \beta \\ 1 \\ 2 \\ 3' \\ 0 \\ 4' \\ 5' \\ 6' \\ 5 \end{array} \begin{array}{c} \beta \\ 1 \\ 2 \\ 3 \\ 0 \\ 4 \\ 5 \\ 5 \end{array} \begin{array}{c} NO_2 \\ 0 \\ 5 \\ 4 \\ 5 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 6$ | $\begin{array}{c} 3' \\ 4' \\ 0 \\ 5' \\ 5' \\ 6' \\ 6' \\ 6 \\ 5 \\ 6' \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 6$ |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <sup>1</sup> H             | ML1                                                                                                                                                                                                                                                                                                                                                   | ML2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ML3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2                          | 8,45 s                                                                                                                                                                                                                                                                                                                                                | 8,45 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8,51 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3                          |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                          | 8,23 dd (8,20/1,17)                                                                                                                                                                                                                                                                                                                                   | 8,21 dd (8,20/1,18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8,25 dd (8,20/1,95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5                          | 7,59 t (8,20/7,82)                                                                                                                                                                                                                                                                                                                                    | 7,58 t (7,80/8,20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7,61 t (7,82/8,20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6                          | 7,89 d (7,82)                                                                                                                                                                                                                                                                                                                                         | 7,87 d (7,80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,92 d (7,82)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| α                          | 7,58 d (16,02)                                                                                                                                                                                                                                                                                                                                        | 7,65 d (16,02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7,67 d (15,63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| β                          | 7,69 d (16,02)                                                                                                                                                                                                                                                                                                                                        | 7,70 d (16,02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7,82 d (15,63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2'                         |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8,07 d (8,60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3'                         | 6,97 (d)(8,99)                                                                                                                                                                                                                                                                                                                                        | 6,52 d (2,34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,01 d (8,60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4'                         | 7,07 dd (8,99/3,13)                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5'                         |                                                                                                                                                                                                                                                                                                                                                       | 6,58 dd (8,60/3,24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7,01 d (8,60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6'                         | 7,24 d (3,13)                                                                                                                                                                                                                                                                                                                                         | 7,81 d (8,60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8,07 d (8,60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| o-OCH <sub>3</sub>         | 3,82 s                                                                                                                                                                                                                                                                                                                                                | 3,89 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <i>m</i> -OCH <sub>3</sub> | 3,90 s                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <i>p</i> -OCH <sub>3</sub> |                                                                                                                                                                                                                                                                                                                                                       | 3,94 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,91 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

**Tabela 5.** Caracterização por RMN <sup>1</sup>H dos compostos ML1, ML2 e ML3.

 $\delta$  ppm em relação ao TMS, *Multiplicidade* (J em Hz). Solvente CDCl<sub>3</sub>

|                    | $\begin{array}{c} 0 & 0 \\ 2^{2} & 1^{1} \\ 3^{4} & 5^{6} \\ 5 & 6 \\ 0 \end{array} \xrightarrow{\beta} \begin{array}{c} \beta \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} \xrightarrow{\beta} \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 5$ | $\begin{array}{c} O & O \\ 3' & \beta \\ O & \alpha \\ O & 4' \\ 5' \\ O' & 6' \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $ | $3' \xrightarrow{2' \downarrow'} 6' \xrightarrow{\beta} 1 \xrightarrow{2} 3 \operatorname{NO}_{2}$ |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| <sup>13</sup> C    | ML1                                                                                                                                                                                                                                                                                                        | ML2                                                                                                                              | ML3                                                                                                |
| 1                  | 137,05                                                                                                                                                                                                                                                                                                     | 137,37                                                                                                                           | 136,85                                                                                             |
| 2                  | 124,32                                                                                                                                                                                                                                                                                                     | 124,04                                                                                                                           | 124,45                                                                                             |
| 3                  | 152,92                                                                                                                                                                                                                                                                                                     | 164.73                                                                                                                           | 140,79                                                                                             |
| 4                  | 129,45                                                                                                                                                                                                                                                                                                     | 129,86                                                                                                                           | 124,48                                                                                             |
| 5                  | 129,90                                                                                                                                                                                                                                                                                                     | 129,86                                                                                                                           | 129,99                                                                                             |
| 6                  | 134,11                                                                                                                                                                                                                                                                                                     | 134,11                                                                                                                           | 134,33                                                                                             |
| α                  | 122,43                                                                                                                                                                                                                                                                                                     | 122,21                                                                                                                           | 122,18                                                                                             |
| β                  | 139,45                                                                                                                                                                                                                                                                                                     | 138,45                                                                                                                           | 140,79                                                                                             |
| C=O                | 191,30                                                                                                                                                                                                                                                                                                     | 189,33                                                                                                                           | 187,77                                                                                             |
| 1'                 | 128,81                                                                                                                                                                                                                                                                                                     | 121,49                                                                                                                           | 130,49                                                                                             |
| 2'                 | 152,92                                                                                                                                                                                                                                                                                                     | 160,71                                                                                                                           | 130,97                                                                                             |
| 3'                 | 114,42                                                                                                                                                                                                                                                                                                     | 98,54                                                                                                                            | 114,01                                                                                             |
| 4'                 | 120,07                                                                                                                                                                                                                                                                                                     | 164,73                                                                                                                           | 163,81                                                                                             |
| 5'                 | 153,67                                                                                                                                                                                                                                                                                                     | 105,51                                                                                                                           | 114,01                                                                                             |
| 6'                 | 113,35                                                                                                                                                                                                                                                                                                     | 133,18                                                                                                                           | 130,97                                                                                             |
| o-OCH <sub>3</sub> | 56,45                                                                                                                                                                                                                                                                                                      | 55,60                                                                                                                            |                                                                                                    |
| m-OCH <sub>3</sub> | 55,86                                                                                                                                                                                                                                                                                                      |                                                                                                                                  |                                                                                                    |
| p-OCH <sub>3</sub> |                                                                                                                                                                                                                                                                                                            | 55,82                                                                                                                            | 55,56                                                                                              |

**Tabela 6.** Caracterização por RMN <sup>13</sup>C dos compostos ML1, ML2 e ML3.

 $\delta$  ppm em relação ao TMS, Solvente CDCl<sub>3</sub>

|                            | $\begin{array}{c} 0 3^{i} 2^{i'} 1^{i'} \\ 0 4^{i'} 5^{i'} 6^{i'} \\ 0 4^{i'} 5^{i'} 6^{i'} \\ 0 4^{i'} 5^{i'} \end{array} \xrightarrow{\beta}{} \begin{array}{c} 2 3 \text{ NO}_{2} \\ 1 2 3 \text{ NO}_{2} \\ 0 4 5 \\ 5 \end{array}$ | $\begin{array}{c} 0 \xrightarrow{3'} \xrightarrow{2'} \\ 4' \\ 5' \\ 0 \\ 0 \\ \end{array} \xrightarrow{\beta} \xrightarrow{\alpha} \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 5 \\ 6' \\ 6'$ | $\begin{array}{c} 0 & 0 \\ 3' & 2' \\ 4' & 6' \\ 5' & 6' \\ 5' & 6 \\ 5 \end{array} \xrightarrow{\beta \ 1 \ 2 \ 3 \ NO_2} \\ \beta \ 1 \\ 4' \\ 5' \\ 6' \\ 5 \end{array}$ |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $^{1}\mathrm{H}$           | ML4                                                                                                                                                                                                                                     | ML5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ML6                                                                                                                                                                         |
| 2                          | 8,51 s                                                                                                                                                                                                                                  | 8,71 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8,44 s                                                                                                                                                                      |
| 3                          |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                             |
| 4                          | 8,24 dd (8,21/1,95)                                                                                                                                                                                                                     | 8,31 d (8,20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8,23 dd (8,21/2,34)                                                                                                                                                         |
| 5                          | 7,61 t (8,21/7,42)                                                                                                                                                                                                                      | 7,78 t (8,21/7,82)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,59 t (8,21/7,81)                                                                                                                                                          |
| 6                          | 7,92 d (7,42)                                                                                                                                                                                                                           | 8,31 d (8,20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,88 d (7,81)                                                                                                                                                               |
| α                          | 7,68 d (15,63)                                                                                                                                                                                                                          | 7,90 d (15,63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7,53 d (15,63)                                                                                                                                                              |
| β                          | 7,82 d (15,63)                                                                                                                                                                                                                          | 8,10 d (15,63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7,67 d (15,63)                                                                                                                                                              |
| 2'                         | 7,64 s                                                                                                                                                                                                                                  | 7,31 d (1,95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                             |
| 3'                         |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7,03 d (8,60)                                                                                                                                                               |
| 4'                         |                                                                                                                                                                                                                                         | 6,78 t (2,35/1,95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,52 m                                                                                                                                                                      |
| 5'                         | 6,96 d (8,60)                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7,07 t (7,43/7,81)                                                                                                                                                          |
| 6'                         | 7,73 dd (8,60/1,95)                                                                                                                                                                                                                     | 7,31 d (1,95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,68 m                                                                                                                                                                      |
| o-OCH <sub>3</sub>         |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3,94 s                                                                                                                                                                      |
| <i>m</i> -OCH <sub>3</sub> | 3,98 s                                                                                                                                                                                                                                  | 3,88 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                             |
| <i>p</i> -OCH <sub>3</sub> | 3,99 s                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                             |

Tabela 7. Caracterização por RMN <sup>1</sup>H dos compostos ML4, ML5 e ML6.

 $\delta$  ppm em relação ao TMS, *Multiplicidade* (J em Hz). Solvente CDCl<sub>3</sub>

|                    | $\begin{array}{c} 0.3' \stackrel{2'}{_{5'}} \stackrel{0}{_{6'}} \stackrel{\beta}{_{6'}} \stackrel{2}{_{6'}} \stackrel{3}{_{6'}} \stackrel{3}{_{6'}} \stackrel{3}{_{6'}} \stackrel{3}{_{6'}} \stackrel{3}{_{6'}} \stackrel{1}{_{6'}} \stackrel{3}{_{6'}} \stackrel{3}{_{6'}} \stackrel{1}{_{6'}} \stackrel{3}{_{6'}} \stackrel{3}{_{6'}} \stackrel{1}{_{6'}} \stackrel{1}{_{6'}} \stackrel{3}{_{6'}} \stackrel{1}{_{6'}} \stackrel{3}{_{6'}} \stackrel{1}{_{6'}} \stackrel{3}{_{6'}} \stackrel{1}{_{6'}} \stackrel{3}{_{6'}} \stackrel{1}{_{6'}} \stackrel{3}{_{6'}} \stackrel{1}{_{6'}} \stackrel{1}{_{6'}} \stackrel{3}{_{6'}} \stackrel{1}{_{6'}} \stackrel{1}{_{6'}} \stackrel{3}{_{6'}} \stackrel{1}{_{6'}} \stackrel{1}{_{6'}} \stackrel{3}{_{6'}} \stackrel{1}{_{6'}} \stackrel{1}{$ | $\begin{array}{c} 0 \xrightarrow{3'} 2' \xrightarrow{0} \beta \\ 0 \xrightarrow{3'} 2' \xrightarrow{1'} \alpha \\ 0 \xrightarrow{4} 5' 6' \\ 0 \xrightarrow{6} 5 \end{array} \xrightarrow{\beta} 4 $ | $\begin{array}{c} 0 & 0 \\ 3' & 2' \\ 4' & 5' \\ 5' & 6' \\ 5' & 6' \\ 5' \\ \end{array} \xrightarrow{\beta}{1 \atop \alpha} \begin{array}{c} 2 \\ 3 \\ 6 \\ 5 \\ 4 \end{array} \xrightarrow{\beta}{1 \atop 2} \begin{array}{c} 3 \\ 3 \\ 0 \\ 5 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$ |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13C                | ML4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ML5                                                                                                                                                                                                  | ML6                                                                                                                                                                                                                                                                                            |
| 1                  | 136,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                   | 137,04                                                                                                                                                                                                                                                                                         |
| 2                  | 124,21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                   | 124,31                                                                                                                                                                                                                                                                                         |
| 3                  | 149,39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                   | 150,53                                                                                                                                                                                                                                                                                         |
| 4                  | 124,43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                   | 129,57                                                                                                                                                                                                                                                                                         |
| 5                  | 129,97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                   | 129,91                                                                                                                                                                                                                                                                                         |
| 6                  | 134,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                   | 34,13                                                                                                                                                                                                                                                                                          |
| α                  | 122,18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                   | 122,39                                                                                                                                                                                                                                                                                         |
| β                  | 140,77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                   | 139,43                                                                                                                                                                                                                                                                                         |
| C=O                | 187,62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                   | 187,76                                                                                                                                                                                                                                                                                         |
| 1'                 | 130,71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                   | 130,64                                                                                                                                                                                                                                                                                         |
| 2'                 | 109,99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                   | 158,40                                                                                                                                                                                                                                                                                         |
| 3'                 | 153,69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                   | 111,68                                                                                                                                                                                                                                                                                         |
| 4'                 | 162,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                   | 133,61                                                                                                                                                                                                                                                                                         |
| 5'                 | 110,64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                   | 120,92                                                                                                                                                                                                                                                                                         |
| 6'                 | 123,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                   | 124,31                                                                                                                                                                                                                                                                                         |
| o-OCH <sub>3</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                   | 55,82                                                                                                                                                                                                                                                                                          |
| m-OCH <sub>3</sub> | 56,07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |
| p-OCH <sub>3</sub> | 56,14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |

**Tabela 8.** Caracterização por RMN <sup>13</sup>C dos compostos ML4, ML5 e ML6.

δ ppm em relação ao TMS, Solvente CDCl<sub>3</sub> ND = Espectro não obtido.

|                            | $\begin{array}{c} 0 3' 2' 1' \\ 4' 5' 6' \\ 5' \\ 5' \\ 6' \\ 5 \end{array} \xrightarrow{\beta}{12}{3} NO_2$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c} O_2 N \underbrace{3' \begin{array}{c} 2' \\ 4' \\ 5' \end{array}}^{O_2 N} \underbrace{3' \begin{array}{c} 2' \\ 0 \\ 6' \end{array}}^{O_2 N} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \\ \beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \begin{array}{c} 2 \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta \end{array}}_{A' \begin{array}{c} 5' \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta }_{A' \begin{array}{c} 5' \end{array}}_{A' \begin{array}{c} 5' \end{array}}_{A' \begin{array}{c} 5' \end{array}}_{A' \begin{array}{c} 5' \end{array}}^{O} \underbrace{\beta }_{A' \begin{array}{c} 5' \end{array}}_{A' \end{array}}_{A' \begin{array}{c} 5' \end{array}}_{A' \begin{array}{c} 5' \end{array}}_{A' \end{array}}_{A' \end{array}}_{A' \begin{array}{c} 5' \end{array}}_{A' \end{array}}_{A' \end{array}}_{A' \end{array}}_{A' \begin{array}{c} 5' \end{array}}_{A' \end{array}}_{A' \end{array}}_{A' \end{array}}_{A' \begin{array}{c} 5' \end{array}}_{A' }$ |
|----------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $^{1}$ H                   | ML9                                                                                                          | ML11                                                  | ML14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2                          | 8,51 s                                                                                                       | 8,53 <i>s</i>                                         | 7,65 d (8,60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3                          |                                                                                                              | -                                                     | 6,97 d (8,99)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4                          | 8,26 dd (7,82/2,35)                                                                                          | 8,27 <i>d</i> (6)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5                          | 7,62 t (7,82)                                                                                                | 7,63 m                                                | 6,97 d (8,99)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6                          | 7,93 d ( 7,82 )                                                                                              | 7,93 <i>d</i> (8)                                     | 7,65 d (8,60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Α                          | 7,64 d (15,63)                                                                                               | 7,60 <i>d</i> (16)                                    | 7,42 d (15,63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| В                          | 7,84 d (15,63)                                                                                               | 7,81 <i>d</i> (16)                                    | 7,87 d (15,63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2'                         | 7,56 s                                                                                                       | 7,30 s                                                | 8,83 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3'                         |                                                                                                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4'                         | 7,17 dd (8,20/2,73)                                                                                          |                                                       | 8,43 dd (8,21/2,35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5'                         | 7,45 t (8,20/7,81)                                                                                           |                                                       | 7,71 t (8,21/7,82)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6'                         | 7,62 t (7,81)                                                                                                | 7,30 s                                                | 8,35 d (7,82)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <i>m</i> -OCH <sub>3</sub> | 3,90 s                                                                                                       | 3,98 s                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <i>p</i> -OCH <sub>3</sub> |                                                                                                              | 3,96 s                                                | 3,88 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

**Tabela 9.** Caracterização por RMN <sup>1</sup>H dos compostos ML9, ML11 e ML14.

δ ppm em relação ao TMS, *Multiplicidade* (J em Hz). Solvente CDCl<sub>3</sub>.

|                            | $\begin{array}{c} 0 3' 2' 1' \\ 4' \\ 5' \end{array} \xrightarrow{0}{\beta} 1 2 3 \text{ NO}_2 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 6$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c} O_2 N 3' 2' 1' & \beta 1 2 3 \\ \downarrow & \downarrow & \alpha \\ 4' 5' & 6' & 6 \\ \downarrow & 5 \\ \end{array}$ |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| <sup>13</sup> C            | ML9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ML11                                                  | ML14                                                                                                                                   |
| 1                          | 136,62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 136,66                                                | 127,05                                                                                                                                 |
| 2                          | 124,60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 124,24                                                | 130,66                                                                                                                                 |
| 3                          | 141,65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 148,72                                                | 114,56                                                                                                                                 |
| 4                          | 124,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 124,66                                                | 162,22                                                                                                                                 |
| 5                          | 129,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 134,41                                                | 130,66                                                                                                                                 |
| 6                          | 134,30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 132,84                                                | 114,56                                                                                                                                 |
| Α                          | 122,38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 122,32                                                | 123,17                                                                                                                                 |
| В                          | 141,65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 141,62                                                | 146,63                                                                                                                                 |
| C=O                        | 189,39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 188,29                                                | 187,93                                                                                                                                 |
| 1'                         | 138,92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 130,03                                                | 139,82                                                                                                                                 |
| 2'                         | 112,88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 106,24                                                | 118,20                                                                                                                                 |
| 3'                         | 160,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 153,26                                                | 146,63                                                                                                                                 |
| 4'                         | 121,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 143,00                                                | 126,84                                                                                                                                 |
| 5'                         | 119,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 153,26                                                | 129,83                                                                                                                                 |
| 6'                         | 130,04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 106,24                                                | 134,05                                                                                                                                 |
| <i>m</i> -OCH <sub>3</sub> | 55,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 56,46                                                 |                                                                                                                                        |
| <i>p</i> -OCH <sub>3</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61,06                                                 | 55,47                                                                                                                                  |

**Tabela 10.** Caracterização por RMN <sup>13</sup>C dos compostos ML9, ML11 e ML14.

 $\delta$  ppm em relação ao TMS. Solvente CDCl<sub>3</sub>.

**Tabela 11.** Caracterização por RMN <sup>1</sup>H dos compostos ML18, ML20 e ML24.

|                                     | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c} O_2 N \xrightarrow{2'} 1' \xrightarrow{\beta} 1^2 \xrightarrow{3} O \\ 4' \xrightarrow{5'} 6' \xrightarrow{\alpha} 6 \xrightarrow{\beta} 4 \xrightarrow{2} 0 \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |
|-------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| $^{1}\mathrm{H}$                    | ML18                                                  | ML20                                                                                                                                                                                        | ML24                                                  |
| 2                                   |                                                       | 7,20 s                                                                                                                                                                                      |                                                       |
| 3                                   | 6,89 d (8,99)                                         |                                                                                                                                                                                             | 6,76 d (8,60)                                         |
| 4                                   | 6,98 dd (8,99/2,74)                                   |                                                                                                                                                                                             | 7,41 t (8,60)                                         |
| 5                                   |                                                       | 6,87 d (7,81)                                                                                                                                                                               | 6,76 d (8,60)                                         |
| 6                                   | 7,17 d (2,74)                                         | 7,17 dd (7,81/1,95)                                                                                                                                                                         |                                                       |
| α                                   | 7,59 d (16,02)                                        | 7,37 d (15,63)                                                                                                                                                                              | 8,12 d (15,63)                                        |
| β                                   | 8,13 d (16,02)                                        | 7,82 d (15,63)                                                                                                                                                                              | 8,34 d (15,63)                                        |
| 2'                                  | 8,82 s                                                | 8,82 s                                                                                                                                                                                      | 8,78 s                                                |
| 3'                                  |                                                       |                                                                                                                                                                                             |                                                       |
| 4'                                  | 8,42 dd (8,21/2,34)                                   | 8,44 dd (8,20/1,96)                                                                                                                                                                         | 8,47 m                                                |
| 5'                                  | 7,71 t (7,82/8,21)                                    | 7,71 t (7,82/8,20)                                                                                                                                                                          | 7,87 t (7,42/7,43)                                    |
| 6'                                  | 8,33 d (7,82 )                                        | 8,34 d (7,82)                                                                                                                                                                               | 8,47 m                                                |
| o-OCH <sub>3</sub>                  | 3,89 s                                                |                                                                                                                                                                                             | 3,98 s                                                |
| <i>m</i> -OCH <sub>3</sub>          | 3,83 s                                                |                                                                                                                                                                                             |                                                       |
| <i>O-CH</i> <sub>2</sub> - <i>O</i> |                                                       | 6,06 s                                                                                                                                                                                      |                                                       |

 $\delta$  ppm em relação ao TMS, *Multiplicidade* (J em Hz). Solvente CDCl<sub>3</sub>.

| 1 aby                      | <b>Tabela 12.</b> Caracterização por Kivitv – C dos compostos WE16, WE26 C WE24.                                                                            |                                                                                                                               |                                                                                                                                                                                                                                                                                                    |  |  |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                            | $O_2N \xrightarrow{2'} 1' \xrightarrow{\alpha} 6' \xrightarrow{\beta} 1^2 \xrightarrow{3} 4' \xrightarrow{5'} 6' \xrightarrow{\alpha} 6 \xrightarrow{5'} 4$ | $\begin{array}{c} O \\ O_2 N \\ 3' \\ 4' \\ 5' \end{array} \xrightarrow{\beta} 6' \\ 6' \\ 6' \\ 6' \\ 6' \\ 6' \\ 6' \\ 6' $ | $\begin{array}{c} O_2 N \underbrace{\begin{array}{c} 2' \\ 3' \\ 4' \\ 5' \end{array}} \underbrace{\begin{array}{c} 0 \\ \alpha \\ \beta \\ 0 \\ \beta \end{array}} \underbrace{\begin{array}{c} \beta \\ 1 \\ \beta \\ 0 \\ \beta \\ \beta$ |  |  |
| <sup>13</sup> C            | ML18                                                                                                                                                        | ML20                                                                                                                          | ML24                                                                                                                                                                                                                                                                                               |  |  |
| 1                          | 123,81                                                                                                                                                      | 128,78                                                                                                                        | 123,52                                                                                                                                                                                                                                                                                             |  |  |
| 2                          | 153,49                                                                                                                                                      | 106,74                                                                                                                        | 161,57                                                                                                                                                                                                                                                                                             |  |  |
| 3                          | 121,69                                                                                                                                                      | 150,52                                                                                                                        | 104,83                                                                                                                                                                                                                                                                                             |  |  |
| 4                          | 114,01                                                                                                                                                      | 148,54                                                                                                                        | 133,47                                                                                                                                                                                                                                                                                             |  |  |
| 5                          | 153,57                                                                                                                                                      | 108,78                                                                                                                        | 104,83                                                                                                                                                                                                                                                                                             |  |  |
| 6                          | 112,47                                                                                                                                                      | 118,53                                                                                                                        | 161,57                                                                                                                                                                                                                                                                                             |  |  |
| α                          | 123,30                                                                                                                                                      | 125,95                                                                                                                        | 123,52                                                                                                                                                                                                                                                                                             |  |  |
| β                          | 142,11                                                                                                                                                      | 146,59                                                                                                                        | 137,49                                                                                                                                                                                                                                                                                             |  |  |
| C=O                        | 188,59                                                                                                                                                      | 187,78                                                                                                                        | 187,83                                                                                                                                                                                                                                                                                             |  |  |
| 1'                         | 139,74                                                                                                                                                      | 139,69                                                                                                                        | 137,49                                                                                                                                                                                                                                                                                             |  |  |
| 2'                         | 118,01                                                                                                                                                      | 123,71                                                                                                                        | 123,88                                                                                                                                                                                                                                                                                             |  |  |
| 3'                         | 142,11                                                                                                                                                      | 146,59                                                                                                                        | 153,54                                                                                                                                                                                                                                                                                             |  |  |
| 4'                         | 126,82                                                                                                                                                      | 126,91                                                                                                                        | 127,45                                                                                                                                                                                                                                                                                             |  |  |
| 5'                         | 129,79                                                                                                                                                      | 129,85                                                                                                                        | 131,2                                                                                                                                                                                                                                                                                              |  |  |
| 6'                         | 134,13                                                                                                                                                      | 134,02                                                                                                                        | 134,88                                                                                                                                                                                                                                                                                             |  |  |
| o-OCH <sub>3</sub>         | 56,09                                                                                                                                                       |                                                                                                                               | 56,43                                                                                                                                                                                                                                                                                              |  |  |
| <i>m</i> -OCH <sub>3</sub> | 55,86                                                                                                                                                       |                                                                                                                               |                                                                                                                                                                                                                                                                                                    |  |  |
| CH <sub>2</sub>            |                                                                                                                                                             | 101,82                                                                                                                        |                                                                                                                                                                                                                                                                                                    |  |  |

Tabela 12. Caracterização por RMN <sup>13</sup>C dos compostos ML18, ML20 e ML24

 $\delta$  ppm em relação ao TMS, Solvente CDCl<sub>3</sub>.

# 5.1.2 Série MN (derivados da 6-acetil-2H-1,4-benzoxazin-3(4H)-ona)

A escolha em sintetizar esta série de chalconas foi visando a ampliação da diversidade estrutural da biblioteca de chalconas atualmente disponível em nosso grupo de pesquisas, através da inserção de um novo anel A heteroaromático fixo. Para os padrões de substituição do anel B, foram utilizados os substituintes indicados no Método Manual de Topliss, além de outros considerados importantes em trabalhos anteriores do grupo. Esta variação de substituintes no anel B das chalconas buscou incluir grupos doadores e retiradores de elétrons, grupos com diferentes polaridades, bem como diferentes posições dos mesmos substituintes, o que poderia facilitar as discussões de relação estrutura-atividade.

Foram realizadas 16 tentativas de reações para obtenção das chalconas propostas desta série, sendo obtidas 13 chalconas. Destas, MN22 é um composto inédito, MN1, MN4, MN5, MN10, MN14, MN17 e MN20 apresentam registro no CAS (mas nenhuma citação em artigos científicos) e MN2, MN3, MN8, MN11 E MN12 foram previamente reportados na literatura (REDDY *et al.*, 2004 (A); REDDY *et al.*, 2004 (B); MICHELLYS *et al.*, 2006; HASUI *et al.*, 2011; FUKUMOTO *et al.*, 2007).

Os resultados experimentais da obtenção dos compostos da série MN estão listados na Tabela 13, na qual é possível observar que para nenhuma das chalconas propostas foram encontrados os valores de ponto de fusão na literatura. Portanto, neste trabalho foi realizada a primeira descrição desta importante propriedade física dos compostos.

Os 13 compostos obtidos foram caracterizados pela leitura de seu ponto de fusão e pelo RMN de <sup>1</sup>H. As tabelas 14 a 17 apresentam a caracterização das chalconas da série MN por RMN de <sup>1</sup>H, e por se tratarem de compostos pouco relatados na literatura, optou-se por inserir todos os espectros de RMN <sup>1</sup>H desta série como anexos deste trabalho (Anexo II). Devido às semelhanças estruturais, os espectros apresentaram deslocamentos químicos semelhantes, e deste modo optou-se pela discussão detalhada da caracterização apenas da chalcona MN12, derivada da condensação do benzaldeído com a 6-acetil-2H-1,4benzoxazin-3(4H)-ona. O espectro de RMN de <sup>1</sup>H do composto MN12 pode ser observado na Figura 28.



**Figura 28.** RMN de <sup>1</sup>H composto MN12. Deslocamento químico em relação ao TMS, solvente utilizado: DMSO-deuterado. () = J (constante de acomplamento, em Hertz).

Durante a caracterização dos compostos derivados da 6-acetil-2H-1,4-benzoxazin-3(4H)-ona, uma dúvida surgiu inicialmente em relação ao singleto observado em 10,88 ppm, pois este deslocamento é característico do hidrogênio de aldeídos. Para sanar a dúvida foi realizado um espectro de RMN <sup>1</sup>H do reagente, no qual foi possível observar que o sinal em 10,88 ppm existia porém existia também um sinal em 11,13 ppm o qual foi atribuído ao hidrogênio do aldeído, pois este sumia após a realização das sínteses, se mantendo apenas o sinal em 10,88 ppm, o singleto atribuído ao hidrogênio ligado ao nitrogênio.

É possível também observar o sinal característico dos dois hidrogênios do grupo CH<sub>2</sub> vizinho à carbonila e ao oxigênio como um singleto em 4,70 ppm. Os hidrogênios  $\alpha$  e  $\beta$  podem ser observados, respectivamente, com deslocamentos de 7,70 e 7,85 ppm, ambos como um dupleto com constante de acoplamento igual a 15,63 Hz, o que sugere tratar-se do isômero *E* desta chalcona. O hidrogênio 2' aparece como um dupleto com deslocamento de 7,61 ppm e constante de acoplamento de 1,96 Hz, referente a seu acoplamento a longa distância com o hidrogênio 6' do mesmo anel, o qual aparece como um duplo dupleto com deslocamento de 7,89 ppm e constantes de acoplamento de 8,60 Hz com o hidrogênio 5' e 1,96 Hz com o hidrogênio 2'.

Pode-se observar que os sinais dos hidrogênios 2, 4 e 6 aparecem sobrepostos como um duplo dupleto em 7,45 ppm, com constantes de acoplamento de 5,47 Hz e 2,45 Hz. O sinal referente aos hidrogênios 3 e 5 aparece em 7,86 ppm como um multipleto.

Devido à baixa solubilidade destes compostos em solventes deuterados, a realização dos espectros de RMN de <sup>13</sup>C foi prejudicada, uma vez que não foi possível solubilizar mais do que 2 miligramas destas chalconas na quantidade de solvente necessária para uma análise. Deste modo, é necessária a realização de análises de RMN de <sup>13</sup>C noturnas, e devido à alta demanda da Central de Análises do Departamento de Química nos últimos meses, estas análises não puderam ser realizadas até o momento.

| Tabela 13. Informações sobre os compostos da série MN. |                                                    |                                  |                                           |              |                    |                  |
|--------------------------------------------------------|----------------------------------------------------|----------------------------------|-------------------------------------------|--------------|--------------------|------------------|
|                                                        | o ti o                                             | $CH_3 + R_1 H$                   | KOH<br>MeOH<br>Ag. Mag.<br>Temp. Ambiente |              | B R <sub>1</sub> + | H <sub>2</sub> O |
| Chalc.                                                 | R <sub>1</sub>                                     | <b>PM</b> (g.mol <sup>-1</sup> ) | <b>Rend.</b> (%)                          | Pf. Exp (°C) | Pf. Lit. (°C)      | CAS              |
| MN1                                                    | 3,4-diC <i>l</i>                                   | 348,18                           | 74                                        | 189-192      | N.R.               | 875421-04-8      |
| MN2                                                    | 4-C <i>l</i>                                       | 313,74                           | 55                                        | 194-196      | N.R.               | 749924-20-7      |
| MN3                                                    | 4-CH <sub>3</sub>                                  | 293,32                           | 35                                        | 185-186      | N.R.               | 750624-48-7      |
| MN4                                                    | 2,6-diCl                                           | 348,18                           | 80                                        | 198-200      | N.R.               | 1014775-98-4     |
| MN5                                                    | 4-Br                                               | 358,19                           | 62                                        | 203-204      | N.R.               | 897290-62-9      |
| MN6                                                    | 4-NO <sub>2</sub>                                  | 324,29                           | NO                                        |              | N.R.               | 941221-08-5      |
| MN7                                                    | 4-N(CH <sub>3</sub> ) <sub>2</sub>                 | 322,36                           | NO                                        |              | N.R.               | 211914-82-7      |
| MN8                                                    | 4-F                                                | 297,28                           | 37                                        | 175-176      | N.R.               | 750624-49-8      |
| MN9                                                    | 4-O(CH <sub>2</sub> ) <sub>3</sub> CH <sub>3</sub> | 351,40                           | NO                                        |              | N.R.               | 879729-59-6      |
| <b>MN10</b>                                            | 3-NO <sub>2</sub>                                  | 324,29                           | 88                                        | 212-213      | N.R.               | 949677-58-1      |
| <b>MN11</b>                                            | 4-OCH <sub>3</sub>                                 | 309,32                           | 71                                        | 234-235      | N.R.               | 749924-18-3      |
| <b>MN12</b>                                            | Н                                                  | 279,29                           | 71                                        | 198-196      | N.R.               | 665021-94-3      |
| <b>MN14</b>                                            | 3,4,5-triOCH <sub>3</sub>                          | 369,37                           | 52                                        | 252-254      | N.R.               | 875421-01-5      |
| MN17                                                   | 2,4-diCl                                           | 348,18                           | 68                                        | 187-188      | N.R.               | 875421-03-7      |
| MN20                                                   | 4-CN                                               | 304,30                           | 77                                        | 170-172      | N.R.               | 949851-98-3      |
| MN22                                                   | $2,5$ -diOCH $_3$                                  | 339,34                           | 64                                        | 158-159      | N.R.               | Inédita          |

NO = composto não obtido. N.R. = não registrado.
|                  | <b>Tabela 14.</b> Caracterização por RMN <sup>*</sup> H dos compostos MN1, MN2 e MN3.                                                     |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                  | $O \xrightarrow{H} 3' 2' 1' \xrightarrow{O} \beta 2 3 Cl$<br>$O \xrightarrow{H} 3' 5' 6' \xrightarrow{\alpha} 6 \xrightarrow{\beta} 4 Cl$ | $0 + \frac{H}{N} \frac{3^{\prime} 2^{\prime} 1^{\prime}}{5^{\prime} 6^{\prime}} + \frac{\beta}{6} \frac{2}{5} \frac{3}{4} Cl$ | $O \xrightarrow{H} 3^{2'} 3^{2'} 3^{1'} \xrightarrow{\alpha} 3^{2'} 3^{1'} \xrightarrow{\alpha} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1'} 3^{1$ |  |  |
| $^{1}\mathbf{H}$ | MN1                                                                                                                                       | MN2                                                                                                                           | MN3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 2                | 7,61 s                                                                                                                                    | 7,93 m                                                                                                                        | 7,77 d (8,21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 3                |                                                                                                                                           | 7,53 d (8,60)                                                                                                                 | 7,09 d (8,21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 4                |                                                                                                                                           |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 5                | 7,73 d (8,20)                                                                                                                             | 7,53 d (8,60)                                                                                                                 | 7,09 d (8,21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 6                | 7,97 d (8,20)                                                                                                                             | 7,93 m                                                                                                                        | 7,77 d (8,21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| α                | 7,68 d (16,00)                                                                                                                            | 7,70 d (15,63)                                                                                                                | 7,69 d (15,63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| β                | 8,00 d (16,00)                                                                                                                            | 7,93 m                                                                                                                        | 7,82 d (15,63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 2'               | 8,28 s                                                                                                                                    | 7,61 s                                                                                                                        | 7,61 d (1,95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 5'               | 7,11 d (8,20)                                                                                                                             | 7,10 d (8,21)                                                                                                                 | 7,29 d (7,82)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 6'               | 7,87 d (8,20)                                                                                                                             | 7,93 m                                                                                                                        | 7,90 dd (8,60 / 1,95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| CH <sub>2</sub>  | 4,72 s                                                                                                                                    | 4,72 s                                                                                                                        | 4,71 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| NH               | 10,91 s                                                                                                                                   | 10,91 s                                                                                                                       | 10,90 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| CH <sub>3</sub>  |                                                                                                                                           |                                                                                                                               | 2,36 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |

D. O. L. ~ 1014 1010

δ ppm em relação ao TMS, *Multiplicidade* (J em Hz). Solvente DMSO-d<sub>6</sub>.

| $0 + \frac{N}{5'} + \frac{3'}{6'} + \frac{1}{Cl} + \frac{2}{5} + \frac{3}{6'} + \frac{3'}{5'} + \frac{2}{6'} + \frac{2}{6'} + \frac{3}{6'} + \frac{2}{6'} + \frac{3}{6'} + \frac{3}$ | $\frac{3}{4}$ F |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| <sup>1</sup> H MN4 MN5 MN8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| <b>2</b> 7,67 d (8,21) 7,96 dd (8,60 / 2,73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )               |
| <b>3</b> 7,61 d (8,21) 7,84 7,31 t (8,60 /8,98)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| <b>4</b> 7,45 t ( 8,21/8,21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| <b>5</b> 7,61 d (8,21) 7,84 7,31 t (8,60 /8,98)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| <b>6</b> 7,67 d (8,21) 7,96 dd (8,60 / 2,73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )               |
| α 7,67 d (16,02) 7,68 d (16,81) 7,72 d (15,64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |
| <b>β</b> 7,75 d (16,02) 7,88 d (16,81) 7,85 d (15,64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
| <b>2'</b> 7,60 s 7,61 d (1,95) 7,61 d (1,96)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| <b>5'</b> 7,72 m 7,11 d ( 8,59) 7,10 d (8,60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| <b>6'</b> 7,10 s (8,20) 7,92 dd ( 8,59/1,59) 7,92 dd (8,60/1,96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )               |
| CH <sub>2</sub> 4,72 s 4,72 s 4,72 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
| NH 10,94 s 10,90 s 10,90 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |

 $\delta$  ppm em relação ao TMS, *Multiplicidade* (J em Hz). Solvente DMSO-d<sub>6</sub>.

| Ta                         | <b>Tabela 16.</b> Caracterização por RMN <sup>1</sup> H dos compostos MN10, MN11 e MN14. |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|----------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                            | 0 + N + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1                                                | $O \xrightarrow{H}_{O'4'} \overset{2'}{5'} \overset{0}{6'} \overset{\beta}{6'} \overset{2}{6'} \overset{3}{6'} \overset{3}{5'} \overset{3}{4'} OCH_3$ | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} H \\ O \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 4 \\ \end{array} \\ \begin{array}{c} 5 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 4 \\ \end{array} \\ \begin{array}{c} 5 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \beta \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \beta \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \beta \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \beta \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \beta \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \beta \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \beta \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \beta \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\$ |  |
| $^{1}\mathrm{H}$           | MN10                                                                                     | MN11                                                                                                                                                  | MN14*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 2                          | 8,76 s                                                                                   | 7,84 d ( 8,60)                                                                                                                                        | 7,21 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 3                          |                                                                                          | 7,02 d (8,60)                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 4                          | 8,32 d (7,80)                                                                            |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 5                          | 7,75 t (8,20/7,80)                                                                       | 7,02 d (8,60)                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 6                          | 8,27 d (8,20)                                                                            | 7,84 d (8,60)                                                                                                                                         | 7,21 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| α                          | 7,82 d (15,63)                                                                           | 7,69 d (15,63)                                                                                                                                        | 7,65 d (15,54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| β                          | 8,10 d (15,63)                                                                           | 7,74 d (15,63)                                                                                                                                        | 7,82 d (15,54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 2'                         | 7,63 d (1,96)                                                                            | 7,60 d (1,95)                                                                                                                                         | 7,60 d (2,05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 5'                         | 7,11 d (8,20)                                                                            | 7,09 d (8,21)                                                                                                                                         | 7,10 d (8,47)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 6'                         | 8,00 dd (8,20/1,96)                                                                      | 7,89 dd (8,21/1,95)                                                                                                                                   | 7,92 dd (8,47/2,05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| $CH_2$                     | 4,72 s                                                                                   | 4,71 s                                                                                                                                                | 4,71 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| NH                         | 10,91 s                                                                                  | 10,89 s                                                                                                                                               | 10,90 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| p-OCH <sub>3</sub>         |                                                                                          | 3,83 s                                                                                                                                                | 3,71 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| <i>m</i> -OCH <sub>3</sub> |                                                                                          |                                                                                                                                                       | 3,86 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |

δ ppm em relação ao TMS, *Multiplicidade* (J em Hz). Solvente DMSO-d<sub>6</sub>. \* RMN 200MHz

|                 | 5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | $O \xrightarrow{H}_{O \xrightarrow{4'} 5'} O \xrightarrow{\beta} O \xrightarrow{Cl}_{12} O \xrightarrow{\beta} O \xrightarrow{12} O 1$ | 0              | $0 + \frac{H}{N} \frac{3'}{5'} \frac{2'}{6'} \frac{0}{6} + \frac{\beta}{6} \frac{0 CH_3}{1/2} \frac{1}{3} \frac{1}{2} \frac{3}{4} \frac{1}{5} \frac{1}{6'} \frac{4}{6} \frac{1}{5} \frac{1}{6} \frac{1}{5} $ |
| <sup>1</sup> H  | MN17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>MN20*</b>   | MN22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,92 d (8,33)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3               | 7,75 d (1,95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8,07 d (8,34)  | 7,05 d (2,34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | 7,05 d (2,34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5               | 8,22 d (8,60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8,07 d (8,34)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6               | 7,55 d/d ( 8,60/1,95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,92 d (8,33)  | 7,51 d (2,34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| α               | 7,97 d (15,60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,73 d (15,79) | 7,85 d (15,63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| β               | 7,92 d (15,60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,95 d (15,79) | 7,98 d (15,63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2'              | 7,61 d (1,95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,61 d (2,05)  | 7,61 d (1,96)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5'              | 7,10 d (8,20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,97 m         | 7,09 d (8,21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6'              | 7,94 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7,97 m         | 7,89 d (8,21/1,96)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CH <sub>2</sub> | 4,72 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4,71 s         | 4,71 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NH              | 10,92 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10,89 s        | 10,90 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| o-OCH₃          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | 3,80 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <i>m</i> -OCH₃  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | 3,85 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

**Tabela 17.** Caracterização por RMN <sup>1</sup>H dos compostos MN17, MN20 e MN22.

δ ppm em relação ao TMS, *Multiplicidade* (J em Hz). Solvente DMSO-d<sub>6</sub>. \* RMN 200MHz

#### 5.2 Discussão dos resultados de atividade biológica

### **5.2.1 - Chalconas como inibidores da PtpA e PtpB de** *Mycobacterium tuberculosis*

Inicialmente, foi realizado um *screening* em triplicada, com uma única concentração dos compostos ( $25\mu$ M) para determinar a atividade residual das proteínas PtpA e PtpB de *Mycobacterium tuberculosis*. As chalconas foram incubadas com as proteínas e tampão por 10 minutos a temperatura ambiente (nos testes realizados com a PtpA) ou 37°C (nos testes realizados com a PtpB). Após este período, adicionou-se o substrato (*p*NPP) e realizaram-se leituras de absorbância a cada 1 minuto, durante 10 minutos, a 37°C.

Os resultados obtidos após a análise dos dados para as duas séries de compostos sintetizados podem ser observados na Tabela 18, na qual estão apresentados os valores da atividade residual (%) para ambas as proteínas tirosina fosfatase, bem como o erro associado aos experimentos.

A análise dos resultados da Tabela 18 permite observar que os melhores inibidores da PtpB foram os compostos MN1 e MN10, derivados da 6-acetil-2H-1,4-benzoxazin-3(4H)-ona, tendo como substituintes do anel B os grupamentos 3,4-diCl<sub>2</sub> a 3-NO<sub>2</sub>, respectivamente. MN1 e MN10 apresentaram inibição da PtpB superior a 50%, considerando-se o desvio padrão.

O composto MN1 também foi um dos melhores inibidores da PtpA, acompanhado por MN5, também derivado da 6-acetil-2H-1,4benzoxazin-3(4H)-ona, com o grupo 4-Br como substituintes do anel B. MN1 e MN5 também apresentaram atividade inibitóriada PtpA de aproximadamente 50%.

A avaliação dos resultados também permite observar que os compostos da série ML não apresentaram atividade como inibidores de ambas as proteínas tirosina fosfatase (PtpA e PtpB).

Os compostos que apresentaram atividade inibitória de ambas as PTPs superior a 50%, foram escolhidos para determinação de sua  $IC_{50}$  (Tabela 19).

|             | 0 th                  |                         | B - R <sub>1</sub>                         |                                             |
|-------------|-----------------------|-------------------------|--------------------------------------------|---------------------------------------------|
| Chalcona    | Substitui             | A finte                 | Atividade<br>residual<br>PtpB<br>% ± erro) | Atividade<br>residual<br>PtpA<br>(% ± erro) |
| MN1         | 3.4-di-0              | Cl 49                   | $.81 \pm 14.11$                            | $40.54 \pm 6.84$                            |
| MN2         | 4-Cl                  | 69                      | $9.59 \pm 3.69$                            | $60.31 \pm 9.75$                            |
| MN3         | 4-CH <sub>3</sub>     | 72                      | $2.94 \pm 1.16$                            | $69.41 \pm 17.67$                           |
| MN4         | 2,6-di-0              | Cl 63                   | $3,36 \pm 4,72$                            | $54,90 \pm 7,46$                            |
| MN5         | 4-Br                  | 72                      | $2,38 \pm 6,89$                            | $48,27 \pm 6,91$                            |
| MN8         | 4-F                   | 76                      | $5,22 \pm 4,90$                            | $69,85 \pm 0,48$                            |
| <b>MN10</b> | 3-NO <sub>2</sub>     | 47                      | ,66 ± 13,75                                | $53,28 \pm 0,18$                            |
| <b>MN11</b> | 4-OCH                 | [3 87                   | $7,27 \pm 1,01$                            | $72,80 \pm 0,37$                            |
| MN12        | Н                     | 75                      | ,63 ± 11,19                                | $71,\!68 \pm 8,\!82$                        |
| MN14        | 3,4,5-tri-O           | CH <sub>3</sub> 69      | $9,92 \pm 9,77$                            | $87,05 \pm 2,74$                            |
| <b>MN17</b> | 2,4-di-0              | Cl 77                   | $7,49 \pm 4,41$                            | $77,\!67 \pm 4,\!62$                        |
| MN20        | 4-CN                  | 63                      | $8,79 \pm 6,03$                            | $70,88 \pm 15,45$                           |
| <b>MN22</b> | 2,5-di-O0             | CH <sub>3</sub> 90      | $0,13 \pm 0,18$                            | $92{,}79\pm0{,}65$                          |
|             |                       |                         |                                            |                                             |
|             | Substi                | tuinte                  | Atividade                                  | Atividade                                   |
| Chalcona    |                       |                         | residual                                   | residual                                    |
|             | $\mathbf{R}_{1}$      | $\mathbf{R}_2$          | PtpB                                       | PtpA                                        |
| NT 1        | 2.5.1. 0.011          | 2 110                   | $(\% \pm erro)$                            | $(\% \pm erro)$                             |
| ML1         | $2,5-\text{di-OCH}_3$ | $3-NO_2$                | >100                                       | >100                                        |
| ML2         | $2,4-01-0CH_3$        | $3-NO_2$                | >100                                       | >100                                        |
| ML3         | $4-0CH_3$             | 3-NO <sub>2</sub>       | >100                                       | >100                                        |
| ML4         | 2.5 di OCU            | $3-NO_2$                | >100                                       | >100                                        |
| ML5         | $3,3-ai-OCH_3$        | 3-NO <sub>2</sub>       | $92,95 \pm 0,10$                           | >100                                        |
| MI 7        | 2-0CH3                | $3 \text{ NO}_2$        | >100                                       | >100                                        |
|             | 3-0CH-                | 3-NO2                   | >100                                       | 2100<br>03 10 ± 13 32                       |
| MI 14       | 3 NO.                 | 4  OCH                  | $03.71 \pm 11.00$                          | >3,19 ± 13,32                               |
| MI 18       | 3-NO <sub>2</sub>     | 2 5-di-OCH              | $93,71 \pm 11,99$<br>88 89 + 10 71         | >100                                        |
| ML24        | 3-NO <sub>2</sub>     | 2,6-di-OCH <sub>3</sub> | $95,30 \pm 1,22$                           | 85,83 ± 17,31                               |

**Tabela 18.** Resultados da atividade das chalconas como inibidores das proteínas PtpA e PtpB de *Mycobacterium tuberculosis*.

| Chalcona | Estrutura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IC <sub>50</sub> (µM)<br>PtpB | IC <sub>50</sub> (µM)<br>PtpA |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|
| MN1      | $0 + \frac{1}{3} + \frac{3}{5} + \frac{1}{6} + \frac{3}{6} + \frac{1}{5} + \frac{3}{5} + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18,44 ± 4,71                  | 28,11 ± 0,33                  |
| MN5      | $O \xrightarrow{H} 3^{-2^{-1}} 1^{-1} \xrightarrow{\alpha} 1^{-2} 3_{-1^{-1}} $ | ND                            | $16,71 \pm 0,29$              |
| MN10     | $0 + \frac{H}{N} \frac{3^{\prime} 2^{\prime} 1^{\prime}}{6^{\prime}} + \frac{0}{6} + \frac{\beta}{5} \frac{2}{4} + \frac{NO_2}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12,04 ± 1,90                  | ND                            |

**Tabela 19.** Valores de  $IC_{50}$  para os compostos que apresentaram inibição das Ptps superior a 50% no ensaio inicial.

ND = Não determinado

A análise da atividade inibitória proporcionada pela série MN pode ser feita baseando-se na Árvore de Decisão de Topliss (Figura 29), uma vez que é possível observar uma tendência na atividade inibitória das chalconas, que vai de acordo com um dos ramos da árvore.

Esta tendência na árvore de Topliss pode ser observada se compararmos a atividade do composto MN12 (sem substituinte) com o composto MN2 (4-Cl). Realizando-se esta comparação é possível observar que o composto MN2 foi mais ativo que MN12, porém, como o erro experimental do composto MN12 foi determinado, seria possível que a atividade do composto MN2 fosse semelhante à atividade do composto MN12.

Para melhorar a compreensão e confirmar a escolha de um dos ramos da Árvore de Decisão, resolveu-se comparar os resultados obtidos pela segunda linha de substituição da mesma. Deste modo, foi realizada uma comparação entre os compostos MN11 (4-metoxi), MN3 (4-metil) e MN1 (3,4-dicloro), sendo possível observar que o composto MN11 foi o de menor atividade. Assim, a escolha entre o ramo central ou o ramo da direita do modelo de Topliss foi auxiliada por esta etapa. É possível observar que o composto MN1 apresentou uma atividade superior ao composto MN3 para ambas proteínas.



**Figura 29.** Árvore de decisão de TOPLISS, para a otimização de substituintes aromáticos: M, é mais ativo; E, é igualmente ativo; L, é menos ativo que o composto anterior da chave. Os grupos entre colchetes ([]) representam substituintes alternativos. As linhas descendentes indicam substituições seqüenciais (Adaptado de Topliss, 1972 e de De Waterbeemd, 1996).

Analisando a atividade inibitória da PtpA, e continuando pelo ramo da direita da Árvore de Decisão de Topliss, podemos comparar a atividade da chalcona MN1 (IC<sub>50</sub> = 28,11 ± 0,33, com o substituinte 3,4diCl<sub>2</sub> no anel B) com a atividade da chalcona MN2 (com um átomo de cloro na posição 4 do anel B), onde pode-se observar um aumento na atividade do composto subsequente da chave, MN1. Dessa forma, seria esperado que o composto do ramo da direita (com substituinte 3-CF<sub>3</sub>,4-Cl) fosse o mais ativo, porém, este composto não foi inicialmente planejado. Seguindo os substituintes do grande ramo da direita da Árvore de Decisão de Topliss, a atividade do composto MN5 (IC<sub>50</sub> =  $16,71 \pm 0,29$ , com um átomo de bromo na posição 4 do anel B) foi superior à atividade do composto MN1.

Analisando a atividade inibitória da PtpB, observa-se o mesmo resultado observado para a PtpA, quando comparamos a atividade dos compostos MN1 (IC<sub>50</sub> = 18,44 ± 4,71, com o substituinte 3,4-diCl<sub>2</sub> no anel B) com a atividade da chalcona MN2 (com um átomo de cloro na posição 4 do anel B), onde MN1 foi mais ativo que MN2. Entretanto, a chalcona mais ativa para a PtpB foi MN10 (IC<sub>50</sub> = 12,04 ± 1,90, com o substituinte 3-NO<sub>2</sub> no anel B), pertencente ao ramo central da Árvore de Decisão de Topliss, e portanto, a determinação da IC<sub>50</sub> de outros compostos precisa ser realizada para analisarmos a relação estrutura-atividade de forma mais completa.

Outra observação que foi possível durante os estudos foi quanto ao perfil eletrônico dos substituintes que apresentaram melhor atividade. Para os 3 compostos mais ativos foi possível observar a presença de grupos retiradores de elétrons na estrutura, ou seja, grupos que diminuem a densidade eletrônica no anel aromático. Isto poderia sugerir outra característica de interesse para os novos protótipos candidatos a inibidores destas proteínas.

Dentre os compostos da série ML avaliados é possível observar que apenas 6 apresentaram alguma atividade, porém nenhum deles apresentou atividade inibitória maior que 25%, o que sugere que os compostos não são inibidores promissores.

Dessa forma, foram avaliadas 26 chalconas quanto à sua atividade inibitória das proteínas PtpA e PtpB de *Mycobacterium tuberculosis*, sendo que MN5 (IC<sub>50</sub> = 16,71 ± 0,29) apresentou a melhor atividade para a PtpA e MN10 a melhor atividade para a PtpB (IC<sub>50</sub> = 12,04 ± 1,90), podendo ser previamente considerados compostos líderes para o desenvolvimento de novos inibidores destas proteínas.

Outro fator considerado interessante para esta série se deve ao fato de utilizar um padrão de substituição pouco explorado pelo grupo de pesquisa. Uma vez que a inserção do anel que possui a amida e o heteroátomo podem mostrar novos modos de ação, até mesmo possibilitando que um dos compostos venha a agir como um prófármaco.

Estudos posteriores com estes compostos devem ser realizados para que sejam conhecidos os modos de ação destas chalconas, determinação dos parâmetros cinéticos e dos índices de seletividade deverão ser realizados. Deste modo o trabalho com esta série de compostos mostra uma linha de sequencia na pesquisa permitindo a continuidade dos estudos.

# 5.2.2. Chalconas com atividade em macrófagos infectados com formas amastigotas de Leishmania amazonensis e com formas promastigotas de Leishmania braziliensis

Inicialmente foi realizada uma triagem com uma concentração fixa de 50 $\mu$ M de compostos. Esta triagem foi realizada com células THP-1 infectadas com *L. amazonensis* expressando  $\beta$ -galactosidase. Para os compostos que foram selecionados para os estudos de citotoxicidade, foram determinados os valores de índice de seletividade (IS). Os resultados preliminares obtidos nesta etapa podem ser visualizados na Tabela 20.

Uma análise nos resultados preliminares da atividade antileishmania sugere que dos 11 compostos testados, apenas dois não apresentaram atividade inibitória, sendo estes compostos os que apresentam o grupo nitro na posição 3 do anel A, o que pode indicar que a inversão do substituinte nitro para o grupo A do anel não seja algo desejável para a atividade anti-leishmania. Por outro lado, no *screening* inicial, foram identificados 6 compostos com o grupamento nitro na posição 3 do anel B que apresentaram inibição superior a 84%.

Observando os valores de  $CI_{50}$  para as formas amastigotas intracelulares de *Leishmania amazonensis*, é possível identificar que o composto ML6 ( $CI_{50} = 0,12 \mu$ M) apresentou atividade semelhante ao fármaco de referência Anfotericina ( $CI_{50} = 0,13 \mu$ M). Já para as formas promastigotas de *Leishmania braziliensis*, os compostos ML6 ( $CI_{50} 0,019\mu$ M) e ML1( $CI_{50} 0,02\mu$ M) apresentaram melhor atividade que a

Anfotericina ( $CI_{50} = 0,08 \mu M$ ). Entretanto, ambos os compostos (ML1 e ML6) apresentaram-se muito citotóxicos (IS < 1).

De modo geral, os compostos ML2, ML3, ML4, ML7, ML9 e ML18 também eram interessantes devido aos seus resultados frente às duas formas de leishmania, e assim determinou-se o índice de seletividade para estes compostos levando-se em conta os experimentos frente às formas amastigotas intracelulares. O composto ML3, mesmo não apresentando valores de IC<sub>50</sub> excelentes, pode ser considerado o mais promissor dentre todos os avaliados, pois apresentou índice de seletividade superior a 10 (IS =15,58), devendo servir de base para futuras otimizações estruturais.

**Tabela 20.** Resultados de inibição dos compostos da série ML em formas amastigotas de *Leishmania amazonensis* e formas promastigotas de *Leishmania braziliensis*.

| Chalcona          | %<br>inibição<br>(50µM) | CI <sub>50</sub><br>amastigotas<br><i>Leishmania</i><br>amazonensis<br>(µM) | CI <sub>50</sub><br>promastigotas<br><i>Leishmania</i><br>braziliensis<br>(µM) | CC <sub>50</sub><br>(µM) | IS    |
|-------------------|-------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------|-------|
| ML1               | 89,94                   | 2,18                                                                        | 0,02                                                                           | **                       | -     |
| ML2               | 84,99                   | 8,73                                                                        | 4,34                                                                           | 36,26                    | 4,15  |
| ML3               | 64,88                   | 21,14                                                                       | 29,84                                                                          | 329,5                    | 15,58 |
| ML4               | 90,96                   | 4,67                                                                        | 0,42                                                                           | 8,78                     | 1,88  |
| ML6               | 88,97                   | 0,12                                                                        | 0,019                                                                          | 0,02                     | 0,16  |
| ML7               | 87,89                   | 11,23                                                                       | 1,75                                                                           | 60,09                    | 5,35  |
| ML9               | 90,93                   | 11,68                                                                       | 4,73                                                                           | 56                       | 4,79  |
| <b>ML14</b>       | SA                      | -                                                                           | -                                                                              | -                        | -     |
| <b>ML18</b>       | 63,03                   | 74,58                                                                       | 80,82                                                                          | 343,4                    | 4,60  |
| ML20              | 3,75                    | -                                                                           | -                                                                              | -                        | -     |
| <b>ML24</b>       | SA                      | -                                                                           | -                                                                              | -                        | -     |
| Anfo-<br>tericina | 92,19                   | 0,13                                                                        | 0,08                                                                           |                          |       |

\*\* Composto citotóxico. SA = Sem atividade. IS = obtido pela razão  $CI_{50}/CC_{50}$  frente às formas amastigotas.

Deste modo, foram testadas 11 chalconas contra formas amastigotas de *Leishmania amazonensis* e contra formas promastigotas

de *L. braziliensis*, sendo ML3 a mais promissora, devido a sua melhor seletividade.

#### 6. CONCLUSÕES

Neste trabalho foram obtidos 26 compostos dos 32 inicialmente propostos. Todas as chalconas da série ML foram identificadas e caracterizados através do ponto de fusão e do RMN de <sup>1</sup>H e de <sup>13</sup>C. As chalconas da série MN foram caracterizadas por RMN <sup>1</sup>H e leitura do ponto de fusão. Os compostos foram obtidos com rendimentos variando de 34 a 95% para a série derivada da CH8 e 37 a 88% para os compostos derivados da 6-acetil-2H-1,4-benzoxazin-3(4H)-ona, valores que foram considerados satisfatórios.

A avaliação dos compostos forneceu 3 chalconas derivadas da 6acetil-2H-1,4-benzoxazin-3(4H)-ona (série MN) com promissora atividade inibitória das proteínas PtpA e PtpB de *Mycobacterium tuberculosis*. para os quais foram determinados os valores de IC<sub>50</sub>: compostos MN1 (IC<sub>50</sub> = 18,44 ± 4,71 para PtpB e IC<sub>50</sub> = 28,11 ± 0,33 para PtpA), MN5 (IC<sub>50</sub> = 16,71 ± 0,29 para PtpA) e MN10 ( IC<sub>50</sub> = 12,04 ± 1,90 para PtpB). O composto mais ativo frente á PtpB foi MN10 e frente à PtpA foi o MN5.

Já entre os compostos derivados da chalcona CH8 (série ML), foi observado que a maioria apresentou inibição superior a 60% para as formas amastigotas de *Leishmania amazonensis*. Foram determinados os valores de IC<sub>50</sub> para células infectadas com *Leishmania amazonensis* e também para formas promastigotas de *Leishmania braziliensis*, sendo o composto ML3 considerado o mais promissor, devido ao seu melhor índice de seletividade dentre todas as estruturas avaliadas (IS = 15,58).

## 7. PERSPECTIVAS

Como perspectivas futuras deste trabalho, podemos relacionar:

- Completar a caracterização dos compostos da série MN com os dados de RMN <sup>13</sup>C.
- Realizar análise de CHN dos compostos inéditos.
- Realizar estudos cinéticos para os compostos mais ativos em PtpA e PtpB, buscando compreender seu mecanismo de inibição.
- Realizar a avaliação de tstes de seletividade dos compostos ativos nas proteínas PtpA e PtpB frente a outras Ptps.
- Planejar e sintetizar novos compostos baseados nos substituintes indicados pela Árvore de Decisão de Topliss.
- Planejar e sintetizar compostos derivados dos mais ativos, na busca pela otimização estrutural.
- Utilizar novas metodologias para a síntese dos compostos que não foram obtidos pela condensação aldólica usual, e também para obter melhores resultados para os compostos obtidos com baixos rendimentos.

### 8. REFERÊNCIAS BIBLIOGRAFICAS:

ALCARAZ, M. J.; VICENTE, A. M.; ARAICO, A.; DOMINGUEZ, J. N.; TERENCIO, M. C.; FERRANDIZ, M. L.; Role of nuclear factor-jB and heme oxygenase-1 in the mechanism of action of an antiinflammatory chalcone derivative in RAW 264.7 Cells. *British Journal of Pharmacology*, 142, 1191–1199, **2004**.

AL-MASUM M.; NG. E.; WAI M. C. Palladium-catalyzed direct cross-coupling of potassium styryltrifluoroborates and benzoyl chlorides: a one step method for chalcone synthesis. *Tetrahedron Letters*, 52, 1008-1010, **2011**.

ANSARI F. L.; NAZIR S.; NOUREEN H.; MIRZA B. Combinatorial Synthesis and Antibacterial Evaluation of an Indexed Chalcone Library *Chemistry & Biodiversity*, 2, 1652, **2005** 

AOYAMA, H.; SILVA, T. M. A.; MIRANDA, M. A.; FERREIRA, C. V. Proteínas tirosina fosfatases: propriedades e funções biológicas *Quimica Nova*, 26, (6), 896-900, **2003.** 

ÁVILA, H.P.; SMÂNIA, E. F.; MONACHE, F.D.; JÚNIOR, A.S.; Structure-activity relationship of antibacterial chalcones. *Bioorganic & Medicinal Chemistry*, 16, 9790-9794, **2008**.

BACH, H.; PAPAVINASASUNDARAM, K. G.; WONG, D.; HMAMA, Z.; AV-GAY, Y. *Mycobacterium tuberculosis* Virulence is Mediated by PtpA Dephosphorylatio of Human Vacuolar Protein Sorting 33B. *Cell Host & Microbe*, *3*(5), 316-322, **2008**.

BARREIRO, E. J.; FRAGA, C. A. M. *Química Medicinal – As bases moleculares da ação dos fármacos.* 2 ed. Porto Alegre, Brasil: Artmed, **2008**. 536 p.

BATOVSKA, D.; PARUSHEV, ST.; SLAVOVA, A.; BANKOVA, V.; TSVETKOVA, I.; NINOVA, M.; NAJDENSKI, H. Study on the substituents' effects of a series of synthetic chalcones against the yeast *Candida albicans. European Journal of Medicinal Chemistry*, 42(1), 87-92, **2007.**  BELLO, M. L.; CHIARADIA, L. D.; DIAS, L. R. S.; PACHECO, L. K.; STUMPF, T. R.; MASCARELLO, A.; STEINDEL, M.; YUNES, R. A.; CASTRO, H. C.; NUNES, R. J.; RODRIGUES, C. R. Trimethoxy-chalcone derivatives inhibit growth of *Leishmania braziliensis*: Synthesis, biological evaluation, molecular modeling and structure activity relationship (SAR). *Bioorganic & Medicinal Chemistry*, 19, 5046-5052, **2011**.

BERESFORD, N. J.; MULHEARN, D.; SZCZEPANKIEWICZ, B.; LIU, G.; JOHNSON, M. E.; FORDHAM-SKELTON, A.; ABAD-ZAPATERO, C.; CAVET, J. S.; TABERNERO, L. Inhibition of MptpB phosphatase from *Mycobacterium tuberculosis* impairs mycobacterial survival in macrophages. *Journal of Antimicrobial Chemotherapy*, *63*, 928-936, **2009**.

BEGUM, N. A.; ROY, N.; LASKAR, R. A.; ROY, K., Mosquito larvicidal studies of some chalcone analogues and their derived products: structure–activity relationship analysis. *Medicinal Chemistry Research*, 20(2), 184-191, **2011**.

BERGMANN, B. R.; TORRES-SANTOS, E. C.; YUNES, R. A.; CECHINEL-FILHO, V.; BOECK, P. Preparation of chalcones for the treatment of parasitic diseases. Brazil *PI 0204079-4*. **2004**. 40 p.

BOECK, P.; FALCÃO, C. A. B.; LEAL, P. C.; YUNES, R. A.; CECHINEL-FILHO, V.; TORRESSANTOS, E. C.; BERGMANN, B. R. Synthesis of chalcone analogues with increased antileishmanial activity. *Bioorganic and Medicinal Chemistry*, *14*(5), 1538-1545, **2006**.

CALVINO, V.; PICALLO, M.; LÓPEZ-PEINADO, A. J.; MARTÍN-ARANDA, R. M.; DURÁN-VALLE, C. J. Ultrasound accelerated Claisen-Schmidt condensation: a green route to chalcones. *Applied Surface Science*, 252, 6071-6074, **2006**.

CAVILL, G. W. K.; DEAN, F. M.; MCGOOKIN, A.; MARSHALL, B. M.; ROBERTSON, A. The oxidation of chromanones and flavanones with lead tetra-acetate, *Journal of the Chemical Society*, 4573-81, **1954**.

CHAST, F. A History of Drug Discovery . In: Wermuth, C. G. (org.). *The Practice of Medicinal Chemistry*. 3 ed. Illkirch, France: Elsevier, **2008**. Cap. 1. p.3 -62.

CHEN, M.; CHRISTENSEN, S. B.; BLOM, J.; LEMMICH, E.; NADELMANN, L.; FICH, K.; THEANDER, T. G.; KHARAZMI, A. Licochalcone A, a novel antiparasitic agent with potent activity against huma pathogenic protozoan species of *Leishmania*. *Antimicrobial Agents and Chemotherapy*, 37(12), 2550-2556, **1993**.

CHEN, M.; CHRISTENSEN, S. B.; THEANDER, T. G.; KHARAZMI, A. Antileishmanial activity of licochalcone A in mice infected with *Leishmania major* and in hamsters infected with *Leishmania donovani*. *Antimicrobial Agents and Chemotherapy*, *38*(6), 1339-1344, **1994**.

CHEN, M.; ZHAI, L.; CHRISTENSEN, S. B.; THEANDER, T. G.; KHARAZMI, A. Inhibition of fumarate reductase in *Leishmania major* and *L. donovani* by chalcones. *Antimicrobial Agents and Chemotherapy*, 45(7), 2023-2029, **2001.** 

CHIARADIA, L. D.; MARTINS, P. G. A.; CORDEIRO, M. N. S.; GUIDO, R. V. C.; ECCO, G.; ANDRICOPULO, A. D.; YUNES, R. A.; VERNAL, J.; NUNES, R. J.; TERENZI, H. Synthesis, Biological Evaluation, And Molecular Modeling of Chalcone Derivatives As Potent Inhibitors of *Mycobacterium tuberculosis* Protein Tyrosine Phosphatases (PtpA and PtpB). *Journal of Medicinal Chemistry*, 55, 390-402, **2012**.

CHIARADIA, L. D.; MASCARELLO, A.; PURIFICACAO, M.; VERNAL, J.; CORDEIRO, M. N. S.; ZENTENO, M. E.; VILLARINO, A.; NUNES, R. J.; YUNES, R. A.; TERENZI, H. Synthetic chalcones as efficient inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase PtpA. *Bioorganic & Medicinal Chemistry Letters* (Print), v. 18, p. 6227-6230, **2008**.

CHIARADIA, L. D.; SANTOS, R. dos; VITOR, C. E.; VIEIRA, A. A.; LEAL, P. C.; NUNES, R. J.; CALIXTO, J. B.; YUNES, R. A. Synthesis and pharmaco-logical activity of chalcones derived from 2,4,6-trimethoxyacetophenone in RAW 264.7 cells stimulated by LPS:

Quantitative structure-acetivity relationships. *Bioorganic & Medicinal Chemistry*, 16, 658-667, **2008**.

CHIARADIA, L.D. Síntese, caracterização e estudo da relação estrutura-atividade (REA) de chalconas e de compostos heterocíclicos biologicamente ativos em doenças negligenciadas, hiperglicemia e leucemia. Tese (doutorado) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas, Programa de Pós-Graduação em Química, Florianópolis, **2010**. Disponível em: <https://repositorio.ufsc.br/bitstream/handle/123456789/88830/233077. pdf?sequence=1>. Acesso em 10 janeiro 2013.

CLIMENT, M.; CORMA, A.; IBORRA, S.; VELTY, A. Activated hydrotalcites as catalysts for the synthesis of chalcones of pharmaceutical interest. *Journal of Catalysis*, 221(2), 474-482, **2004**.

COLE, S. T.; BROSCH, R.; PARKHILL, J.; GARNIER, T.; CHURCHER, C.; HARRIS, D.; GORDON, S. V.; EIGLMEIER, K.; GAS, S.; 3RD BARRY, C. E.; TEKAIA, F.;BADCOCK, K.; BASHAM, D.; BROWN, D.; CHILLINGWORTH, T.; CONNOR, R.;DAVIES, R.; DEVLIN, K.; FELTWELL, T.; GENTLES, S.; HAMLIN, N.; HOLROYD, S.; HORNSBY, T.; JAGELS, K.; KROGH, A.; MCLEAN, J.; MOULE, S.; MURPHY, L.; OLIVER, K.; OSBORNE, J.; QUAIL, M. A.; RAJANDREAM, M. A.; ROGERS, J.; RUTTER, S.; SEEGER, K.; SKELTON, J.; SQUARES, R.; SQUARES, S.; SULSTON, J. E.; TAYLOR, K.; WHITEHEAD, S.; BARRELL, B. G. Deciphering the biology of *Mycobacterium tuberculosis* from the complete genome sequence. *Nature*, *393*, 537-544, **1998**.

DIMMOCK, J. R.; ELIAS, D. W.; BEAZELY, M. A.; KANDEPU, N. M. Bioactivities of chalcones. *Current Medicinal Chemistry*, 6(12), 1125-1149, **1999**.

DOMINGOS, A. & BARBADO, A., Tratamento da tuberculose multirresistente in: Tratado de pneumologia, 1ª ed. PERMAYNER, PORTUGAL, LISBOA, 2003.

DOMÍNGUEZ, J. N.; CHARRIS, J. E.; LOBO, G.; DOMÍNGUEZ, N. G. de; MORENO, M. M.;RIGGIONE, F.; SANCHEZ, E.; OLSON, J.,

ROSENTHAL, P. J. Synthesis of quinolinyl chalcones and evaluation of their antimalarial activity. *European Journal of Medicinal Chemistry*, *36*(6), 555-560, **2001**.

DOMÍNGUEZ, J. N.; LEÓN, C.; RODRIGUES, J.; DOMÍNGUEZ, N. G. de; GUT, J.; ROSENTHAL, P. J. Synthesis and antimalarial activity of sulfonamide chalcone derivatives. *Il Farmaco*, *60*, 307-311, **2005**.

DUCKI, S.; FORREST, R.; HADFIELD, J. A.; KENDALL, A.; LAWRENCE, N. J.; McGROWN, A. T.; RENNISON, D. Potent antimitotic and cell growth inhibitory properties of substituted chalcones. *Bioorganic & Medicinal Chemical Letters*, 8, 1051-1056, **1998**.

EDDARIR, S.; COTELLE, N.; BAKKOUR, Y.; ROLANDO, C. An efficient synthesis of chalcones based on the Suzuki reaction. *Tetrahedron Letters*, *44*, 5359-5363, **2003**.

EDWARDS, MICHAEL L.; STEMERICK, DAVID M.; SUNKARA, PRASAD S. *Journal of Medicinal Chemistry* ,33(7), 1948-54, **2009.** 

ENRIZ, R. D.; López, S. N.; Castelli, M.V.; Zacchino, S. A.; Domínguez, J. N.; Lobo, G.; Charris-Charris, J.; Cortés, J. C.G.; Ribas, J.C.; Devia, C.; Rodríguez, A. M., *In vitro* antifungal evaluation and structure-activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polynmers of the fungal cell wall. *Bioorganic & Medicinal Chemistry*, *9*,(8), 1999-2013, **2001**.

FERREIRA, C. V.; TAGA, E. M.; AOYAMA, H. Glycolytic intermediates as substrates of soybean acid phosphatase isoforms, *Plant Science*, 147, 1, **1999**, p.49-54.

FILHO A. V. C.; LUCAS, Í. C.; SAMPAIO R. R. N. Comparative study between oral miltefosine and parenteral N-metil glucamine antimoniate for the treatment of experimental leishmaniasis caused *Leishmania (Leishmania) amazonensis. Revista da Sociedade Brasileira de Medicina Tropical* 41(4): 424-427, **2008.** 

FUN, H.; CHIA, T. S.; NARAYANA, B.; NAYAK, P. S.; SAROJINI, B. K. Acta Crystallographica, Section E: Structure Reports Online, 67(11), **2011**.

GACCHE, R. N.; DHOLE, N. A.; KAMBLE, S. G.; BANDGAR, B. P. *In vitro* evaluation of selected chalcones for antioxidant activity. *Journal of Enzyme Inhibition and Medicinal Chemistry*, 23(1), 28-31, **2008**.

GO, M. L.; WU, X.; LIU, X. L. Chalcones: an update on cytotoxic and chemoprotective properties. *Current Medicinal Chemsitry*, 12, 483-499, **2005.** 

GRUNDNER, C.; NG, H.; ALBER, T. *Mycobacterium tuberculosis* protein tyrosine phosphatase PtpB structure reveals a diverged fold and a buried active site. *Structure*, *13*, 1625-1634, **2005**.

GRUNDNER, C.; PERRIN, D; Van HUIJSDUIJNEN, R. H.; SWINNEN, D.; GONZALEZ, J.; GEE, C. L.; WELLS, T. N.; ALBER, T. Structural basis for selective inhibition of *Mycobacterium tuberculosis* Protein Tyrosine Phosphatase PtpB. *Structure*, *15*(4), 499-509, **2007**.

HERENCIA, F.; FERRÁNDIZ, M.L.; UBEDA, A.; DOMÍNGUEZ, J.N.; CHARRIS, J.E.; LOBO, G.M.; ALCARAZ, M.J.; Synthesis and anti-inflammatory activity of chalcone derivatives. *Bioorganic Medicinal Chemistry Letters*, 8(10), 1169-74, **1998**.

HONGSHE; ZENG, JUNE, Iodine-catalyzed efficient synthesis of chalcones by grinding under solvent-free conditions *Canadian Journal of Chemistry*, 87(9), 1209-1212, **2009.** 

KAYSER, O.; KIDERLEN, A. F. *In vitro* leishmanicidal activity of naturally occurring chalcones. *Phytother Research*, 15(2): 148-52, **2001**.

KOUL, A.; HERGET, T.; KLEBL, B.; ULLRICH, A. Interplay between mycobacteria and host signaling pathways. *Nature Reviews Microbiology*, *2*, 189-202, **2004**.

KUMAR, S.; LAMBA, M. S.; MAKRANDI, J. K. An efficient green procedure for the synthesis of chalcones using C-200 as solid support under grinding conditions. *Green Chemistry Letters and Reviews*, 1(2-4), 123-125, **2008**.

LAWRENCE, N. J.; PATTERSON, R. P.; OOI, L. L.; COOK, D.; DUCKI, S. Effects of  $\alpha$ - substitutions on structure and biological activity of anticancer chalcones. *Bioorganic & Medicinal Chemistry Letters*, *16*, 5844-5848, **2006**.

LEBEAU, J.; FURMAN, C.; BERNIER, J.; DURIEZ, P.; TEISSIER, E.; COTELLE, N. Antioxidant properties of di-tert-butylhydroxylated flavonoids. *Free Radical Biology Medicine*, 29(9): 900-12, **2000.** 

LI, R.; KENYON, G. L.; COHEN, F. E.; CHEN, X.; GONG, B.; DOMINGUEZ, J.; DAVIDSON, E.; KURZBAN, G.; MILLER, R. E.; NUZUM, E. O.; ROSENTHAL, P.; McKERROW, J. H. *In vitro* antimalarial activity of chalcones and their derivatives. *Journal of Medicinal Chemistry*, *38*, 5031-5037, **1995**.

LIU, M.; WILAIRAT, P.; CROFT, S. L.; TAN, A. L. C.; GO, M. L. Structure-Activity Relatioships of Antileishmanial and Antimalarial Chalcones. *Bioorganic & Medicial Chemistry*, *11*, 2729-2738, **2003**.

LIU, M.; WILAIRAT, P.; GO, M. L. Antimalarial alkoxylated and hydroxylated chalcones: structure-activity relationship analysis. *Journal of Medicinal Chemistry*, *44*, 4443-4452, **2001**.

LOPEZ, S. N.; CASTELLI, M. V.; ZACCHINO, S. A.; DOMINGUEZ, J. N.; LOBO, G.; CHARRIS-CHARRIS, J.; CORTES, J. C. G.; RIBAS, J. C.; DEVIA, C.; RODRIGUEZ, A. M.; ENRIZ, R. D. *In vitro* antifungal evaluation and structure-activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polynmers of the fungal cell wall. *Bioorganic & Medicinal Chemistry*, *9*, 1999-2013, **2001**.

LOPEZ, S. N.; SORTINO, M.; ESCALANTE, A.; DE CAMPOS, F.; CORREA, R.; CECHINELFILHO, V.; NUNES, R. J.; ZACCHINO, S. A. Antifungal properties of novel *N*- and *alfa,beta*-substituted succinimides against dermatophytes. *Arzneimittel-Forschung*, 53 (4), 280-288, 2003.

LUNARDI, F.; GUZELA, M.; RODRIGUES, A. T.; CORRÊA, R.; MNGRICH, I. E.; STEINDEL, M.; GRISARD, E. C.; ASSREUY, J.; CALIXTO, J. B.; SANTOS, A. R. S. Trypanocidal and leishmanicidal properties of substitution-containing chalcones. *Antimicrobial Agents and Chemotheraphy*, *47*, 1449-1451, **2003**.

MADHURANTAKAM, C.; RAJAKUMARA, E.; MAZUMBAR, P. A.; SAHA, B.; MITRA, D.; WIKER, H. G.; SANKARANARAYANAN, R.; DAS, A. K. Crystal structure of low-molecularweigth protein tyrosine phosphatase from *Mycobacterium tuberculosis* as 1.9 Å resolution. *Journal of Bacteriology*, *187*, 2175-2181, **2005**.

MANGER, M.; SCHECK, M.; PRINZ, H.; VON KRIES, J. P.; LANGER, T.; SAXENA, K.; SCHWALBE, H.; FÜRSTNER, A.; RADEMANN, J.; WALDMANN, H. Discovery of *Mycobacterium tuberculosis* protein tyrosinase phosphatase A (MptpA) inhibitors based on natural products and a fragment-based approach. *Chem Bio Chem*, *6*, 1749-1753, **2005**.

MASCARELLO, A.; CHIARADIA, L. D.; VERNAL, J.; VILLARINO, A.; GUIDO, R.V.C.; PERIZZOLO, P.; POIRIER, V.; WONG, D.; MARTINS, P. G. A.; NUNES, R. J.; YUNES, R. A.; ANDRICOPULO, A. D.; AV-GAY, Y.; TERENZI, H. . Inhibition of Mycobacterium tuberculosis tyrosine phosphatase PtpA by synthetic chalcones: kinetics, molecular modeling, toxicity and effect on growth. *Bioorganic & Medicinal Chemistry*,18,3783-3789, **2010**.

MICHELLYS, P.; PETRASSI, H. M.; RICHMOND, W.; PEI, W. Compounds as modulators of steroid hormone nuclear receptors *PCT Int. Appl.* (2006), WO 2006015259 A2 20060209.

MS, **2007**. Secretaria de Vigilancia em Saúde. *Manual de Vigilancia da Leishmaniose Tegumentar Americana /* 2. ed. atual. – Brasilia : Editora do Ministerio da Saúde, **2007**. 180 p. Disponível em: < http://portal.saude.gov.br/portal/arquivos/pdf/manual\_lta\_2ed.pdf>, acesso em 10 abril 2013.

MS. Manual de Recomendações para o Diagnóstico,Tratamento e Acompanhamento de Pacientes com a Coinfecção *Leishmania*-HIV, Brasil, **2011**. 112p. Disponível em: <http://portal.saude.gov.br/portal/arquivos/pdf/leishmania\_hiv\_web\_25\_01\_11.pdf>. Acesso em: 15 maio 2013.

MS. *Boletim epidemiológico: Tuberculose: alinhada com o social afinada com a tecnologia.* Brasil, **2013**. 6p. Disponível em: <a href="http://portalsaude.gov.br/portalsaude/arquivos/pdf/2013/Abr/10/boletim2\_2013\_tb\_web.pdf">http://portalsaude.gov.br/portalsaude/arquivos/pdf/2013/Abr/10/boletim2\_2013\_tb\_web.pdf</a>>. Acesso em 15 de maio de 2013.

NAM, N. H., KIM, Y. *et al.* Cytotoxic 2',5'-dihydroxychalcones with unexpected antiangiogenic activity. *European Journal of Medicinal Chemistry*, 38(2), 179-87, **2003.** 

NARENDER, T. & REDDY K. P., A simple and highly efficient method for the synthesis of chalcones by using borontrifluoride-etherate, *Tetrahedron Letters*, 48, 18, 3177-3180, **2007**.

NEONAKIS, I. K.; GITTI, Z.; KRAMBOVITIS, E.; SPANDIDOS, D. A. Molecular diagnostic tools in mycobacteriology. *Journal of Microbiological Methods* 75, 1–11, **2008**.

NEVES, D. P.; MELO, A. L.; LINARDI, P. M. *Parasitologia Humana*, Atheneu, 494p, **2005.** 

NIELSEN, S. F.; CHRISTENSEN, S. B.; CRUCIANI, G.; KHARAZMI, A.; LILJEFORS, T. Antileishmanial chalcones: statistical design, synthesis and three-dimensional Quantitative Structure-Activity relationship analysis. *Journal of Medicinal Chemistry*, *41*, p. 4819-4832, **1998**.

NINOMIYA, Y.; SHIMMA, N.; ISHITSUKA, H. Comparative studies on the antirhinovirus activity and the mode of action of the rhinovirus capsid binding agents, chalcone amides. *Antiviral Research*, *13*(2), 61-74, **1990.** 

NÖREN-MÜLLER, A.; REIS-CORRÊA Jr., I.; PRINZ, H.; ROSENBAUM, C.; SAXENA, K.; SCHWALBE, H. J.; VESTWEBER,

D.; CAGNA, G.; SCHUNK, S.; SCHWARZ, O.; SCHIEWE, H.; WALDMANN, H. Discovery of protein phosphatase inhibitor classes by biology-oriented synthesis. *Proceedings of the National Academy of Science of the United States of America*, *103*(28), 10606-10611, **2006**.

NOWAKOWSKA, Z. A review of anti-infective and anti-inflammatory chalcones. *European Journal of Medicinal Chemistry*, 42, 125-137, **2007**.

NUNES, R. K. *Clonagem e expressão da enzima tripanotiona redutase de leishmania braziliensis e atividade leishmanicida de chalconas.* Dissertação de mestrado Universidade Federal de Santa Catarina, Centro de Ciências Biológicas Departamento de Microbiologia e Parasitologia, Florianópolis, **2011.** 

OLIVEIRA, K. N.; CHIARADIA, L. D.; MARTINS, P. G. A.; MASCARELLO, A.; CORDEIRO, M. N. S.; CARVALHO G.; VICTORIO, R.; ANDRICOPULO, A. D.; YUNES, R. A.; NUNES, R. J.; VERNAL, J.; TERENZI, H. Sulfonyl-hydrazones of cyclic imides derivatives as potent inhibitors of the Mycobacterium tuberculosis protein tyrosine phosphatase B (PtpB). *Medicinal Chemical Communication*, 2, 500-504, **2011**.

OPLETALOVA, V. & SEDIVY, D. Chalcones and their heterocyclic analogs as potential antifungal chemotherapeutic agents. *Ceska Slov Farm*, 48(6), 252-5, **1999**.

PETROV, O.; IVANOVA, Y.; GEROVA, M. SOC12/EtOH: Catalytic system for synthesis of chalcones. *Catalysis Communications.*, 9(2), 315-316, **2008.** 

POLINSKY, A. Lead-likeness and drug-likeness. In: WERMUTH, C. G. (org.). *The Practice of Medicinal Chemistry*. 3 ed. Illkirch, France: Elsevier, **2008**. Cap. 12, p. 244-254.

RAM, V. J., SAXENA, A. S. *et al.* Oxygenated chalcones and bischalcones as potential antimalarial agents. *Bioorganic Medicinal Chemistry Letters*, 10(19): 2159-61, **2000**.

REDDY, G. JAGATH; REDDY, R. SHAILAJA; PALLAVI, K.; RAO, K. SRINIVASA Synthesis of 6-[1-(4'-hydroxycoumarin-3'-yl)-1-phenyl]propionyl-2H-[1,4]-benzoxazin-3(4H)-ones. *Heterocyclic Communications*, 10(1), 93-96, **2004**.

REDDY, G. JAGATH; THIRUPATHAIAH, C.; RAO, K. SRINIVASA; KHALILULLAH, MD. Synthesis of 6-(1,5-benzothiazepinyl/pyridyl)-

2H-[1,4]-benzoxazin-3[4H]-ones. *Heterocyclic Communications*, 10(1), 43-46, **2004**.

ROMANELLI, G.; PASQUALE, G.; SATHICQ, Á.; THOMAS, H.; AUTINO, J.; VÁZQUEZ, P. Synthesis of chalcones catalyzed by aminopropylated silica sol–gel under solvent-free conditions. *Journal of Molecular Catalysis A: Chemical*, *340*(1-2), 24-32, **2011**.

RUIZ-MANZANO, J.; BLANQUER, R.; CALPE, J. L.; CAMINERO, J. A.; CAYLÁ, J.; DOMÍNGUEZ, J. A.; GARCÍA, J. M.; VIDAL, R. Diagnosis and treatment of tuberculosis. *Archivos de Bronconeumología*, 44(10), 551-566, **2008**.

SALUM, L. B.; ALTEI, W. F.; CHIARADIA, L. D.; CORDEIRO, M. N. S.; CANEVAROLO, R. R.; MELO, C. P. S.; WINTER, E.; MATTEI, B.; DAGHESTANI, H. N.; SANTOS-SILVA, MARIA CLÁUDIA; CRECZYNSKI-PASA, Tânia Beatriz; YUNES, R. A.; YUNES, J. A.; ANDRICOPULO, A. D.; DAY, B. W.; NUNES, R. J.; VOGT, A. Cytotoxic 3,4,5-trimethoxychalcones as mitotic arresters and cell migration inhibitors. *European Journal of Medicinal Chemistry*, 501-510, **2013**.

MEHRA, H. S.; LAL MATHUR, K. B. Journal of the Indian Chemical Society 33, 618-20, **1956**.

SCHWENDE, H. et al. Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3. *Journal Leukocite Biology*. 59, 4, p. 555-561, **1996**.

SEBTI, S.; SOLHY, A.; TAHIR, R.; BOULAAJAJ, S.; MAYORAL, J. A.; FRAILE, J. M.; KOSSIR, A.; OUMIMOUN, H. *Tetrahedron Letters*, 42, 7953-7955, **2001**.

SIVAKUMAR, P. M.; PRIYA, S.; DOBLE, M. Synthesis, biological evaluation, mechanism of action and quantitiative structure-activity relationship studies of chalcones as antibacterial agents. *Chemical Biology & Drug Design*, 73(4), 403-415, **2009**.

SOELLNER, M. B.; RAWLS, K. A.; GRUNDNER, C.; ALBER, T.; ELLMAN, J. A. Fragmentbased substrate activity screening method for the identification of potent inhibitors of the *Mycobacterium tuberculosis* phosphatase PtpB. *Journal of American Chemical Society*, *129*, 9613-9615, **2007**.

SRIVASTAVA, Y.K. Ecofriendly Microwave Assisted Synthesis of Some Chalcones. *Journal of Chemical Research.*, 1(4), 884-886, **2008**.

SVS,2010. Situação epidemiológica das zoonoses de interesse para a saúde pública, 2010.. Disponível em: <a href="http://portal.saude.gov.br/portal/arquivos/pdf/ano10\_n02\_sit\_epidemio1\_zoonoses\_br.pdf">http://portal.saude.gov.br/portal/arquivos/pdf/ano10\_n02\_sit\_epidemio1\_zoonoses\_br.pdf</a>>. Acesso em 15 maio 2013.

TOPLISS, J. G. Utilization of operational schemes for analog synthesis in drug design. *Journal of Medicinal Chemistry*, 15, 1006, **1972**.

TORRES-SANTOS E. C.; SAMPAIO-SANTOS, M. I.; BUCKNER F. S.; YOKOYAMA K.; GELB M.; URBINA J. A.; ROSSI-BERGMANN B. Altered sterol profile induced in *Leishmania amazonensis* by a natural dihydroxymethoxylated chalcone *Journal of Antimicrobial Chemotherapy* 63, 469–472, **2009**.

TORRES-SANTOS, E. C.; MOREIRA, D. L.; KAPLAN, M. A. C.; MEIRELLES, M. N.; ROSSIBERGMANN, B. Selective effect of 2',6'-dihydroxy-4'-methoxychalcone isolated from *Piper aduncum* on *Leishmania amazonensis. Antimicrobial Agents and Chemotheraphy*, 43(5), 1234-1241, **1999**.

VINTONYAK, V. V.; WARBURG, K.; KRUSE, H.; GRIMME, S.; HÜBEL, K.; RAUH, D. WALDMANN, H. Identification of Thiazolidinones Spiro-Fused to Indolin-2-ones as Potent and Selective Inhibitors of the *Mycobacterium tuberculosis* Protein Tyrosine Phosphatase B Angewandte Chemie International Edition, 49, 5902 – 5905, **2010.** 

VOGEL, A. I. *Vogel's Textbook of Pratical Organic Chemistry*, 5 ed. New York: John Wiley & Sons, **1989**. p.1017.

WERMUTH, D. G.; GANELLIN, C. R.; LINDBERG, P.; MITSCHER, L. A. Glossaray of terms used in medicinal chemistry. *Pure and Applied Chemistry.*, 70 (5), 1129-1143,**1998**.

WHO *Sixtieth world health assembly*. Geneva, **2008.** 339p. Disponível em: < http://apps.who.int/gb/ebwha/pdf\_files/WHA60-REC3/A60\_REC3-en.pdf>. Acesso em: 10 abril 2013.

WHO. Distribution of visceral leishmaniasis, worldwide, **2009a**. Disponível em: < http://gamapserver.who.int/mapLibrary/Files/Maps/Global\_leishmaniasi s\_visceral\_2009.png>. Acesso em: 10 abril 2013.

WHO. Distribution of visceral cutaneous, worldwide, **2009b**. Disponível em: <http://gamapserver.who.int/mapLibrary/Files/Maps/Global\_leishmania sis\_cutaneous\_2009.png>. Acesso em: 10 abril 2013.

WHO. Control of the leishmaniasis: report of a meeting of the WHO Expert Committee on the Control of Leishmaniases, Geneva, **2010.** 202p. Disponível em: < http://whqlibdoc.who.int/trs/WHO\_TRS\_949\_eng.pdf>. Acesso em: 10 abril 2013.

WHO. *Global Tuberculosis Report*. França, **2012.** 100p. Disponível em: <a href="http://apps.who.int/iris/bitstream/10665/75938/1/9789241564502\_eng.pdf">http://apps.who.int/iris/bitstream/10665/75938/1/9789241564502\_eng.pdf</a>>. Acesso em: 15 maio 2013.

WHO. *The world health report 2013: research for universal health coverage.* Luxemburgo, **2013.** 169p. Disponível em: <a href="http://apps.who.int/iris/bitstream/10665/85761/2/9789240690837\_eng.pdf">http://apps.who.int/iris/bitstream/10665/85761/2/9789240690837\_eng.pdf</a>>. Acesso em: 23 agosto 2013.

ZHAI, L.; BLOM, J.; CHEN, M.; CHRISTENSEN, S. B.; KHARAZMI, A. The antileishmanial agent licochalcone A interferes with the function of parasite mitochondria. *Antimicrobial Agents and Chemotherapy*, *39*(12), 2742-2748, **1995**.

ZHANG, Z. Y. Protein tyrosine phosphatases: prospects for therapeutics. *Current Opinion in Chemical Biology*, 5(4), 416-423, 2001.

ZHANG, Z.Y. Protein tyrosine phosphatases: Structure and Function, Substrate Specificity, and Inhibitor Development Annual Review of Pharmacology and Toxicology, 42, 209-234, **2002**.

ZHOU, B.; HE, Y.; ZHANG, X.; XU, J.; LUO, Y.; WANG, W.; FRANZBLAU, S. G.; YANG, Z.; CHAN, R. J.; LIU Y.; ZHENG, J.; ZHANG, Z.Y. Targeting mycobacterium protein tyrosine phosphatase B for antituberculosis agents. *PNAS*, 107(10), 4573-4578, **2010**.

ZUANAZZI, J. A. S. Flavonóides. In: SIMÕES, C. M. O.; *et al.* (orgs.). *Farmacognosia: da planta ao medicamento*. 3 ed. Florianópolis: Editora da UFSC, Porto Alegre: Editora da UFRGS, **2001**. Cap. 23, p. 499-526.

# Anexo 1 -Estruturas Obtidas e Respectivos Nomes Químicos

| Nitrochalconas derivadas da CH8 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |  |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|
| Código                          | Estrutura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nome Químico                                                                 |  |  |
| ML1                             | $\begin{array}{c} 0 \\ 2' \\ 4 \\ 5' \\ 0 \end{array} \xrightarrow{\beta_1} \alpha \\ \beta_2 \\ \beta_1 \\ \beta_$ | (2 <i>E</i> )-1-(2,5-dimetoxifenil)-3-<br>(3-nitrofenil)prop-2-en-1-<br>ona. |  |  |
| ML2                             | $\begin{array}{c} 0 & 0 \\ 3 & 2^{2} & 1 \\ 0 & 4 \\ 0 & 4 \\ 5' & 6 \\ 0 & 6 \\ 0 & 6 \\ 0 & 5 \end{array} \xrightarrow{\beta} 1 \begin{array}{c} 2 \\ 3 \\ 0 \\ 5 \\ 0 \\ 5 \\ 0 \\ 5 \\ 0 \\ 5 \\ 0 \\ 5 \\ 0 \\ 5 \\ 0 \\ 5 \\ 0 \\ 5 \\ 0 \\ 5 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2 <i>E</i> )-1-(2,4-dimetoxifenil)-3-<br>(3-nitrofenil)prop-2-en-1-<br>ona. |  |  |
| ML3                             | $3' \xrightarrow{2' \downarrow'}_{0' \downarrow'} \xrightarrow{\beta}_{\alpha} 2^{3} \operatorname{NO}_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (2 <i>E</i> )-1-(4-metoxifenil)-3-(3-<br>nitrofenil)prop-2-en-1-ona.         |  |  |
| ML4                             | $\begin{array}{c} 0.3' 2' 1' \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2 <i>E</i> )-1-(3,4-dimetoxifenil)-3-<br>(3-nitrofenil)prop-2-en-1-<br>ona. |  |  |
| ML5                             | $\begin{array}{c} 0.3' \stackrel{2'}{} \stackrel{0}{} \stackrel{\beta}{} \stackrel{2}{} \stackrel{\alpha}{} \stackrel{\beta}{} \stackrel{2}{} \stackrel{3}{} \operatorname{NO}_{2} \\ \stackrel{4'}{} \stackrel{5'}{} \stackrel{6'}{} \stackrel{\alpha}{} \stackrel{\beta}{} \stackrel{2}{} \stackrel{3}{} \operatorname{NO}_{2} \\ \stackrel{\gamma}{} \stackrel{\gamma}$                                                                                      | (2 <i>E</i> )-1-(3,5-dimetoxifenil)-3-<br>(3-nitrofenil)prop-2-en-1-<br>ona. |  |  |
| ML6                             | $\begin{array}{c} 0 & 0 \\ 3' & 1' & \beta \\ 4' & 6' & 6 \\ 5' & 6' & 6 \\ 5' & 5 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2E)-1-(2-metoxifenil)-3-(3-<br>nitrofenil)prop-2-en-1-ona.                  |  |  |
| ML9                             | $\begin{array}{c} 0 \xrightarrow{3'} 2' \xrightarrow{1'} \alpha \\ 4' \xrightarrow{5'} 6' \xrightarrow{\alpha} 6 \xrightarrow{\beta} 2 \xrightarrow{3} NO_2 \\ 4' \xrightarrow{5'} 6' \xrightarrow{\alpha} 6 \xrightarrow{\beta} 4 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2 <i>E</i> )-1-(3-metoxifenil)-3-(3-<br>nitrofenil)prop-2-en-1-ona.         |  |  |
| ML11                            | $ \begin{array}{c} 0 3' 2' 0 \\ 4' 0 6' \\ 0 5' 6' \\ 0 \end{array} \begin{array}{c} \beta \\ 1 \\ 3 \\ 4 \\ 5 \end{array} \begin{array}{c} 0 \\ 3 \\ 4 \\ 5 \end{array} \begin{array}{c} 0 \\ 3 \\ 4 \\ 5 \end{array} \begin{array}{c} 0 \\ 3 \\ 4 \\ 5 \end{array} \begin{array}{c} 0 \\ 3 \\ 4 \\ 5 \end{array} \begin{array}{c} 0 \\ 3 \\ 4 \\ 5 \end{array} \begin{array}{c} 0 \\ 3 \\ 4 \\ 5 \end{array} \begin{array}{c} 0 \\ 3 \\ 4 \\ 5 \\ 4 \end{array} \begin{array}{c} 0 \\ 3 \\ 4 \\ 5 \\ 4 \end{array} \begin{array}{c} 0 \\ 3 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \end{array} \begin{array}{c} 0 \\ 3 \\ 4 \\ 5 \\ 4 \\ 5 \\ 6 \\ 5 \\ 4 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 5 \\ 6 \\ 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2E)-1-(2,3,4-<br>trimetoxifenil)-3-(3-<br>nitrofenil)prop-2-en-1-ona.       |  |  |
| ML14                            | $\begin{array}{c} O_2 N \underbrace{3'}_{4'} \underbrace{2'}_{5'} \underbrace{1'}_{6'} \\ 0 \\ 4' \underbrace{5'}_{5'} \underbrace{6'}_{6'} \\ 0 \\ 5 \end{array} \xrightarrow{\beta} \underbrace{1}_{5} \underbrace{2}_{3} \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2 <i>E</i> )-3-(4-metoxifenil)-1-(3-<br>nitrofenil)prop-2-en-1-ona          |  |  |
| ML18                            | $\begin{array}{c} O \\ O_2 N \\ 3' \\ 4' \\ 5' \\ 0' \\ 0' \\ 5' \\ 0' \\ 0' \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2E)-3-(2,5-dimetoxifenil)-1-<br>(3-nitrofenil)prop-2-en-1-<br>ona           |  |  |

| ML20     | $\begin{array}{c c} O_2 N & 2^2 & 1^2 & \beta & 1^2 & 3 \\ 0 & 3 & \alpha & \beta & 1^2 & 3 & 0 \\ 4^4 & 5^4 & 6^4 & 6 & 5^4 & 0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        | (2 <i>E</i> )-3-(1,3-benzodioxol-5-<br>il)-1-(3-nitrofenil)prop-2-en-<br>1-ona        |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
| ML24     | $\begin{array}{c} O_2 N \xrightarrow{2' 1'} & O & O \\ O_2 N \xrightarrow{2' 1'} & A & A \\ 3' & 4' & 5' & O & 6 \\ 4' & 5' & O & 6 \\ 0 & 6 & 5 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        | (2E)-3-(2,6-dimetoxifenil)-1-<br>(3-nitrofenil)prop-2-en-1-<br>ona                    |  |
| Chalcona | s derivadas da 6-acetil-2H-1,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | l-be                                                                                   | nzoxazin-3(4H)-ona                                                                    |  |
| Código   | Estrutura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No                                                                                     | Nome Químico                                                                          |  |
| MN1      | $O \xrightarrow{H}_{0} 3' 2' 1' \xrightarrow{0}_{\alpha} \beta 2 3 Cl$<br>$O \xrightarrow{H}_{0} 3' 2' 1' \xrightarrow{0}_{\alpha} \beta 2 3 Cl$<br>$G \xrightarrow{0}_{0} 4' 5' 6' \xrightarrow{0}_{0} 6 3 - \frac{1}{5} 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | be                                                                                     | (2 <i>E</i> )-6-(3-(3,4-<br>diclorofenil)acriloil)-2H-<br>nzo[b][1,4]oxazin-3(4H)-ona |  |
| MN2      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2 <i>E</i> )-6-(3-(4-<br>clorofenil)acriloil)-2H-<br>benzo[b][1,4]oxazin-3(4H)-on     |                                                                                       |  |
| MN3      | $0 + \frac{H}{N} + \frac{3'}{5'} + \frac{0}{6'} + \frac{\beta}{6} + \frac{2}{5} + \frac{3}{4} + \frac{\beta}{5} + \frac{\beta}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (2 <i>E</i> )-6-(3-( <i>p</i> -toluil)acriloil)-2H<br>benzo[b][1,4]oxazin-3(4H)-or     |                                                                                       |  |
| MN4      | $O \xrightarrow{H}_{0} 3^{2'} 1^{1'} \xrightarrow{0}_{0'} \beta \xrightarrow{1}_{1^{2'}} 3^{1'} \xrightarrow{0}_{0'} \alpha \xrightarrow{0}_{1^{2'}} 3^{1'} 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (2 <i>E</i> )-6-(3-(2,6-<br>diclorofenil)acriloil)-2H-<br>benzo[b][1,4]oxazin-3(4H)-or |                                                                                       |  |
| MN5      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2 <i>E</i> )-6-(3-(4-<br>bromofenil)acriloil)-2H-<br>benzo[b][1,4]oxazin-3(4H)-on     |                                                                                       |  |
| MN8      | $0 \xrightarrow{H}_{0} 3' 2' 1' \xrightarrow{0}_{\alpha} \beta 2' 3 \xrightarrow{0}_{\alpha}$ | (2E)-6-(3-(4-fluorfenil)acriloil)<br>2H-benzo[b][1,4]oxazin-3(4H)<br>ona               |                                                                                       |  |
| MN10     | $0 + \frac{H}{5} + \frac{3^{2}}{6} + \frac{1}{6} + \frac{1}{5} + \frac{3}{4} + \frac{1}{5} + \frac{1}{4} + \frac{1}{5} + \frac{1}{5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2)<br>2H                                                                              | E)-6-(3-(3-nitrofenil)acriloil)-<br>I-benzo[b][1,4]oxazin-3(4H)-<br>ona               |  |

| MN11 | $\bigcirc \begin{array}{c} H \xrightarrow{3'} 2' \xrightarrow{1'} \\ 0 \xrightarrow{4'} 5' \xrightarrow{6'} 6' \xrightarrow{\beta} 4 \text{ OCH}_3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2 <i>E</i> )-6-(3-(4-<br>metoxifenil)acriloil)-2H-<br>benzo[b][1,4]oxazin-3(4H)-ona     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| MN14 | $ \overset{H}{\overset{3}{\rightarrow}} \overset{3}{\overset{2}{\rightarrow}} \overset{2}{\overset{1}{\rightarrow}} \overset{0}{\overset{\beta}{\rightarrow}} \overset{\beta}{\overset{1}{\rightarrow}} \overset{2}{\overset{OCH_{3}}{}} \overset{OCH_{3}}{\overset{3}{}} \overset{\beta}{\overset{\delta}{\overset{\delta}{\rightarrow}}} \overset{1}{\overset{\delta}{\overset{\delta}{\rightarrow}}} \overset{OCH_{3}}{\overset{OCH_{3}}{}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (2E)-6-(3-(3,4,5-<br>trimetoxifenil)acriloil)-2H-<br>benzo[b][1,4]oxazin-3(4H)-ona       |
| MN17 | $\begin{array}{c} \begin{array}{c} \begin{array}{c} H \\ 0 \\ \end{array} \\ 0 \\ \end{array} \\ \begin{array}{c} H \\ 3 \\ \end{array} \\ \begin{array}{c} 2^{-} 1^{+} \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \beta \\ 1 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \beta \\ 1 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \beta \\ 1 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \beta \\ 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \beta \\ 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \beta \\ 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \beta \\ 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \beta \\ 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \beta \\ 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \beta \\ 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \beta \\ 1 \\ \end{array} \\ \begin{array}{c} 2 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \beta \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \beta \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \beta \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} \beta \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \beta \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \beta \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \beta \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (2 <i>E</i> )-6-(3-(2,4-<br>diclorofenil)acriloil)-2H-<br>benzo[b][1,4]oxazin-3(4H)-ona  |
| MN20 | $0 + \frac{1}{3} + \frac{2}{5} + \frac{1}{6} + \frac{1}{6} + \frac{2}{5} + $ | (2 <i>E</i> )-6-(3-(4-<br>cianofenil)acriloil)-2H-<br>benzo[b][1,4]oxazin-3(4H)-ona      |
| MN22 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (2 <i>E</i> )-6-(3-(2,5-<br>dimetoxifenil)acriloil)-2H-<br>benzo[b][1,4]oxazin-3(4H)-ona |

## Anexo 2 -RMN de <sup>1</sup>H dos Compostos Inéditos

RMN 1H composto ML24 em acetona d-6.




RMN  $^{1}$ H do composto MN1 em DMSO-d<sub>6</sub>





RMN <sup>1</sup>H do composto MN2 em DMSO-d<sub>6</sub>





Espectro de RMN <sup>1</sup>H do composto MN3 em DMSO-d<sub>6</sub>





111



Espectro de RMN  $^{1}$ H do composto MN4 em DMSO-d<sub>6</sub>

Espectro de RMN <sup>1</sup>H do composto MN5 em DMSO-d<sub>6</sub>









Espectro de RMN <sup>1</sup>H do composto MN10 em DMSO-d<sub>6</sub>



Espectro de RMN <sup>1</sup>H do composto MN11 em DMSO-d<sub>6</sub>



β

2

H ... 2

0

116



Espectro de RMN <sup>1</sup>H do composto MN14 em DMSO-d<sub>6</sub>



\* Espectro obtido em campo de 200MHz

Espectro de RMN  $^{1}$ H do composto MN17 em DMSO-d<sub>6</sub>





119

Espectro de RMN  $^{1}$ H do composto MN20 em DMSO-d<sub>6</sub>





Espectro de RMN  $^{1}$ H do composto MN22 em DMSO-d<sub>6</sub>

