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A B STR A C T

The existence of a gap between classical (theoretical) and real job shop scheduling 

problems has been reported by several authors

Local search procedures (e.g., tabu search and simulated annealing) and genetic 

algorithms have yielded very good results in classical job shop scheduling problems. However, 

these techniques present poor modeling abilities and very few applications including real 

production environment constraints have been reported. Moreover the search spaces 

considered in those few real world applications are usually incomplete and the real constraints 

included are small in number and environment dependent.

This work presents a robust hybrid genetic framework to solve job shop scheduling 

problems with large number of real world constraints, such as jobs with several subassembly 

levels, alternative processing plans for parts and alternative resources for operations, 

requirement of multiple resources to process an operation (e.g., machine, tools, fixtures, 

personnel), resource calendars, batch overlap, operation and job ready times, and sequence 

dependent setups. Also, the approach considers multiobjective evaluation functions.

The system uses modified schedule generation algorithms, which incorporate several 

decision support heuristics, to obtain a set of initial solutions. Each initial solution is enhanced 

by a local improvement procedure. Then a hybrid genetic algorithm, which incorporates a local 

hill climbing procedure, is applied to the set of local optimum schedules.

In order to support constraints and objectives of real production environments several 

modifications are proposed in the active and non-delay schedule generation algorithms, in the 

solution representation scheme and neighborhood structure of local search procedures, and in 

the genetic algorithm operators. Several tailored heuristics to be embedded in the basic 

algorithms are also proposed and analyzed.

The work is expected to reduce the gap between scheduling theory and practice, by 

enabling high performance scheduling techniques (constructive heuristics, local search 

procedures and genetic algorithms) to support real production environments.
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CHAPTER 1 

INTRODUCTION

1.1. SCHEDULING PROBLEMS

Scheduling is the allocation of resources over time in order to perform a set of 

operations and meet certain objectives while respecting a set of constraints. Scheduling 

problems appear in several areas. For instance, consider the scheduling of programs on 

computers, cars to be repaired in a garage, professors to classes in schools, physicians 

and nurses to patients in hospitals, production resources to jobs in manufacturing plants, 

etc.

In industrial scheduling problems a set of resources (e.g., machines, tools, 

personnel, fixtures) must be assigned over time to a set of operations in order to minimize 

some cost function. Industrial scheduling has been widely studied since the pioneering 

work of Johnson (1954) who proposed efficient algorithms for makespan minimization in 

problems of two and three stages. This thesis deals with the general make-to-order job 

shop scheduling problem which will be defined later.

The scheduling function is in the domain of production planning and control (PPC). 

The PPC can be decomposed in four interrelated levels:

1. Master production plan. The master production plan is generated based on 

demand forecasts (in make-to-stock production environments) and customer 

orders (in make-to-order manufacturers). The master plan tells the quantity and 

due date for each product.

2. Material and capacity requirements planning. A set of purchase and 

production orders must be elaborated to accomplish the master production plan. 

Also, an aggregate analysis of resource capacities and requirements is performed 

to guarantee the feasibility of the production plan.

3. Production Scheduling. Once the due dates and quantities for all products as 

well as the ready time for all orders, raw materials and components are
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established, the resources must be assigned over time to perform operations in 

order to meet the production objectives (e.g., reduce work in process, minimize 

tardy jobs, etc.).

4. Shop control. A data collection and feedback system is used to control and 

monitor the execution of the production scheduling.

This work regards mainly to the third level, although the proposed system can also 

be used to aid the joint determination of material requirements, capacity planning, and 

production scheduling through what-if simulation.

Classifications for scheduling problems according to several criteria were reported 

by Graves (1981) and by Maccarthy and Liu (1993). Basically, scheduling problems are 

classified according to the following criteria:

1. Demand generation (make-to-order vs. make-to-stock): In make-to-order 

environments customers directly request the production orders. In make-to-stock 

environments production orders are generated based on demand forecasts and 

inventory replenishment policies, and scheduling also involves the determination 

of lot sizes.

2. Job processing and environment complexity. The scheduling problem 

taxonomy of figure 1.1 covers the majority of classical scheduling problems:

One-operation jobs;

single machine

parallel machines 

open shop

y  general flow shop 

Multi-operation job s___► flow shop

permutation flow shop

1 job shop

Figure 1.1. Scheduling Problem Taxonomy
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One-operation jobs are jobs composed of only one operation. In one-operation, 

single machine problems all the operations must be executed on the same 

machine. In one-operation, parallel machines problems each operation can be 

processed on one of a set of identical or similar machines. A multi-operation job is 

composed of a set of operations, each operation processed on a different 

machine. In a flow shop all the multi-operation jobs have the same order of 

processing through the machines, i.e., all jobs have the same processing route. 

When a feasible solution to a flow shop scheduling problem requires all machines 

to process the same sequence of jobs, we have a permutation flow shop. The flow 

shop is only a particular case of the job shop problem, the most general 

scheduling problem. In a job shop each job can be processed by a different (but 

predefined) sequence of machines. An open shop scheduling problem occurs if 

the set of operations that composes a job can be processed in any sequence, i.e., 

when there is no predefined job processing route.

3. Performance measure: A number of performance measures have been used to 

evaluate the scheduling quality. They can be classified as:

• Criteria based on due dates: Maximum and mean tardiness, maximum and 

mean lateness, number of tardy jobs, etc. (Sen and Gupta, 1984).

• Criteria based on resource utilization/flow time: Minimum and maximum 

completion time, minimum and maximum flow time, work in process level, etc.

• Cost-based criteria: mean income loss, work in process cost, profit 

maximization, etc. (Benton, 1993).

• Multi-criteria: analytical combination of single criteria or dominance analysis 

can be used to evaluate schedule quality according to more than one single 

criterion (Itoh, Huang and Enkawa, 1993; Daniels and Chambers, 1990; Sen 

and Gupta, 1984).

A performance measure can also be classified as regular or non-regular. A 

regular performance measure can not be improved by delaying the completion of 

a job.
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4. Dynamic nature of the production environment (dynamic vs. static 

environment): In a static environment the scheduling data (orders, resource 

availabilities, processing plans, etc.) are not allowed to change during the 

scheduling execution, i.e., new orders are not added and specifications are not 

altered during the scheduling execution. In a dynamic environment new orders 

can be added and specifications can change during the scheduling execution.

5. Data specification (deterministic vs. stochastic data): Problem data such as 

operation execution times and demand forecasts (in make-to-stock 

manufacturers) may be considered deterministic or stochastic.

Most scheduling problems are classified as NP-complete combinatorial search 

problems (Lenstra and Shmoys, 1995; Garey, 1979; King & Spachis, 1980; Goyal & 

Sriskandarajah, 1988), which means that the time required to find the solution 

exponentially increases with the problem size. There is no determinist algorithm able to 

solve a NP-complete problem in polynomial time. Hence heuristics able to find good 

solutions in reasonable amount of time are required. The computational complexity issue 

is addressed in the following section.

1.2. COMBINATORIAL SEARCH PROBLEMS

Solving a combinatorial search problem is to find one solution that satisfies a set 

of constraints among a very large but finite set of possible solutions (Karp, 1986). Well 

known examples of combinatorial problems are scheduling, routing, knapsack, 

assignment, VLSI circuit layout, Eulerian walk, Hamiltonian circuit, graph coloring, and 

satisfiability problems, among thousands of others.

Combinatorial search problems can be decision or optimization problems. Solving 

a decision problem requires only an answer to a yes or no question (e.g., is there any 

Hamiltonian circuit in a given graph?). Instead, solving an optimization combinatorial 

problem requires finding one arrangement among a set of feasible arrangements (e.g., 

determine the schedule that minimizes the makespan). Nevertheless, it is always 

possible by using simple tricks to transform an optimization problem in a decision
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problem. This allows all combinatorial problems to be treated as decision problems 

without loss of generality.

Some combinatorial problems are easy and very efficient algorithms are available 

to solve them (e.g., Eulerian walk problem), while others extremely hard and solving them 

can require huge and impracticable computation effort (e.g, most scheduling problems). 

A problem is called tractable if it can be solved in a number of steps bounded by a 

polynomial in the size of its input (Edmonds, 1965), and intractable otherwise. For 

instance, several sorting methods are usually bounded by n2 steps, where n is the 

number of elements to be sorted. Therefore sorting problems are tractable. Other 

problems (like scheduling problems) are bounded by an, n!, etc., and therefore are 

intractable.

Informally, a problem is in class P if it is tractable. Precisely, P is the set of all 

decision problems solvable in polynomial time. A formal formulation of this and other 

concepts presented in this section is beyond the scope of this thesis. They can be found 

in the book by Garey and Johnson (1979).

A decision problem D1 is reducible to a decision problem D2 if and only if problem 

D1 can be transformed in D2 by a polynomial time function. Therefore if D2 is in P then 

D1 will also be in P.

NP (non-deterministic polynomial) is the class of decision problems that are 

checkable in polynomial time, i.e., given a solution, one can check if the solution is correct 

in polynomial time. Of course all problems in P are also in NP, that is, PcNP. The 

question if P=NP has not been answered yet. However, it is highly probable that they are 

not the same set, because if P=NP finding a solution and checking a solution would 

present the same difficulty and this is not an appealing idea.

A decision problem D is NP-complete if it lies in NP and if all problems in NP are 

reducible to D. It means that if a polynomial algorithm exists to solve a NP-complete 

problem, then all others will also be solved in polynomial time. However, we must not 

expect this to happen. Instead, heuristics that find good (but not guaranteed optimal) 

solutions must be developed to overcome this likely inherent intractability of NP-complete
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problems. The NP-complete problems are the most difficult combinatorial problems. The 

absolute majority of the scheduling problems are NP-complete. The list of known NP- 

complete problems is very large, containing hundreds of problems (Garey and Johnson, 

1979).

1.3. THEORETICAL AND REAL JOB SHOP SCHEDULING PROBLEMS

The existence of a gap between scheduling theory and practice has been reported 

by several authors (Maccarthy and Liu, 1993; Mckay, Safayeni and Buzacon, 1988; 

Graves, 1981; Candido et al, 1995). A large number of benchmark job shop scheduling 

problems have been proposed by several authors for comparison purposes (Fisher and 

Thompson, 1963; Tailllard, 1993; Drummond, 1996; Adams, Balas and Zawack, 1988; 

Applegate and Cook, 1991). Most of these problems, as well as most of the scheduling 

research performed so far do not consider some important issues of the real job shop 

(e.g., they usually consider the requirement of only one resource per operation). These 

theoretical benchmark problems are here named classical job shop scheduling problems 

as opposed to real job shop scheduling problems which this thesis intends to solve.

In the classical job shop scheduling problem (JSSP), a set of n jobs is processed 

on m machines. Each job is composed of a set of operations that have to be processed 

in a prespecified order. The problem is to find the best sequence of operations on each 

machine in order to minimize the maximum completion time (makespan) or any other 

single regular performance measure (Baker, 1974) without violating the precedence 

constraints. This problem was proved to be NP-complete. The following assumptions are 

adopted when dealing with classical JSSP:

• All the machines and jobs are available at time zero.

• Each machine can process only one operation at a time.

• There is only one unit of each machine type.

• A machine is the unique resource required to process an operation.

• Buffer space for work in process (WIP) is unlimited.

• Operation preemption is not allowed, i.e., once initiated, an operation must be 

completed before another operation be started on the same machine.

• Batch overlap is not allowed, that is, each batch is treated as a single unit.
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. • The environment is static, i.e., new jobs are not inserted in the scheduling during its 

execution and no machine breakdowns occur.

• All problem data are deterministic.

• Each job corresponds to only one part, i.e., bill of materials and assembly situations 

are not allowed.

A large variety of constraints and relaxations must be added to classical JSSP in 

order to represent real production environments. The number and type of constraints 

depend on the environment under consideration. It is impractical to design an universal 

scheduling system that considers all the characteristics of every production environments. 

Nevertheless, some constraints and alternatives have a high frequency of occurrence in 

real job shop environments. A scheduling system which models these commonly 

encountered characteristics would be able to solve a large number of industrial job shop 

scheduling problems that rise in practice. We include the following characteristics in a 

relevant subset of real constraints and alternatives:

• Several sub-assembly levels, i.e., existence of a bill of material for each product (job) y

• Additional renewable resources requirements to perform an operation (e.g., tools, 

fixtures, manpower)

• Alternative processing plans for each job: technologically different operation 

sequences or/and flexible precedence constraints on an operation sequence. ^

• Alternative machines with possible different setup and processing times for each J  

operation

• Machine, tool, fixture and staff calendar (e.g. preventive maintenance, staff training ) j

• Ready times for raw material and purchased components ^

• Sequence dependent setup times ^

• Batch overlap (different operations of the same batch being performed simultaneously)

• Batch splitting and grouping

• Limited buffer space associated to each machine/work cell

• Upper and lower bounds to the waiting time of some operations



• Existence of transportation times and constrained availability of material handling 

devices

A system that intends to deal with a large number of real job shops must consider 

the above constraints and also be able to deal with multicriteria evaluation functions and 

work under dynamic conditions.

1.4. THESIS GOAL AND STRUCTURE

As it will be shown in next chapters, knowledge based systems and dispatching 

rules embedded in simulation models are the approaches that better represent real 

environment constraints. However, their performance in terms of evaluation criteria are 

usually worse than the performance obtained by local search procedures (like simulated 

annealing and tabu search), genetic algorithms, and tailored heuristics (like the shifting 

bottleneck procedure). On the other hand, the latter algorithms have poor modeling 

abilities and very few applications including real production environment constraints have 

been reported. The search spaces considered in those few real world applications are 

usually incomplete and the real constraints included are small in number and environment 

dependent.

This thesis intends to develop a robust framework using local search and genetic 

algorithms, beyond constructive heuristics, to deal with real make-to-order job shop 

scheduling problems. A large number of real world constraints are considered in the 

proposed model, such as jobs with several subassembly levels, alternative processing 

plans for parts and alternative resources for operations, requirement of multiple resources 

to process an operation (e.g., machine, tools, fixtures, staff), job and operation ready 

times, resource calendars, batch overlap and sequence dependent setups. Also, the 

approach considers multiobjective evaluation functions. To achieve this goal, a number 

of modifications are proposed in the active and non-delay schedule generation 

algorithms, in the solution representation scheme and neighborhood structure of local 

search procedures, and in the genetic algorithm operators. Several tailored heuristics to 

be embedded in the basic algorithms are also proposed and analyzed.
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Therefore, it is expected a reduction of the gap between scheduling theory and 

practice, by enabling high performance scheduling techniques to support real production 

environments.

The thesis is organized as follows. Chapter two reviews the literature in the make- 

to-order job shop scheduling problem. Chapter three briefly describes Local Search and 

Genetic Algorithms and how they have been used to solve scheduling problems. In 

chapter four the models developed in this thesis to solve real JSSP are presented. 

Simulation results related to the proposed system are reported in chapter five. Finally, 

conclusions and further research suggestions are addressed in chapter six.
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CHAPTER 2

APPROACHES TO SOLVE JOB SHOP SCHEDULING PROBLEMS

2.1. INTRODUCTION

A large amount of work in JSSP has been reported over the past three decades 

using several approaches: optimal methods, dispatching rules, constraint-based 

intelligent systems, Lagrangian relaxation, neural networks, tailored heuristics, tree 

search techniques, Petri nets, control theory, inductive learning models, local search 

procedures and genetic algorithms. A study comparing some of these techniques was 

presented by Tsang (1995). A number of good surveys and books have also been 

published (Pinson, 1995; B^ker, 1974; Maccarthy and Liu, 1993; Graves, 1981; King and 

Spachis, 1980; Rodammer and White, 1988; Sen and Gupta, 1984; Cândido et al, 1995; 

Parker, 1995; Sule, 1996; Blazewicz et al, 1994; Zweben and Fox, 1994; Mattfeld, 1996; 

French, 1982; Brucker, 1995). These surveys are very useful due to the extraordinary 

amount of research developed in this area. However, most of them are focused on 

specific approaches (e.g., operational research, knowledge-based systems, etc.).

In this chapter a brief review of the different approaches to solve JSSP is 

presented. Two major classes of techniques can be distinguished: optimal methods and 

approximation methods.

2.2. OPTIMAL APPROACHES

The optimal approaches usually utilized by operational research scientists are 

used only to solve small instances of classical job shop scheduling problems due to the 

inherent intractability of the problem. The most used techniques are branch and bound, 

mixed integer programming and dynamic programming (King and Spachis, 1980). The 

best results achieved so far are due to Applegate and Cook (1991); Brucker, Jurisch and 

Sievers (1994); and Carlier and Pinson (1989, 1991, 1994). In these attempts 

sophisticated branch and bound methods based on disjunctive graph formulation were 

used to minimize makespan in classical JSSP. They solved small benchmark problems 

(e.g., 10x10 job shop of Muth and Thompson) in a reasonable amount of time, but (as
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expected) they failed to solve medium and large problems in a reasonable time. Basically 

the branch and bound methods differ with respect to the elimination rules, the branching 

schemes, the bounding mechanisms, and the calculation of lower bounds in the search 

tree.

Good lists of scheduling problems solved by optimal methods are found in 

Maccarthy and Liu (1993) and in Vaca (1995). Other interesting applications of optimal 

methods are described by Sarin, Ahn and Bishop (1988), Alidaee (1993), Schrape and 

Baker (1978), and Gascon and Leachman (1988).

2.3. APPROXIMATION APPROACHES

Approximation methods or heuristics attempt to find good (but not necessarily 

optimal) solutions in a reasonable computational time. In a wide sense, heuristics can be 

defined as algorithms whose convergence to an optimal or even feasible solution can not 

be guaranteed. A review of application areas for heuristics, morphologic classifications 

and methodologies to design them are explained by Muller-Merbach (1981).

Because JSSP is NP-complete, a great research effort has been applied over the 

last three decades in the development of good scheduling heuristics. Many of these non- 

optimal heuristic techniques can deal with large problems (intractable for optimal 

techniques) in reasonable computational time. Note that heuristics can be developed to 

solve general or specific (environment-dependent) scheduling problems (He, Yang and 

Deal, 1993; Han and Dejax, 1991; Hertz and Widmer, 1989).

The main non-optimal techniques used to solve job shop scheduling problems are 

presented next. Special attention will be given to the so called metaheuristics which 

include local search and genetic algorithms.
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2.3.1. Dispatching Rules

Dispatching rules are probably the most popular method in the scheduling of 

complex real job shops, and are very often embedded in schedule generation algorithms 

(see chapter 3) and in commercial scheduling packages.

Dispatching rules determine the operation to be processed next on a given 

resource among a set of schedulable operations. When a non-delay schedule generation 

algorithm is being adopted, the set of schedulable operations corresponds to a queue of 

tasks on the machine input buffer. Excellent surveys about dispatching rules were 

published by Blackstone, Phillips and Hogg (1982), Baker (1974), and Bertrand (1983). 

Dispatching rules are easy to implement and are computationally inexpensive. They can 

be based on processing times (e.g., SPT - Shortest Processing Time), due dates (e.g., 

EDD - Earliest Due Date), costs (e.g., margin profit based rule), or any other 

characteristic of the production environment. Rules obtained by the combination of single 

rules have also been applied. Dispatching rules can be classified as local or global rules. 

Local rules look at each machine individually while global rules dictate which operation to 

be scheduled next based on the entire shop status.

The performance of a dispatching rule depends not only on the evaluation function 

being used but also on a number of interconnected factors such as due date assignment 

method, tightness of due dates, machine loading level or job arrival rate, truncation 

method applied in certain rules, and production environment type (Blackstone, Phillips 

and Hogg, 1982; Baker, 1984; Bertrand, 1983; Kaplan and Unal, 1993; Bertrand, 1983; 

Ahiro, Isoda and Awane, 1984; Kannan and Ghosh, 1993).

2.3.2. Knowledge Based Systems

Since the middle eighties many knowledge based systems using constraint 

propagation techniques have been developed (Atabakhsh, 1991; Zweben and Fox, 1994; 

Rodammer and White, 1988; Kanet, 1987). Well known examples of these “intelligent” 

scheduling systems are ISIS (Fox and Smith, 1984), OPIS (Smith, 1994), OPAL
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(Bensana, 1988), SOJA (Le Pape, 1985), Micro-Boss (Sadeh, 1994), ILOG (Le Pape,

1995), IxTeT (Laborie and Ghallab, 1995), among others.

These systems are able to deal with real instances of scheduling problems, i.e., 

several of the modeling requirements of real production environments described in 

chapter 1 are taken into account by knowledge based systems. Nevertheless they 

present high development cost and time, and their performances often depend on the 

performance of a human specialist (which is likely of low quality in a combinatorial 

situation). Moreover, the applications already implemented are usually environment- 

dependent and therefore general conclusions are difficult to draw.

2.3.3. Neural Networks

Recently a few feedback neural networks have been used to solve scheduling 

problems (Gallone, Chapillet and Alexandre, 1995; Peterson and Soderberg, 1993; Lo 

and Bavarian, 1991). Classical JSSPs were solved with a neural network based on the 

Hoppfield model implemented by Satake, Morikawa and Nobuto (1993). Chang and Jeng 

(1995) proposed an interesting neural network model to solve large instances of job shop 

scheduling problems.

Feedforward neural networks have also been used in hybrid scheduling systems 

as the ones developed by Sim, Yeo and Lee (1994), and by Rabelo et al (1993).

2.3.4. Lagrangian Relaxation

Lagrangian relaxation is a technique suitable to find lower bounds in combinatorial 

minimization problems. Basically, we take the primary integer formulation of the problem 

and relax some constraints into the objective function by attaching Lagrange multipliers to 

them. The relaxed problem (called LLBP - Lagrangian Linear Bound Program) is solved to 

optimality and a Lagrangian heuristic is applied to convert the LLBP solution into a 

feasible one (Beasley, 1993).
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Lagrangean relaxation is a promising tool to deal with JJSP. Good results have 

been obtained by Hoitomt, Luh and Pattipati (1993), Luh and Hoitomt (1993), Chang and 

Chien (1993), Czerwinski and Luh (1994), Chen and Hsia (1994), Dobson and Khosla 

(1995), and Chen, Chu and Proth (1995). Some of these works consider a few of the real 

world constraints described in chapter 1, such as products with bill of materials and 

requirement of multiple resources per operation.

Lagrangian relaxation could also be classified as one of the simplified optimal 

approaches described next.

2.3.5. Simplified Optimal Approaches

Such models usually interrupt the search for the optimal solution after a certain 

CPU time, returning the current upper bound (King and Spachis, 1980), or reduce the 

search space by including a set of additional constraints (e.g., Bestwick and Lockyer, 

1979). Relaxing constraints, modifying coefficients and decomposing the problem (e.g., 

Ghosh and Gaimon, 1993; Serafini and Speranza, 1994; Raman and Talbot, 1993) are 

other tricks that simplify the original problem and allow the application of optimal 

approaches.

A high performance procedure, which can be viewed as a truncated branch and 

bound algorithm, is the well-known shifting bottleneck procedure (Adams, Balas and 

Zawack, 1988). The algorithm ingeniously divides the scheduling problem into a set of 

one machine optimization and reoptimization problems.

Obviously, reaching the optimal solution can not be guaranteed by these 

approaches.

2.3.6. Local Search and Genetic Algorithms (Metaheuristics)

A number of research efforts have shown the high performance of local search 

procedures and hybrid genetic algorithms for solving small and large job shop scheduling 

problems. These algorithms are also called metaheuristics.
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The most commonly used metaheuristics for scheduling purposes are genetic 

algorithms (Goldberg, 1989), tabu search (Glover and Laguna, 1993) and simulated 

annealing (Kirkpatrick, Gelatt and Vecchi, 1983). The theoretical basis of these 

techniques are described in chapter three. Applications of other local search techniques 

to JSSPs (e.g., threshold acceptance) have also been reported (Dueck and Scheuer, 

1990; Aarts et al, 1994; Lin, Haley and Sparks, 1995).

Genetic algorithms and feedback neural network have strong similarities with local 

search procedures and many authors consider them special cases of local search 

procedures. This section conducts a literature review with respect to the use of 

metaheuristics for JSSPs. Special attention is addressed to GA approaches.

When dealing with local search algorithms, one must define a representation 

scheme and a neighborhood structure. Moving operators provide moves from the current 

solution to a neighboring one. The neighborhood structure can be analyzed in its 

completeness and uniqueness. The completeness regards to the capability of 

representing all feasible active schedules and the uniqueness concerns to the unique 

correspondence between a schedule and its representation. A representation is complete 

if it can represent all active schedules and is unique if for each schedule corresponds only 

one representation. A representation is redundant if each schedule can have more than 

one representation. A move in the neighborhood is considered legal or illegal if it yields 

feasible or infeasible solutions respectively. The schedule builder (also called decoding 

procedure) is an important external element that performs the mapping from the 

representation to the schedule itself. Depending on the application, part of the search 

procedure is performed by the schedule builder. Classical schedule builders are the semi­

active, active and non-delay ones. All these concepts are detailed in chapter three.

Concerning to the search space topology for classical JSSP, a good analysis was 

performed by Mattfeld and Bierwirth (1996). Studying the "fitness landscape" of hard and 

easy benchmark problems, the authors addressed that the landscapes are difficult to
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search for local search algorithms because the local optima are widely spread. However, 

the smoothness of the neighborhood suggests the use of adaptive search.

2.3.6.1 Genetic Algorithm (GA)

A large number of applications of GA for JSSP have been published over the last 

decade. Most of these genetic algorithms were proposed to solve the classical JSSP or 

small variations of the classical problem (Yamada and Nakano, 1995; Kim and Lee, 1994; 

Fang, Ross and Come, 1993; Aarts et al, 1994; Mattfeld, 1996; Croce, Tadei and Volta, 

1995; Park and Park, 1995; Bierwirth, 1994; Biegel and Davern, 1990; Bierwirth, Mattfeld 

and Kopfer, 1996; Falkenauer and Bouffouix, 1991; Reeves, 1995; Whitley, 1991). They 

differ from one another mainly in the representation schemes, in the schedule builder 

ability and responsibility, in the genetic operators, in the hybridization level with other 

heuristics (commonly used to generate high quality initial solutions or to improve previous 

generated solutions), and in the performance measure adopted. Many of these works 

have designed experiments to compare different operator types and rates, and 

representational schemes.

Related to the representations, one can use direct or indirect representation. In 

the direct representation (Bruns, 1993) the chromosome is the schedule itself and 

complex crossover operators are required to create new solutions. In the indirect 

representation simple operators are allowed and the chromosome must be mapped to a 

feasible schedule through a schedule builder (decoding procedure). An encoding scheme 

must also be analyzed by its completeness and redundancy level. Indirect representations 

are the most commonly used encoding schemes. Some indirect representation schemes 

encountered in the literature are job permutation, permutation of jobs with repetition, 

permutation of operations, permutation of operations per machine, and job-ordered list 

per machine. They differ in redundancy level, completeness, and complexity of the 

recombination operators required (see chapter three).

There are other "non-standard" and powerful GA models for the JSSP. In a 

number of works the GA operates on a set of dispatching rules. In the system proposed
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by Herrmann, Lee and Hinchman (1995) a chromosome is a list of dispatching rules, one 

for each machine. In attempts due to Dorndorf and Pesch (1995), and Chiu and Yih 

(1995) the size of the dispatching rule list (chromosome) is equal to the number of 

operations and each rule (gene) is responsible for one dispatching decision. Storer, Wu 

and Vaccari, (1992) suggested that the chromosome could be formed by a dispatching 

rule list, each of these rules would control the sequencing process for a time window or a 

specific number of operations. These representations permit the use of simple 

recombination operators and allow easier implementations of complex scheduling 

environments, as shown by Herrmann, Lee, and Hinchman (1995).

Other interesting GA models used for JSSPs are those involving random keys 

which encode solutions with random numbers (Bean, 1994). The search is performed 

over the random key space, making easy the application of simple recombination 

operators.

Dorndorf and Pesch (1995) used a GA to determine the selection of nodes in the 

enumeration tree of the shifting bottleneck procedure. The chromosome is a permutation 

of machines determining the sequence of single machine problems for the shifting 

bottleneck procedure.

Some researchers have used GA unsupervised machine .learning models 

(Goldberg, 1989). They apply bidding systems (Aytug, Koehler and Snowdon, 1994) and 

reward propagation techniques (Holsapple et al, 1993) to solve the JSSP. Aytug, Koehler 

and Snowdon (1994) proposed an adaptative dispatcher for a work cell with different 

parallel machines. The dispatcher owns a knowledge base whose rules are updated over 

the time through a GA learning system. In the work due to Chiu and Yih (1995), a GA 

operating on dispatching rule lists generates solutions that are used as training examples 

for a learning algorithm that acquires scheduling knowledge and represent it in a binary 

decision tree.

In problems involving more complex production environments, the search space 

may be explored partially by the schedule builder. However some studies have shown the
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superiority of approaches that integrate problem specific knowledge in the GA 

representation and recombination operators (Uckum, Bagachi and Kawamura, 1993; 

Bruns, 1993), avoiding the schedule builder to perform any significant part of the search.

Many papers that attempt to schedule more realistic environments are concerned 

to specific facilities (Biegel and Davern, 1990; Syswerda, 1991; Hamada et al, 1995; 

Gilkinson, Rabelo and Bush, 1995). For instance, Hamada et al (1995) used a hybrid GA 

with rule based reasoning to solve a scheduling problem with a number of preferences 

(soft constraints) in a steelmaking company. An expert system was used to generate 

initial solutions to the GA, each satisfying at least one preference. The fitness function 

took into account the makespan and the violation of the preferences.

Some research attempts that consider additional constraints and alternatives 

related to real production environments are presented next. Particularly, we are interested 

in works that treat the additional real constraints as elements influencing directly the GA 

search.

A few papers report the use of GA in environments with alternative processing 

plans and alternative machines. In Uckum, Bagachi, and Kawamura (1993) an order has 

alternative processing plans and operations can be processed on alternative machines. 

The GA searches the space of all job order permutations. Using recombination operators 

processing plans are assigned to job orders and machines are assigned to operations 

specified in the plans. Nevertheless, the representation is incomplete and redundant, 

since the schedule builder assigns all the operations of the first job, then all the 

operations of the second job and so forth. Bruns (1993) attempted to solve a similar JSSP 

with a GA that used direct representation. In this model the schedule builder was 

eliminated and the representation was the schedule itself. The drawback of the direct 

representation was the complexity of the recombination operators needed to produce a 

"good" set of feasible schedules. The operators used in Bruns’s work were not able to 

generate all active schedules. Gilkinson, Rabelo and Bush (1995) considered alternative 

machines per work cell. Each gene of the chromosome represented a work cell. A gene 

was composed of a list of operations and respective machines. The representation was 

complete and unique only because the production line is a flow shop. Also, some



19

operations were permitted to be simultaneously processed on the same machine. 

Holsapple et al (1993) used a hybrid GA/filtered beam search approach to schedule a 

flexible manufacturing cell where alternative machines and inter-station transfer time were 

allowed. The GA determined the job sequence (hence the representation was incomplete) 

and the filtered beam search chose the machines to process each operation of a 

predefined job sequence. The GA was implemented with an unsupervised learning 

procedure using reward propagation. Another GA using direct representation was 

implemented by Blume (1994). Alternative processing plans for each job and multicriteria 

cost functions were considered. Apparently, the GA searched for good sets of processing 

plans, while priority rules assigned operations to machines.

Sequence dependent setup times were considered by schedule builders in the GA 

implementations due to Rubin and Ragatz (1995), Gilkinson, Rabelo and Bush (1995), 

Syswerda (1991), and Uckum, Bagachi, and Kawamura (1993). Multiobjective criteria 

have also been incorporated into GA models (Uckum, Bagachi, and Kawamura, 1993; 

Syswerda, 1991; Hamada et al, 1995; Gilkinson, Rabelo and Bush, 1995; Blume, 1994). 

The dynamic nature of the problem was also studied by a number of researchers (e.g., 

Bierwirth et al, 1995). Lee and Shaw (1993) proposed a GA model to jointly solve the lot 

sizing problem and the scheduling problem in a flow shop environment. Gonzalez, Torres 

and Moreno (1995) reported a genetic algorithm for the no-wait flowshop problem, which 

is similar to a TSP. A complex scheduling problem with resource constraints was 

addressed by Syswerda (1991). The problem also considered task priorities, alternative 

setups and other weak constraints. Nevertheless, the GA manipulated only the task 

sequences, being the schedule builder responsible to build a legal schedule. The 

performance measure was based on the violation of weak constraints and on satisfaction 

of priorities.

In this section we reviewed the utilization of GA for scheduling problems. Most 

applications attempt to solve classical scheduling problems. Only a few works considered 

additional real world constraints. However, in these efforts the search spaces were 

incomplete and the real constraints included were usually small in number and 

environment dependent.
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2.3.6.2. Tabu Search (TS)

The Tabu Search procedures have widely been applied to solve classical JSSPs 

(Barnes and Chambers, 1995; Dell’Amico and Trubian, 1993; Sun, Batta and Lin, 1995; 

Widmer, 1991; Barnes and Laguna, 1993). The applications are based on the disjunctive 

graph representation (see chapter three). Usually the neighborhood moves are obtained 

by reversing critical path arcs or making other changes in precedence relations on the 

longest path. Broader neighborhood structures also based on changing precedence 

relations on the critical path were proposed by DeH’Amico and Trubian (1993). Sun, Batta 

and Lin (1995) restricted the search to the active schedule space and the moves were 

performed by active chain manipulation. Tabu search applications for JSSP usually 

consider the makespan criterion. An exception is found in Widmer (1991), who used a TS 

approach to minimize a multiobjective function in the scheduling of a flexible 

manufacturing system with tool magazine capacity constraints. The main differences 

among the several TS applications for JSSPs are related to the search strategies (e.g., 

memory functions, aspiration criteria, etc.).

Compared to other local search procedures, Tabu Search approaches have 

yielded very good results in the classical JSSP making use of relatively low computational 

time.

2.3.6.3. Simulated Annealing (SA)

Simulated annealing is another powerful local search technique suitable to deal 

with classical JSSPs (Laarhoven, Aarts and Lenstra, 1992; Lin, Haley and Sparks, 1995; 

Aarts et al, 1994; Krishna, Ganeshan and Ram, 1995; Musser, Dhingra and Blankenship, 

1993; Jeffcoat and Bulfin, 1993; Lourenco, 1995).

Most applications try to minimize the makespan. They adopt the disjunctive graph 

representation and the moves are based on reversing critical arcs or changing some 

other precedence relation on the critical path. Jeffcoat and Bulfin (1993) considered a 

resource constrained scheduling problem in parallel processors. The objective function to
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be minimized was related to resource constraint violations, that is, this procedure tried to 

minimize the infeasibility. Simulated annealing algorithms usually require high 

computational time to achieve good solutions.

2.3.6.4. Other Local Search Procedures and Hybrid Models

An interesting local search procedure used to solve JSSP is threshold accepting 

(Dueck and Scheuer, 1990; Aaarts, Laarhoven, Lenstra and Ulder, 1994). It can be 

viewed as a deterministic simulated annealing, where a move is accepted if the difference 

in the evaluation function value between neighboring solutions is less than a non-negative 

threshold value. This value decreases during the search process.

Other important local search algorithms are multi-start iterative improvement 

(Aaarts, Laarhoven, Lenstra and Ulder, 1994), Twofold Look-ahead Search (Itoh, Huang 

and Enkawa, 1993), path algorithm (Werner, 1993), ant system (Dorigo Manniezo and 

Colorni, 1996), beam search, etc.

Pure genetic algorithms have performed worse than Tabu Search and Simulated 

Annealing for classical JSSP. This gap can be narrowed by hybridizing the GA with local 

hill climbing procedures, as shown by Matfeld (1996) and by Yamada and Nakano (1995). 

The hybridization allows the GA to work in the local optimum domain. Hybrid approaches 

between SA and GA (Lin and Hsu, 1993; Shen, Pao and Yip, 1994), and between TS and 

GA (Glover, Kelly and Laguna, 1995) have also shown to be promising since they 

incorporate advantages of one technique into another. Lourengo (1995) performed a 

computational study of local search algorithms hybrid with large-step methods for JSSPs. 

Sophisticated large-step moves were performed to diversify the search and local search 

procedures (as SA) operated after each large-step move.

2.3.7. Other Non-Optimal Approaches

The production scheduling can be modeled as a control system, whose inputs are 

job orders, material and resource requirements, disturbances (e.g., machine breakdown), 

and controlled inputs (e.g., maintenance schedule). The system state is described by
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variables like WIP, resource availability, etc. The outputs can be for instance the inventory 

level of final products at time t (Rodamer and White, 1988).

Petri net theory has also been successfully used to model scheduling problems, 

as described by Lee and Jung (1995), by Xiong, Zhou and Manikopoulos (1995), and by 

Richard, Jacquet, Cavalier and Proust (1995).

Near-optimal (and a few optimal) techniques have been applied to resource 

constrained scheduling problems, as described by Blazewicz and Finke (1994). In 

inductive learning-based scheduling models (Piramuthu, Raman and Shaw, 1994) 

appropriate dispatching rules are selected to be applied according to the current state of 

the manufacturing system. There are also many other tailored heuristics used to solve 

JSSP. The review of all these methods is beyond the scope of this work.

2.4. CONCLUSION

Local search and hybrid genetic approaches have presented very good results in 

classical JSSP with makespan as criterion. However, the application of these procedures 

to real production environments is restricted to some specific facilities. Dispatching rules 

and knowledge based systems are still the most commonly used approaches to real world 

scheduling problems. Thus, the development of local search and genetic based 

scheduling systems that incorporate broad modeling capabilities is a promising research 

area.
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CHAPTER 3 

LOCAL SEARCH AND GENETIC ALGORITHMS

3.1. INTRODUCTION

In chapter 2 a literature review on the use of local search and genetic algorithms 

for job shop scheduling was presented. In this chapter these algorithms will be described 

with the purpose of explaining how they have been used to deal with classical JSSP. So 

this chapter provides the theoretical basis required to comprehend the scheduling models 

proposed in chapter 4 for real JSSP.

Both local search and genetic algorithms improve existing solutions. 

Therefore these algorithms require a constructive heuristic to generate initial solutions. 

Typical schedule generation algorithms are the semi-active, active and non-delay 

schedule generation algorithms. These classical procedures are described in next 

section. Afterwards, local search and genetic algorithms are addressed.

3.2. SCHEDULE GENERATION ALGORITHMS FOR CLASSICAL JSSP

In a semi-active schedule no operation can start earlier without changing a 

machine processing sequence or violating a technological constraint. An active schedule 

is a schedule where no operation can start earlier without delaying any other operation, 

i.e., an operation never waits on a machine input buffer if it can be completed before the 

next operation to be processed on the same machine arrives in the input buffer (Baker, 

1974). The set of active schedules is a subset of the semi-active schedule set. All optimal 

solutions related to any regular measure are active. Therefore not all semi-active 

schedules need to be examined to find the optimal solution. Note that a regular 

performance measure is nondecreasing in job finishing time, i.e., it can not be improved 

by delaying the completion time of any job. The active schedule generation algorithm due 

to Thompson and Giffler (1960) for classical JSSP is presented below. Let:

PSi = partial schedule at stage i, corresponding to the set of operations already scheduled 

at stage i.
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Si = set of schedulable operations at stage i, each of them corresponding to an operation 

whose preceding operation on the job has already been scheduled (inserted in PSi).

The active schedule generation algorithm works as follows:

1) i = 0. PSi = S| = 0 .

2) Insert in PS, the first operation of each job.

3) Determine the minimum operation completion time 0* = minUESi {lu + tu}, where lu and tu 

are the earliest start time and total processing time of operation u respectively. Let m* 

be the machine required to complete operation u* at time (j>*.

4) Determine the set Si'cSi such that S/ = {u / ue Si, Iu<<))*, and u is processed on m*}.

5) Randomly select an operation u(1) from Si' to be scheduled next.

6) Form PSi+1 by adding u(1) to PS,. Form Si+1 by removing u(1) from Si. Insert in Si+1 the 

operation that directly succeeds u(1) on the job.

7) i = i + 1.

8) If S |*0 return to step 3; else stop and calculate the evaluation function value.

The above algorithm is able to generate all active solutions for a classical job shop 

scheduling problem, as proved by Thompson and Giffler (1960).

In a non-delay schedule no machine is kept idle if it could begin processing an 

operation, i.e., a machine is never idle if its input buffer is not empty. The non-delay 

schedule set is a subset of the active schedule set. An optimal schedule is not necessarily 

a non-delay one. The non-delay schedule generation algorithm for classical JSSP can be 

obtained by changing steps 3 and 4 of the procedure described above.

The non-delay schedule generation algorithm is presented below:

1) i = 0. PSi = Si = 0 .

2) Insert in PSi the first operation of each job.

3) Determine the minimum operation start time <j>* = minueSi {U. where lu is the operation 

u earliest start time. Let m* be the machine required to start processing operation u* 

at time 0*.
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4) Determine the set Si'cSi such that Sf = {u / ue Si, lu=(|)*, and u is processed on m*}.

5) Randomly select an operation u(1) from Si' to be scheduled next.

6) Form PSi+1 by adding u(1) to PSi. Form Si+1 by removing u(1) from Si. Insert in Si+1 the 

operation which is the direct successor of u(1) on the job.

7) i = i + 1.

8) If S j*0 return to step 3; else stop and calculate the evaluation function value.

3.3. LOCAL SEARCH ALGORITHMS

Local search techniques have been successfully applied to classical JSSPs. The 

results reached by some tabu search and simulated annealing algorithms are among the 

best known for a number of benchmark job shop scheduling problems.

Local search techniques try to continuously improve solutions initially obtained by 

constructive heuristics. Given a solution s, the neighborhood of s is a set of solutions that 

can be derived by applying predefined slight modifications to s, i.e., by performing a 

move. So one must define a neighborhood structure and the related moving operators. 

The moving operators provide moves from one solution to another in the neighborhood. 

The control strategy determines whether the current solution will be replaced by a 

neighboring solution. The process continues until a termination criterion is fulfilled. For 

instance, consider a local hill climbing using the steepest descendent strategy. In this 

simple local search procedure the current solution (initially obtained by a constructive 

heuristic) is replaced by the neighboring solution that results in the greatest improvement 

in the evaluation function to be optimized. The process continues until a solution with no 

improving neighbor has been reached, i.e., until a local optimum has been found.

The basic elements of any local search procedure are the representation scheme, 

the neighborhood structure and the control strategy. Representation schemes and 

neighborhood structures are problem-specific. For example, a job shop scheduling 

problem and a graph coloring problem will use different representation schemes and 

neighborhood structures. In the following subsections the representation schemes and 

neighborhood structures more commonly used to solve classical JSSP will be presented. 

Then some basic local search strategies will be discussed.
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3.3.1. A Representation Scheme for Classical JSSP

Almost all local search approaches to classical JSSP use the disjunctive graph 

representation scheme due to Roy and Susman (1964). In this formulation a job shop 

problem is represented by a graph G = (V, A u  H). The vertex set V corresponds to the 

set of operations, the arc set A connects consecutive operations of the same job, and the 

set of edges H consists of edges connecting operations processed on the same machine. 

When the edge set H is transformed into a conjunctive arc set S, i.e., when an orientation 

is given to all edges, and no cycle occurs, a solution is obtained. For practical purpose 

only the arcs belonging to the Hamiltonian path Li of each machine i need to be 

represented in the solution digraph. Arc (u,v)eLi <=> operation v is the operation processed 

after u on machine i. The final digraph obtained D = (V, A u  L), where L=u Li, LcS, 

represents a particular schedule. The makespan corresponds to the length of the longest 

path in D.

For instance, suppose the rectangular classical JSSP of three jobs and three 

machines of table 3.1. The disjunctive graph G representing the problem instance and a 

digraph D of a particular solution are shown in figure 3.1, where vertex Oji is the ith 

operation of job j. The dashed lines in graph G are the edges of H. In the solution graph D 

the edge set H was replaced by the Hamiltonian selection L. In this example the critical 

path corresponds to the vertex sequence (source, 0 3i, On, 0 12, 0 2i, 0 32, 0 33, 0 13, sink), 

and its length (makespan) is equal to 45 time units.

Job Machine / processing time

first operation second operation third operation

1 M1 / 5 M2 / 7 M3 / 4

2 M 2 /10 M3 / 8 M1 / 2

3 M1 14 M 2/12 M3 / 3

Table 3.1. Example - Problem Data
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3.3.2. Neighborhood Structures for Classical JSSPs

A neighborhood structure determines the set of neighboring solutions that can be 

reached from the current solution by performing a move or transition. Three important
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properties of neighborhood structures are size, connectivity and feasibility (Mattfeld, 

1996).

The neighborhood size, i.e., the average number of possible moves, is an 

important parameter to determine the computational time. A neighborhood structure holds 

the connectivity property if the optimal global solution can be reached from any solution 

through a finite number of moves (including non-improving moves). A move, 

characterized by a set of slight modifications in the current solution, can lead to a legal 

(feasible) or illegal (infeasible) solution. Neighborhoods that detain the connectivity 

property and whose moves always lead to feasible solutions are usually desirable. 

Nevertheless, when a local hill climbing algorithm is being implemented the connectivity 

property is not important anymore, because this local search strategy only allows 

improving moves. In this case it is desirable the smallest neighborhood structure for which 

all improving moves are available.

The absolute majority of local search applications in classical JSSPs adopt the 

disjunctive graph representation scheme, and the neighborhood moves are obtained by 

reversing arcs on the critical path or making other changes in precedence relations on the 

critical path. The following neighborhood structures presented good results when 

minimizing makespan in classical JSSPs:

N1 (Laarhoven, Aarts and Lenstra, 1992): Given a solution digraph D, a move is 

generated by reversing an arc (v,w) on the critical path, such that operation w is the 

immediate successor of operation v on a machine k. The reversal of (v,w) always 

results in a feasible (acyclic) solution. Moreover, the reversal of arcs on the critical 

path are the only arc reversals that can reduce the makespan value. N1 also holds the 

connectivity property. For instance, consider the solution represented by digraph D in 

figure 3.1 whose longest path is (source, 0 31, On, 0 12, 0 2i, 0 32, 0 33, 0 13, sink). The 

neighborhood of D, N1(D), consists of the solutions obtained by reversing the 

following arcs: (031, On), (Oi2, 0 21), (021, 0 32), and (0 33, 0 13).

N2 (Matsuo et at, 1988; Aarts et al, 1994): Given a solution digraph D, a move is 

generated by reversing arc (v,w) on the critical path, such that w is the immediate
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successor of v on machine k, and either the predecessor of v or the successor of w on 

machine k is not on the critical path, provided they exist. As in neighborhood N1, the 

reversal of (v,w) always produces a feasible solution. The reversal of arcs defined in 

N2 are the only arc reversals that can enhance a solution. However, as shown by 

Dell’Amico and Trubian (1993) N2 does not hold the connectivity property. Aarts et al 

(1994) showed that neighborhood N2 outperformed N1 for several benchmark JSSPs 

using different local search approaches. Obviously N2 is smaller than N1, since only a 

subset of moves of N1 is available in N2.

More intricate neighborhood structures were proposed by DeN’Amico and Trubian

(1993) and Balas and Vazacopoulos (1994). These neighborhoods presented, however, 

larger sizes. As it will become clear in next chapter, large neighborhoods are not suitable 

for real JSSP. Since the objective here is to review the concepts on which our models are 

based, these more sophisticated neighborhood structures will not be described.

Note that neighborhood structures N1 and N2, as well as the more intricate 

neighborhoods proposed by Dell’Amico and Trubian (1993) and Balas and Vazacopoulos

(1994) are proper only to minimize makespan, since the moves are based on reversal of 

arcs on the longest path.

3.3.3. Some Important Local Search Strategies

The simplest local search strategy is local hill climbing, where only improving 

moves are acceptable. As described by Reeves (1993) there are three basic hill climbing 

strategies. Next descent strategy selects the first found improving neighbor to replace the 

current solution. Steepest descent method searches the entire neighborhood and selects 

the neighbor which yields the greatest evaluation function improvement. Random descent 

randomly chooses an improving solution to replace the current solution. When there is no 

neighbor which enhances the evaluation function value the local hill climbing algorithm 

stops and the current local optimum is reported.

In order to extend the search, avoiding to finish the procedure at the first (and 

probably poor) local optimum found, more sophisticated strategies to control the search
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process were developed. Among them Simulated Annealing (Kirkpatrick, 1983) and Tabu 

Search (Glover and Laguna, 1993) have yielded very good results for classical job shop 

scheduling problems. These algorithms attempt to find near-optimal solutions by allowing 

some moves toward worsening solutions.

Simulated annealing is an analogue of an algorithm used in statistical physics 

which simulates the cooling of a solid previously heated past its melting point back to its 

solid state. The properties of the cooled solid depend on the cooling rate. Simulated 

annealing can also be considered a special case of local search algorithm and it has been 

successfully utilized in combinatorial optimization. Simulated annealing is applied to 

classical JSSP as follows:

Let D be the current digraph solution and F(D) the makespan associated to D. The 

solution D is replaced by a randomly selected neighboring solution D’ with probability P 

given by

P = min {1, exp (- (F(D’) - F(D) )/c }

where c is the control parameter corresponding to the temperature in the physic model. 

The value of c gradually decreases during the search process. At early iterations (high 

temperatures) the probability of accepting worsening moves is high. This probability 

decreases in the course of the annealing process, until the system freezes and no 

worsening solution is accepted. Note that improving solutions are accepted with 

probability 1 during the whole search. Using neighborhood structure N1 Laarhoven, Aarts 

and Lenstra (1992) proved that the annealing algorithm converges to a global minimum 

energy state (global optimum solution) if the sequence of values of c converges to zero, 

and the Markov chains generated at each temperature are of infinite length. This result is 

valid provided neighborhood structure N1 is adopted. Four parameters must be chosen to 

implement finite-time simulated annealing:

• the length of the Markov chains, i.e., the number of moves evaluated at each 

temperature

• the initial and final values of c (temperature)
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• the decrement rule of c.

Tabu search is a powerful local search strategy to solve combinatorial search 

problems. Tabu search has presented marked success in classical job shop scheduling. 

In this approach the current solution is replaced by the best not forbidden neighboring 

solution (which is not necessarily better than the current solution). At each iteration there 

is a list of forbidden solutions. The forbidden solutions are a set of recently visited 

solutions. Actually, instead of a list of forbidding solutions, the algorithm keeps a list of 

forbidden moves that once performed will result in the forbidden solutions. Storing a list of 

forbidden moves, called tabu list (T), is computationally cheaper than storing a list of 

entire solutions. The existence of prohibited moves guides the search process to 

unexplored regions of the solution space. It also prevents cycling, i.e., it prevents that the 

algorithm moves from a local optimum solution D to a solution D’ and then back to D, 

repeating this cycle indefinitely. Each time a solution D is replaced by a neighboring 

solution D’, the move that would transform D’ in D again is inserted at the end of the tabu 

list T, while the first move in T is removed, i.e., a move remains a tabu move during a 

certain number of iterations. In addition, an aspiration criterion is associated with each 

move. If the aspiration criterion is satisfied the move is considered admissible even it is a 

tabu move. Aspiration criterion is used for example to allow a tabu move that results in 

the best solution found so far. Other mechanisms like frequency-based memory are also 

used to coordinate intensification and diversification of the search process (Glover and 

Laguna, 1993).

Other local search approaches like threshold accepting (a deterministic version of 

simulated annealing) and multi-start iterative improvement have been used to solve 

JSSP. However, the results obtained were not as enthusiastic as the ones produced by 

tabu search, simulated annealing and genetic algorithms hybridized with local hill 

climbing.

3.4. GENETIC ALGORITHMS

Genetic algorithms have been widely used to solve hard combinatorial problems 

like job shop scheduling problems.
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As described by Goldberg (1989) genetic algorithms are robust (efficient and 

efficacious) optimization methods abstracted from nature’s adaptation process. GAs 

search from a population of strings (chromosomes) corresponding to encoded solutions. 

Individuals from the population are selected to reproduce based on survival of the fittest,

i.e., the fitter the individual the higher the probability of being chosen to reproduction. 

Reproduction, crossover and mutation are applied to successive populations of 

individuals to generate new and likely fitter populations. Reproduction is the copy of 

chromosomes into successive generations according to their fitness, i.e., the higher the 

chromosome fitness the higher the probability of the chromosome being entirely or 

partially copied into the next generation. Crossover is a random exchange of sections of 

the parent’s chromosomes. Together, reproduction and crossover conduct the adaptation 

process by reproducing and combining high quality genetic materials in successive 

generations. Mutation operators, which randomly perform slight modification in the 

chromosomes, are used in attempt to recover high-performance genetic materials that 

eventually are eliminated from the gene pool by reproduction and crossover.

In GA terminology chromosomes are strings representing solutions. Genes 

correspond to variables or features, the values of the variable or feature are called alleles. 

The position of a gene in a chromosome is called locus. The encoded structures 

(chromosomes) correspond to the genotype, while the solutions themselves obtained by 

decoding the chromosomes are the phenotype. The fitness of an individual or 

chromosome can be interpreted as the evaluation function value associated to the 

chromosome.

Several variations of genetic algorithms have been proposed. A basic GA template 

is presented below, where i is the generation counter:

1) i=0;

2) Generate an initial population of solutions P(i) using a random generation algorithm;

3) While the termination criterion is not satisfied do

3.1) Generate P(i+1) from P(i) by applying reproduction, crossover and mutation;

3.2) i = i+1;

4) Return the best individual in P(i);
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Step 3.1 of the basic GA template is detailed below, where rand(1) is a randomly 

generated real number between 0 and 1:

a) Decode the M individuals of population P(i) and evaluate them, i.e., calculate their 

fitness values.

b) Initialize P(i+1) empty;

c) While the number of individuals in P(i+1) is less than M do

c.1) Select a couple of parents pi and p2 from P(i) with probability proportional 

to their fitness; 

c.2) If rand(1) < crossover rate then

apply the crossover operator to p! and p2 obtaining new individuals 

Oi and o2;

else

o^p , and o2=p2; 

c.3) For j=1to2do

If rand(1) < mutation rate then

apply the mutation operator to Oj obtaining Oj’;

else

Oj’=Oj;

c.4) Insert o / and o2’ in P(i+1);

The formal mathematical validation of genetic algorithms can be simplified by 

introducing the concept of schema (similarity template). Considering only binary 

representations a schema is a string over the extended alphabet {0,1 ,*}, where * is a don’t 

care symbol, i.e., * can be 0 or 1. For instance the two strings

10011010

01110110

are examples of the schema

* *★
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Short length, low order, high performance schemata (also called building blocks) 

are combined by the GA producing probably better individuals during the adaptation 

process. The incidence of these above average desirable schemata exponentially 

increases in successive generations.

Other important characteristic of a GA is its implicit parallelism. Although at each 

generation the computational effort performed is proportional to the population size n, 

about n3 schemata are processed in parallel. A formal schemata analysis is reported by 

Goldberg (1989).

Binary encoding schemes and related traditional crossover operators like simple 

crossover, two points crossover, and uniform crossover are not suitable for most 

combinatorial problems, including job shop scheduling problems. For these problems 

higher-cardinality alphabets must be utilized. For example, permutation schemes are 

used in a number of combinatorial problems. Solutions to a traveling salesman problem 

(TSP) can be encoded by a permutation of letters, each representing a city. The 

sequence of letters in the chromosome corresponds to the sequence in which the cities 

are visited.

Combinatorial problems usually present high degree of epistasis. Epistasis occurs 

when changes in gene frequencies at different loci are not independent. Epistatic 

problems require non-standard crossover operators able to produce feasible offspring 

and maintain important blocks of dependent linked loci. Also, special mechanisms to 

increase selection pressure must be used in epistatic domains (Goldberg, 1989).

Next subsections briefly describe the coding schemes, genetic operators, and 

population management strategies extensively used in applications of GAs for classical 

job shop scheduling problems.
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3.4.1. Coding Schemes for Classical JSSPs

Application of GAs in classical job shop scheduling problems are usually carried 

out by non-binary indirect representation schemes. We should remember that a 

representation scheme is complete if it can represent all optimal schedules and non- 

redundant if there is an one to one relationship between the genotype and the phenotype. 

Redundancy causes false competition. The most used representation schemes and their 

main characteristics are listed below:

1) Job Permutation (Uckum, Bagachi and Kawamura, 1993; Biegel and Davern, 1990; 

Hamada et al, 1995; Whitley, 1991):

• Chromosome: permutation of jobs

• Low redundancy level

• Incomplete

2) Permutation with repetition (Fang, Ross and Come, 1993; Bierwirth, Mattfeld and 

Kopfer, 1996; Bierwirth, 1994; Mattfeld, 1996):

• Chromosome: permutation of jobs with repetition. Each job appears in a 

permutation as many times as its number of operations

• Medium redundancy level

• Complete (completeness depends on the decoding procedure)

3) Permutation of operations (Kim and Lee, 1994, 1995):

• Chromosome: preference list of all operations

• Highly redundant

• Complete (completeness depends on the decoding procedure)
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4) Permutation of operations per machine (Falkenauer and Bouffouix, 1991; Croce, 

Tadei and Volta, 1995):

• One subchromosome per machine. Each subchromosome is a preference list 

of operations to be processed in the machine

• Low redundancy level

• Complete (completeness depends on the decoding procedure)

5) Disjunctive, graph / job-ordered list per machine (Aarts et al, 1994; Park and Park, 

1995, Yamada and Nakano, 1995):

• One (sub)chromosome per machine. Each is a ordered list of operations to 

be processed in the machine

• Unique (non-redundant)

• Complete

Although the last representational scheme is complete and unique, it requires 

more complex recombination operators to produce feasible solutions.

An overview of crossover and mutation operators used for classical JSSPs is 

given in the following section.

3.4.2. Crossover and Mutation Operators for Classical JSSPs

Genetic operators are related to representation schemes. A survey of crossover 

operators for ordering applications was presented by Poon and Carter (1995). 

Considering representation schemes based on permutation without repetition (schemes

1, 3 and 4) the following crossover operators have been widely used:

• PMX (partially matched crossover): The two parental strings are aligned and two 

crossover points are chosen at random. The region between these points defines a 

matching section or interchange mapping in which exchanges between parents are 

performed point by point. PMX tends to keep the absolute positions of elements.



37

• LOX (linear order crossover): A matching section is determined in a similar way to 

PMX. At first the elements in parent 2 that occur in the matching section of parent 1 

are deleted. Then the remaining part of parent 2 is combined with the matching 

section of parent 1 such that the exchanged substring keeps its original position. The 

other offspring is obtained in the same manner. LOX tends to respect relative 

positions.

• UX (uniform order crossover): The offspring chromosome is initialized empty. At 

each position one of the two parents is randomly chosen and the element at the first 

position in the chosen parent is inserted next in the offspring string. The element is 

then deleted from both parents. Complementary choices at each position determine 

the other offspring.

Examples of UX, PMX and LOX crossover operators are shown in figure 3.2. 

Some other useful crossovers for permutation-based representations are C1 

(Reeves, 1992), cycle crossover (Goldberg, 1989), and edge-recombination crossover 

(Whitley et al, 1991).

p, = 7 8 1 3 6 4 1 1 9 2 5  PMX o, = 7 3 1 8 1 5 1 6 9 2 4

p2 = 2 4 1 8 1 5 1 7 9 3 6  *  o2 = 2 5 1 3 6 4 1 7 9 8 1

p1 = 7 8 1 3 6 4 1 1  9 2,5 ___  7 _ I 3 6 4 I _ 9 2 _  LOX^ o, = 7 3 1 8 1 5 1 6 4 9 2

p2 = 2 4 1 8 1  5 I 7 9-36 2 _ I 8 1  5 1 7 9 __  o2 = 2 8 1 3 6 4 1 1 5 7 9

Pi = 7 8l3!6|4 1 9 2 5 parental sequence: UX = 7 2 4 8 3 1  6 5 9  

p2= 2 4  8jl 5 7 9 3 6  1 2 2 1 1 2 1 2 2  o2 = 2 7 8 4 1 3 5 6 9

Figure 3.2. PMX, LOX and UX Crossover Operations

Some of these crossover operators were modified to deal with representations 

based on permutation with repetition. Bierwirth (1996) proposed the generalized order 

crossover (GOX) which is an extension of LOX for permutation with repetition. Similarly
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Mattfeld (1996) proposed the generalized position crossover (GPX) and the generalized 

uniform crossover which are generalizations of PX and UX respectively.

Several mutation operators have been applied to permutation-based 

representations in job shop scheduling problems. Swap mutation exchanges the values 

(alleles) of randomly chosen adjacent loci. When the two loci (whose alleles are 

exchanged) are not necessarily adjacent, we have the order mutation. The position 

mutation randomly changes the position of an element (allele) in the chromosome.

In most applications crossover rates are between 0.5 and 1.0, and mutation rates 

are between 0.01 and 0.1.

3.4.3. Population Related Factors for Classical JSSPs

Seeding, selection method, fitness scaling, population size, termination criterion, 

decoding procedure, hybridization level, among others, are important factors in the 

performance of GAs in classical JSSPs. Here it will be described only commonly adopted 

variations of these factors. Further details on these issues are reported by Goldberg 

(1989) and Reeves (1993).

Seeding is the generation of the initial population. Semi-active, active and non­

delay schedule generation algorithms are frequently used to generate an initial population 

of schedules. Other heuristics (e.g., dispatching rules) can be embedded in these 

procedures to improve the quality of initial solutions. A good set of initial solutions can 

help the GA to reach better solutions, but can also lead to a premature convergence.

In traditional GAs, parents are stochastically selected for reproduction through a 

hypothetical roulette wheel, i.e., the probability of a chromosome be selected is 

proportional to its fitness. This selection scheme is called stochastic sampling with 

replacement. Several other selection schemes were proposed (De Jong, 1975). 

Deterministic sampling and expected value models eliminate or reduce the variance in the 

roulette wheel selection, that is, they try to eliminate or reduce the difference between the 

expected and actual number of copies of an individual. Overlapping populations can be
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implemented by selecting a proportion of the population for reproduction. Their offspring 

replace only part of the population members. This method is called incremental 

replacement. Elitist selection ensures the inclusion of the best individual of the current 

population into the next one. Baker (1985) proposed a ranked-based selection where 

individuals within the population are sorted according to their fitness and this ranking is 

used to guide the selection. In epistatic domains (including JSSPs) the use of increased 

selection pressure is required to avoid a tedious and almost non-improving search. 

Severe selection methods like elitist and ranked-based selections are more suitable for 

epistatic problems (Mattfeld, 1996).

Fitness scaling are also used to control the selection pressure. At early stages 

there exist a large number of poor solutions and only a few good solutions. If absolute 

fitness values are used in the selection process the GA will prematurely converge. On the 

other hand, at later stages the fitness variance within the population is small and the 

search process will be similar to a random walk if absolute fitness values are used in the 

calculation of selection probabilities. Scaling the fitness values at each generation 

overcomes these problems. Let f be the absolute fitness value of an individual. The 

scaled fitness f  is given by

f  = af + b

where parameters a and b can be determined by several ways. Goldberg (1989) suggests 

that a and b must be obtained from the conditions (considering maximization problems):

1 f’ -  fi • » average “  'average

2 .  f’max = 2 f m a x  (if f ’ m i n < 0  then the condition f’min = 0  replaces the condition f’max =

2 fm ax)

W h e r e  faveragei fmin and fmax are respectively the average, minimum and maximum fitness 

values within the population. A more severe selection (Mattfeld, 1996) can be achieved by 

determining the values of a and b such that:
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1 .  f'm in  =  0

2 f  -  f - fi max “  *max 'min

These transformations can be easily extended for minimization problems.

Population size is an important GA parameter. A small size drives the population 

to a restricted small portion of the solution space, while a large population size is 

computationally expensive. Although better results are reached by increasing the 

population size, Nakano (1994) observed a saturation of this trend. Also, ideal population 

size seems to be dependent on the chromosome length (Reeves, 1993).

Termination criteria are usually based on a fixed number of generations, or on a 

population convergence metric (like entropy). For classical JSSPs sophisticated 

convergence-based termination criteria can produce non-desirable results (Mattfeld,

1996), once significant improvements can be achieved after several generations of 

stagnation (phenomenon also observer in our GA implementation for real JSSPs). In 

other cases high genetic diversity can exist during several generations without any 

significant improvement be achieved.

The decoding procedure is used to obtain the solution phenotype (and associated 

fitness value) from the solution chromosome. Semi-active, active and non-delay schedule 

generation procedures have been used to decode strings of characters into schedules. 

The sequence of alleles in the chromosome determines, at each stage, the operation to 

be scheduled next from a set of schedulable operations.

As mentioned earlier the hybridization of the genetic algorithm with a local hill 

climbing was shown to enhance the GA performance in classical JSSPs. This can be 

achieved by applying a local hill climbing procedure to each individual right after it has 

been decoded.

Several of the GA concepts described here for classical JSSPs will be useful in 

the development of a scheduling system for real JSSPs.
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CHAPTER 4 

THE PROPOSED MODEL

4.1. SYSTEM SCOPE

As described in earlier chapters, local search approaches like Tabu Search (TS) 

and Simulated Annealing (SA) have yielded very good results in classical JSSP when 

minimizing makespan. These approaches use the disjunctive graph representation 

scheme with moves obtained by reversing arcs on the critical path. Such critical arcs 

reversing moves are suitable only to minimize makespan. Also, the disjunctive graph can 

not easily represent real life constraints, although some insights were presented by White 

and Rogers (1990).

We have also discussed that pure genetic algorithm (GA) methods usually 

perform worse than TS or SA for well known benchmark JSSP. This performance gap 

can be eliminated by hybridizing the genetic algorithm with a greedy local search 

procedure, as shown by Yamada and Nakano (1995) and Mattfeld (1996). These 

attempts were however limited to makespan minimization in classical job shop scheduling 

problems. Genetic-based scheduling systems that take into account some real 

production environment constraints have previously been implemented. However, the 

search space considered is usually incomplete and the real constraints included are small 

in number and are environment dependent.

This work attempts to develop a robust framework to deal with real job shop 

scheduling problems. In order to support constraints and objectives of real production 

environments a number of modifications are proposed in the active and non-delay 

schedule generation algorithms, in the solution representation scheme and neighborhood 

structure of local search procedures, and in the genetic algorithm operators. The 

following commonly encountered characteristics are considered in this framework:

1. Precedence and resource capacity constraints. These are the classical JSSP 

constraints. They assure that precedence relationships among operations of the same 

part are respected and that each resource processes at most one operation at a time.
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2. Several subassembly levels for each job. A job (final product) can be composed of 

several parts. Precisely, a bill of material is defined for each job. For instance, 

consider the following bill of material of a job:

Figure 4.1. Bill of Material

In order to produce 1 unit of the job (final product) 1 unit of part 4 and 3 units of 

part 3 are required. Similarly producing 1 unit of part 4 requires 2 units of part 2 and 1 

unit of part 1. Here part 4 is called the succeeding part of parts 1 and 2, as well as 

part 5 is the succeeding part of part 4 and 3. On the other hand parts 4 and 3 are the 

preceding parts of part 5, and part 1 and 2 are the preceding parts of part 4. Parts 1,

2 and 3 are at the first level of the bill of material, while part 4 and 5 are at the second 

and third levels respectively.

3. Additional renewable resource requirements to perform an operation (tools, fixtures, 

personnel, etc.). Processing an operation may require several resource types. 

Several units of each resource type can also be required. However, only one 

machine can be used to process an operation. For instance executing an operation O 

may require machine M and three other resource types: one unit of resource type X, 

one unit of resource type Y and 2 units of resource type Z, where X can be an 

operator with certain special skills, and Y and Z two different tools. The proposed 

system assumes that there is considerably more competition for machines than for 

other resources. So machine resources are treated differently as it will be shown 

later. This assumption is real for most production plants.

4. Alternative processing plans for each part. Sometimes a part can be processed by 

two or more technologically different sequence of operations, that is, by two or more 

different sequence of machine types.
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In order to facilitate the modeling of alternative processing plans the part process 

is divided into a sequence of subprocesses. There is no feasible sequence of 

operations that can process the part without the use of at least one operation of each 

subprocess. So a unique sequence of subprocesses determines all possible 

processing plans for a part. Each subprocess can be performed by alternative 

operation routes. Each route is formed by a sequence of machine cells, each 

machine cell corresponding to an operation. A machine cell is a set of identical 

machines. However, if a set of identical machines processes some operations with 

sequence dependent setups, then each one of these machines is modeled as a 

machine cell. This modeling trick is adopted in order to simplify the active schedule 

generation algorithm developed in section 4.2. The user must provide the part 

processing plans to the system. When dividing a process into subprocesses, the user 

must maximize the number of subprocesses, once it minimizes the total number of 

alternative subprocess routes, and therefore enhances the performance of the 

schedule generation algorithm (see section 4.2). Note that the number of alternative 

subprocess routes is defined as the number of subprocesses routes minus one. The 

following example illustrates these concepts:

Figure 4.2. Part Process Plan with Alternative Subprocess Routes

In the above diagram, the part process is divided into the three subprocesses Sub 

1, Sub 2, Sub 3. The number of routes and alternative routes in Sub 1 are five and 

four respectively, in Sub 2 are one and zero, and in Sub 3 are two and one. For 

instance, a possible processing plan can be executed by the following sequence of 

machine cells: M5, M7, M8, M9. In this processing plan the route M5, M7 was chosen
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among the subprocess 1 routes, the subprocess 2 has only one possible route (M8) 

and M9 was chosen as the subprocess 3 route.

Note that it is assumed that different subprocess routes are defined only by 

different sequences of machine cells. The other resources (e.g., staff, tools) required 

to process the operation are not allowed to vary either in type or in quantity. That is, 

resources other than machines do not generate alternative subprocess routes. 

Nevertheless, the proposed framework will also work if this assumption is relaxed by 

defining each route as a sequence of resource sets (instead of machine cells), each 

resource set corresponding to an operation.

5. Alternative resources for each operation. Since there can be more than one unit of 

each resource type in the production plant, there can exist alternative sets of 

resources to process an operation.

6. Machine, tool, fixture and staff calendars (e.g., preventive maintenance, staff training, 

etc.). Machines have scheduled breaks for maintenance and cleaning, tools can need 

sharpening, personnel requires vacation and training. The resources in the 

production environments are not operational 100% of the time. So, the calendar of 

each resource must be taken into account.

7. Ready times for raw material and externally produced parts, represented by job and 

operation ready times. Very often processing an operation requires raw materials or 

components not manufactured in the plant, but purchased from suppliers. These 

materials and components may be available only after a specific point in time. The 

inventory control system must provide the availability dates of these items to the 

scheduling system, which in turn interprets them as operation and job ready times, 

once a job or operation can not be initiated unless all raw materials and components 

required are available.

8. Sequence dependent setup times. An operation presents sequence dependent setup 

time when its setup time depends on which operation was previously processed on 

the machine. Therefore a setup table must exist for each of these operations.
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9. Batch overlap, i.e., successive operations of the same batch of parts being 

performed simultaneously. For instance, let the batch size of a part be equal to 40 

and let the manufacturing of this part requires 2 operations. Under certain conditions 

(see section 4.2) the second operation can be initiated after only a fraction of the 40 

parts has completed the first operation. For instance, each time 10 parts finish the 

first operation they are transported to another machine cell to the second operation. 

Although batch overlap is allowed, concurrent processing of the same operation on 

more than one machine is not allowed, i.e., batch splitting is not allowed. It means 

that an operation can start without all parts of the batch has completed the preceding 

operation, but only one resource set (with only one machine) is chosen to process an 

operation. Also, batch preemption is not allowed, i.e., once an operation execution 

starts, it must not stop until the complete batch has been processed. The overlap of 

the last operation of a job can be used to model partial shipping. Two different 

overlap policies can be applied, depending on the requirement of parts, to initiate the 

setup. These issues will be addressed later again in section 4.2.

10. Any regular multiobjective evaluation function, i.e., any combination of regular 

performance measures. The multiobjective function considers combinations of 

regular performance measures only, because the moves in the local improvement 

algorithm are based on active chain manipulation and the recombination operator in 

the GA is embedded in an active schedule generator. Also, it is assumed that the 

multiobjective function is provided by the user. A regular performance measure can 

not be improved by delaying the completion time of any job. The most commonly 

used regular performance measures can be grouped in the following basic sets, each 

set formed by equivalent measures (as shown by French, 1982):

e) Mean flow time, Mean completion time, Mean waiting time, Mean lateness

f) Maximum completion time (makespan), Mean machine idle times, Total machine 

idle time, Mean number of jobs being processed per unit time

g) Maximum tardiness

h) Maximum lateness

i) Maximum flow time 

j) Mean tardiness
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One can easily prove that any linear combination of these criteria are also regular. 

Only linear combinations will be considered here, although any other combinations 

which result in a regular measure can also be used. Mean and maximum eariieness 

are examples of important non regular performance measures. The inclusion of these 

criteria in the objective function is not prohibited. However, as mentioned above, the 

system is not well prepared to minimize non-regular measures.

As it will become evident in next sections, the extra computational difficulties 

introduced by the above characteristics are not simply additive. In many cases they 

interact with one another and a considerably large amount of computational time must be 

X^spent to consider all of these constraints simultaneously.

The proposed system is composed of three basic modules: the modified schedule 

generator algorithm, the local hill climbing procedure and the hybrid genetic algorithm. 

The system works as follows: a set of initial solutions is obtained by modified active and 

non-delay schedule generation algorithms. Each initial solution is enhanced by a local 

improvement algorithm. Then a genetic algorithm hybridized with a local hill climbing 

procedure is applied to the set of local optimum schedules. The genetic algorithm is 

dependent on the schedule generation algorithm, since its crossover operator is 

embedded in the decoding procedure performed by the schedule generator. An overview 

of the proposed scheduling system is shown in the diagram below

Figure 4.3. Scheduling System Diagram

The next three sections describes the three basic system modules.

4.2. THE MODIFIED ACTIVE AND NON-DELAY SCHEDULE GENERATION 

ALGORITHMS

As described in chapter 3, an active schedule is a schedule where no operation 

can start earlier without delaying any other operation. In a non-delay schedule no
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machine is kept idle if it could begin processing an operation (Baker, 1974). The non­

delay schedule set is a subset of the active schedule set which is a subset of the semi­

active schedule set. It was shown that all optimal schedules related to any regular 

measure are active, but not necessarily non-delay (French, 1982). The active schedule 

generation algorithm developed by Giffler and Thompson (1960) is able to generate all 

possible active schedules for classical job shop scheduling problems. A large amount of 

research has been reported on the use of deterministic or probabilistic dispatching rules 

in active and non-delay schedule generation algorithms proposed by Thompson and 

Giffler (1960). These schedule generation algorithms have also been used to generate 

good initial solutions in applications with genetic algorithms or other local search 

procedures for classical JSSP (Mattfeld, 1996).

In this section a modified active schedule generation algorithm which deals with 

the real job shop scheduling problems described in section 4.1 is proposed. Afterwards, 

some simplifications in the basic algorithm are presented to enhance its computational 

performance and a modified non-delay schedule generation algorithm is developed. 

Finally, a set of heuristics to be embedded in these modified schedule generation 

algorithms are proposed.

4.2.1. Basic Relations, Calculations and Operations

We present here some basic relations, operations and calculations commonly 

used in the algorithms developed in this work.

Availability of resources to process an operation

Let Qr be the number of resources of type R in the system. Let RSU be the set of 

resources required to process operation u - RSU = {(R, qR), where qR units of resource 

type R are required to process operation u}. The availability of resources to start 

processing operation u at time t is verified by the availability of at least qR out of QR 

resources of type R from t to t+tu, V (R, qR)e RSU, where tu is the total batch processing 

time of operation u. Note that the resource calendars (including maintenance, vacation, 

etc.) must be taken into account.
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Precede (prec) and succeed (sue) operators

The precede (prec) and succeed (sue) operators determine respectively all the operations 

that directly precede and succeed an operation of a job, considering prespecified 

subprocess routes (i.e., subprocess routes already chosen) and several subassembly 

levels.

If u is the first operation of part p, with p not in the first level of the bill of material 

of job j, then prec(u) results in a set of more than one operation, each of these operations 

being the last operation of a part preceding part p in the bill of material of job j. If u is the 

first operation of part p, with p in the first level of a bill of material (i.e., p has no preceding 

parts), then prec(u)=0. If u is not the first operation of part p, prec(u) results in the 

operation that technologically precedes u in the processing plan of p.

If u is the last operation of job j, then suc(u) = 0 . If u is not the last operation of 

job j, than suc(u) results in the operation that technologically succeeds u in the processing 

plan of job j.

In a very similar way the succeed and precede operators are defined in the 

subprocess and part domains.

Determination of batch overlap time (tou)

The batch overlap time of operation u is defined as the minimum amount of time (after 

operation u has begun) required to start processing the operation^succeeding u on job j 

(suc(u) ) and will not interrupt it due to unavailability of parts. Let au be the minimum 

transport batch of operation u, which is defined as the minimum number of parts from a 

batch of size n that can be transported after the completion of operation u. The concept 

of minimum transport batch usually corresponds to the concept of unit load in material 

handling theory.
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In order to simplify the calculation of tou, let the minimum transport batch oiu be such 

that the ratio n/tXu is an integer. This theoretical assumption is adopted here only for 

clarity purposes. Let tsu be the setup time of operation u and topu the unit execution time 

of u. The following two batch overlap policies are defined:

Policy 1. An operation setup is initiated only after at least one minimum transport batch of 

the preceding operation has arrived at the machine input buffer. It means that an 

operation setup is initiated only after parts to be processed become available. This policy 

must be adopted when the setup time is not very large or the time data variance is high 

There are two cases, as shown below:

a) tou = tsu+{Xu*topu, if tsuc(u) > a u* t o p SUC(u) + (n - a u)*topu

b) tou = tu - tsuc(u) + (Xu topSUC(u), if tsuc(u) < cXu topSUC(U) + (n - ccu) topu

Policy 2. An operation setup can be initiated without any part be available, given that no 

time gap occurs between the setup and the beginning of operation execution. Again, 

there are two cases:

a )  tO y  =  tS y  +  (Xy t O P U “  tS g u c (y )  , I f  tO P g u c (u )  ^  t O P y

b) tOu = ty tsuc(u) + CXu topSUC(U), if topSUC(U) ^ topu

These four situations are described in the following diagrams:

Policy 1 / case a:

Policy 1 / case b:

s' ' r ; '  ^

t S u -a/topu- -(n- auj’ topu- Otg tOPsuc(u)

o c

>

t
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Policy 2 / case a:

Policy 2 / case b:

Figure 4.4. Overlap Policies

Note that tou under policy 2 can be negative, meaning that a time demanding setup 

can start before the setup of the preceding operation has started. In order to avoid this 

situation we consider tou = max {tou, 0}.

When u is the last operation of a subprocess s, then the value of tou depends on 

the route chosen for the following subprocess (suc(s)). Moreover, if u or suc(u) are 

sequence dependent setup operations, then tou will also be sequence dependent.

Partial shipping can easily be modeled by allowing overlap in the last operation of 

a job. Here, as in the rest of this work, the transportation times were not considered. As 

long as transportation devices are always available, only as few modifications in the tou 

equations are required to include the inter-station transportation times.

Determination of operation earliest start time (lu)

The earliest start time of an operation u (lu) is obtained by determining the minimum lu, 

such that:

• lu > r j , rj is the job ready time

• lu > rou , rou is the operation ready time

• lu > maxprec(u) { Ip r e c ( u )  + to prec(U)}, tou is the batch overlap time
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• There is availability of resources to process the operation from lu to (lu+tu), where tu is 

the total batch processing time of operation u

After the introduction of these concepts, we can describe the modified active and 

non-delay schedule generation algorithms.

4.2.2. Description of the Schedule Generation Algorithms

The modified active scheduling generation algorithm (MASGA) will now be 

presented. The algorithm can be viewed as a generalization of the classical active 

schedule generation algorithm proposed by Giffler and Thompson (1960), and it is a 

robust framework for heuristic-based scheduling research in real production environments 

as the one described in section 4.1.

An active schedule is now defined as a schedule where no operation can start 

earlier, even using another set of resources, without delaying other operation.

The following symbols are used in the algorithm:

PSi = partial schedule at stage i, corresponding to the set of operations already scheduled 

at stage i.

Si = set of schedulable operations at stage i, corresponding to the set of operations at 

stage i for which all the preceding operations are in PSi.

RCO,),* = set of resources which can be used to complete operation u* at time 0*.

NPjp= Number of parts directly preceding part p in the bill of material of job j 

ITRU = Set of resources selected to process operation u

The MASGA works as follows:

1) i = 0; PSi = 0 ; Si = 0 .

2) For each part p such that NPjp=0, randomly select exactly one route for the first 

subprocess of p and insert the first operation of the chosen route in Sf .
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3) For all operations ue Si such that u is the last operation of a subprocess and suc(u) *  

0 , randomly select one route among the alternative routes of the succeeding 

subprocess (if it has not been already selected).

4) Determine the minimum operation completion time when overlap is allowed <t)*=minueSi 

{lu + tou}, where lu and tou are obtained as previously shown considering as 

“prespecified routes” the ones selected in steps 2 and 3.

5) Let u* be the operation related to <(>*. Determine RCCV, the set of all resources that 

can be used to complete operation u* at time <(>*. That is, for all types of resources 

required to process u*, include in RCO,,,* the resource units available from lu* thru 

(j)*=|u.+tu., without violating resource calendars.

6) Determine the set Si'cSj such that S/ = { u / ueSi, lu<<|>*, and processing u from lu to lu 

+ tu can use at least one resource belonging to RCO^}.

7) Randomly select an operation u(1) from Sj’ to be scheduled next.

8) Randomly select the resource set ITR m  to process operation u(1) from time lu(1) to lu(1)

+ tU(D-
9) Determine tdou(t), where tdou(i> is the decrease in lu(1) caused by not considering 

resource requirements other than machine to process operation u(1). This variable will 

be used by the local hill climbing algorithm.

10) Form PSi+1 by adding u(1) to PSi. Form Si+1 by removing u(1) from S j.

11) If the last scheduled operation u(1> is the last operation of a part p and suc(p) *  0 , 

then

Npjsuc(p)= NpjSUC(P)-1.

If Npjsuc(p)= 0 then add suc(u(1)) to Si+1, 

else add suc(u(1)) to Si+1

12) i = i + 1.

13) If Sf* 0  return to step 3; else stop and calculate the evaluation function value.

Note that the determination of tdou(,) is done only to facilitate the starting of the

local improvement procedure (see section 4.3). The following simple example illustrates

the reasoning of the MASGA:
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Example 4.1.

Two jobs (products) must be scheduled in a job shop. The first job is composed by three 

parts and the other job has only one part. The flowcharts below show the routing 

structure of jobs (Ji), parts (Pi), subprocess (Si), routes (Ri) and operations (Oi) provided 

by the process planning:

J1:

P1 P3

\ J ] ----------------------- § 1  \

J2:

P4 S7

Figure 4.5. Job Structures and Process Plans of Example 4.1

Job J1 is composed of three parts (P1, P2, and P3), part P3 being the succeeding 

part of parts P1 and P2. One unit of part P1 and one unit of part P2 are required to 

produce one unit of part P3 (Job J1). Therefore, in this example, the batch sizes of parts 

P1, P2 , P3, and job J1 are identical. Part P1 is composed of two subprocesses (S1 and 

S2). There are 2 subprocess routes for subprocess S1, one requiring operations 01 and
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02, and the other requiring only operation 03. The rest of the flowcharts are interpreted 

similarly. Supposing that all job and operation ready times are zero and that there is no 

sequence dependent setup operation, the following table provides some important 

problem data:

Job

(batch

size)

Part Subprocess Route Operation Operation 

setup time

Unit

operation

execution

time15?u

Minimum

transport

batch

J1 (10) P1 S1 R1 01 5 1.5 10

02 7 2.0 5

R2 03 3 3.0 5

S2 R3 04 5 1.0 5

P2 S3 R4 05 8 1.5 2

P3 S4 R5 06 7 2.5 2

S5 R6 07 4 2.0 2

R7 08 2 0.5 5

J2 (15) P4 S6 R8 09 9 4.0 3

S7 R9 010 2 1.5 3

R10 011 6 2.0 5

Table 4.1. Operation Related Data of Example 4.1

The production environment is composed of 3 machine cells, the first containing 2 

machines and the others containing one machine each. Five other resource types are 

also used. The description of all resources used in this problem is shown in table 4.2, 

where Qij is the jth unit of resource type i. The start time and duration of scheduled 

breaks (for maintenance, training, etc.) for each resource in the scheduling horizon are 

also displayed.
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Resource Description Scheduled break (start time, duration)
Q11 Machine of type 1 -
Q12 Machine of type 1 (30, 10)
Q21 Machine of type 2 (15, 15)
Q31 Machine of type 3 -
Q41 Operator of type 4 (0, 10), (80,20)
Q42 Operator of type 4 (50, 15)
Q51 Operator of type 5 -
Q52 Operator of type 5 (150,20)
Q53 Operator of type 5 (45,20)
Q61 Tool of type 6 -
Q62 Tool of type 6 (50,30)
Q71 Tool of type 7 (12,10)
Q72 Tool of type 7 -
Q73 Tool of type 7 (65,25)
Q81 - Tool of type 8 (160,10)

Table 4.2. Resource Related Data of Example 4.1

Next table describes the resource requirement of each operation:

»

Using overlap policy 1, the algorithm works as follows:

Operation Machine type Other resources (type, quantity)

01 1 (4,1), (8,1)
02 3 (5,1), (7,1)
03 2 (5,1), (7,2)
04 1 (4,1)
05 1 (4,1),(6,1)
06 3 (8,1)
07 2 (5,1)
08 1 (4,1)
09 2 (5,1),(8,1)

010 3 (5,1),(6,1)
011 1 (4,1)

Table 4.3. Resource Requirement Data of Example 4.1



Stage Step PS| .
scheme Si

Cjj-peopeztsoà
Subprocess

routes
selected

u7<|>*
°P/ TCZK,ho

RCO*.
°i ?frC.

Sî  ÙT7U24ÏJS

Si’ u' V ITRU(i) / tdoU(D

0 1 0 0 - - - - -

0 2 0 {03,05,09} R2,R4,R8 - - - -

0 3 0 {03,05,09} R3)R5,R9 - - - -

0 4-5 0 {03,05,09} 05/11 {Q11 ,Q12,Q42, 
Q61 ,Q62}

- -

0 6 0 {03,05,09} - 05/11 {011,012,042, 
Q61,062}

{05} —

0 7-11 {05} {03,09} - - - - 05/{Q11 ,Q42,Q62}/0
1 3 {05} {03,09} - - - - -
1 4-5 {05} {03,09} - 03/53 {Q21,Q51,Q52, 

Q71,072,073}
- -

1 6 {05} {03,09} - 03/53 {021,051,052, 
071,072,073}

{03,09} -

1 7-11 {05,09} {03,010} - - - - 09/{Q21,052,081 }/0
2 3 {05,09} {03,010} - - - - -

2 4-5 {05,09} {03,010} - 03/122 {021,051,052, 
053,071,072,073}

- -

2 6 {05,09} {03,010} " 03/122 {021,051,052, 
053,071,072,073}

{03,010} -

2 7-11 {05,09,03 {010,04} - - - - 03/{Q21,052,071 ,Q73}/0
3 3-11 {05,09,03,

010}
{04} “ 010/123.5 {031,051,053, 

061,062}
{010} 010/{Q31,053,061 }/0

4 3-11 {05,09,03,
010,04}

{06} - 04/142 {011,012,041,
042}

{04} 04/{Q12,Q42}/0

5 3-11 {05,09,03,
010,04,06}

{08} R7 06/196 {031,081} {06} 06/{Q31 ,Q81}/23

6 3-13 {05,09,03,
010,04,06,08}

0 - 08/209 {011,012,041,
042}

{08} 08/{Q11,Q41}/0

Table 4.4. Solution Procedure Table of Example 4.1
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The total processing time, overlap time and earliest start time of the scheduled 

operations are shown below, together with the color legend used in the Gantt chart that 

follows. In this example a very poor solution was obtained

Operation Total Processing Time Overlap Time Start Time Color

03 33 23 99 _
04 15 10 132

05 23 11 0

06 32 26 170

08 7 7 202

09 69 49 30

•010 24.5 24.5 99 ■ •
Table 4.5. Time Results of Examp e 4.1

Time

Figure 4.6. Gantt Chart - Example 4.1

If sequence dependent setup operations do not occur, the MASGA describe 

above is able to generate all active schedules (and hence all optimal solutions) in job
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shop scheduling problems considering all real production environment constraints and 

alternatives described in section 4.1. Moreover, all schedules generated are active.

However, if sequence dependent setup operations are present the overlap time of 

operation u (tou) in step 4 can not be precisely determined, and hence <)>* can be under or 

overestimated. This will happen when suc(u) is a sequence dependent setup operation, 

if so, its setup time (tssuc(U)) can not be determined yet, once suc(u) is not even in set Sj. 

As tSsuc(u) is used in the calculation of tou and tou used in the calculation of <(>*, <]>* can not 

be exactly determined. Three different strategies can be taken to solve this impasse:

1) choose the shortest setup time in the setup table of suc(u) and use this value in the 

calculation of tou. This will maximize tou and <J>* as well. As consequence a few semi 

active schedules (but not active schedules) can be generated. Of course the 

algorithm will still be able to generate all optimal solutions.

2) choose the largest setup time in the setup table of suc(u) and use this value in the 

calculation of tou. This will minimize tou and <)>*. Therefore a few active schedules will 

never be generated and the capability of generating all optimal schedules will not be 

hold anymore. Note that all the schedules will be active.

3) choose the average or default value for the setup time of suc(u). This does not 

guarantee that all optimal solutions will be generated or that all generated schedules 

will be active. However it reduces the number of non active schedules (compared to 

strategy 1), and also decreases the probability of not being able to generate the 

optimal solution (compared to strategy 2). As long as the MASGA described will be 

used here to generate a set of initial solutions, this third strategy will be adopted.

The setup times of suc(u) chosen above are only for the calculation of <)>*. The 

exact setup time value will only be known when suc(u) is scheduled.

Steps 5 and 6 of the MASGA can be modified to include only machines in RCO$-. 

This would disable the algorithm from generating all feasible active schedules, but would 

speed up the procedure. The modifications in steps 5 and 6 are the following:



5) Let u* be the operation related to (j>\ Determine RCO^, the set of all machines that 

can be used to complete operation u* at time <(>*. That is, if c is the machine type 

required to process u*, then include in RCO** all machines of type c available from lu- 

thru <t>*=lu*+tu*, without violating machine calendars.

6) Determine the set S/cSi such that Si' = {u / ue Si, lu<<t>*, and processing u from lu to lu + 

tu can use one of the machines belonging to RCO^-}.

When only machines are considered in RCCV, the MASGA is said to be in its 

simplified generation mode, as opposed to the complete generation mode that also 

includes resources other than machines in RCO*-. The use of simplified generation 

mode probably does not affect the solution quality very much, since the competition level 

for’machines is considerably higher than for other resources.

Better results have been obtained by using dispatching rules in non-delay 

schedule generation algorithms, instead of active schedule generation algorithms (Baker, 

1974). Slight modifications in steps 4 and 6 can transform MASGA in a non-delay 

algorithm. They are:

4) Determine the minimum operation start time (j)*=minueSi {U, where lu is obtained as 

previously shown.

6) Determine Sj' = { u / ueSi, lu=<|>*, and processing u from lu to lu + tu can use at least 

one resource belonging to RCO$*}.

Both active and non-delay schedulers using complete and simplified generation 

modes will be used in the simulations described in chapter 5. Following the modified non­

delay schedule generation algorithm (MNSGA) adopting the simplified generation mode is 

presented:

1) i = 0; PSi = 0 ; Si = 0 .

2) For each part p such that NPjp=0 randomly select exactly one route for the first 

subprocess of p and insert the first operation of the chosen route in S i.

59
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3) For all operations ue Si such that u is the last operation of a subprocess and suc(u) *  

0 , randomly select one route among the alternative routes of the succeeding 

subprocess (if it has not been already selected).

4) Determine the minimum operation start time <t>*=minueSi {lu}, where lu is obtained as 

previously shown.

5) Let u* be the operation related to <(>*. Determine RCCV, the set of all machines that 

can be used to complete operation u* at time <J>*. That is, if c is the machine type 

required to process u*, then include in RCO^* all machines of type c available from lu. 

thru <t)*=lu-+tu*, without violating machine calendars.

6) Determine the set S/cS, such that S/ = { u / ueSj, lu=<t>*, and processing u from lu to lu 

+ tu can use at least one machine belonging to RCO ,̂*}.

7) • Randomly select an operation u(1) from Si' to be scheduled next.

8) Randomly select the resource set ITR u(„ to process operation u<1) from time lu0) to Iu(d 

+ tU(i).

9) Determine tdou(,), where tdou(1) is the decrease in lu(1) caused by not considering 

resource requirements other than machine to process operation u(1). This variable will 

be used by the local hill climbing algorithm.

10) Form PSi+1 by adding u(1) to PSi. Form Si+1 by removing u(1) from S i.

11) If the last scheduled operation u(1) is the last operation of a part p and suc(p) *  0 , 

then

Npjsuc(p)=  N p jsuC(p)-1.

If NpjSUC{p) = 0 then add suc(u(1)) to Si+1, 

else add suc(u(1)) to Si+1

12) i = i + 1.

13) If S i*0 return to step 3; else stop and calculate the evaluation function value.

In the schedule generation algorithms proposed in this section, selections in steps

2, 3, 7, and 8 were made at random. However, one can also make these selections using

deterministic or probabilistic heuristics. Of course, if only deterministic heuristics are

used the algorithm will be able to generate only one solution.
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4.2.3. Heuristics Embedded in the Modified Schedule Generation Algorithms

The following heuristics were developed to aid the selections in steps 2, 3, 4, and 

8 of the modified schedule generation algorithms presented in the last section:

Selection of subprocess routes (Route Selection Heuristic)

The selection of subprocess routes in steps 2 and 3 are based on two different objectives: 

(1) balance resource utilization, avoiding highlighted bottlenecks, (2) choose efficient 

routes, i.e., routes associated with low processing times.

Let P(rt,s,i) be the probability of choose route rt to execute subprocess s at stage i, 

where a stage corresponds to the selection of a route in the MASGA. Let RU(R,i) be the 

expected utilization time of a machine from cell R at stage i; QR be the number of 

machines in cell R; MCU the machine cell required to process operation u; tu the operation 

u processing time; N the total number of operations of all jobs; TRS the number of 

alternative routes of subprocess s. Then:

RU(R,i)= ( I  tu + I  tu*P(rt,s,i) )/Qr
U€ rt /  rt chosen ue rt /  rt not chosen
MC«=R MCv*R

The expected weighted utilization time of machines in a specific route rt at stage i is given 

by Rt(rt,i), where:

Rt(rt.i) = E  tu*RU(R,i)

The route rt processing time, Rpt(rt), is simply:

Rpt(rt) = X t u
uert

Let 0<a<1 be the relative importance between balancing resource utilization and adopting 

efficient routes. P(rt’,s,i) is considered inversely proportional to:
TR. TR.

a*Rpt(rt’) /X R p t(r t )  + ( l-a )*R t(r t ’,i) /  X R t(rt,i)
rt =1 rt=1

The method to determine the values of P(rt,s,i) is recursive, since P(rt,s,i) is used to 

calculate RU(R,i) either. So, at each stage the following convergent problem is solved:
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P(rt,s,i) is initialized with P(rt,s,i-1), V rt 

P0(rt,s,i)=0, V rt,

while maxrt IP(rt,s,i)-PO(rt,s,i)l>ERROR do 

P0(rt,s,i) = P(rt,s,i);

determine P(rt,s,i) as described above;

Note: P(rt,s,1)=1/TRS

Selection of the operation to be scheduled next

The determination of which operation of S/ to be scheduled next (dispatching procedure) 

in step 7 is done totally at random or by using the traditional shortest processing time 

dispatching rule (SPT).

Selection of the resource set to process an operation (Minimum Gap Heuristic)

The choice of the resource set ITRU<1) to process operation u<1> in step 8 is done in order to 

minimize time gaps in such resources. So a resource is chosen among others in order to 

minimize the difference between lu(1) and lu+tu', where u’ directly precedes operation u(1) on 

this resource.

The performance of these heuristic will be determined in the experimental designs 

carried out in chapter 5. Note that other approaches can be adopted to make these 

selections. For instance, decision trees built by inductive learning methods [13] can be 

used instead of the heuristics proposed above.

Once the initial schedules have been generated, a local improvement procedure is 

applied to these solutions in order to enhance their evaluation function values. The local 

improvement algorithm used is described in the following section.

4.3. THE LOCAL IMPROVEMENT PROCEDURE

When dealing with local search algorithms, one must define the neighborhood 

structure and the related moving operators. The moving operators provide moves from 

one solution to another in the neighborhood.
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As described in chapters 2 and 3, local search procedures like Tabu Search, 

Simulated Annealing, Threshold Acceptance, and simple Local Iterative Search (Local Hill 

Climbing) have widely been applied to the classical JSSP, considering makespan as 

criterion. These applications are based on the disjunctive graph representation, and 

neighborhood moves are obtained by reversing arcs on the critical path or making other 

changes on precedence relations in the critical path.

In this section the graph representation is expanded to support real environment 

constraints. Further, a neighborhood structure based on active chains manipulation is 

developed to support multiobjective functions and real world constraints. Like the 

modified schedule generation algorithms, the local search framework developed here is 

robust. It can be used to implement any local search procedure (as Tabu Search and 

Simulated Annealing), by only adding the respective control strategy.

Here, a simple Local Hill Climbing Search, also known as Local Iterative Search, 

will be implemented. In this approach, only moves to better solutions are accepted. The 

search stops when no improving move is available, that is, when a local minimum has 

been reached.

The local improvement framework developed takes into account all the real world 

constraints described in section 1, except alternative subprocess routes and alternative 

machines. It means that all subprocess routes must be selected before the local hill 

climbing procedure be applied. Also, each operation must be assigned to a machine 

before the algorithm starts running, and no other machine can be used to process the 

operation during the iterative search cycle, that is, when a move is performed the 

machine used to process an operation is not allowed to change. Nevertheless, 

assignment of resources other than machines will be allowed to change when moves in 

the neighborhood are implemented.

Some representation schemes, the basic neighborhood structure, and the local hill 

climbing algorithm itself are introduced next.
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4.3.1. Representation of Real World Constraints in Disjunctive Graphs

A job shop problem is represented by a graph G=(V, A u  H). The set of nodes V 

corresponds to the set of operations, the arc set A connects consecutive operations of the 

same job, and the set of edges H connects operations processed on the same machine. 

When the edge set H is transformed into a conjunctive arc set S, a solution is obtained. 

For practical purpose only the arcs belonging to the Hamiltonian path l_i of each machine i 

are represented. Arc (v, u)e L| <=> operation u is the next operation after v to be processed 

on machine i, i.e., v<u. The final digraph obtained D = (V, A u  L), where L=u Lj, 

represents a particular schedule. If arc (v, u)e A then u=suc(v). If arc (v,u)e L then v<u.

Next, this classical schedule representation scheme is extended to include real 

world constraints. A graph representing a solution of an example problem is also 

provided at the end of this section. The following arcs are used to represent real job shop 

scheduling problems:

a) Sequence of operation within a job are represented by arcs (u,v) e A, where u and v 

are consecutive operations of the same job. The weight of (u,v) is the sum of tou 

(overlap time of operation u) and tdov (decrease in the start time of operation v 

caused by not considering resource requirements other than machine to process v). 

The weight tou + tdov of arc (u,v) means that operation v can be initiated tou + tdov 

time units after operation u has started. If v is the first operation of a part p, then 

there will be as many of these arcs arriving on v as the number of directly preceding 

parts of part p. These arcs are illustrated below:

Successive operations within a part: Successive operations in a subassembly:

tou + tdov f  \

Figure 4.7. Graph Representation of Successive Operations within a Job
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b) Job ready times are modeled as the first operation of a job j. Therefore, we create 

arcs (u,v) e A with weights corresponding to the sum of job ready time and tdov, 

where u is a dummy node and v is the first operation of part p of job j, given that part 

p has no preceding part. The arc connecting the source node and u has weight zero. 

This modeling trick is shown in the following figure, where rj is the ready time of job j, 

and v1 and v2 are the first operation of parts p1 and p2. Parts p1 and p2 are in the 

first level of the bill of material of job j, i.e., they are not preceded by any part.

c) Similarly, an operation ready time is represented by creating an arc (u,v) € A of 

weight corresponding to the sum of ready time of operation v (rov) and tdov, where u is 

a dummy node connected to the source node by an arc of weight zero. The following 

figure illustrates the graph representation of an operation ready:

Figure 4.8. Graph Representation of Job Ready Time

Figure 4.9. Graph Representation of Operation Ready Time

d) Machine capacity constraints are represented by arcs (u,v) e L, where operation u 

directly precedes operation v on a-machine. The arc weight corresponds to the sum 

of tu (total processing time of operation u) and tdov, as shown in the diagram below:



Figure 4.10. Graph Representation of Machine Capacity Constraint

e) Machine calendar constraints are considered by modeling each scheduled 

maintenance break as an one operation job. The maintenance beginning time is the 

job ready time, the maintenance duration is the total operation processing time, and 

the desired maintenance finishing time is the job due date. In the objective function a 

high weight must be assigned to the violation of this due date in order to enforce the 

fulfillment of the machine calendar. So we create an arc (u,v) e A of weight 

corresponding to the maintenance starting time (rm), where u is a dummy node

• connected to the source node by an arc of weight zero and v (maintenance operation) 

is connected to the sink node by an arc of weight equal to the maintenance duration 

time (tm). The following figure illustrates the graph representation of a machine 

maintenance operation:

The dummy operations related to machine calendars and ready times must be 

included in the graph structure, and hence in the topological sorted set associated to the 

graph. Note that the first sorted set is the final PSi generated by the schedule generation 

algorithm, which is represented here by PSfinai. Each machine m maintenance operation 

must be inserted in PS(inai at a position right before the first operation to be processed on 

machine m after the maintenance operation. The ready times can be placed in the 

beginning of PSnnai.

Figure 4.11. Graph Representation of Machine Maintenance
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EXAMPLE 4.2. Consider the same data of example 4.1, but also include ready times for 

job 1 and operation 8. Let A, B, C, D, E, F be respectively the maintenance operation 

ready time of machine Q12, the maintenance operation of machine Q12, the maintenance 

operation ready time of machine Q21, the maintenance operation of machine Q21, the 

ready time of job 1, and the ready time of operation 8. The digraph of figure 4.12 

corresponds to a particular solution of the scheduling problem. The dashed arrows 

correspond to arcs in L and the others correspond to arcs in A.

Figure 4.12. Solution Representation by a Digraph - Example 4.2

Once a problem representation scheme was developed a neighborhood structure 

that allows moving from one solution to another must be defined.
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4.3.2. A Neighborhood Structure

Several neighborhood structures, characterized by sets of moves, have been 

proposed for the classical JSSP with makespan as criterion. Recently, procedures that 

perform fast makespan estimation for each move and easily recalculate the makespan 

after a move has been chosen were also developed. These procedures and comparisons 

among different neighborhoods are reported in (Dell'Amico and Trubian, 1993) and 

(Mattfeld, 1996).

In this section, a neighborhood is proposed to deal with multiobjective evaluation 

functions and the already described real world constraints. Moreover, the evaluation 

function recalculation procedures mentioned in the above paragraph is extended to 

support such complex environments.

4.3.2.1. Defining a Neighborhood Structure for Real Production Environments

As defined in (Sun et al, 1995) for classical JSSP, an active chain of operation u in 

a schedule is a chain of operations starting in u and finishing in an operation with earliest 

starting time equal to zero, and with no time interval between the starting time of an 

operation and the completion time of the preceding operation in the chain. Two 

consecutive operations u and v in the chain are such that (u,v)eA or (u,v)eL. If a 

schedule is a semi-active one, there is at least one active chain for each operation. It is 

simple to see that an active chain of operation u corresponds to the head of the operation 

plus the operation itself. The makespan corresponds to length of the longest active 

chain, i.e., to the length of the critical path.

As mentioned in section 4.1, the approach proposed here admits any combination 

of regular measures as objective function. It was proved by Laarhoven et al (1992) that 

the makespan can only be improved by changing precedence relations among operations 

on the critical path. Similarly the value of any regular measure can only be improved by 

changing precedence relations in active chains of last operations of the jobs. Therefore, 

for each regular measure considered in the multiobjective function is associated a subset 

of active chains. For instance, the makespan is associated to the longest active chain, 

the mean tardiness is associated to all active chains of last operations of tardy jobs, and
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so on. These active chains are called here relevant active chains. After the solution 

graph has been augmented with the set of dummy operations defined in section 4.3.1, the 

relevant active chains are extracted from it.

The procedure to build an active chain of an operation is described below, where 

the variables lu, tou, tu, tdou and lu have been defined in section 4.2:

Starting with the operation and moving backwards, select to include next in the 

chain one of the following operations (supposing that the most recently included operation 

is v):

1) u, such that v = suc(u), and lu + tou + tdOv= lv

2) u, such that u<v, and lu + tu + tdOv= lv,

Note that operations u and v above also include the dummy operations used to 

model machine maintenance and ready times.

If more than one operation can be selected to enter the chain, then decreasing 

selection priorities are assign to the following operations: (1) job and operation ready 

times, (2) operations from the same job, (3) operations processed on the same machine. 

Such selection priorities tend to minimize the neighborhood size and speed up the 
algorithm.

A block in an active chain (Bj) is a string of consecutive operations that are 

processed on the same machine i. A neighborhood structure is defined below:

Given a solution D=(V, A u  L), its neighborhood N(D) consists of all schedules 

derived from D by reversing one arc (u,v), where both operations u and v belong to a 

block Bj of a relevant active chain; and v does not indirectly succeed u in the same job; 

and either u is the first operation of B, or v is the last operation of B,.

The requirement of v not being a indirect successor of u in the neighborhood 

structure definition above is due to what was named here “flow effect”. The flow effect 

can occur if batch overlap is allowed. Then it is possible for an arc (u,v) in a relevant



active chain be such that u<v and v indirectly succeed u in the same job. For example, let 

u, w and v be three consecutive operations of the same job (i.e., v=suc(w) and w=suc(u)), 

and let u and v require the same machine to be processed. The following diagram 
illustrates a flow effect.
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to,.

tl t2

Figure 4.13. Flow Effect Example

If u and v did not require the same machine, v could be initiated at time t1. As t1<t2 arc 

(u,v), and not (w,v), is inserted in the active chain. However, (u,v) can not be reversed in 

a neighborhood move due to technological constraints. Note that there are no two 

successive operations in a job that are processed on the same machine, because the 

“two operations” would be modeled as a unique operation.

The following two lemmas are presented and proved:

Lemma 4.1. In the neighborhood N all the available moves lead to feasible schedules (no 
cycle).

Proof. Let c and d be successive operations on a block of a relevant active chain. The 

reversal of arc (c,d) can lead to a cycle only if there is a path p from suc(c) to prec(d), as 

can be inferred from figure 4.14. Let v be the last operation on path p that is from the 

same job of c. By the way overlap time was defined, the finishing time of operation v (fv) is 

greater than the finishing time of operation c (fc), i.e., fv>fc. If path p exists, then an 

operation w such that v<w (w succeed v on the machine) will exist either. As v and w are 

processed on the same machine the earliest start time of w (lw) must be greater than or
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equal to the finishing time of v, i.e., Iw> fv. Therefore lw> fv> fc. As d is the operation after 

the path p we have ld-tdod> lw> fv> fc, where tdod was defined in section 4.2. Thus ld > fc 

+ tdod and hence arc (c,d) can not be on the active chain.

Lemma 4.2. Considering any combination of regular measures as the evaluation function, 

the reversal of an arc can lead to an evaluation function improvement only if the reversal 

move is available in neighborhood N, given that sequence dependent setups and multiple 

resource requirements are not considered.

Proof. The improvement of a regular performance measure value can only be achieved 

by reducing the length of relevant active chains. Reversing an arc not belonging to a 

relevant active chain can not reduce the active chain length. Further, suppose that b, c, d 

and e are successive operations on a block of a relevant active chain. Thus le=lb+tb+tc+td 

(given that only machine is used to process an operation, i.e., tdOj=0 for all operations i). 

As shown in figure 4.14, the reversal of arc (c,d) will not affect the start time of operation 

e (le) and hence the active chain length. Therefore a regular performance measure can 

only be improved by reversing an arc (c,d) of a relevant active chain, where either c is the 

first operation of a block or d is the last operation of the block.

If the presence of multiple resources for each operation (which generates tdo) and 

sequence dependent setup operations are considered, the statement that only changes in 

relevant active chains can improve the evaluation function does not hold anymore. If the 

weight of an arc in an active chain is sequence dependent, it can be modified by 

reversing arcs out of the active chain. Similarly, changing the allocation of resources 

other than machines can alter the value of tdou , with u in the active chain, and hence 

alter the active chain length. However, these effects were disregarded and only moves 

based on rearranging blocks of relevant active chains were considered.

As for the classical JSSP, the connectivity property does not hold if at least c or d 

is required to be either the first or the last operation of a block.

As mentioned in last chapter, other neighborhood structures have been proposed 

for classical job shop scheduling problems. For instance, in (Dell’Amico and Trubian, 

1993) a neighbor is obtained by moving an operation to the position closest to the first or
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the last operation of its block for which feasibility is preserved. Dell’Amico and Trubian 

(1993) also considered the reversal of two arcs in one move. These neighborhoods 

usually reach better local optima. They however require greater computational effort due 

to their larger sizes. Once considering multiobjective function instead of makespan 

drastically increases the neighborhood size, these structures will not be used here. 

Nevertheless, the framework is robust enough to support them.

Depending on the control strategy adopted a number of neighboring solutions 

must be evaluated in order to select a move. The exact calculation of the makespan 

value (in classical JSSP) for each of these neighboring solutions require large CPU time. 

In Dell’Amico and Trubian (1993) is described a fast method to calculate lower bounds for 

the makespan of each neighboring solution in order to overcome this problem. 

Unfortunately, a similar procedure is not suitable for real production environments. Even 

if a fast procedure to calculate lower bounds for an active chain length after a move has 

been done is available (and it is not available), the multiobjective nature of the evaluation 

function would invalidate the approach. As an operation usually belongs to several 

relevant active chains, a promising move regarding to an active chain can produce bad 

results in other chains. Further, the presence of multiple resources, sequence dependent 

setups and batch overlap would increase the computational time required to calculate the 

lower bound and decrease its quality. Thus, an exact calculation of the evaluation 

function value for every neighboring candidate solutions will be necessary. Similarities 

between neighboring solutions will be used to enhance this calculation.

4.3.2.2. Performing a Neighborhood Move and Recalculating the Evaluation Function

Let Bi be a block of operations in a relevant active chain to be processed on 

machine i. The following modifications must be performed in the solution graph D to 

reverse an arc (c,d) from block Bi!

1) Reverse (c,d) obtaining (d,c).

2) If (b,c) e L exists, then remove (b,c) from L and construct arc (b,d).

3) If (d,e) e L exists, then remove (d,e) from U and construct arc (c,e).

4) If at least one of the operations c, d, or e has sequence dependent setup times, then 

update the total processing time of operations c, d, and e, and the overlap time of
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operations prec(d), d, prec(c), c, prec(e) and e (if the operations exist). That is, 

recalculate the values of t<j, tc, t©, tOprec(d)i too, tOprec(c)» tOc, tOprect©)» and tOe.

The following figure illustrates the reversal of (c, d) described above:

In the above figure, operations b, c, d and e are processed on the same machine

The graph corresponding to the new solution is obtained by implementing the set 

of modifications just described in the original graph D. The new solution is represented 

by D’ = (V’, A u  L’). The arc weoghts in D’ are not yet determined because the move 

could have changed the values of tdou.

Before the calculation of the evaluation function value associated to a solution 

graph F(D), all the operations must be sorted. This procedure can be simplified here by 

taking advantage of similarities between neighboring solutions.

The first sorted set of operations is provided by a modified schedule generation 

algorithm and corresponds to the final partial schedule set PS(i„al. As described in 

Mattfeld (1996) and illustrated in the diagram below, the reversal of (c,d) only affects the 

sorting of nodes between c and d in PS^ai. The new sorting is achieved by dividing X into

Figure 4.14. Arc Reversal
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X' and X", where X' is composed by all operations in X that directly or indirectly precede 

operation d, and X" = X - X‘. This can be achieved by a labeling algorithm (Bradley, Hax 

and Magnanti, 1977). The sorted operation sets before and after reversing (c,d) are 

represented by PSfinai and PSfinar. The following figure describes the sorted operation sets:

V

u X’ d c X” W

V

PSfinar

Figure 4.15. Rearranging of Set PS(inai Due to a Move

After the move has been applied and the operation sorting has been achieved the 

earliest start time of each operation and the evaluation function value can be determined 

as follows:

1) The values of l„ (earliest operation start time) and tdOu (decrease in lu caused by not 

considering resource requirements other than machine to process operation u) remain 

unchanged for all operations u in U. That is, the move does not affect operations in 

U.

2) From the first operation in V’ to the last operation in PS(inar do:

• determine the earliest start time lu by adding the following two constraint to the set 

of constraints used to determine lu in section 4.2.1:
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1) lu > lv + tv, where (v, u)e L\ i.e., v<u

2) machine used to process operation u remains unchanged, i.e., assign 

to process operation u the same machine that was used to process u in 

the previous solution

• if the same set of resources ITRU used to process u in the previous solution is 

available from L to lu + tu then assign this resource set to operation u; else 

determine this resource set by the same selection process used in step 8 of the 

MASGA.

• determine the new value of tdou.

3) Once the earliest start time lu of all operations have been calculated, determine the 

new evaluation function value.

Remark that the machine used to process an operation u can not change from 

one solution to another. So the selection of set ITRU in the above procedure does not 

include the selection of the machine.

4.3.3. The Local Hill Climbing Framework

Using the graph representation scheme and the neighborhood structure described 

in last sections any local search procedure can be implemented. This work implements a 

simple local hill climbing which adopts as control strategy the acceptance of the first 

improving neighbor. The search stops when a local minimum is reached. A simple hill 

climbing is used instead of a more sophisticated local search technique (e.g., Tabu 

Search) because the genetic algorithm will provide the diversification required to lead the 

search to new regions and escape from poor local minima. Further, the acceptance of 

the first improving neighbor instead of the best improving neighbor is adopted due to the 

unavailability of fast multiobjective function estimation methods. The calculation of the 

exact evaluation function value for all neighboring solutions prior the selection is 

computational expensive. So, the acceptance of the first improving neighbor is the most 

efficient strategy, even considering that the number of moves to reach a local optimum 

using this strategy is about 75% greater than the number of moves required by selecting
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the best improving neighbor, as reported in (Mattfeld, 1996) for classical JSSP with 

makespan as criterion.

The local hill climbing procedure works as follows:

1) Use the schedule generation algorithm to determine an initial feasible solution D.

2) While a local minimum has not been reached do

2.1) Determine the set of relevant active chains of D

2.2) Perform a move in the neighborhood of D, i.e., select a solution D’e N(D)

2.3) Calculate the evaluation function value of the new solution F(D').

2.4) If F(D')<F(D) then the move is accepted and D=D'.

In step 2.2 of the local hill climbing algorithm an arc (c,d)el_ is selected to be 

reversed among a set of candidate arcs (see the neighborhood structure definition in 

section 4.3.2). This selection can be made randomly, sequentially (from the first to the 

last candidate arc of each relevant active chain), or heuristically.

In this work we propose a simple heuristic to determine the priority of reversing an 

arc. The heuristic was called “bottleneck heuristic”. It takes into account the frequency of 

occurrence of an arc in the relevant active chains, and the importance of the chains 

where the arc appears. The bottleneck heuristic works as follows:

1) Determine a weight for each relevant active chain. This weight is directly related to 

the objective function. If a regular measure has a high weight in the objective 

function, so it will have its associated active chains. Precisely, the weight of a 

relevant active chain associated to any maximum-based regular measure (e.g., 

makespan, maximum tardiness) is the weight of the measure in the objective function. 

The weight of the relevant active chains associated to mean-based regular measures 

(e.g., mean flow time, mean tardiness) is the weight of the measure in the objective 

function divided by the number of jobs that participate in the measure value. For 

example, consider a 10 job problem, and the following objective function: F = 

2*Makespan + 3*Mean flow time. The weight of the longest active chain is 

2+3/10=2.3 and the weight of all other nine relevant active chains is 3/10=0.3
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2) Select an arc (c,d)e L to be reversed next with probability proportional to the sum of 

weights of all active chains where (c,d) appears, given that (c.d) is a candidate arc to 

be reversed according to the neighborhood structure defined in section 4.3.2.

The local hill climbing procedure developed in this section is used not only to 

improve the initial solutions generated by the modified schedule generation algorithms but 

it is also hybridized with the genetic algorithm described in next section.

4.4. THE HYBRID GENETIC ALGORITHM

In this section a hybrid genetic algorithm framework to solve JSSP in real 

production environments is described. The genetic algorithm works in the local optimum 

domain due to the application of local hill climbing to each new individual generated by 

reproduction. The decoding procedure, which maps a genotype to a scheduling solution 

corresponding to a phenotype, and the recombination of individuals are performed 

simultaneously. The decoding procedure is basically the modified active or non delay 

schedule generation algorithm, and the crossover operator is embedded in it. The 

crossover operator is able to combine parent solutions differing not only in the assignment 

of starting time for operations, but also in the routes assigned to subprocesses and in the 

resources assigned to operations.

The chromosomes are basically the sorted sets PSfinai. This representation 

scheme allows the mapping of all active or non delay schedules, depending on which 

generation strategy (active or non delay) is adopted. That means that the representation 

scheme is complete. Although the representation scheme corresponds to the highly 

redundant “permutation of operations” scheme described in chapter 3, the way the 

crossover operator is related to the decoding procedure attenuates this redundancy.

The genetic operators and population management strategies used by our hybrid 

GA are defined next.
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4.4.1. Population Management Strategies and Genetic Operators

A classical proportional selection scheme is adopted. The fitness (objective 

function value) is scaled to the range [0, Fmax - Fminj, where Fmax and Fmin are 

respectively the maximum and minimum fitness value within the population. This scaling 

leads to a more severe selection scheme, avoiding a tedious (and hence time expensive) 

recombination of individuals without significant fitness improvement, that is, avoiding a too 

slow population convergence.

The number of offsprings is equal to the population size. Also, non-overlapping 

populations and elitism are adopted. Elitism assures that the best individual is always 

passed to the next generation. The termination criterion is based on a fixed number of 

generations. More elaborated termination criteria based on population diversity have not 

bee proved to be proper for job shop scheduling problems (Mattfeld, 1996). Moreover, a 

fixed number of generations is more suitable for comparisons in simulation studies.

Two crossover operators are applied: the subprocess route crossover and the 

basic crossover. The basic crossover operator proposed here is similar to the uniform 

crossover operator as well as to the active schedule constructive crossover proposed by 

Park and Park (1995) for classical job shop scheduling problems.

The subprocess route crossover and the basic crossover operations embedded in 

the decoding procedure are described below:

a) Randomly select k subprocess routes from a parent and S-k subprocess routes from 

the other, where S is the total number of subprocesses considering all the jobs to be 

scheduled. Exchange these subprocess routes between the parents to obtain the 

offspring subprocess routes. This procedure corresponds to the subprocess route 

crossover. For each new set of subprocess routes (corresponding to a new individual) 

perform step b.

b) Apply a slightly different modified active or non delay schedule generation algorithm. 

The differences to be observed are the following:
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• All the procedures concerning to selection of subprocess routes are not considered 

because the subprocess routes are already determined.

• In step 7 of the schedule generation algorithm, an operation u(1)€Sj‘ must be selected 

to be scheduled next. This selection procedure is modified here to include the basic 

crossover operator. Thus, one must select to be scheduled next an operation u(1) 

such that u(1)e Si'nPSfinai(j), and u(1) is the operation that first appears in PSfinai0) among 

the operations from S /o P S ,^  , for j=1 or j=2, where PSfinai(j) is the sorted operation 

set of parent j, i.e., the parent j chromosome. Algorithmically speaking, the selection 

of u(1) in step 7 of the modified schedule generation algorithm works as follows:

1) Randomly select one of the two parents. Let j* be this parent. If Si'nPSfmaio*) = 

0  then the other parent must be assigned to j*. Note that this empty 

intersection can occur when all operations in S/ belong to subprocess routes 

not used by parent j*.

2) Select to be scheduled next the operation u(1)e Si'nPSfinai(j*), such that u(1) is the 

operation that first appears in PSfinaio*) among the operations in S /riP S ^-).

• In step 10 of the modified schedule generation algorithm, insert the operation u(1) in 

the sorted set of the offspring solution PSfinai(0f{spring)

Mutation operators are applied to the offspring with low probability. As in the 

crossover, a subprocess route mutation and a basic mutation are implemented. The 

subprocess route mutation is implemented by randomly choosing a subprocess and 

changing its route to another randomly selected. The basic mutation chosen is the 

position based mutation, in which a randomly selected operation u* is arbitrarily moved 

from one position to another in PSfinai. A position based mutation was adopted due to its 

superior results in classical JSSP (Mattfeld, 1996). The mutation operations are 

described below:

a) Subprocess route mutation: Randomly choose a subprocess and change its route to 

another randomly selected. In the sorted operation set PS^i, remove all operations of 

the old subprocess route and sequentially insert the operations of the new route in the 

same loci of the old ones. If the new route has more operations than the old route, 

the “exceeding” operations are inserted right after the old route last locus.

b) Basic mutation: Apply a position based mutation to the individual chromosome PSfinai
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c) Decoding: Apply a slightly different modified schedule generation algorithm. The 

differences to be observed are the following:

• All the procedures concerning to selection of subprocess routes are not 

considered because the subprocess routes are already determined.

• In step 7 of the MASGA, select to be scheduled next an operation u(1) such that 

u(1) is the operation that first appears in PSfinai among the operations from Si' n  

PSfinal-

• The operation u(1) must be inserted in the sorted set PSfinai_new of the mutated 

solution in step 10 of the modified schedule generation algorithm.

Other GA applications dealing with alternative processing plans have been 

reported. As noted in chapter 3, the representation schemes used in such applications 

are very limited, being usually incomplete and redundant. Instead, the genetic algorithm 

proposed here can explore a large solution space and presents almost no redundancy. 

The solution search space is determined by the schedule generation strategy adopted. 

Comparisons between non delay and active generation strategies in the GA will be 

addressed in chapter 5. Also the proper set of algorithm parameters (e.g., crossover and 

mutation rates, population size) will be determined..

4.4.2. The Genetic Algorithm Framework

The final hybrid genetic algorithm framework work as follows, where random(1) is 

a random generated real number between zero and one:

1) i=0. Generate an initial population of good schedules P(0) using the modified active 

or non-delay schedule generation algorithms proposed in section 4.2.

2) For each individual of the population apply the local hill climbing algorithm described 

in section 4.3.

3) i = i + 1.

4) For j=1 to (population size)/2 do
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4.1) select two parents within the population using a proportional selection scheme 

over scaled fitness values.

4.2) if random(1) < basic crossover rate 

then

if random(1) < subprocess route crossover rate 

then

generate two new individuals by applying the two 

crossover operators.

else

generate two new individuals by applying only the basic 

crossover operator

else

the two parents are assigned to the new two individuals without 

modification

4.3) for each of the two new individuals do 

if random(1) < basic mutation rate then

apply the basic mutation to the new individual 

if random(1) < subprocess route mutation rate then

apply the subprocess route mutation to the new individual

4.4) for each of the two new individuals do

if the new individual is not identical to one of its parents then 

apply the local hill climbing to the new individual

4.5) include the two new individuals in population P(i)

5) If the best solution of P(i-1) is not already in P(i) then include it in P(i) in the place of 

the worst solution of P(i). That is, apply the elitism policy.

6) If i = maximum number of generations then stop, else return to step 3.

Note that the route crossover is applied only in conjunction with the basic 

crossover, but the mutation operators are independent of one another.

Genetic algorithms hybridized with local improvement procedures have been 

successfully used to minimize makespan in classical JSSP. In this chapter we extended 

this approach to deal with scheduling problems encountered in real production 

environments.
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The framework proposed presents high modeling capabilities. It also supports 

(and requires) a number of heuristics that aid to guide the search process. A number of 

variations of the basic framework can be easily obtained . For instance, eliminating the 

hill climbing algorithm results in a " pure" GA approach. In the next chapter the influence 

of several heuristic and configuration options in the overall system performance is 
analyzed.
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CHAPTER 5 

EXPERIMENTAL RESULTS

5.1. INTRODUCTION

This chapter describes the set of experiments designed to determine the influence 

of several factors (configuration options) on the performance of the hybrid scheduling 
system.

A complex problem generator program was developed to aid simulation studies. 

The program is able to randomly generate problems with the large number of real world 

constraints considered here. The user specifies the probability distributions of 20 

variables (e.g., setup time, time gap between consecutive maintenance breaks, number 

of parts directly preceding a part in the bill of material of a job, etc.), and also the values 

of 13 other variables and parameters (e.g., overlap policy, mean machine static loading 

rate, probability of occurrence of job and operation ready times, etc.), and the program 

randomly generates a problem instance. A set of 6 problems was used in the 

experiments. Basically, the problems vary in size, level of competition for resources and 

availability of alternative routes. The most important qualitative attributes of these 

benchmark problems are shown in the table 5.1 below. The problem generator program 

and the problems used here are detailed in appendixes A and B respectively.

Problem Size (number of 

operations)

Level of competition for resources 

(other than machines)

Availability of 

alternative routes

1 Small (106) Medium Medium
2 Large (416) Medium Medium
3 Medium (237) Medium Medium
4 Small (142) High Medium
5 Small (116) Low Medium
6 Small (161) Medium High

Table 5.1. Description of the Problems
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Note that the number of operations in the table above is the average number of 

operations really scheduled by the schedule generation algorithm. Because of the 

presence of alternative routes and machine maintenance operations the total number of 

operations in the problems is much higher. For instance, problem 1 has 151 operations 

and problem 6 has 323 operations.

The description of the problems given above suggests that the attributes size, 

level of competition for resources and availability of alternative routes should be used as 

factors in a factorial experiment. If the reader goes through appendix B, a different 

conclusion will be drawn. The problems considered are much too complex and it is 

impossible to fix one attribute and vary others because a large set of parameters are 

connected to each of these qualitative attributes. Therefore, experiments were conducted 

with each problem separately and results were put together to draw overall conclusions.

The performance of the proposed models is also related to the multiobjective 

function being used. The design of the ideal multiobjective function is a complex 

environment dependent problem and will not be addressed in this work. Although the 

system is prepared to deal with any combination of regular performance measures, all the 

experiments were conducted using the following function: F = Caver + Cmax = Mean 

completion time + Makespan. Due date dependent measures (e.g., tardiness, lateness, 

etc.) were not adopted in order to avoid the effect of due date tightness in the system 

performance. The influence of due date assignment method and due date tightness in 

the performance of different dispatching rules was discussed in chapter 2.

In the next three sections, the three basic modules of the system (the modified 

schedule generation algorithm, the local hill climbing and the genetic algorithm) are 

analyzed separately in order to understand the significance of several configuration 

options and adjust their levels. Afterwards, the entire hybrid system is studied.

All the experiments were conducted using a PC with a pentium 100 MHz 

processor and 32 MB of RAM memory.
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5.2. MODIFIED SCHEDULE GENERATION ALGORITHMS

The modified schedule generation algorithm has a number of possible 

configurations. This section analyzes the effect of different configuration options under 

several problem instances. The simulations in this section are concerned only with the 

schedule generation algorithm. The objective here is to examine the effects of different 

program options on the quality of the initial solutions. The local hill climbing and the 

genetic algorithm will be addressed later.

A full factorial experiment was performed for each problem instance. The factors 

(configuration options) crossed in the experiment are described in the following table. 

The number of replicates was fixed at 200 (small mean variances are desirable for 

comparison purposes).

Factor

(symbol)

Level Description

Generation strategy 1 Active schedule generation algorithm
(ACTNON) 2 Non delay schedule generation algorithm

Route selection method 1 Random selection of subprocess routes

(METROUT) 2 Route selection heuristic

Dispatching procedure 1 Random dispatching
(DISP) 2 SPT (Shortest Processing Time rule)

Resource selection method 1 Random selection of resources
(HEURITR) 2 Minimum gap heuristic

Generation mode 1 Complete generation mode
(GENMOD) 2 Simplified generation mode

Table 5.2. Factors Crossed in a Factorial Experiment Related to the Modified

Schedule Generation Algorithm

When all configuration options are set to level 1 the schedule generation algorithm 

is said to be in its basic configuration. Such configuration will be useful in next sections, 

where other system modules are tested. Note that basic configuration does not mean 

best configuration. It is only the one that allows the exploration of the largest search
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space. Therefore, basic configuration adopts factor levels suitable to the exploration of a 

solution space as large as possible.

The value of a in the route selection heuristic was fixed at 0.75, where a is the 

relative importance of selecting fast subprocess routes and (1-a) is the relative 

importance of balancing resource utilization. This value worked well for several problem 

instances. In practice, however, this parameter must be adjusted to each particular 

environment.

Dispatching rules tend to confine the search to a small region of the solution 

spacem, causing premature convergence of the GA. Because of this only SPT 

dispatching rule was tested.

Table 5.3 shows the significant main effects and interactions for each problem and 

their respective P values. Only effects related to P values less than 0.075 are reported.
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P ro b le m S ig n ifican t e ffec ts  - P  va lu e s

M ain  e ffec t T w o  fac to rs  in terac tion T h re e  fac to rs  in teraction F o u r factors  

in teraction

1 ACTNON - 0.000 

METROUT - 0.000 

DISP - 0.000 

GENMOD - 0.002

ACTNON'DISP - 0.000 

ACTNON'GENMOD - 0.000
ACTNON'DISP'GENMOD - 0.002

2 ACTNON - 0.000 

METROUT - 0.000 

DISP - 0.000 

HEURITR - 0.006

ACTNON'METROUT - 0.053 

ACTNON'DISP - 0.000 

METROUT*DISP - 0.000 

DISP'HEURITR - 0.000

METROUT*DISP'HEURITR - 0.013

3 ACTNON - 0.000 

METROUT - 0.000 

DISP - 0.000 

GENMOD - 0.034

ACTNON'METROUT - 0.001 

ACTNON'DISP - 0.000
ACTNON'METROUTDISP - 0.000 

ACTNON'METROUT'HEURITR - 0.044 

METROUT*DISP'GENMOD - 0.018

ACTNON'METROUT'DISP'HE 
URITR - 0.024 

METROUTDISP'HEURITR'GE 
NMOD - 0.030

4 ACTNON - 0.000 

METROUT - 0.000 

DISP - 0.000 

HEURITR - 0.000

ACTNON'METROUT - 0.001 

ACTNON*DISP - 0.000 

ACTNON'HEURITR - 0.001 

ACTNON'GENMOD - 0.001 

METROUTDISP - 0.004 

DISP'HEURITR - 0.003 

DISP'GENMOD - 0.000

ACTNON'DISP'GENMOD - 0.000

5 ACTNON - 0.000 

METROUT - 0.000
ACTNON'DISP - 0.000

6 ACTNON - 0.000 

METROUT - 0.000 

DISP - 0.000 

HEURITR - 0.007

ACTNON'DISP - 0.000 

ACTNON'HEURITR - 0.004 

ACTNON'GENMOD - 0.005 

METROUT*DISP - 0.049 

METROUT*HEURITR - 0.029 

DISP'GENMOD - 0.005

ACTNON'DISP'HEURITR'GEN 
MOD - 0.049

Table 5.3. Significant Effects - Modified Schedule Generation Algorithm

Variations in the evaluation function values due to changes in factor levels and the 

correspondent confidence interval for these differences (level of significant of 0.05) are 

reported in the next table. Because interactions are significant, these variation values are 

not due to changing main factor levels alone. Differences in CPU time are also shown in 
the table.
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Significant main effects Evaluation Function Value (Average) Computational time - single run

(sec)
factor at factor at confidence variation factor at factor at variation
level 1 level 2 interval for (%) level 1 level 2 (%)

differences
1 ACTNON 1741.599 1617.131 (119.6, 129.4) 7.1 0.022 0.021 4.5

METROUT 1710.110 1648.620 (56.6, 66.4) 3.6 0.017 0.026 -52.9
DISP 1700.335 1658.395 (37.0, 46.8) 2.5 0.023 0.021 8.7

GENMOD 1675.493 1683.238 (-12.7, -2.8) -0.5 0.022 0.021 4.5

2 ACTNON 4511.023 4268.095 (226.9, 258.9) 5.3 0.116 0.111 4.3
METROUT 4511.285 4267.833 (227.5, 259.5) 5.4 0.095 0.132 -38.9

DISP 4294.624 4484.494 (-205.9, -173.9) -3.7 0.110 0.116 -5.5
HEURITR 4400.848 4378.269 (5.7, 37.7) 0.5 0.113 0.113 0

3 ACTNON 4087.135 3746.413 (328.4, 353.0) 8.3 0.047 0.046 -2.1
• METROUT 3970.582 3862.966 (95.3, 119.9) 2.7 0.036 0.060 -66.7

DISP 3826.746 4006.802 (-192.4,-167.8) -4.7 0.048 0.048 0
GENMOD 3910.129 3923.419 (-25.6,-1.0) -0.3 0.048 0.047 2.1

4 ACTNON 2281.593 2073.377 (200.4, 216.0) 9.1 0.028 0.030 -7.1
METROUT 2238.078 2116.892 (113.4, 129.0) 5.4 0.023 0.035 -52.2

DISP 2106.700 2248.271 (-149.4, -133.8) -6.7 0.028 0.030 -7.1
HEURITR 2187.944 2167.027 (13.1,28.7) 1.0 0.028 0.029 -3.6

5 ACTNON 1569.815 1483.535 (80.0, 92.6) 5.5 0.013 0.012 7.6
METROUT 1539.040 1514.310 (18.4,31.0) 1.6 0.008 0.015 -87.5

6 ACTNON 2751.061 2546.987 (194.9,213.3) 7.4 0.033 0.032 3.0
METROUT 2706.571 2591.477 (105.9, 124.3) 4.3 0.018 0.048 -166.7

DISP 2636.495 2661.553 (-34.3, -15.9) -1.0 0.033 0.033 0
HEURITR 

e  a  r-_____ :

2655.351 2642.697 (3.5,21.9) 0.5 0.033 0.033 0

Table 5.4. Experiment Results - Modified Schedule Generation Algorithm

The variation values above were calculated as follow: (Evaluation function value 

(or CPU time) with factor at level 1 - Evaluation function value (CPU time) with factor at 

level 2) / Evaluation function value (CPU time) with the factor at level 1. So positive 

values for the percentage variations mean enhancement in performance, since we are 

dealing with a minimization problem. All the evaluation function values in the table are 

averages over 16 treatments * 200 replicates = 3200 solutions.

The analysis showed a large number of significant interactions. An in-depth study 

of these interactions will not be conducted here. The interaction ACTNON*DISP, 

however, was highly significant in all problem instances and deserves special attention. A
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behavior pattern can be drawn from the charts in figure 5.1 that graphically display this 

interaction in all problems. Clearly SPT rule is more effective in the non delay scheduling 

generation algorithm while random dispatching is more suitable for the active schedule 
generation algorithm.

Interaction ACTNON*DISP - 
Problem 1

§ g 1600 
5 1500 
^  i  1400

ACTNON

Interaction ACTNON*DISP - 
Problem 3

ACTNON

Interaction ACTNON*DISP - 
Problem 2

C j j  4800
•2 g 4600
J g 4400 „
g z  4200 - -
“ * § 4000
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interaction ACTNON*DISP - 
Problem 5

Interaction ACTNON*DISP - 
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Figure 5.1. Interaction ACTNON*DISP - Modified Schedule Generation Algorithm

For each problem instance we stored the set of factor levels that produce the best 

results, and also the best set of factor levels with random dispatching procedure 

(DISP=1). This latter arrangement of best factor levels (with DISP=1) will be used later in 

the entire system experimental design. These two sets along with the basic configuration 
described earlier are shown in table 5.5.



Problem Configuration Factor levels Average

Evaluation

CPU

time

(sec)ACTNON METROUT DISP HEURITR GENMOD Function Value
1 General best set of factor levels 2 2 2 2 2 1526.4 0.025

Best set of factor levels with DISP=1 2 2 1 2 1 1628.2 0.025
Basic configuration 1 1 1 1 1 1762.3 0.021

2 General best set of factor levels 2 2 1 2 1 4119.4 0.133
Best set of factor levels with DISP=1 2 2 1 2 1 4119.4 0.133

Basic configuration 1 1 1 1 1 4404.5 0.100
3 General best set of factor levels 2 2 2 1 3645.0 0.062

Best set of factor levels with DISP=1 2 2 1 1 1 3686.9 0.067
Basic configuration 1 1 1 1 1 3933.9 0.038

4 General best set of factor levels 2 2 1 1 2 2005.7 0.033
Best set of factor levels with DISP=1 2 2 1 1 2 2005.7 0.033

Basic configuration 1 1 1 1 1 2190.4 0.025
5 General best set of factor levels 2 2 2 1452.6 0.017

Best set of factor levels with DISP=1 2 2 1 1 1 1478.3 0.017
Basic configuration 1 1 1 1 1 1569.0 0.012

6 General best set of factor levels 2 2 1 2 2443.0 0.046
Best set of factor levels with DISP=1 2 2 1 1 2 2517.9 0.046

Basic configuration 1 1 1 1 1 2736.1 0.021

Table 5.5. Arrangements of Factor Levels - Modified Schedule Generation Algorithm
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For all problems the non delay schedule generation algorithm performed on 

average 7.1% better than the active one. The route selection heuristic worked well in all 

problem instances, enhancing the average system performance by 3.8%, but also 

increased the computational time by 77%. In problem 6, characterized by large number 

of alternative routes, the increase in CPU time due to the route selection heuristic 

reached 166%. When the non delay schedule generation strategy was being used, SPT 

rule achieved an average performance 1.5% higher than random dispatching. However, 

SPT rule degraded the average system performance by 6.2% when the active schedule 

generation strategy was adopted. The main effect of factor generation mode (GENMOD) 

was determined to be significant only in problems 1 and 3, where using the complete 

generation mode improved the system performance by about 0.4% at a small 

computational cost. The resource selection method presented significant effect in 3 out 

of the 6 problems. In such problems, the use of the minimum gap heuristic causes an 

average gain in performance of 0.7% compared to random selection of resources.

5.3. LOCAL HILL CLIMBING

This section investigates the performance of the local hill climbing algorithm and 

its configuration options. Here, the local search algorithm is examined alone. Its effect in 

the entire hybrid genetic system will be addressed in section 5.4.

Similar to the previous section, for each of the six problem instances a full factorial 

experiment with 200 replicates for treatment was performed. All the initial solutions were 

generated by the scheduling generation algorithm in its basic configuration (ACTNON = 

METROUT = DISP = HEURITR = GENMOD = 1). A description of the factors crossed in 

this experiment is given in the following table:
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Factor (symbol) Levels Description

Resource changing between 

moves (RESCH)

1

2

Resources (other than machines) required to 

execute an operation are allowed to change 

when a move in the neighborhood occurs. 

Resources required to execute an operation 

are not allowed to change when a move is 

performed

Method for selecting the arc to 

be reversed (ARCTYPE)

1

2

Bottleneck heuristic 

Random choice of the arc to be reversed

Table 5.6. Factors Crossed in a Factorial Experiment Related to the Local Hill Climbing

Note that the selection of the arc to be reversed is made among the candidate 

arcs in the neighborhood structure defined in last chapter, no matter which selection 

method is being adopted (random or bottleneck heuristic).

The improvement in the evaluation function values achieved by the local hill 

climbing over the initial solutions generated by the schedule generation algorithm (in its 

basic configuration) is reported in the following table. The computational time of the local 

hill climbing is also described.

Problem Average Evaluation Function Value Computational time - single run (sec)

Initial

solution

Initial solution 

enhanced by the 

local hill climbing

Variation

(%)

Initial solution Initial Solution 

enhanced by the local 

hill climbing

1 1759.2 1719.0 2.3 0.021 0.032

2 4438.2 4414.9 0.5 0.100 0.235

3 3943.8 3890.3 1.4 0.038 0.100

4 2184.5 2171.8 0.6 0.025 0.044

5 1580.6 1546.6 2.2 0.012 0.023

6 2725.0 2698.1 1.0 0.021 0.041

Average: 1.3

Table 5.7. Solution improvement Due to the Local Hill Climbing Procedure
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The evaluation function values in the local hill climbing column are averages over 

all treatments for which RESCH=1, that is, averages over 2 treatments * 200 replicates = 

400 values. Variations in the evaluation function and CPU time were calculated as 

described in last section for the schedule generation algorithm.

Table 5.8 shows the results of the full factorial experiment. Only effects related to 

P values less than 0.075 are reported. In problems 2, 4 and 5 no significant main effect 

or interaction were determined.

Problem Significant main 

effects and 

interactions

P value Average Evaluation Function Value Computational time - single run (sec)

factor at 

level 1

factor at 

level 2

confidence interval 

for differences

variation

(%)

factor at 

level 1

factor at 

level 2

variation

(%)
1 RESCH 0.021 1719.0 1736.9 (-33.1, -2.7) -1.0 0.032 0.022 31.2
3 RESCH 0.031 3890.3 3921.7 (-59.7, -3.1) -0.8 0.100 0.061 39.0
6 ARCTYPE

RESCH'ARCTYPE

0.070

0.054

2693.7 2716.6 (-47.6, 1.8) -0.9 0.036 0.033 8.3

Table 5.8. Experiment Results - Local Hill Climbing

The weak interaction between RESCH and ARCTYPE (P value of 0.059) 

observed in problem 6 is graphically displayed below. As it occurred in only one case no 

general conclusions can be made.

Interaction RESCH*ARCTYPE - 
Problem 6
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Figure 5.2. Interaction RESCH*ARCTYPE - Local Hill Climbing

For each problem instance we also stored the set of factor levels that produced 

the best results. A factor was set to its default level when its main effect was not 

significant and the factor was not present in any significant interaction. The default levels 

for RESCH and ARCTYPE are 1 and 1 respectively. When both RESCH and ARCTYPE 

are adjusted to their default levels, the local hill climbing is said to be in its basic
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configuration. For each problem instance the following arrangements of factor levels 

provided the best results:

Problem 1 2 3 4 5 6

RESCH 1 1 1 1 1 1

ARCTYPE 1 1 1 1 1 1

Table 5.9. Arrangements of Factor .evels - Local Hill Climbing

Note that for all problems the basic and best configurations coincided for all 

problems. From now on this basic configuration of the local hill climbing will be used in all 

problems.

Some important conclusions may be drawn from the experimental analysis. The 

local hill climbing procedure is more efficient in low constrained problems because the 

representational scheme and the neighborhood structure do not directly take into account 

resources other than machines. The availability of these resources is considered only as 

constraints to be satisfied. The moves are performed by reversing arcs connecting 

operations executed on the same machine. The local search procedure also worked 

better in smaller problems. Allowing resources other than machines to change when 

moves are implemented significantly enhanced the performance of the hill climbing 

procedure in problems 1 and 3, but also required greater CPU time as shown in table 5.8. 

No significant difference in performance between the methods for selecting the arc to be 

reversed was observed. Only in problem 6 a P value of 0.07 suggests an improvement in 

performance due to the bottleneck heuristic.

5.4. GENETIC ALGORITHM PARAMETERS

In this section values of parameters associated with the genetic algorithm are 

determined. Specifically, we want to find out proper crossover and mutation rates, 

population size and number of generations. Such parameter values will be used in the 

entire system simulation carried out in next section. Only problem 1 was used in the 

experiments, since these GA parameters are very robust. The GA used the active 

solution generation strategy, and basic configurations were adopted in both schedule 

generation and local hill climbing algorithms.
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Crossover and mutation rate:

The basic crossover and mutation rates were determined through a factorial experiment 

(with 10 replicates per treatment) in which the level of factors were the following:

basic crossover rate: 0.6 0.8 1.0

basic mutation rate: 0.01 0.03 0.05 0.12

Table 5.10. Factors Crossed in a Factorial Experiment to Select GA Parameter Values

Population size and number of generations were fixed at 100. As shown in the 

ANOVA table below, the main effects of crossover and mutation were determined to be 

significant at a level of significance of 0.01. Surprisingly, the interaction was not 

significant, even for a level of 0.05. The values adopted to basic crossover rate and basic 

mutation rate were 0.8 and 0.05 respectively.

Source Degrees of 

freedom

Sum of 

squares

Mean

square

F F0.05 F0.01

crossover 2 228.47 114.23 6.37 3.10 4.82

mutation 3 263.62 87.87 4.90 2.70 4.01

interaction 6 164.92 27.49 1.53 2.20 2.98

error 99 1775.13 17.93

Table 5.11. ANOVA Table - Genetic Algorithm Operators

The importance of route crossover and route mutation depend on the problem 

under consideration. Some experiments showed that their effects can be disregarded in 

problems with low level of alternative routes. For problems with medium to high level of 

alternative routes, values of 0.6 for route crossover rate and 0.1 for mutation rate showed 

to be appropriate.

Population size:

Larger population sizes avoid premature convergence and tend to produce better 

solutions. However, there is a saturation of this tendency.
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In order to determine a suitable population size and confirm the saturation effect 

described above, our genetic algorithm was run with several population sizes. The 

chart below shows the experimental results, where the best fitness (evaluation function 

valued at each population size is an average over 20 runs of the genetic algorithm.

Effect of the population size in the GA performance

1320 

1318 

1316 

8 1314 

£  1312 + 

2  1310A
1306

1306

1304
0 50 100 150 200 250 300 350 400 

population size •»—best fitness I

Figure 5.3. Effect of Population Size in the GA Performance

The number of generations was fixed at 100. Therefore, the number of trials is 

the population size times 100. Crossover and mutation rates were the ones determined 

earlier in this section.

Number of generations:

The termination criterion used in the GA algorithm proposed here is simply a fixed 

number of generations. In order to determine the effect of the number of generations 

in the genetic algorithm performance, 20 runs of the GA using 400 generations were 

carried out. The chart below shows the results obtained. The fitness values are 

averages over the 20 runs.
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Effect of the number of generations in the GA performance
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Figure 5.4. Effect of Number of Generations in the GA Performance

Population size was fixed at 100, and, therefore, the number of trials is the 

number of generations times 100. Crossover and mutation rates were set to the values 

determined earlier.

Genetic Algorithm Basic Configuration:

Based on the experiments described in this section and considering computational time 

also a performance measure, the following set of parameters was chosen to define the 

“basic configuration” of the GA proposed:

basic crossover rate: 0.8

basic mutation rate: 0.05

route crossover rate: 0.6

» route mutation rate:

• population size:

0.1

100

number of generations : 100
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Note that larger population sizes and number of generations can improve the 

performance of the algorithm. Considering problem 1 as an example, the best fitness 

obtained with a population size of 400 is only about 0.2% greater than the one achieved 

by the basic configuration. Similarly, the use of 400 generations increases the average 

GA performance by only 0.8%. However, the increase in computation time reaches 

400%. Therefore, the use of larger number of generations and population sizes is 

justified only in cases where enough computation time is available.

5.5. THE HYBRID GENETIC SYSTEM

This sections analyzes the performance of the entire system over the set of 

problem instances already mentioned in previous sections.

The configuration options are now considered in aggregated levels. The influence 

of the following factors in the overall system performance was studied in a full factorial 

experiment:

Factor (symbol) Levels Description

Quality of initial 1 Initial solutions generated by the basic configuration

solutions (INIT) of the schedule generation algorithm.

2 Schedule generation algorithm in its best 

configuration (with DISP=1) for each problem.

Hybridization level 1 Genetic algorithm hybridized with a local hill climbing

(CONFOP) procedure.

2 Pure GA

G A generation strategy 1 Active

(GACTNON) 2 Non delay

Table 5.12. Factors Crossed in a Factorial Experiment of the Entire Hybrid System

When I NIT is in level 2 a set of good initial solutions are produced, and when I NIT 

is in level 1 a set of distant initial solutions are produced. That is, level one drives the 

initial solutions to promising but small regions of the search space, while level 2 spread 

the initial population of solutions in the whole search space.
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We observed that SPT rule (DISP=2) always lead to a premature convergence of 

the GA. To avoid this, we selected the best configuration of the schedule generation 

algorithm for each problem with the requirement of DISP=1.

Each time reproduction occurs in the GA, a schedule generation algorithm is used 

to create the new individual. As described in chapter 4, the crossover operator is 

embedded in the schedule generation algorithm. The GACTNON factor analyzed here is 

pertaining to the use of active or non delay generation strategy in the GA. The adoption 

of an active or non delay strategy during the generation of the initial solutions is a 

different issue. In the experiment the genetic algorithm and the local hill climbing were 

set to their basic configurations. The number of replicates per treatment was fixed at ten.

At first, differences in fitness between the first and last generations are reported. 

The following table shows the fitness of the best individual in the first and last generations 

as well as the average population fitness in the first and last generations. The fitness 

values in the table are averages over all treatments, that is averages over 8 treatments * 

10 replicates = 80 values.

Problem Best individual Population Average Computational 

Time - single run 

(min.)

Generation Variation (%) Generation Variation (%)

first last first last

1 1460.5 1312.

9

10.1 1684.1 1338.1 20.5 3.5

2 3752.6 3493.

2

6.9 4286.0 3547.5 17.2 19.8

3 3387.8 3076.

2

9.2 3797.5 3113.8 18.0 9.6

4 1782.3 1624.

6

8.8 2096.0 1685.2 19.6 4.5

5 1285.8 1222.

6

4.9 1518.9 1241.2 18.3 1.8

6 2242.2 1932.

4

13:8 2624.4 2025.3 22.8 3.4

Table 5.13. Average System Performance 

The following charts show the average behavior of the system through time:
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Figure 5.5. Average System Performance through Time
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The next table shows the significant main effects and interactions for each 

problem and their respective P values. Only effects related to P values less than 0.075 

are reported. Fitness variations due to changes in factor levels and the correspondent 

confidence interval for these differences (level of significant of 0.05) are also displayed. 

Note that when there is a significant interaction involving a factor, the variation is not due 

to changing in the level of the factor alone. Computational times are also addressed.

Problem Significant main effects P value Fitness of the best individual in the last generation Computational time - single run (min)

and interactions factor at 

level 1

factor at 

level 2

confidence interval 

for differences

variation

(%)

factor at 

level 1

factor at 

level 2

variation

(%)
1 GACTNON 0.000 1319.9 1305.9 (11.7, 16.3) 1.1 3.6 3.3 8.3

INIT 0.000 1309.2 1316.6 (-9.7, -5.1) -0.6 3.6 3.3 8.3
CONFOP

GACTNON'INIT

GACTNON'CONFOP

0.000

0.000

0.000

1307.6 1318.2 (-12.9, -8.3) -0.8 4.5 2.4 45.8

2 GACTNON 0.000 3510.4 3475.3 (23.9, 46.3) 1.0 19.9 19.7 1.0
INIT 0.059 3498.3 3487.4 (-0.3,22.1) 0.3 20.5 19.1 6.8

CONFOP

GACTNON'INIT

0.000

0.007

3473.8 3511.9 (-49.3, -26.9) -1.1 25.5 14.1 44.7

3 CONFOP 0.000 3057.3 3095.0 (-47.8, -27.6) -1.2 13.6 5.6 58.8

4 GACTNON 0.000 1648.2 1600.9 (39.1, 55.5) 2.9 4.6 4.4 4.3
INIT 0.000 1638.2 1611.0 (19.0, 35.4) 1.6 4.7 4.3 8.5

CONFOP

GACTNON'INIT

0.026

0.005

1619.8 1629.3 (-17.7, -1.3) -0.6 5.7 3.3 42.1

5 GACTNON 0.000 1215.1 1230.1 (8.1,21.9) -1.2 1.9 1.8 5.3

6 GACTNON 0.000 1950.8 1914.1 (26.3, 47.1) 1.9 3.5 3.2 8.6

Table 5.14. Experiment results - Hybrid Genetic System

Problems 1, 2 and 4 presented significant interactions between factors GACTNON 

and INIT and problem 1 also presented a significant interaction between GACTNON and 

CONFOP . These interactions are graphically described in figure 5.6, where “fitness” 

concerns to the evaluation function value of the best solution in the last generation.
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Charts in figure 5.7 show the differences in convergence properties due to 

variations in the generation strategy adopted by the GA. The points plotted on the charts 

are averages over all treatments that present the same level of GACTNON, that is, each 

point on the charts is an average over 4 treatments * 10 replicates = 40 values. As the 

factor GACTNON is encountered in several significant interactions, the differences in 

behavior between the curves of GACTNON=1 and GACTNON=2 can not be attributed to 

differences in GACTNON levels alone.

Similarly, the charts in figure 5.8 compare the evolution of the population fitness 

when INIT=1 (initial solutions created by the basic configuration of the schedule 

generation algorithm) and INIT=2 (initial population created by the schedule generation 

algorithm in its best configuration, given that DISP=1) for all problems.
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Figure 5.7. Effect of GACTNON - Hybrid Genetic System
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Figure 5.8. Effect of INIT - Hybrid Genetic System

Finally, the charts comparing the pure GA and the GA hybridized with a local hill 

climbing are plotted in figure 5.9.
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Figure 5.9. Effect of CONFOP - Hybrid Genetic System

Based on the tables and charts printed above a number of general conclusions 

can be drawn.



106

The generation strategy adopted by the GA (GACTNON) showed significant main 

effects in 5 out of 6 problems. Except for problem 5, the non delay strategy significantly 

achieved better results than the active one.

The main effect of factor INIT (quality of initial solutions) was significant in only 3 

problems (including problem 2 where the P value was 0.059). In problems 2 and 4 the 

use of a better set of initial solutions (INIT=2) showed positive contributions to the system 

performance, and in problem 1 the better set of initial solutions led to a premature 

convergence of the GA, degrading the system performance. In all problems where INIT 

was significant, its interaction with GACTNON was significant either. The interaction 

charts suggested that the level of INIT is not important if the non delay generation 

strategy is adopted by the GA. This arrangement, where INIT=1 or 2 and GACTNON=2, 

seems to be the best for all problems.

The factor CONFOP (hybridization level) presented significant main effect in 4 out 

of 6 problem instances. The hybridization of the GA with the local hill climbing enhanced 

the system performance in all problems instances where CONFOP is significant. Even in 

problem 4, which is characterized by high competition level for resources other than 

machines, the hybridization significantly improved the system performance. 

Nevertheless, this hybridization is time expensive, increasing the CPU time required by 

about 47%.

The “Effect of GACTNON” charts showed a slightly sooner convergence of the 

system when the GA is using a non delay generation strategy (GACTNON=2). However, 

this convergence difference is not enough to make active generation a better strategy. 

Non delay generation strategy presented an overwhelming superiority over the active 

generation strategy in 5 out of 6 problems. Similarly the “Effect of INIT’ charts showed a 

trend to a more premature convergence of the system when INIT=2. No significant 

difference in convergence rate was observed between CONFOP=1 and CONFOP=2.

The problem size, the competition level for resources and the hybridization with 

the local hill climbing procedure are crucial factors in the determination of the 

computational time required.



107

5.6. REMARKS

The proposed system worked well in all problem instances, showing to be a 

promising tool to solve real make to order job shop scheduling problems. The following 

guidelines aid the proper use of the system.

The generation strategy in the GA must be always the non delay one. If the non 

delay strategy is adopted by the GA the use or not of heuristics to improve the quality of 

initial solutions is not significant. However, these heuristics must be adopted if CPU 

time is scarce, once they lead the system to a premature convergence, and thus 

allowing a smaller number of generations in the GA. The hybridization with a local hill 

climbing procedure is always desirable unless there is not enough computational time.

An important question that has not been answered so far is if the proposed 

scheduling system efficiently solves classical job shop scheduling problems. When all 

real world constraints and alternatives described in chapter 4 are excluded from the 

production environment the resulting problem is a classical JSSP. Let the input problem 

be a classical JSSP. If the local hill climbing procedure is disabled then the scheduling 

system presented in this thesis will be identical to the GA with Active Schedule 

Constructive Crossover proposed by Park and Park (1995) to solve classical JSSPs. 

Park’s genetic algorithm yielded outstanding results on five benchmark problems: ABZ6, 

CAR4, LA22, MT10 and MT20. We used four Taillard’s benchmark problems to verify 

the performance of the proposed model on classical job shop scheduling problems. 

Taillard’s benchmarks are characterized by their large size. The best hybrid genetic 

algorithm used so far to deal with these benchmarks is the GA3 proposed by Mattfeld 

(1996). The results obtained by our GA are comparable (although slightly worse) to the 

obtained by Mattfeld. These results are reported in Appendix D.
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CHAPTER 6 

CONCLUSIONS AND FURTHER RESEARCH

6.1. THESIS ORIGINALITY AND CONTRIBUTION

This work undertook the application of constructive heuristics, local search 

procedures and genetic algorithms to real make-to-order job shop scheduling problems.

To our knowledge, the first local search and genetic based system able to 

simultaneously consider all the features described in chapter 4 was implemented in this 

thesis. The consideration of these features by the scheduling system is crucial in the 

majority of real job shop production environments. At a micro level, the thesis is original 

due to the following four basic contributions:

1. Efficient active and non-delay schedule generation algorithms that consider jobs with 

bill of materials, alternative processing plans for parts and alternative resources for 

operations, requirement of multiple resources to process an operation, resource 

calendars, batch overlap, operation and job ready times, and sequence dependent 

setups were developed. These constructive algorithms were used to generate initial 

solutions in the hybrid scheduling system proposed here. Also, some heuristics (route 

selection and minimum gap heuristics) were proposed to improve the performance of 

the schedule generation algorithms.

2. The graph representation scheme (used so far in classical JSSPs) was extended to 

support jobs with bill of materials, alternative resources (except machines) for 

operations, requirement of multiple resources to process an operation, resource 

calendars, batch overlap, operation and job ready times, and sequence dependent 

setups. A neighborhood structure to be applied to the extended graph formulation was 

created and validated. The proposed neighborhood also supports multiobjective 

evaluation functions. Any local search strategy (e.g., simulated annealing and tabu 

search) can be easily implemented using the extended graph, formulation and 

neighborhood structure proposed. In the system proposed here only a local hill 

climbing was implemented because the search diversification is provided by the GA.
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3. A robust, complete and almost non-redundant genetic algorithm to solve real job shop 

scheduling problems that directly consider in the search process all the real world 

features (taken into account by the modified schedule generation algorithms) was 

presented. The proposed GA also supports multiobjective evaluation functions.

4. The modified schedule generation algorithm, the local search procedure and the 

genetic algorithm were hybridized to create a high performance scheduling system. 

The system was shown to generate high quality solutions for scheduling problems 

with large number of real world constraints and alternatives. The system efficiency 

and efficacy was observed in several different problems, i.e., the system performed 

well in problems of different sizes, different levels of competition for resources, 

different availability of alternative routes, etc.

Summarizing, we made possible high performance techniques (used so far to 

solve classical JSSPs) to be applied to complex real JSSPs.

6.2. SOME MODELING REMARKS

There are other real world constraints that have not been directly considered by 

the proposed system. The most important one is related to transportation times and 

material handling devices. If transportation devices are always available (infinite material 

handling capacity) only slight modifications in the overlap time equations are required to 

take transportation times into account. Let tru be the time required to transport a minimum 

transport batch of operation u (Ou) from the machine cell where operation u was 

processed to the machine cell where suc(u) will be processed. The overlap time toy under 

policy 1 is now calculated as follows:

a) tou = tsu + oCtopu + tru, if tsuc(u) > a^tops^u) + (n - ocy)*topu - tru

b) tO y  =  ty '  tsuc(u) + (Xy t O p suc(u), if tsuc(y) ^ CXu tOPsuC(Ll) (^ “ C^u) tO P y  ■ tru

Equations for tou under overlap policy 2 can be obtained in the same manner.
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When there are constraints about availability of transportation devices (finite 

material handling capacity) the average time a transportation device takes to be available 

after it has been requested must be added to trUl i.e., tru = transportation time of otu + 

average time to the requested transportation device be available. This approach is only 

reasonable for production environments where the ratios tru/tu are small.

Up to this point the dynamic nature of the shop has not been addressed. The 

author advises the production environment to be rescheduled when the problem data 

significantly change. That is, the system must run again with updated data if rush orders 

arrive or non expected machine breakdowns, staff missing, changes in job specifications, 

etc. occur during the schedule execution.

6.3. FURTHER RESEARCH

Extensions of this work are recommended in three different directions:

1. Improvement of system performance: Different representation schemes, 

neighborhood structures, local search control strategies, genetic operators and 

population management strategies may be proposed in order to achieve higher 

performance. The hybridization of the GA with more complex local search strategies 

like tabu search is also a promising research area.

2. Additional modeling capabilities: Other real world constraints can be included in the 

scheduling system. For instance, buffer size limitations, operation waiting time 

constraints, batch splitting and grouping, batch preemption, and constraints related to 

availability of material handling devices are some important real world constraints not 

considered by the system proposed. A robust rescheduling methodology able to 

efficiently reschedule the job shop while keeping a high similarity with the previous 

schedule would also be very useful to avoid the chaos that usually comes with the 

rescheduling activity.

3. Multiobjective function design: The proposed system supports any multicriteria 

regular performance measure. The design of the multiobjective function however is 

beyond the scope of this work. How to determine the weight of each single criterion in
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the multicriteria function and which criteria must be included are important questions 

that arise in real production environments. Neural network and inductive learning 

algorithms (e.g., C4.5 algorithm due to Quinlan, 1990) can be used to overcome this 

problem. Given a set of features describing the system status (e.g., priorities of job 

orders, expected mean machine loading rate) and a score for each single criterion 

(provided by the PPC manager) the “smart” algorithm would yield the proper 

multiobjective function to be used. The training phase would be “manager-specific.”

Finally the robustness of the system proposed must be confirmed in real 

manufacturing enterprises.
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APPENDIX A 

RANDOM PROBLEM GENERATOR PROGRAM

A random problem generator program was developed in order to obtain problem 

instances that included the real world constraints considered by the system proposed in 

this thesis. Given the probability distributions for some variables and values for some 

parameters the program generates a job shop scheduling problem like the ones 

described in appendix A. There is also an option to enter all the data from a specific 

problem, but this is very time consuming. The random generator program was used to 

create all the problem used in this thesis.

When the program requests the probability distribution of a variable the user 

must choose among binomial, Poisson, normal, uniform or exponential distributions and 

enter the distribution parameters (e.g., mean and variance for a normal distribution, 

minimum and maximum for a uniform distribution, etc.). Using this distribution the 

program randomly generates values to the variable. The inputs that must be provided by 

the user to the program generator are described below:

1. Number of jobs

2. Probability distribution of “Number of parts per job"

3. Occurrence probability of job ready times

4. Probability distribution of “Job batch size"

5. Probability distribution of “Ratio of a part batch size over the batch size of its 

succeeding part in the BOM”

6. Probability distribution of “Job ready time (given that it occurs)”

7. Probability distribution of “Number of parts preceding a part in a BOM”

8. Probability distribution of “Number of subprocess per part"

9. Probability distribution of “Number of routes per subprocess"

10. Probability distribution of “Number of operations per route"

11. Probability of occurrence of operation ready time

12. Probability distribution of “Operation ready time (given that it occurs)”

13. Probability distribution of “Ratio of part batch size over transport batch size"
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14. Probability distribution of “Unit operation execution time"

15. Probability distribution of “Operation setup time"

16. Number of machines which execute sequence dependent setup operations

17. Number of machine cells performing no sequence dependent setup operations

18. Probability distribution of “Number of machines per machine cell"

19. Number of resource types other than machines

20. Probability distribution of “Time interval between two consecutive resource 

scheduled breaks"

21. Probability distribution of “Resource break time duration"

22. Mean machine static loading rate, based on historical data

23. Increase in the machine load due to the absence of resources other than machines

24. Mean number of resource types (other than machine) used to execute an operation

25. Probability distribution of “Number of units of each resource type used to perform an 

operation (given that the resource type is required)"

26. Probability distribution of “Probability of the number of units of a resource type 

required at a time t be greater than the number of resources available"

27. Coefficient of variation of the percentage of operations that require a specific 

resource type (other than machine)

28. Probability of an operation presents setup dependent of at least one other operation, 

given that it is executed on sequence dependent setup machine

29. Given that an operation 'o' has sequence dependent setup, enter the probability of 

other operation which is executed on the same machine modify the standard setup 

time of 'o' if processed right before 'o'

30. Probability distribution of “Job due dates”

31. Overlap policy (1/2)

Inputs number 1 (number of jobs), 2 (probability distribution of “Number of parts

per job") and 7 (Probability distribution of “Number of parts preceding a part in a BOM”)

are used to create the BOMs of all jobs. A tree generation algorithm was implemented to

accomplish this task.
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The probability distributions of “Job batch size" (item 4) and “Ratio of a part 

batch size over the batch size of its succeeding part in the BOM” (item 5) are utilized to 

determine the batch size for each part.

The probability distributions of “Number of subprocess per part” , “Number of 

routes per subprocess“ and “Number of operations per route" are useful to define all 

the alternative processing plans of each part, i.e., to define the sequence of 

subprocesses for each part, the alternative routes per subprocess, and the sequence of 

operations at each subprocess route.

Items 16, 17 and 18 determine the machinery in the manufacturing environment. 

Notice that if a machine executes sequence dependent setup operations it is modeled 

as an one-machine cell. Therefore identical machines are included in the same cell if 

they execute no sequence dependent setup operation, and in separated ceils otherwise.

The number of machines that execute at least one sequence dependent setup 

operation (item 16), the probability of an operation (executed on a sequence dependent 

setup machine) to present setup dependent of at least one other operation (item 28), 

and the probability of an operation (which is executed on the same machine of an 

operation ‘o’ with sequence dependent setups) modify the standard setup time of 'o' if 

processed right before 'o' (item 29) are used to define the set of operations with 

sequence dependent setups. All these inputs are required because not all operations 

processed on a sequence dependent setup machine present sequence dependent 

setup times.

The number of units of each resource type (other than machine) in the 

production environment, as well as the resource requirements for each operation are 

jointly determined by inputs 22 through 27. By using these inputs the user can create 

problems with different levels of competition for resources, and also different levels of 

availability and utilization of each resource type.

The uses of the other inputs are quite obvious.
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APPENDIX B

PROBLEM INSTANCES USED IN THE EXPERIMENTS

The six problem instances used in the experiments addressed in chapter 5 are 

described here. They were generated by the random generator program described in 

appendix A. The problems are proposed as benchmarks for real job-shop scheduling.

Problem 1: The bill of material (BOM) of each job is shown in figure A.1. A pair (i, j) 

inside each box means (part i, number of units of part i required to produce one unit of 

the final product).

Job 0: Job 1:

Job 2: Job 3:

Job 4:

Figure A.1. BOMs - Jobs from Problem 1
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Table A.1 shows some job related data. Table A.2 describes the environment 

capacity (availability of resources) and the resource scheduled breaks. Routing 

information and operation related data, including resource requirements are described in 

table A.3. The subset of operations with sequence dependent setup is reported in table 

A.4.

Job batch size due date ready time

0 6 515 0

1 11 456 0

2 12 443 0

3 9 475 0

‘ 4 14 574 0

Table A.1. Job Related Dada - Problem 1
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Resource class Resource (typelunit) Scheduled breaks (start timelduration)

Machines (010) (335156) (1781122)

(110) (506154) (1630136)

(210) (105311)

(310) (90511)

(311) (612114) (1986116)

(4I0) (52811) (1499118)

(5I0) (291136) (171716)

(511) (93612)

(5I2) (223130) (1663136)

(5I3) (1181178)

Other resources (6I0) (673130)

(611) (1269114)

(6I2) (113136) (1539166)

(6I3) (311134) (1545148)

(7I0) (48012) (160211)

(711) (426150) (1616126)

(7I2) (767116)

(7I3) (1238146)

(8I0) (955132)

(811) (403134) (1597114)

(9I0) (281158) (1359132)

(911) (842140)

(1010) (714130)

(1011) (1156148)

(1012) (866140)

(1013) (771136)

(1110) (12411) (1185150)

(1111) (905154)

(1112) (12712) (1379128)

(1113) (1041120)

(1210) (244116) (1380136)
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(1211) (378124) (1682126)

(1212) (59148) (1237148)

(1213) (14911) (1400150)

(1310) (57211) (1713124)

(1311) (510126) (1686118)

(1312) (964114)

(1313) (18116) (1557146)

Table A.2. Resource Related Data - Problem 1
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Part Sub­

process

Route Operation Minimum

transport

batch

Setup

time

Unit 

executio 

n time

Operation

ready

time

Machine

type

required

Other resources 

required 

(typelquantity)

0 0 0 0 4 6 2 0 2 (811)

0 0 0 1 5 6 3 0 3 (611)

0 0 0 2 3 7 1 0 2 (611) (711) (1311)

0 1 1 3 6 3 2 0 3 (8I2)

0 1 1 4 3 3 4 0 5

1 2 2 5 4 3 1 0 5 (1011)
1 2 2 6 3 10 3 0 0

1 3 3 7 3 4 3 0 1 (9I2)

1 3 4 8 10 6 1 0 4

1 3 4 9 9 4 1 0 5

1 3 4 10 3 6 2 0 2 (1011) (1212)

2 4 5 11 4 6 3 0 4 (1311)

2 4 5 12 5 6 3 0 5 (7I2) (1011) (1311)

2 4 6 13 5 3 1 0 5 (7I1)(10I1)

2 4 6 14 2 5 2 0 1

3 5 7 15 2 4 2 0 0 (811)

3 5 7 16 5 8 1 0 3 (711) (811) (1011) 

(1111)

3 5 8 17 2 5 5 0 0 (811) (1011)

3 5 8 18 3 6 1 0 4

3 6 9 19 2 5 4 0 5 (711) (1011)
3 6 10 20 3 6 3 0 2 (711)

3 6 10 21 2 6 4 0 3 (6I2) (1111) (1211)

4 7 11 22 2 7 4 0 3

4 7 11 23 8 5 2 0 5

4 7 12 24 3 4 4 0 1 (611) (711) (1111)

4 7 12 25 4 3 5 0 4 (711)

4 8 13 26 4 9 4 98 2 (711) (1011)

4 8 14 27 8 6 1 0 3 (1011) (1311)
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4 9 15 28 2 4 1 0 4 (1311)

4 9 16 29 7 6 4 0 1

4 9 16 30 6 4 2 0 3 (611)

4 10 17 31 5 5 5 0 2 (811) (1011)

4 10 17 32 4 4 1 0 3

4 10 17 33 4 4 5 0 0 (1011)
5 11 18 34 11 2 2 0 4 (6I2) (911)

5 12 19 35 5 8 1 0 3 (1111) (1211)
5 12 19 36 8 3 4 0 5 (6I2) (711)

5 12 20 37 5 4 5 0 5 (611)
5 13 21 38 10 2 5 0 2 (1111)
5 13 21 39 7 3 4 0 4

6 14 22 40 4 8 5 0 5 (611) (1011)
6 14 22 41 3 4 2 0 0

6 14 22 42 5 4 1 0 3 (711) (1111)

6 15 23 43 2 3 3 0 2

6 15 23 44 3 8 3 0 4

6 15 23 45 5 6 3 0 2

6 15 24 46 2 1 3 0 5

6 15 24 47 9 8 5 0 4 (711) (1111)

6 15 24 48 2 5 1 0 1

6 16 25 49 3 2 1 0 4 (1212) (1311)
7 17 26 50 7 2 4 0 1 (611)
7 18 27 51 10 7 4 0 4 (1311)
7 18 28 52 6 8 6 0 4

7 18 28 53 10 5 1 0 3 (7I1)(10I1)
7 19 29 54 9 1 5 0 2 (811) (1311)
7 19 29 55 5 5 3 0 5 (7I1)(10I1)

7 19 29 56 3 3 5 0 2

8 20 30 57 3 8 2 0 5 (7I1)(10I1)

8 20 30 58 8 4 3 0 2 (611)

8 20 31 59 6 6 1 0 2 (711) (1011)
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8 20 31 60 3 6 3 0 5 (711) (1211)
8 21 32 61 5 6 5 0 3 (1011)
8 21 32 62 3 7 5 0 4
8 21 33 63 4 5 2 0 4 (711)
9 22 34 64 8 8 2 0 2 (611) (8I2)
9 22 35 65 2 5 4 0 3 (1111)
9 22 35 66 2 6 5 0 2 (711)
9 22 35 67 3 6 3 0 3 (1111) (1211)
9 23 36 68 3 5 4 0 0 (1311)
9 23 36 69 3 3 5 0 4
9 24 37 70 3 6 1 0 2 (1011) (1312)
10 25 38 71 4 6 2 0 5 (611)
10 25 38 72 3 7 2 0 2 (911) (1111)
10 26 39 73 3 5 3 0 3 (711)
10 26 39 74 6 7 2 0 5
10 27 40 75 6 7 3 0 3 (1011) (1311)
10 27 40 76 3 7 2 0 0 (1211)
10 27 41 77 3 3 4 0 3 (711) (1011)
10 27 41 78 4 5 1 0 2 (711)
11 28 42 79 2 8 2 0 4 (1311)
11 28 42 80 2 6 5 0 0
11 28 42 81 3 1 2 0 3 (1011)
11 28 43 82 5 5 2 0 4 (1011)
11 28 43 83 3 8 3 0 0 (611)
11 29 44 84 3 6 1 0 1 (1311)
12 30 45 85 7 1 3 0 5 (611)
12 31 46 86 4 6 2 0 3
12 31 46 87 12 5 1 0 2 (611)
12 31 47 88 5 3 1 0 2 (611) (1211)
12 32 48 89 8 8 5 0 3 (6I2) (711)
12 32 48 90 7 9 2 0 5
12 32 49 91 4 4 1 0 1 (611)
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12 32 49 92 10 7 2 0 4 (1011) (1211)

13 33 50 93 5 2 1 0 3

13 33 50 94 5 10 2 0 2 (1011)

13 33 50 95 3 4 6 0 5 (1011) (1211)

13 34 51 96 3 9 4 0 4 (8I2)

13 34 51 97 5 6 4 0 3 (611)

13 35
í

52 98 5 5 2 0 1 (711) (8I1) (912) 

(1011) (1111)

13 35 52 99 4 4 1 0 4 (1311)
13 36 53 100 5 7 4 0 1

13 36 53 101 2 3 4 0 5 (7I2)

14 37 54 102 4 3 3 0 5 (6I2) (711) (811) 

(1011) (1111)

14 38 55 103 5 2 6 0 3

14 38 55 104 14 5 5 0 5

14 38 56 105 4 8 2 0 3 (1111)

14 38 56 106 10 3 4 0 5

14 39 57 107 7 6 2 0 2 (811) (1111)

14 40 58 108 6 3 3 0 5 (711) (1111) (1311)

14 40 58 109 3 3 5 0 1

14 41 59 110 6 5 1 0 0

14 41 59 111 9 5 1 0 4

14 41 59 112 5 6 2 0 1 (1111).

14 41 60 113 6 3 5 0 0

14 41 60 114 11 6 1 0 2 (711)

14 41 60 115 7 3 1 0 5

15 42 61 116 13 4 3 0 1 (1111)

15 42 61 117 23 4 1 0 5 (1111)

15 42 62 118 9 6 2 0 4

15 43 63 119 9 8 2 0 3 (611)

15 43 63 120 26 5 1 0 1 (6I2) (1311)

15 43 64 121 10 5 1 0 3 (1111)
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15 44 65 122 6 1 1 0 5 (611) (711) (1311)

16 45 66 123 3 3 3 0 2 (1212)
16 46 67 124 3 6 2 0 0

16 46 67 125 7 4 1 0 3 (1012)
16 46 67 126 12 . 7 1 0 1 (1111)
17 47 68 127 5 9 1 0 2 (811) (1011) (1111)
17 47 68 128 4 4 6 0 5 (711) (811) (1311)
17 48 69 129 4 7 3 0 2

17 48 69 130 3 5 5 0 5

17 48 69 131 5 3 2 0 2 (1011) (1111) 

(1211)
17 49 70 132 5 5 2 0 4

17 49 70 133 3 7 4 0 2 (611) (1011)
17 50 71 134 5 5 3 0 3 (1111)
17 50 71 135 7 3 1 0 4 (7I2) (1011) (1211)

Table A.3. Routing Structure and Operation Related Data - Problem 1
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Operation Setup times (preceding operation I setup)

6 (1517) (1715) (3315) (4115) (6816) (7618) (8016) (11015) (12419)

14 (2414) (4811) (50I3) (9113) (9816) (10016) (10914) (11214) (11614)

15 (619) (1713) (6815) (7617) (11015) (12413)

17 (617) (15110) (33I4) (4114) (6813) (7616) (8016) (12413)

24 (1417) (2915) (4817) (5017) (9110) (9813) (11217) (11617)

29 (1414) (4815) (5017) (9815) (10014) (10915) (11215) (11619) (12013)

33 (616) (1715) (4115) (6816) (7616) (8013) (11017) (12412)

41 (617) (1712) (3316) (6818) (7615) (8012) (11017) (12416)

48 (1412) (2414) (5014) (9112) (9816) (10914) (11218) (11614) (12011)

50 (24I4) (29I7) (48I4) (98I5) (10016) (10915) (11615) (12014)

68 (616) (1516) (1710) (3317) (4113) (7613) (8013) (11017) (12418)

76 (614) (1513) (1713) (3314) (4113) (6815) (8015) (11012) (12413)

80 (615) (1513) (1715) (4118) (6817) (11013)

91 (1417) (2412) (2917) (5013) (9816) (11616) (12016)

98 (1414) (2414) (2914) (4816) (5012) (9113) (10013) (10918) (11217) (11617)

100 (1416) (2412) (2916) (4813) (5014) (9115) (10915) (11614) (12015)

109 (1415) (2415) (4816) (5017) (9115) (9810) (100110) (11215) (11612) (12015)

110 (618) (1713) (3316) (4114) (6816) (7613) (8014) (12418)

112 (1414) (2412) (2914) (4818) (5013) (10913) (11618) (12012)

116 (2416) (2913) (48110) (50I5) (98I2) (10013) (10917) (11213) (12012)

120 (1416) (2417) (2912) (4818) (5017) (9119) (9816) (10014) (10916) (11214) (11617)

124 (1713) (4115) (6814) (8014) (11019)

Table A.4. Operations with Sequence Dependent Setup Times - Problem 1
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Problem 2: Similarly figure A.2 and tables A.5, A.6, A.7 and A.8 describe problem 2. 

Job 0: Job 1:

Job 6: Job 7:
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Job 8: Job 9:

Figure A.2. BOMs - Jobs from Problem 2

Job batch size due date ready time

0 13 1120 0

1 11 1768 0

' 2 10 2632 0

3 8 940 0

4 10 1804 0

5 13 2812 0

6 9 1156 0

7 11 1732 0

8 9 1876 0

9 10 2956 0

Table A.5. Job Related Dada - Problem 2
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Resource class Resource (typelunit) Scheduled breaks (start timelduration)

Machines (010) (1667127)

(110) (1235130) (4235131)

(210) (2499117)

(310) (166125) (3071127)

(311) (1823132)

(4I0) (832137) (3779129)

(411) (2981134)

(5I0) (1032114) (4316130)

(6I0) (2074127)

(611) (1310142) (4562120)

(6I2) (2590140)

(7I0) (1680141)

(711) (2881110)

(7I2) (56131) (3147129)

(8I0) (2278119)

(811) (887I43) (4080113)

(8I2) (2970I38)

(9I0) (2331143)

(911) (1654124)

(9I2) (1174132) (3996122)

(1010) (2399145)

(1011) (1082124) (3806139)

Other resources (1110) (179130) (3629120)

(1111) (2079127)

(1112) (297140) (2827125)

(1113) (2266123)

(1210) (928127) (3775126)

(1211) (2576128)

(1212) (932139) (3371137)

(1213) (1363145) (4828138)

(1310) (589122) (397111)
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(1311) (2764I23)

(1312) (106118) (3124118)

(1313) (27I42) (3639I29)

(1410) (27I32) (3209I35)

(1411) (1779131)

(1510) (857114) (4591113)

(1511) (2622I37)

(1610) (2479I24)

(1611) (1987136)

(1612) (668140) (4278124)

(1613) (1426129)

(1710) (2889151)

(1711) (186119) (3355I20)

(1712) (2245I29)

(1713) (551128) (3729I35)

(1810) (2772I28)

(1811) (1294133) (462711)

(1910) (886113) (4199119)

(1911) (278151) (3599I22)

(1912) (2587I43)

(1913) (759I7) (3736141)

(2010) (642118) (4020I37)

(2011) (673I34) (3707I22)

(20I2) (1134119) (4003I39)

(20I3) (686117) (3763I25)

(2110) (2348I34)

(2111) (1166121) (4127121)

(2112) (867I26) (4103126)

(2113) (1048125) (3953135)

(2210) (1908127)

(2211) (1815112)

(22I2) (2309I27)
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(2213) (2035129)

(2310) (2234I39)

(2311) (0I34) (3574112)

(23I2) (2403I49)

(23I3) (34911) (3230I48)

(24I0) (781128) (3209I25)

(2411) (2346144)

(25I0) (364113) (3707I27)

(2511) (204I30) (2694113)

(25I2) (2203I28)

(25I3) (2496I36)

(26I0) (2260I27)

(2611) (2939I23)

(27I0) (441148) (3609129)

(2711) (2228116)

(27I2) (2399119)

(27I3) (168139) (3297135)

(28I0) (195317)

(2811) (2013129)

(29I0) (1705139)

(2911) (1565140)

(30I0) (2184121)

(3011) (941129) (4330I39)

Table A.6. Resource Related Data - Problem 2
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Part Sub­

process

Route Operation Minimum

transport

batch

Setup

time

Unit

execution

time

Operation 

ready time

Machine

type

required

Other resources 

required 

(typelquantity)
0 0 0 0 16 7 1 0 6
0 0 0 1 27 7 4 0 9
0 0 0 2 21 3 4 0 7 (1911) (2211)
0 0 0 3 16 1 4 0 8
0 0 0 4 46 4 1 0 10 (2011) (2111)
0 0 0 5 48 4 3 0 8
0 1 1 6 27 7 2 0 10 (1711) (2211)
0 1 1 7 21 7 1 0 2
0 1 2 8 16 6 1 0 1 (1611)
0 1 2 9 42 5 3 0 4
0 1 2 10 14 9 1 0 5 (2511)
0 2 3 11 20 4 1 0 4 (2211)
0 2 3 12 12 6 1 0 5
0 2 3 13 13 6 2 0 9 (1611)
1 3 4 14 19 5 1 0 10 (1111) (1811) (2411)
1 3 4 15 16 7 3 0 6 (1711)
1 4 5 16 15 3 3 0 8 (1911)
1 4 5 17 34 7 3 0 5 (1711) (2511)
1 4 5 18 12 6 3 0 3
1 4 5 19 11 8 5 0 6 (2711)
1 4 5 20 17 4 2 0 8
1 4 6 21 23 4 3 0 0
1 4 6 22 17 5 1 0 10 (2211)
1 5 7 23 11 5 1 0 7 (1311) (2111)
1 5 7 24 21 3 1 0 10
1 5 8 25 11 7 1 0 6 (2811)
1 5 8 26 12 3 1 0 7 (1111) (2511)
2 6 9 27 6 7 4 0 6
2 6 9 28 6 3 4 0 4 (1311) (1611) (2311)
2 6 9 29 26 5 3 0 8 (1312)
2 6 9 30 12 7 1 0 6 (1111)
2 7 10 31 20 6 4 0 9 (2011) (2511)
2 7 10 32 9 3 1 0 7 (1811) (2711)
2 7 10 33 21 7 5 0 10 (2511)
2 7 10 34 7 5 2 0 9
2 7 10 35 20 8 1 0 7
2 8 11 36 6 4 5 0 10
2 8 11 37 10 6 1 0 4
2 8 11 38 24 8 1 0 5 (2311)
2 8 11 39 8 4 1 0 9 (2111)
2 8 11 40 11 3 2 0 6 (1611)
2 8 11 41 13 4 4 0 3
2 9 12 42 19 4 4 0 7 (2411)
2 9 12 43 10 4 2 0 2
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2 9 12 44 12 4 3 0 0 (1612) (1811)
2 10 13 45 6 3 4 0 4
2 10 13 46 15 4 2 0 9 (1311) (2511)
2 10 14 47 6 0 2 0 9 (1711) (2011)
2 10 14 48 7 3 4 0 2 (2011) (2211)
2 10 14 49 9 5 2 0 1
2 10 14 50 9 5 3 0 3
3 11 15 51 3 5 2 0 3
3 11 15 52 10 7 4 13 10 (1911)
3 11 16 53 9 3 1 0 7
3 12 17 54 3 3 1 0 5 (1711)
3 12 17 55 4 7 2 0 7 (3011)
3 12 17 56 6 2 1 0 4 (1911) (2911)
3 13 18 57 3 2 3 0 1 (1612) (2011)
3 13 18 58 3 1 1 0 3
3 13 18 59 7 8 1 0 4 (1611) (2211)
3 13 18 60 4 5 1 0 6 (2711)
3 13 18 61 3 6 2 0 9 (2211)
3 14 19 62 4 3 1 0 0
3 14 19 63 7 6 3 0 3
3 14 19 64 8 3 4 0 6 (2311)
3 14 19 65 6 0 1 0 0 (1611) (2811)
3 14 19 66 12 2 3 0 4
3 14 20 67 4 6 2 0 8 (2111) (2911)
3 15 21 68 4 7 3 0 10
3 15 21 69 3 7 6 0 4 (1611)
3 15 21 70 10 5 3 0 5 (1612) (2511)
3 15 22 71 3 5 3 0 1 (1611)
3 15 22 72 4 3 2 0 10
4 16 23 73 8 5 2 0 7 (1611)
4 16 23 74 6 6 4 0 10 (2011) (2111) (2211) 

(2911)
4 16 23 75 3 3 5 0 1 (2011) (2211) (2711)
4 17 24 76 6 5 3 0 7 (1611) (2511)
4 17 24 77 3 2 3 0 8 (1711) (2211) (2711)
4. 17 24 78 3 8 2 0 2 (1611) (1911) (2011)
4 17 24 79 6 6 1 0 3
4 17 25 80 6 6 6 0 8
4 17 25 81 5 6 4 0 9 (1611) (1911)
4 17 25 82 7 5 5 0 10
4 17 25 83 5 3 4 0 9 (2011) (2511)
4 17 25 84 4 5 4 0 10 (1711)
4 18 26 85 13 7 4 0 6 (1611)
4 18 26 86 3 7 1 0 10 (2111)
4 18 26 87 5 7 1 0 . 5 (1111) (1311)
4 18 26 88 4 4 1 0 0 (20I2)
4 18 26 89 3 7 3 0 5
4 19 27 90 9 4 2 0 6 (2211) (2911)
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4 19 27 91 4 4 3 0 3 (1511) (2111)
4 19 27 92 9 5 3 0 10 (1611) (1711) (1911) 

(2311)
4 19 28 93 6 2 1 0 10 (1611)
4 19 28 94 4 4 4 0 8
4 20 29 95 8 5 5 0 7 (2211)
4 20 29 96 10 2 2 0 5 (1211)
4 20 29 97 5 3 4 0 10 (1211) (1511)
4 20 30 98 4 4 3 0 7 (1711) (2111)
4 20 30 99 4 4 3 0 2
4 20 30 100 4 8 4 0 10 (1611)
4 20 30 101 6 6 5 0 5 (2511)
4 20 30 102 4 4 2 0 3
4 20 30 103 3 6 4 0 10 (2011)
5 21 31 104 7 2 2 0 7 (2211)
5 21 31 105 4 3 1 0 3
5 21 31 106 3 7 2 0 . 6 (1611) (2111) (2211)
5 21 31 107 3 2 4 0 4
5 21 31 108 4 7 5 0 5 (1211) (2211)
5 21 32 109 6 4 4 0 7 (1311)
5 21 32 110 3 8 3 0 10 (1611)
5 21 32 111 4 6 4 0 4 (23I2)
5 21 32 112 3 7 3 0 7
5 21 32 113 3 3 1 0 4
5 22 33 114 3 6 4 0 8 (1211) (1611) (2711)
5 22 33 115 5 3 4 0 4
5 22 33 116 8 0 2 0 5 (1611)
5 22 33 117 9 3 3 0 10 (1612)
6 23 34 118 20 6 4 0 10 (1711) (2211) (2511)
6 23 34 119 6 6 2 0 6 (2111) (23I2)
6 23 35 120 7 5 3 0 5
6 23 35 121 12 1 3 0 10 (22I2)
6 23 35 122 10 7 2 0 3
6 23 35 123 11 6 2 0 8 (1612) (1711) (2211)
6 24 36 124 6 7 3 0 10 (2211)
6 24 36 125 6 5 4 0 7 (1611) (2511)
6 24 36 126 9 0 3 0 10 (2211) (2311)
6 24 36 127 7 3 3 0 8
6 25 37 128 6 4 1 0 9 (2611)
6 25 37 129 6 4 1 0 3
6 25 37 130 5 7 3 0 10 (1211) (2211)
6 25 37 131 5 4 3 0 ,8
6 25 37 132 5 10 1 0 7 (2511)
6 26 38 133 14 4 1 0 9 (2111)
7 27 39 134 10 6 2 0 4 (1211) (1311)
7 28 40 135 5 5 4 0 7
7 28 40 136 6 7 1 0 10
7 28 40 137 6 3 2 0 3
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7 28 40 138 18 5 6 0 9
7 28 40 139 8 3 4 V 0 8 (2611)
7 28 40 140 8 9 1 0 2
7 28 41 141 11 6 2 0 9 (2211)
7 28 41 142 11 6 3 0 3 (2112)
7 28 41 143 5 5 3 0 8 (1611)
8 29 42 144 3 1 3 0 7 (2111)
8 29 42 145 6 5 3 0 10 (1211) (2611)
8 30 43 146 3 4 1 0 8
8 30 43 147 3 5 4 0 7 (20I2) (2311) (2511)
8 30 43 148 3 4 2 0 10 (1111)
8 30 43 149 4 6 4 0 8
8 30 43 150 5 5 1 0 7 (2111)
8 30 44 151 7 6 5 0 6 (2211)
8 30 44 152 8 6 1 0 0
8 30 44 153 3 7 3 0 7 (2011) (2211)
8 31 45 154 4 6 2 0 5 (1611)
8 31 45 155 3 4 3 0 8
8 31 45 156 4 4 3 0 4 (2011)
8 32 46 157 4 8 1 0 9
8 32 46 158 2 3 4 0 10 \
8 32 46 159 3 6 4 0 4 (25I2)
8 32 46 160 3 9 1 0 6
8 32 46 161 3 6 4 0 10 (1111) (2011)
8 32 46 162 3 6 3 0 1
9 33 47 163 3 2 1 0 0
9 33 47 164 3 4 1 0 7
9 33 47 165 3 7 4 0 4 (1611)
9 33 47 166 3 6 3 0 8
9 33 47 167 9 6 3 0 1
9 34 48 168 2 1 2 0 6 (1312)
9 34 48 169 2 7 2 0 5 (1111) (22I2)
9 34 48 170 2 6 3 0 10 (2011) (2911)
9 34 48 171 3 6 3 0 9 (1211)
9 35 49 172 2 6 4 0 0 (1612) (2011)
9 35 49 173 4 7 2 0 8
9 35 49 174 4 5 2 0 9 (1711)
9 35 49 175 3 4 2 0 4 (2111) (2511)
9 35 49 176 4 9 2 0 3
10 36 50 177 4 4 3 0 4
10 36 50 178 3 5 1 0 9
10 37 51 179 10 8 2 0 5 (2611)
10 37 51 180 10 0 2 0 8
10 37 51 181 3 9 4 0 10 (1111) (2111)
10 38 52 182 8 5 1 0 3
10 38 52 183 3 4 2 0 2 (2511)
10 38 52 184 10 8 4 0 6 (1611) (1911) (2111) 

(2911)
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10 38 52 185 5 4 2 0 3
10 38 52 186 9 4 3 36 7 (1512)
10 39 53 187 2 4 3 0 8
10 39 53 188 2 5 3 0 3
10 39 53 189 3 5 5 0 7 (1911)
10 39 53 190 5 6 4 0 5
11 40 54 191 4 7 4 0 10 (1311)
11 40 54 192 7 4 1 0 2 (2211)
11 40 54 193 3 8 2 0 0 (1911)
11 40 54 194 9 5 3 0 9 (1211) (2511)
11 41 55 195 2 6 4 0 3
11 41 55 196 3 7 4 0 9 (2111) (2511)
11 41 55 197 6 7 1 0 7 (2011)
11 41 55 198 4 5 2 0 8 (1111) (1611) (2411)
11 41 55 199 2 7 3 0 0 (2011)
12 42 56 200 5 6 1 0 5
12 42 56 201 10 3 1 0 2
12 42 56 202 4 7 2 0 5
12 42 56 203 5 2 3 0 9
12 42 56 204 14 3 1 0 6
12 43 57 205 5 3 3 0 9 (22I2)
12 43 57 206 7 4 2 0 5
12 43 57 207 5 7 4 0 10
12 43 57 208 7 7 5 0 8
12 43 57 209 12 4 1 0 9 ■
13 44 58 210 3 0 1 0 7 (2011)
13 44 58 211 4 6 4 0 5
13 44 58 212 2 6 3 0 2
13 44 58 213 2 4 1 0 8
13 45 59 214 4 5 5 0 10 (2511)
13 45 59 215 3 1 1 0 8 (20I2)
13 45 59 216 8 3 3 0 2 (2011) (2311)
13 45 59 217 8 4 3 0 9 (1111)
14 46 60 218 4 7 1 0 8
14 46 60 219 3 6 4 0 5
14 46 60 220 2 7 1 0 9
14 46 60 221 3 7 2 0 1
14 46 60 222 2 7 1 0 2
14 46 61 223 2 9 3 0 3
14 47 62 224 4 3 1 0 8 (22I2) (2511)
14 47 62 225 4 3 1 0 4 (1111)
14 47 62 226 2 3 4 0 9 (1711) (2011)
14 47 62 227 3 6 2 0 1 (2011)
14 48 63 228 2 8 2 0 6
14 48 63 229 2 6 2 0 5
14 48 63 230 4 3 3 0 10 (1111) (25I2)
14 48 63 231 3 4 3 0 3 (2711)
14 48 63 232 3 2 1 0 9
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14 49 64 233 4 6 1 0 1 (2711) (2911)
14 49 64 234 3 6 6 0 7
14 49 64 235 3 7 3 0 5 (2112)
14 49 64 236 2 6 3 0 10
14 49 64 237 6 4 3 0 6 (2911)
14 50 65 238 2 7 2 0 4
14 50 65 239 2 5 3 0 3
14 50 65 240 2 3 3 0 9
15 51 66 241 14 4 4 0 5
15 51 66 242 3 5 3 0 3 (1611)
15 51 66 243 7 4 1 0 5 (1411)
15 51 66 244 10 6 2 0 8
16 52 67 245 3 3 4 0 5 (1711) (2011) (25I2) 

(2911)
16 52 67 246 6 4 1 0 7 (29I2)
16 52 67 247 8 6 1 0 2
16 ' 52 67 248 5 2 2 0 8 (1211) (2511)
16 53 68 249 5 3 3 0 3 (2511)
16 53 68 250 2 7 4 0 5 (1611)
16 53 68 251 7 3 6 0 7 (1911)
16 53 68 252 3 3 3 0 8 (20I2) (2511)
16 53 68 253 6 2 3 0 10
17 54 69 254 4 1 2 0 7 (2211)
17 55 70 255 2 5 1 0 3 (1611) (2311)
17 55 70 256 2 5 4 0 8 (2211)
17 56 71 257 5 6 2 0 4 (2011) (2511)
17 56 71 258 2 3 4 0 3 (1911) (2411)
17 56 71 259 2 5 1 0 10 (1111) (1711) (2211)
17 56 71 260 2 7 3 0 3 (2511)
17 56 71 261 5 5 3 0 1 (1611)
17 56 71 262 2 8 2 0 8 (1911) (2011)
17 56 72 263 5 5 2 0 5 (2011)
17 57 73 264 3 8 1 0 6
17 57 73 265 6 5 5 0 2
17 57 74 266 5 4 3 0 6 (2211)
17 57 74 267 7 1 4 0 8
17 57 74 268 4 3 1 0 2
17 57 74 269 2 6 2 0 5
18 58 75 270 16 4 2 0 5 (1211)
18 58 75 271 9 3 3 0 10 (2211) (25I2)
18 59 76 272 8 4 2 0 5
18 59 76 273 15 7 1 0 1 (2911)
18 59 76 274 11 5 2 0 9
18 59 76 275 20 6 1 0 10 (1611) (2111)
18 59 76 276 7 4 2 0 7
18 59 76 277 5 4 2 0 10
19 60 77 278 13 9 1 0 9 (2011) (2511)
19 60 77 279 6 7 2 0 6 (1311) (2011) (2111)



61
61
61
62
62
63
63
63
64
65
65
66
66
66
66
66
66
66
66
66
66
66
67
67
67
67
67
67
67
68
68
68
68
69
69
69
69
70
70
70
70
70
70
70

77 280
77 281
77 282 17
77 283 19
78 284
78 285
78 286
79 287 10
79 288
80 289
80 290
80 291
81 292 19
82 293 12
82 294
83 295
83 296
83 297
83 298
83 299
84 300
84 301
84 302 10
84 303
84 304
84 305
85 306
85 307
85 308
85 309 10
85 310
85 311 10
86 312
87 313
87 314
87 315
87 316
88 317
88 318 11
88 319
88 320
89 321
89 322
89 323 11
90 324
90 325
90 326
90 327
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22 70 90 328 9 6 4 0 3 (1611) (2211)
22 71 91 329 5 6 1 0 10 (2011) (2211)
22 72 92 330 12 0 3 0 4 (1711)
22 72 92 331 3 6 4 0 9
22 72 92 332 9 5 1 0 10 (1611) (2011) (2511) 

(2711)
22 72 92 333 11 3 3 0 2 (1611) (20I2)
22 72 92 334 6 9 2 0 4
22 72 92 335 4 4 1 0 9
23 73 93 336 4 8 1 0 3
23 73 93 337 11 6 2 0 5
23 73 93 338 6 4 4 0 3 (2511)
24 74 94 339 15 6 4 0 10 (1411) (1711) (2011) 

(2911)
24 74 94 340 12 6 3 0 6
24 74 94 341 27 4 6 0 3
24 • 74 94 342 28 4 2 0 8 (1711)
24 74 94 343 15 6 5 0 4 (2111)
25 75 95 344 5 6 1 0 1 (2911)
25 75 96 345 7 4 3 0 0 (1611)
25 75 96 346 4 5 4 0 7
25 75 96 347 4 8 1 0 5 (1111) (1311)
25 75 96 348 5 7 . 5 0 3 (2011)
25 76 97 349 4 4 2 0 4 (2711)
25 76 97 350 7 4 4 0 3
25 77 98 351 4 6 5 0 6
25 77 98 352 6 5 3 0 7
25 77 98 353 4 6 1 0 2 (2211)
26 78 99 354 3 3 3 0 8 (2311)
27 79 100 355 3 3 1 0 4 (1111) (1911) (2711)
27 79 100 356 5 6 2 0 1 (2711)
27 79 100 357 2 6 3 0 7 (1611)
27 79 100 358 2 7 2 0 8 (1611)
28 80 101 359 7 3 1 0 1
28 80 101 360 2 7 3 0 8
28 80 101 361 3 8 3 0 4
28 80 101 362 4 1 4 0 0 (20I2) (2211)
28 80 101 363 2 1 3 0 5
29 81 102 364 3 7 3 0 8 (1611) (2711)
29 81 102 365 4 8 3 0 7
29 81 102 366 6 7 3 0 8 (2111) (2511)
29 81 102 367 3 8 2 0 6 (2211)
29 82 103 368 2 4 2 0 10
29 82 103 369 2 6 4 0 9 (1211) (2211)
29 82 103 370 4 6 1 0 3
29 82 103 371 3 6 2 0 8
29 83 104 372 6 1 3 0 9 (1611) (2211)
29 83 104 373 3 2 1 0 4 (2011)
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29 83 104 374 3 6 1 0 5 (1511) (1711)
29 83 104 375 5 5 2 0 8 (1111) (22I2)
30 84 105 376 12 6 3 0 6 (1911) (2111) (2811)
30 84 105 377 8 7 1 0 4 (2111) (2911)
30 84 105 378 6 3 1 0 5 (2011) (2211)
30 84 106 379 5 5 3 0 1 (1311) (1711) (2011) 

(2311)
30 84 106 380 6 4 3 0 7
30 84 106 381 4 5 4 0 5 (2011)
30 84 106 382 5 3 3 0 9 (1611)
30 84 106 383 11 10 2 0 10
30 84 106 384 5 9 3 0 6 (1311) (1611) (2111) 

(2511)
30 85 107 - 385 8 4 3 0 7
30 85 107 386 4 6 2 0 1
30 85 107 387 12 6 2 0 3
30 • 85 107 388 5 2 4 0 0
30 85 108 389 9 4 1 0 8
30 85 108 390 8 5 2 0 3 (2011)
30 85 108 391 13 5 4 0 10
30 86 109 392 4 8 4 0 4
30 86 109 393 5 2 2 0 6 (1111) (3011)
30 86 109 394 6 2 4 0 4 (1611)
30 86 109 395 5 5 1 0 8 (20I2)
30 86 109 396 8 4 3 0 3 (22I2)
30 86 110 397 7 5 1 0 6
30 86 110 398 5 4 5 0 9 (1611) (1811)
30 86 110 399 8 6 3 0 7 (1211) (1711) (2311)
30 86 110 400 7 6 4 0 6 (2211)
30 87 111 401 5 4 3 0 4 (2011)
30 87 111 402 5 6 2 0 5 (2211)
30 87 111 403 6 3 5 0 8 (2211) (2511)
30 87 112 404 5 1 4 0 4 (2011)
30 87 112 405 6 4 1 0 8 (2111)
30 87 112 406 4 4 3 0 3 (2111)
30 87 112 407 7 5 1 0 1 (1711) (2111)
31 88 113 408 2 6 1 0 1
31 88 113 409 9 4 1 0 7 (2311)
31 88 113 410 2 5 1 0 3 (2211)
31 89 114 411 3 5 4 0 7 (1311)
31 89 114 412 4 4 2 0 1
31 89 114 413 8 5 3 0 4 (2511)
31 90 115 414 6 0 4 0 9
31 90 115 415 8 4 2 0 6 (2211)
31 90 115 416 3 4 1 0 5 (2811)
31 90 115 417 5 6 5 0 0
31 90 115 418 3 5 2 0 2 (22I2)
31 90 115 419 3 4 2 0 10 (1112) (1611)
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31 91 116 420 3 9 3 0 3 (1911)
31 91 116 421 2 8 3 0 7 (1911)
31 91 116 422 2 9 1 0 5
31 91 116 423 2 4 3 0 4 (1611)
31 91 116 424 5 3 3 0 6 (1611) (2211) (2511)
31 91 117 425 5 4 5 0 3
31 91 117 426 2 9 4 0 9
31 91 117 427 6 7 2 0 8 (2011) (22I2) (2511)
31 92 118 428 3 7 1 0 7
31 92 118 429 2 6 1 0 5
31 92 118 430 4 5 2 0 4 (1611)
31 92 118 431 4 7 4 0 8 (2911)
31 92 118 432 2 7 1 0 6
31 92 119 433 3 6 4 0 10 (1711)
31 92 119 434 4 6 2 0 7
31 92 119 435 2 8 4 0 10 (1111)
31 92 119 436 2 8 4 0 5 (2311)
32 93 120 437 6 6 1 0 7
32 93 120 438 5 6 1 0 9 (1311) (2011)
32 93 120 439 4 7 3 0 6 (2211) (2511)
32 94 121 440 6 4 2 0 3 (2011) (3011)
32 94 121 441 5 7 1 0 9
32 94 122 442 4 8 4 0 3 (1311) (20I2) (2311)
32 94 122 443 13 4 4 0 4
32 95 123 444 6 6 4 0 3 (1611)
32 95 123 445 6 7 2 0 5
32 95 123 446 6 6 3 0 2 (2511)
32 95 124 447 5 6 1 0 6 (1611) (2011) (2111)
32 96 125 448 7 7 4 0 10
32 96 125 449 4 4 3 0 7
33 97 126 450 3 5 2 0 3
33 97 126 451 2 6 3 0 8 (1311) (1811) (2211)
33 98 127 452 4 5 4 0 7 (1611)
33 98 127 453 2 8 3 0 3
33 98 127 454 3 4 1 0 4
33 98 127 455 2 3 3 0 5 (2011) (2811)
33 99 128 456 2 1 3 0 10 (1211)
33 99 128 457 7 7 3 0 8 (1611) (2011)
33 99 128 458 3 6 3 0 5
33 99 128 459 8 5 1 29 10 (1211) (1611)
33 99 128 460 5 8 1 0 8
33 99 129 461 3 3 1 0 4 (20I2) (25I2)
33 99 129 462 2 7 3 0 9 (1311) (1911) (2011)
33 99 129 463 5 5 4 0 3
33 99 129 464 3 10 4 0 8 (2011) (2511)
33 99 129 465 4 7 4 0 7 (1311)
33 99 129 466 2 9 1 0 4 (1211) (1611)
33 100 130 467 3 4 5 0 6 (22I2)
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34 101 131 468 4 4 2 0 3
35 102 132 469 4 7 3 0 7 (2011) (2211)
35 102 132 470 5 4 3 0 10
35 102 132 471 4 0 4 0 3 (1611) (2111) (2511)
35 103 133 472 5 8 2 0 7
35 103 133 473 6 2 3 0 6 (2011) (3011)
35 103 133 474 5 5 5 0 3
35 103 133 475 2 6 3 0 8
35 103 133 476 3 8 3 0 0 (2511) (2811)
35 104 134 477 2 4 6 0 6
35 104 134 478 2 9 4 0 9
35 104 134 479 2 7 4 0 4 (1711) (2911)
35 104 134 480 3 4 3 0 1
35 104 134 481 3 1 3 0 8
35 105 135 482 2 6 5 0 5
35 106 136 483 3 8 4 0 1 (22I2)
35 106 136 484 4 5 4 0 6 (1911)
35 106 136 485 2 6 5 0 4 (1611)
36 107 137 486 7 4 4 0 10 (2011)
36 107 137 487 6 1 3 0 6
36 107 137 488 7 3 3 0 3
36 107 138 489 5 7 2 0 6
36 108 139 490 5 4 1 0 9 (2211)
36 108 139 491 4 6 4 0 8
36 108 139 492 6 8 3 0 10 (2111)
36 108 139 493 4 3 2 0 5 (1411)
36 108 139 494 5 8 1 0 10 (1211)
36 108 139 495 8 2 2 0 8 (22I2) (2511)
36 109 140 496 5 1 2 0 7 (1511) (2011)
36 109 140 497 6 5 1 0 4 (2211)
36 109 140 498 7 3 1 0 5 (1611) (2511)
36 109 140 499 4 5 5 0 0 (2011)
37 110 141 500 4 4 4 0 9
37 110 141 501 7 9 4 0 3 (1911)
37 110 141 502 3 4 3 0 8 (1711)
37 111 142 503 4 8 3 0 3 (1611) (2311) (2711)
37 111 142 504 3 3 3 0 0
37 111 142 505 4 6 2 0 6
37 111 142 506 2 3 3 0 3
37 111 142 507 3 6 2 0 6 (1711)
37 111 142 508 3 6 1 0 7

Ta ble A.7. Routing Structure anc Opera tion Related Data - Problem 2



151

Operation Setup times (preceding operation I setup)

7 (43I4) (78I4) (14012) (19216) (20114) (21215) (22212) (26514) (30214) (33311) (353I6) (41816)

21 (6213) (6515) (8815) (16313) (17213) (19316) (19915) (30112) (30415) (31713) (36215) (38818)

(41712) (47615) (49915)

43 (4815) (7813) (9913) (14018) (19216) (20117) (22213) (26510) (30219) (33313) (41816) (44616)

48 (715) (7815) (14017) (19217) (20117) (21214) (22215) (30214) (33317) (35315) (41815) (44616)

57 (7113) (7517) (16217) (22719) (23316) (261110) (273I5) (303I5) (356I9) (379I7) (407I7) (41217)

62 (2112) (6514) (8814) (15216) (16311) (17216) (19916) (30116) (30414) (31718) (36217) (38817)

(41716) (47615) (49915)

65 (2115) (6213) (8814) (15218) (16318) (19314) (19915) (30417) (31714) (36216) (38816) (41718)

(47616) (49916)

71 (5714) (7513) (16214) (22712) (26118) (27313) (30013) (34414) (35612) (35914) (40714) (40816)

(41216)

75 (5714) (7116) (16212) (16716) (22118) (22715) (23316) (27312) (34415) (35615) (35916) (37914)

(40716) (40816) (41218)

78 (714) (4315) (4814) (9914) (21217) (22215) (26515) (30213) (33313) (41814)

88 (6217) (6513) (16315) (17215) (19318) (19913) (30417) (31715) (36215) (38817) (41716) (47612)

(49916)

99 (713) (4317) (4813) (7812) (14018) (20115) (21217) (22215) (26517) (30217) (33316) (35318)

(41815) (44616)

140 (4316) (4816) (7816) (9913) (19212) (20115) (30216) (33312) (35314) (41818) (44614)

152 (2118) (6215) (6513) (16312) (17212) (19313) (19911) (30115) (30414) (31717) (36215) (38815)

(47614) (49912)

162 (5718) (7115) (75I5) (22113) (227I5) (233I4) (26114) (273I3) (300I5) (303I5) (344I3) (356I2)

(379I5) (41215)

163 (21110) (62I4) (65I4) (88I5) (15215) (17214) (19315) (19919) (30114) (30416) (31715) (36213)

(38816) (47617) (49918)

167 (7119) (7515) (16212) (22115) (23311) (300I8) (303I3) (356I3) (359I3) (379I5) (40711) (408I4)

(41214)

172 (2112) (6215) (8812) (15211) (16312) (19312) (19918) (30115) (30411) (31717) (36217) (47617)

(49917)

192 (717) (4316) (7813) (9917) (14015) (20113) (22218) (26513) (30216) (33310) (35313) (41813)

(44613)
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193 (2114) (6216) (16314) (17216) (19911) (30115) (31712) (36215) (38814) (41719) (47612) (49914)

199 (2114) (6215) (6514) (8814) (15214) (16316) (17214) (19315) (30114) (30413) (31714) (36216)

(41715) (47615) (49914)

201 (714) (7811) (99I6) (14011) (21217) (22215) (26518) (30216) (35314) (41815) (44612)

212 (713) (4315) (4813) (7817) (9912) (14018) (19215) (20111) (222I5) (302I8) (333I4) (41814)

221 (5714) (7118) (7512) (16213) (16710) (22714) (23313) (26115) (30015) (34416) (35618) (37915)

(40716) (40814) (41214)

222 (716) (4316) (4816) (7813) (9915) (14013) (19215) (20119) (21216) (26515) (30213) (35316) (44613)

227 (5713) (7114) (7511) (16217) (16715) (23317) (26112) (30018) (30314) (34410) (35612) (35914)

(37915) (40817)

233 (5712) (7115) (16214) (16717) (22110) (22718) (26114) (30015) (30318) (34415) (40717) (40813)

(41217)

261 (5718) (7117) (7517) (16713) (22114) (22714) (23316) (27311) (300I6) (303I6) (359I2) (379I4)

(408I6) (41217)

265 (714) (4314) (4817) (7817) (9914) (14016) (19211) (20114) (22214) (33316) (35317) (41819) (44616)

273 (5716) (7113) (7516) (16215) (22112) (22713) (26114) (30016) (30316) (35615) (35914) (40714)

(40815) (41215)

300 (5717) (7115) (7512) (16218) (22119) (22715) (26112) (30318) (35615) (35915) (37915) (40715)

(41215)

301 (2110) (6215) (8814) (15215) (17214) (19313) (19919) (304110) (31713) (36217) (38817) (41717)

(49914)

302 (718) (4314) (4816) (7813) (9918) (14014) (21218) (26513) (33315) (35315) (41814) (44615)

303 (5713) (7116) (7514) (16212) (16713) (22716) (23316) (27316) (30017) (34414) (356110) (359I6)

(40718) (408I7) (41217)

304 (62110) (65I3) (88I4) (15215) (16314) (17215) (19317) (19915) (30114) (31718) (36217) (38815)

(49915)

317 (2115) (6219) (6513) (8818) (15219) (16316) (19917) (30117) (30416) (36217) (38816) (41715)

(47615) (49919)

333 (716) (4317) (4815) (14016) (19214) (20115) (21210) (22215) (30216) (35316) (41812) (44611)

344 (7117) (7518) (16714) (22115) (22713) (23315) (26114) (27317) (30013) (30318) (35614) (35912)

(37917) (40712) (40813) (41218)

353 (4319) (4812) (7814) (9914) (14017) (19214) (201110) (21215) (26513) (30217) (41815) (44612)

356 (5717) (7117) (7515) (16218) (22114) (22715) (23315) (26117) (27318) (30015) (30313) (35918)



153

(379I4) (407I5) (408I5) (41215)

359 (7114) (7514) (16214) (22715) (23312) (26111) (273I5) (300I2) (356I2) (407I5) (408I2) (41211)

362 (2113) (6215) (6514) (8815) (15215) (16312) (19316) (19913) (30116) (30414) (38814) (41714)

(47614) (49913)

379 (5717) (7112) (16214) (16717) (22113) (22713) (23313) (26118) (27316) (30017) (30313) (34418)

(35918) (40716) (41213)

388 (2115) (6517) (8817) (15214) (16314) (17216) (19313) (30416) (31718) (47616) (49915)

407 (5717) (7114) (16213) (22117) (22718) (26113) (30012) (30313) (34416) (35618) (35912) (37914)

408 (5715) (7114) (7515) (16217) (16710) (22714) (23319) (26119) (30013) (30319) (34413) (356110)

(359I4) (379I7) (407I4)

412 (57I7) (7117) (7510) (16216) (22118) (23313) (26110) (27316) (30018) (30313) (35615) (35918)

(37910)

417 (2113) (6218) (6510) (8815) (15214) (16315) (17217) (19311) (19917) (30417) (31714) (36217)

(38815) (47619) (49917)

418 (714) (4816) (7814) (9914) (14014) (19216) (20116) (21217) (22216) (26516) (30218) (33313)

(35317) (44614)

446 (715) (4314) (4811) (78I4) (99I8) (14017) (19214) (20115) (21214) (222110) (265I8) (302I5)

(333I3) (353I3) (41814)

476 (6214) (6516) (8814) (16315) (17214) (19317) (30117) (30416) (31716) (36212) (49914)

499 (2116) (6219) (6513) (8816) (15214) (19912) (30413) (31714) (36216) (41714) (47617)

Table A.8. Operations with Sequence Dependent Setup Times - Problem 2



Problem 3: The following set of tables and figures specify problem 3. 

Job 0: Job 1:

Job 2:

Job 4:

(14,1)

Job 6:

Job 3:

Job 5:

Figure A.3. BOMs - Jobs from Problem 3
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Job batch size due date ready time

0 10 1192 0

1 10 2596 0

2 9 1948 0

3 11 2992 0

4 11 1984 0

5 10 2452 0

6 12 3532 0

Table A.9. Job Related Dada - Problem 2

Resource class Resource (typelunit) Scheduled breaks (start timelduration)

Machines (0I0) (912118) (2830I35)

(110) (312129) (2121117)

(210) (326I28) (2334121)

(211) (388131) (2379I45)

(2I2) (405142) (2607I40)

(2I3) (1044137) (2801123)

(3I0) (21116) (1817139)

(4I0) (266146) (2152142)

(411) (1843115)

(4I2) (1217119)

(5I0) (1195122)

(511) (1525132)

(5I2) (1901124)

(6I0) (823133) (3056130)

(7I0) (196112) (2328I35)

(711) (1049140) (3149139)

Other resources (8I0) (342134) (2456128)

(811) (530130) (2340141)

(8I2) (1159140)

(8I3) (0124) (2044133)

*



(910) (1916126)

(911) (418139) (2297126)

(9I2) (862139) (2501118)

(913) (808143) (2851122)

(1010) (365I20) (2525130)

(1011) (1171125)

(1012) (963132) (3155119)

(1013) (1824127)

(1110) (1293140)

(1111) (526117) (2243I24)

(1210) (1555127)

(1211) (1431140)

(1212) (2037122)

(1213) (1373127)

(1310) (340123) (2243129)

(1311) (873125) (3198121)

(1312) (525144) (2429116)

(1313) (828112) (2880I32)

(1410) (733I27) (2580I37)

(1411) (998I45) (2683I23)

(1412) (1654140)

(1413) (1128138) (2946122)

(1510) (1810114)

(1511) (1224138)

(1512) (505116) (2361133)

(1513) (745121) (2786I38)

(1610) (1352134)

(1611) (2093134)

(1612) (1365135)

(1613) (73120) (2033138)

(1710) (1905129)

(1711) (1043127) (2870136)



(1712) (946I35) (2701116)

(1713) (1509129)

(1810) (1656147)

(1811) (539112) (2411121)

(1910) (1155144)

(1911) (1104142) (3286140)

(1912) (1302123)

(1913) (1693134)

(2010) (300118) (2298I37)

(2011) (84118) (1742128)

(20I2) (19110) (2209I33)

(2013) (601115) (2436I54)

(2110) (42141) (2303112)

(2111) (1260128)

(2112) (1411145)

(2113) (443121) (2424121)

(22I0) (1128116) (3304I26)

(2211) (1862141)

Table A.10. Resource Relaled Data - Problem 3
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Part Sub­

process

Route Operation Minimum

transport

batch

Setup

time

Unit

execution

time

Operation 

ready time

Machine

type

required

Other resources 

required 

(typelquantity)

0 0 0 0 5 6 3 0 7

0 1 1 1 5 6 3 0 4 (1911)

0 1 1 2 4 6 3 0 3 (1711)

0 1 2 3 10 8 2 0 5 (1011)

0 1 2 4 11 5 1 0 7

0 1 2 5 6 4 1 0 3 (911) (1212)

0 2 3 6 6 3 4 0 7 (1011) (1311)

0 2 3 7 16 3 2 0 3

0 2 3 8 19 4 2 0 5 (811) (1311) (1411)

0 2 3 9 5 4 4 0 7 (2111) (2211)

1 3 4 10 15 6 4 0 3 (911)

1 3 4 11 4 6 3 0 2 (1911)

1 3 4 12 6 4 4 0 1

1 3 4 13 5 5 5 0 2 (2011)

1 3 4 14 7 7 3 0 5 (911) (2111)

1 4 5 15 20 3 3 0 7 (811)

1 4 5 16 6 5 6 0 6 (1511) (2111)

1 4 6 17 4 5 2 0 3 (2011)

1 5 7 18 4 3 4 0 7 (1011)

1 5 7 19 6 7 1 0 4

1 5 7 20 6 3 2 0 2

1 5 7 21 7 8 6 0 7

1 6 8 22 5 6 1 0 2 (1611)

1 6 8 23 7 8 1 0 0 (2111)

1 6 8 24 6 2 2 0 1 (1911) (2111)

1 6 8 25 17 7 6 0 0

1 6 8 26 20 5 2 0 4 (1411)

1 6 9 27 20 5 3 0 2

1 6 9 28 5 4 3 0 4 (1212)
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1 7 10 29 19 4 3 0 6 (1911)

2 8 11 30 4 4 6 0 3 (811)

2 8 11 31 4 5 6 0 5

2 8 11 32 2 4 1 0 0

2 8 11 33 6 8 1 0 5 (1211) (1311) (211.1)

2 9 12 34 3 2 2 0 0 (1211) (2011)

2 9 13 35 4 6 4 0 1 (811) (2011)

2 9 13 36 2 7 2 0 0 (1911)

2 9 13 37 3 8 1 0 2 (1411) (2011)

2 10 14 38 3 2 3 0 4 (1311)

2 10 14 39 10 1 4 0 5 (911) (1211)

2 10 14 40 3 3 1 0 7 (911) (2112) (2211)

3 11 15 41 5 5 4 0 2 (1411) (1611) (1811)

3 11 15 42 10 5 1 0 5 (1411) (1911)

3 11 16 43 7 4 1 0 5

3 11 16 44 13 6 2 0 4

3 11 16 45 9 4 1 0 7 (1511) (2111)

3 11 16 46 5 5 4 0 5

3 12 17 47 9 5 3 0 4

3 12 18 48 5 5 5 0 4 (911) (1311)

3 12 18 49 5 5 1 0 7

3 12 18 50 9 3 3 0 5 (1412) (1911)

3 12 18 51 7 4 4 0 4

3 12 18 52 7 6 1 0 5 (1511) (2011) (2111)

3 13 19 53 13 5 4 0 2 (911) (1211) (1911) 

(2111) (2211)

3 13 19 54 4 4 2 0 5 (1411)

3 14 20 55 5 3 1 0 3 (1611) (2111) (2211)

3 14 20 56 4 5 1 0 5

3 14 20 57 5 9 4 0 1 (1011) (1311)

3 14 20 58 7 8 3 0 6

3 14 21 59 11 3 5 0 6 (1011) (1311) (1411)
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3 14 21 60 11 4 2 0 2 (1511) (1911)

3 14 21 61 19 2 4 0 5 (1611) (2011)

3 15 22 62 5 1 3 0 7 (1411)

3 15 22 63 8 3 3 0 6 (1211) (2211)

3 15 23 64 5 5 3 0 2 (1911)

3 15 23 65 9 5 2 0 1 (1711) (1911) (2112)

3 15 23 66 5 5 4 0 6

4 16 24 67 3 5 2 0 2 (811) (1411) (2011)

4 16 24 68 4 6 2 0 4 (2011) (2111)

4 16 25 69 4 1 3 0 0

4 16 25 70 4 4 1 0 3

4 16 25 71 6 5 3 0 5

4 17 26 72 6 4 4 0 6 (1211) (1611)

4 17 26 73 2 3 6 0 0 (911) (2111)

4 17 27 74 7 4 5 0 7 (811)

4 17 27 75 8 5 1 0 6

4 17 27 76 7 6 1 0 2 (1612) (1911)

4 17 27 77 2 6 4 0 6

4 18 28 78 4 3 2 0 5 (911)

4 18 28 79 4 7 2 0 4 (1911)

4 19 29 80 3 4 1 0 3 (1311)

4 19 29 81 3 5 2 0 6 (811)

4 19 29 82 2 4 4 0 2

4 19 30 83 2 6 1 0 6

4 19 30 84 4 4 2 0 2 (1011)

4 19 30 85 4 5 5 0 7 (911)

5 20 31 86 4 10 1 0 6 (1211) (2011)

5 20 31 87 9 4 3 0 2 (811) (1311)

5 20 32 88 10 3 2 0 0 (911)

5 20 32 89 20 1 2 0 2 (1911)

5 20 32 90 9 3 5 0 7 (1511)

5 21 33 91 11 5 5 0 4 (911) (1411) (2111)



161

5 21 33 92 7 4 1 0 7 (911) (1411) (1911)

5 21 33 93 4 0 5 0 3 (1211)

6 22 34 94 7 9 1 0 3

6 22 34 95 7 7 1 0 6 (1311) (1411) (2111)

6 22 34 96 4 7 2 0 1

6 23 35 97 5 4 1 0 4

6 23 36 98 7 9 2 0 2 (1511)

6 23 36 99 5 2 4 0 4 (1012) (1311)

6 23 36 100 6 9 2 0 7

6 23 36 101 6 1 1 0 5

6 24 37 102 8 6 1 0 6 (1311) (2111)

6 24 37 103 4 4 2 0 3

6 24 37 104 6 6 5 0 2 (1211) (2011)

6 25 38 105 6 4 1 0 4 (1511) (1911)

6 25 38 106 4 0 3 0 7 (1012) (2111)

6 25 38 107 6 4 5 0 3 (811)

6 25 39 108 6 7 4 0 4

6 25 39 109 10 6 3 0 2 (1611) (2111)

6 25 39 110 19 6 2 0 6 (1511)

6 25 39 111 4 4 2 0 2 (1511)

6 26 40 112 18 4 5 0 6 (911) (1511)

6 26 40 113 7 3 4 0 1 (1011)

6 26 40 114 10 4 3 0 4

6 26 40 115 8 4 3 0 7 (1311) (2111)

6 26 40 116 7 4 2 0 4 (1911)

7 27 41 117 5 8 1 0 6

7 27 41 118 9 4 4 0 1 (811) (1011) (1311)

7 28 42 119 6 4 1 0 3 (911)

7 28 42 120 4 6 3 0 2 (1211)

7 28 42 121 3 3 4 0 3 (1412) (1511)

7 28 42 122 5 7 5 0 6

7 28 42 123 6 4 4 0 3
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7 29 43 124 3 4 1 0 2

7 30 44 125 5 6 1 0 7 (1411)

7 30 44 126 2 3 1 0 4 (1011) (2011)

7 30 44 127 4 8 5 0 6 (1311) (2011)

7 30 44 128 7 7 1 0 7 (811) (1411)

7 30 44 129 5 5 3 0 2 (1111)

8 31 45 130 3 5 3 0 7 (1911)

8 31 45 131 4 9 3 0 2

8 31 45 132 3 5 1 0 6 (1011) (1311) (1911)

8 31 46 133 4 5 4 0 2 (1211) (2211)

8 31 46 134 4 7 1 0 1

8 31 46 135 6 6 4 0 5 (1611) (1911)

9 32 47 136 6 5 3 0 7 (1911) (2111)

9 32 47 137 5 6 1 0 0

9 33 48 138 4 6 4 0 6 (1411) (2011)

9 33 48 139 2 5 4 0 7

9 33 48 140 7 7 4 0 1

9 33 48 141 3 5 4 0 6 (1412)

9 33 49 142 7 4 3 0 3

9 33 49 143 3 6 1 0 2 (1011)

9 33 49 144 8 7 4 0 3 (1511)

9 33 49 145 3 4 3 0 7 (1612)

9 34 50 146 4 5 5 0 4

9 34 50 147 2 2 3 0 7 (1311)

9 34 51 148 2 2 4 0 1 (1211)

10 35 52 149 5 2 1 0 2 (2111)

10 35 52 150 2 5 1 0 0 (911)

10 35 52 151 2 8 3 0 1 (1912)

10 36 53 152 7 6 4 0 6

10 36 53 153 6 2 2 0 7

10 37 54 154 5 8 5 0 2 (911) (1311)

10 37 54 155 3 3 2 0 3 (1311) (2011)
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10 37 54 156 2 5 2 0 1 (1011)

10 38 55 157 7 9 4 0 6 (1212) (1511) (2011)

10 38 55 158 3 5 1 0 2 (1612)

11 39 56 159 5 9 3 0 2

11 39 56 160 6 4 3 0 1 (1511)

11 39 56 161 7 4 3 0 3

11 39 57 162 5 5 2 0 7 (811) (1311)

11 40 58 163 12 4 3 0 4 (1611) (2111)

11 40 58 164 6 4 1 0 7 (1911) (2011)

11 40 58 165 4 6 4 0 2

11 40 58 166 5 7 1 0 3

11 41 59 167 11 3 4 0 5 (2111)

11 41 59 168 9 7 6 0 6 (1411)

11 41 59 169 14 9 3 0 7 (1911)

11 41 59 170 8 5 2 0 2 (2011)

12 42 60 171 7 2 1 0 7 (1011)

13 43 61 172 2 2 3 0 3 (2111)

13 43 61 173 4 10 5 0 7 (2011)

13 43 61 174 4 0 1 0 4 (2011)

13 43 61 175 4 6 1 0 2

13 43 61 176 3 2 1 0 5 (1411)

13 43 62 177 3 6 2 89 6 (811) (1311) (1811)

13 43 62 178 2 7 1 0 4 (1511) (2111)

13 43 62 179 4 4 4 0 7 (1712)

13 43 62 180 4 4 1 0 4 (1911)

14 44 63 181 4 9 4 0 2

14 44 63 182 7 4 3 0 6 (1011) (1612)

14 44 63 183 3 7 2 0 5 (811) (1211)

14 44 63 184 6 3 4 0 3 (1011) (1411) (2011)

14 44 63 185 3 3 2 0 6 (1611)

14 45 64 186 11 8 1 0 7 (911)

14 45 64 187 8 7 4 0 6 (1311) (2111)
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14 45 64 188 2 8 5 0 3

14 45 64 189 3 6 1 0 5 (811) (1711)

14 45 64 190 7 2 4 0 0 (1611)

14 46 65 191 7 2 1 0 2 (1411)

14 46 65 192 7 5 2 0 5 (2111)

15 47 66 193 5 4 4 0 2

15 47 66 194 15 5 3 0 0

15 47 66 195 9 4 3 0 5

15 48 67 196 4 6 4 0 3

15 49 68 197 4 6 4 0 6

15 49 68 198 6 4 5 0 5 (811) (1911)

15 49 69 199 6 3 1 0 6

15 49 69 200 4 6 4 0 4 (1012) (1611)

15 49 69 201 6 6 2 0 6 (911)

15 50 70 202 5 4 5 0 7 (1611) (2111)

15 50 70 203 6 5 1 0 5

15 50 70 204 8 3 3 0 7

15 50 70 205 13 3 3 0 6 (2011)

15 50 70 206 9 7 1 0 4 (1012)

16 51 71 207 14 0 5 0 6 (2011)

16 51 71 208 8 9 2 0 0

16 51 71 209 15 8 2 0 4 (2111)

16 51 72 210 22 6 1 0 6

16 51 72 211 12 5 3 0 2

16 51 72 212 21 7 2 0 6 (1212) (1611)

16 51 72 213 9 6 1 0 7 (1911)

16 51 72 214 10 3 3 0 6 (1611) (1911) (2211)

16 52 73 215 23 6 4 0 2 (811) (2111)

16 52 73 216 15 4 3 0 7

16 52 73 217 23 7 2 0 2 (811) (911) (1511)

17 53 74 218 5 5 5 0 3 (1611) (2111)

17 53 74 219 17 3 5 0 5 (811) (2111)
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17 53 74 220 6 3 4 0 2 (1011) (1511) (1911)

17 53 74 221 17 6 6 0 6 (20I2) (2111)

17 54 75 222 10 4 4 0 0 (1811)

17 54 75 223 10 7 1 0 2

17 54 75 224 8 5 4 0 0 (2111)

17 55 76 225 5 4 1 0 1 (811)

17 55 76 226 4 6 4 0 3 (1411) (2111)

17 55 76 227 19 8 3 0 2

17 55 76 228 19 3 1 0 5 (811) (1911)

18 56 77 229 8 10 3 0 4

18 56 77 230 14 5 1 0 7 (811)

18 56 77 231 4 4 4 0 0 (1312) (1411)

18 57 78 232 5 6 5 0 4 (1311)

18 57 78 233 5 10 1 0 2 (1611) (1911)

18 57 79 234 7 4 6 0 4 (1511) (2111)

18 57 79 235 7 4 4 0 3 (1311) (1411) (1911)

19 58 80 236 4 5 1 0 4 (1611) (2111)

19 58 80 237 5 5 4 0 5 (1411) (20I2) (2112)

19 58 80 238 4 3 2 0 6 (1911)

19 58 80 239 2 5 2 0 4 (1511)

19 59 81 240 3 6 3 0 2 (2111)

19 59 81 241 8 5 5 0 5 (20I2)

19 59 82 242 10 10 3 0 3

19 59 82 243 2 4 5 0 2 (1311)

19 59 82 244 2 2 6 0 4 (2011)

19 59 82 245 6 4 1 0 3 (1211) (1311) (1611) 

(2011)

20 60 83 246 3 3 4 0 3 (9I2) (1611)

20 60 83 247 9 6 3 0 4 (811) (1011) (2111)

21 61 84 248 9 4 4 0 6 (911) (1411)

21 61 84 249 3 8 4 0 4 (9I2) (1411) (1912)

21 61 84 250 2 1 2 0 5 (1912) (2011)



61

"62

"62

"63

"63

"63

"63

"63

"64

"64

64

65

65

65

66

66

66

67

67

67

67

"68

"68

"68

68

"68

68

"69

"69

"69

~69

"69

166

84

"85"

" 86"

"87"

"87"

"87"

W

251

252

253

254

255

256

257

11

(1311)

(1511)

(1511)

(1311) 

(Ï3 ÏÏ) 

(1411) (1911)

87 258 (1011) (1611) (2111)

88 259 0 (911) (2011)

88 260 (811)

88 261 (1311) (1611)

89 262

89 263

90 264 (1412) (1511) (1611)

91 265 11 (1911)

91 266 (911)

91 267 10 0 (1411) (2011)

92 268 (1411)

92 269 (20I2)

92 270 (911) (1411)

92 271 0 (1011)

93 272 (911) (2011)

93 273 (1211) (1611) (1912)

93 274 0 (1011) (1211) (2111)

93 275 0

94 276 (1011) (2011)

94 277 (1411)

95

"95"

"95"

"95"

"95"

278

279

280 

281 

282

10

(1611) (2111) 

(Ï5ÏÏ) 

(ïëïïj 
(Ï2ÏÏ) 

( Ï 6 Î Ï }
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24 69 96 283 3 3 3 0 4 (911) (1411) (2011)

24 69 96 284 6 7 3 0 6

24 69 96 285 12 3 3 0 7

24 70 97 286 3 3 2 0 2 (1011)

24 70 97 287 7 8 2 0 6 (1211) (1511) (2011)

24 70 97 288 3 7 1 0 4

24 70 97 289 3 6 3 0 5

24 71 98 290 3 2 4 0 4 (1411) (2111)

24 71 98 291 5 4 2 0 1 (1611)

24 72 99 292 4 6 3 0 6 (2111)

24 72 99 293 5 4 4 0 3 (811)

Table A.11. Routing Structure and Operation Related Data - Problem 3
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Operation Setup times (preceding operation I setup)

12 (24I6) (11816) (14018) (15116) (22516)

23 (3416) (3614) (6917) (7313) (8815) (13715) (15015) (19015) (19416) (20817) (22214) (22416) (23116)

(26816) (271 !5)

24 (11816) (13415) (14015) (15618) (22517) (26616)

34 (2313) (3614) (6913) (7314) (8816) (13711) (15015) (19016) (19414) (20814) (22215) (22415) (26813)

(27116)

36 (69I8) (73I8) (88I4) (13716) (15011) (19016) (19418) (20813) (22413) (26812) (27113)

65 (1214) (2414) (11813) (13414) (14014) (15617) (22514) (26614)

69 (2317) (3416) (3612) (7310) (13718) (20815) (22218) (22415) (23114) (27114)

73 (2315) (13717) (19014) (19415) (22216) (26815) (27119)

88 (2319) (3416) (3614) (7315) (13716) (15014) (19417) (20811) (222I6) (23117) (26814)

118 (2417) (6515) (13417) (14017) (15117) (22513) (26615)

134 (1213) (2414) (6515) (11816) (14014) (15116) (22514) (26618)

137 (2319) (3413) (3617) (7315) (8814) (15014) (19013) (19417) (20813) (22219) (23114) (26813) (27114)

140 (1215) (2414) (11818) (13414) (15613)

150 (2317) (3413) (3613) (6912) (7313) (8819) (19413) (20814) (22216) (224110) (23113) (26818) (27114)

151 (1213) (6516) (11819) (14015) (26617)

156 (1216) (2416) (6513) (13416) (14017) (15118) (22511) (26611)

190 (34I3) (36I3) (73I4) (88I9) (13716) (15016) (19418) (20819) (22214) (22416) (23118) (26814)

194 (3418) (3613) (6917) (7316) (8816) (13713) (15012) (19016) (20812) (22217) (23117) (268110) (27117)

208 (3416) (3614) (6912) (7314) (8810) (13713) (19015) (19415) (22412) (23115) (26813) (27117)

222 (2317) (3416) (6916) (7316) (8813) (13715) (19016) (19418) (20815) (22415) (23117) (26818) (27115)

224 (2312) (3413) (6914) (7313) (8816) (13714) (15016) (19018) (22218) (23113) (26817) (27112)

225 (1215) (2418) (6517) (11815) (14017) (15113) (26611)

231 (23I5) (36I8) (73I6) (88I8) (13715) (15015) (19015) (19412) (20817) (26815) (27113)

266 (1218) (2416) (65110) (11814) (14016) (15118) (15614) (22519)

268 (2310) (3412) (3613) (6914) (7318) (8812) (13717) (15018) (19019) (19414) (20814) (22415) (23113)

(27113)

271 (23I0) (34I3) (36I4) (73I4) (13716) (15014) (19018) (19413) (20816) (22416) (23116)

Table A. 12. Operations with Sequence Dependent Setup Times - Problem 3



Problem 4: Problem 4 is defined as follows.

Job 0: Job 1:

Job 4:

Figure A.4. BOMs - Jobs from Problem 4

Job batch size due date ready time

0 10 1008 0

1 13 480 0

2 11 672 0

3 4 1728 80

4 12 1152 0
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Table A.13. Job Related Dada - Problem 4

Resource class Resource (typelunit) Scheduled breaks (start timelduration)

Machines (0I0) (813124)

(110) (83125) (1356137)

(210) (488110) (1866113)

(211) (491127) (1838133)

(3I0) (442132) (1398148)

(311) (56123) (1351154)

(3I2) (403132) (1611126)

(4I0) (55133) (1276129)

(411) (428137) (1917126)

(4I2) (327125) (1456136)

(5I0) (1221130)

(511) (722136) (2054129)

Other resources (6I0) (1152127)

(7I0) (118142) (1336135)

(711) (558138) (1832146)

(7I2) (513144) (1817136)

(7I3) (0140) (1144127)

(8I0) (371132) (1531114)

(811) (265I26) (1419123)

(8I2) (682130) (2032118)

(8I3) (1016133)

(9I0) (847125)

(911) (839128)

(9I2) (820112)

(9I3) (699115) (1902129)

(1010) (673143) (1940142)

(1011) (428137) (1749143)

(1012) (1012126)

(1013) (829123)
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(1110) (13140) (1409134)

(1210) (731139) (1802123)

(1211) (192132) (1340133)

(1212) (1140135)

(1213) (148118) (1450126)

(1310) (688125) (2105129)

(1311) (191118) (1661132)

(1312) (1239135)

(1313) (741134) (2059I28)

Table A.14. Resource Related Data - Problem 4

']



172

Part Sub­

process

Route Operation Minimum

transport

batch

Setup

time

Unit

execution

time

Operation 

ready time

Machine

type

required

Other resources 

required 

(typelquantity)

0 0 0 0 7 5 3 0 2 (1011)

0 1 1 1 2 5 4 0 4 (911) (1011) (1211)

0 1 1 2 3 6 4 0 5

0 2 2 3 8 5 3 0 2

0 2 2 4 4 4 3 0 3 (811) (1011)

0 2 2 5 4 4 3 0 1 (911) (1211) (1311)

0 3 3 6 5 5 1 0 5 (811) (1011) (1212)

0 3 3 7 3 4 6 0 4

0 3 4 8 2 5 3 0 2 (711) (1012) (1311)

0 4 5 9 7 6 1 0 3 (811) (1011) (1311)

0 4 5 10 6 6 2 0 2 (811) (1011)

1 5 6 11 7 3 1 0 5 (1011)

1 5 6 12 2 3 2 0 3 (1011) (1311)

1 5 6 13 3 6 4 0 4 (711)

1 6 7 14 4 4 3 0 2

1 6 7 15 3 2 3 0 5 (811)

1 7 8 16 3 5 3 0 4 (1011)

1 7 8 17 2 6 3 0 5 (711)

1 8 9 18 8 5 1 0 2 (711)

1 8 9 19 2 5 3 0 3 (1011)

1 8 10 20 5 4 4 0 2 (911) (1012) (1211)

2 9 11 21 2 5 2 0 5 (1011) (1311)

3 10 12 22 4 3 1 0 4 (711) (811) (911) 

(1011)

3 10 13 23 4 4 1 0 3 (811)

3 10 13 24 6 5 5 0 2 (1011) (1211) (1311)

3 10 13 25 8 4 1 0 3 (911) (1011) (1311)

3 11 14 26 8 5 1 0 5 (1011) (1211) (1311)

3 11 14 27 3 7 4 0 3 (9I2) (1211)



11
TT

T2

12
T 2

T 2

Tä

Tä

TT

TT

TT

TT

TT

TT

T~5

Ts

Ts

Ts

Ts

T ?

TJ

T7

T7

T7

Ts

Ts

T9

Tä
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15 28 0 (811) (911)

15 29 11 0 (1011) (1211)

16 30 10 0 (7I2)

16 31 (911)

16 32 (711) (12(1)

17 33

18 34 0

18 35 (1011)

19 36 (1011)

19 37 12 (811) (1011)

19 38

20 39 (911) (1011)

20 40 (911) (1311)

20 41 (911) (1211)

21 42 0 (1211)

21 43 10 0 (711) (811) (1011)

22 44 (1011)

22 45 0 (811) (1011) (1312)

22 46 0 (811) (1211)

23 47 (811) (1311)

24 48 0

25 49 (811)

25 50 (811) (1311)

25 51 (611) (1011) (1211)

26 52 (8I2)

26 53

27 54

27 55 (611) (1011)

28 56 14 (1011)

28 57 (811) (1311)

29 58 0 (811) (1011)

29 59 (611) (811) (1011)
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7 21 30 60 10 4 1 0 3 (1011)

7 21 30 61 2 6 3 0 5 (811) (1011) (1211) 

(1312)

7 21 31 62 4 4 1 96 2 (711)

7 21 31 63 4 5 4 0 0 (1011) (1211)

7 21 31 64 3 6 3 0 2 (811) (1011)

7 22 32 65 2 6 3 0 1 (811) (911) (1011) 

(1211)

7 22 32 66 4 5 1 0 5 (1311)

8 23 33 67 6 4 2 0 1

8 24 34 68 2 6 4 0 2 (811) (1011) (1311)

8 24 34 69 7 4 5 0 0 (1211) (1311)

8 24 34 70 5 5 1 0 2 (811)

8 24 35 71 2 4 3 0 5 (811)

8 24 35 72 2 5 3 0 4 (911) (1311)

9 25 36 73 6 7 2 0 0 (711) (1012)

9 25 36 74 2 4 2 0 5

9 26 37 75 4 6 4 0 2 (811) (1011) (1211)

9 26 37 76 5 6 5 0 4 (911) (1011)

9 27 38 77 9 5 1 0 1 (811) (1211)

9 ' 28 39 78 3 4 4 0 4

9 28 39 79 2 6 4 0 3 (811)

9 28 39 80 3 3 4 0 4 (911)

9 28 40 81 2 5 1 0 5 (1011) (1211) (1311)

9 28 40 82 4 6 2 0 3

9 28 40 83 2 6 3 0 1 (7I2)

10 29 41 84 7 4 1 0 5 (811)

10 29 41 85 7 6 4 0 4 (1311)

10 29 41 86 3 6 3 0 3 (811) (1011) (1311)

10 30 42 87 3 7 3 0 5 (1211)

10 30 42 88 3 5 3 0 3 (811) (1011)

10 30 42 89 11 4 4 0 5 (1311)
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10 31 43 90 7 6 3 0 3 (911) (1011)

10 31 43 91 3 6 1 0 0 (711) (911)

10 31 44 92 7 4 3 0 4 (711) (811)

10 31 44 93 7 7 1 0 5

10 32 45 94 3 5 1 0 3 (911) (1011)

10 32 45 95 2 5 3 0 5 (1311)

10 32 45 96 3 5 4 0 3 (811) (1011)

11 33 46 97 1 5 2 0 5 (7I2) (811)

11 33 46 98 1 6 2 0 4 (1211) (1311)

11 34 47 99 1 5 3 0 5 (1011) (1311)

11 34 47 100 1 5 3 0 4 (811) (1211)

12 35 48 101 3 5 4 0 5 (611)

12 36 49 102 2 5 2 0 2 (811) (1011)

12 36 49 103 4 5 5 0 3 (1211)

13 37 50 104 2 6 4 0 2 (811) (911) (1011)

13 37 50 105 1 4 1 0 4 (1211)

13 37 50 106 1 5 3 0 5

13 38 51 107 1 5 2 0 3 (711) (811) (9I2) 

(1011)

13 38 52 108 3 6 1 0 3 (911) (1211) (1311)

13 39 53 109 1 6 1 0 5

13 39 53 110 3 4 3 0 4 (811) (1012)

13 39 53 111 1 5 2 0 0 (811) (911)

13 40 54 112 1 3 3 0 3 (811) (1011)

13 40 54 113 3 5 4 0 4 (1012) (1211)

13 40 54 114 1 5 3 0 5 (811) (1311)

14 41 55 115 10 5 1 0 3 (711) (811) (1011)

14 41 55 116 18 5 4 0 2 (711) (1011)

14 41 56 117 5 5 2 0 3 (811) (1011) (1211)

14 41 56 118 19 4 1 55 0 (811) (1011) (1311)

14 42 57 119 6 5 1 0 1 (811)

14 42 57 120 7 4 3 0 4 (1011)
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14 43 58 121 5 6 1 0 3 (811) (911) (1011) 

(1211)

14 44 59 122 9 4 3 0 5 (811) (1011)

14 44 59 123 6 5 1 0 2 (1011)

14 44 59 124 8 4 1 0 4 (1212) (1311)

15 45 60 125 26 5 3 0 4 (711) (811) (1011) 

(1311)

15 45 60 126 29 5 3 0 5 (1011) (1212) (1311)

15 45 60 127 35 6 2 0 4 (811) (911) (1011)

15 45 61 128 18 4 3 0 4 (1311)

15 45 61 129 28 5 3 0 1 (811) (911)

15 45 61 130 11 7 2 0 2 (1211) (1311)

15 46 62 131 11 5 1 0 5 (1011)

15 46 62 132 14 5 2 0 2 (711) (9I2) (1011)

15 46 63 133 14 3 4 0 5 (711) (811) (1311)

15 46 63 134 19 5 1 0 4 (811) (1011) (1311)

15 47 64 135 26 5 1 0 3 (1311)

15 47 64 136 31 6 2 0 2 (811) (1211)

16 48 65 137 6 5 1 0 4 (911) (1011) (1211)

16 48 65 138 6 7 3 0 3 (911)

16 49 66 139 5 5 1 0 4 (811) (911) (1211) 

(1311)

16 49 66 140 10 6 4 0 2 (911)

16 50 67 141 13 7 1 0 5 (811) (1011) (1211) 

(1311)

16 50 67 142 7 6 2 0 4 (1211)

16 51 68 143 6 3 3 0 5

16 51 68 144 5 5 1 0 2 (1011)

17 52 69 145 5 4 1 28 3 (911) (1011)

17 52 69 146 13 5 4 0 5 (1211)

17 52 69 147 11 5 1 0 4 (1011) (1311)

17 52 70 148 17 5 2 0 3 (8I2) (911) (1211)
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17 52 70 149 5 4 1 0 5 (811) (1011)

17 53 71 150 6 4 4 0 3 (811) (1211)

17 53 71 151 6 5 1 0 4 (711)

17 53 71 152 8 5 4 0 1 (811) (1011)

17 53 72 153 5 3 5 0 3 (8I2) (1011) (1211)

17 54 73 154 12 6 4 0 0 (1212)

17 54 73 155 20 6 3 0 2 (811)

17 54 73 156 9 5 3 0 3 (811) (1011)

17 54 74 157 14 3 1 0 4 (1011) (1211) (1311)

17 54 74 158 5 4 1 0 0 (911) (1011)

17 55 75 159 6 6 3 0 4 (911) (1011)

17 55 75 160 11 5 1 0 3 (811) (1211) (1311)

17 55 75 161 8 4 3 0 5 (911) (1011)

17 56 76 162 5 4 2 0 3

17 56 76 163 14 5 3 0 4 (9I2)

17 56 77 164 14 5 2 0 2 (8I2) (911) (1012) 

(1211)

17 56 77 165 21 6 4 0 3 (1011)

17 56 77 166 5 6 6 0 5 (1211) (1311)

18 57 78 167 6 6 4 0 3 (911) (1011) (1311)

18 58 79 168 4 6 4 0 5 (811) (1011) (1211)

18 58 79 169 3 5 2 0 3 (711)

18 58 80 170 3 6 3 0 4 (911) (1011) (1212)

18 58 80 171 5 5 1 0 3

18 58 80 172 5 3 1 0 5 (711) (811) (1011) 

(1211)

18 59 81 173 3 5 2 0 2 (1011)

18 60 82 174 6 6 3 0 3 (811)

Table A. 15. Routing Structure and Operation Related Data - Problem 4
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Operation Setup times (preceding operation I setup)

5 (42I5) (65I5) (67I5) (77I6) (83I5) (11915)

35 (514) (4216) (6513) (6714) (7713) (8314) (11916) (12913) (15214)

42 (514) (3514) (6716) (7716) (8314) (11914) (12914)

45 (5514) (6917) (11115) (15415)

55 (4515) (6915) (11115)

65 (517) (3515) (4215) (6715) (7714) (8315) (11917) (15214)

67 (515) (3516) (4217) (6516) (7717) (8315) (11917) (15215)

69 (4515) (5515) (11115) (15416)

77 (513) (3513) (4216) (6514) (6716) (8316) (11916) (12916) (15213)

83 (3515) (4217) (6515) (6714) (7714) (11914) (15215)

111 (4513) (5516) (6916) (15414)

119 (517) (3514) (4213) (6517) (6717) (8316) (12914) (15214)

129 (514) (3516) (4217) (6717) (7716) (8314) (11913) (15217)

152 (514) (3516) (4214) (6516) (6714) (7716) (8317) (12917)

154 (4517) (5514) (11114)

Table A.16. Operations with Sequence Dependent Setup Times - Problem 4



Problem 5: Figure A.5 and tables A. 17 - A.20 describe problem 5.

Job 0: Job 1 :

(0 , 1) ( 1,1)

Job 2: Job 3:

Job 4:

(8 ,2)

Figure A.5. BOMs - Jobs from Problem 5

Job batch size due date ready time

0 13 912 0

1 6 1536 0

2 6 1968 0

3 10 1616 85

4 14 512 0

Table A.17. Job Re ated Dada - Problem 5
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Resource class Resource (typelunit) Scheduled breaks (start timelduration)

Machines (010) (304I47) (155117)

(110) (737142)

(210) (519126) (1649138)

(211) (629154)

(2I2) (929136)

(3I0) (1088130)

(311) (636142)

(4I0) (26141) (1351143)

(411) (265144) (1557132)

(4I2) (552138) (1694147)

(4I3) (104137) (1233145)

(5I0) (1047127)

(511) (1458122)

Other resources (6I0) (92121) (1325137)

(611) (1164133)

(7I0) (1084143)

(711) (966126)

(8I0) (53127) (1400131)

(811) (99I36) (1263126)

(8I2) (793113)

(8I3) (59I27) (1394138)

(9I0) (882121)

(911) (186125) (1483143)

(9I2) (1166127)

(9I3) (26130) (1196121)

(1010) (606I38)

(1011) (996I36)

(1012) (554I30) (1604126)

(1013) (680132)

(1110) (575135) (1618132)

(1111) (887110)
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(1112) (408141) (1709133)

(1113) (768141)

(1210) (27I25) (1084140)

(1211) (594110)

(1310) (557I36) (1805128)

(1311) (43127) (1234116)

(1312) (1070119)

(1313) (752I33)

Table A.18. Resource Related Data - Problem 5
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Part Sub­

process

Route Operation Minimum

transport

batch

Setup

time

Unit 

executio 

n time

Operation

ready

time

Machine

type

required

Other resources 

required 

(typelquantity)

0 0 0 0 5 4 1 0 5

0 0 0 1 4 5 5 0 2

0 0 0 2 9 6 3 0 4

0 1 1 3 8 3 5 0 3 (1111)

0 1 1 4 9 7 3 0 0

0 1 2 5 3 6 1 0 5

0 1 2 6 5 5 4 0 2

1 2 3 7 3 4 1 0 5 (1011)

1 2 3 8 4 6 3 0 2

1 3 4 9 3 7 1 0 5

1 3 4 10 1 4 3 0 1

1 3 5 11 3 3 4 0 4 (1111)

1 3 5 12 1 7 4 64 5

1 3 5 13 3 4 2 0 4

1 4 6 14 4 2 1 0 5 (1011)

1 4 7 15 2 5 2 0 5

1 5 8 16 2 6 1 0 1

1 5 8 17 1 2 2 0 3

2 6 9 18 2 5 1 0 3 (1011)

2 6 9 19 2 10 2 0 1 (911)

2 7 10 20 2 4 3 0 3

2 7 10 21 5 2 3 0 5 (911) (1011)

2 7 11 22 2 3 3 0 4

3 8 12 23 5 4 2 0 4

3 8 12 24 4 3 2 0 5 (911)

3 9 13 25 6 7 4 0 4 (911)

3 9 13 26 8 9 3 0 3

3 9 13 27 3 5 1 0 4

3 10 14 28 12 6 4 0 5 (1211)
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3 10 14 29 2 4 3 0 3

3 10 14 30 3 0 4 0 2 (1111)

4 11 15 31 2 7 2 0 4

4 11 15 32 3 7 2 0 5

4 12 16 33 4 8 4 0 2

5 13 17 34 5 4 4 0 3

5 14 18 35 1 7 2 0 1 (911)

5 15 19 36 2 3 3 0 4

5 15 19 37 2 4 3 68 3 (911)

5 15 19 38 2 5 4 0 5

5 15 20 39 2 6 4 0 4

5 15 20 40 2 6 1 0 3 (1011) (1111)

5 16 21 41 4 5 3 0 1

5 16 21 42 2 7 1 0 2 (911)

5 16 21 43 2 4 4 0 3 (1311)

5 16 22 44 3 3 1 0 2

5 16 22 45 2 7 3 0 3 (1011)

5 16 22 46 3 2 2 0 4 (811) (1211)

6 17 23 47 14 5 6 0 3 (911)

6 17 23 48 7 9 3 0 5

6 17 23 49 4 6 3 0 0

6 18 24 50 4 7 5 0 5 (911)

6 18 24 51 8 6 1 0 3 (1111)

6 18 25 52 5 5 4 0 4

6 18 25 53 8 7 5 0 5 (911)

6 18 25 54 4 5 3 33 1 (911)

6 19 26 55 5 4 1 0 5

6 19 26 56 10 3 2 0 3 (711)

6 19 26 57 5 3 6 0 4

6 20 27 58 4 3 3 0 5 (1311)

6 21 28 59 6 1 3 0 4

7 22 29 60 7 7 4 0 5 (611)
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7 22 29 61 5 2 1 0 4

7 22 29 62 9 9 4 0 5 (1111)

7 23 30 63 19 5 6 0 1

7 23 30 64 10 4 2 0 2

7 23 30 65 6 4 1 0 4

7 24 31 66 10 5 1 0 5 (911)

7 25 32 67 8 4 4 0 2

7 25 32 68 4 7 2 0 0

7 25 32 69 5 2 1 0 5 (1111) (1211)

8 26 33 70 5 9 3 0 3

8 26 33 71 10 0 1 0 5

8 26 34 72 6 7 4 0 5

8 27 35 73 13 4 4 33 4

8 27 35 74 12 3 3 0 2

8 28 36 75 5 8 2 0 1 (811)

8 28 36 76 4 8 1 0 4

9 29 37 77 4 0 4 0 3

9 30 38 78 4 4 1 0 2

9 30 38 79 4 6 1 0 3

10 31 39 80 6 4 2 0 3 (1011) (1211)

10 31 39 81 23 3 1 0 2 (911)

10 32 40 82 9 6 2 0 3

10 32 40 83 8 1 1 0 2

10 32 41 84 13 1 4 0 4 (811)

10 32 41 85 9 4 1 87 5

10 32 41 86 17 6 4 0 3

10 33 42 87 9 4 2 0 4 (911)

10 33 42 88 18 4 3 0 3 (811)

11 34 43 89 3 4 4 0 5

11 34 43 90 6 5 3 0 2

11 34 44 91 5 4 1 0 0

11 34 44 92 4 8 3 0 5 (1311)
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11 34 44 93 4 6 3 0 3

11 35 45 94 5 7 3 0 4

11 35 45 95 7 5 4 0 5 (1211)

11 35 45 96 13 6 4 0 2

11 35 46 97 5 7 2 0 4

11 35 46 98 11 3 3 0 2 (1011)

11 35 46 99 9 5 3 0 4

11 36 47 100 4 0 2 0 1

11 36 47 101 4 5 2 0 4 (911)

11 36 48 102 7 4 2 0 5 (911)

11 37 49 103 11 8 5 0 3

11 37 50 104 6 4 2 0 1 (1311)

11 37 50 105 6 6 2 0 4 (711)

11 38 51 106 5 5 6 0 2

11 38 51 107 6 5 1 0 4 (1311)

11 38 51 108 13 6 5 0 1

12 39 52 109 6 2 4 0 2

12 39 52 110 4 5 2 0 4

12 39 53 111 9 3 5 0 4 (1311)

12 39 53 112 7 8 2 0 2

12 39 53 113 4 5 3 0 3

12 40 54 114 3 1 3 0 5

12 41 55 115 5 8 4 0 2 (711) (911) (1211)

12 41 55 116 3 2 3 0 5 (811) (1211)

13 42 56 117 7 6 3 0 0 (1011)

13 42 56 118 3 5 3 0 2

13 42 56 119 6 5 4 0 5

13 42 57 120 3 2 5 0 5

13 43 58 121 6 8 5 0 3

14 44 59 122 5 7 3 0 4

14 44 59 123 11 4 5 0 2

14 45 60 124 4 5 1 0 0
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14 45 60 125 4 6 5 0 1

14 46 61 126 12 1 1 0 2

14 46 61 127 6 5 1 0 4 (1311)

14 46 62 128 4 6 4 0 4

14 46 62 129 3 6 1 0 5

14 46 62 130 9 8 3 0 2

14 47 63 131 3 4 5 0 3 (911) (1111)

14 47 63 132 9 7 4 0 4

14 47 63 133 4 2 3 0 1

Table A.19. Routing Structure and Operation Related Data - Problem 5
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Operation Setup times (preceding operation I setup)

4 (49I3) (68I8) (9118)

16 (4110) (6317) (7514) (10018) (10817) (12514) (13314)

19 (1614) (4119) (6317) (7510) (10016) (10816) (12517)

41 (1618) (19I6) (63I6) (75I8) (100I4) (108I7) (125I0) (133I6)

49 (68I7) (9110) (11710) (12414)

63 (4116) (7516) (10012) (10817) (12514) (13317)

68 (418) (4914) (9113) (11710) (12416)

75 (1613) (1917) (4114) (6316) (10016) (10816) (12515)

91 (415) (4913) (11717)

100 (1916) (6317) (7516) (10813) (12514) (13317)

108 (1617) (1914) (6314) (10017) (12513) (13312)

117 (412) (6812) (9117) (12413)

124 (4916) (6816) (11718)

125 (1615) (1917) (4117) (6317) (7517) (10014) (13311)

133 (1616) (1915) (4114) (6315) (7518) (10816) (12513)

Table A.20. Operations with Sequence Dependent Setup Times - Problem 6



Problem 6: Finally problem 6 is described next. 

Job 0: Job 1:

Job 2: Job 3:

Figure A.6. BOMs - Jobs from Problem 6

Job batch size due date ready time

0 10 992 0

1 9 1808 0

2 10 720 0

3 10 800 0

4 12 944 0

Table A.21. Job Re ated Dada - Problem 6
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Resource class Resource (typelunit) Scheduled breaks (start timelduration)

Machines (010) (746134) (2505130)

(110) (1297130)

(210) (821131) (2442113)

(310) (512130) (1982120)

(410) (726138) (2279119)

(411) (383I29) (2092I36)

(5I0) (1182134)

(511) (549121) (2040I45)

(6I0) (900131) (2566131)

(7I0) (906I26)

(711) (570131) (1891132)

(8I0) (1139117)

(811) (143123) (1801123)

(8I2) (0116) (1441124)

Other resources (9I0) (557124) (2156131)

(911) (287I35) (1927154)

(9I2) (1159126)

(9I3) (1046132)

(1010) (92117) (1429136)

(1011) (588128) (2221147)

(1012) (1351147)

(1013) (325124) (1579127)

(1110) (193132) (1815134)

(1111) (94111)

(1210) (995115)

(1211) (17148) (1445124)

(1212) (651145) (2076133)

(1213) (731136) (2357I33)

(1310) (191128) (1644130)

(1311) (658134) (2312126)

(1312) (498128) (2011139)



(1313) (168122) (1825132)

(1410) (1542145)

(1411) (518133) (2411141)

(1510) (973I33)

(1511) (977I7)

(1512) (192126) (1643119)

(1513) (1051135)

(1610) (499119) (2003I24)

(1611) (546I36) (2307I35)

(1612) (1221112)

. (1613) (540I23) (1913121)

(1710) (798I37) (2185140)

(1711) (507134) (2191130)

(1712) (0140) (185517)

(1713) (92121) (1613125)

(1810) (347132) (1579142)

(1811) (551130) (2126120)

Table A.22. Resource Relaled Data - Problem 6
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Part Sub­

process

Route Operation Minimum

transport

batch

Setup

time

Unit 

executio 

n time

Operation

ready

time

Machine

type

required

Other resources 

required 

(typelquantity)

0 0 0 0 5 7 4 0 3 (1012)

0 0 0 1 7 1 1 0 6 (1211)

0 0 0 2 7 4 1 65 2 (911) (1712)

0 0 1 3 10 7 2 0 5 (1611)

0 0 1 4 10 5 4 0 7 (1011)

0 0 2 5 5 5 2 0 5 (911) (1611) (1711)

0 0 2 6 10 5 1 0 2 (911) (1011) (1611)

0 0 2 7 4 7 5 0 3 (9I2)

0 0 2 8 9 6 5 0 5 (911) (1211)

0 0 2 9 4 4 2 0 7

0 1 3 10 5 4 1 0 4 (1011)

0 1 3 11 7 5 3 0 6

0 1 3 12 6 5 1 o - 3 (1011) (1211)

0 1 3 13 14 4 3 0 6 (1011)

0 1 3 14 12 4 3 0 7 (1011) (1211)

0 2 4 15 7 6 3 0 5 (1511)

0 2 4 16 17 7 2 0 6

0 2 4 17 7 4 3 0 4 (1212)

0 2 4 18 5 4 2 0 7 (1511)

0 2 5 19 7 6 5 0 8 (1011)

0 2 5 20 4 9 1 0 4 (1011) (1611)

0 2 5 21 8 4 2 0 6 (911) (1011) (1511) 

(1611) (1711)

0 2 6 22 7 5 1 0 8 (1511)

0 2 6 23 5 4 4 0 3

0 2 6 24 4 5 6 0 4 (1211) (1311)

0 2 6 25 6 4 2 0 5 (911) (1011) (1511)

0 2 6 26 5 2 1 0 8 (1711)

0 2 7 27 11 5 4 0 3 (1711) (1811)
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0 2 7 28 5 3 3 0 2 (1511)

0 2 7 29 17 5 2 0 3 (1211)

0 2 7 30 4 3 1 0 5 (911) (1011)
0 3 8 31 10 5 1 0 0 (911)

0 3 8 32 10 3 4 0 7 (911) (1011)
0 4 9 33 8 6 1 0 3 (911)
0 4 9 34 4 7 4 0 5 (1011)

0 4 9 35 7 7 4 0 4 (1511)

0 4 9 36 6 5 2 0 2 (1511)

0 4 10 37 5 2 5 0 8

0 4 10 38 7 4 2 0 3

0 4 10 39 7 0 4 0 5 (911) (1611)

0 4 10 40 5 9 2 0 6 (1011) (1711)

0 4 10 41 5 4 2 0 2 (1011) (1611) (1712)

0 4 11 42 6 3 3 0 0 (1011) (1311)

0 4 11 43 12 4 5 0 8 (911)

0 4 11 44 4 8 5 0 7 (1011)

1 5 12 45 6 6 2 0 6

1 5 12 46 6 6 2 0 8

1 5 12 47 4 3 1 0 7 (911) (1411) (1711)

1 5 12 48 12 5 2 0 4 (1511)

1 5 12 49 6 6 1 0 3 (1711)

1 5 13 50 5 6 4 0 4 (1011) (1611)

1 5 13 51 5 5 2 0 6 (1511) (1711)

1 5 13 52 12 4 3 0 7 (1711)

1 5 14 53 6 5 4 0 8 (911) (1011)

1 5 14 54 5 6 2 0 5

1 5 14 55 10 7 4 0 2 (9I2) (1011) (1711)

1 5 14 56 7 5 5 0 4

1 5 15 57 18 6 3 0 0 (1511)

1 5 15 58 5 5 1 0 3

1 5 15 59 6 7 4 0 4 (1011) (1211)
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1 5 15 60 8 7 3 0 1

1 6 16 61 7 3 3 0 8

1 6 16 62 9 2 4 0 4 (1212)

2 7 17 63 8 6 1 0 3 (1011) (1511) (1711)

2 7 17 64 2 10 4 0 0 (1611)

2 7 17 65 2 3 1 0 6 (1011) (1311)

2 8 18 66 3 4 3 0 5 (911)

2 8 18 67 3 2 4 0 6 (1711)

2 8 18 68 4 8 1 0 8

2 9 19 69 6 4 3 0 3 (911) (1611)

2 9 19 70 5 9 1 0 6 (1612) (1811)

2 9 19 71 3 4 2 0 5

2 9 19 72 2 2 3 0 4 (1211) (1312) (1511)

2 9 20 73 6 7 3 0 5 (911)

2 9 20 74 3 5 2 0 0 (911) (1611)

2 9 20 75 4 6 3 0 1 (911) (1011) (1511)

2 9 20 76 2 2 1 0 4 (911)

2 9 20 77 9 5 3 0 8 (1011) (1311) (1512)

2 9 21 78 2 2 1 0 6 (1011) (1211)

2 9 21 79 3 2 3 0 3 (1711)

2 9 21 80 2 6 1 0 8 (911) (1511)

2 10 22 81 3 7 3 0 2 (1611)

2 10 22 82 2 5 4 0 6 (911) (1312) (1611)

2 10 23 83 3 4 3 0 5 (1012) (1111) (1711)

2 10 23 84 5 4 2 0 7 (1111) (1611)

3 11 24 85 6 7 3 0 7

3 11 24 86 9 5 4 0 8 (911) (1011) (1212) 

(1611)

3 11 25 87 6 5 4 0 6

3 11 25 88 5 4 4 0 0 (1011)

3 11 25 89 11 1 4 0 2 (1011)

3 12 26 90 10 2 5 0 7 (1011)
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3 12 26 91 9 7 1 0 4 (911)

3 12 27 92 11 5 4 0 3 (1011)

3 12 27 93 26 7 4 0 7 (1211)

3 12 27 94 8 7 3 0 4 (1511)

3 12 27 95 6 6 1 0 6

3 12 28 96 7 4 4 0 6 (911) (1211)

3 12 28 97 20 5 3 0 4 (1611)

3 12 28 98 7 5 4 0 8 (911)

3 12 28 99 15 8 1 0 6

3 12 28 100 6 9 4 0 1 (911)

3 13 29 101 12 6 4 0 8 (1511) (1611)

3 13 29 102 27 7 4 0 6 (911) (1711)

3 13 29 103 24 5 1 0 5 (911) (1811)

3 13 30 104 8 6 4 0 7 (1011) (1511) (1811)

3 13 30 105 18 5 1 0 1

3 13 30 106 6 6 3 0 2 (1711)

3 13 31 107 6 6 2 0 5

4 14 32 108 4 6 1 0 1 (1612) (1711)

4 14 32 109 6 7 2 0 3

4 14 32 110 5 7 1 0 6

4 14 33 111 5 5 1 0 1 (911)

4 14 33 112 8 6 4 0 7 (1011)

4 15 34 113 10 8 3 0 0

4 15 34 114 4 6 5 0 2 (911) (1011) (1311)

4 15 34 115 4 6 3 0 8 (1011)

4 15 34 116 4 3 3 0 2

4 15 35 117 15 6 2 0 1 (911) (1711)

4 15 35 118 7 8 1 0 7 (1811)

4 15 '35 119 4 6 3 0 6 (1011) (1612)

5 16 36 120 9 6 4 0 8 (911) (1411)

5 16 37 121 2 7 1 0 7 (1511)

5 16 38 122 3 5 3 0 0 (1011)
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5 16 38 123 4 5 3 0 8 (911)

5 17 39 124 2 6 1 0 5 (1011)

5 17 39 125 4 5 1 0 3 (1511)

5 17 39 126 3 3 3 0 8 (1011)

5 17 39 127 3 7 4 0 5 (911) (1011) (1112) 

(1511)

5 17 40 128 2 5 2 0 5 (911) (1711)

5 17 40 129 2 0 3 0 8

5 17 40 130 2 7 3 0 4

5 18 41 131 3 8 2 0 6 (1311)

5 18 41 132 2 4 4 0 8 (911)

5 18 41 133 5 6 1 0 5 (9I2)

5 18 41 134 7 4 2 0 2 (1011)

5 19 42 135 5 6 1 0 4 (911)

5 19 42 136 4 6 3 „ 0 8 (911) (1011)

5 19 42 137 6 5 6 0 0 (911)

5 19 42 138 6 8 3 0 2

5 19 43 139 3 3 1 0 8

5 19 43 140 2 2 3 0 3 (1011)

5 20 44 141 3 3 2 0 4 (911) (1011)

5 20 44 142 8 3 3 0 8 (911) (1011)

5 20 44 143 2 2 6 0 5 (1611)

5 20 44 144 2 5 1 0 8

5 20 44 145 3 3 3 0 4 (1011)

5 20 45 146 7 8 4 0 7 (911) (1711)

5 20 45 147 9 6 1 0 2 (911) (1011) (1511)

5 20 45 148 2 5 3 0 1 (1011)

5 20 45 149 3 3 2 0 6

5 20 45 150 3 7 1 0 8 (911) (1011) (1611)

6 21 46 151 2 9 3 0 7 (1411) (1511) (1611)

6 21 47 152 6 8 3 0 4 (1711)

6 21 47 153 5 5 3 0 0
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6 21 47 154 3 8 4 0 8 (911)

6 21 48 155 3 3 4 0 6 (1211)

6 21 48 156 3 4 4 0 7 (911) (1011) (1211)

6 22 49 157 5 6 3 0 2 (911)

6 22 49 158 2 4 3 0 5

6 22 49 159 3 1 3 0 6 (1112) (1711)

6 22 49 160 7 5 1 0 7

6 22 50 161 5 7 1 0 3 (911) (1011)

6 22 50 162 2 6 3 0 4 (911) (1011)

6 22 50 163 10 6 1 76 5 (911) (1011)

6 22 50 164 3 2 5 0 7

6 22 50 165 5 5 3 0 8

7 23 51 166 5 4 4 0 2 (911) (1612)

7 23 51 167 5 9 2 0 0

7 23 51 168 10 9 3 0 7 (911)

7 23 52 169 8 3 2 0 7

7 23 52 170 6 6 1 0 0 (911) (1511)

7 23 52 171 16 6 4 0 4 (1311)

7 23 52 172 6 3 1 0 6 (1611)

7 23 52 173 4 5 2 0 8 (1211)

8 24 53 174 5 0 4 0 6

8 24 53 175 4 6 4 0 8

8 24 53 176 7 5 5 0 4 (1311)

8 25 54 177 5 6 4 0 5 (1011) (1511)

8 25 55 178 6 0 1 0 6 (1011)

8 25 56 179 18 5 2 0 6 (1011) (1311)

8 26 57 180 8 2 2 0 3 (1011) (1511)

8 26 57 181 17 6 2 0 1 (1011) (1211)

8 26 57 182 8 3 3 0 4 (1011) (1711)

8 26 57 183 11 1 4 0 7 (9I2) (1011) (1711)

9 27 58 184 8 6 .4 0 4

9 27 59 185 10 3 1 0 4 (1411) (1811)
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9 27 59 186 14 4 2 0 5

9 27 59 187 7 4 1 0 3 (1011)

9 27 60 188 9 4 3 0 4

9 27 61 189 8 6 3 0 1

9 27 61 190 16 9 3 0 2

9 27 61 191 15 5 3 0 8 (1011)

9 28 62 192 6 7 4 0 7 (911) (1011)

9 28 62 193 4 6 1 0 8 (1611)

9 28 62 194 19 4 2 0 3 (911) (1011) (1611) 

(1711)

9 28 62 195 5 5 1 0 4 (1711)

9 28 63 196 5 4 1 0 7 (1011)

9 28 63 197 8 4 3 0 6 (1011) (1611)

9 28 63 198 17 3 4 0 4 (1011)

9 29 64 199 11 5 1 0 6 (1712)

9 29 64 200 9 5 4 0 5 (1011) (1611)

9 29 64 201 4 8 4 0 6

9 30 65 202 7 5 1 0 5 (1611)

9 30 65 203 7 8 1 0 0

10 31 66 204 11 3 5 0 8 (911) (1511) (1611)

10 31 66 205 6 7 4 0 5 (1111) (1611)

10 31 66 206 4 9 1 0 6 (1611) (1711)

10 31 66 207 11 6 3 0 4 (1711)

10 32 67 208 6 4 3 0 7 (911)

10 32 67 209 11 8 4 0 2

10 32 68 210 8 2 2 0 3 (1511) (1711)

10 32 68 211 17 5 3 0 0 (1011)

10 32 68 212 7 4 3 0 5 (1011)

10 32 68 213 7 3 1 0 6 (911)

10 33 69 214 5 5 5 0 5

10 33 69 215 12 8 5 0 7

10 33 69 216 5 5 2 0 3 (911)



198

10 33 70 217 4 6 3 0 1 (1011) (1311)

10 33 70 218 16 8 1 0 3 (911) (1711) (1812)

10 33 70 219 5 7 4 0 7 (1211)

10 33 70 220 6 6 4 0 2 (1611)

10 33 70 221 6 6 2 0 1

10 33 71 222 7 4 2 0 3

10 33 71 223 7 8 3 0 4

10 33 71 224 8 7 1 0 2

10 34 72 225 5 4 3 0 5 (1011)

10 34 72 226 7 7 2 0 8 (911)

10 34 73 227 8 8 4 0 7 (1011)

10 34 74 228 8 3 4 0 8 (911)

10 34 74 229 8 0 1 0 3 (911)

11 35 75 230 5 3 4 0 4 (911) (1011) (1311)

11 35 75 231 5 5 3 0 5 (1012) (1511)

11 35 75 232 4 5 1 0 8

11 35 75 233 3 6 4 0 2 (1111) (1611)

11 35 76 234 8 5 4 0 4 (1011) (1311) (1711)

11 35 76 235 3 8 3 0 6 (911) (1011) (1111) 

(1212)

11 35 76 236 7 2 3 0 4 (911)

11 35 76 237 5 6 4 0 7 (1011)

11 36 77 238 5 4 1 0 6 (1011) (1311) (1611)

11 36 77 239 2 6 4 0 4 (911) (1011)

11 36 77 240 6 4 4 0 0

11 36 77 241 2 10 1 0 3 (1011)

11 36 77 242 3 4 1 0 6 (1611)

11 37 78 243 3 5 3 0 7 (1011) (1511)

11 37 78 244 3 8 4 0 4 (1511)

11 37 78 245 4 3 4 0 3 (911)

11 37 79 246 4 6 2 0 7 (911) (1011) (1511)

11 37 79 247 2 10 2 0 3 (1011)
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11 37 80 248 5 4 1 0 3

11 37 80 249 6 4 1 0 7

11 37 80 250 3 7 1 0 8

11 37 80 251 3 5 1 0 6

11 38 81 252 2 6 1 0 7 (1512)

11 38 81 253 4 5 6 0 5 (1711)

11 38 81 254 2 7 3 0 8 (1011)

11 39 82 255 8 6 3 0 5 (1511)

11 39 82 256 4 6 2 0 4 (911)

11 39 82 257 6 6 4 0 8 (911) (1012) (1311)

11 39 83 258 3 8 2 0 0 (1211)

11 39 83 259 4 7 3 0 2 (911) (1011) (1611)

11 39 83 260 9 0 1 0 5 (1511)

12 40 84 261 5 3 1 0 5 (1611) (1811)

12 40 84 262 15 6 2 0 8 (1511) (1611)

12 40 84 263 5 1 1 0 1 (911) (1011)

12 41 85 264 11 8 1 0 3

12 42 86 265 7 3 4 0 7 (911) (1211)

12 42 86 266 5 6 1 0 6 (1011) (1611)

12 42 86 267 6 4 3 0 4

12 42 87 268 6 5 1 0 4

12 42 87 269 9 4 3 0 1 (911) (1011)

12 42 87 270 5 5 2 0 6 (911) (1011)

12 42 87 271 7 7 3 0 7 (1311)

12 43 88 272 22 6 1 0 6

12 43 88 273 16 6 2 0 3

12 43 88 274 5 1 3 0 8 (1011)
12 43 89 275 16 6 3 0 3 (1011) (1211)

12 43 89 276 10 4 4 0 4 (1711)

12 43 90 277 7 5 3 0 3

12 43 90 278 24 3 3 0 6 (911) (1012)

12 43 90 279 11 6 4 0 7 (1212)
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12 44 91 280 5 4 4 0 6 (1011)

12 44 91 281 5 6 3 0 1 (1211)

13 45 92 282 5 4 4 0 8 (911)

13 45 92 283 6 2 4 0 4 (1011)

14 46 93 284 5 7 4 0 7 (1311)

14 46 93 285 3 4 3 0 3 (1011)

14 46 93 286 4 7 1 0 0

14 47 94 287 3 4 5 0 4 (1011)

14 47 94 288 4 6 2 0 8 (1011)

14 47 94 289 4 5 5 0 7

14 47 94 290 4 9 1 0 8 (1212)

14 47 95 291 4 9 2 0 2 (1011) (1411)

14 47 95 292 5 5 4 0 7

14 48 96 293 3 8 4 0 5

14 48 96 294 10 3 2 0 0 (1011)

14 48 96 295 3 4 4 0 3 (911) (1011)

14 48 97 296 2 4 1 0 6 (1011) (1211) (1511)

14 48 97 297 5 7 1 0 0 (1512) (1611)

14 48 97 298 5 4 5 0 5

14 48 97 299 5 8 6 0 0 (9I2) (1011) (1611)

Table A.23. Routing Structure and Operation Related Data - Problem 6
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Operation Setup times (preceding operation I setup)

2 (6I5) (28I7) (36I5) (4116) (5516) (8118) (10613) (11616) (13815) (14712) (15713) 

(16616) (19015) (20916) (22016) (22417) (23318) (29115)

6 (218) (2817) (3619) (4116) (5518) (8116) (8914) (10617) (11611) (13814) (14713) 

(15718) (19014) (20916) (29116)

28 (216) (618) (3616) (4115) (5514) (8116) (8916) (10615) (11614) (13815) (14715) 

(15715) (16617) (19017) (20915) (22017) (22415) (23318) (25915)

36 (213) (616) (2813) (5516) (8114) (10618) (11614) (13816) (14718) (15712) (16619) 

(19016) (20917) (22014) (22412) (23313) (25916) (29112)

41 (215) (617) (2816) (3615) (5515) (8117) (8915) (11615) (13818) (15715) (19017) 

(20916) (22017) (22415) (23312) (29113)

42 (57110) (64I9) (74I5) (12219) (13718) (20314) (21116) (25812) (28617) (29716)

(29914)

55 (215) (615) (2815) (3615) (4118) (8118) (10618) (11610) (15715) (16614) (19015) 

(20913) (22016) (22412) (23315) (25913) (29116)

57 (42I7) (64I4) (74I5) (12213) (13717) (16715) (21115) (24015) (28615) (29715)

60 (7516) (10013) (10518) (10815) (11113) (11715) (14813) (18116) (18916) (26915)

(28114)

64 (42I5) (74I4) (12213) (13717) (16715) (21116) (24014) (25814) (28614) (29716)

(29919)

74 (4214) (5714) (6416) (12213) (13714) (16716) (21113) (24012) (28616) (29714)

(29916)

75 (6013) (10512) (10817) (11117) (11715) (14814) (18115) (18914) (26914) (28117)

81 (2110) (6I3) (28I3) (4116) (5518) (8916) (10615) (11611) (13815) (15716) (16614) 

(19018) (20916) (220110) (224I4) (233I8) (29114)

89 (215) (612) (2818) (3612) (4118) (5516) (8115) (10617) (11616) (14718) (16617) 

(20917) (22416) (23315) (25914) (29113)

100 (60110) (75I6) (10514) (11116) (11714) (18916) (26914) (28118)

105 (7514) (100I4) (108I2) (11119) (117I3) (148I7) (18116) (269I3) (28113)

106 (2I9) (28I4) (36I8) (4115) (5513) (8915) (11613) (13812) (14715) (15713) (20918)

(22014) (22414) (25915) (29115)

108 (6013) (10013) (10517) (11114) (11714) (18117) (18911) (269I0)

111 (60I7) (75I3) (10016) (10517) (10814) (11716) (14813) (18117) (18913) (26912)
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(28116)

116 (214) (28I6) (36I2) (4116) (8117) (8917) (10615) (14717) (15717) (16619) (20916)

(22014) (22415) (29116)

117 (60I4) (75I4) (100110) (10515) (10814) (111110) (14812) (18114) (18912) (26914)

(28113)

122 (57I9) (64I6) (13714) (16716) (20318) (24016) (28618) (29714) (29916)

137 (4213) (5717) (12214) (16717) (20314) (25812) (28618) (29719) (29910)

138 (217) (619) (2816) (3615) (4117) (5516) (8115) (10610) (11614) (15713) (19016) 

(20912) (22012) (22417) (23319) (25917) (29113)

147 (218) (6I4) (4114) (5518) (8112) (10617) (11614) (13814) (16615) (19015) (20913) 

(22015) (22413) (23312) (25915) (29117)

148 (60I7) (75I8) (10014) (10514) (11117) (11714) (18114) (18916) (26916) (28116)

157 (215) (610) (3614) (5512) (8117) (8910) (10614) (11615) (13815) (14713) (16615) 

(20917) (22015) (23310) (259110) (29115)

166 (615) (2813) (3616) (4117) (5517) (8111) (89I5) (10618) (11619) (13816) (22015) 

(22419) (23316) (25916) (29115)

167 (42I5) (64I6) (74I0) (12213) (13717) (20313) (21114) (25814) (28614) (29916)

181 (6019) (10015) (10517) (10810) (11114) (11718) (148110) (18915) (28113)

189 (6012) (10014) (10515) (108110) (11713) (14812) (28115)

190 (216) (617) (3611) (4117) (5517) (8116) (10615) (11614) (13817) (14713) (15714) 

(16618) (20915) (22416) (23315) (25914) (29112)

203 (4216) (6414) (7412) (12217) (13715) (16717) (21114) (25817) (28617) (29716)

(29917)

209 (214) (2811) (4114) (5517) (8116) (8916) (10617) (11613) (13817) (14716) (16615) 

(19015) (22415) (23310) (25913) (29115)

211 (4216) (5717) (6417) (7416) (12212) (16714) (20319) (24017) (25813) (29716)

220 (618) (2813) (3617) (4112) (8112) (8911) (10613) (11618) (13813) (14713) (16614) 

(19013) (20919) (22414) (23311) (259I5) (29117)

224 (215) (613) (2815) (3616) (4115) (8115) (8919) (10616) (11614) (13815) (14714) 

(15716) (16615) (19016) (20913) (22016) (23318) (25914) (29113)

233 (614) (2815) (4115) (8115) (10614) (11614) (13817) (14715) (15714) (16615) 

(19015) (22417) (25913) (29119)

240 (4218) (5715) (6410) (7417) (12212) (13717) (16719) (20316) (21115) (25815)
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(286I2) (297I3) (299I3)

258 (42I6) (64I6) (74I6) (13715) (21115) (24015) (29912)

259 (614) (2813) (5513) (8118) (8915) (11614) (14714) (15714) (16618) (19014) (22013)

(22416) (23316) (29116)

269 (60I8) (75I8) (100I5) (105I7) (108I0) (11115) (117I6) (148I5) (18119) (28115)

281 (60I3) (75I4) (10013) (10515) (11115) (11713) (18117) (26915)

286 (4214) (5715) (6414) (7415) (12214) (13715) (16715) (20316) (24015) (25813)

(29715) (29913)

291 (216) (615) (3610) (5513) (8118) (10613) (11613) (13818) (14712) (15715) (16617) 

(19014) (20912) (22414) (23312) (25915)

297 (4216) (5716) (6416) (12213) (13716) (16714) (20318) (21116) (24016) (25810)

(28614) (29914)

299 (4212) (5714) (6415) (7415) (12216) (13716) (16714) (20316) (21116) (24014)

(25817) (28613) (29716)

Table A.24. Operations with Sequence Dependent Setup Times - Problem 6



204

APPENDIX C

COMPUTATIONAL STRUCTURE OF THE HYBRID SCHEDULING SYSTEM

The hybrid scheduling system was implemented in C language. An overview of the 

computational system structure is shown in the following diagram:

Legend: I ! basic source files Q  data files

auxiliary source files — ► data flow

FIGURE C.1. System Structure Diagram



The main function that controls and integrates the entire system is located in file 

Principa. Functions in Gerap are responsible for randomly reading, generating, or loading 

a scheduling problem. The modified schedule generation algorithms, the local hill climbing 

and the genetic algorithm are implemented respectively in SGA, Hill_cli and GA. The 

other source files contain functions that are used by the basic system modules. The data 

files (binary and text) store problem and solution data.

The user must select among loading an existing problem from disk, entering a 

new problem through the keyboard, or using the random problem generator described in 

appendix B (interface 1 in the diagram). These functions are implemented in Gerap. After 

the selection the user must provide the problem data or the inputs requested by the 

problem generator. Inp and Prob are a set of binary and text files that store problem 

instances like the ones described in appendix A. Funcaux2 contains some functions 

called by the problem generator (e.g., functions that randomly generate values from a 

probability distribution).

Once the problem is defined (and loaded), the user chooses the system 

configuration (interface 2 in the diagram). Precisely the user determines the following 

parameters:

1. Basic system configuration:

• only the schedule generation algorithm

• schedule generation algorithm followed by a local hill climbing

• schedule generation algorithm followed by a genetic algorithm hybridized 

with a local hill climbing

• schedule generation algorithm followed by a pure genetic algorithm

2. Schedule generation algorithm:

• active or non-delay

• route selection method: random selection or route selection heuristic

• parameter 'a' in the route selection heuristic (if it is selected)

• dispatching procedure: randomly or SPT rule

• resource selection method: randomly or minimum gap heuristic

• generation mode: complete or simplified
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3. Local hill climbing:

• method for selecting the arc to be reversed: random choice or bottleneck 

heuristic

• resources are allowed or not allowed to change when a move is performed

4. GA parameters:

• population size

• number of generations

• basic crossover rate

• basic mutation rate

• route crossover rate

• route mutation rate

• decoding strategy: active or non-delay

5. Coefficients a-, and B of the multiobjective evaluation function F = a^mean

completion time + a2.mean tardiness + a3.makespan + a4.maximum tardiness

+ a5.maximum lateness + a6.maximum flow time + B

Note that any other multiobjective function can be easily implemented. But as 

described in chapter 4, most regular measures are equivalent to one of the single criteria 

included in function F.

According to the basic system configuration chosen by the user the main function 

calls the proper sequence of functions that run the schedule generation algorithm (in file 

SGA), the local hill climbing (in Hill_cli) and the genetic algorithm (in GA).

The decoding procedure used by the GA is the modified schedule generation 

algorithm. The GA can also be hybridized with the local hill climbing procedure. Therefore 

there exist data flows between GA and SGA, and between GA and Hill_cli (see diagram 

C.1).

The final solution is stored in the output files Gan (Gantt chart) and Sol (numerical 

data) with the help of functions located in file Gantchar. Gantt charts were used to aid the
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verification of the proposed models, i.e., the consistency of the solutions provided by the 

hybrid scheduling system were verified using Gantt charts.

The auxiliary file Funcauxl carries some functions called by almost all the basic 

files, like functions that return the successor or predecessor of an operation, subprocess 

or part, functions that calculate overlap times and earliest start times, etc. Functions that 

manipulate setup information (e.g., update setup times after a neighborhood move) are 

implemented in file Setupdep. Functions concerning to scheduled breaks of resources are 

implemented in Mainten. The route selection heuristic is stored in file Heuroute. Some GA 

related function and some Hill climbing related functions are implemented in files Aux_GA 

(e.g., selection procedure) and Obj_chai (e.g., determination of the active chains). The 

total number of code lines of the system reaches 9189.



APPENDIX D
PERFORMANCE OF THE HYBRID SCHEDULING SYSTEM ON CLASSICAL JOB

SHOP SCHEDULING PROBLEMS

The performance of the proposed model on for Taillard’s benchmarks is 

descrHW hefe. AH the- thfefr modules  ̂of the. hyfemd system (the- modified schedule 

generation algorithm, the local hill climbing and the genetic algorithm) were set to their 

basic configurations.

For each probterfr thirty= runs- were cafried out Table D:t compares the 

performance of the proposed system with the performance of the hybrid genetic 

algorithm GA3 proposed by Mattfeid. Notice that GAS haŝ  yielded the-best solutions for 

Taillard’s benchmarks among all the GA reported in the literature. The number of runs 

performed!^ Mattfeld’s GA3 for each problem wa^aiso thirty. The popuiation size and 

number of generation were fixed at 100 (the same used in our system).

: Problem

(n° jobs x n° machines)

Rfigf cnl> itinnUwwv OviUllwl 1

Mattfeld’s GA3

BestSoiution 

Proposed Model

Difference (%)

taGT(T5x15) 1Z4T 1299 4.0

tsrt-1 (20x15) 1411 145& 3 2r

ta42 (20x20) 17.2a 1736- Q J

ta13 (30x15) 1813 1902 4.7

Table D.1. System Performance on Taillard’s Job Shop Problems.

Figure D.1 shows-the behavior of the hybrid system over generations for each 

of these classical job shop scheduling problems. Only the best among the thirty runs is 

plotted.
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Figure D.1. Performance of the Hybrid System on Taillard’s Benchmarks


