

UNIVERSIDADE FEDERAL DE SANTA CATARINA CAMPUS ARARANGUÁ-ARA CURSO DE ENGENHARIA DE ENERGIA PLANO DE ENSINO

SEMESTRE 2015.1

I. IDENTIFIC	CAÇÃO DA DISCIPLINA:			
CÓDIGO	NOME DA DISCIPLINA		RAS-AULA ANAIS	TOTAL DE HORAS-AULA SEMESTRAIS
		TEÓRICAS	PRÁTICAS	
ARA 7324	ATMOSFERA	04	00	72

	HORÁRIO	
TURMAS TEÓRICAS	TURMAS PRÁTICAS	MODALIDADE
05653 - 2. 1620 (2)	ā	Presencial
6. 1420 (2)		

II. PROFESSOR(ES) MINISTRANTE(S) Carla D'Aquino (carla.daquino@ufsc.br)

III. PRÉ-REC	UISITO(S)
CÓDIGO	NOME DA DISCIPLINA
ARA 7113	Química Geral
ARA 7320	Recursos Naturais para Energia

IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA	
Graduação em Engenharia de Energia	

V. JUSTIFICATIVA

Promover o conhecimento básico da composição, processos de circulação e interações da atmosfera, para o entendimento da utilização dos processos atmosféricos como energia antrópica na atmosfera.

VI. EMENTA

Descrição físico-química da atmosfera. Circulação atmosférica. Meteorologia, climatologia e interpretação de cartas sinóticas. Teleconexões e mudanças climáticas globais. Sol e vento como recurso energético. Potencial eólico e solar: coleta e análise de dados.

VII. OBJETIVOS

Objetivos Gerais:

Fornecer subsídio teórico e metodológico para o entendimento da atmosfera, suas interações e influências na superfície terrestre.

Objetivos Específicos:

- Composição da atmosfera;
- Circulação atmosférica e principais processos;
- Interação oceano-atmosfera;
- Atmosfera como fonte de energia;

VIII. CONTEÚDO PROGRAMÁTICO

Conteúdo Teórico:

- Conhecendo a atmosfera;
- Processos e interações;
- Princípios da coleta e análise de dados meteorológicos;
- Tempo e clima;
- Interação oceano atmosfera;
- Teleconexões e mudanças climáticas globais;
- Sol e vento como recurso energético;
- Potencial eólico e solar: coleta e análise de dados.

IX. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

Aula expositiva e dialogada, seminários e exercícios a fim de desenvolver não só o conhecimento em 'ema específico, mas também a capacidade do aluno em assimilar e repassar informações. Aula em campo.

X. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

- A verificação do rendimento escolar compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, ficando nela reprovado o aluno que não comparecer, no mínimo a 75% das mesmas.
- A nota mínima para aprovação na disciplina será 6,0 (seis). (Art. 69 e 72 da Res. nº 17/CUn/1997).
- O aluno com frequência suficiente (FS) e média das notas de avaliações do semestre entre 3,0 e 5,5 terá direito a uma nova avaliação no final do semestre (REC), exceto as atividades constantes no art.70,§ 2º. A nota será calculada por meio da média aritmética entre a média das notas das avaliações parciais (MF) e a nota obtida na nova avaliação (REC). (Art. 70 e 71 da Res. nº 17/CUn/1997).

$$NF = \frac{MF + REC}{2}$$

 Ao aluno que não comparecer às avaliações ou não apresentar trabalhos no prazo estabelecido será atribuída nota 0 (zero). (Art. 70, § 4º da Res. nº 17/CUn/1997)

Avaliações:

<u>Serão feitas 4 avaliações, sendo 2 provas teóricas com peso 4 cada e 1 seminário com peso 1 e um relatório com exercícios, peso 1.</u>

*as provas poderão conter questões objetivas, mistas, ilustrativas e dissertativas.

Avaliação Substitutiva

- O pedido de avaliação substitutiva poderá ocorrer somente em casos em que o aluno, por motivo de força maior e plenamente justificado, deixar de realizar avaliações previstas no plano de ensino. O aluno deverá formalizar pedido de avaliação à Direção do Campus Araranguá dentro do prazo de 3 dias úteis apresentando comprovação.
- A Avaliação Substitutiva deverá englobar todo o conteúdo do semestre e ocorrerá no penúltimo dia de aula, conforme cronograma a seguir.

ALLIA		ACCUNTO	
AULA DATA (semana)		ASSUNTO	
1 ^a	09/03 a 14/03/2015	Introdução. Composição físico química da atmosfera	
2 ª	16/03 a 21/03/2015	Composição físico química da atmosfera e sua estrutura	
3 a	23/03 a 28/03/2015	Balanço de calor na atmosfera	
4 ^a	30/03 a 04/04/2015	Movimentos da terra e a energia solar	
5 ª	06/04 a 11/04/2015	Pressão atmosférica; Prova Teórica 1	
6ª	13/04 a 18/04/2015	Forçantes do movimento atmosférico; Vento	
7 ^a	20/04 a 25/04/2015	O vento como recurso energético – Energia Eólica	
8 ^a	27/04 a 02/05/2015	Instabilidade atmosférica;	
9 ^a	04/05 a 09/05/2015	Massas de ar e frentes Meteorologia	
10 ^a	11/05 a 16/05/2015	SEMINÁRIOS	
11 ^a	18/05 a 23/05/2015	Eventos extremos e seus impactos	
12 ^a	25/05 a 30/05/2015	Saída a campo 1- Estação meteorológica Urussanga	
13 ^a	01/06 a 06/06/2015	Meteorologia e Climatologia	
14 ^a	08/06 a 13/06/2015	Teleconexões e Mudanças Climáticas	
15 ^a	15/06 a 20/06/2015	Saída de campo 2 – Parque eólico; Exercícios	
16 ^a	22/06 a 27/06/2015	Prova Teórica 2; Exercícios	
17 ^a	29/06 a 04/07/2015	Exercícios;	
18 ^a	06/07 a 11/07/2015	AVALIAÇÃO SUBSTITUTIVA e REC	

Obs.: Atendimento aos alunos: quinta 16:20 - 18:00.

DATA	
03/04	Paixão de Cristo e Aniversário de Araranguá
04/04	Dia não letivo
05/04	Páscoa
20/04	Dia não letivo
21/04	Tiradentes
01/05	Dia do Trabalhador
02/05	Dia não letivo
04/05	Dia da Padroeira de Araranguá
04/06	Corpus Christi
05/06	Dia não letivo
06/06	Dia não letivo

XIII. BIBLIOGRAFIA BÁSICA

- 1. BARRY, Roger Graham; CHORLEY, R. J. Atmosfera, tempo e clima. Porto Alegre: Bookman, 2013. xvi, 512 p.
- 2.BURTON, Tony. Wind energy: handbook. 1. ed. New York: John Wiley & Sons, 2001. 617p.
- **3.** SEINFIELD, John H., PANDIS, Spyros N.; **Atmospheric Chemistry and Physics:** from air pollution to climate change. New York: John Willey and Sons, 1998. 1326p.

XIV. BIBLIOGRAFIA COMPLEMENTAR

- 1. CAVALCANTI, Iracema Fonseca de Albuquerque. Tempo e clima no Brasil. São Paulo: Oficina de Textos, 2009. 463p.
- 2. TOLENTINO, Mario; ROCHA-FILHO, Romeu C.; SILVA, Roberto Ribeiro. O azul do planeta: um retrato da atmosfera terrestre. 2. ed. São Paulo: Moderna, 2004. 160p.
- 3. SPIRO, Thomas G.; STIGLIANI, William M. Química Ambiental. 2. ed. São Paulo: Pearson. 2009.
- 4. ALDABO, Ricardo. Energia Eólica. 1. ed. São Paulo:ArtLiber, 2003. 156p.
- 5. GORE, Albert. **Uma verdade inconveniente:** o que devemos saber e fazer sobre o aquecimento global. Barueri: Manole, 2006. 327p.

Obs: Os livros acima citados constam na Biblioteca Setorial de Araranguá ou estão em fase de compras pela UFSC. Algumas bibliografias também podem ser encontradas no acervo da disciplina, impressos ou em CD, disponíveis para consultas em sala.

Carla de Abreu D'Aquino Prof. Auxiliar / SIAPE: 2764022 UFSC / Campus Ararangua

Professora Carla de Abreu D'Aquino

Aprovado na Reunião do Colegiado do Campus 19,03,2015

.....

Direção acadêmica

Prof. Dr. Fernando Henrique Milanese Coordenador do Curso de Graduação

em Engenharia de Energia SIAPE: 1606552 Portaria nº 759/2013/GR