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MODEL FOR THE IMPACT EVALUATION OF ELECTRIC VEHICLE

INTEGRATION ON THE ADEQUACY OF GENERATING SYSTEMS

Bruno Rocha Colonetti1

ABSTRACT

In recent years, the integration of electric vehicles (EVs) into power systems has gained sub-

stantial attention by the academia and utilities mainly due to the new opportunities of ancillary

services that this technology can offer to power systems. Moreover, the growing presence of

renewable energy sources in power systems has brought additional uncertainty to the forecast

of available generating capacity. Thereby, this study aims at developing an EV model for eval-

uating the impact of large-scale EV integration on the adequacy of generating systems. In order

to account for the growing presence of wind generation, the proposed method is used to eval-

uate the impact of EV integration on a modified version of the IEEE RTS - 96 electric system.

The results show that large-scale EV integration impact on the adequacy of generating systems

depends on the criterion used by EV’s owners when deciding whether to recharge their EVs or

not. Also, it is shown that the EV impact can be reduced and even be positive, if the EVs are

regarded as providers of ancillary services to the grid.

Keywords: Adequacy. Electric vehicle. Generating system. Power systems.
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1 INTRODUCTION

In recent years, electric vehicle (EV) technology has gained increasing attention due

to its benefits as an environmentally friendly technology. EV sales are expected to increase

worldwide in the coming years as EVs become more popular and affordable.

However, EV technology is also a source of concern when its large-scale integration

into power systems is taken into consideration. This integration will bring more uncertainty to

load forecast and may cause an increase in the peak load, which would require investments in

infrastructure to happen sooner than expected.

Furthermore, system operators must cope with the growing presence of renewable en-

ergy sources into the generating systems, which brings long and short-term uncertainties to the

generation capacity available to meet the system demand.

Hence, this study aims at evaluating the impact of large-scale EV integration on the

adequacy of a generating system with high penetration of wind power.

2 BACKGROUND AND STATE-OF-THE-ART

The following sections present the state-of-the-art of the subjects of this study.

2.1 Electric vehicles technology

Electric vehicles (EVs) can be categorized based on the vehicle hybridization rate. To-

day, there are three main types of EVs (Yong et al., 2015):

• Hybrid electric vehicles (HEVs);

• Plug-in hybrid electric vehicles (PHEVs);

• Battery electric vehicles (BEV).

The next subsections give the characteristics of each EV type.

1Undergraduate student of Energy Engineering at the Federal University of Santa Catarina, Araranguá Campus,

Rodovia Governador Jorge Lacerda, 3201, Jardim das Avenidas, Araranguá, Santa Catarina, Brasil, CEP 88900-

000. E-mail: colonettib@gmail.com
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2.1.1 Hybrid electric vehicles (HEVs)

The HEVs propel through a combination of internal combustion engine and an electric

motor. HEVs generally have a low capacity battery, which is charged by a system of regener-

ative braking or by the internal combustion engine. These EVs cannot be recharged from the

distribution grid (Yong et al., 2015).

Figures 1, 2 and 3 show the most common configurations of an internal combustion

engine and an electric motor in a HEV.

Figure 1: Series HEV

Figure 2: Parallel HEV

Figure 3: Series-parallel HEV

In a series HEV, figure 1, the transmission is only coupled to the electric motor. The

battery of this type of HEV is connected to a generator which in turn is connected to the internal

combustion engine. The generator recharges the battery whenever the state-of-charge (SOC) is

low. Similarly, the battery is also connected to a regenerative braking system (Yong et al., 2015).
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This HEV configuration has the lowest overall efficiency among EVs, it is about 25%. However,

series HEVs are suitable for stop-and-run driving patterns, such as in urban perimeters (Tie and

Tan, 2013).

As shown in figure 2, in a parallel HEV, the internal combustion engine and the electric

motor are mechanically coupled to the transmission and simultaneously transmit power to turn

the wheels (Yong et al., 2015).

This HEV configuration is ideal under both highway-driving and city-driving conditions

and its overall efficiency is about 43% (Tie and Tan, 2013).

The series-parallel HEV, figure 3, has its internal combustion engine coupled to both the

transmission and a generator. Moreover, the electric motor is also connected to the transmission.

Thus, this HEV can run either as a series HEV or a parallel HEV. Despite having the benefits of

a series HEV and a parallel HEV, a series-parallel HEV has a complicated design and is more

costly than the first two HEVs (Yong et al., 2015).

2.1.2 Plug-in hybrid electric vehicles (PHEVs)

As the HEVs, the PHEVs have an internal combustion engine and an electric motor.

However, a PHEV can recharge its battery pack with energy from the distribution grid. Ad-

ditionally, the PHEVs’ batteries are larger than the HEVs’ what gives the PHEVs a longer

all-electric range (Yong et al., 2015).

Similar to the HEVs, the most common PHEVs are series, parallel and series-parallel

PHEVs. Nonetheless, the PHEVs have a charger connected to their battery pack, which enable

the PHEVs to be recharged with energy from the distribution grid (Yong et al., 2015). PHEV’s

owner can choose between the electric and the internal combustion propulsion. To maximize

the vehicle’s efficiency, the electric motor can be chosen to propel the vehicle in short-distance

travels and urban perimeters (Tie and Tan, 2013).

2.1.3 Battery electric vehicles (BEVs)

The BEVs are electric vehicles that are solely propel by an electric motor. Therefore,

these EVs do not have an internal combustion engine. The battery pack of a BEV is recharged

with energy from the grid distribution and from a kinetic energy recovery system. As it is an

all-electric vehicle, a BEV is suitable for city-driving conditions (Yong et al., 2015).
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2.2 Battery technologies

The most widely used device for energy storage in EVs is the battery and it is one of the

main components of an EV (Tie and Tan, 2013).

Table 1 shows the main characteristics of the most common battery technologies used

in BEVs and PHEVs.

Specific energy (Wh/kg) Life cycle Energy efficiency (%)

Lead acid battery 35 1000 >80

Nickel battery

Nickel-iron 50 - 60 2000 75

Nickel-zinc 75 300 76

Nickel-cadmium 50 - 80 2000 75

Nickel-metal hybrid 70 - 95 <3000 70

Lithium battery

Lithium-iron sulphide 150 1000+ 80

Lithium-iron phosphate 120 >2000 -

Lithium-iron polymer 130 - 225 >1200 -

Lithium-ion 118 - 250 2000 >95

Lithium-titanate 80 - 100 18000 -

Table 1: Main characteristics of the most commonly used battery technologies in BEVs and PHEVs.

Adapted from (Tie and Tan, 2013).

2.3 Chargers

The conditions in which the EVs recharge are extremely important in their impact on

the adequacy of an electric system since these conditions reflect on how much power the EVs

require from the grid distribution and on how long the EVs are connected to the grid (Yilmaz

and Krein, 2013).

The charger is necessary because a direct current (DC) must recharge the battery pack

and the grid distribution supplies energy with an alternating current (AC). Then, the charger is

responsible for rectifying the grid AC current to a DC current suitable for recharging the battery

pack (Yong et al., 2015).
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The chargers are categorized into on-board and off-board with unidirectional or bidirec-

tional power flower (Yilmaz and Krein, 2013).

The on-board chargers are located in the EVs and enable the battery pack to be recharged

directly from any suitable power supply. However, these chargers have a limit power capacity

due to restrictions in volume, weight and costs. Nowadays, most BEVs have a single-phase

unidirectional on-board charger (Yilmaz and Krein, 2013).

On the other hand, the off-board chargers are less common and mostly used in specific

charging stations for fast charging. The EVs may connect directly to the DC power output of the

off-board charger. Nevertheless, as most EVs have an on-board charger, the off-board charger

with a DC power output involves redundant power electronics and costs (Yilmaz and Krein,

2013).

Both on-board and off-board chargers can be unidirectional or bidirectional. A unidirec-

tional charger only recharges the battery pack. On the other hand, a bidirectional charger can

not only recharge the battery pack but also inject energy back to the grid (Yilmaz and Krein,

2013).

Currently, there are three levels of charging for EVs. Each one is described in table 2.

Power level
types

Charger
location

Typical
use

Energy supply
interface

Expected
power level

Level 1
120 VAC (EUA)
230 VAC (EU)

On-board
1-phase

Charging at
at home or office

Convenience
outlet

1.4 kW (12 A)
1.9 kW (20 A)

Level 2
240 VAC (EUA)
400 VAC (EU)

On-board
1-phase

or 3-phase

Charging at
private

or public outlets

Dedicated
EV supply
equipment

4 kW (17 A)
8 kW (32 A)

19.2 kW (80 A)

Level 3
208 - 600 VAC

or VDC
Off-board
3-phase

Commercial,
analogous to a
filling station

Dedicated
EV supply
equipment

50 kW
80 kW

Table 2: Charging levels. Adapted from (Yong et al., 2015) and (Yilmaz and Krein, 2013).

According to Yilmaz and Krein (2013), the level 2 charging is the most widely spread

charging type in private and public charging stations and, consequently, it is the most used

charging type amongst EVs owners.

Table 3 shows the charging characteristics of some EVs under each charging level.
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Battery type
and storage

capacity

Level 1 Level 2 Level 3

Power
Charge

time Power
Charge

time Power
Charge

time
Toyota Prius
PHEV (2012)

Li-Ion
4.4 kWh

1.4 kW
(120 V) 3 h

3.8 kW
(240 V) 2.5 h N/A N/A

Chevrolet
Volt PHEV

Li-Ion
16 kWh 0.96-1.4 kW 5 - 8 h 3.8 kW 2 - 3 h N/A N/A

Mitsubishi
i-MiEV

Li-Ion
16 kWh 1.5 kW 7 h 3 kW 14 h 50 kW 30 min

Nissan Leaf
Li-Ion

24 kWh 1.8 kW 12 - 16 h 3.3 kW 6 - 8 h 50+ kW 15 - 30 min
Tesla

Roadster EV
Li-Ion

53 kWh 1.8 kW 30+ h 9.6 - 16.8 kW 4 - 12 h N/A N/A

Table 3: Charging characteristics of some EVs. Adapted from (Yilmaz and Krein, 2013).

2.4 The electric vehicles’ market

According to Duan et al. (2014), BYD F3DM was the first commercial PHEV and made

its market debut in March 2010 in China. In the USA, the first plug-in EVs available in the

market were the Chevrolet’s Volt and the Nissan’s Leaf later that year.

By the beginning of 2011, about 2.5 million EVs had been sold across the world. In

the same period, the EVs reached a market share of 2% in the USA and 9% in Japan (IEA,

2011). The consulting firm PwC estimated the EV’s market share in the USA in 2011 to be

1.7%, similar to the EV’s overall market share in the world (PWC, 2012).

IEA (2011) estimates that by 2020 the BEVs and PHEVs sold worldwide each year will

reach about 2.5 million and 5 million EVs, respectively.

In the regional markets subjected to the study of IEA (2011), there is also an estimate of

steady and fast growth in the number of EV yearly sales. IEA (2011) studied the EV market in

China, India and in the member countries of the Organisation for Economic Co-operation and

Development (OECD).

IEA (2011) emphasizes that the estimates consider the effects of the 2008 financial crisis.

Additionally, the agency also assumed that the countries would implement economic incentives

to accelerate the EV integration.

To Kooroshy et al. (2016), the BEVs and PHEVs sales will reach 8 million vehicles

yearly by 2025 in the world.

A more recent estimate by PwC for the number of BEVs manufactured yearly in Europe

and the member countries of the European Free Trade Association (EFTA) is of 2,229,000

vehicles by 2021 (PWC, 2016).
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Propfe et al. (2013) estimated that the number of EVs, including hybrids and BEVs, on

German roads will reach 450,000 in 2020. This estimate is far behind the 1,000,000 EVs goal

set by the German government for the same year (Trumper, 2013).

Hasset et al. (2011) predicted the number of EV sales in selected European countries for

different scenarios of EV integration. The results are shown in table 4.

Scenario 1 Scenario 2 Scenario 3

2020 2025 2030 2020 2025 2030 2020 2025 2030

Germany 127 253 495 262 613 889 541 1,207 1,666

UK 84 166 325 172 403 584 356 793 1,094

Spain 42 83 163 86 202 293 179 398 550

Portugal 7 15 29 15 36 52 31 70 97

Greece 10 21 41 22 50 73 45 99 137

Table 4: EV sales in selected European countries in thousands. Adapted from (Hasset et al., 2011).

Hasset et al. (2011) highlights that scenario 1 is the most likely to happen scenario.

However, scenario 2 is the most appropriate for electric system planning and scenario 3 upper

limit scenario.

Moreover, Hasset et al. (2011) estimated the number of EVs on Portuguese roads under

the integration scenarios in 2020 and 2030.

Scenario 1 Scenario 2 Scenario 3

EVs (%) EVs (%) EVs (%)

BEV 36,480 20 115,662 30 362,904 48

PHEV 145,920 80 273,713 70 396,282 52

Total 182,400 100 389,375 100 759,186 100

Table 5: Number of EVs in Portugal for different scenarios of EV integration. Adapted from (Hasset

et al., 2011).
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2.5 State-of-the-art of the impact evaluation of EV integration into power systems

Giglioli et al. (2014) analysed the efficiency and adequacy of a system representing

the Italian power system. The authors investigated the effects of different scenarios of EV

integration and different charging strategies. The scenarios considered were low, 1.5 million

EVs, and high, 15 million EVs. The energy consumed by the EV fleet each day were assumed

5.5 GWh and 55 GWh, respectively for the low and high integration scenarios.

The authors used a Sequential Monte Carlo simulation with time steps of 15min to

analyse the different scenarios of EV integration and generate the adequacy indices.

The charging strategies considered by Giglioli et al. (2014) were daytime charging,

charging during the night and mixed charging.

Liu et al. (2015) investigated the impact of PHEV integration into a Roy Billinton Test

System (RBTS) with installed generation capacity of 240 MW and peak load of 185 MW. The

authors used a Sequential Monte Carlo model to analyse the impact of the PHEVs.

The base scenario used by Liu et al. (2015) had 7,500 PHEVs. Of those PHEVs, 2,500

vehicles charged during the day while the rest charged during the night.

In order to evaluate the effect of an increase in the number of PHEVs on the adequacy

of the system, the authors also considered a scenario of 15,000 PHEVs.

Moreover, Liu et al. (2015) also simulated a scenario with increased PHEV owners’

willingness to have their PHEVs providing ancillary services, such as vehicle-to-grid (V2G),

to the grid. This willingness was reflected by the total time for which the owners intended to

provide auxiliary services through a charging control strategy.

Wang and Paranjape (2014) investigated the impact of EV penetration on the load curve

of a 2,000 household distribution system under a direct charging strategy and the implementa-

tion of a Time-of-Use (TOU) demand response strategy.

Wang and Paranjape (2014) assumed three levels of EV penetration, 10%, 20% and 30%,

which represented 200, 400 and 600 EVs, respectively, for the 2,000 household distribution

system. Each scenario was evaluated under both the direct charging strategy and the TOU

electricity price strategy.

Hemphill (2012) used data from the New South Wales Transport Data Centre (TCD),

Australia, to estimate the load curve of PHEVs and BEVs in a substation zone.

In his study, Hemphill (2012) made the assumptions of linear discharging of the battery

energy with the driving distance, charging with unit power factor and constant voltage and
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current. For modelling the battery, the author used as base the Nissan Leaf’s battery.

The author considered two levels of charging, 4 kW and 8.53 kW.

Hemphill (2012) based his estimate of the daily travelled distance on the data from

TCD. The author used a lognormal distribution to sample the daily distance travelled by each

EV. Hemphill (2012) considered that a fraction of the EVs would not respond to any charging

control strategy. For this EV fraction, the author made the following assumptions:

• The EV starts recharging as soon as it arrives at home;

• Each EV recharges only once a day;

• The EV recharges until the SOC reaches 100%.

Hemphill (2012) estimated the number of recharging events every 5 min for a period of

24h.

In addition, Hemphill (2012) also investigated the use of what he called a smart control

strategy. This strategy works under the following assumptions:

• EVs with the lowest SOC start charging first. The initial charging time of these EVs is

linearly distributed between 22:00 and 06:00h.

• EVs with the highest SOC start charging first. These EVs start charging between 22:00

and 12:03 h for level 1 charging and between 22:00 and 3:44 h for level 2 charging.

The EVs charging at level 1 charging are disconnected from the grid at 12:03h and those

charging at level 2 charging are disconnected at 3:44h.

Soares et al. (2010) analysed the substitution of 25% and 50% of 2,285 light-weight cars

for plug-in electric vehicles in the Flores Island, Portugal, in a typical winter day.

The authors noted that there was an increase of about 41% and 109% in the peak load

and of 31% and 60% in the electricity consumption for the 24h period for the 25% and the 50%

substitution levels, respectively.

Bremermann et al. (2014) used a Non-Homogeneous Poisson Process (NHPP) to evalu-

ate the impact of EV integration on the generation adequacy. The results from the NHPP method

were compared to a similar method based on the Homogeneous Poisson Process (HPP). The

model presented by the authors uses real data from a Portuguese National Survey conducted by

the Portuguese National Statics Institute. The authors investigated three charging strategies:

• Direct charging strategy (DC): the EV starts charging as soon as it ends the first trip of

the day.
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• Valley charging strategy (VC): the EVs may only start charging during the valley period.

• Controlled charging strategy (CC): the EVs may only charge during the valley period and,

additionally, the suitable EVs can be temporally disconnected from the grid if the system

adequacy is at risk.

The power system used by Bremermann et al. (2014) was a modified version of the IEEE

RTS - 96 system called IEEE RTS - 96 HW. The IEEE RTS - 96 HW system had an installed

generation capacity of 11,391.00 MW. Thermal power plants accounted for 8,965.00 MW of

the total generation capacity, while wind farms had a share of 1,526.00 MW and hydro plants

900.00 MW. The system peak load was 8,550.00 MW.

The authors considered the following EV penetration scenarios:

• Low: 2.5% of the light-duty vehicles in 2030, 207,000 EVs;

• Moderate: 5.5%, 442,000 EVs;

• High: 11.0%, 863,000 PEVs. With a limit of 70% to the EVs that can be put under the

controlled charging strategy.

Soares et al. (2011) considered 6,604 EVs, which accounted for a 52% integration.

These EVs recharged under one of the following strategies:

• Dumb charging: the EVs may charge whenever they park at a residential zone with avail-

able power source;

• Dual Tariff Policy: under this strategy, 25% of the EVs recharge during the lowest elec-

tricity tariff period, between 23:00 and 8:00h, and the remaining still charge under the

dumb charging strategy;

• Smart charging: an aggregator may temporally disconnect EVs if the system adequacy is

jeopardized.

The authors noted a peak load increase of 85%, 96% and 11%, for the dumb charging

strategy, the dual tariff policy and the smart charging strategy, respectively.

Shafiee et al. (2013) estimated the impact of PHEV integration in a 166 household load

profile. The total number of vehicles, including ICE vehicles and EVs, was 352 vehicles. In

their study, the authors evaluated the impact of the PHEVs integration in a sequence of years

2020, 2023, 2026 and 2050.
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Qian et al. (2011) investigated the impact of EV integration on the power demand curve

of the residential, commercial and industrial segments. The authors divided the EVs into private

and corporate vehicles. The charging strategies considered in their study are the following:

• Uncontrolled domestic charging: there are no incentives to avoid charging during peak

periods. The private vehicles recharge at an average of two times a day, while corporate

vehicles start charging at 18h in weekdays;

• Uncontrolled off-peak domestic charging: the peak period starts at 7:00h and ends at

20:59h, the remaining of the day is off-peak. In this strategy, 50% of the private EVs and

all corporate EVs start charging from 21:00h to 23:00h. The initial charging time for each

EV is sampled from a uniform distribution;

• Smart domestic charging: a real time electricity price is applied and every EV starts

charging at the moment of lowest energy price.

3 ASSESSMENT METHOD

The next subsections describe the assessment methods used in this study.

3.1 Long-term evaluation of generating systems

The planning of a generating system may be based on two different analysis, the security

and the adequacy of the system. The later evaluates whether or not a future generating system

will have sufficient generating capacity to meet the system demand whereas in the security

analysis, the ability of the system to respond to disturbances arising from within the system

is evaluated. Therefore, the adequacy analysis is associated with the static conditions of the

generating system and the security is related to the dynamics of the system (Billinton and Allan,

1996).

The total generating capacity needed to ensure an adequate supply may be assessed

through the evaluation of the static reserve and the operating reserve (Billinton and Allan, 1996).

3.1.1 Static reserve evaluation

The static reserve is defined as the difference between the system generating capacity

and the load at a given time. Equation 1 gives the test function for the static evaluation (Bre-

mermann, 2014).

Rstatic = G−L f (1)
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where G is the generating capacity and L f is the load forecast. G depends on the availability of

the equipment and on the fluctuations of hydrological and wind resources whereas L f depends

on the long and short-term uncertainties of the load forecast. If Rstatic is less than 0, then the

system is in a failure state, otherwise, it is in a success state (Bremermann, 2014).

The risk indices used in the static reserve assessment are defined in Subsection 3.2.

3.1.2 Operating reserve evaluation

In the operating reserve evaluation, additionally to the previously mentioned parameters,

the operation strategy and the reserve criteria are also taken into consideration (da Silva et al.,

2010).

(Matos et al., 2009) defines operating reserve as the summation of the secondary reserve,

spinning reserve, and the fast tertiary reserve, which is composed by units that can take up load

within 1 hour.

The test function used to evaluate the power system in terms of operating reserve is

given by Equation 2 (Matos et al., 2009).

Rope = RS +RT − (∆L f +∆WS +∆G)< 0 (2)

where RS is the secondary reserve; RT is the tertiary reserve; ∆L f is the load forecast error; ∆WS

is the wind resource forecast error and ∆G represents the generating capacity variation due to

forced outages.

If the inequality in Equation 2 is true, then the system is in a failure state.

Therefore, the operating reserve assessment evaluates not only the total generating ca-

pacity of an electric system, but also the flexibility of this system to cope with short-term un-

certainties brought in by unpredicted load and generation variations (Bremermann, 2014).

Figure 4 summarizes the operating reserve concept.
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Figure 4: Operating reserve capacity evaluation (Bremermann, 2014).

Similar to the static reserve evaluation, the indices used to evaluate the operating reserve

are defined in the next subsection.

3.2 Adequacy of supply

The adequacy of supply is defined as the availability of infrastructure and enough power

to satisfy the consumer demand at a given time. Moreover, adequacy is considered to be as-

sociated with static conditions which do not include system disturbances (Billinton and Allan,

1996).

A power system may be divided into three hierarchical levels (HL). Each level can have

its adequacy evaluated separately from the other two levels. The first level is composed by the

generating units of the power system and it is called HLI. Level HLII refers to the composite

generation and transmission system. Meanwhile, level HLIII includes not only the composite

generation and transmission system but also the distribution system (Billinton and Allan, 1996).

Figure 5 synthesizes this hierarchy.
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Figure 5: Hierarchical Levels. Adapted from (Billinton and Allan, 1996).

This study is concerned with the adequacy analysis of HLI.

Furthermore, in order to investigate the adequacy of supply of a system, a series of relia-

bility indices is generally used. Those indices are categorized as probability, energy, frequency

and duration indices (Billinton and Allan, 1996).

This study focuses on the adequacy of a generating system. The commonly used indices

for this type of evaluation are defined by Billinton and Allan (1996) as:

• Loss of Load Expectation (LOLE): gives the expected mean time for which the system

load is greater the system generating capacity. This index is usually given in hours/year

or days/year;

• Expected Power Not Supplied (EPNS): expresses the mean expected power curtailed for

a given period. It is given in MW;

• Expected Energy Not Supplied (EENS): gives the mean expected energy not supplied

during the studied period. It is expressed in MWh/year;

• Loss of Load Frequency (LOLF): LOLF is the mean expected number of occurrences of

load curtailment in occurrences/year or occurrences/month;
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• Loss of Load Duration (LOLD): it is the mean expected duration of load curtailments in

hours/occurrence.

The LOLE index can be calculated by Equation 3.

LOLE =
1

Nyear

Nyear

∑
u=1

8760

∑
t=1

F(u, t) (3)

where Nyear is the number of simulated years; t is the hour in year u and F is a binary variable

that can assume the values 1 and 0. F is 1 if the system state in hour t of the simulated year u is

a failure, i.e., if forecast load is greater than the available generating capacity, and 0 otherwise.

The state duration was suppressed because the time step and the system state F duration are

both equal to 1 h.

Similarly, EPNS may be expressed as:

EPNS =
1

8760
1

Nyear

Nyear

∑
u=1

8760

∑
t=1

(L f (u, t)−G(u, t))F(u, t) (4)

where L f (u, t) is the forecast load and G(u, t) is the available generating capacity. As in the

LOLE equation, F(u, t) will be 1 if G(u, t) is not enough to meet demand L f (u, t) and 0 if there

is sufficient generation capacity available.

The EENS can be obtained by modifying Equation 5 to yield:

EENS =
1

Nyear

Nyear

∑
u=1

8760

∑
t=1

(L f (u, t)−G(u, t))F(u, t) (5)

The LOLF index can be defined as:

LOLF =
1

Nyear

Nyear

∑
u=1

8759

∑
t=1

Oc(F(u, t +1)−F(u, t)) (6)

where Oc is a binary variable that assumes 1 if F(u, t+1)−F(u, t) is equal to 1 and 0 otherwise.

That is, the failure occurrences are only accounted if they do not happen consecutively.

LOLD is then:

LOLD =
LOLE
LOLF

(7)

The two main methods to analyse the adequacy of supply of a generating system are the

analytical and the Monte Carlo approaches (Billinton and Allan, 1996).

3.2.1 Analytical method

In this approach, the system is represented by a set of mathematical equations that are

numerically solved to generate the desired adequacy indices. This technique does not require
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much computing time. Nevertheless, a series of assumptions must be made to simplify complex

systems and operating procedures in order to enable a mathematical representation of them.

Hence, the resulting analysis loses some or much of its significance (Billinton and Allan, 1996).

3.2.2 Monte Carlo method

The Monte Carlo methods, also called simulation methods or probabilistic methods,

estimate the reliability indices by simulating the actual process and random behaviour of the

system. These methods consider the repair and failure events of generating units, variations in

the load, the dynamics of the hydro power generation units’ reservoirs as well as all different

types of operating policies. Hence, the Monte Carlo methods not only give the probability

indices but also indices of frequency and duration of failures (Billinton and Allan, 1996).

The Monte Carlo method can follow one of the two approaches (Billinton and Allan,

1996):

• Non-Sequential: in this approach, basic intervals of time in the simulation period are

simulated after randomly choosing these intervals. The non-sequential approach is also

known as random.

• Sequential: this examines each basic interval of time of the simulated period in chrono-

logical order.

The choice of which Monte Carlo method approach to use depends on the characteristics

of the system. Commonly, the non-sequential approach is used when the previous state of the

system does not affect its present state. Alternatively, the sequential Monte Carlo method is

preferred when the history of the system affects its present conditions (Billinton and Allan,

1996).

3.2.3 Non-sequential Monte Carlo method

In this method, the system state is randomly sampled regardless of the time interval

period and the past states of the system. The system state is composed of each individual com-

ponent state in the system. The state of the components is sampled from their respective proba-

bility distribution functions. After generating the system state, the test functions are calculated

and the reliability indices are estimated (Rubinstein and Kroese, 2008).

The non-sequential Monte Carlo method may comprises the following steps (Rubinstein

and Kroese, 2008):
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1. Initialize the numbers of samples N = 0;

2. Sample the system state and update N;

3. Calculate the test functions results for each reliability index;

4. Estimate each reliability index as the average of its test functions results calculated in step

3;

5. Calculate the coefficient of variation β . If the confidence degree is acceptable, then stop,

if not, go to step 2.

3.2.4 Sequential Monte Carlo method

In the sequential Monte Carlo method, the state duration of each component is sampled

from their respective state duration probability density function. Similar to the non-sequential

method, the aggregation of all component states forms the system state (Rubinstein and Kroese,

2008).

The generating units of a power system can be represented by a two-state model. In this

model, the generating unit is either in the operating state or in the repair state. The duration

of both states are generally represented by an exponential distribution function (Rubinstein and

Kroese, 2008).

For a sequential Monte Carlo method with a two-state component model and in which

the time intervals are in hours and the maximum number of samples is defined in years, the

simulation can be performed through the following steps (da Silva et al., 2005):

1. Sample the initial system state. Usually, in the initial system state, all components are

operating. Define the maximum number of years, Nmax, and the coefficient of variation,

β . Set Nyear = 0.

2. Initialize the number of hours t = 0 e update the number of years Nyear = Nyear + 1;

3. Update each component state at hour t.

4. Update t;

5. Calculate and accumulate the test function results for each reliability index;

6. Update the reliability indices in a yearly basis;

7. If t = 8760, go to step 8, if not, go to step 4;

8. Update the reliability indices as the average of the yearly indices;
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9. Check if the stop criteria have been reached;

10. If step 9 is false, go to step 2;

11. If step 9 is true, stop the simulation.

Figure 6 shows the steps described above in a flowchart manner.

Figure 6: Sequential Monte Carlo method flowchart

3.3 The electric system

The electric system chosen for this study is a modified version of the IEEE Reliability

Test System 1996 that accounts for the increasing presence of renewable energy in the generat-

ing systems. This modified version was created by (da Silva et al., 2010). The IEEE RTS - 96

is widely used in adequacy studies of electric systems.

It is important to highlight that in this study, the IEEE RTS - 96 is considered a single

bus system.

(da Silva et al., 2010) named this as IEEE RTS - 96HW. It has an annual peak load of

8,550 MW and an installed capacity of 11,391 MW. The generating capacity is comprised by

900 MW of hydropower, 1,526 MW of wind power and 8,965 MW of thermal power units.

Thus, renewable energy amounts for about 21% of the total installed capacity of the system.

Table 6 shows details of the generating units.
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Group Type
Cap.

(MW)
No. of
Units

Merit
order

λ

(occ./y) MTTR (h)

U2 Wind 2.0 763 1 4.56250 80.0

U12 Oil 12.0 15 8 2.97959 60.0

U20 Oil 20.0 12 9 19.46667 50.0

U50 Hydro 50.00 18 10 4.42424 20.00

U76 Coal 76.0 12 5 4.46939 40.0

U100 Oil 100.0 9 7 7.30000 50.0

U155 Coal 155.0 480 4 9.12500 40.0

U197 Oil 197.0 600 6 9.22105 50.0

U350 Coal 350.0 2880 3 7.61739 100.0

U400 Nuclear 400.0 60 2 7.96364 150.0

Table 6: Characteristics of the generating units. Adapted from (da Silva et al., 2010)

In Table 6, λ is the failure rate and MTTR is the mean time to repair.

The merit order shown in Table 6 was based on the production cost. Due to the nature

of its primary resource, the wind power generation has the highest priority in the dispatching.

The hydro units are left at the final position of the list.

In this study, the primary and secondary reserve requirements of the electric system are

set at 85 MW and 315 MW, respectively.

The wind and hydro series and further details of the electric system can be found in

(da Silva et al., 2010).

With respect to the annual peak load, this system is similar in size to the Portuguese

electric system (Nacionais, 2015). Figure 7 illustrates the seasonality of the electric system

load used in this study.

Figure 7: Electric system load profile



21

3.4 Demand side management

When the adequacy of an electric system is jeopardized at any of its levels, i.e, genera-

tion, transmission or distribution, the most traditional solution is to increase generation to meet

the growing demand (Palensky and Dietrich, 2011).

However, Palensky and Dietrich (2011) highlights that grid capacity in electric systems

is a source of concern and increases in generation and demand may cause the grid to reach its ca-

pacity limits soon. Additionally, electric systems face the challenging integration of renewable

energy sources and electric mobility into their grids.

One way to cope with these new challenges is to use the load as an additional degree

of freedom. This method is known as demand side management (DSM) and although it is not

new, the improvements in communication infrastructure make it now possible to implement

new solutions of DSM (Palensky and Dietrich, 2011).

DSM includes a series of actions made at the consumption side of the electric system.

These actions can be changes in consumption patterns over short-term or long-term improve-

ments in energy efficiency and optimizing allocation of power (Palensky and Dietrich, 2011).

Palensky and Dietrich (2011) categorizes DSM into the following:

• Energy Efficiency (EE): EE covers measures that promote permanent energy savings.

Improvements in processes, exchanging inefficient equipment with efficient ones and im-

provements in physical properties, such as changes in building shell, are all considered

EE measures;

• Time of Use (TOU): higher tariffs are applied to peak load periods and costumers rear-

range their processes to minimize costs. TOU does not diminish energy consumption,

instead it shifts consumption to periods of lower tariffs;

• Demand Response (DR): customers respond to a signal from the distribution or transmis-

sion system operator and reduce their power demand;

• Spinning Reserve (SR): SR is seen as primary control, when it acts to stabilize the sys-

tem’s frequency, and secondary control, when it aims to restore the frequency to an ac-

ceptable level. Loads can act as virtual SR if their active power consumption is related to

the grid’s frequency, i.e, when the frequency drops, the demand is automatically reduced.

DR can be further divided into the following types (Han and Piette, 2008):

• Direct load control: the system operator may shut down a load when a system contingency

arises;
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• Interruptible loads: costumers agree to reduce consumption when the system is at risk in

exchange for lower tariffs;

• Emergency demand response: the system operators signalizes the need for load curtail-

ment and costumers can decide whether or not to participate;

• Capacity market: customers commit to provide pre-specified load reduction when the

system is jeopardized;

• Demand bidding: customers negotiate price and load curtailment in advance of a pre-

dicted system unbalance.

EVs can participate effectively in the DSM by offering ancillary services to the grid,

such as load curtailment, change of its charging pattern and spinning reserve through the V2G

technology (Antúnez et al., 2016; Liu et al., 2015).

3.5 Daily travelled distance

de Azevedo (2008) used data from vehicle inspections in Portugal to develop a method

for estimating the national traffic volume. Among other results, de Azevedo (2008) synthesized

the 2004 daily driven distance probability distribution of light-duty vehicles, which is shown in

figure 8.

Figure 8: Daily travelled distance distribution. Adapted from (de Azevedo, 2008).

In this study, it is assumed that the mobility of the light-duty Portuguese vehicles has not

changed since 2004. Furthermore, it is considered that, regardless the level of EV integration in

Portugal, the driving behaviour of the Portuguese population will not change.
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Then, in order to find a probability distribution function that reflects the Portuguese

driving behaviour, the probability distribution curve found by de Azevedo (2008) is here ap-

proximated by a gamma probability distribution function. The MatLab distribution fitting tool

was used to find the parameters of the gamma distribution function. The parameters found were

a scale factor of 17.6404 and a shape factor of 2.2836, which give an average daily travelled

distance of about 40 km.

Figure 9 shows the probability distribution curve used in this study.

Figure 9: Probability density curve for the daily distance travelled by a light-duty vehicle in Portugal.

The probability density function is then used in the methodology explained in section

3.4 for sampling the daily travelled distance by each EV.

3.6 Home arrival and home departure times

The home arrival time for each EV is sampled on a daily basis time. The probability

density functions of the home arrival and home departure times of light-duty vehicles used in

this study are obtained from a national mobility pattern survey conducted by the Portuguese

National Institute of Statistics. Figure 10 shows the probability distribution of the home arrival

and departure time.
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Figure 10: Home arrival time of light-duty vehicles in Portugal. Adapted from (de Estatistica, 2002)

Table 7 gives the probability of each hour interval shown in figure 10. For instance, the

probability of an EV home arrival be between 0:00:00 h and 0:59:59 h is 0.3% and so on.

Hour
Interval

Arrival
(%)

Depart.
(%)

Hour
Interval

Arrival
(%)

Depart.
(%)

Hour
Interval

Arrival
(%)

Depart.
(%)

[0,1) 0.3 0.1 [8,9) 0.6 10.6 [16,17) 4.1 3.6

[1,2) 0.0 0.0 [9,10) 0.9 4.0 [17,18) 10.9 7.2

[2,3) 0.0 0.0 [10,11) 1.6 2.6 [18,19) 18.8 10.0

[3,4) 0.0 0.0 [11,12) 3 2.2 [19,20) 13.9 7.3

[4,5) 0.0 0.1 [12,13) 13.9 7.9 [20,21) 7.6 5.7

[5,6) 0.0 0.5 [13,14) 6.4 8.0 [21,22) 3.7 4.5

[6,7) 0.2 1.3 [14,15) 2.3 5.1 [22,23) 3.8 3.4

[7,8) 0.2 9.2 [15,16) 2.8 3.3 [23,0) 4.9 3.3

Table 7: Probability distribution of home arrival time and departure from home of light-duty vehicles in

Portugal. Adapted from (de Estatistica, 2002)

3.7 Sampling methodology

The methodology used in this study to sample values from the daily travelled distance,

the home arrival and departure time probability distributions follows the steps described below.

1. Sample an abscissa value, x, using the uniformly distributed number generator developed

by Bremermann (2014). For the daily travelled distance, x is in the range [0, 200) and for

the home arrival and the home departure time, that range is [0, 24);

2. Sample an ordinate value, y, from the range [0, 1);

3. Get the probability g(x) from the probability distribution function;
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4. Check if g(x) is equal or less than y;

5. If step 4 is true, define x as the distance travelled by the EV or as the home arrival or

home departure time and go to step 7;

6. If step 4 is false, go back to step 1;

7. End of the sampling process.

3.8 EV modelling

As shown in Table 5, the EV fleet in Portugal will be formed by BEVs and PHEVs.

Moreover, according to PWC (2016), the best selling PHEV and BEV in 2014 in Europe and

the member countries of the European Free Trade Association were the Mitsubishi Outlander

PHEV and the Nissan Leaf, respectively. Thus, a fleet formed by PHEVs similar to the Mit-

subishi Outlander PHEV and BEVs similar to the Nissa Leaf is used in this study.

Thereby, a 12 kWh is assumed for all PHEVs. This choice is based on the battery size

of the 2016 Mitsubishi 2.0 Hybrid GX4hs Automatic (Petrol) (Mitsubishi, 2016). Likewise, the

2016 NISSAN LEAF SV’s 30 kWh battery is used for all BEVs (Nissan, 2016).

All EVs, BEVs and PHEVs, are assumed to have the same overall efficiency of 5

km/kWh, which is based on the average overall efficiencies of 30 kWh BEV models reported

by IEA (2011).

The charging power for all EVs is assumed to be 4 kW, which is the power required

by the charger from the grid (Yilmaz and Krein, 2013). The efficiency of the charger is set at

89.4% (Sears et al., 2014).

The batteries of all EVs are set to have a minimum SOC of 30% and a maximum SOC

of 80%. Moreover, it is assumed that the power required by the battery during a charging event

is constant.

A 759,815 EV fleet is considered in this study, which is the upper limit of the EV inte-

gration in Portugal, as it can be seen in table 5.

From now on, any mention of PHEVs and BEVs will refer to those with the character-

istics described in this subsection.
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3.9 Charging strategies

Four main charging strategies are used in the evaluation of EV integration into power

systems. Each strategy is described below.

• Direct charging strategy: the EV will proceed to recharge disregarding the well-being of

the electric system;

• Valley charging strategy: the EVs are allowed to recharge only during off-peak hours;

• Controlled charging strategy: in this strategy, the utility is able to postpone the recharging

of suitable EVs as means of maintaining the balance between supply and demand. In this

study, it is defined that an EV can have its recharging process postponed if its SOC is

equal or greater than 70%;

• V2G charging strategy: under this strategy, the EV will be able to inject energy back to

the grid when the electric system is at risk. Similar to the controlled charging strategy, an

EV will inject energy back to the grid only if its SOC is equal or greater than 70%.

In this study, the direct, controlled and V2G strategy are used.

It is expected that not all EV owners will be willing to respond to a charging strategy

at all moments and also that not all the households will have the infrastructure necessary to

respond to those strategies, bearing this in mind, it is considered that only 20% of all EVs will

respond to the controlled and V2G charging strategies.

3.10 Recharging criteria

Due to a lack of EV owners’ recharging behaviour data, it is necessary to make assump-

tions about when an EV will start recharging.

In this study, three charging criteria are considered, namely, A, B and C.

In charging criterion A, the EVs will start recharging as soon as they arrive home.

In order to take into consideration the awareness of the EV owners about the fact that

frequent recharging may cause a reduction in the battery’s lifespan, charging criterion B is used.

Under this assumption, the EV owner will start recharging their EV when it arrives home only

if the present SOC is below 50%.

Furthermore, still bearing in mind the EV owner’s awareness of the battery lifespan’s

reduction due to constant recharging and adding to it that the EV owner may only recharge
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their EV enough to make the next day trip, recharging criterion C is considered. Under this

assumption, the EV owner will start recharging their EV when it arrives home only if the present

SOC is below the SOC necessary to make next day trip.

3.11 EV indices

To represent the EV behaviour, it is assumed that a EV could be in one of the three

states: (1) discharging state, (2) charging state and (3) connected state. In state (1), the BEV

is on the road and its battery pack is being depleted. In states (2) and (3), the EV is connected

to the grid at home, but the EV is charging only when it is in state (2). In state (3), the EV is

connected to the grid but it does not exchange energy with the grid.

The indices used in this study are the following:

• Ncharging index: gives the percentage of EVs in state (2) per hour in a period of 24 h as

well as the standard deviation for each hour. The average number of EVs charging in hour

h is given by Equation 8.

NEV s,charg(h) =
100

NEV s

1
Ndays

Ndays−1

∑
n=0

Ncharg(h+n24) (8)

where Ndays is equal to Nyears365, Ncharg(h+n24) is the number of EVs charging in hour

h and NEV s is the number of EVs of the type under analysis. The standard deviation is

then given by Equation 10.

A =
1

Ndays−1

Ndays−1

∑
n=0

(NEV s,charg(h)−Ncharg(h+n24))2 (9)

NstdEV s,charg(h) =
100

NEV s

√
A (10)

• Nconnected index: similar to the previous index, it gives the percentage and standard de-

viation of EVs in state (3) for each hour of a 24 h period. This index is calculated in an

identical manner to the calculation of the previous index;

• Nsoc index: the EVs in state (2) are divided in 20 groups according to their SOC. For

example, the first group is comprised by the EVs in state (2) that have SOC equal or

greater than 0% and are charging at a given hour. Likewise, the second group is formed

by the EVs in state (2) that have SOC equal or greater than 5%. The subsequent groups
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have a minimum SOC that increases by 5%. The mean number of EVs in each group is

given for each hour of a 24 h period along with the standard deviation of the mean.

Equation 11 shows how the mean number of EVs charging during hour h that have a

present SOC equal or greater than S is calculated.

NsocEV s[h,S] =
100

NEV s

1
Ndays

Ndays−1

∑
n=0

Nsoccharg[h+n24,S] (11)

when Ncharg[h+n24,S] is the number of EVs charging during hour h that have a present

SOC equal or greater than S. Equation 13 gives the standard deviation of NEV s[h,S].

V =
1

Ndays−1

Ndays−1

∑
n=0

(NsocEV s,charg[h,S]−Nsoccharg[h,S])2 (12)

Nsoc,stdEV s,charg[h,S] =
100

NEV s

√
V (13)

It is important to highlight that the indices created for this study are all given as percent-

age of the total number of the EV type under analysis. For example, say that Ncharging gives the

average percentage of a given BEV type charging during hour h as NEV s,charg(h) and the stan-

dard deviation for the same hour and EV type as NstdEV s,charg(h). Thus, the average number of

those BEVs charging during hour h is given by Equation 14 and the standard deviation is given

by Equation 15.

BEV scharg,avg =
1

100
NEV s,charg(h)NBEV (14)

BEV scharg,std =
1

100
NstdEV s,charg(h)NBEV (15)

In both Equations, 14 and 15, NBEV is the total number of the BEVs used in the analysis.

3.12 EV simulation

All simulations performed for this study were carried on a computer with the following

specifications:

• Computer: HP ENVY m6;
• Operating system: Windows 10 Home;
• Processor: AMD A10-5750M APU with Radeon(tm) HD Graphics 2.50 GHz;
• Installed memory (RAM): 8.00 GB (7.46 GB usable);
• System type: 64-bit Operating System, x64-based processor.
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The programming language chosen was Java and the platform used was Eclipse IDE,

version Mars, release 4.5.0.

The methodology used for generating the indices described in Subsection 3.11 under

charging criterion A is shown in Figure 11 for a single EV.

Figure 11: Flowchart of the EV simulation under charging criterion A

If the methodology shown in Figure 11 were to be applied to a few hundred thousands

of EVs it would require an enormous amount of memory and take a considerable time to be

executed. Hence, it is necessary to generate EV indices to reduce the computing effort needed

to simulate the actual adequacy model of the EV integration into the electric system. These

indices are generated separately for each charging criterion.

As presented in Figure 11, the EV indices are accumulated during every hour of the

simulated years. When year y reaches ymax + 1, the averages and their standard deviations are

finally calculated.

The EV simulation is performed in a chronological fashion. The initial charging time,

i.e., home arrival time, happens always after the previous home departure time. Similarly, the

home departure time always happens after the last hour that the EV is seen in states (2) or (3).

The stop criterion Md used to determine the number of years necessary in the EV simu-

lation is here the maximum deviation from the average. Md is defined as the difference between

the present average number of EVs charging during hour h and the previous average number of

EVs charging during the same hour. This is possible because this average is calculated at the

end of every simulated year.



30

Md is calculated through Equations 16 and 17.

dev(h) = 100
NEV s,charg(h)y−NEV s,charg(h)y−1

NEV s,charg(h)y
(16)

where NEV s,charg(h)y is the average number of EVs charging in hour h over y years and NEV s,charg(h)y−1

is the same average for y−1 years. h varies from 0 to 23 and dev(h) is the deviation for hour h.

Md is the maximum deviation, i.e., the maximum value of the vector dev.

Md = max([dev(h) : h = 0,1,2, ...,23]) (17)

The stop criterion for Md is set at 1% and the maximum number of years for this criterion

be met is set at 10 years.

In this study, the indices described in Subsection 3.11 are generated using a fleet com-

posed by 4,800 BEVs and 5,200 PHEVs. The characteristics of these two EV types are given

in Subsection 3.8.

It is reasonable to assume that the energy demand of the BEVs and the PHEVs are in-

dependent variables. Thus, the EV indices are firstly calculated for the BEVs and subsequently

for the PHEVs.

Figure 12 presents the indices Ncharging and Nconnected for the BEVs and PHEVs under

charging criterion A.

Figure 12: Percentage of BEVs and PHEVs in states (2) and (3) under charging criterion A for a 24 h

period.

The indices can be used because the number of EVs charging during a given hour h

can be approximated by a normal distribution, as Figure 13 shows for a 4,800 BEV fleet under

charging criterion A and h = 19. The normal distribution in this figure has a mean of 1,454.86

and a variance of 2,133.44.
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Figure 13: Distribution of the number of BEVs charging during hour 19 h under charging criterion A.

It is logical to assume that the number of EVs charging and connected will follow a

normal distribution regardless the number or type of EVs, the hour or charging criterion chosen.

In order to evaluate the efficiency of using EV indices, a 10,000 EVs fleet and a 100,000

EVs fleet both composed by 48% BEVs and 52% PHEVs are used to estimate the EV demand

under charging criterion A for both the methodology shown in Figure 11, traditional methodol-

ogy, and using EV indices, proposed methodology. Tables 8 and 9 show these results.

Prop. Trad. Differences (%)

(h) Mean (kW) STD (kW) Mean (kW) STD (kW) Di fmean Di fST D

0 1642.7 135.6 1643.9 192.4 0.1 29.5

1 513.5 78.0 510.5 102.3 0.6 23.8

2 196.8 48.9 197.1 53.5 0.2 8.5

3 48.8 22.6 47.5 27.4 2.6 17.5

4 3.9 2.8 3.0 4.6 29.4 38.0

5 2.4 2.0 2.3 3.0 7.4 35.1

6 71.9 7.9 72.0 17.2 0.2 54.1

7 137.0 11.1 137.5 23.8 0.4 53.4

8 302.3 17.4 302.5 36.1 0.0 51.8

9 546.8 23.9 546.0 49.3 0.1 51.6

10 936.1 33.2 934.5 66.2 0.2 49.8

11 1703.9 51.5 1702.2 94.1 0.1 45.3

12 6,131.8 133.6 6,132.2 212.1 0.0 37.0

13 6,913.9 147.7 6,918.5 231.6 0.1 36.2

14 4,213.5 98.7 4,218.4 160.2 0.1 38.4

15 2,954.1 82.7 2,955.1 128.7 0.0 35.7

16 3,006.8 83.0 3,008.5 130.0 0.1 36.1

17 5,397.6 116.8 5,400.5 187.8 0.1 37.8

18 9,878.7 215.5 9,874.2 315.2 0.0 31.6

19 10,682.8 242.4 10,677.3 356.9 0.1 32.1

20 7,877.0 200.4 7,874.8 298.7 0.0 32.9

21 4,774.0 164.5 4,775.1 231.9 0.0 29.1

22 3,176.7 140.3 3,180.8 187.2 0.1 25.1

23 2,923.6 115.4 2,925.6 168.6 0.1 31.6

Table 8: Estimate of a 10,000 EV fleet demand under charging criterion A by the proposed and

traditional methodologies
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Prop. Trad. Differences (%)

(h) Mean (kW) STD (kW) Mean (kW) STD (kW) Di fmean Di fST D

0 16,422.3 1,308.1 16,433.2 1,764.5 0.1 25.9

1 5,129.0 763.4 5,104.4 932.5 0.5 18.1

2 1,969.1 467.5 1,972.3 460.6 0.2 1.5

3 485.2 223.3 474.4 238.8 2.3 6.5

4 39.1 24.1 30.3 31.9 29.1 24.5

5 22.7 4.7 22.8 9.8 0.3 52.1

6 718.6 38.1 720.3 61.2 0.2 37.7

7 1,370.9 57.7 1,372.8 91.1 0.1 36.6

8 3,021.4 98.3 3,020.6 147.9 0.0 33.5

9 5,460.9 147.9 5,458.2 223.1 0.0 33.7

10 9,344.7 232.2 9,346.2 334.0 0.0 30.5

11 17,021.3 400.4 17,022.8 545.8 0.0 26.6

12 61,323.0 1,243.9 61,322.8 1,632.1 0.0 23.8

13 69,163.0 1,369.7 69,182.1 1,823.3 0.0 24.9

14 42,188.6 860.2 42,185.5 1,118.1 0.0 23.1

15 29,552.9 715.9 29,554.0 836.4 0.0 14.4

16 30,081.6 710.9 30,084.0 821.2 0.0 13.4

17 54,001.4 1,029.4 54,008.0 1,358.9 0.0 24.3

18 98,732.3 2,020.1 98,757.4 2,690.5 0.0 24.9

19 106,801.7 2,345.6 106,792.6 3,155.4 0.0 25.7

20 78,791.0 1,925.7 78,764.8 2,590.9 0.0 25.7

21 47,776.3 1,595.3 47,757.4 1,982.8 0.0 19.5

22 31,822.8 1,337.1 31,798.5 1,593.6 0.1 16.1

23 29,243.7 1,067.5 29,245.1 1,374.4 0.0 22.3

Table 9: Estimate of a 100,000 EV fleet demand under charging criterion A by the proposed and

traditional methodologies

The differences given in Tables 9 and 8 are calculated trough Equation 18

D f (h) = 100
Pn(h)−Po(h)

Po(h)
(18)

where Po(h) is the demand in h calculated through the steps shown in Figure 11 and Pn(h) is the

demand calculated using the EV indices.

It can be seen that the mean values of demand are practically not changed by the used

of the proposed methodology. However, there is an average difference of about 30% between

the standard deviation. This reduction in the standard deviation by the usage of the proposed

methodology decreases the variability of the number of EVs charging, which, by consequence,

may cause the adequacy simulation to fail to include extreme cases of EVs charging. Never-

theless, it is considered that this reduction in the standard deviation can be neglected in this

study.

The main advantage of using the proposed methodology is the great reduction in com-

puting time. Table 10 presents the average simulation time per simulated year for the proposed

methodology and the traditional one. The results are given for EV fleets of 10,000, 25,000,

50,000, 75,000 and 100,000 EVs. The averages for the traditional approach were calculated
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after simulating 100 years and for the proposed methodology the number of years was set at

103 years.

EVs (103) Trad. (sec./year) Prop. (sec./year)

10 12.14031 0.017336538

25 33.08854 0.015961538

50 60.91901 0.01775

75 90.1958 0.017759615

100 120.86944 0.01661165

Table 10: Estimate of a 100,000 EV fleet demand under charging criterion A by the proposed and

traditional methodologies

A linear dependence of the simulation time per year on the number of EVs can be seen

for the traditional approach. Based on the data given in Table 10, this linear dependence can be

expressed by Equation 19.

Stime = 1.1916∗NEV s +1.4805 (19)

where NEV s is the number of EVs in thousands.

Using Equation 19 to estimate the average simulation time of a 759,186 EV fleet returns

about 905 seconds per simulated year, which makes the usage of the traditional methodology

impractical for purposes of adequacy assessment.

On the other hand, the estimate of the EV demand through EV indices is independent

of the number of EVs because only the percentage of EVs charging is sampled during each

simulated hour.

Nevertheless, the EV indices used in this study were generated using an EV fleet of

10,000. Which means that the estimate of, for instance, the 759,186 EV fleet was made based

on the mobility and charging patterns of a 10,000 EV fleet. This is justified by the fact that the

recharging events of an EV during any given time depends only on the daily driven distance

distribution, the home arrival and departure times and the characteristics of the EV itself. Table

11 shows the demand of a 100,000 EV fleet based on EV indices generated by a 100,000 EV

fleet and the demand of the same 100,000 EV fleet based on indices of a 10,000 EV fleet.
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Based on a 100,000 EV fleet Based on a 10,000 EV fleet Differences (%)

(h) Mean (kW) STD (kW) Mean (kW) STD (kW) Dmean DST D

0 16,422.3 1,308.1 16,426.7 1,356.1 0 4

1 5,129.0 763.4 5,134.6 780.2 0 2

2 1,969.1 467.5 1,967.9 489.1 0 5

3 485.2 223.3 487.8 226.0 1 1

4 39.1 24.1 39.5 24.7 1 3

5 22.7 4.7 23.6 11.1 4 136

6 718.6 38.1 718.6 77.1 0 102

7 1,370.9 57.7 1,369.6 109.7 0 90

8 3,021.4 98.3 3,023.3 173.3 0 76

9 5,460.9 147.9 5,467.8 238.3 0 61

10 9,344.7 232.2 9,361.3 331.7 0 43

11 17,021.3 400.4 17,039.4 514.1 0 28

12 61,323.0 1,243.9 61,317.9 1,336.2 0 7

13 69,163.0 1,369.7 69,139.0 1,476.7 0 8

14 42,188.6 860.2 42,135.0 986.7 0 15

15 29,552.9 715.9 29,540.8 827.0 0 16

16 30,081.6 710.9 30,067.6 830.3 0 17

17 54,001.4 1,029.4 53,976.6 1,167.6 0 13

18 98,732.3 2,020.1 98,786.6 2,154.8 0 7

19 106,801.7 2,345.6 106,828.0 2,423.7 0 3

20 78,791.0 1,925.7 78,770.4 2,003.9 0 4

21 47,776.3 1,595.3 47,740.5 1,645.4 0 3

22 31,822.8 1,337.1 31,766.8 1,402.8 0 5

23 29,243.7 1,067.5 29,236.1 1,153.5 0 8

Table 11: Comparison of the EV demand of a 100,000 EV fleet based on EV indices generated by

different EV fleets

Once the indices have been generated, the EV integration into the electric system can be

evaluated efficiently.

3.13 Adequacy evaluation

The adequacy evaluation was performed using a tool developed by Bremermann (2014).

The EV demand is sampled at the beginning of the simulated year. For doing so, firstly

the number of EVs charging during hour h8760 is sampled through Equations 20 and 21.

h = h8760−24
(

max
[

n ∈ Z | n≤ h8760

24

])
(20)

EV scharging(h8760) = max
[

n ∈ Z | n ≤ NEV s

100
[
u∗NstdEV s,charg(h)+NEV s,charg(h)

]]
(21)

where u is a pseudo-random number that follows a normal distribution generated by the Box-

Muller transform implemented by Bremermann (2014).

With the number of EVs charging, it is possible to calculate the EV demand using Equa-

tion 22.

DemandEV (h8760) = EV scharging(h8760)∗PEV (22)

where PEV is the charging power, 4 kW.
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Once the EV demand is estimated, it is integrated to the conventional load profile. Then,

the generating system capacity is sampled and the electric system state is evaluated on a hourly

basis. Further information on the methodology used for generating the power system states and

on the adequacy analysis can be found in (Bremermann, 2014).

4 RESULTS AND DISCUSSION

This section presents the results of the static and operating reserve evaluations in the

analysis of a 759,815 EV fleet impact on the adequacy of the generating system described in

Subsection 3.3. The characteristics of the EVs are given in Subsection 3.8, whereas the charging

criteria and the charging strategies are given in 3.10 and 3.9, respectively.

Figure 14 presents the load profile of the 759,815 EV fleet.

Figure 14: Load profile of the 759,815 EV fleet under different charging criteria.

The EV load profile matches the common drivers’ behaviour, which is to arrive home

around mid-day and early in the evening. The later is a source of concern for utilities and system

operators because this behaviour can greatly increase the daily peak load.

Based on data from Figure 14, the daily energy consumption of the EV fleet under each

charging criterion is given in Table 12.

Charging criterion MWh/day

A 5,621

B 4,765

C 5,001

Table 12: EV fleet’s daily energy consumption under each charging criterion

The impact of the direct charging strategy with charging criterion A on the load profile

of a typical day is given by Figure 15.
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Figure 15: Impact of EV integration on the load profile of a typical day.

The load profile of a typical day sees a significant increase in the load during peak hours.

However, the load in valley hours does not suffer a considerable change with respect to the load

shape.

According to Pfeifenberger and Carden (2013), system operators commonly use the

standard value of 2.4 h/year for the LOLE index when assessing the generating capacity of

power systems. In addition to this standard LOLE, a base scenario (BS) with no EVs is used to

compare the results obtained.

In order to ease the understanding, the following abbreviations will be used:

• DC&A: Direct Charging strategy takes place with charging criterion A

• DC&B: DC and charging criterion B

• DC&C: DC and charging criterion C

The results for the 759,815 EV fleet under the direct charging strategy and each charging

criterion, along with the base scenario, are shown in Table 13.
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Direct charging strategy

Static reserve evaluation Operating reserve evaluation

BS A B C BS A B C

Peak load (MW) 8,550 9,302 9,136 9,190 8,551 9,304 9,136 9,191

EV peak load (MW) 0 812 652 700 0 812 653 701

Peak load var. (%) - 8.80 6.9 7.5 - 8.8 6.8 7.5

Mean load var. (%) - 4.1 3.5 3.7 - 4.1 3.5 3.7

LOLE (h/year) 0.32 3.33 2.03 2.29 1.02 5.78 3.74 4.46

EPNS (MW) 0.01 0.09 0.05 0.06 0.03 0.24 0.14 0.17

EENS (MWh/year) 57.90 812.60 454.90 518.90 293.8 2,067.90 1,230.00 1,526.60

LOLF (occ./year) 0.12 1.90 1.08 1.25 0.41 2.97 1.84 2.22

LOLD (h/occ.) 2.74 1.76 1.88 1.82 2.49 1.95 2.04 2.01

Table 13: Static and operating reserve adequacy indices for the direct charging strategy under different

charging criteria

The static reserve evaluation shows an increase of 8.8% in the peak load when DC&A

is applied. However, if DC&B and DC&C are used, this increase is reduced to 6.9% and 7.5%,

respectively. Similarly, when DC&A takes place, the mean increase in the system load is equal

to 4.1%.

Moreover, the LOLE index is above the 2.4 h/year standard for DC&A and DC&C.

As it can be seen in Table 6, the wind units are at the first position of the dispatching

list. Hence, the dispatch of generating units at all times must cope not only with variations in

load forecast and outage of units but also with the uncertainty inherent to wind resource. At

the operating stage, this uncertainties are dealt with by primary, secondary and tertiary reserves.

Nevertheless, the static reserve evaluation fails to consider these reserve requirements. The

importance of bearing in mind these operating contingencies when evaluating the adequacy of

a generating system can be easily seen in the operating reserve analysis in Table 13.

The operating reserve evaluation shows a considerable growth in all risk indices when

compared to the static reserve evaluation, except for the LOLD index. This reflects the im-

portance of taking into consideration the operating policies and requirements of the electric

system.

Since the short and long-term uncertainties of the load are set to 0, it was expected

that the impact of EV integration on the load profile would be the same regardless if static or
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operating reserve evaluation were used.

The results demonstrate a significantly lower impact on the adequacy of the generating

system when charging criterion B is applied. This can be explained by the more restrictive

nature of the charging criterion B when compare to A and C. Given the average daily driven

distance of 40 km, the BEV consumes on average 27% of its battery capacity whereas for the

PHEV this number is 67%. Thus, on average, the PHEV uses its entire SOC range available, i.e.,

SOC between the 30% minimum and the 80% maximum. Therefore, under charging criterion

C, the BEVs will recharge, on average, only when their SOC is below 57% and the PHEVs will

recharge as soon as they arrive home. On the other hand, under charging criterion B, both BEVs

and PHEVs will recharge only if their SOC is below 50%. Hence, under charging criterion B, a

charging event is less likely to happen.

The impact of EV integration on the adequacy of generating systems can be greatly

reduced if EVs are regarded as capable of offering ancillary services to the grid. One of the

most promising EV technologies is the V2G. However, the V2G has still to overcome a series

of barriers. On the customers’ side, V2G requires a bidirectional charger and relies on the

willingness of the EV owner to provide ancillary services. On the utilities’ end, there is the

uncertainty of how much spinning reserve the V2G technology can account for and what will

be its effect on the electric system security. Moreover, it is well established amongst researchers

that the figure of an aggregator will be necessary to manage the ancillary services provided by

EVs (Antúnez et al., 2016; Bremermann, 2014; Liu et al., 2015).

In other to account for the limiting factors in the spread of V2G technology, it is as-

sumed that only 20% of the 759,815 EV fleet will be able to participate in the this strategy.

Additionally, an EV will only send energy back to the grid and it is in state (3), i.e., connected

to the grid, or when it is in state (2) with present SOC equal or greater than 70%. The power

provided by each EV is considered to be 4 kW. This assumptions are applied for both BEVs and

PHEVs.

In addition to the V2G technology, another option to reduce the impact of EV integration

on power systems is the controlled charging strategy. In this strategy, the EV has its recharging

postponed when there is no enough generating capacity available to meet the demand. In order

to compare the controlled charging strategy to the V2G, it is assumed that only 20% of all EVs

will participate in this strategy and that the recharging will only be postponed if the EV’s present

SOC is equal or greater than 70%.
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The results for the static and operating reserve evaluations are given in Table 14 for the

DC&A scenario under the V2G and the controlled charging strategies.

Static reserve Operating reserve

V2G CC V2G CC

LOLE (h/year) 0.816728 2.56 2.64 5.71

EPNS (MW) 0.02 0.06 0.08 0.23

EENS (MWh/year) 177.5 562.6 673.6 1,990.1

LOLF (occ./year) 0.55 1.57 1.49 2.93

LOLD (h/occ.) 1.48 1.62 1.77 1.95

Table 14: Adequacy indices in the scenario of V2G and controlled charging (CC) implementations

It is promptly seen that, even if a small fraction of EVs participates in the V2G strategy,

the impact of large-scale EV integration into the power system can be greatly reduced. The

average energy provided by the V2G to the grid can be obtained by comparing EENS of Table

14 to that of Table 13. In the static reserve evaluation, the EVs sent back to the grid, on average,

635.1 MWh/year. In the operating reserve evaluation that number was 1,394.3 MWh/year. The

LOLE index was also greatly reduced by the V2G implementation. In the static reserve analysis,

this reduction was almost 75% whereas for the operating reserve it was more than 44%.

Despite the benefits of the V2G strategy, its availability is dependent on mobility and

charging patterns. Therefore, the system operator must carefully account for this variability

when dispatching the V2G as an additional spinning reserve.

The hourly V2G reserve follows a normal distribution and, for the reasons previously

mentioned, the system operator cannot rely on the average V2G reserve. As an alternative, the

operator can use the lower limit of a confidence interval of the V2G reserve as an additional

spinning reserve. Figure 16 shows the average V2G reserve along with its lower limit of a 95%

confidence interval in a 24 h period.
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Figure 16: Impact of EV integration on the load profile of a typical day.

However, when the controlled charging strategy is applied to only 20% of the EV fleet,

the impact of EV integration is slightly reduced. The LOLE index for the DC&A scenario

under the direct charging strategy is reduced from 3.33 h/year to 2.56 h/year in the static reserve

analysis, and from 5.78 h/year to 5.71 h/year in the operating reserve analysis. Similarly, the

EENS index is reduced from 812.60 MWh/year to 562.6 MWh/year in the static reserve analysis

and from 2,067.90 MWh/year to 1,990.1 MWh/year in the operating reserve analysis. This

result shows that, in order to this technology to be effective, it needs massive participation of

EV owners.

The usage of the sequential Monte Carlo simulation approach for solving generating

system adequacy problems generally requires great computational effort and takes significant

computing time. The addition of large-scale EV integration to the adequacy problem increases

this burden. And, therefore, the EV integration requires a model that can reduce its computa-

tional effort requirements. Table 15 shows an estimate of the computing time that the traditional

EV modeling approach would require to calculate the results given in Table 13.

Direct charging strategy

Static reserve evaluation Operating reserve evaluation

BS A B C BS A B C
Number of

simulated years 30,671 3,999 5,324 4,671 13,912 2,385 3,243 2,940
Computing time

of prop. method (min.) 193.3 25.85 35.08 29.25 348.62 75.08 85.13 75.58
Computing time

of trad. method (min.) 193.3 60,344.1 80,338.75 70,483.5 348.62 36,048.83 49,000.38 44,420.58

Table 15: Comparison of the computing time required by the traditional method and the proposed one
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From table 15 it is also interesting to note that there is a sensitive decrease in the required

number of simulated years when large-scale EV integration takes place. This can be explained

by the reduction in the variability of the electric system states.

Due to the data used in this study, the EV demand tends to vary only during a day period.

Moreover, Table 11 shows that the EV demand in a given hour does not vary significantly from

one day to another. From Figure 14, it can also be seen that the 759,815 EV fleet represents a

considerable load to the electric system. Therefore, the EV is a threatening load that has low

variability.

Moreover, when V2G is not an option, the EV can only be a load to the electric system.

Consequently, there is an increase in the number of possible failure states in any given hour and

a decrease in the number of possible success states due to the additional EV load. As a result,

the variance of the electric system state is reduced and the convergence of the adequacy indices

happens more quickly.

On the other hand, when the EV can also send energy back to the grid, there is an

growth in the variance of the electric system state and the computing time necessary to reach

convergence increases. For instance, the results shown in Table 14 took 9,920 simulated years

and 3,875 seconds to converge in the static reserve evaluation and 4,899 simulated years and

7,407 seconds in the operating reserve evaluation under the V2G strategy.

5 CONCLUSION

The methodology developed in this study for the evaluation of the impact of large-scale

EV integration on the adequacy of generating systems shows satisfactory results with respect to

both the computing performance and the expected results for the adequacy indices. It is shown

that the proposed methodology reaches the same results as the traditional method, with losses

only in the variance of the EV demand.

Furthermore, the results show that the criterion chosen by the EV owners to decide

whether or not to recharge their EVs will have great importance in the impact of EV integration

on power systems. Although is extremely unlikely that all EV owners will follow the same

single criterion, the results of this study can be seen as ideal scenarios for the lower and upper

limits of the EV impact on generating systems.

It is also shown that the V2G strategy can bring considerable benefits to the adequacy

of generating systems even if only a small portion of the EV fleet is able to participate in the
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the strategy. This is due to the fact that, in the V2G strategy, the EVs are able to act as micro-

generators, contributing to the grid when an unbalance between load and generation arises.

On the other hand, when the controlled charging strategy is applied to only a fraction of

the EV fleet, in this case, 20%, its benefits are far behind those of the V2G strategy. However,

this is expected since the EV is regarded as just an interruptible load in the controlled charging

strategy.

Additionally, the static and operating reserve evaluations are used to analyse each EV

integration scenario and the importance of taking into consideration the operating parameters

of the generating system is highlighted.
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MODELO PARA AVALIAÇÃO DO IMPACTO DA INTEGRAÇÃO DE VEÍCULOS

ELÉTRICOS EM SISTEMAS DE GERAÇÃO

RESUMO

Recentemente, a integração de veículos elétricos em sistemas de potência tem ganhado atenção

substancial da academia e de empresas do setor elétrico principalmente por causa dos serviços

auxiliares que essa tecnologia pode oferecer aos sistemas de potência. Ainda, a presença cres-

cente de fontes renováveis nos sistemas de potência trouxe uma incerteza adicional à previsão

de capacidade de geração disponível. Por isso, esse estudo tem como objetivo desenvolver um

modelo de veículos elétricos para a avaliação do impacto da integração em larga escala de veícu-

los elétricos na adequação de sistemas de geração. Para incluir a crescente presença de energia

eólica, o método proposto é usado para avaliar o impacto da integração de veículos elétricos em

uma versão modificada do sistema elétrico IEEE RTS-96. Os resultados mostram que o impacto

da integração em larga escala de VEs na adequação de sistemas de geração depende do critério

usado pelos proprietários dos VEs no momento de decidir por carregar ou não seus VEs. Ainda,

é mostrado que o impacto dos VEs pode ser reduzido e até mesmo ser positivo, se os VEs são

considerados provedores de serviços auxiliares à rede.

Palavras-chave: Adequação. Veículo elétrico. Sistema de geração. Sistemas de potência.
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