

UNIVERSIDADE FEDERAL DE SANTA CATARINA CAMPUS ARARANGUÁ-ARA CURSO DE ENGENHARIA DE ENERGIA PLANO DE ENSINO

SEMESTRE 2014.2

I. IDENTIFIC	AÇÃO DA DISCIPLINA:			
CÓDIGO	NOME DA DISCIPLINA	N [©] DE HORAS-AULA SEMANAIS TEÓRICAS PRÁTICAS		
ARA7327	BIORREATORES	04		SEMESTRAIS
	- I OILLO	04	00	72

HORÁRIO					
TURMAS TEÓRICAS	TURMAS PRÁTICAS	MODALIDADE			
08653 - 4.2020-2/ARA321 6.2020-2/ARA321	-	Estudo Dirigido			

II. PROFESSOR(ES) MINISTRANTE(S)

ELAINE VIRMOND (elaine.virmond@ufsc.br)

III. PRÉ-REQUISITO(S)

CÓDIGO	NOME DA DISCIPLINA	
	Fundamentos de Biotecnologia Laboratório de Química Termodinâmica II	

IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

Graduação em Engenharia de Energia

V. JUSTIFICATIVA

A Biotecnologia tem por base vários ramos do conhecimento, dentre os quais a Bioquímica, a Fisiologia, a Genética, a Microbiologia, a Virologia, a Botânica, a Zoologia, a Ecologia e as Engenharias, principalmente a Engenharia Química. Consiste, portanto, em um campo de trabalho multidisciplinar que passou a ser considerado altamente prioritário há relativamente pouco tempo embora processos biotecnológicos sejam utilizados na produção de vários bens desde a mais remota antiguidade. Mais recentemente, esses processos têm sido aplicados industrialmente para a produção de energia na forma de biocombustíveis e derivados. Biorreatores consistem em reatores nos quais esses processos ocorrem e seu conhecimento e capacidade de análise, operação, projeto e otimização devem fazer parte das atribuições do Engenheiro de Energia.

VI. EMENTA

Conceitos fundamentais em cinética química. Fundamentos das reações enzimáticas em fase homogênea e heterogênea. Biocatálise orgânica. Cinética de enzimas alostéricas. Termodinâmica das reações químicas. Mecanismo de biorreação. Teoria das taxas de reação. Projeto de biorreatores, scale up, reatores em batelada, reatores contínuos com e sem reciclo, reatores semicontínuos e reatores sequenciais. Reatores industriais.

VII. OBJETIVOS

Objetivo Geral:

Utilizar as teorias cinéticas de processos químicos, biológicos e enzimáticos e as tecnologias de biorreatores para analisar, operar, projetar e otimizar processos biotecnológicos com aplicação prática na produção de produtos energéticos (biocombustíveis e coprodutos).

Objetivos Específicos:

Para alcançar o objetivo geral, é esperado do aluno:

- Ser capaz de descrever um processo biológico genérico;
- Conhecer as potencialidades de aplicação industrial de processos biológicos;
- Conhecer os fundamentos de cinética química e enzimática e de biocatálise orgânica;
- Conhecer os principais tipos de biorreatores industriais, suas potencialidades e aplicações;
- Conhecer as equações e as etapas de projeto dos principais tipos de biorreatores industriais.

VIII. CONTEÚDO PROGRAMÁTICO

Conteúdo Teórico:

- Introdução;
- Processos biológicos: conceitos, definições e aplicações;
- Cinética química;
- Reações enzimáticas em fase homogênea e heterogênea;
- · Biocatálise orgânica;
- Cinética de enzimas alostéricas;
- · Biorreatores: tipos, projeto, scale up;
- Reatores industriais e aplicações na área de energia.

Conteúdo Prático:

N/A

IX. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

Estudo dirigido. A bibliografia e o material de apoio relacionados a cada item do conteúdo teórico serão indicados e atividades tais como elaboração de trabalho escrito, resolução de lista de exercícios ou apresentação/arguição oral serão solicitadas para realização/entrega em prazo devidamente acordado. A plataforma Moodle-UFSC será o principal meio utilizado para a realização do estudo dirigido. Encontros presenciais serão realizados para esclarecimentos acerca do conteúdo teórico, apresentação e entrega de trabalhos, realização de avaliações e outros, conforme necessário ou solicitado pelas partes.

X. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

- A avaliação do rendimento escolar na disciplina compreenderá a verificação da realização e do aproveitamento nas atividades propostas nos estudos.
- É obrigatória a realização de todas as atividades propostas.
- Cada atividade receberá nota entre zero (0) e dez (10).
- A média das notas das atividades (NA) realizadas terá peso quatro (4) no cálculo da nota final (NF) da disciplina.
- Será realizada uma (1) prova escrita ao final do semestre que poderá receber nota entre zero (0) e dez (10). Essa nota (NP) terá peso dois (2) no cálculo da nota final (NF) da disciplina. A avaliação poderá conter questões objetivas, objetivas mistas e dissertativas.

$$NF = \frac{(NA.4 + NP.2)}{6}$$

- A nota mínima para aprovação na disciplina será 6,0 (seis). (Art. 69 e 72 da Res. nº 17/CUn/1997).
- O aluno com nota final (NF) entre 3,0 e 5,5 terá direito a uma nova avaliação no final do semestre (REC), exceto as atividades constantes no art.70,§ 2º. A nova nota (NF) será calculada por meio da média aritmética entre a média das notas das atividades propostas (NF) e a nota obtida na nova avaliação (REC). (Art. 70 e 71 da Res. nº 17/CUn/1997).

$$NF' = \frac{(NF + REC)}{2}$$

Avaliação Substitutiva

 O pedido de avaliação substitutiva poderá ocorrer somente em casos em que o aluno, por motivo de força maior e plenamente justificado, deixar de realizar a avaliação prevista no plano de ensino. O aluno deverá formalizar pedido na Secretaria Acadêmica do Campus Araranguá.

Avaliação de recuperação

 A avaliação de recuperação (REC) abrangerá todo o conteúdo da disciplina abordado no semestre letivo e será realizada na última semana do semestre letivo.

AULA (semana)	DATA	ASSUNTO	
1ª	11/08 a 16/08/2014	1) Introdução. Processos biológicos: conceitos, definições e aplicações	
2 ª	18/08 a 23/08/2014	Cinética química: Balanços molares.	
3 ^a	25/08 a 30/08/2014	Cinética química: Conversão e dimensionamento de reatores.	
4 ^a	01/09 a 06/09/2014	Cinética química: Cenversad e dimensionamento de reatores. 3) Cinética química: Leis de velocidade e estequiometria.	
5 ^a	08/09 a 13/09/2014	Atividade 1.	
6ª	15/09 a 20/09/2014		
7 ^a	22/09 a 27/09/2014	4) Reações enzimáticas em fase homogênea e heterogênea.5) Biocatálise orgânica, cinética de enzimas alostéricas.	
8 ^a	29/09 a 04/10/2014	Atividade 2.	
9 ª	06/10 a 11/10/2014	Biorreatores: tipos. Fermentação descontínua; Fermentação descontínua alimentada; Fermentação semicontínua; Fermentação contínua.	
10 ª	13/10 a 18/10/2014	 Biorreatores: tipos. Fermentação em estado sólido; Reatores com células imobilizadas; Reatores com enzimas imobilizadas. 	
11 ^a	20/10 a 25/10/2014	Atividade 3.	
12 ª	27/10 a 01/11/2014	6) Biorreatores: projeto e scale up. Agitação e aeração em biorreato Variação de escala; Construção de equipamentos de fermentação.	
13 ª	03/11 a 08/11/2014	Biorreatores: projeto e scale up. Purificação dos produtos biotecnológicos; Aspectos econômicos.	
14 ^a	10/11 a 15/11/2014	Atividade 4.	
15 ª	17/11 a 22/11/2014	 Reatores industriais e aplicações: Operação de instalações industriais de fermentação. 	
16 ª	24/11 a 29/11/2014	Reatores industriais e aplicações: Produção de biocombustíveis e coprodutos.	
17 ^a	01/12 a 06/12/2014	AVALIAÇÃO ESCRITA	
18 a	08/12 a 12/12/2014	AVALIAÇÃO SUBSTITUTIVA E AVALIAÇÃO DE RECUPERAÇÃO	

Obs.: Atendimento aos alunos: terças-feiras à tarde (14:20 às 16:00 h).

XIII. BIBLIOGRAFIA BÁSICA

- 1. FOGLER, H. Scott. Elementos de Engenharia das Reações Químicas. 4. ed. Rio de Janeiro: LTC, 2009. 853p.
- 2. LEVENSPIEL, Octave. Chemical reaction engineering. 3rd ed. John Wiley & Sons, 1999, 684p.
- SHULER, Michael L.; KARGI, Fikret. Bioprocess engineering: basic concepts. 2nd. ed. Upper Saddle River: Prentice Hall PTR, c2002.553p. (Chemical engineering series)
- BORZANI, Walter; SCHMIDELL, Willibaldo; LIMA, Urgel de Almeida; AQUARONE, Eugênio; (Coords.). Biotecnologia industrial: Fundamentos, Vol. 1, Sao Paulo: Edgard Blucher, 2001.
- SCHMIDELL, Willibaldo; LIMA, Urgel de Almeida; AQUARONE, Eugênio; BORZANI, Walter (Coords.). Biotecnologia industrial: Engenharia Bioquímica, Vol. 2, Sao Paulo: Edgard Blucher, 2001.
- LIMA, Urgel de Almeida; AQUARONE, Eugênio; BORZANI, Walter; SCHMIDELL, Willibaldo; (Coords.). Biotecnologia industrial: Processos Fermentativos e Enzimáticos, Vol. 3, Sao Paulo: Edgard Blucher, 2002.
- BNDES e CGEE (Org.). Bioetanol de cana-de-açúcar: energia para o desenvolvimento sustentável, Rio de Janeiro: BNDES, 2008.

XIV. BIBLIOGRAFIA COMPLEMENTAR

- HIMMELBLAU, David Mautner; RIGGS, James B. Engenharia química: princípios e cálculos. 7. ed. Rio de Janeiro: Livros Técnicos e Científicos, 2006. 846p.
- BORGNAKKE, Claus; SONNTAG, Richard Edwin. Fundamentos da termodinamica. 7. ed. São Paulo: Edgard Blucher, 2009. 659p.

OBS: Os livros acima citados constam na Biblioteca Setorial de Araranguá. Outras referências poderão ser incluídas.

Professora Elaine Virmond

Aprovado na Reunião do Colegiado do Campus 12014

Diretor(a) acadêmico(a)

SIAPE: 1606552 Portaria nº 759/2013/GR

The last

States West