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“Once you’ve got a task to do, it’s better to do it than live with the fear of it.”
(Joe Abercrombie, The Blade Itself)





Sobre a Performance da Seleção de Portfólio Sob Custos de

Transação Crescentes:

Uma análise baseada no S&P100

Fevereiro 2016

Abstract:

Two crucial aspects to the problem of investment portfolio selection are the
specification of the model for expected returns and its covariances, as well as the choice
of the investment policy to be adopted. This dissertation empirically shows that these
two aspects are intrinsically attached to the impact due to transaction costs. In order to
do that, we implemented 11 different models of covariances to generate a set of 17
portfolio selection policies in a sample composed by the 50 most traded stocks of the
S&P100 index from 01/2004 to 01/2014. The performance of those portfolios was
evaluated based on different methods and considering the impact of alternative levels of
proportional transaction costs. The results indicated that GARCH-type conditional
covariances show superior results when compared to the ones obtained with static
models only when the level of transaction cost is lower than 10 basis points. Besides,
portfolio policies that ignore the covariance structure such as the ones proposed in
Kirby &Ostdiek (2012) are more robust specially in scenarios with higher transaction
costs. When instead we select the best performing policy each period through a
dynamic model selection, we manage to increase the risk adjusted returns to transaction
costs as high as 30 basis points.

Keywords: Portfolio optimization, Mean-variance, Volatility timing, Shrinking matrix,
Exponentially weighted moving average, Optimal Rolling Estimator, Scalar VECH,
Orthogonal GARCH, Conditional correlation, Dynamic model selection, Dynamic

Model Average.
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Resumo:

Dois aspectos cruciais do problema de seleção de portfólio para investimento são a
especificação do modelo para os retornos esperados e suas covariâncias, assim como a
escolha da política de investimento a ser adotada. Esta dissertação empiricamente
mostra que esses dois aspectos estão intrínsicamente associados ao impacto dos custos
de transação. Para tanto, nós implementamos 11 modelos diferentes de covariancias
para gerar um conjunto de 17 políticas de seleção de portfólio em uma amostra
composta pelas 50 ações mais negociadas do índice S&P100 entre 01/2004 e 01/2014. A
performance destes portfólios foi avaliada com base em diferentes métodos e
considerando o impacto de nívels alternativos de custos de transação proporcionais. Os
resultados indicaram que modelos do tipo GARCH de covariâncias condicionais
exibiram resultados superiores quando comparados com os obtidos commodelos
estáticos apenas quando o nível do custo de transação era inferior a 10 pontos base.
Além disso, politicas de seleção de portfólio que ignoram a estrutura das covariâncias
como as propostas por Kirby &Ostdiek (2012) são mais robustas especialmente em
cenários com custos de transação mais altos. Quando selecionamos a política com
melhor performance a cada período através de uma stratégia de seleção dinâmica de
modelos, nós conseguimos aumentar os retornos ajustados ao risco para custos de
transação tão altos quanto 30 pontos base.

Palavras-chave: Otimização de portfólios, Média-variancia, Volatility timing, Matriz de
Encolhimento, Média Móvel Exponencialmente Ponderada, Optimal Rolling

Estimator, VECH Escalar, GARCHOrtogonal, Correlação Condicional, Seleção
dinâmica de Modelos, Ponderação Dinâmica de Modelos.
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Chapter 1

Introduction

The stock returns covariance matrix modeling is a key ingredient to the portfolio se-

lection problem. Markowitz (1952) created the basis for the modern portfolio theory

when he showed the way which the variances and covariances influence portfolio risk

and risk-adjusted portfolio return. Since long ago this aspect drove researchers andmar-

ket players to enhance the stock return covariance modeling, over the expected return

modeling. In fact, empirical evidence suggests that portfolio selection policies that use

only the covariance modeling generate superior risk adjusted returns when compared

to selection policies that depend on the expected returns; see, for example, Jagannathan

&Ma (2003) and DeMiguel et al. (2009).

The literature points to an ample range of possible ways of modeling covariances.

The most immediate choice is usually between static models (unconditional) or dy-

namic models (conditional) as multivariate GARCH models or stochastic volatility

(BAUWENS;LAURENT;ROMBOUTS,2006; SILVENNOINEN;TERÄSVIRTA,

2009). To ground the decision, usually are taken into account pros and cons of each ap-

proach as, for example, ease of implementation, processing cost, and the model ability

to capture stylized facts such as time variation in the covariance profile among the as-
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sets.

The staticmodels are those inwhich the covariance estimationdepends on the sam-

ple covariance or on a factormodel,without imposing any auto-regressive specification.

The most important static models are the ones that shrink the sample covariance ma-

trix to the targets proposed in Ledoit &Wolf (2003a), Ledoit &Wolf (2004) e Ledoit

&Wolf (2003b). The dynamic models, in turn, base themselves in the hypothesis that

the current covariance depends on the covariance of previous periods, being updated

every time according to different econometric specifications based on auto-regressive

structures. Among the most important dynamic models are the multivariate GARCH

models and the stochastic volatility models cited in Bauwens, Laurent & Rombouts

(2006) and in Silvennoinen & Teräsvirta (2009), respectively.1

A common point between all these models is the econometric specification dif-

ferentiation. The dynamic models in particular, posses the biggest implementation re-

quirements when compared to the static models due to their greater parameterization.

This greater parameterization can also increase the estimation error and negatively im-

pact the portfolio performance, due to demanding a bigger rebalancing, and, conse-

quently, increased transaction costs. On the other hand, thesemodels can deal with the

heteroskedastic behavior of financial series. Hence, the literature regarding the subject

still has not found consensus regarding which is the most appropriate form to model

covariances.

When we apply these covariances to the problem of portfolio optimization, they

present us with a trade off that they provide better risk-adjusted returns, at the cost of

instability of the portfolio weights. This instability, in turn, means that the portfolio

1 Bauwens, Laurent & Rombouts (2006) also mentions factor models that use the idea that co-movements
of the stock returns are driven by a small number of common underlying variables, which are called
factors. As their emphasis is on ‘data-driven’ models, they refrain from discussing the vast literature on
these models. We follow suit and do not include them in our analysis.
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requires increased rebalancing that, in presence of proportional transaction costs, will

reduce the risk-adjusted net returns obtained. We then ask ourselves: are there better

risk-adjusted returns high enough to compensate for the transaction costs this rebal-

ancing incur?

It is worthmentioning that, despite the fact that the estimation of expected returns

plays its part in portfolio selection, there is already evidence that this kind of modeling

creates policies with high turnovers that might compromise their usage in real situa-

tions; see, for example,DeMiguel et al. (2009) andDeMiguel,Nogales&Uppal (2014).

So the present work focus on the modeling of covariances using the sample average for

expected returns.

Themain goal of thiswork is to analyze inwhichway the different covariance speci-

fications, used in different strategies of portfolio selection, are impacted by the presence

of transaction costs. Hence, we try to understand how the increase in costs decrease the

strategies’ performance measured as the risk-adjusted return net of transaction costs.

Thisway, thework contributeswith this discussionby analyzing the impacts that trans-

action costs have on the covariancemodel selection, as well as on the choice of portfolio

selection policy. The transaction costs reduce the gross return and this reduction is in-

creasing with the turnover. In this way, a high return, in presence of transaction costs,

may be eliminated when faced with a high turnover.

We move one step further by considering a portfolio policy that dynamically se-

lects out of the available portfolios those with the better performance, based on the

portfolio return, net of transaction costs. We do this by utilizing the strategy proposed

by Raftery, Kárnỳ & Ettler (2010) for model selection when there is uncertainty about

the specification. In their paper, at every period of time, they choose themodelwith the

higher probability of being the correct specification,measured by the predictive density
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of the model. We adapt the strategy as in Koop&Korobilis (2013) and we use the past

net returns of a portfolio as its probability of future returns. We use this probability

to choose which portfolio selection model to apply each period. With this technique

we manage to sucessfully beat the performance of individual policies measured as the

risk-adjusted return net of transaction costs.

This work aims to answer a series of fundamental questions: what are the trans-

action costs that leads different covariance specifications to portfolios with zero aver-

age return? How do the better returns obtained with better covariance estimation are

negated by increased turnover in the presence of transaction costs? Canwe choosewin-

ners in these covariances in different periods of time to revert this trade-off?

To answer these questions, we implemented 11 different covariance models to cre-

ate a set of portfolios from different asset selection strategies in a sample composed by

the 50 most traded stocks from the S&P100 index. Out of the 11 covariance models,

3 were the most important static models proposed by Ledoit & Wolf (2004), Ledoit

&Wolf (2003a) and Ledoit &Wolf (2003b). In short, these models shrink the sample

covariance matrix towards a target covariance. In this case, the target matrices are the

identity matrix, constant correlation matrix and market factors matrix, respectively.

The other 8 models belong to the class of dynamic models and were some of the

ones listed in Bauwens, Laurent & Rombouts (2006) and Silvennoinen & Teräsvirta

(2009): Exponential weighted moving average (EWMA); Optimal Rolling Estimator

(ORE) fromFoster&Nelson (1994); ScalarVECHfromBollerslev, Engle&Wooldridge

(1988); Orthogonal GARCH (O-GARCH) from Alexander (2001); Conditional cor-

relationmodels with several alternative specifications like the constant conditional cor-

relation (CCC) proposed by Bollerslev (1990) and the dynamic conditional correlation

model (DCC) proposed by Engle (2002). The models include auto-regressive compo-
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nents in their specifications, being the EWMA specification a weighted average of the

previous observed covariances. The models ORE, VECH e O-GARCH use an auto-

regressive specification for the covariancematrix,while the conditional correlationmod-

els decompose the covariancematrix in an univariate volatility matrix and a correlation

matrix. Each of these specifications are detailed in section 2.5.

Theportfolio selectionpolicies usedwere: equallyweightedportfolio (1/N )where

each asset has the same weight in the portfolio studied by DeMiguel, Garlappi & Up-

pal (2009); the mean-variance policy initially proposed byMarkowitz (1952), in short-

selling constrained andunconstrained form,using risk aversion tending to infinity (named

the minimum-variance policy) and with norm-restriction as in DeMiguel, Nogales &

Uppal (2014). We also used policies that ignore the covariances proposed by Kirby

& Ostdiek (2012), using different parameters for risk aversion and distance from the

norm.With this variety of policies and specifications for the covariance matrix, we aim

to evaluate not only a certain specification but instead to compare how the different

specifications most used in the literature react in presence of transaction costs.

Themost important result is that small transaction costs, sometimes lower that 20

basis points, are enough to nullify the portfolios’ average net returns. When we com-

pare the specifications among themselves, very low transaction costs, lower than 10 ba-

sis points, are enough to make their Sharpe coefficients not reject the hypothesis that

the static specifications were different from the dynamic ones. Moreover, we are able

to create better risk-adjusted returns by selecting different policies each period instead

of relying on a single policy the whole period considered.

The remainder of the document is organized this way: chapter 2 details the port-

folio selection policies used and the methodology for their evaluation. Chapter 3 de-

scribes the steps to implement the analysis, including the data sample used and how
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performance was measured. Chapter 4 analyzes the results found in the study. Lastly,

Chapter 5 summarizes and concludes.



Chapter 2

Portfolio Selection and

Optimization

Consider an investment universe withN assetsA1, A2, . . . , AN with uncertain fu-

ture returnsR1, R2, . . . , RN . LetR be the return vector:

R = [R1, R2, . . . , Rn]
ᵀ
.

The expected return vector µ = E (R) contains as its elements µi = E (Ri), i =

1, . . . , n, such that:

µ = [µ1, µ2, . . . , µn]
ᵀ
.

The covariance matrix of the returns, Σ = V ar(R), contains as its elements

σii = σ2
i and σij = σji = ρijσiσj (for i 6= j), where σi is Ri standard devi-

ation and ρij is the correlation between the returns of assetsAi andAj (for i 6= j).

The covariance matrixΣ is symmetric and written as:
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Σ = (σij)i,j=1,...,N =



σ11 σ12 · · · σ1n

σ21 σ22 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σnn


.

All valid covariance matrices are positive semidefinite, or equivalently, all eigenval-

ues are non-negative. A portfolio is represented by theN -dimensional vectorw, such

that:

w = [w1, w2, . . . , wn]
ᵀ
,

and wi is the share of total wealth invested in asset Ai. The portfolio return Rp is

linearly dependent of these weights and is the weighted average of the returns of each

asset involved, where the weight of each asset is the portfolio share invested in the asset

(TSAY, 2010).

Rp = w1R1 + · · ·+ wnRn =

N∑
i=1

wiRi = wᵀR.

Therefore, the expected portfolio return, µp, is the weighted average of each asset

expected return and the portfolio variance σ2
p is a quadratic function of the weight

vector. We can denote these variables by:

µp = E (Rp) = E (wᵀR) = wᵀµ (2.1)

σ2
p = V ar (Rp) = V ar (wᵀR) = wᵀΣw. (2.2)
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2.1 Portfolio selection policies

Assume that there areN risky assets with expected returns µt and covariance matrix

Σt. Suppose that there is no risk free asset and that the investor need to allocate all his

wealth among theN risky assets.

With 23.202 citations counted on Google Scholar at this articles’ writing date, the

mean-variance portfolio described by Markowitz (1952) continues to be the reference

in any study about portfolio selection. To solve the mean-variance trade-off between

risk and return the investor needs to find the weight vector that satisfies:

min
wt

wᵀ
t Σtwt −

1

γ
wᵀ
t µt,

s.t.wᵀ
t e = 1 (2.3)

where γ > 0 represents the investor’s level of relative risk aversion and e is a vector

of ones. It can be seen that the componentwᵀ
t Σtwt represents the portfolio risk. The

componentwᵀ
t µt represents the portfolio return and the γ parameter determines the

trade-off between expected return and portfolio risk. Since this formulation has no re-

strictions to it, we refer to it as the Unrestricted Mean-Variance Portfolio (MeVU).

When considering the case where the investor risk aversion tends to the infinity

(γ →∞) the problem can be represented as,

min
wt

wᵀ
t Σtwt,

s.t.wᵀ
t e = 1. (2.4)

In this case the investor only cares about reducing the portfolio risk, without consider-

ing the expected return. This is an important portfolio because the expected returns is
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subjected to bigger estimation errors when compared to the estimation of covariances

(MERTON;MORTON, 1980). We refer to it as the UnrestrictedMinimum-Variance

Portfolio (MiVU).

Frequently though, portfolio managers are subject to constrains when using the

policies. We analyze the case where the portfolio is subject to a short-sale constrain.

That gives us the following formulation for the mean-variance problem,

min
wt

wᵀ
t Σtwt −

1

γ
wᵀ
t µt,

s.t.wᵀ
t e = 1 (2.5)

wt ≥ 0

where the restrictionwt ≥ 0 represents the short-sale restriction. We refer to it as the

Restricted Mean-Variance Portfolio (MeVC). In the same way, the Restricted Mean-

Variance Portfolio is given by:

min
wt

wᵀ
t Σtwt,

s.t.wᵀ
t e = 1 (2.6)

wt ≥ 0.

As in DeMiguel, Nogales & Uppal (2014) we also consider the Mean-Variance

Portfolio with Norm Restriction (NCMV2.5) given by:
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min
wt

wᵀ
t Σtwt −

1

γ
wᵀ
t µt,

s.t.wᵀ
t e = 1 (2.7)

‖wt − w0t‖1 =

N∑
i=1

| (wt)i − (w0t)i | ≤ δ

wherew0t is the weight vector of the RestrictedMean-variance (MeVC) portfolio and

δ is the maximum deviation from the norm. With this restriction, we require that the

weights of this portfolio remain close to the weights of the MeVC portfolio, as the ag-

gregate absolute distance between the weights cannot be greater than the norm. We

use the norm-1 in relation to the restricted mean-variance because of the stability of its

weights. We considered δ equals to 2.5%, 5.0% e 10.0% according to DeMiguel, No-

gales&Uppal (2014). But we report the results just for δ equals to 2.5% to simplify the

reading as the different values had little impact in the result.

Besides those, we implemented the policies proposed by Kirby & Ostdiek (2012)

which ignore the asset returns covariances and, because of that, aid in evaluating the

advantages and disadvantages of estimating the covariances. These policies are:

Volatility Timing Portfolio (VT1) where the weights are given by:

ŵit =

(
1
σ̂2
it

)η
N∑
i=1

(
1
σ̂2
it

)η (2.8)

where σ̂it is the ith asset returns conditional volatility and η is a parameter that

measures the investor’s risk aversion. The greater the value of η the greater the

weight of the less risky asset in the portfolio.
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Reward-to-risk with Expected Returns Portfolio (RwRS1) :

ŵit =

(
µ̂+
it

σ̂2
it

)η
N∑
i=1

(
µ̂+
it

σ̂2
it

)η (2.9)

where σ̂it is the ith asset returns conditional volatility, µ̂+
it is the i

th asset ex-

pected return, assuming that the investor drops assetswith expected return lower

than zero (µ̂it < 0) and η is a parameter that measures the investor’s risk aver-

sion. The greater the value of η the greater the weight of the less risky asset in

the portfolio.

Reward-to-risk with 4-factor Model Portfolio (RwR4F1) :

ŵit =

(
β̂+
it

σ̂2
it

)η
N∑
i=1

(
β̂+
it

σ̂2
it

)η (2.10)

where σ̂it is the ith asset returns conditional volatility, β̂+
it is the i

th assetmarket

beta, assuming that the investor drops assets with beta lower than zero (β̂it <

0) andη is a parameter thatmeasures the investor’s risk aversion. The greater the

value of η the greater the weight of the less risky asset in the portfolio. We com-

pute β̂+
it using the 4-factor model proposed by Carhart (1997) as an extension

to the 3-factor model proposed by Fama & French (1992)

We considered η equals to 1, 2 e 4 according to Kirby & Ostdiek (2012). But we

report the results just for η equals to 1% to simplify the reading as the different values

had little impact in the result.

Following DeMiguel, Garlappi &Uppal (2009) we also consider the 1/N portfo-

lio. Considered the “naive” portfolio, is an equally weighed combination of all assets
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considered in this analysis. It is worth noting that the asset’s weights are defined by the

percentage of the financial resources it uses. Therefore, this portfolio also needs rebal-

ancing because, with the highs and lows of each asset in the portfolio, at the end of the

period after the returns are compounded, the weights in financial terms of each asset

will have changed.

Table 1 presents the list of the policies implemented and their respective acronym

used in the remainder of the dissertation.

Table 1 – Portfolio Selection Policies: the following table presents the portfolio selec-
tion policies considered in this paper and the codes used to refer to them.

Acronym Portfolio
1/N Portfolio 1/N
MiVU Unrestricted Minimum-variance Portfolio
MeVU Unrestricted Mean-variance Portfolio
MiVC Restricted Minimum-variance Portfolio
MeVC Restricted Mean-variance Portfolio
NCMV2.5 Mean-variance with Norm Restriction (delta=2.5%)
VT1 Volatility timing (eta=1)
RwRS1 Reward-to-risk with Expected Returns (eta=1)
RwR4F1 Reward-to-risk with 4-factor Model (eta=1)

2.2 Expected returns and covariance models

As in Bauwens, Laurent & Rombouts (2006), we define the asset return generation

process by the following equation:

Rt = µt|Ω +H
1/2
t|Ω εt, (2.11)

where Ω is the information available up to t − 1, µ is the expected return at period

t, given the available information,H1/2
t|Ω is a N x N positive definite matrix such that

Ht|Ω is the covariance matrix, and εt is a N x 1 random vector withE(εt) = 0 and
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V ar(εt) = IN . In the unconditional model we assume that µt|Ω andHt|Ω are in-

dependent of previous values every period, while in the conditional model they are

updated according the chosen specification. Since the return is given by the expected

return and their covariance matrix, the following sections describe the different tech-

niques used in their estimation.

2.3 Expected returns

In this paper we assume that the expected returns are described by the sample average:

µt|Ω =
1

T − 1

T∑
i=1

Ri. (2.12)

We chose not to impose a conditional auto-regressive structure to model the ex-

pected returns because this kind of estimation usually contains a large error, damaging

the portfolio’s performance as in DeMiguel, Nogales & Uppal (2014).

2.4 Static Shrinkage Models

In their work, Ledoit & Wolf (2003b) argue that it is known that a way to obtain a

better estimator is to simply take a weighted average between a biased estimator, with

little estimation error, and an unbiased, but with a lot of estimation error. This process

is called shrinkage of an unbiased estimator towards a target, represented by the biased

estimator. This idea can be summarized in the following equation:

σt = δ̂Ft + (1− δ̂)St, (2.13)

where δ ∈ {δ ∈ R|0 ≤ δ ≤ 1}R is the shrinkage coefficient, F is the target

covariance matrix, highly structured, and S is an unstructured estimator. The sample
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covariance ismost frequently used as this unstructured estimator, sowe follow and also

use the sample covariance in this work.

As for the target covariance, Ledoit&Wolf (2003a) say that it needs to have a small

number of free parameters, meaning it is highly structured. And it also needs to reflect

the important characteristics of the variable being estimated. For this paper, we chose as

target covariances the ones described inLedoit&Wolf (2003a), Ledoit&Wolf (2003b)

and Ledoit &Wolf (2004). This last one, Ledoit &Wolf (2004) use as target the iden-

tity matrix. So,Ft = I.

Ledoit &Wolf (2003a) uses a model of constant correlation between the assets for

the shrinkage targetFt. We are able to use this target only because all assets considered

belong to the same class: stocks. To define this covariance matrix, letHt be the sam-

ple covariance and hij be the element of Ht at row i and column j. So the sample

correlation is given by:

rij =
hij√
hiihjj

,

whose average is:

r̄ =
2

(N − 1)N

N−1∑
i=1

N∑
j=i+1

rij .

Therefore the constant correlationmatrixFt can be created using the sample variances

and the sample average correlation:

fii = hii,

fij = r̄
√
hiihjj . (2.14)
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Lastly, Ledoit &Wolf (2003b) assume an one factor market model for the return

of asset j at time t:

rj,t = αj + βjrM,t + εj,t,

where rM,t is themarket index return at time t,βj is themarket factor,αj is the inter-

cept and εj,t is the error. Assuming that rM,t and εj,t are uncorrelated and that εi,t

and εj,t are uncorrelated for i 6= j, the target covariance matrix is:

Ft = sm,tBB
ᵀ +Dt, (2.15)

whereB is the vector ofβs, sm,t is the sample variance of rM,t andDt in the diagonal

matrix consisting of the variance of the sample errors.

2.5 Multivariate GARCH models

The conditional variance models used were the ones described in Engle & Sheppard

(2008) and Becker et al. (2014). This dissertation focus on the models of multivariate

GARCH and 8 different specifications largely used in the literature are implemented:

Exponentially WeightedMoving Average (EWMA): TheEWMAmodel is definedby:

Ht = αRt−1
′Rt−1 + (1− α)Ht−1, (2.16)

where α ≥ 0. When we use the value 0,04 for α, the model EWMA is equiva-

lent to theRiskmetricsTM approach.Zaffaroni (2008) shows that despite allow-

ing gains in processing and supplying a simple way to impose that the resulting

matrix be positive semi-definite, the EWMA approach produces inconsistent
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estimates for the parameters. In this model we use maximum likelihood to esti-

mate the parameterα.

Optimal Rolling Estimator (ORE): As in Foster & Nelson (1994) we can define the

model as:

Ht =

∞∑
t=1

Ωt−k �Rᵀ
t−kRt−k

where Ωt−k is the symmetric weight matrix and� symbolizes the Hadamard

product (element to element multiplication). The optimal balancing proposed

by Foster &Nelson (1994) is given by:

Ωt−k = α exp (−αk) ιᵀι,

where α is a non-negative parameter and ι is the vector of ones. The estimator

can be rewritten as:

Ht = α exp (−α)Rᵀ
t−kRt−k + exp (−α)Ht−1. (2.17)

Scalar VECH: The scalarVECHspecificationofBollerslev, Engle&Wooldridge (1988)

is:

Ht = CᵀC + αRt−1Rt−1
ᵀ + βHt−1.

Instead of estimating theN(N + 1)/2 elements of C , we use the technique

suggested by Engle &Mezrich (1996). The idea is to estimate the intercept ma-
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trix through an auxiliary estimator given by Ĉ ′Ĉ = S̄ (1− α− β), where

S̄ = 1
T

T∑
t=1

RtRt
ᵀ, so that the Scalar VECH becomes:

Ht = S̄ (1− α− β) + αRt−1Rt−1
ᵀ + βHt−1, (2.18)

where the covariance is stationary given thatα+ β < 1.

Ortoghonal GARCH (OGARCH): The O-GARCHmodel of Alexander (2001) be-

longs to the factormodels class and is capable of obtaining great processing gains

through dimension reduction. The model is given by:

Ht = WΩtW, (2.19)

whereW is aN × k matrix whose columns are given by the first k eigenvec-

tors of the t × N matrix of asset returns, and Ωt is a k × k diagonal matrix

whose elements are given by hfkt
where hfkt

is the conditional variance of the

k-th principal component and follows aGARCH(1,1) process. TheO-GARCH

model was implemented using 3 principal components.

Conditional CorrelationModels: This class of models is defined as:

Ht = DtΨtDt, (2.20)

whereDt is theN × N diagonal matrix with the diagonal elements given by

hi,t, wherehi,t is the conditional variance of the i-th asset and follows a process

GARCH(1,1), andΨt is a conditional correlation symmetric matrix containing

the elements ρij,t, where ρii,t = 1, i, j = 1, . . . , N . We considered 4 alter-

native specifications forΨt:
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• TheConstantConditional Correlationmodel (CCC) proposed byBoller-

slev (1990);

• The Dynamic Conditional Correlation model (DCC) proposed by Engle

(2002);

• The Asymmetric DCCmodel (ASYDCC) proposed by Cappiello, Engle

& Sheppard (2006);

• TheDynamicEquicorrelationmodel (DECO)proposedbyEngle&Kelly

(2012).

Engle & Colacito (2006) and Engle & Sheppard (2008) study the performance

of alternative conditional correlation models in portfolio selection problems.

The multivariate GARCHmodels are usually estimated through quasi maximum

likelihood (QML). However, this estimator is highly biased in high dimensions, as

shown in Engle, Shephard & Sheppard (2008) and Hafner & Reznikova (2012). So,

the parameters for the EWMA and VECHmodels are estimated through the compos-

ite likelihood method (CL) proposed by Engle, Shephard & Sheppard (2008). As for

the conditional correlationmodels, their estimation canbedivided in volatility and cor-

relation. The volatility refers to estimate the conditional univariate variance through

QML assuming Gaussian innovations. The correlationmatrix parameters in the mod-

els DCC and ASYDCC are estimated using the method CL. As shown by Engle, Shep-

hard & Sheppard (2008), the CL estimator generates more precise estimations for the

parameters when compared to the two steps procedure proposed by Engle (2002), es-

pecially in big problems.

It is important tomention that other multivariate GARCH specifications, besides

the ones cited, were proposed in the literature, as discussed in Bauwens, Laurent &
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Rombouts (2006) and Silvennoinen & Teräsvirta (2009). Although we can broaden

the dissertation to include them, we decided to focus on the 8 specificationsmost com-

monly used to reduce the computing effort when evaluating the models.

Table 2 presents the list of the covariancemodels implemented and their respective

acronym used in the remainder of the dissertation.

Table 2 – Covariance Models: the following table presents the covariance models con-
sidered in this paper and the codes used to refer to them.

Acronym Covariance model
CORR Shrinkage model with constant correlation target
PARA Shrinkage model with identity matrix target
MARKET Shrinkage model with market model target
EWMA Exponentially WeightedMoving Average
ORE Optimal Rolling Estimator
VECH Scalar VECH
OGARCH Ortoghonal GARCH
CCC Constant Conditional Correlation
DCC Dynamic Conditional Correlation
ASYDCC Asymmetric Dynamic Conditional Correlation
DECO Dynamic Equicorrelation

2.6 Policy combination

It is naive to think that the portfoliomanager will follow a single strategy for the whole

period. It is likely that when faced with diminishing returns on a certain policy, the

manager would switch, choosing a policy that would obtain higher returns, or even

combining them in hopes to outperform each of them. Therefore, the policies de-

scribed need to pass through a process of selection and combination of policies to un-

derstand how this enhances the result obtained to the investor against using a single

policy continuously.
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The work of Raftery, Kárnỳ & Ettler (2010) proposes a methodology to combine

econometric specifications in the presence of uncertainty about the model that can be

adapted to combine policies. The Dynamic model average (DMA) stems from the hy-

pothesis that there are K models and that Lt ∈ {1, 2, . . . ,K} determines which

model is applicable eachperiod. Starting fromprevisions fromallmodels, theDMAap-

proach computes the probability that the model k is the best model to forecast the ob-

servations forperiod t, given the information available in t−1,meaningProb (Lt = k|yt−1) =

πt|t−1,k . Once πt|t−1,k is computed, these probabilities can be used to weight the

model’s forecasts. The dynamic model selection (DMS) approach selects the model

with the greatest πt|t−1,k each period and use it to compute the portfolio weights as

in Koop & Korobilis (2013).

Given the starting probability, π0|0,k , the probability transition is given by:

πt|t−1,k =
παt−1|t−1,k

K∑
l=1

παt−1|t−1,l

where 0 < α ≤ 1 is a forgetting factor to reduce the computational cost. The proba-

bility of each model is given by:

πt|t,k =
πt|t−1,k � pk

(
yt|yt−1

)
K∑
l=1

πt|t−1,l � pl
(
yt|yt−1

)
where pk

(
yt|yt−1

)
is the predictive density of the model k evaluated in yt, and that

is a measure of the forecast performance. The DMA approach consists in using the

weighted average of the individual forecasts using πt|t−1,k to compute the weights

of each model. The DMS approach instead only selects the models with the highest

predictive probability, πt|t−1,k , in each period, and uses it in the forecasting.
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To evaluate investment policies, the algorithm can be adapted to use the policies’

returns instead of the predictive likelihood as follows:

πt|t,k =
πt|t−1,k � (1 +Rnet,kt)
K∑
l=1

πt|t−1,l � (1 +Rnet,kt)

(2.21)

whereRnet,kt is strategy k return net of transaction cost, at time t, which implies that

the probabilities will be updated according to the policy performance in the previous

period.Tounderstand the part ofRnet,kt in the portfolio policy selection, it is possible

to rewrite equation 2.21 as:

πt|t−1,k ∝
[
πt−1|t−2 � (1 +Rnet,kt)

]α
πt|t−1,k ∝

T−1∏
t=1

(1 +Rnet,kt)
αT−t

. (2.22)

Rewriting this way is easy to realize how the probability of each policy is given

by its past performance, with recent periods being given greater weights. The greater

weights recent periods receive is controlled by the forgetting factor, α and it has an

exponential decay. For instance, ifα = 0.99, the portfolio performance five years ago

receives 80% as much weight as the performance last period. If α = 0.95, then the

portfolio performance five years ago receives only about 35% as much weight. These

considerations suggest that we focus on values ofα near one and in our analysis we set

α = 0.99.

2.7 Transaction Costs

When rebalancing his portfolio to the new weight allocation given by the selection

policies, the portofolio manager is faced with transaction costs. As Kolm, Tütüncü &
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Fabozzi (2014) points out, transaction costs consist of direct costs, such as comissions

and taxes, bid-ask spread, and indirect costs, such as slippage. Slipagge is the difference

between the price prevailing at the time the trade is antecipated, t0, and the volume

weighted average price over the period, [t0, t0 +T ], over which it executes. Somewhat

simplistically, slippage is due to (a) random price changes in the securities that occur in

[t0, t0 + T ], and (b) "market impact costs," i.e. price chances incurred because of the

trade itself. In general, we expect that a trademoves the price against the buyer or seller.

That is, the price is pushed upwards when buying and downwards when selling. The

market impact portion of the slippage can be substantial when the ratio of the trade

size to the average trade volume is high and is often modeled as an increasing function

of this quantity.

As in Olivares-Nadal & DeMiguel (), for small trades, which do not impact the

market price, the transaction cost is assumed to proportional to the amount traded on

each asset. So when we compute the return net of trasaction costs, we get:

Rnet,t =

1− κ
N∑
j=1

∣∣wj,t − wj,(t−1)+
∣∣ (wt)

ᵀ
Rt+1, (2.23)

where, again,wj,t ewj,(t−1)+ are, respectively, theweight of the assets in the portfolio

after rebalancing and the weights of the assets before rebalancing, but after the period

return have been computed and κ is the proportional transaction cost.

In hiswork, French (2008) tries to estimate howmuch americans spend on transac-

tion costs each year for different active investing options, and compare it with the cost

of passive investing. In his estimations, americans spend 21 basis points in total trading,

as a fraction of the total portfolio.
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Implementation

The expanding window technique was used to evaluate the portfolios, meaning that

starting from a data section, we estimated expected returns and covariances and com-

puted the first period, and at each following period we included the data point from

the current period and reestimated the returns and covariances to process the period.

The initial estimation window used was 1500 periods. With it we computed the

expected returns in period 1501 using the sample expectation as described in chapter

2.3. After we computed the covariancematrices using each of the techniques described

in sections 2.4 and 2.5. These two were the basis for each of the portfolios described in

section 2. This portfolio remained active in the period and at the end of it the returns

were computed as described in 3.2.

Contrary to the rolling window technique, where the oldest observation is dis-

carded, in this technique all observations are kept and the new one is added. That way,

we estimate the returns for period t+ 1, we compute the covariance matrices, and use

both to rebalance the portfolios. Meaning that the data up until period t is used to

compose the portfolios that will be present in period t + 1, out of the sample. This

process is repeated until the end of the data set is reached.
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We tried different rebalancing frequencies including daily, weekly andmonthly re-

balancing, but the results found were not significantly different. To simplify the pre-

sentation, only the daily rebalancing results are reported.

3.1 Data

Weused the 50most traded stockswith regards to the financial volume fromtheS&P100

index, between 01/01/2004 and 01/01/2014. With a ten year horizon, the sample goes

through periods of growth, recession and economic recovery, including periods of high

and lowmarket volatility, so that we do not restrict the results to a determined sample

characteristic. The sample contains 2516 observations with daily data of returns, evalu-

ated as the logarithmic difference of the closing prices. The table 14 lists the used assets

and their first four moments. It is possible to see in it some stylized facts of financial

time series like excess kurtosis.

3.2 Performance evaluation methodology

At each period, each of the strategies described in section 2 were used alongside each

of the covariance specifications to rebalance the portfolios. At each period there was an

extra data point of the returns incurred in the previous period, that were added to the

covariance estimations, changing the weights of each asset in the portfolio.

So, it is possible to say that in each period there were two weights. One before re-

balancing - the weights of each asset in the portfolio after the asset price changes. And

another, after rebalancing according to the pair portfolio selection policy and covari-

ance specification.

In order to evaluate the result of the described policies, we evaluate its gross return,
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net return, and the break-even transaction cost for each of the policies using each of the

covariances.

The gross return of a portfolio is given by:

Rgross,t = (wt)
ᵀ
Rt+1, (3.1)

where wt is the asset weight vector in the portfolio at period t, after rebalancing and

Rt+1 is the return vector at period t+1. In evaluating the gross returns we considered

its averages and standard deviations with the goal of observing which portfolios incur

in higher returns in the absence of transaction costs, and their variability. The portfolio

average return is given by:

E[R] =
1

T

T∑
i=1

Ri. (3.2)

And the return variance is given by:

V ar[R] =

T∑
i=1

(
Ri − E(R)

)2
T − L

. (3.3)

The average return can be understood as the portfolio performance since more re-

turn is preferable to less return. And the variance can be thought of as the risk measure

of the portfolio: the bigger the variance, the greater the chance of extreme results. To

evaluate the portfolio against the two measures we compute the Sharpe ratio, as pro-

posed in Sharpe (1966), given by:

Sa =
E[R]√
V ar[R]

. (3.4)
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We also measure the portfolio turnover, according to:

Turnover =
1

T − 1

T−1∑
t=1

N∑
j=1

(∣∣wj,t − wj,(t−1)+
∣∣), (3.5)

where wj,t and wj,(t−1)+ are, respectively, the weight of the assets in the portfolio

after rebalancing and the weights of the assets before rebalancing, but after the period

return have been computed. Given that, we can see whether the different portfolio se-

lection policies and covariance models create portfolios more unstable, requiringmore

rebalancing.

Afterwards, to evaluate the impact of the transaction costs in policies and covari-

ances, these were subjected to increasing transaction costs form 1 to 50 basis points,

understood as a transaction cost equals to 0.01% to 0.5% of the rebalanced value of the

portfolio. The returns net of transaction costs are then computed:

Rnet,t =

1− κ
N∑
j=1

∣∣wj,t − wj,(t−1)+
∣∣ (wt)

ᵀ
Rt+1, (3.6)

where, again, wj,t e wj,(t−1)+ are, respectively, the weight of the assets in the port-

folio after rebalancing and the weights of the assets before rebalancing, but after the

period return have been computed and κ is the proportional transaction cost. These

net returns also had their Shape ratio computed to see the transaction cost impact.

To compare the static and dynamic covariance specifications, we used the test pro-

posed by Ledoit &Wolf (2008) to check if the Shape ratios of the net returns, resulting

from a given dynamic covariance are different from a reference static covariancemodel.
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The test has the following hypothesis:

 H0 : The difference between the Sharpe ratios is 0;

H1 : The difference between the Sharpe ratios is different from 0.
(3.7)

Lastly, we computed the transaction costs that lead the portfolio to the break-even.

Initially we looked for the transaction costs that lead the average net return to zero. To

do thatwe submitted the portfolios to increasing transaction costs, starting at zero basis

points and increasing by 1 at every interaction. The procedure was repeated until the

average return changed to a negative number and this cost was stored as the break-even

transaction costs.

The secondbreak-even evaluatedwas the transaction cost thatwould take the port-

folio from being superior to a benchmark, to being inferior to it. To that goal, for each

portfolio selection policy, we compared the Sharpe ratios between dynamic covariance

models and the static ones. We started by computing the time series of net returns,

one with a dynamic models and another with a static one. The two net returns series

were then submitted to the test proposed by Ledoit & Wolf (2008) to check if they

were statistically different from each other. This procedure was repeated for increasing

transaction costs, until the test rejected the null hypothesis and the Sharpe ratio of the

dynamic model was inferior to the one used as benchmark.
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Results

The presentation of the results is organized in three parts to facilitate their analysis and

discussion. The section 4.1 shows the first analysis in terms of portfoliomean, variance,

turnover and Sharpe ratio under zero transaction costs. The section 4.2 discusses, for

the different covariance specifications, the transaction costs that zeroes the average net

return and the one that makes the specifications clearly different. The section 4.3 ana-

lyzes the results of using the DMA and DMS strategies. Lastly the section 4.4 analyzes

how the results react to different levels of risk aversion and rebalancing frequencies to

evaluate how the results change when these parameters change. The tables and graphs

referenced throughout this whole section can be found in the appendix.

4.1 Descriptive Statistics

Table 3 shows the average gross return obtained by each portfolio selection policy and

the corresponding covariance model used. In practically all the portfolios, the gross re-

turn obtained using dynamic specifications is equal or superior to the return obtained

with static specifications.As for the portfolio policies that use only variances and ignore
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the covariances, the returns are closer to each other, but still, the dynamic specifications

have equal or superior returns than the static specifications in almost all cases. The dy-

namic covariance specifications are different among themselves, and when we look at

the averages, we can see that the specifications EWMAandVECHdisplay better results

than the others.

Table 4 shows the standard deviation of the returns of the portfolio policies. Here

the comparison is not so straightforward. We can observe that the results are similar

among policies when using dynamic covariances or static covariances. An exception

is the DCC specification which delivered portfolios with higher standard deviations.

Given that the variance of the returns is the risk measure most commonly used in the

literature, it is interesting to notice that the higher portfolio returns observed in the

dynamic covariance specifications did not come with a higher level of risk.

The turnover obtained for the portfolios is reported on table 5. Here it is easy to

see how in all portfolios the turnover is superior using dynamic specifications for the

covariances, thanwith static covariances.The only exceptions are the portfolios reward-

to-risk using sample return (RwRS1), when coupled with the ORE covariance speci-

fication. With a turnover of just 0.016 it is equal to the ones obtained with the static

covariances.

It is also interesting to associate this table with the results reported in table 3. The

higher returns obtained with the dynamic specifications is usually associated with a

higher portfolio turnover. The most extreme case is that of the DCC specification that

has a reasonably superior return (0.069 on average), when compared to the other port-

folios, but itwas coupledwith thehighest turnover among all portfolios observed (0.991

on average).Thedynamic specificationOGARCHdeliveredportfolioswith a relatively

low turnover and on average did not show returns superior to the static competitors.
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Therefore, even though specifications with greater structure are linked to higher aver-

age returns, they come associated with higher portfolio instability.

To give further support to these observations, table 6 presents the Sharpe ratio

in the absence of transaction costs. We can observe a pattern similar to that of the re-

turns, with the specifications EWMA and VECH displaying higher figures than the

ones given by static specifications, when compared within the same portfolio selection

policy. Their direct competitors whenwe looked at the returnswhere the specifications

DCC and ASYDCC, were highly penalized by their high standard deviation and now

are not as close competitors as when only the returns were considered.

The asterisks in the table 6 mark the instances in which the statistical test rejects

the hypothesis that they are equal to those found for the static specification PARA.

It is interesting to note that the specifications OGARCH, CCC, DCC and DECO in

no case produced figures that rejected the hypothesis of equality of the Sharpe ratios.

In other words, these specifications did not have Sharpe ratios statistically superior to

the benchmark specification PARA and they displayed higher turnovers. The other

dynamic specifications managed to present indexes that were statistically superior in

several portfolio selection policies.

It is important now to observe how the Sharpe ratio evolves with the increase of

the transaction cost. The graphs 1 and 2 show the evolution of the Sharpe ratio with

the increase of the transaction cost, from0 to 50 basis points, for all policies considered.

Each graph evaluates a portfolio selection policy and each line of the graph depicts the

evolution of the ratio for each covariance specification. At the transaction costs where

the hypothesis that indexes are different is not rejected, the line changes from full line

to dotted line.

The analysis of these charts start with the line for the specification PARA, used
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as benchmark. It is the one colored in black. It is interesting how it has a small slope

in policies that ignore the covariances, showing the high stability of this specification

and its low necessity for rebalancing. Therefore, it requires a high transaction cost to

penalize this specification. In the specifications that ignore the covariances, the slope of

the benchmark increases, but it is only high in the portfolios RwRS.

In these graphs, the Sharpe ratio presented at the table 6 is the point where the

lines intercept the vertical axis, which corresponds to no transaction costs. Given that

the lines are decreasingwith the increase in transaction costs, the ratios that didn’t have

an asterisk at table 6 already start as a dotted line, showing that a statistical test donot in-

dicate statistical difference between the portfolio and the benchmark. Even when there

was an asterisk it is easily seen that in almost all specifications few basis points were

enough to make the statistical difference disappear. The only exceptions are the port-

folios RwRS. In these portfolios, the slope of the benchmark curve is similar to the

specifications EWMA andORE, so that it intercepts the EWMA curve at a high trans-

action cost and does not intercepts the ORE at all.

An important point to keep inmind when looking at these results given by 6. The

first reaction is to look at the turnover to explain all the penalties to a portfolio caused

by the transaction cost. But we can’t ignore that we need to check themagnitude of the

portfolio return. The proportional transaction cost is a function of the turnover, but

the transaction costs impact the returns. So a high enough return would compensate

a high turnover. The variance is important since we analyze the Sharpe ratio, but the

turnover has little impact in it.

Finally, table 7 shows the numbers for the previous analysis for the portfolio 1/N .

Since this portfolio does not use neither the variances nor the covariances, its result is

not influenced by the specifications, therefore we need a single number for each statis-
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tic. The portfolio displays low turnover, as expected, since its rebalancing is only neces-

sary to keep the ratio of the assets constant between themselves, after the returns where

observed. Given its low turnover, its Sharpe ratio is not highly affected by the transac-

tion costs. As the portfolio also fails to generate extraordinary returns, its Sharpe ratio

is not superior to those found for the static specifications of the different portfolio poli-

cies.

4.2 Break-even Analysis

Table 8 presents the lowest transaction cost that makes the average return of the policy

be lower than zero. In the presence of high transaction costs, portfolios with higher

break-even values are preferable over portfolios with lower values.

It is interesting tonote that the static specifications need transaction costs far higher

than thedynamic specifications in order tobeneutralized.This difference is evenhigher

in policies that consider covariances than the ones that do not. Only the policy RwRS1

when combined with the ORE covariance specification provides higher break-even

value then the static covariances. And that is due not only to a comparable turnover,

but also due to a higher average return. This could also be observed in the figure 2

where the curve corresponding to the ORE specification with almost parallel to the

benchmark.

The specification EWMA and VECH that had noticeable higher returns but the

high turnover rapidly neutralized the average return. So the high return was not high

enough to compensate for the high turnover. The opposite happened with the speci-

fication ORE: there were no outstanding returns when compared with other dynamic

specifications, but its low turnover lead to a lower penalization of its returns, leading

to high break-even among those specifications.
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The second point of notice is the transaction cost that makes the difference be-

tween a dynamic specification and the static benchmark to be statistically different.

That is, the statistical test rejects the null hypothesis that the indexes are equal. Port-

folio managers that face transaction cost above the ones depicted on the table would

have better Sharpe ratios if they hadused the static benchmark specification instead of a

dynamic covariance specification. Therefore, in the presence of high transaction costs,

portfolios with higher break-even are preferable to portfolios with lower break-evens.

In the table 9 we can see that for the specifications CCC, DCC andDECO, a trans-

action cost lower than 20 basis points (and some times even lower than 10 basis points)

was enough to make the Sharpe ratios lower and statistically different from the bench-

mark.

Again the ORE specification was the one with the better results among the dy-

namic specifications, because of low turnover and higher returns. In the policy RwRS1

its performance even surpass that of the benchmark, independent of transaction cost.

In second place comes the specificationOGARCH that did not present high turnover,

but failed to generate high returns and did not have a high Sharpe ratio.

4.3 Combination analysis

We start our analysis by looking at the combination of the portfolios using the DMA

technique described in section 2.6. Figure 3 shows the overall participation of the port-

folios in the composition of the DMA weights. It shows the aggregated participation

across all periods analyzed. It is interesting to note here, how on the absence of trans-

action costs, the portfolios had almost equal participation in the strategy. But as the

transaction costs increase, some portfolios start to lag behind and amount for a lesser

part of the DMA portfolio, noticeably the MiVU and the MeVU, using the covari-
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ances ORE, OGARCH, CCC and DECO. Both portfolios did have noticeable high

turnover, as we can see in table 5, and so fail to generate strong net returns under high

transaction costs.

Figures 5 and 6 further complement the analysis by comparing the Sharpe ratio of

individual portfolios against that of theDMAstrategy. Since the strategy is anweighted

averageof theotherportfolios it’s resulting Sharpe ratio curve is among theother curves.

Therefore, the strategy fails at producing better Sharpe overall than the ones used in its

composition. We can see from the participation of each portfolio in the DMA (figure

3) that they had similar participation so we can infer that portfolios that stood above

theDMAcurve are better than the ones below it. Therefore, at high transaction costs, it

is clear that constrained policies (MiVC, MeVC and NCMV2.5) when combined with

static covariance specifications (CORR, PARA andMARKET) are clearly better than

the others.

Now we turn our attention to select a winner portfolio through the DMS tech-

nique described in section 2.6. Figure 4 show the percentage of times each portfoliowas

selected across all periods. It is interesting to notice a couple patterns that occur when

the transaction cost increases: first, the portfolio 1/N grows in participation. This is

to be expected since as transaction cost grows, the stability of the weights provided by

this portfolio becomes important. Being able to pay less to transact is more important

than search for better returns. Second, there is more usage of portfolios with dynamic

covariances but as the transaction costs grow, so increases the participation of portfo-

lios with static covariances, while the dynamic ones decrease dramatically. This mirrors

the findings in figures 1 and 2 as we could see that the performance of portfolios with

dynamic covariances degraded rapidly.

Figures 7 and 8 round up this analysis by displaying how the performance of the
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DMS strategy compare with the individual portfolios. First, it is interesting to notice

how it gives a far improved performance when faced with low and average transaction

costs. One thing I find counter intuitive though is how the portfolio manages to de-

grade to equal and below the other portfolios consideredwhen facedwith high transac-

tion costs. One would expect that as an strategy based on selecting the best performing

strategy in recent periods, the portfolio DMS would always stay above the others. A

possible explanation is that the measure of performance used for strategy is the Sharpe

ratio, while the performance measure used for selection is the net returns. But at the

time of writing there was still uncertainty about it.

4.4 Robustness checks

To conclude the analysis of the results, it is important to check the impact that different

parametrizations have on the results. As discussed, table 8 displays the results when

daily rebalancing is considered for the portfolios. The tables 10 and 11 display the same

analysis for weekly and monthly rebalancing, respectively.

The relations between dynamic and static specifications remained the same as the

one in table 8. But the break-even values increase when we reduce the rebalancing fre-

quency. Table 12 brings only the averages to simplify comparison.

Whenobserving thepolicies that rely on covariance information, thedynamic spec-

ifications have break-evens far superior when the rebalancing frequency is reduced.

Meanwhile, the break-even for the static specifications remain unchanged. Still, the

break-even for the static specifications is at least an order of magnitude superior. As for

the policies that do not rely on covariance information, the increase in the break-even

in the dynamic specifications was less pronounced when we reduced the rebalancing

frequency. On the static ones, on the other hand, the growth of the break-even was
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more pronounced.

All in all, a portfolio manager thinking in an aggressive daily balance should focus

his efforts in the static specifications, but, the lower the rebalancing frequency it aims

towards, the more he can change his focus to the dynamic specifications in order to

obtain higher net returns.

Table 13 shows the effect of different levels of the risk aversion. Its impact in the

portfolios’ break-even is practically neglectable. It becomes a little more pronounced

on greater break-evens, but yet, made no difference in the results.





Chapter 5

Concluding Remarks

The literature presents some divergence about the best way to specify the covariances.

On one side there are the static specifications (or unconditional) where the covariance

estimation depends on the sample covariance and/or a factor model, independent of

an auto-regressive structure. On the other side there are the dynamic models based on

the hypothesis that the covariance in the current period depends on the covariance of

previous periods, being updated at each period. Therefore, these last models use auto-

regressive structures either for the wholematrix or for one ormore parts of this matrix.

This work adds to this discussion by comparing these specifications in their ap-

plicability. In the real world the portfolio manager faces a trade-off where they rebal-

ance the portfolio looking for higher returns but this rebalancing incur in transaction

costs. In this work we can see that when the dynamic and static covariance specifica-

tions are compared within this scenario, the static specifications were clearly superior

given the stability of the portfolio weights. The dynamic specifications, on the other

hand, even though at first glance they were able to generate higher returns, this excess

returns were converted into losses at low transaction costs. Based on this we suggest

that future works on covariances using portfolio selection pay extra attention to this
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aspect when evaluating their findings.

Looking forward, this work can be enhanced so that the result can be even more

general by using markets simulations instead of real market data. We used a sample big

enough tomake the results cover a broad range ofmarket conditions, but still the work

could be further analyzed through several simulations. We raise an alert to the compu-

tational cost of this suggestion. It was not promptly included in this work because of

the high processing cost. Using a sample of this size, all the steps and tests took three

to four days of processing to complete with the available hardware. So in order to run

thousands of simulations a great processing power need to be amassed.



Appendix A
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Table 3 – Average Portfolio Gross Return: the table shows the average gross return obtained by the portfolios for each period of the sample as
described in section 3.2, as well as their average by portfolio selection policy and covariance specification.

MiVU MeVU MiVC MeVC NCMV2.5 NCMV5 NCMV10 VT1 VT2 VT4 RwRS1 RwRS2 RwRS4 RwR4F1 RwR4F2 RwR4F4 Average

EWMA 0.071 0.076 0.070 0.071 0.071 0.072 0.074 0.062 0.063 0.064 0.066 0.081 0.108 0.059 0.060 0.062 0.071
ORE 0.064 0.065 0.060 0.061 0.061 0.062 0.064 0.062 0.061 0.057 0.064 0.077 0.102 0.059 0.058 0.059 0.065
VECH 0.077 0.083 0.072 0.074 0.073 0.074 0.075 0.062 0.063 0.062 0.064 0.076 0.099 0.060 0.062 0.066 0.071
OGARCH 0.065 0.064 0.056 0.056 0.057 0.058 0.058 0.061 0.059 0.053 0.060 0.064 0.076 0.057 0.057 0.059 0.060
CCC 0.060 0.060 0.062 0.062 0.063 0.063 0.063 0.062 0.062 0.062 0.061 0.066 0.077 0.059 0.059 0.062 0.063
DCC 0.049 0.105 0.074 0.075 0.075 0.076 0.077 0.062 0.062 0.062 0.061 0.066 0.077 0.059 0.059 0.062 0.069
DECO 0.069 0.069 0.060 0.060 0.060 0.060 0.059 0.062 0.062 0.062 0.061 0.066 0.077 0.059 0.059 0.062 0.063
ASYDCC 0.077 0.078 0.073 0.075 0.074 0.075 0.077 0.061 0.062 0.062 0.062 0.075 0.104 0.057 0.057 0.058 0.070

Average 0.066 0.075 0.066 0.067 0.067 0.067 0.068 0.062 0.061 0.061 0.063 0.072 0.090 0.059 0.059 0.061 0.066

CORR 0.052 0.052 0.055 0.055 0.056 0.056 0.057 0.061 0.058 0.052 0.061 0.066 0.081 0.057 0.055 0.054 0.058
PARA 0.053 0.052 0.055 0.055 0.056 0.057 0.058 0.061 0.059 0.053 0.061 0.067 0.082 0.057 0.056 0.054 0.059
MARKET 0.052 0.052 0.055 0.055 0.056 0.057 0.058 0.061 0.058 0.052 0.061 0.066 0.081 0.057 0.055 0.054 0.058

Average 0.052 0.052 0.055 0.055 0.056 0.057 0.058 0.061 0.058 0.053 0.061 0.067 0.081 0.057 0.055 0.054 0.058



63

Table 4 – PortfolioGrossReturn StandardDeviation: the table shows the average standard deviation obtained by the portfolios for each period
of the sample as described in section 3.2, as well as their average by portfolio selection policy and covariance specification.

MiVU MeVU MiVC MeVC NCMV2.5 NCMV5 NCMV10 VT1 VT2 VT4 RwRS1 RwRS2 RwRS4 RwR4F1 RwR4F2 RwR4F4 Average

EWMA 0.687 0.708 0.692 0.694 0.683 0.676 0.664 0.899 0.778 0.708 0.904 0.887 1.021 0.966 0.932 0.918 0.801
ORE 0.648 0.654 0.700 0.701 0.692 0.685 0.675 0.899 0.780 0.715 0.910 0.902 1.061 0.969 0.934 0.909 0.802
VECH 0.726 0.751 0.696 0.697 0.687 0.679 0.668 0.901 0.779 0.713 0.902 0.871 0.971 0.969 0.936 0.926 0.804
OGARCH 0.690 0.692 0.723 0.723 0.715 0.707 0.694 0.928 0.810 0.732 0.939 0.898 0.915 1.005 0.988 0.965 0.820
CCC 0.675 0.675 0.711 0.711 0.702 0.695 0.685 0.913 0.793 0.723 0.910 0.869 0.937 0.979 0.949 0.946 0.804
DCC 1.237 2.936 0.741 0.742 0.733 0.726 0.716 0.913 0.793 0.723 0.910 0.869 0.937 0.979 0.949 0.946 0.991
DECO 0.707 0.710 0.713 0.712 0.706 0.699 0.688 0.913 0.793 0.723 0.910 0.869 0.937 0.979 0.949 0.946 0.810
ASYDCC 0.682 0.706 0.725 0.732 0.717 0.710 0.698 1.003 0.913 0.793 0.991 1.023 1.322 1.056 1.064 1.083 0.889

Average 0.757 0.979 0.713 0.714 0.704 0.697 0.686 0.921 0.805 0.729 0.922 0.898 1.013 0.988 0.963 0.955 0.840

CORR 0.666 0.667 0.716 0.716 0.708 0.702 0.691 0.921 0.803 0.732 0.928 0.887 0.931 0.999 0.978 0.953 0.812
PARA 0.669 0.670 0.718 0.718 0.709 0.702 0.692 0.925 0.809 0.733 0.932 0.895 0.950 1.003 0.984 0.962 0.817
MARKET 0.668 0.669 0.717 0.717 0.709 0.702 0.692 0.921 0.803 0.732 0.928 0.887 0.931 0.999 0.978 0.953 0.813

Average 0.668 0.669 0.717 0.717 0.709 0.702 0.692 0.922 0.805 0.732 0.929 0.890 0.938 1.001 0.980 0.956 0.814
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Table 5 – Portfolio Turnover: the table shows the average turnover obtained by the portfolios for each period of the sample as described in
section 3.2, as well as their average by portfolio selection policy and covariance specification.

MiVU MeVU MiVC MeVC NCMV2.5 NCMV5 NCMV10 VT1 VT2 VT4 RwRS1 RwRS2 RwRS4 RwR4F1 RwR4F2 RwR4F4 Average

EWMA 0.296 0.307 0.074 0.074 0.077 0.079 0.083 0.016 0.027 0.046 0.021 0.031 0.042 0.017 0.028 0.046 0.079
ORE 0.089 0.090 0.023 0.023 0.024 0.025 0.027 0.008 0.010 0.014 0.016 0.019 0.021 0.011 0.013 0.018 0.027
VECH 0.473 0.496 0.141 0.139 0.145 0.149 0.158 0.030 0.055 0.095 0.032 0.055 0.082 0.030 0.054 0.093 0.139
OGARCH 0.051 0.052 0.031 0.032 0.032 0.034 0.037 0.011 0.014 0.014 0.018 0.025 0.035 0.013 0.019 0.032 0.028
CCC 0.403 0.393 0.216 0.216 0.222 0.228 0.238 0.055 0.112 0.206 0.056 0.108 0.185 0.053 0.100 0.180 0.186
DCC 1.828 4.156 0.300 0.296 0.307 0.314 0.329 0.055 0.112 0.206 0.056 0.108 0.185 0.053 0.100 0.180 0.537
DECO 0.264 0.261 0.209 0.210 0.215 0.221 0.227 0.055 0.112 0.206 0.056 0.108 0.185 0.053 0.100 0.180 0.166
ASYDCC 0.410 0.404 0.170 0.163 0.174 0.178 0.186 0.029 0.055 0.112 0.031 0.052 0.059 0.028 0.051 0.093 0.137

Average 0.477 0.770 0.146 0.144 0.150 0.154 0.161 0.032 0.062 0.112 0.036 0.063 0.099 0.032 0.058 0.103 0.162

CORR 0.019 0.021 0.005 0.005 0.005 0.005 0.006 0.007 0.006 0.005 0.016 0.019 0.023 0.010 0.011 0.012 0.011
PARA 0.021 0.022 0.005 0.005 0.005 0.006 0.006 0.007 0.006 0.005 0.016 0.019 0.022 0.010 0.011 0.012 0.011
MARKET 0.021 0.022 0.005 0.005 0.005 0.006 0.006 0.007 0.006 0.005 0.016 0.019 0.023 0.010 0.011 0.012 0.011

Average 0.020 0.022 0.005 0.005 0.005 0.006 0.006 0.007 0.006 0.005 0.016 0.019 0.023 0.010 0.011 0.012 0.011
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Table 6 – Sharpe ratios based on portfolio gross returns: the table shows the Sharpe ratio for the portfolios, in the absence of transaction costs
for the whole sample as described in section 3.2. The asterisks represent the ratios that, when compared to the index of benchmark
specification PARA, reject the hypothesis of equality when applied the test proposed by Ledoit &Wolf (2008).

MiVU MeVU MiVC MeVC NCMV2.5 NCMV5 NCMV10 VT1 VT2 VT4 RwRS1 RwRS2 RwRS4 RwR4F1 RwR4F2 RwR4F4 Average

EWMA 0.103 0.107 0.101* 0.103* 0.104* 0.107* 0.111* 0.069 0.081* 0.090* 0.073* 0.092* 0.106* 0.061 0.065* 0.068 0.090
ORE 0.099 0.100* 0.086 0.087 0.088 0.091 0.095 0.069* 0.078* 0.080* 0.070* 0.086* 0.096 0.060* 0.062* 0.065 0.082
VECH 0.106 0.111 0.103* 0.106* 0.106* 0.108* 0.113* 0.069 0.081* 0.087* 0.071* 0.087* 0.102 0.062* 0.066* 0.072* 0.091
OGARCH 0.094 0.093 0.078 0.078 0.080 0.081 0.083 0.066 0.073 0.073 0.064 0.071 0.083 0.057 0.058 0.061 0.075
CCC 0.088 0.088 0.087 0.087 0.089 0.091 0.092 0.067 0.078 0.086 0.067 0.076 0.082 0.060 0.062 0.065 0.079
DCC 0.039 0.036 0.100 0.101 0.103 0.105 0.108 0.067 0.078 0.086 0.067 0.076 0.082 0.060 0.062 0.065 0.077
DECO 0.097 0.097 0.084 0.084 0.085 0.086 0.086 0.067 0.078 0.086 0.067 0.076 0.082 0.060 0.062 0.065 0.079
ASYDCC 0.112* 0.111* 0.101* 0.102* 0.103* 0.106* 0.110* 0.061 0.067 0.078 0.063 0.073 0.078 0.054 0.054 0.054 0.083

Average 0.092 0.093 0.093 0.093 0.095 0.097 0.100 0.067 0.077 0.083 0.068 0.080 0.089 0.059 0.061 0.064 0.082

CORR 0.078 0.078 0.076 0.076 0.078 0.080 0.083 0.066 0.073 0.072 0.066 0.075 0.087 0.057 0.057 0.056 0.072
PARA 0.079 0.078 0.077 0.077 0.080 0.081 0.084 0.066 0.072 0.072 0.065 0.075 0.087 0.057 0.056 0.056 0.073
MARKET 0.078 0.078 0.077 0.077 0.079 0.081 0.084 0.066 0.073 0.072 0.066 0.075 0.087 0.057 0.057 0.056 0.073

Average 0.078 0.078 0.077 0.077 0.079 0.081 0.084 0.066 0.072 0.072 0.065 0.075 0.087 0.057 0.057 0.056 0.073

Table 7 – Portfolio 1/N Statistics: the table shows the descriptive statistics for the 1/N portfolio: average return, standard deviation of the
returns, turnover and the Sharpe Index of the net returns when the transaction costs is 0bp, 10bp, 20bp and 50bp.

Average Return Standard Deviation Turnover Sharpe 0bp Sharpe 10bp Sharpe 20bp Sharpe 50bp
0.060 1.112 0.008 0.054 0.054 0.053 0.051
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Table 8 – Break-even transaction costs: the table shows the lowest transaction cost, in basis points, so that the average return of the portfolio is
less or equal to zero. That is, when subject to transaction costs lower than the ones in the table, the portfolios have positive average
net return.

MiVU MeVU MiVC MeVC NCMV2.5 NCMV5 NCMV10 VT1 VT2 VT4 RwRS1 RwRS2 RwRS4 RwR4F1 RwR4F2 RwR4F4 Average

EWMA 25 25 95 98 94 93 90 403 241 141 321 267 260 353 223 140 179.3
ORE 72 73 261 267 253 249 238 749 626 408 416 415 498 566 457 337 367.8
VECH 17 17 52 54 51 50 48 214 116 66 202 140 123 202 117 74 96.4
OGARCH 129 125 184 177 179 173 159 565 434 387 334 256 217 459 311 191 267.5
CCC 16 16 30 29 29 28 27 113 56 31 111 63 42 115 61 36 50.2
DCC 3 3 26 26 25 25 24 113 56 31 111 63 42 115 61 36 47.5
DECO 27 27 30 29 29 28 27 113 56 31 111 63 42 115 61 36 51.6
ASYDCC 19 20 44 47 43 43 42 217 113 56 203 148 179 208 115 65 97.6

Average 38.5 38.3 90.3 90.9 87.9 86.1 81.9 310.9 212.3 143.9 226.1 176.9 175.4 266.6 175.8 114.4 144.7

CORR 270 248 1194 1172 1140 1064 926 850 974 1173 392 350 362 597 525 454 730.7
PARA 254 235 1167 1126 1101 1032 923 847 967 1162 392 352 373 596 525 452 719.0
MARKET 254 235 1180 1146 1126 1036 932 850 974 1173 392 350 362 597 525 454 724.1

Average 259.3 239.3 1180.3 1148.0 1122.3 1044.0 927.0 849.0 971.7 1169.3 392.0 350.7 365.7 596.7 525.0 453.3 724.6
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Table 9 – Break-even of the Sharpe ratio against the benchmark PARA: the table shows the lowest transaction cost, in basis points, that makes
the Sharpe ratio of each portfolio when compared to the benchmark PARA through the test proposed by Ledoit & Wolf (2008)
reject the null hypothesis that the ratios are equal. Therefore, when the portfolios are subject to transaction costs higher than the
ones in the table, the portfolios have Sharpe ratios lower and different than the benchmark. The ’X’ in the table are portfolios that
are always superior to the benchmark. It is important to associate this table with table 6. The various ratios presented in table 6 that
are not statistically different from the benchmark continue not to be until the value presented in this table. So the majority of the
portfolios did not present a Sharpe ratio greater than benchmark for any transaction cost.

MiVU MeVU MiVC MeVC NCMV2.5 NCMV5 NCMV10 VT1 VT2 VT4 RwRS1 RwRS2 RwRS4 RwR4F1 RwR4F2 RwR4F4 Average

EWMA 15 17 41 43 41 41 40 79 62 52 200 208 215 106 88 71 82.4
ORE 38 41 71 79 68 68 72 387 190 106 X X X 583 387 260 334.4
VECH 11 12 23 25 23 23 22 31 26 22 58 57 62 41 37 36 31.8
OGARCH 96 98 19 19 18 18 17 67 48 34 56 34 36 74 68 72 48.4
CCC 7 8 9 9 9 9 8 14 11 11 16 12 10 18 17 16 11.5
DCC 2 2 12 13 12 12 11 14 11 11 16 12 10 18 16 15 11.7
DECO 16 17 9 9 8 8 7 14 11 11 16 12 10 18 16 15 12.3
ASYDCC 12 12 19 22 19 19 20 10 14 17 23 44 82 13 16 20 22.6

Average 24.6 25.9 25.4 27.4 24.8 24.8 24.6 77.0 46.6 33.0 173.1 172.4 178.1 108.9 80.6 63.1 69.4
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Figure 1 – Evolution of Sharpe ratio with the increase of transaction cost for the MinimumVariance andMean Variance Portfolios: the graph
shows how the transaction cost reduces the Sharpe ratio for each portfolio. Each graph compares a covariance specification with the
benchmark PARA using the test proposed by Ledoit &Wolf (2008). The dotted line indicates the part where the result of the test
do not rejects the null hypothesis that the ratios are different from each other.
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Figure 2 – Evolution of Sharpe ratio with the increase of transaction cost for the portfolios that ignore covariance: the graph shows how the
transaction cost reduces the Sharpe ratio for each portfolio. Each graph compares a covariance specification with the benchmark
PARAusing the test proposed by Ledoit &Wolf (2008). The dotted line indicates the part where the result of the test do not rejects
the null hypothesis that the ratios are different from each other.
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Figure 3 – Portfolio contribution in the DMA strategy: the graph shows the contribu-
tion of each portfolio in the weights of the combination portfolio DMA at
the transaction costs 0bp, 10bp, 20bp and 50bp. Each bar shows, in aggre-
gate, the contribution of each portfolio for the weights of the DMA across
all periods. The policies are: 1 - 1/N ; 2 - MiVU; 3 - MeVU; 4 - MiVC; 5 -
MeVC; 6 - NCMV2.5; 7 - RwRS1; 8 - VT1; 9 - RwR4F1. The covariances
are: 1 - EWMA; 2 - ORE; 3 - VECH; 4 - OGARCH; 5 - CCC; 6 - DCC; 7 -
DECO; 8 - ASYDCC; 9 - CORR; 10 - PARA; 11 - MARKET.
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Figure 4 – Portfolio participation in the DMS strategy: the graph shows the partici-
pation of each portfolio in the weights of the combination portfolio DMS
at the transaction costs 0bp, 10bp, 20bp and 50bp. Each bar shows the per-
centage of times an specific portfolio was selected as theweights of theDMS
portfolio. The policies are: 1 - 1/N ; 2 - MiVU; 3 - MeVU; 4 - MiVC; 5 -
MeVC; 6 - NCMV2.5; 7 - RwRS1; 8 - VT1; 9 - RwR4F1. The covariances
are: 1 - EWMA; 2 - ORE; 3 - VECH; 4 - OGARCH; 5 - CCC; 6 - DCC; 7 -
DECO; 8 - ASYDCC; 9 - CORR; 10 - PARA; 11 - MARKET.
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Figure 5 – Evolution of Sharpe ratio with the increase of transaction cost in the DMA
strategy - the Minimum Variance and Mean Variance Portfolios: the graph
shows how the transaction cost reduces the Sharpe ratio for each portfolio.
Each graph compares a covariance specificationwith theDMAportfolio us-
ing the test proposed by Ledoit & Wolf (2008). The dotted line indicates
the part where the result of the test do not rejects the null hypothesis that
the ratios are different from each other.
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Figure 6 – Evolution of Sharpe ratio with the increase of transaction cost in the DMA
strategy - portfolio policies that ignore covariance: the graph shows how the
transaction cost reduces the Sharpe ratio for each portfolio. Each graph com-
pares a covariance specification with the DMA portfolio using the test pro-
posed byLedoit&Wolf (2008). The dotted line indicates the partwhere the
result of the test donot rejects the null hypothesis that the ratios are different
from each other.
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Figure 7 – Evolution of Sharpe ratio with the increase of transaction cost in the DMS
strategy - Minimum Variance and Mean Variance Portfolios: the graph
shows how the transaction cost reduces the Sharpe ratio for each portfolio.
Each graph compares a covariance specificationwith theDMAportfolio us-
ing the test proposed by Ledoit & Wolf (2008). The dotted line indicates
the part where the result of the test do not rejects the null hypothesis that
the ratios are different from each other.
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Figure 8 – Evolution of Sharpe ratio with the increase of transaction cost in the DMS
strategy - portfolio policies that ignore covariance: the graph shows how the
transaction cost reduces the Sharpe ratio for each portfolio. Each graph com-
pares a covariance specification with the DMA portfolio using the test pro-
posed byLedoit&Wolf (2008). The dotted line indicates the partwhere the
result of the test donot rejects the null hypothesis that the ratios are different
from each other.
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Table 10 – Break-even transaction cost for null average portfolio returnwith weekly rebalancing: the table shows the lowest transaction cost, in
basis points, so that the average return of the portfolio is less or equal to zero, with weekly rebalancing. Meaning that when subject
to transaction costs lower than the ones one the table, the portfolios have positive average net return. And when subject to higher
transaction costs, average net return negative.

MiVU MeVU MiVC MeVC NCMV2.5 NCMV5 NCMV10 VT1 VT2 VT4 RwRS1 RwRS2 RwRS4 RwR4F1 RwR4F2 RwR4F4 Average

EWMA 40 41 160 163 158 155 150 468 327 216 419 380 388 420 305 216 250.4
ORE 99 99 365 370 353 347 331 747 667 495 531 554 674 607 527 435 450.1
VECH 30 30 91 94 90 88 85 292 182 113 289 225 208 278 183 126 150.3
OGARCH 176 170 279 270 271 262 242 615 527 514 441 372 346 521 404 293 356.4
CCC 27 27 58 58 57 56 53 186 104 60 187 121 87 186 112 70 90.6
DCC 7 4 46 46 46 45 44 186 104 60 187 121 87 186 112 70 84.4
DECO 48 48 57 56 54 53 50 186 104 60 187 121 87 186 112 70 92.4
ASYDCC 35 35 82 88 81 80 78 305 186 104 298 245 311 290 185 118 157.6

Average 57.8 56.8 142.3 143.1 138.8 135.8 129.1 373.1 275.1 202.8 317.4 267.4 273.5 334.3 242.5 174.8 204.0

CORR 273 254 1196 1172 1143 1074 942 848 970 1163 509 490 552 637 584 543 771.9
PARA 258 242 1173 1141 1113 1047 934 845 963 1152 508 492 563 635 584 539 761.8
MARKET 259 241 1184 1154 1132 1050 943 848 970 1163 509 490 552 637 584 543 766.2

Average 263.3 245.7 1184.3 1155.7 1129.3 1057.0 939.7 847.0 967.7 1159.3 508.7 490.7 555.7 636.3 584.0 541.7 766.6
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Table 11 – Break-even transaction cost for null average portfolio return with monthly rebalancing: the table shows the lowest transaction cost,
in basis points, so that the average return of the portfolio is less or equal to zero, with monthly rebalancing. Meaning that when
subject to transaction costs lower than the ones one the table, the portfolios have positive average net return. And when subject to
higher transaction costs, average net return negative.

MiVU MeVU MiVC MeVC NCMV2.5 NCMV5 NCMV10 VT1 VT2 VT4 RwRS1 RwRS2 RwRS4 RwR4F1 RwR4F2 RwR4F4 Average

EWMA 71 70 292 297 285 278 267 580 476 353 557 562 620 523 430 336 374.8
ORE 138 138 537 544 522 508 480 770 749 639 644 706 872 654 605 542 565.5
VECH 54 54 190 194 185 181 169 433 318 223 440 392 393 401 298 221 259.1
OGARCH 232 221 450 440 436 416 383 680 649 692 551 500 501 594 515 419 479.9
CCC 65 67 159 162 156 152 144 346 232 157 354 285 268 328 222 150 202.9
DCC 12 7 106 106 104 101 96 346 232 157 354 285 268 328 222 150 179.6
DECO 98 100 151 150 145 140 131 346 232 157 354 285 268 328 222 150 203.6
ASYDCC 71 69 190 203 189 186 181 470 346 232 461 451 682 430 314 216 293.2

Average 92.6 90.8 259.4 262.0 252.8 245.3 231.4 496.4 404.3 326.3 464.4 433.3 484.0 448.3 353.5 273.0 319.8

CORR 279 263 1211 1193 1158 1090 966 847 967 1159 621 634 744 674 643 631 817.5
PARA 265 251 1192 1169 1133 1071 956 845 961 1149 620 635 752 673 641 624 808.6
MARKET 265 250 1202 1182 1149 1080 963 847 967 1159 621 634 744 674 643 631 813.2

Average 269.7 254.7 1201.7 1181.3 1146.7 1080.3 961.7 846.3 965.0 1155.7 620.7 634.3 746.7 673.7 642.3 628.7 813.1
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Table 12 – Break-even transaction cost for null average portfolio return with different rebalancing frequencies: this table repeats the averages
presented in tables 8, 10 and 11 together for easy comparison

MiVU MeVU MiVC MeVC NCMV2.5 NCMV5 NCMV10 VT1 VT2 VT4 RwRS1 RwRS2 RwRS4 RwR4F1 RwR4F2 RwR4F4 Average

Daily
Dynamic 38.5 38.3 90.3 90.9 87.9 86.1 81.9 310.9 212.3 143.9 226.1 176.9 175.4 266.6 175.8 114.4 144.7
Static 259.3 239.3 1180.3 1148.0 1122.3 1044.0 927.0 849.0 971.7 1169.3 392.0 350.7 365.7 596.7 525.0 453.3 724.6

Weekly
Dynamic 57.8 56.8 142.3 143.1 138.8 135.8 129.1 373.1 275.1 202.8 317.4 267.4 273.5 334.3 242.5 174.8 204.0
Static 263.3 245.7 1184.3 1155.7 1129.3 1057.0 939.7 847.0 967.7 1159.3 508.7 490.7 555.7 636.3 584.0 541.7 766.6

Monthly
Dynamic 92.6 90.8 259.4 262.0 252.8 245.3 231.4 496.4 404.3 326.3 464.4 433.3 484.0 448.3 353.5 273.0 319.8
Static 269.7 254.7 1201.7 1181.3 1146.7 1080.3 961.7 846.3 965.0 1155.7 620.7 634.3 746.7 673.7 642.3 628.7 813.1
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Table 13 – Break-even transaction cost for null average portfolio return with different risk aversions (γ): the table shows the lowest transaction
cost, in basis points, so that the average return of the portfolio is less or equal to zero, when the portfolio selection policy consider
different risk aversion parameter values. Meaning that when subject to transaction costs lower than the ones one the table, the
portfolios have positive average net return. And when subject to higher transaction costs, average net return negative.

λ = 1 λ = 2
MeVU MeVC NCMV2.5 NCMV5 NCMV10 MeVU MeVC NCMV2.5 NCMV5 NCMV10

EWMA 25 98 94 93 90 25 96 94 92 88
ORE 73 267 253 249 238 73 265 255 246 236
VECH 17 54 51 50 48 17 53 51 50 48
OGARCH 125 177 179 173 159 127 181 181 174 159
CCC 16 29 29 28 27 16 29 29 28 27
DCC 3 26 25 25 24 3 26 25 25 24
DECO 27 29 29 28 27 27 29 29 28 27
ASYDCC 20 47 43 43 42 20 45 43 43 41
CORR 248 1172 1140 1064 926 262 1189 1133 1074 949
PARA 235 1126 1101 1032 923 247 1158 1109 1047 924
MARKET 235 1146 1126 1036 932 248 1174 1120 1059 943

Average 93.1 379.2 370.0 347.4 312.4 96.8 385.9 369.9 351.5 315.1

λ = 5 λ = 10
MeVU MeVC NCMV2.5 NCMV5 NCMV10 MeVU MeVC NCMV2.5 NCMV5 NCMV10

EWMA 25 96 93 91 87 25 96 93 91 87
ORE 73 262 255 249 237 73 262 255 250 237
VECH 17 52 51 49 47 17 52 51 49 47
OGARCH 128 183 181 174 159 129 183 181 174 159
CCC 16 29 29 28 27 16 29 29 28 27
DCC 3 26 25 25 24 3 26 25 25 24
DECO 27 30 29 28 27 27 30 29 28 27
ASYDCC 19 44 43 42 40 19 44 43 42 40
CORR 267 1193 1136 1078 958 269 1194 1136 1078 960
PARA 252 1165 1112 1052 934 253 1165 1113 1053 936
MARKET 253 1180 1126 1065 952 254 1180 1127 1061 952

Average 98.2 387.3 370.9 352.8 317.5 98.6 387.4 371.1 352.6 317.8
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Table 14 – Assets Considered and its four first moments: the table shows which assets
were utilized to compose the sample used in the study and their first four
moments. We used daily data from 01/2004 to 01/2014. We can observe in
the table some of the stylized facts of financial time series: the returns series
present asymmetry showing that returns are stronger in one direction than
in the other; all the assets have high kurtosis when compared to the normal
distribution whose kurtosis is 3.

Ticker Company Mean Variance Asymmetry Kurtosis

AAPL Apple Inc. 0.159 5.445 -0.092 7.968
BAC Bank of America Corp -0.026 13.051 -0.307 24.099
MSFT Microsoft Corporation 0.024 2.881 0.082 14.252
INTC Intel Corporation 0.002 3.654 -0.308 8.000
CSCO Cisco Systems. Inc. -0.001 4.025 -0.404 13.272
GE General Electric Company 0.009 3.783 -0.012 14.653
F FordMotor Company 0.004 8.980 -0.075 18.679
PFE Pfizer Inc. 0.010 2.277 -0.357 11.060
ORCL Oracle Corporation 0.044 3.583 -0.042 8.336
WFC Wells Fargo & Co 0.029 8.662 0.878 24.915
JPM JPMorgan Chase & Co. 0.029 7.398 0.337 18.011
C Citigroup Inc -0.080 14.564 -0.480 36.052
EMC EMCCorporation 0.026 4.166 0.194 7.124
T AT&T Inc. 0.032 1.995 0.528 14.249
XOM ExxonMobil Corporation 0.045 2.532 0.016 17.286
FCX Freeport-McMoRan Inc 0.038 10.390 -0.497 8.497
CMCSA Comcast Corporation 0.039 3.827 0.042 16.210
HPQ Hewlett-Packard Company 0.013 4.413 -0.481 15.320
KO The Coca-Cola Co 0.031 1.372 0.427 16.323
GILD Gilead Sciences. Inc. 0.093 4.032 -0.126 9.436
QCOM QUALCOMM. Inc. 0.046 4.058 0.001 9.491
MS Morgan Stanley -0.010 12.801 1.635 53.171
EBAY eBay Inc 0.022 5.593 -0.010 10.961
VZ Verizon Communications Inc. 0.037 1.897 0.303 11.446
HAL Halliburton Company 0.059 6.861 -0.504 10.038
MRK Merck & Co.. Inc. 0.019 3.291 -2.412 46.201
WMT Wal-Mart Stores. Inc. 0.024 1.463 0.144 10.106
TXN Texas Instruments Incorporated 0.022 3.795 -0.257 6.888
ABT Abbott Laboratories 0.038 1.642 0.089 9.418
HD Home Depot Inc 0.043 3.036 0.406 7.956
COP ConocoPhillips 0.054 3.748 -0.457 10.739
MO Altria Group Inc 0.066 1.627 -0.171 20.595
USB U.S. Bancorp 0.025 5.727 -0.024 19.092
LOW Lowe’s Companies. Inc. 0.029 3.911 0.287 7.734
JNJ Johnson & Johnson 0.034 1.020 0.584 16.367
BMY Bristol-Myers Squibb Co 0.042 2.157 0.083 8.260
DIS Walt Disney Co 0.052 3.116 0.412 11.689
PG Procter & Gamble Co 0.030 1.261 -0.187 10.414
SLB Schlumberger Limited. 0.052 5.713 -0.554 10.360
CVX Chevron Corporation 0.055 2.901 0.074 17.512
SBUX Starbucks Corporation 0.064 4.504 0.275 8.587
CVS CVSHealth Corp 0.059 2.929 -1.073 21.903
MDLZ Mondelez International Inc 0.032 1.606 -0.122 8.323
AXP American Express Company 0.037 6.019 0.069 14.596
DOW Dow Chemical Co 0.017 5.462 -0.433 11.118
UNH UnitedHealth Group Inc. 0.040 4.811 0.417 27.028
GS Goldman Sachs Group Inc 0.028 6.317 0.304 18.093
AMGN Amgen. Inc. 0.026 2.789 0.729 12.046
TWX TimeWarner Inc 0.023 3.565 -0.645 20.400
CAT Caterpillar Inc. 0.041 4.474 -0.198 8.585
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