

UNIVERSIDADE FEDERAL DE SANTA CATARINA CAMPUS ARARANGUÁ - ARA

PLANO DE ENSINO

SEMESTRE 2015.2

I. IDENTIFI	CAÇÃO DA DISCIPLINA:			
CÓDIGO	NOME DA DISCIPLINA		RAS-AULA ANAIS PRÁTICAS	TOTAL DE HORAS-AULA SEMESTRAIS
ARA7549	Laboratório de Circuitos Digitais	-	4	72

	HORÁRIO	MÓDULO
TURMAS TEÓRICAS	TURMAS PRÁTICAS	Presencial
	06655 - 2.1830-4	

II. PROFESSOR(ES) MINISTRANTE(S)

Prof. Roderval Marcelino, Dr.

Roderval.marcelino@ufsc.br

III. PRÉ-RE	QUISITO(S)
CÓDIGO	NOME DA DISCIPLINA
	Esta disciplina não possui pré-requisitos

IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

Engenharia de Computação

V. JUSTIFICATIVA

A disciplina de laboratório de circuitos digitais possui uma importante característica de envolver os alunos no mundo real. É uma das primeiras disciplinas que possuem essencialmente caráter prático. Será totalmente realizada em laboratório fazendo o aluno ter o contato com instrumentos de medição elétrica, componentes eletrônicos e circuitos digitais diversos.

VI. EMENTA

Desenvolvimento de atividades práticas que permitam explorar os fundamentos, conceitos e técnicas relativas em circuitos digitais.

VII. OBJETIVOS

Objetivo Geral:

Esta disciplina deverá abordar aspectos práticos circuitos digitais e explorando os equipamentos e componentes do mundo real.

Objetivos Específicos:

- Colocar os alunos em contato com componentes eletrônicos reais;
- Utilizar equipamentos de medição de sinais eletrônicos como multímetros, geradores de funções, fontes de alimentação e osciloscópios;
- Montar em placa eletrônica universal circuitos digitais clássicos;
- Estudar os componentes eletrônicos básicos da eletrônica
- Medir e avaliar circuitos digitais
- Projetar circuitos digitais para soluções de problemas digitais

VIII. CONTEÚDO PROGRAMÁTICO

UNIDADE 1: Medidas Elétricas [8 horas-aula]

- Apresentar os conceitos fundamentais de medidas elétricas
- Estudar e utilizar multímetro (tensão, corrente, resistência, etc)
- Utilizar fontes de alimentação estudando suas características e cuidados
- Utilizar geradores de função
- Utilizar osciloscópios

UNIDADE 2: Componentes Eletrônicos [8 horas-aula]

- Características técnicas, comerciais e de montagem de resistores
- Características técnicas, comerciais e de montagem de capacitores
- Características técnicas, comerciais e de montagem de diodos
- Características técnicas, comerciais e de montagem de transistores
- Características técnicas, comerciais e de montagem de circuitos integrados

UNIDADE 3: Montagem de Circuitos Digitais Combinacionais. [30 horas-aula]

- Portas Lógicas
- Projeto de circuitos lógicos combinacionais
- Codificadores e decodificadores

UNIDADE 4: Montagem de Circuitos Digitais Sequenciais. [30 horas-aula]

- Flip-fllops
- Registradores de deslocamento
- Contadores
- Multiplex/demultiplex
- Conversor analógico/digital e digital/analógico
- Memórias

IX. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

- Aulas práticas: desenvolvidas em laboratório específico de circuitos digitais com equipamento apropriado e materiais de consumo.
- Todo o material didático estará disponível "a priori" para os alunos no Ambiente Virtuais de Aprendizagem (AVA) da disciplina (HTTP://moodle.ufsc.br) e atualizados de maneira progressiva ao longo do semestre.
- Atividades, trabalhos e listas de exercícios disponíveis no AVA. Em alguns casos se apresenta a solução na web dos exercícios.

X. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

A verificação do rendimento escolar compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, no mínimo a 75% das mesmas (Frequência Suficiente - FS), ficando nela reprovado o aluno que não comparecer a mais de 25% das atividades (Freqüência Insuficiente - FI).

Serão realizadas diversas atividades práticas sendo que as mais relevantes serão avaliadas pelo professor em formulário de roteiro de atividades

A média das atividades práticas será feita através de média aritmética convencional. Soma-se as notas das tarefas entregues e divide-se pelo número de atividades práticas submetidas para avaliação. A nota do roteiro de atividade também está condicionada ao comportamento técnico e ao funcionamento da montagens realizadas.

A nota mínima para aprovação na disciplina será MF>=6,0 (seis) e Frequência Suficiente (FS). (Art. 69 e 72 da Res. nº 17/CUn/1997).

O aluno com Frequência Suficiente (FS) e média das notas de avaliações do semestre MF entre 3,0 e 5,5 NÃO terá direito a uma nova avaliação no final do semestre (REC) de acordo com o art.70, § 2º. A Nota Final (NF) será calculada por meio da média aritmética entre a média das notas das avaliações parciais. (Art. 70 e 71 da Res. nº

Ao aluno que não comparecer às atividades práticas ou não apresentar trabalhos no prazo estabelecido será atribuída nota 0 (zero). (Art. 70, § 4º da Res. nº 17/CUn/1997)

Observações:

Avaliação de recuperação

Não há avaliação de recuperação nas disciplinas de **caráter prático** que envolve atividades de laboratório. (Res.17/CUn/97).

Nova avaliação

Pedidos de segunda avaliação somente para casos em que o aluno, por motivo de força maior e plenamente justificado, deixar de realizar avaliações previstas no plano de ensino, e deverá ser formalizado via requerimento de avaliação à Secretaria Acadêmica do Campus Araranguá dentro do prazo de 3 dias úteis apresentando comprovação. (Ver formulário)

AULA (semana)	DATA	ASSUNTO	
1 ^a	10/08/15 a 15/08/15	INTRODUÇÃO- Medidas Elétricas	
2ª	17/08/15 a 22/08/15	UNIDADE 1: Apresentar os conceitos fundamentais de medidas elétricas Estudar e utilizar multímetro.	
3ª	24/08/15 a 29/08/15	UNIDADE 1: Utilizar fontes de alimentação estudando suas características e cuidados. Utilizar geradores de função. Utilizar osciloscópio.	
4 ª	31/08/15 a 05/09/15	UNIDADE 2: Características técnicas, comerciais e de montagem de resistores, capacitores e diodos.	
5 ^a	07/09/15 a 12/09/15	Dia Não letivo	
6ª	14/04915 a 19/09/15	UNIDADE 2: Características técnicas, comerciais e de montagem de transistores e circuitos integrados.	
7ª	21/09/15 a 26/09/15	UNIDADE 3: Portas Lógicas	
8 ^a	28/09/15 a 03/10/15	UNIDADE 3: Projeto de circuitos lógicos combinacionais	
9 ^a	05/10/15 a 10/10/15	UNIDADE 3: Codificadores e decodificadores	
10 ^a	12/10/15 a 17/10/15	Dia não letivo	
11 ^a	19/10/15 a 24/10/15	UNIDADE 4: Flip-fllops	
12ª	26/10/15 a 31/10/15	UNIDADE 4: Registradores de deslocamento	
13ª	02/11/15 a 07/11/15	Dia não letivo	
14ª	09/11/15 a 14/11/15	UNIDADE 4: Contadores/ Contadores e displays/ Contadores e XOR	
15ª	16/11/15 a 21/11/15	UNIDADE 4: 555 com contador/ fazer um contador que ao chegar a 10 aciona um rele	
16ª	23/11/15 a 28/11/15	UNIDADE 4: Conversor digital/analógico	
17ª	30/11/15 a 05/12/15	UNIDADE 4: Projeto final	
18ª	07/12/15 a 12/12/15	UNIDADE 4: Projeto final	

XII. Feriados previstos para o semestre 2015.1:

DATA	
07/09/2015	Independência do Brasil
12/10/2015	Nossa Senhora Aparecida
28/10/2015	Dia do Servidor Público
02/11/2015	Finados
14/11/2015	Não letivo
25/12/2015	Natal

XIII. BIBLIOGRAFIA BÁSICA

TOCCI, RONALD J.; WIDMER, NEAL S.; MOSS, GREGORY L. Sistemas Digitais: Princípios e Aplicações 11ª edição. São Paulo: Pearson.

BIGNELL, J. W. e DONOVAN, R. L.. Eletrônica Digital. Volumes 1 e 2, São Paulo: Makron Books.

FLOYD, "Sistemas Digitais: Fundamentos e aplicações", Bookman, 2007.

XIV. BIBLIOGRAFIA COMPLEMENTAR:

CAPUANO, Francisco G.. Exercícios de Eletrônica Digital. São Paulo: Érica.

MALVINO, A. P. e LEACH, D. P.. Eletrônica Digital – Princípios e Aplicações. Volumes 1 e 2, São Paulo: McGraw-Hill, 1987

ZUBIA, J.G. Problemas Resueltos de Electrónica Digital – Paso a Paso. Thomson.

PEDRONI, Volnei. Eletrônica Digital Moderna e VHDL:Princípios Digitais, Eletrônica Digital, Projeto Digital, Microeletrônica e VHDL. Sãp Paulo. Campus. ISBN: 9788535234657

D'AMORE, ROBERTO, "VHDL - DESCRIÇÃO E SINTESE DE CIRCUITOS DIGITAIS", LTC, ISBN: 8521620543, ISBN-13: 9788521620549, 2ª edição, 2012.

Os livros acima citados constam na Biblioteca Universitária e Setorial de Araranguá. Algumas bibliografias também podem ser encontradas no acervo da disciplina, via sistema Moodle.

Aprovado na Reunião do Colegiado do Curso 10106166

Prof. Roderval Marcelino

Coordenação

Anderson Luiz Fernandes Peres 1 Prof. Adjunto/SIAPE: 1635-63 UFSC/Campus Arurangs a