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In this paper molecular dynamics simulations of a system of Brownian particles in an explicit 
bath of solvent particles are considered. Generalized algorithms (Langevin simulations), in 
which both the Brownian particles and the solvent particles are artificially coupled to a heat 
bath, are analyzed for their dynamical properties on long length scales. Although such a 
dynamic is clearly unphysical, its analysis is useful for two reasons: The Langevin algorithm is 
frequently applied in an ad hoc fashion, and the deviation of its dynamical properties from the 
physical Hamiltonian case can be made arbitrarily small by choosing a sufficiently weak 
coupling to the heat bath. By a direct application of the Mori-Zwanzig projection operator 
formalism it is shown that the violation of global momentum conservation results in an artificial 
screening of the hydrodynamic interactions, with a screening length proportional to the inverse 
square root of the friction constant of the algorithm. The result is formally similar to expressions 
given in phenomenological theories of hydrodynamic screening in semidilute polymer solutions. 

I. INTRODUCTION 

Molecular dynamics (MD) simulations nowadays are 
a powerful tool for analyzing the properties of classical 
statistical mechanical systems. The approach is, in princi­
ple, very attractive: Simply solving Newton's equations of 
motion numerically provides us, per definition, both with 
correct static averages in the microcanonic ensemble,. as 
well as with correct dynamical correlation functions (pro­
vided that the system has sufficient ergodicity properties). 

However, there has been a growing trend in the com­
munity to modify the equations of motion, e.g., by cou­
pling the system to an additional degree of freedom, 1,2 or to 
a heat bath by means of a Langevin type of simulation.3- 7 

This is usually done in order to run the simulation in a 
different thermodynamic ensemble, which may be more 
suitable for the system in consideration. Sometimes, how­
ever, one is simply forced to introduce such modifications 
to overcome the inherent instability of microcanonical MD 
algorithms, which is due to the discretization errors in­
duced by the finite time step. This problem is particularly 
severe for systems with long relaxation times that require 
long runs, and was practically encountered by the author 
in the context of a MD simulation of a long polymer chain 
in a solvent.8 The results of this simulation will be pre­
sented in a subsequent publication.8 

A modification of Newton's equations usually poses no 
problem as far as static properties are concerned: As soon 
as the algorithm generates a well-defined thermodynamic 
ensemble, one can rely on the equivalence of ensembles in 
the thermodynamic limit of infinite system size. However, 
the dynamical properties of the system may be changed 
drastically-which means no less than giving up one ad­
vantage of the MD method as compared to Monte Carlo 
simulations. 

a)Present address: Center for Simulational Physics, Department of Phys­
ics and Astronomy, The University of Georgia, Athens, Georgia 30602. 

The purpose of this paper is to demonstrate how trans­
port theory can be used to estimate the influence of mod­
ifications of algorithms on the dynamical correlation func­
tions. While the approach is, in principle, rather general, 
attention will be focused on the hydrodynamic interaction 
of Brownian particles immersed in a system of solvent par­
ticles, the latter being taken into account explicitly in the 
simulation. We compare a strictly microcanonical MD 
with a standard Langevin simulation, where each particle 
(Brownian particle and solvent particle) is artificially cou­
pled to friction and noise independently. It should be em­
phasized that we take an "algorithmic" standpoint of view: 
We do not ask about a physical origin of the friction and 
noise of the algorithm, but rather view it as introduced by 
the programmer in an ad hoc fashion, as has been common 
practice in many studies. Such a dynamic is obviously un­
physical, but since the correct Hamiltonian dynamics is 
recovered in the limit of vanishing friction constant (see 
below), it is interesting to quantitatively study the devia­
tions from the correct behavior for small friction constants. 
However, it should be noticed that a choice of too small a 
friction constant results in a loss of those properties for 
which the heat bath was originally introduced: The stabi­
lization effect takes place on too long a.. time scale, and the 
system thermalizes too slowly. 

The important point is that one does not only have to 
discuss these modificatipns on a local scale (i.e., in prac­
tice, ask for the shift in the particle friction coefficient due 
to algorithmic noise), but also on the global hydrodynamic 
scale, where the effects are much more crucial: The algo­
rithmic noise introduces an unphysical violation of global 
momentum conservation, resulting in a modification of the 
Navier-Stokes equation and its Green's function, the 
Oseen tensor . 

.. _ Ip Sec. II, the standard Mori-Zwan~ig projection op­
erator formalism9-

11 is straightforwardly generalized to the 
case of stochastic dynamics. The formula derived there is 
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then used in Sec. III to calculate the autocorrelation func­
tion of the transversal part of the velocity flow field, as is 
usually done to derive the linearized incompressible 
Navier-Stokes equation. This finally yields an expression 
for the hydrodynamic interaction tensor, following the ap­
proach given in the book by de Gennes. 12 It turns out that 
the Langevin noise changes the lIr Oseen behavior to a 
screened Yukawa-like interaction with a screening length, 

1- r:;J. 
-~f,i' (1) 

where 1] is the shear viscosity, n is the particle number 
density, and S is the friction constant by which every par­
ticle is coupled to the heat bath. This result is formally very 
similar to analogous expressions derived in phenomenolog­
ical theories for the hydrodynamic screening of semidilute 
polymer solutions. 13 The practical consequence (Sec. IV, 
conclusions) is that modified MD algorithms must be used 
with great care when data are interpreted to analyze dynam­
ical properties of the system. In particular, dramatic effects 
are always to be expected if hydrodynamic effects are im­
portant and the algorithm changes global conservation 
laws. 

II. THE MORI-ZWANZIG PROJECTION OPERATOR 
FORMALISM 

The approach and notation of this section is rather 
close to that of Ref. 9. 

We assume that the stochastic dynamics of the simu­
lation is described by a Langeviri equation, or, equiva­
lently, by a Fokker-Planck process14 on a state space with 
state variables x. The equation of motion, in the Fokker­
Planck picture, then reads as 

a 
at P(x,tl Xo,O) = -i.!£' (x)P(x,tl Xo,O), (2) 

where P(x,tl Xo,O) is the conditional probability density for 
a transition from Xo at time ° to x at time t, and -i.!£' is 
the dynamical operator, 

aa a 
-i.!£'=- L -D}l)(x)+ L ---D?)(x), (3) 

i aXi ij aXi aXj } 

.. n(l) is the drift coefficient vector resulting from the deter­
ministic part, while 0(2) describes the stochastic part. Note 
that the case of deterministic dynamics (e.g., microcanon­
ical MD) is included as the special case 0(2)=0. The sim­
ple probability density p(x,t) for the occurrence of state x 
at time t satisfies the same equation of motion, 

a at p(x,t) = -i.!£' (x) p(x,t), 

whic~, in equilibrium, is 

-i.!£' p=O. 

(4) 

(5) 

A molecular dynamics simulation that couples all par­
ticles of mass m to a viscous background by a friction 
constant S is specified by the operator 

-i.!£' = -i.Y H-i.!£' N, 

with 

and 

(6) 

(7) 

-i.!£' N= L (!...- . I Pi+SkBT!...- • !...-), (8) 
i api m api api 

acting on the phase space of positions ri and momenta Pi. 
.!£' H describes the Hamiltonian part of the dynamics, Fi 
being the force acting on particle i, while .!£' N is the noise 
partthat fixes the temperature T-the equilibrium distri­
bution function is just the canonical one: 

p=Z-l exp( -{3fft") , (9) 

where Z is the partition function, {3= lIkBT, and fft" is the 
Hamiltonian. Strictly deterministic dynamics is recovered 
in the case S=O. 

The Mori-Zwanzig formalism is a convenient method 
to derive dynamical equations for the eqUilibrium time cor­
telation functioI!s of slowly fluctuating dynamical vari­
ables, which we shall denote with Aix) (functions on the 
state space). In a somewhat sloppy notation, we use Ai(t) 
for Ai[x(t)], i.e., for the value Ai has at time t because the 
system is in state x at that time. The Laplace transform of 
the correlation function then reads as . 

(10) 
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Here we have made use of the formal solution of Eq. (2) 

and introduced the scalar product, 

(XI Y)= J dxX*(x)Y(x)p(x). (11 ) 

2't is the adjoint operator to 2', not with respect to the 
scalar product (XI Y), but with respect to the standard 
scalar product with unit weight function. 

Denoting the inverse matrix of (AiIA) with aij' 

(!JJ:= I aijlAi) (Ajl 
ij 

(12) 

(13) 

is the projection operator onto the space of the slow vari­
ables, while 

g:=l-(!JJ, (14) 

projects onto the orthogonal space. Now the operator iden­
tity 

(&!" +fjI) -I = &!,,-I_ 9!"-lfjI (9!" -+ fjI) - 1, (15) 

allows the rewriting 

(z+2't)-I= [(z+2'tg) +2'tq]-1 

= (z+2'tg )-1_ (z+2"tg y-l2"t(!JJ 

X (z+2"t)-I. (16) 

Insertion into Eq. (10) yields, after using 

1 [ 2'tg (2"tg ·)2 
(z+2"tg)-IIAj)=~ 1--

z
-+ -z-

-+ ... ] IAj)=~ IAj ), (17) 

X 2"t IAk ) (Az/ (z+2"!)-lIA j). (18) 

Furthermore, one can expand 

Cii(O) = 

III. THE DIFFUSION TENSOR 

We consider the Brownian motion of a system of slow 
particles immersed in a solvent. In such a system so-called 
"hydrodynamic interactions" occur, which means that the 
stochastic displacements of the Brownian particles are cor­
related because of fast momentum transport through the 
solvent from one Brownian particle to the other. For this 
reason, the concept of a diffusion constant for a single 
Brownian particle has to be generalized to a diffusion ten-

1 1 
(z+ 2"tg) -1=_~_ 2"t!!1 (z+2"t g)-I 

Z Z 

lIt -- t t 
=--- 2"g [(z+2" ) -2" (!JJ] -1 g 

Z Z 

(19) 

This expression is inserted in Eq. (18). The first term 
yields an expression in which the dynamical operator 2"t 
acts on the slow variables Ai once, while the second term 
yields an expression of second order in 2"tAi. The third 
term is of third order, and hence is omitted in an approx­
imation that is valid in the low-frequency, long-time limit. 
The advantage of this procedure is that the operator (z 
+ 2"t g) -I is replaced by (z+ 2"t) - t, which describes 
the true dynamics. The approximate memory equation 
then reads as 

+ I akl(Ail i2"t.0i(z+2'l)-1 
kl 

X gi2"t IAk)C1j(Z). (20) 

We now consider an important special case: All the 
occurring matrices are diagonal (the Ai are statistically and 
dynamically uncorrelated), and z=O, i.e., we study the 
Green-Kubo integral, 

Cii(O) = Joco dt(At(O)AiU). (21) 

Equation (20) then immediately yields 

- (22) 

sor Dr!, which gives the correlation of the displacement in 
the a direction of particle i to that in the {3 direction of 
particle j (the greek letters denote Cartesian indices). The 
Green-Kubo formula for this tensor is 

D'tf= Lco dt(vf(O)Jj(t), (23) 

Vi denoting the velocity of the ith Brownian particle. Fol­
lowing de Gennes,12 we replace this, for i=/=J, by 
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Dij=D(rj-ri)' 

with 

D(r) =JoOO dt(u(O,O)u(r,t», 

(24) 

(25) 

where u(r,t) is the velocity flow field of the pure solvent 
(products of vectors are always meant as tensor product; 
scalar products are denoted by an over dot). This approx­
imation should be reasonable for sufficiently high dilution, 
the physical picture being that the Brownian particles fol­
low the motion of the surrounding fluid. 

We can assume that the dominant contribution of this 
integral is due to long-wavelength transversal hydrody­
namic modes-the latter because, at high densities, the 
fluid is nearly incompressible. 

Let us suppose the fluid consists of N identical particles 
confined to a box of size V = L 3 with periodic boundary 
conditions. Then the expansion of the velocity field with 
respect to modes is 

V p. 
u(r,t)=N 2: ~l)(r-ri) 

i m 

(26) 

where k= (211"/ L)n runs over the reciprocal lattice vectors 
of the box (n is an integer vector). EA, (,1,= 1, 2, 3) are 
polarization unit vectors with El ° k=E2 ° k=EI ° E2 =0, E3 
=k/lkl =k. Hence the tensor 

(27) 

projects onto the transversal modes. The Fourier expan­
sion is inverted by 

(28) 

and the diffusion tensor is written as 

2 2 

D(r) = L 2: 2: 2: EA,,(k')EA,(k) 
k k' A,=I A,'=I 

(29) 

Here only transversal modes have been taken into account. 
Now, since the modes are statically uncorrelated, 

(30) 

it is reasonable to assume that they remain uncorrelated for 
t> 0 as well. This reduces the above expansion to 

D(r)= 2:-(1-kk)exp(ik;r) roo dt(ut,(O)uu(t», 
k Jo 

(31) 

where A can be chosen as 1 or 2. The remaining Green­
Kubo integral is evaluated approximately using Eq. (22). 
Assuming that every solvent particle is, by choice of the 
programmer, artificially coupled to a viscous background, 

we consider as a dynamical operator that of a molecular 
dynamics simulation with noise, Eqs. (6)-(8), whose ad­
joint is 

One easily obtains 

and 

+FioEA,(k) )e-lk.ri=:luu}, 

i2"tl uu} = _I I uu}, 
m 

(uul i2"~ I uu) = (uul uu) =0, 

P2 i2"t I uu) = P2 i2"~ I uu) = I uu), 

(uul iytP2 =( -iP2 Ji'uul 

= - (iP2 ytuul 
=-(uul· 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

In the previous equation, we have made use of -iJi', 
which is defined as the adjoint operator of + iyt with 
respect to the scalar product, as defined in Eq. (11). For 
this operator one easily finds, e.g., by explicit partial inte­
gration, 

(38) 

and 

(39) 

which is very natural since 2"~ describes the phase-space 
volume-conserving Hamiltonian dynamics, while 2"t de­
scribes the dissipation that drives the system into thermal 
equilibrium. 

Combining the above results, one obtains 

(
k T)2(Sk T roo .. )-1 =;m N~2 + Jo dt(ut,(O)uu(t» . (40) 

In order to simplify the notation, we now choose the spe­
cial case k=kez and EA, =ex • A long-wavelength approxi­
mation is introduced by expanding Uu up to linear order in 
k. Using Newton's third law (~iFi=O), one finds 

Uu = --... L ptZi+-pwf . ik ( 1 ) 
.- Nm i m 

(41) 

Hence, the remaining Green-Kubo integral is nothing else 
than the definition of the shear viscosity TJ:15 
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(42) 

Therefore the diffusion tensor reads as 

kBT " AA exp(lk-r) 
OCr) = V7J f (l-kk) 1('+l2- ' (43) 

with 

(44) 

Here n denotes the particle number density N/V. This 
result explicitly shows that a screening length I=K- 1 oc­
curs. 

The final step is the explicit calculation of the r depen­
dence of the diffusion tensor. This can be done easily only 
in the continuum limit L-. 00, where one has 

1 kBT J 3 AA exp(lk-r) 
OCr) = (21T) 3 ~ d k(l-kk) /(2+k2 . (45) 

The angular integration is done by using the expansions16 

(46) 

and 

exp(lk or) =41T 2: lh(kr) Y'fm(k) Ylm(f) , (47) 
1m 

where Km are constant tensors, j I is the spherical Bessel 
functions, and Y lm is the spherical harmonics. Using the 
orthogonality of the latter, one obtains 

(48) 

or 

x cos x-sin x ) + 3 (l-3PP) . 
x 

(49) 

The remaining integrals are tabulated,17 the final result 
being 

~T[ (C~ 1 ) D(r)=
41T

7JY e-K7(l_PP)+ Kr -~(l_e-K7) 

X (l-3PP) ]. (50) 

For small distances, this has the form 

k T e- K7 
D(r)=-8

B 
- [(l+PP) + (l-3PP)O(Kr)], (51) 

1TTf r 

demonstrating the expected Yukawa-like behavior. In par­
ticular, in the case of purely Hamiltonian dynamics (K 
= 0), the standard Oseen form, 

kBT 
OCr) =-8 - (1 +PP), 

1T7Jr 

is recovered. 

(52) 

However, for large distances the diffusion tensor ac­
cording to Eq. (50) decays like r- 3

, indicating, at first 
glance, that the screening is much weaker than expected. 
However, this is not really true, since the slowly decaying 
part is traceless. Looking, e.g., at the standard Kirkwood 
formula for the center-of-mass diffusion constant of a poly­
mer chain of N monomers, 18 

Do I " 
D= N +3N2 /;j Tr(Dij ), (53) 

one immediately sees that it is the trace that matters (Do is 
the monomer diffusion coefficient). 

From Eq. (50), one obtains 

I kBT 
-3 Tr OCr) =-6- exp( -Kr), 

1T7Jr 
~-

which is a purely Yukawa-like decay. 

IV. CONCLUSIONS 

(54) 

The present calculation has shown in a direct and ex­
plicit way how the modification of a standard microcanon­
ical MD algorithm to a Langevin simulation screens hy­
drodynamic interactions. It has also shown the underlying 
physical mechanism, which is the destruction of momen­
tum conservation. Indeed, in the purely Hamiltonian case 
the long-range k-2 behavior is a direct consequence of 
momentum conservation: The Taylor expansion of akA., 
Eq. (41), does not contain a constant term because of 
Newton's third law. 

The practical consequence is that the Langevin algo­
rithm is not applicable for simulating a system of Brownian 
particles in an explicit bath of solvent particles. The effect 
is small enough only for very small friction, which, in prac­
tice, means that one might run a microcanonical simula­
tion as well. One might also think about refined Langevin 
schemes that do not exhibit the screening effect, but the 
development of such algorithms is beyond the scope of the 
present investigation. 

The expression we find for the hydrodynamic screen­
ing length is, apart from a numerical prefactor, the same as 
is obtained in phenomenological approaches, attacking the 
problem of hydrodynamic screening in semidilute polymer 
solutions. 13 However, the symbols have a different mean­
ing: While in our calculation nand {; denote the density 
and friction coefficient of solvent particles, they mean 
monomer concentration and monomeric friction coefficient 
in Ref. 13. It is, therefore, doubtful whether the formal 
analogy has more of a common root than the modification 
of the Navier-Stokes equation due to dissipation. 
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In principle, similar considerations should apply for 
other modifications of MD algorithms, too. One must al­
ways expect strong effects on hydrodynamic properties as 
soon as the simulation method modifies the conservation 
laws. But even if this is not the case, a calculation along the 
lines of the present one should always be useful. The prac­
tical question that then arises iii how amenable the specific 
algorithm is to formal analysis. The Langevin case is cer­
tainly a particularly easy one, since it generates a very 
simple (the canonic) ensemble, which makes the evalua­
tion of the occurring scalar products trivial. 
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