

UNIVERSIDADE FEDERAL DE SANTA CATARINA CAMPUS ARARANGUÁ-ARA

PLANO DE ENSINO

SEMESTRE 2016.1

I. IDENTIFI	CAÇÃO DA DISCIPLINA:			
CÓDIGO	NOME DA DISCIPLINA		RAS-AULA ANAIS PRÁTICAS	TOTAL DE HORAS-AULA SEMESTRAIS
ARA7124	Engenharia de Software I	2	FINATIONS	
	1 0 continuity		2	72

	HORÁRIO	MÓDULO
TURMAS TEÓRICAS	TURMAS PRÁTICAS	
2-2020-2 e 4-2020-2	TORMAS FRATICAS	Presencial

II. PROFESSOR(ES) MINISTRANTE(S)

Adriano de Oliveira

Email: adriano.o@ufsc.br

III. PRÉ-REQUISITO(S)*

CÓDIGO	NOME DA DISCIPLINA
	Programação em Computadores II

IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

Bacharelado em Tecnologias da Informação e Comunicação

V. JUSTIFICATIVA

O profissional responsável por analisar e projetar sistemas computacionais necessita conhecer e aplicar as principais metodologias adotadas pelo mercado de trabalho, para poder desempenhar sua função com qualidade e ser competitivo no mercado.

VI. EMENTA

Análise de requisitos: requisitos funcionais e requisitos não-funcionais; técnicas para levantamento e representação de requisitos, incluindo casos de uso. Modelagem orientada a objetos. Projeto orientado a objetos: técnicas para projeto; padrões de projeto, componentes e frameworks; projeto de arquitetura. Linguagem de especificação orientada a objetos. Métodos de análise e projeto orientados a objetos.

VII. OBJETIVOS

Objetivos Gerais:

Fornecer subsídios ao aluno para que ele possa analisar e projetar adequadamente um produto de software utilizando uma metodologia orientada a objetos.

Objetivos Específicos:

- O aluno ao final do curso deve possuir habilidades para:
 - Modelar os dados de uma organização utilizando uma notação apropriada;
 - Projetar um sistema a partir da engenharia de requisitos;
 - Analisar e projetar software através do paradigma orientado a objetos.

VIII. CONTEÚDO PROGRAMÁTICO

Unidade I: Fundamentos de Análise de Sistemas de Informação Orientado a Objetos Conteúdo Teórico seguido de Conteúdo Prático

- Engenharia de Requisitos:
 - Elicitação, especificação, avaliação e documentação
- Modelagem orientada a objetos

Unidade II: Projeto Orientado a Objetos

Conteúdo Teórico seguido de Conteúdo Prático com desenvolvimento de modelagem por computador.

- Projeto Orientado a Objetos
- Projeto da Arquitetura

IX. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

Exposição dialogada, utilizando projetores de slides, trabalhos dirigidos com levantamento bibliográfico e atualização de assuntos, bem como todos os equipamentos necessários para o desenvolvimento das aulas laboratoriais de acordo com cada assunto ministrado. Atividades práticas de laboratório no computador, utilizando um software livre para UML; Material de apoio postado no Moodle. Desenvolvimento de trabalhos e exercícios semanais

X. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

- A verificação do rendimento escolar compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, ficando nela reprovado o aluno que não comparecer, no mínimo a 75% das mesmas.
- A nota mínima para aprovação na disciplina será 6,0 (seis). (Art. 69 e 72 da Res. nº 17/CUn/1997).
- O aluno com frequência suficiente (FS) e média das notas de avaliações do semestre entre 3,0 e 5,5 terá direito a uma nova avaliação no final do semestre (REC), exceto as atividades constantes no art.70,§ 2º. A nota obtida na nova avaliação (REC). (Art. 70 e 71 da Res. nº 17/CUn/1997).

$$NF = \frac{MF + REC}{2}$$

- Ao aluno que não comparecer às avaliações ou não apresentar trabalhos no prazo estabelecido será atribuída nota 0 (zero). (Art. 70, § 4º da Res. nº 17/CUn/1997)
- Avaliações
 - P1: Prova Escrita e Individual.
 - P2: Prova Escrita e Individual.
 - AT: Atividades em laboratório e/ou sala de aula.

A Média Final (MF) será calculada da seguinte forma: MF = [(P1 + P2) / 2 * 0,7] + AT * 0,3

* As provas poderão conter questões objetivas, objetivas mistas e dissertativas.

Observações:

Avaliação de recuperação

 Não há avaliação de recuperação nas disciplinas de caráter prático que envolve atividades de laboratório (Res.17/CUn/97).

Nova avaliação

 Para pedido de segunda avaliação somente em casos em que o aluno, por motivo de força maior e plenamente justificado, deixar de realizar avaliações previstas no plano de ensino, deverá formalizar pedido de avaliação à Direção do Campus Araranguá dentro do prazo de 3 dias úteis apresentando comprovação. (Ver

AULA (semana)	DATA	ASSUNTO
1	14/03/2016 a 19/03/2016	
0	21/03/2016 a 26/03/2016	Unidade I: Plano de Ensino e Introdução à Engenharia de Software
2		Unidade I: Introdução à Engenharia de Requisitos: requisitos funcionais
3	28/03/2016 a 02/04/2016	
4	04/04/2016 a 09/04/2016	Unidade I: Documentação de requisitos
	11/04/2016 - 10/04/2016	Unidade I: Técnicas de elicitação de requisitos
5	11/04/2016 a 16/04/2016	Unidade I: Avaliação de requisitos: gerenciamento de inconsistências, análise de riscos
6	18/04/2016 a 23/04/2016	Prova Teórica Unidade I - Unidade I: Introdução a modelessas
7	25/04/2010 - 00/04/2015	Cheritada a Objetos - UML
<u>'</u>	25/04/2016 a 30/04/2016	Unidade I: Diagrama de casos de uso
8	02/05/2016 a 07/05/2016	Unidade II: Diagrama de classes

9	09/05/2016 a 14/05/2016	Unidade II: Diagrama de classes
10	16/05/2016 a 21/05/2016	Unidade II: Diagrama de sequência e diagrama de comunicação
11	23/05/2016 a 28/05/2016	Unidade II: Diagrama de sequencia e diagrama de comunicação Unidade II: Diagrama de máquina de estados
12	30/05/2016 a 04/06/2016	Unidade II: Diagrama de atividades
13	06/06/2016 a 11/06/2016	Unidade II: Outros diagramas
14	13/06/2016 a 18/06/2016	Unidade II: Abordagens de desenvolvimento de software
15	20/06/2016 a 25/06/2016	Unidade II: Projeto da Arquitetura
16		Prova Teórica Unidade II
17		Nova Avaliação (Prova de recuperação)
18	11/07/2016 a 16/07/2016	Divulgação de Notas

Obs 1: O calendário está sujeito a pequenos ajustes de acordo com as necessidades das atividades desenvolvidas.

Obs 2: Atendimento aos alunos deve ser agendado com o professor.

XII. Feriados previstos para o semestre 2016.1:

DATA	
24/03/2016	Dia não letivo
25/03/2016	Sexta feira Santa
26/03/2016	Dia não letivo
03/04/2016	Campus de Araranguá: aniversário da Cidade
21/04/2016	Tiradentes
22 e 23/04/2016	Dia não letivo
01/05/2016	Dia do Trabalhador
04/05/2016	Campus de Araranguá: dia da Padroeira da Cidade
26/05/2016	Corpus Christi
27 e 28/05/2016	Dia não letivo

XIII. BIBLIOGRAFIA BÁSICA

BOOCH, G.; RUMBAUGH, J.; JACOBSON, I. UML - Guia do Usuário. 2. ed. Rio de Janeiro: Elsevier., 2006.

SILVA, R. P. UML2 em modelagem orientada a objetos. Florianópolis: Visual Books, 2007.

SOMMERVILLE, Ian. Engenharia de software. 8. ed. São Paulo: Pearson Addison-Wesley, 2007. xiv, 552 p.

XIV. BIBLIOGRAFIA COMPLEMENTAR

BEZERRA, Eduardo. **Princípios de análise e projeto de sistemas com UML**. Rio de Janeiro: Elsevier, 2003. 286p.

LARMAN, Craig. **Utilizando UML e padrões**: uma introdução à análise e aos projetos orientados a objetos e ao desenvolvimento interativo. 3. ed. Porto Alegre: Bookman, 2007.

MENDES, E.; MOSLEY, N. Web Engineering. New York: Springer, 2007.

PRESSMAN, Roger. Engenharia de software. 6. ed. São Paulo: McGraw Hill, 2006. 752p.

WAZLAWICK, Raul Sidnei. **Análise e projeto de sistemas de informação orientados a objetos**. Rio de Janeiro: Campus, 2004.

WIEGERS, K. (2003) Software Requirements, 2. ed. [S.I.]: Microsoft Press, 2003.

Os livros acima citados constam na Biblioteca Universitária e Setorial de Araranguá. Algumas bibliografias também podem ser encontradas na Biblioteca Virtual da UFSC.

Prof. Adriano de Oliveira

Aprovado na Reunião do Colegiado do Curso ___/__/

Prof^a Patricia Jantsch Fiuza Coordenadora do Curso

> Prof². Patrícia Jantsch Fiuza Coordenadora do Curso de Tecnologias da Informação e Comunicação Portaria 101/2015/GR SIAPE: 2058903 UFSC Centro Araranguá