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RESUMO

O desenvolvimento de véıculos aéreos não tripulados (VANTs) vem
despertando um grande interesse tanto no meio acadêmico quanto
na indústria nas últimas décadas. Muitos campos da robótica e da
teoria de controle controle vem sendo explorados visando melhorar
o desempenho destes sistemas. Existem vários cenários onde estas
aeronaves são utilizadas, tais como monitoramento de ambientes,
agricultura de precisão, busca e resgate, entre outras. Dentre as
diferentes aplicações destas aeronaves temos o transporte de carga
suspensa por cabo, o qual tem promovido várias pesquisas relacionadas
com transporte de alimentos, medicamentos e suprimentos em geral,
para zonas de risco. Neste sentido, este trabalho tem como foco
o uso de VANTs em tarefas de transporte de carga, considerando
perturbações externas e incertezas paramétricas. A aeronave utilizada é
um birotor na configuração Tilt-rotor que carrega uma carga suspensa.
Um Tilt-rotor é um véıculo movimentado por dois rotores inclináveis, os
quais geram e direcionam forças de impulso para sustentar a aeronave.
Neste estudo, é importante que a aeronave seja capaz de seguir uma
trajetória predefinida enquanto estabiliza a carga suspensa mesmo
quando afetada por perturbações externas ou incertezas paramétricas.
Além disso, um modelo não linear multicorpo é obtido via formulação
Euler-Lagrange para o VANT Tilt-rotor considerando a carga suspensa.
Neste modelo foi considerado que a aeronave é composta por quatro
corpos ŕıgidos e tem dez graus de liberdade. O problema de controle
é solucionado com um controlador preditivo (MPC) incremental e um
não incremental, baseados no modelo linear do erro do sistema, o qual
é linearizado em torno a uma trajetória genérica. Além disso, os MPCs
consideram custo terminal, com o objetivo de garantir estabilidade
e por consequência reduzir o horizonte de predição. Devido ao fato
do sistema linear ser variante no tempo (LVT), o custo terminal é
calculado mediante desigualdades matriciais lineares (LMI). Por outro
lado, restrições são impostas na formulação do MPC, relacionadas
com as limitações f́ısicas dos atuadores e considerando que o VANT
está confinado numa área espećıfica. Finalmente, simulações foram
realizadas para avaliar o desempenho dos controladores propostos,
considerando perturbações constantes em diferentes instantes de tempo,
e levando em conta incertezas paramétricas.

Palavras-chave: VANT, Tilt-rotor, Carga Suspensa, Transporte de



Carga, MPC, Custo Terminal, Seguimento de Trajetória



ABSTRACT

The development of unmanned aerial vehicles (UAVs) has aroused
great interest in both academia and industry in the recent decades.
Many aereas of robotics and control theory have been exploited to
improve the performance of these systems. There are several scenarios
where these aerial vehicles are used, like monitoring environment,
precision agriculture, construction, search and rescue. Transportation
of cable-suspended loads with UAVs is another application. This has
promoted research related to load transportation of food, medicine,
and supplies in general for unsafe areas. This research is focused on
this topic, where it is necessary that the UAV follows a predefined
trajectory while stabilizing the suspended load, even if it is affected
by external disturbances. In this dissertation, two model predictive
controllers (MPCs) are used to solve the path tracking problem of a
small scale Tilt-rotor Unmanned Aerial Vehicle (UAV) while carrying
a suspended load. A Tilt-rotor is a vehicle lifted and propelled by
two tiltable rotors, in order to control the direction of thrust forces.
In the present study, it is important that the aircraft able to follow a
predefined trajectory while maintaining the suspended load stable even
in the presence of external disturbances and parametric uncertainties.
Moreover, a rigorous multibody non-linear dynamic model is obtained
via Euler-Lagrange formulation for the Tilt-rotor UAV with suspended
load, assuming four rigid bodies and ten degrees of freedom (DOF)
of the vehicle. The control problem is solved with incremental and
non-incremental model predictive controllers, based on the linear error
model of the system, which is linearized around a generic trajectory.
Furthermore, the MPCs consider a terminal cost in order to ensure
stability, allowing the prediction horizon reduction. As the linear model
is a linear time-varying (LTV) system, the terminal cost is calculated
via linear matrix inequalities (LMI). In addition, some constraints
are imposed on the formulation, related to physical limitations of the
actuators and assuming that the aircraft is confined to a particular
area. Finally, numerical simulations are performed in order to evaluate
the controllers, considering constant disturbances at different instants
of time, and modeling errors.

Keywords: UAV, Tilt-rotor, Suspended Load, Cargo Transportation,
MPC, Terminal Cost, Path Traking
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1 INTRODUCTION

In recent years, the use of unnamed aerial vehicles (UAVs) has
grown tremendously, mainly because of the technological innovation
in fields like design of controllers and estimators, availability of
highly-accurate on-chip sensors and GPS at low cost and extensive
development of single board computers with increasingly powerful
features (PAPACHRISTOS et al., 2011).

Initially, these vehicles were widely used in military applications,
due to its flexibility and ability to transmit real-time intelligence,
surveillance, and reconnaissance information from hostile areas
(KEANE; CARR, 2013). However, in recent years, UAVs began to
be used in civilian applications, promoting much research. These
vehicles have shown potential for missions like remote sensing, cargo
transportation, search and rescue.

Many researches have been produced for cargo transportation
tasks due to the great need to carry loads such as food, medicine
and general supplies to disaster and war zones, or areas of biological
and chemical risk. In this field, for example, quad-rotors UAVs have
demonstrated the ability to carry loads up to 100% of their own weight
(FAUST et al., 2014).

It is possible to identify two big groups of UAV architectures
in the literature: fixed wing and rotary wing. Fixed wings are
characterized by high autonomy and high speed; on the other
hand, rotary wings, namely helicopters, are characterized by high
maneuverability and vertical takeoff and landing. However, lately there
has been considered the Tilt-rotor aircraft, which is an aerial vehicle
in the middle of these two architectures, propelled by two tiltable
rotors. This type of aircraft has been developed since 1930 and is
currently used in military and civilian applications. One of the most
notable is the Bell-Boeing V-22 Osprey, which is used by US military
to perform several kinds of missions and transportation of troop or
military equipment, as shown in Figure 1. However, the use of this
class of vehicles as UAVs has been studied only in the last decade.
Nowadays, there are some Tilt-rotor UAVs already developed, such as
TR918 Eagle Eye shown in Figure 2, which began to be built in 1993
and was released in its final version in 1998. This was designed and
built for Bell by the research company Scaled Composites.
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Figure 1 – Bell-Boeing V-22 Osprey in cargo transportation task

Figure 2 – Bell Eagle Eye TiltRotor UAV (UAVGLOBAL, 2008)

Other current examples of such vehicles are shown in Figure 3.
The UAV developed by Korea Aerospace Research Institute (KARI)
(Figure 3a) can be used in civil and military applications. In Figure 3b,
it is shown the Panter Tilt-rotor UAV, developed by Israel Aerospace
Industries (IAI), which differs from others by having the motors
displaced forward with respect to the fixed wing. Finally, Figure
3c shows one of the last developments of American Dynamics Flight
Systems: The Tilt-rotor AD-150 UAV, characterized by the use of a
ducted fan to increase control during hover and transition to forward
flight.
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(b) (c )

(a )

Figure 3 – (a) TiltRotor UAV developed by KARI (SUNG-KI, 2011) ; (b)
Tilt-rotor Panther UAV (OPLI, 2012); (c) American Dynamics AD-150
UAV (GINGICHASHVILI, 2009)

1.1 MOTIVATION

The development of UAVs involves multiple design challenges,
especially in terms of algorithms development for control and
localization, which have strict real-time and fast calculation
requirements. Commonly, a control cascade structure is applied to
UAVs, where it is used at least two control loops with different
time scales i.e. translation and rotation subsystems controlled with
input-output feedback linearization. For the system control complies
with the design specifications, the embedded system must ensure that
the signals from each control loop will be calculated within the specified
time intervals.

It should be considered that due to the electromechanical design
of the UAVs, most of these vehicles are underactuated mechanical
systems, inherently unstable system with complex nonlinear dynamics.
Furthermore, the addition of a suspended load further complicates the
system’s dynamics (FAUST et al., 2014).
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It is noted, however, that the development of control systems
for these vehicles is not trivial, increasing the difficulty when the
stabilization of the suspended load is considered, which can cause
instability of the UAV. Moreover, the UAVs have a highly nonlinear
and time-varying behavior and are constantly affected by aerodynamic
disturbances. In addition, they are subjected to error modeling and
parametric uncertainties. This means that classical and linear control
laws may have certain limitations with respect to its attraction domain,
causing instability when the system does not operate near of the
equilibrium point. Therefore, advanced control strategies are needed
to achieve good performance in autonomous flights, or at least to assist
in piloting the vehicle with high maneuverability and robustness with
respect to external disturbances (RAFFO, 2011).

Underactuated systems generate complexity and extra challenge
in the control area. In this way, techniques developed for fully
actuated robots cannot be directly applied to these types of mechanical
systems, since most underactuated systems are not fully linearizables
by feedback and present non-holonomic constraints. This is the reason
why techniques of nonlinear modeling and modern control theories are
usually employed to achieve autonomous flight with high performance
and under specific conditions, such as hovering, landing, take off, etc
(RAFFO, 2011).

However, the problem with nonlinear control methods is that
none of them are capable of dealing explicitly with operational
constraints prevalent in a control system. Recently, the model
predictive control, which is the most advanced control used in the
industry apart from PID, could be implemented into faster dynamic
systems, due to the development of fast MPC algorithms. The
advantage of this formulation is the capability to explicit deal with
the constraints of the system and calculate an optimal control action
(FAUST et al., 2014).

In some missions, it is necessary to reach higher speed to
cover long distances in a short period of time while keeping the
high maneuverability provided by rotary-wing aircrafts. From these
requirements, a proper aircraft is based on the Tilt-rotor configuration,
which can switch between two modes: rotary-wing and fixed-wing, as
presented in Figure 4 .

This is the most advantageous characteristic in this UAV
configuration, since in the airplane mode, it can reach more velocity
comparing with standard helicopters and quad-rotors providing greater
autonomy. Also, the helicopter mode presents some advantageous
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Figure 4 – Tilt-rotor flight modes (HOWARD, 2014; OSBORN, 2015)

characteristics as follows:

1. As this aircraft is lifted and propelled by two rotors, it is possible
to reduce the size of each rotor and keep the load capacity,
compared to a helicopter having a main rotor.

2. Due to the reduction of propellers, it is possible to reduce energy
consumption when compared with the quadrotor helicopter.

3. The simplicity of the mechanical design by using electrical motors
with fixed angles of attack propellers provides movement control
through the direct transmission of the rotors, varying the speed
and tilting them. In a standard helicopter, the angular velocity of
the blades is generally constant, where the movement is controlled
by varying the angle of attack of the blades (cyclic and collective).
This requires transmission between the rotors, as well as precise
mechanical devices, in order to change the mentioned angles.

4. Electrical UAVs are an interesting type of vehicle to use inside
buildings, due to the use of electric motors instead of combustion
engines since they do not pollute the air with combustion residues.

5. Compared to a fixed wing aircraft, this UAV maintains the
characteristics of vertical takeoff and landing.

In this context, some researches began to be developed around
this kind of vehicle. One of these researches is the ProVANT project,
which is a brazilian project conformed by the Automation and Systems
Department (DAS) of the Federal University of Santa Catarina (UFSC)



6

and the Electronic Engineering Department (DELT) of the Federal
University of Minas Gerais (UFMG). The main objective of this
research is to develop a small-scale Tilt-rotor aircraft. The study
presented in this work is part of one research target, which is to use
the UAV for load transportation tasks.

1.2 STATE OF THE ART

In recent years, the autonomy and flexibility of unmanned aerial
vehicles have rapidly increased, allowing the use of this kind of aircraft
in many dangerous missions, such as search and rescue. These missions
often require cargo transportation of sensors, medicines, supplies, food,
among other loads, in which multi-rotors UAVs are well-suitable. It
is due to the their high maneuverability, vertical take-off and landing
(VTOL) in small areas and hovering capacities, added to the extra
power generated by multi-propellers.

1.2.1 UAV For Load Trasportation

Suspended load systems have being extensively studied in the
literature. However, researches on suspended load transportation using
UAVs are recent. In Palunko, Cruz & Fierro (2012) and Sreenath,
Michael & Kumar (2013) quadrotors are used to carry suspended loads,
in which path planning algorithms are proposed in order to minimize
the load swing avoiding that the quadrotor becomes unstable.

Additionally, some works consider the suspended load dynamics
into the mathematical model. In Sadr, Moosavian & Zarafshan
(2014) the equations of motion are obtained through the Newton-Euler
formulation, for which a feedback linearization controller is designed to
control only the attitude and position of the quadrotor. In Pizetta,
Brandao & Sarcinelli-Filho (2015) the model of a plannar vertical
take-off and landing (PVTOL) aircraft-like quadrotor is obtained
based on the Euler-Lagrange approach for the XZ motion, and a
feedback linearization controller is proposed. In Sreenath, Lee &
Kumar (2013) and Cruz, Oishi & Fierro (2015) the tracking problem
of the suspended load is handled considering the differential flatness
properties of the dynamic model. In Sreenath, Lee & Kumar (2013)
a nonlinear geometric controller is designed to stabilize the attitude
of the quadrotor and the load, while performing path tracking of the
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suspended load. In Cruz, Oishi & Fierro (2015) a linear geometric
control law is proposed for the load path tracking problem.

Researches on small tilt-rotor UAVs have started in the last
decade. In Sanchez et al. (2008) a back-stepping control law based
on a dynamic model obtained through the Newton-Euler formulation
is proposed. Furthermore, the proposed model does not consider the
dynamics generated by the rotor when tilting. However, regarding this
kind of aircraft the coupling between the main body and the rotors body
is not negligible. For this reason, in Donadel, Raffo & Becker (2014),
a multibody dynamic model, obtained via Euler-Lagrange formulation,
considering the rotor’s dynamics is developed. A linear mixed H2/H∞
controller based on the linearized model is designed in order to perform
path tracking, considering robustness requirements.

In Almeida et al. (2014) the equations of motion of the tilt-rotor
UAV are extended considering the suspended load dynamics. A linear
control law is designed based on the D-Stability and H∞ requirements
to solve the path tracking problem of the tilt-rotor UAV while carrying
a suspended load.

In Machado & Raffo (2015), a suspended load stabilization
with a quad-rotor using visual feedback is proposed. In this paper,
it is presented an integrated platform with an AR.Drone quad-rotor
implementing an algorithm for navigation using a front camera, and
position estimation using a bottom camera. Two controllers are
proposed for load transportation. Firstly, a PID to control the
XY motion. Secondly, PI controllers were increased to control load
velocities.

In Almeida & Raffo (2015), a non-linear control for Tilt-rotor
UAV carrying a suspended load is presented. It proposes a three-level
cascade control using input-output feedback linearization; the first two
levels are responsible for controlling the attitude and altitude of the
aircraft, and the third level for performing the path tracking while the
suspended load is stabilized.

1.2.2 Model Predictive Control

Additionally, model predictive control strategies have been also
studied to control UAVs and to perform load transportation. Raffo,
Ortega & Rubio (2010) proposes a model predictive controller (MPC)
to track a reference trajectory. This MPC works in cascade with a
nonlinear H∞ controller to stabilize the rotational movements of a
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quadrotor helicopter.
Papachristos et al. (2011) design a model predictive controller for

controlling the attitude of a tilt-rotor UAV. Nevertheless, this controller
is acting only on the angular position, while a feedforward controller
is applied in order to compute the necessary lift to the Tilt-rotor. The
prediction model is based on a Newton-Euler formulation linearized
around an operation point.

Jansen & Ramirez-Serrano (2011) propose a local obstacle
avoidance methodology that is expanded to the MPC approach. The
objective of this work was to generate a trajectory that satisfies the
UAV constraints, including the geometry of the vehicle, in the obstacle
avoidance task. This enables to perform complex maneuvers and
navigate through highly confined environments

Jain (2015) designs a linear time invariant (LTV) MPC controller
to solve the path tracking problem for transporting a suspended load
using a quadrotor. The MPC is executed in a ground station, in which
the control action is sent to the quadrotor. The dynamic model used
for the controller is based on the Euler-Lagrange formulation.

1.3 OBJECTIVES

The main objective of this master thesis is to design
predictive control strategies for unmanned aerial vehicles, in Tilt-rotor
configuration, to transport cable-suspended loads.

In order to achieve the main objective, some specifics objectives
are proposed:

1. Study and implement a mathematical model of a Til-rotor UAV
with suspended load to be used in the model predictive controller.

2. Design model based predictive control strategies for the path
tracking problem of Tilt-rotor UAV with suspended load,
considering external disturbances and parametric uncertainties.

3. Explore a formulation in the MPC theory in order to guarantee
stability in the system.

4. Implement the designed controllers, compare them to similar
controllers and evaluate their performance through simulations.

5. Employ the proposed controllers in an embedded system for
the Tilt-rotor UAV assembled by ProVANT project to execute
experimental flights.
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1.4 OUTLINE

In this chapter, the problem of a Tilt-rotor UAV carrying a
transport suspended load was introduced and motivated. State of
the art methods were briefly reviewed and the problem statement was
formulated for the dissertation. The next chapters are organized as
follows:

• Chapter 2 presents the equations of motion for the Tilt-rotor
with suspended load. These equations are based on
Euler-Lagrange formulation and the state space representation
of these equations is presented. Then, the state space system is
linearized around a predefined trajectory. Finally, the system is
parametrized.

• Chapter 3 introduces the control strategies that will be
applied to the Tilt-rotor UAV. First, an incremental predictive
controller for time varying systems is presented. Secondly, a
non-incremental predictive controller is designed using a time
varying model. Finally, a terminal cost formulation for time
varying systems is presented based on linear matrix inequality
(LMI).

• Chapter 4 shows the predictive control strategies synthesized
in Chapter 3, applied to the Tilt-rotor UAV model. The model
predictive controllers are extended to the predictive formulation
based on the error model. Then, the controllers are tuned in order
to be implemented in simulations.

• Chapter 5 introduces the simulation scenarios, then, simulations
are performed aiming to analyze the system behavior and the
controllers performance. Finally, some discussion are presented.

• Chapter 6 presents the practical implementation made in this
dissertation. It is given a brief description of the second version
of the Tilt-rotor assembled by proVANT project at UFSC.

• Chapter 7 summarizes the contributions and results presented
in this dissertation and suggests possible future research lines.
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2 TILT-ROTOR UAV WITH SUSPENDED LOAD
DYNAMIC MODEL

In this chapter, the mathematical model of a Tilt-Rotor UAV
in helicopter flight-mode with suspended load is presented. The
dynamic model of the Tilt-rotor UAV was proposed firstly in Donadel,
Raffo & Becker (2014), wich was extended in Almeida (2014) to the
load transportation problem. In this dissertation, this model is used
applying the modifications presented in Rego (2015). Additionally,
some parameters are included in this model in order to consider a
better approximation of the actuator behavior. The mathematical
model presented in this chapter is obtained from the Euler-Lagrange
formulation.

The Tilt-rotor UAV, presented in Figure 5, is composed by a
main body, where embedded computer, sensor devices, and batteries
are supported. Two tiltable rotors are fixed to the main body,
controlled by servomotors assumed as revolute joints. Moreover, the
suspended load is attached to the main body with a cable, considered
as a mass-less and rigid rod. The movements of the Tilt-rotor UAV are

Figure 5 – Tilt-rotor aircraft with suspended load

performed by combining the two thrust forces, (fr and fl), generated
by the propellers, with the angular inclination of rotors (αr and αl).
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Additionally, in order to improve controllability in the Y axis, a lateral
fixed inclination is considered in the servomotors (RAFFO; ORTEGA;

RUBIO, 2011a; DONADEL; RAFFO; BECKER, 2014). It is important to
remark that the propellers rotate with opposite direction from each
other, with the objective to reduce the drag forces generated by the
propellers.

This chapter is structured as follows, Section 2.1 introduces
the generalized coordinates used in the mathematical model of the
aircraft. Section 2.2 describes each body frames placed in the UAV,
with respect to the inertial frame. Section 2.3 drives into the equation
of motion of the Tilt-rotor UAV with suspended load based on the
Euler-Lagrange formulation. Section 2.5 presents the non-linear state
space representation of the system. Section 2.6 shows the system
parameters of the aircraft, which are obtained via software CAD and
experimentally. Finally, section 2.7 presents the linearizion of the
non-linear state space model from which a discrete linear model is
obtained to be used in the model predictive control design.

2.1 GENERALIZED COORDINATES

In this section, the generalized coordinates for the Tilt-rotor
UAV with suspended load are presented. According to the Figure 6, the
UAV is composed by four rigid bodies. Then, for modeling purposes,
six reference frames are defined. Firstly, reference frame B is rigidly
attached to the rotational axis of the Tilt-rotor, and frame C1 to the
center of mass of the main body. Then, in the right rotor the reference
frame C2 is rigidly attached to its center of mass. On the same way,
the reference frame C3 is rigidly attached to the left rotor’s center of
mass and C4 to the center of mass of the suspended load. Finally, a
fixed inertial reference frame I is considered.

In the Tilt-rotor UAV with suspended load system, it is possible
to identify four types of dynamics given by the translation and rotation
of the main body, the attitude of the rotors and the orientation of the
suspended load. In this way, the translational position of the origin of

frame B with respect to I, is described by ξ =
[
x y z

]T
.

The orientation of frame B with respect to I is obtained through
the Euler angles by using the ZYX convention around the local axes.
From this, the angular position of the main body is given by η =[
φ θ ψ

]T
, which are the well-known roll, pitch and yaw angles,

respectively. In the same way, the angular positions of the tiltable
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mechanisms, are represented by αr and αl, where the subscripts r and
l mean right and left.

Furthermore, the angular position of the suspended load is given

by γ =
[
γ1 γ2

]T
, around the reference axis xb and yb, respectively.

Finally, the generalized coordinates vector is described by:

q =
[
ξ η αr αl γ

]′
=
[
x y z φ θ ψ αr αl γ1 γ2

]′
. (2.1)

On the other hand, as the servomotors are fixed to the main
body, it is assumed that there is no rotation around the reference axis
zC2

and zC3
. However, a fixed inclination around the axis xC2

and xC3

is given by −β and β angles, respectively. A similar situation occurs
with the suspended load, where is assumed that there is no rotation
around the axis zC4 .

Figure 6 – Tilt-rotor UAV.
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2.2 FORWARD KINEMATICS FORMULATION OF THE
TILT-ROTOR UAV

In order to represent the relationship of the rotors and the
suspended load with the main body, the forward kinematic model is
given by:

pBi = RB
Ci p

Ci
i + dBCi , (2.2)

where the rigidly attached point pCii in the reference Ci is represented
with respect to the body frame B.

In equation (2.2), matrix RB
Ci

is the rotation of reference frame
Ci to B and is given for the bodies frames C2, C3, C4, as follows:

RB
C2

=

 CαR(t) 0 SαR(t)
−SαR(t)Sβ Cβ CαR(t)Sβ
−SαR(t)Cβ −Sβ CαR(t)Cβ

 , (2.3)

RB
C3

=

 CαL(t) 0 SαL(t)
SαL(t)Sβ Cβ −CαL(t)Sβ
−SαL(t)Cβ Sβ CαL(t)Cβ

 , (2.4)

RB
C4

=

 Cγ2(t) Sγ1(t)Sγ2(t) Cγ1(t)Sγ2(t)
0 Cγ1(t) −Sγ1(t)

−Sγ2(t) Cγ2(t)Sγ1(t) Cγ1(t)Cγ2(t)

 . (2.5)

Also, rotation matrix RB
C1

is assumed as constant, since frame C1 is
rigidly attached to the main body of the Tilt-rotor UAV. Additionally,
vector dBCi is the translation between the origin of frames B and Ci.
Vectors dBC1

, dBC2
and dBC3

are considered constants and are expressed
as follows:

dBC1
= [d1x d1y d1z]

T , (2.6)

dBC2
= [dx − dy dz]T , (2.7)

dBC3
= [dx dy dz]T . (2.8)

On the other hand, vector dBC4
does not have the same behavior,

since this distance varies with the load rotation angles. According with
Almeida (2014), it is possible to parametrize the suspended load as
a pendulum with a massless rigid rod of length l and two degrees of
freedom, as commented in Section 2.1. In this way, this vector takes
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the following form:

dBC4
= RB

C4

 0
0
−l

 (2.9)

=

−l Cγ1 Sγ2l Sγ1
−l Cγ1 Cγ2

 .
Moreover, the point pIi , rigidly attached to the moving reference

frame B and expressed in the inertial frame I, is given by:

pIi = RIB p
B
i + ξ, (2.10)

where RIB is the rotation from frame B to the inertial frame I, and
ξ is the translation position between origin of both references frames.
Matrix RIB is calculated using the roll-pitch-yaw convention (SPONG;

HUTCHINSON; VIDYASAGAR, 2005) and is expressed by:

RIB =

CψCθ SφCψSθ − CφSψ CφCψSθ + SφSψ
SψCθ SφSψSθ + CφCψ CφSψSθ − SφCψ
−Sθ SφCθ CφCθ

 . (2.11)

Finally, using equation (2.2) into (2.10), the rigid motion of all
bodies with respect to the inertial frame I is computed as follows:

pIi = RIB (RB
Ci p

Ci
i + dBCi) + ξ. (2.12)

2.3 EQUATION OF MOTION OF THE TILT-ROTOR UAV WITH
SUSPENDED LOAD

In order to obtain the dynamic model of the Tilt-rotor UAV
with suspended load, the Euler-Lagrange formulation is used, which is
represented in its canonical form:

M(q)q̈ +C(q, q̇)q̇ +G(q) = F (q) + Fext + Fdrag, (2.13)

whereM(q) is the inertia matrix, C(q, q̇) is the Coriolis and centripetal
force matrix, G(q) is the gravitational force vector, F (q) is the
generalized forces/torques vector, Fext is the external perturbation of
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the system, and Fdrag, known as drag force, is expresed by:

Fdrag = −µq̇, (2.14)

where µ is the viscous coefficient matrix. The F (q) term can be
rewritten as:

F (q) = B(q)u(t), (2.15)

where the input control u(t) =
[
fr fl τr τl

]T
. Later, all these

terms will be detailed in the following subsections. Consequently,
equation (2.13) can be rewritten as:

M(q)q̈ + [C(q, q̇) + µ]q̇ +G(q) = B(q)u+ Fext. (2.16)

2.3.1 Inertia Matrix of the Tilt-rotor UAV with Suspended
Load

According to Spong, Hutchinson & Vidyasagar (2005), the
inertia matrix M(q) can be calculated through the kinetic energy for
a rigid body expressed as a quadratic function of generalized velocities
vector q̇ in the form of K = 1

2 q̇
TM(q)q̇, where the matrix M(q) is

symmetric and positive definite. However, taking into account that
the Tilt-rotor UAV is considered as a multibody system, according to
Shabana (2005), the kinetic energy of the whole body is calculated by
the sum of the individual energies Ki of each body, given by:

K =

4∑
i=1

Ki, (2.17)

where the kinetic energy of each body is expressed as follows:

Ki =
1

2

∫
Vi

ρi(υ
I
i )T (υIi )dVi. (2.18)

In equation (2.18), the term ρi is the mass density of the body
i and υIi is the time derivative of equation (2.12), resulting in the
velocity of the point pi with respect to inertial frame I. This velocity
is expressed by:

υIi = ṘIB(RB
Cip

Ci
i + dBCi) +RIB(ṘB

Cip
Ci
i +RB

Ci ṗ
Ci
i + ḋBCi) + ξ̇, (2.19)

Moreover, it is assumed that, as the point pi is rigidly attached
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to the frame Ci, the term ṗCii = 0 for i = 1 to 4. In section 2.2, it was
mentioned that the translation vectors dBCi for i = 1 to 3 are constants,

which leads to ḋBCi = 0 for i = 1 to 3. Besides, since the rotation matrix

RB
C1

is constant, ṘB
C1

= 03x3.
Furthermore, expression (2.19) can be rewritten, for all bodies

of the system, using the property of skew symmetric matrices give by
ṘA
B = RA

BS(wB
BA), defining wB

BA ∈ R3 as the angular velocity of frame
B with respect to A represented in frame B, as follows:

υI1 =RIBS(wB
BI)RB

C1
pC1
1 +RIBS(wB

BI)dBC1
+ ξ̇ (2.20)

υIi =RIBS(wB
BI)RB

Cip
Ci
i +RIBS(wB

BI)dBCi +RIBR
B
CiS(wCi

CiB
)pCii + ξ̇

for i = 2, 3

υI4 =RIBS(wB
BI)RB

C4
pC4
4 +RIBS(wB

BI)dBC4
+RIBR

B
C4
S(wC4

C4B
)pC4

4

+RIBḋ
B
C4

+ ξ̇.

Now, by using the properties of symmetric matrices S(p)q =
S(q)Tp and S(Rp) = RS(p)RT , equations (2.20) are rewritten as:

υI1 =RIBR
B
C1
S(pC1

1 )T (RB
C1

)TwB
BI +RIBS(dBC1

)TwB
BI + ξ̇ (2.21)

υIi =RIBR
B
CiS(pCii )T (RB

Ci)
TwB

BI +RIBS(dBCi)
TwB

BI +RIBR
B
CiS(pCii )TwCi

CiB
+ ξ̇

for i = 2, 3

υI4 =RIBR
B
C4
S(pC4

4 )T (RB
C4

)TwB
BI +RIBS(dBC4

)TwB
BI +RIBR

B
C4
S(pC4

4 )TwC4
C4B

+RIBḋ
B
C4

+ ξ̇.

According to (ALMEIDA, 2014), the quadratic products of the
velocities can be expressed as:

(υI1 )T (υI1 ) =X1,

(υI2 )T (υI2 ) =X2 + Y2,

(υI3 )T (υI3 ) =X3 + Y3, (2.22)

(υI4 )T (υI4 ) =X4 + Y4 + Z4.
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where Xi, Yi and Zi are given by:

Xi =ξ̇T ξ + 2ξ̇TRIBR
B
CiS(pCii )T (RB

Ci)
TwB

BI + 2ξ̇TRIBS(dBCi)
TwB

BI

+ (wB
BI)T

[
RB
CiS(pCii )S(pCii )T (RB

Ci)
T + 2S(pCii )(RB

Ci)
TS(dBCi)

T

+ S(dBCi)S(dBCi)
T
]
wB
BI ,

Yi =2ξ̇TRIBR
B
CiS(pCii )TwCi

CiB
+ (wCi

CiB
)TS(pCii )S(pCii )TwCi

CiB
(2.23)

+ (wB
BI)T

[
2RB

CiS(pCii )S(pCii )T + 2S(dBCi)R
B
CiS(pCii )T

]
wCi
CiB

,

Zi =2ξ̇TRIB ḋ
B
Ci + (wB

BI)T
[
2RB

CiS(pCii )(RB
Ci)

T + 2S(dBCi)
]
ḋBCi

+ 2wCi
CiB

S(pCii )RB
Ci ḋ

B
Ci + (ḋBCi)

T ḋBCi .

From Shabana (2005, p. 147), by assuming the origin of the
reference frame Ci attached to the center of mass of the body i yields
to: ∫

Vi

ρiS(pCii )dVi = 03×1. (2.24)

Thereby, applying equation (2.24) into equation (2.23) the
kinetic energy for all bodies are expressed as follows:

K1 =X
′

1,

K2 =X
′

2 + Y
′

2 , (2.25)

K3 =X
′

3 + Y
′

3 ,

K4 =X
′

4 + Y
′

4 + Z
′

4,

where X
′

i , Y
′

i and Z
′

i are given by:

X
′
i =

1

2
miξ̇

T ξ +miξ̇
TRIBS(dBCi)

TwB
BI

+
1

2
(wB

BI)T
[
RB
Ci

[ ∫
Vi

ρiS(pCii )TS(pCii )dVi
]
(RB

Ci)
T

+miS(dBCi)
TS(dBCi)

]
wB
BI , (2.26)

Y
′
i =(wB

BI)TRB
Ci

[∫
Vi

ρiS(pCii )TS(pCii )dVi

]
wCi
CiB

+ (wCi
CiB

)T
[∫

Vi

ρiS(pCii )TS(pCii )dVi

]
wCi
CiB

,

Z
′
i =ξ̇TmiR

I
Bḋ

B
Ci + (wB

BI)TmiS(dBCi)ḋ
B
Ci +

1

2
(ḋBCi)

Tmiḋ
B
Ci ,
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in which mi is the mass of body i.
From Shabana (2005), the inertia tensor of the body i with

respect to the frame Ci is given by:

Ii =

∫
Vi

ρiS(pCii )TS(pCii )dVi =

Iixx Iixy Iixz
Iiyx Iiyy Iiyz
Iizx Iizy Iizz

 , (2.27)

and, considering the Steiner’s theorem for parallel axis, the inertia
tensor of the body i for a rotation around an axis displaced di, given
by:

Ji =RB
CiIi(R

B
Ci)

T +miS(dBCi)
TS(dBCi). (2.28)

The terms X
′

i , Y
′

i and Z
′

i from the expression (2.26) can be
simplified using equations (2.27) and (2.28), as follows:

X
′

i =
1

2
miξ̇

T ξ −miξ̇
TRIBS(dBCi)w

B
BI +

1

2
(wB

BI)TJiw
B
BI ,

Y
′

i =(wB
BI)TRB

CiIiw
Ci
CiB

+
1

2
(wCi

CiB
)T Iiw

Ci
CiB

, (2.29)

Z
′

i =ξ̇TmiR
I
Bḋ

B
Ci + (wB

BI)TmiS(dBCi)ḋ
B
Ci +

1

2
(ḋBCi)

Tmiḋ
B
Ci .

With the aim to rewrite the kinetics energies as a function of the
generalized coordinates, the angular velocity wB

BI can be expressed as
(RAFFO, 2011) :

wB
BI =

1 0 −Sθ
0 Cφ SφCθ
0 −Sφ CφCθ

φ̇θ̇
ψ̇

 = Wnη̇ (2.30)

Moreover, the angular velocities of the tiltable mechanism can
be computed as:

wC2

C2B
= α̇r[0 1 0]T = α̇ra, (2.31)

wC3

C3B
= α̇l[0 1 0]T = α̇la. (2.32)

In addition, the angular velocities of the suspended load can be
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calculated solving S(wC4

C4B
) = [RB

C4]T ṘB
C4

, resulting in:

wC4

C4B
=

 γ̇1
γ̇2Cγ1
−γ̇2Sγ1

 =

1 0
0 Cγ1
0 −Sγ1

[γ̇1
γ̇2

]
= P γ̇ (2.33)

Additionally, the time derivative of equation (2.9) is given by:

ḋBC4
=

lSγ1Sγ2γ̇1 − lCγ1Cγ2γ̇2lCγ1γ̇1
lSγ1Cγ2γ̇1 + lCγ1Sγ2γ̇2

 =

lSγ1Sγ2 −lCγ1Cγ2
lCγ1 0

lSγ1Cγ2 lCγ1Sγ2

[γ̇1
γ̇2

]
= Lγ̇

(2.34)

Finally, replacing equations (2.29) into equations (2.22)
considering (2.30) − (2.34), the total kinetic energy of the Tilt-rotor
UAV with suspended load is computed through equation (2.17). Then,
the inertia matrix is obtained as follows:

M(q) =


mI3×3 −RIBHWη 03×1 03×1 m4R

I
BL

∗ (Wη)TJWη WηR
I
BI2a WηR

I
BI3a m25

∗ ∗ aT I2a 0 01×2

∗ ∗ ∗ aT I3a 01×2

∗ ∗ ∗ ∗ m4L
TL+ P T I4P

 ,
(2.35)

where m25 = WηR
B
C4
I4P + WηH4P , m =

∑
mi, J =

∑
Ji, Hi =

S(
∑
mid

B
Ci

) and H =
∑
Hi.

2.3.2 Coriolis and Centripetal Matrix

The Coriolis and centripetal matrix C(q) is derived using the
Christoffel symbol of the first kind from the inertia matrixM(q), where
the c(k, j) element of the matrix C(q) is calculated as follows (SPONG;

HUTCHINSON; VIDYASAGAR, 2005):

c(k, j) =
1

2

10∑
i=1

[
∂mkj

∂qi
+
∂mki

∂qj
− ∂mij

∂qk

]
, (2.36)

whit mi,j an element of the inertia matrix M(q).
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2.3.3 Gravity Forces Vector

The gravitational forces vector is calculated through the
potential energy. As mentioned before, the total energy of the whole
body is the sum of the energies of each body; accordingly, the total
potential energy of the Tilt-rotor UAV with suspended load can be
calculated by (SHABANA, 2005):

P =

4∑
i=1

Pi. (2.37)

Moreover, the potential energy of each body is obtained as:

Pi = −
∫
Vi

ρi(g
I)TpIi dVi, (2.38)

where the gravity vector with respect to the inertial frame I is given
by gI = [0 0 − g].

Thus, the equation (2.12) is replaced into (2.38) yielding:

Pi = −
∫
Vi

ρi(g
I)T [RIB(RB

Cip
Ci
i + dBCi) + ξ]dVi. (2.39)

Assuming that all bodies are symmetric, setting
∫
Vi
ρip

Ci
i dVi = 0, and

taking into account that the mass of each body is given by
∫
Vi
ρidVi =

mi, equation (2.39) can be rewritten as:

Pi = −(gI)T (RIBmid
B
Ci +miξ). (2.40)

Finally, the total potential energy of the system is computed as
follows:

P = −(gI)TRIB

(
4∑
i=1

mid
B
Ci

)
+ (gI)Tmξ, (2.41)

which is given by the sum of each potential energy, as presented in
equation (2.37).
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Therefore, the gravity forces vector can be obtained by:

G(q) =
∂P

∂q
=


∂P
∂q1
∂P
∂q2
...
∂P
∂q10

 . (2.42)

2.3.4 External Forces Vector

The external forces vector is given by:

F (q) =
[
T I τI τIαr τIαl τIγ1 τIγ2

]T
, (2.43)

where T I are the thrust forces generated by the propellers expressed in
the inertial frame I, τI are the rotational torques calculated by adding
the torques generated by the thrust and drag forces of the propellers and
τIα are the torques generated by the tiltable mechanisms. Moreover,
τIγ are the torques applied in the load, that are assumed zero, because
there is no directly actuation over this variable.

As reference frames C2 and C3 are rigidly attached to their bodies,
the forces fr and fl are always in the components Czi of the reference
bodies. Then, representing this forces with respect to the moving frame
B, yields to:

FBR =

fBRxfBRy
fBRz

 = RB
C2

 0
0
fr

 =

 Sαr
CαrSβ
CαrCβ

 fr = rRfr, (2.44)

FBL =

fBLxfBLy
fBLz

 = RB
C3

0
0
fl

 =

 Sαl
−CαlSβ
CαlCβ

 fl = rLfl. (2.45)

The total thrust forces generated in the Tilt-rotor UAV is the
sum of the forces generated by each rotor with respect to the frame
B. The thrust forces T I , which represents the forces F BR and F BL with
respect to the I, are given by:

T I =

T IxT Iy
T Iz

 = RIB(FBR + FBL ) =
[
RIBr

B
R RIBr

B
L

] [fr
fl

]
. (2.46)
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On the other hand, the torques generated by the thrust forces
can be computed by the cross product of the thrusts, represented with
respect to the frame B, and the translation vector between the origins
of frames B and Ci, as:

τBf = dBC2
× FBR + dBC3

× FBL

=

−CαrCβdy − CαrSβdz CαlCβdy + CαlSβdz
Sαrdz − CαrCβdx Sαldz − CαlCβdx
Sαrdy + CαrSβdx −Sαldy − CαlSβdx

[fr
fl

]

=
[
τBfr τBfl

] [fr
fl

]
. (2.47)

According with Raffo (2011) and Castillo, Lozano & Dzul (2004),
the drag torque is computed by τdrag = kτΩ2, where kτ is a constant
and Ω is the angular velocity of the rotor; however, the thrust force
can be approximated by f = bΩ2, where b is the thrust coefficient of
the rotor. In this context, the drag torque can be rewritten as follows:

τdrag =
kτ
b
f. (2.48)

Also, the sign of the force f is taken according to the direction
of the propeller’s rotation, being positive for counter-clockwise rotation
and negative for clockwise rotation. In this context, assuming that the
left rotor rotates clockwise and expressing this torque with respect to
the moving frame B, the total drag torque is given by:

τBdrag =

kτb (fBRx − f
B
Lx

)
kτ
b (fBRy − f

B
Ly

)
kτ
b (fBRz − f

B
Lz

)


=

 kτ
b Sαr −kτb Sαl

kτ
b CαrSβ

kτ
b CαlSβ

kτ
b CαrCβ −kτb CαlCβ

[fr
fl

]

=
[
τBdr τBdl

] [fr
fl

]
. (2.49)

Therefore, the external total torque applied to the vehicle is
expressed as the sum of the torques generated by the thrust forces
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and the drag torques of the propellers. Thus, it is given by:

τB =
[
τBfr + τBdr τBfl + τBdl

] [fr
fl

]
=
[
τBR τBL

] [fr
fl

]
. (2.50)

Finally, the external forces vector can take the form of F (q) =
B(q)u expressed as:

F (q) =



T I

τI

τIαr

τIαl

τIγ1

τIγ2


=


RIBrR RIBrL 0 0
W I

η τ
B
R W I

η τ
B
L 0 0

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



fr
fl
τr
τl

 (2.51)

2.4 FRICTION FORCE VECTOR

In this dissertation, the friction forces vector is assumed
proportional to the generalized velocities. In equation (2.14), µ is
considered a semidefinite constant diagonal matrix, where each element
of the minor diagonal represents the viscous coefficient associated with
their respective generalized velocity. Thus, the matrix µ is given by:

µ = diag (µx µy µz µφ µθ µψ µαr µαl µγ1 µγ1) . (2.52)

It is worth to say, that the viscus coefficients for this matrix are
chosen experimentally. The load’s coefficients were computed through
observation in simulations. On the other hand, the coefficients for the
servomotor are calculated through experiments made with real devices.
Furthermore, the rest of the coefficients are assumed to be null.
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2.5 STATE-SPACE REPRESENTATION OF THE SYSTEM

In order to represent the dynamic model of the Tilt-rotor UAV
with suspended load in the state space form, twenty states are defined:

xs(t) ,

 x1...
x20

 ,

[
q
q̇

]
. (2.53)

By isolating q̈ in (2.16), the system can be rewritten in the
following form:

q̈ = M(q)−1[B(q)u+ Fext − (C(q, q̇) + µ)q̇ −G(q)] (2.54)

Thus, system (2.54) can be represented in the state-space form
ẋs(t) = f(xs(t),u(t)). As a result, the non-linear state space
representation is given by:

ẋs(t) =

[
q̇
q̈

]
=

[
q̇

M(q)−1[B(q)u+ Fext − (C(q, q̇) + µ)q̇ −G(q)]

]
(2.55)

Assuming ẋs(t) = 0, the operating point (u∗,q∗,q̇∗) can be
calculated through the following equality:

[
q̇∗

M(q)−1[B(q∗)u∗ − (C(q∗, q̇∗) + µ)q̇∗ −G(q∗)]

]
= 0. (2.56)

2.6 SYSTEM DESIGN PARAMETERS

The system parameters of the Tilt-rotor UAV with suspended
load are shown in Table 1. Most of the parameters were obtained from
a real implementation of the UAV developed into the ProVANT project,
being, the inertia tensor of the bodies only calculated by the software
SolidWorks R©, using a computer aided design (CAD) of the Tilt-rotor
UAV. On the other hand, considering the parameters presented in Table
1, the equilibrium point of the system is calculated with the equation
(2.56), where the the yaw angle is assumed as ψr(t) = 0. These values
are presented in the Table 2.

For the viscous coefficient matrix µ, it is considered a viscous
friction in the load (µγ1 , µγ1) and servos (µαr , µαl). In the case of
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Table 1 – Tilt-rotor system parameters
Parameter Value

m1 1.54727 Kg

m2, m3 0.22637 Kg

m4 0.088 Kg

dBC1
[0.00139 − 0.00033 − 0.083]T m

dBC2
[0 − 0.24673 0.0069]T m

dBC3
[0 0.24673 0.0069]T m

I1xx 0.01739447464 Kg ·m2

I1yy 0.00572626786 Kg ·m2

I1zz 0.02734745713 Kg ·m2

I2xx,I3xx 0.00011099565 Kg ·m2

I2yy,I3yy 0.021978 Kg ·m2

I2zz,I
3
zz 0.00084170622 Kg ·m2

I4xx 0.00003666441 Kg ·m2

I4yy 0.00003666441 Kg ·m2

I4zz 0.00003667706 Kg ·m2

kτ 1.54727 N ·m · s2
b 0.22637 N · s2
gz 9.8 m/s2

β 5◦

l 0.5 m

Table 2 – Tilt-rotor equilibrium point
State Value

φ∗(t) 0.0000847216 rad
θ∗(t) 0.0153948 rad
α∗r(t) -0.0153214 rad
α∗l (t) -0.015351 rad
γ∗1 (t) -0.0000847015 rad
γ∗2 (t) -0.0153948 rad
f∗r (t) 10288.3 N
f∗l (t) 10268.4 N
τ∗r (t) 0 N.m
τ∗l (t) 0 N.m
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the load, the parameters were chosen trough the observation of the
simulation. In the case of servomotors, some experiments were executed
to compute the coefficients, considering the local dynamic of them into
the Tilt-rotor UAV model.

Taking into account the right rotor dynamic in equation (2.35),
it is possible to say that it is coupled only with the attitude dynamic in
the Tilt-rotor UAV model. Consequently, the Coriolis and centripetal
matrix C(q) will present the same behavior since this matrix is derived
from inertia matrix M(q). In this context, with the objective to isolate
the local dynamics of right servomotor, the coupled dynamics of the
attitude can be neglected, giving as a result:

aT I2aα̈r + µαr α̇r = τr. (2.57)

Then, applying the Laplace transform to this system, yields to:

αr(s)

u(s)
=

1

µαr
I2yy
µαr

s+ 1

=
Kr

tos+ 1
, (2.58)

where to is the time when the system reaches 63.2% of its steady-state
value and Kr is the static gain. From the experiments performed with
the servomotor, considering the load of the rotors, the parameter to
was identified as 0.072s and the parameter Kr = 3.2803 rads . Thus,
considering equation (2.58), the value of the inertia tensor (I2yy, I3yy)
and viscous friction are calculated. The drag forces matrix is given by:

µ = diag (0 0 0 0 0 0 0.30485 0.30485 0.005 0.005) . (2.59)

2.7 LINEARIZATION OF THE TILT-ROTOR UAV WITH
SUSPENDED LOAD MODEL

In this section the equations of motion are linearized around
a generic desired trajectory in order to obtain a linear model of the
tilt-rotor UAV with suspended load. This system is underactuated,
since it has only four control signals and ten degrees of freedom.
Hence, it is only possible to track reference trajectories of four degrees
of freedom, and the remaining DOFs must be stabilized around the
equilibrium point calculated in (2.56). Thus, the generic reference
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vector is given by:

xsr(t)=[xr(t) yr(t) zr(t) φ∗ θ∗ ψr(t) α∗r α∗l γ∗1 γ∗2

ẋr(t) ẏr(t) żr(t) 0 0 ψ̇r(t) 0 0 0 0]T .
(2.60)

By using the reference state vector (2.60) and isolating u from
the equation (2.16), assuming Fext = 0 the reference control vector
ur(t) = [fr∗ fl∗ τ∗r τ∗l ] is computed as follows:

ur(t) = B(qr)+(M(qr)q̈r + [C(qr, q̇r) + µ]qr +G(qr)).1 (2.61)

By defining the error state vector as x̃s(t) = xs(t)− xsr(t), the
error control vector as ũ(t) = u(t) − ur(t) and calculating the terms
of first order of the Taylor’s series from equation (2.55), it is possible
to obtain the error linear model:

˙̃xs(t) = A(t)x̃s(t) +Bũ(t)

ỹs(t) = Cx̃s(t) (2.62)

where:

A(t) = ∂f(xs,u)
dxs

∣∣∣
u=ur

xs=xsr , B = ∂f(xs,u)
du

∣∣∣
u=ur

xs=xsr ,

C =


1 0 0 0 0 0 0 · · · 0
0 1 0 0 0 0 0 · · · 0
0 0 1 0 0 0 0 · · · 0
0 0 0 0 0 1 0 · · · 0

 .
It should be noted that matrix A(t) in the linear error model

varies with time (see appendix A.1). Therefore, the error state space
system (2.62) is considered a linear time varying model (LTV).

With the objective of performing the path tracking and rejecting
constant disturbances, the error state space vector is extended with the
integral action of the error states x, y, z and the yaw angle. Thus, the
new augmented system is given by:

1+ means the pseudo inverse operator of a matrix.



29

˙̄̃xs(t) = Aa(t)˜̄xs(t) +Baũ(t) (2.63)

with:

Aa(t) =

[
A(t) 0
C 0

]
, Ba =

[
B
0

]
Consequently, the augmented error states vector is:

˜̄xs(t) =


xs(t)− xsr(t)∫
(x(t)− xr(t))∫
(y(t)− yr(t))∫
(z(t)− zr(t))∫
(ψ(t)− ψr(t))

 . (2.64)

In order to use this model in the control predictive formulation
presented in Chapter 4, it is discretized through Euler’s approximation:

˜̄xs(k + 1) = Az(k)˜̄xs(k) +Bzũ(k) (2.65)

where Az(k) = I−Aa(t) ts, Bz = Ba · ts, and ts is the sampling time
chosen twenty times faster than the fastest dynamic of the Tilt-rotor
UAV. It should be note, that tiltable servomotors’ dynamics are the
fastest ones.

2.8 SUMMARY

In this chapter the dynamic model with ten degrees of freedom
of the Tilt-rotor UAV with suspended load was presented. The
model considers the dynamics generated by the rotor when tilting.
Additionally, this non-linear model was linearized around a predefined
trajectory reference, yielding to a LTV model. In the next chapter,
considering that the linear model of the Tilt-rotor UAV is a LTV
system, it is introduced two approaches of model predictive control
design based on a generic LTV system. Then, the specific case for the
Tilt-rotor UAV with suspended load is developed.
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3 LINEAR TIME VARYING MODEL PREDICTIVE
CONTROL

In the previous chapter, a dynamic model was presented for the
Tilt-rotor UAV with a suspended load. The modeling procedure and
the linearization of this system was outlined. In this chapter, two
different strategies of linear predictive controller are described in order
to perform path tracking of the Tilt-rotor aircraft. As the linearized
model obtained in Section 2.7 is a time varying linear error model, the
controllers must be based on this kind of systems.

However, before proceeding towards control methods for the
specific case of the Tilt-rotor UAV with suspended load, the predictive
control formulations based on a linear time variant model are described.
The MPC strategy, presented in Section 3.1, is based on an incremental
prediction model, which uses the last control signal applied to the
system for calculating the new control action. Section 3.2 presents the
second strategy used in this work, which is based on a non-incremental
prediction model. In addition, it is described the objective function
used for this strategy, and the constraint formulation is depicted.

Finally, in order to guaranty stability and reduce the prediction
and control horizon, in Section 3.3, a terminal cost function is presented
for the two controllers.

3.1 INCREMENTAL MODEL PREDICTIVE CONTROL (I-SSMPC)

In this section, an incremental prediction model based on a state
space system (I-SSMPC) is presented. This model is based on the
LTV model presented in Raffo (2011), which was used to obtain a non
incremental prediction model. Furthermore, as presented in Camacho
& Alba (2013), an incremental prediction model can be obtained
considering the variation of the control action. Then, this variation
is calculated via an optimization problem, where a cost function is
solved assuming input and output constraints.

3.1.1 Linear Prediction Model

Assuming a known reference trajectory at any time in the future,
and linearizing the system throughout this reference, it is possible to
obtain a linear time varying system that will be used in the prediction
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model. Moreover, assuming that states can be measured at any instant
k, the system can be discretized and expressed as:

x(k + 1) = Az(k)x(k) +Bz(k)u(k). (3.1)

This section deals with the incremental model predictive control
formulation presented in Camacho & Alba (2013). The incremental
prediction model is obtained by defining the increment of the control
signal as ∆u(k) = u(k)−u(k−1) and augmenting the space state vector
of the linear discrete model (3.1) as xa(k) = [xT (k) uT (k − 1)]T ,
where u(k − 1) is the past control signal. In this context, the system
takes the following form:

[
x(k + 1)
u(k)

]
=

[
Az(k) Bz(k)

0 I

][
x(k)

u(k − 1)

]
+

[
Bz(k)
I

]
∆u(k),

(3.2)

which, in its compact form, is given by:

xa(k + 1) = Aa(k)xa(k) +Ba(k)∆u(k).
(3.3)

Therefore, the predicted state of the model in any instant j could
be calculated recursively with xa(k + j), being j from 1 to N , where
N is the prediction horizon for all variables. Furthermore, when the
prediction horizon and the control horizon M are equal, the prediction
model can be expressed by:

x̂ = P û+Qxa(k), (3.4)

where:

P (k|k) =


Ba(k) 0 0 0

Λ(k, 2, 1)Ba(k) Ba(k + 1) 0 0
...

...
. . .

...
Λ(k,N − 1, 1)Ba(k) Λ(k,N − 1, 2)Ba(k + 1) . . . 0

Λ(k,N, 1)Ba(k) Λ(k,N, 2)Ba(k + 1) . . . Ba(k +N)

 ,
(3.5)
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Q(k|k) =


Λ(k, 0, 0)
Λ(k, 0, 2)

...
Λ(k, 0, N − 2)
Λ(k, 0, N − 1)

 . (3.6)

On the oder hand, when the control horizon is different(M < N), the
matrix P must be rewritten, adding to the last column N the terms
created with the remaining prediction horizon. The term Λ(k, i, j) is
defined by:

Λ(k, i, j) =


0 if i ≤ j

i−1∏
l=j

Aa(k + l) if i > j
. (3.7)

The predicted state vector, x̂, and the predicted control vector
û are given by:

x̂ =


x̂a(k + 1|k)
x̂a(k + 2|k)
x̂a(k + 3|k)

...
x̂a(k +N |k)

 , û =


∆û(k|k)

∆û(k + 1|k)
∆û(k + 2|k)

...
∆û(k +M − 1|k)

 . (3.8)

3.1.2 Objective Function

The benefit of MPC is to calculate an optimal control action by
minimizing a given cost function. Several MPC approaches propose
different cost functions, but according to Rawlings & Mayne (2009), a
generalized cost function can be expressed as follows:

V (xa(k),u(k)) =

N−1∑
i=0

L[xa(k+i|k),u(k+i|k)]+F [xa(k+N |k)], (3.9)

where L[x, u] is called the stage cost and F [x] is known as the terminal
cost. The general aim of the stage cost is to ensure that the future
state follows a determined reference signal on the considered horizon
with a minimum of energy spent by the control input. The terminal
cost is used to guarantee stability of the system in a finite horizon and
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it will be treated in Section 3.3.
The generalized stage cost function can be expressed as

(CAMACHO; ALBA, 2013):

L(xa(k),u(k)) =

N∑
j=1

([xa(k + j|k)− xr(k + j|k)]TΣρ[xa(k + j|k)

− xr(k + j|k)]) +

M−1∑
j=0

([∆u(k + j|k)]TΣλ[∆u(k + j|k)]),

(3.10)

where xr(k+ j) is the known future reference of the aircraft at instant
k+ j. Expressing this function in a matrix form the following objective
function is obtained:

J = [x̂− x̂r]
T
Wy [x̂− x̂r] + ûTWuû, (3.11)

where the state weighting matrix Wy is a diagonal matrix with N
blocks, where each block Σρ is given by:

Σρ =


ρ1 0 . . . 0
0 ρ2 . . . 0
...

...
. . .

...
0 0 . . . ρi

 . (3.12)

In this equation, ρi is the weight for each state and the number of states
is represented by i.

In the same way, the input weighting matrix Wu is a diagonal
matrix with M blocks, where each block Σλ is given by:

Σλ =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λp

 , (3.13)

where λi is the weight for each input and the number of system inputs
is represented by p. In equation (3.10), the pre-defined reference
trajectory vector is expressed as:
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x̂r =


x̂r(k + 1|k)
x̂r(k + 2|k)

...
x̂r(k +N |k)

 . (3.14)

3.1.3 Computing the control law

As mentioned before, in the standard MPC, the control action
is computed by optimizing a cost function. However, it must be
considered the prediction model of the system to be controlled. Thus,
replacing the prediction model (3.4) into the objective function (3.11),
the cost function to be minimized is written as follows:

J =ûT [P TWyP +Wu]û+ 2[(Qxa(k)− x̂r)TWyP ]û (3.15)

+(Qxa(k)− x̂r)TWy(Qxa(k)− x̂r).

3.1.3.1 Quadratic Programing Formulation

When constraints are considered, in a standard MPC, the
control action is computed at each sample time solving a quadratic
programming (QP) problem. Therefore, the cost function (3.15) must
be rewritten in the following form:

J = 1
2 û

TGû+ f ′û+ c
Subject to : Ar · û < br , (3.16)

where:

1

2
G = P TWyP +Wu,

f ′ = 2(Qxa(k)− x̂r)TWyP ,

c = (Qxa(k)− x̂r)TWy(Qxa(k)− x̂r),

Ar, br = Constraints matrices.

Generally, the constraints are chosen in function of the
admissible values that the system can perform. In the case of input
constraints, saturation in the control signal can be considered with the
maximum and minimum values of the constraint function. Thereby,
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the general expression for an input constraint is presented as:

umin ≤ u(k + j|k) ≤ umax where j = 0 · · ·M − 1, (3.17)

where umin and umax are the minimum and maximum values for
the control signal that can be applied to the actuator, respectively.
However, as the prediction model is in the incremental form, the
control action applied to the system is the increment control signal
at the instant k, added to the previous control action. In this way,
the equation (3.17) can be rewritten with the expression u(k + j|k) =
u(k + j − 1|k) + ∆u(k + j|k) as presented below:

umin ≤ u(k + j − 1|k) + ∆u(k + j|k) ≤ umax. (3.18)

For applying this constraint in the QP formulation, it is
necessary to expand it recursively throughout the control horizon and
transform in a matrix form. Therefore, the constraint is rewritten as:

ûmin − ū(k − 1) ≤ Tmû ≤ ûmax − ū(k − 1), (3.19)

where Tm is a lower triangular matrix of identities, ûmin and ûmax are
vectors with M copies of minimum and maximum values of the control
signal. Similarly, ū(k − 1) is a vector with M copies of the previous
control action applied to the system. Equation (3.19) can be rewritten
in the matrix form as:[

Tm
−Tm

]
û ≤

[
ûmax − ū(k − 1)
ū(k − 1)− ûmin

]
. (3.20)

It is also assumed that the UAV must track the trajectory into a
confined environment, which can be represented by constraints in the
states. The general form of this kind of constraint is expressed by:

x̂amin ≤ x̂a(k + i|k) ≤ x̂amax , where i = 1 · · ·N. (3.21)

In the same way as presented for the input constraints, the
equation (3.21) must be expanded throughout the prediction horizon
and rewritten in a matrix form to be included in the QP formulation.
However, as explained before, the expansion of xa(k + i|k) results in
the predictive model presented in (3.4). Considering this, the equation
takes the following form:



37

x̂min ≤ P û+Qxa(k) ≤ x̂max (3.22)

where x̂min and x̂max are vectors with N entries of maximum and
minimum values of the states in the system. By rewriting this inequality
in the matrix form, yields to:[

P
−P

]
û ≤

[
x̂max −Qxa(k)
Qxa(k)− x̂min

]
, (3.23)

which can be used in the QP formulation.
To solve the QP problem subject to input and state constraints

presented in equation (3.16), it is necessary to create the matrices Ar
and Br using the inequalities (3.20) and (3.23) as follows:

Ar =


Tm
−Tm
P
−P

 , br =


ûmax − ū(k − 1)
ū(k − 1)− ûmin
x̂max −Qxa(k)
Qxa(k)− x̂min

 .

3.1.3.2 Unconstrained Problem

In this section, the constraint free case is considered. As
mentioned in Rossiter (2004) and Maciejowski (2002), the control
variation could be calculated analytically by finding the gradient of
equation (3.16), which is calculated as:

dJ

dû
= 2Gû+ 2f ′ = 0 (3.24)

Thus, isolating û from equation (3.24), the control action could be
calculated analytically by:

û = (P TWyP +Wu)−1P TWy(x̂r −Qxa(k)). (3.25)

Although this expression contains the future control actions for
the whole control horizon, only the first p elements corresponding to
the control increment for the instant k are used. Since the predictive
control law is in the incremental form, it is necessary to add the previous
control signal u(k − 1) as follows:

u(k) = u(k − 1) + ∆û(k). (3.26)
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3.2 NON INCREMENTAL MODEL PREDICTIVE CONTROL
(NI-SSMPC)

In this section, another predictive formulation based on Raffo,
Ortega & Rubio (2011b) is presented, where it consideres a prediction
model in a non-incremental form. Furthermore, a new objective
function is presented for this type of MPC formulation, assuming both
unconstrained and constrained formulations.

3.2.1 Linear Predictive Model

The main feature of this formulation is that it does not use an
augmented system with the last control action, as presented before.
The linear time varying system used in this formulation is presented in
Equation (3.1).

The predicted states for an instant j is defined by x(k+j|k), with
j = 1, 2..., N , where N is the prediction horizon for all state variables.
Therefore, if this definition is expanded recursively throughout the
prediction horizon, the predictive model can be computed as:

x̂ = P û+Qx(k). (3.27)

Matrices P and Q are obtained similar to matrices (3.5) and
(3.6), but now using system (3.1). The predicted state vector, x̂, and
the predicted control vector, û, are represented by:

x̂ =


x(k + 1|k)
x(k + 2|k)
x(k + 3|k)

...
x(k +N |k)

 , û =


u(k|k)

u(k + 1|k)
u(k + 2|k)

...
u(k +M − 1|k)

 . (3.28)

3.2.2 Objective Function

Assuming that the reference states and reference control are
known, the generalized stage cost function for this kind of predictive
controller is given by:
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J = [x̂− x̂r]
T
Wy [x̂− x̂r] + [û− ûr]

T
Wu [û− ûr] , (3.29)

where the input weighting matrix Wy and Wu are the same matrices
presented in (3.13) and (3.12), respectively. Additionally, the
pre-defined reference trajectory vector and the future control reference
are:

x̂r =


xr(k + 1|k)
xr(k + 2|k)

...
xr(k +N |k)

 , ûr =


ur(k|k)

ur(k + 1|k)
...

ur(k +M − 1|k)

 . (3.30)

According with Rossiter (2004), this equation differs from (3.9)
because the weight of the inputs optimizes the distance from steady
state rather than incremental changes of the control signal.

3.2.3 Computing the control law

Considering the prediction model (3.27), and replacing it into
the objective function (3.29), the cost function used to calculate the
control action is written as follows:

J =ûT [P TWyP +Wu]û+ 2[(Qx(k)− x̂r)TWyP − ûTrWu]û
(3.31)

+(Qx(k)− x̂r)TWy(Qx(k)− x̂r) + ûTrWuûr.

3.2.3.1 Quadratic Programming Formulation

Assuming the constrained problem, the predictive control law is
computed by an optimization algorithm, which in this work is solved
through the quadratic programming formulation. Therefore, the cost
function (??) must be rewritten in a proper form as follows:

J = 1
2 û

TGû+ f ′û+ c
Subjected to : Arû ≤ br,

(3.32)
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where:

1

2
G = P TWyP +Wu,

f ′ = 2((Qx(k)− x̂r)TWyP − ûTrWu),

c = (Qx(k)− x̂r)TWy(Qx(k)− x̂r) + ûTrWuûr,

Ar, br = Constraints matrices.

The constraint, for the QP formulation, was chosen in function
of physical limitations. In the case of input constraints, it is considered
saturation in the input control signals, representing the maximum
and minimum values applied to the actuators of the Tilt-rotor UAV.
Thereby, the general expression for a input constraint is presented as:

umin ≤ u(k + j|k) ≤ umax where j = 0 · · ·M − 1, (3.33)

where umin and umax are the minimum and maximum value for the
control signal that can be applied to the actuator, respectively. In this
case, the prediction model is in the non-incremental form, thus the
control action is applied directly to the system.

In the case of state constraints, the constraint has the same form
as presented in section 3.1. To solve the QP formulation subjected to
input and state constraints presented in equation (3.32), it is necessary
to create matrices Ar and Br as follows:

Ar =


Im
−Im
P
−P

 , br =


ûmax
−ûmin

x̂max −Qx(k)
Qx(k)− x̂max

 .

3.2.3.2 Unconstrained Formulation

As mentioned before, in the absence of constraints, the control
variation could be computed using equation (3.32), when the control
action can be computed by solving the equation 2Gû + 2f ′ = 0 for û
with the terms G and f ′ presented in (3.32). Thus, û is given by:

û = (P TWyP +Wu)−1(P TWy(x̂r −Qx(k)) +Wuûr), (3.34)
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Taking into account that the discrete model is in a
non-incremental form, the applied control input u(k) to the system
is given directly by the first p terms of the vector û as presented below:

u(k) = û(k|k). (3.35)

3.3 TERMINAL COST

In order to garantee stability, there are several approaches in
the literature. According to Maciejowski (2002), the most simple way
to ensure stability is making the prediction horizon large enough or
even infinite. Another kind of approach to ensure stability is using the
optimal control function as a Lyapunov function.

By adding a terminal constraint, which can be used with any
length of prediction horizon, the state is forced to take a particular
value at end of the prediction horizon, but it has some drawbacks. One
of those assumes that the optimization problem and the global optimum
solution have a solution at each step. Another drawback is with respect
to the hard complexity to solve the constraint optimization problem and
adding a terminal constraint may transform it in an infeasible problem.

However, there exists the Terminal Constraint set formulation,
which is a relaxation of the terminal constraint, where the MPC drives
the state into a set X0 and then switch to some other control law
that guarantee stability for an initial condition within Xo. On the
ther hand, it is possible to guarantee stability with finite horizon even
without explicit terminal constraint. The predictive control problem is
associated with the Riccati equation, which is intimately related to the
optimal value of the cost function. In this way, according to Rawlings
& Mayne (2009), it is possible to ensure closed-loop stability by adding
a terminal cost function without the use of a terminal constraint.

In this section, a proposal to guarantee stability in a finite
horizon MPC and to decrease the prediction horizon for a time varying
system is presented.

3.3.1 Terminal Stage

Equation (3.9) presented a general cost function for a model
predictive control. This cost function has two principal parts: the stage
cost that was presented in (3.15) and (3.31) for a incremental and non
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incremental predictive controller, respectively; and, the second part is
the terminal cost, which is calculated here, based on Rawlings & Mayne
(2009), but extended for time varying systems. The general expression
for a terminal cost is expressed as follows:

F [x(k +N)] = [δx(k +N |k)]TL[δx(k +N |k)] (3.36)

where δx(k+N |k) is the error between the state vector and its desired
value at step k+N which is given as δx(k+N |k)=xa(k+N)−xr(k+N)
for the incremental prediction model, and δx(k + N |k)=x(k + N) −
xr(k +N) for the non-incremental predictive model. The matrix L is
the terminal value, which is calculated as a Lyapunov matrix solving
the Riccati equation for a time-invariant systems:

(Az +BzK)L(Az +BzK)T −L+Wy +KTWuK ≤ 0 (3.37)

However, in this work the discrete model used for a model
prediction formulation is a time varying model and, for this reason,
equation (3.37) is not applicable. In this way, according to Trofino,
Coutinho & Barbosa (2003), it is possible to create a similar equation to
the LQR control problem using a LMI formulation, where the stability
condition is satisfied for all linear models inside the polytope, that is
defined by the uncertainty model. In the other hand, as the approach
presented by Trofino, Coutinho & Barbosa (2003) is developed for
continuous systems, an extension for discrete systems is presented in
what follows.

First, consider the discrete system:

x(k + 1) = A(α)x(k) +Bu(k) (3.38)

z(k) = Czx(k) +Dzu(k) (3.39)

u(k) = Kx(k), (3.40)

where α is the uncertainty of the system, z(k) is an auxiliary vector
with the energy to be minimized, and Cz and Dz are constant weight
matrices arbitrarily chosen with an appropriate size. It should be
mentioned, for the case of the Tilt-rotor UAV, the uncertainties are
given by the variation of trajectory accelerations (ẍr, ÿr, z̈r).

Then, consider a cost function associated to the auxiliary vector
as follows:

V (z) = min
u(k)

∞∑
k=0

z(k)Tz(k), (3.41)
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where z(k)Tz(k) will be always positive for any z(k) 6= 0. Using
the Lyapunov function V (x(k)) = x(k)TLx(k) being L = LT > 0
a Lyapunov matrix that stabilizes asymptotically the system. The
Lyapunov inequality can be defined as follows:

∆V (x(k)) + zTz < 0 (3.42)

where ∆V (x(k)) is the increment of the quadratic Lyapunov function.
Furthermore, considering the closed loop system given by x(k + 1) =
(A(α) +BK)x(k) and z(k) = (Cz +DzK)x(k), the term z(k)Tz(k)
and ∆V (x(k)) can be expressed as follows:

zTz = CT
z Cz +CT

zDzK +KTDt
zCz +KTDT

zDzK, (3.43)

∆V (x(k)) = (A(α) +BK)TL(A(α) +BK)−L. (3.44)

Now, replacing the equation (3.43) and (3.44) into ∆V (x(k)) +
zTz < 0, the discrete Riccati equation for the closed loop system is
obtained, assuming that matrices Cz and Dz satisfy the condition of
Cz > 0, Dz > 0 and CT

zDz = 0,

(A(α) +BK)TL(A(α) +BK)−L+CT
z Cz +KTDT

zDzK < 0.
(3.45)

According to Trofino, Coutinho & Barbosa (2003), the cost
function (3.41) can be minimized defining an upper bound as follows:

∞∑
k=0

z(k)Tz(k) < x(0)TLx(0), (3.46)

where minimizing the term x(0)TLx(0) the cost function V (z) is
minimized.

Additionally, defining κ−xToM−1xo < 0, being κ the objective
to be minimized and M = L−1, the complete conditions for the LMI
formulation are obtained. Thus, rewritten these conditions with the
Schur’s complement, the LMI formulation for a discrete system is given
by:
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min κ (3.47)

subjected to:[
κ 0
0 M

]
> 0 −M M ·CT

z + Y T ·DT
z M ·AT

i + Y T ·BT

Cz ·M +Dz · Y −I 0
Ai ·M +B · Y 0 −M

<0

M > 0,

where the matrix M = MT , and K = Y M−1.
Finally, solving these LMIs with a semidefinite programing, the

terminal value is obtained, which is a Lyapunov matrix, which ensures
the stability of the system from the N -th step.

3.4 SUMMARY

In this chapter, two MPC approaches for linear time varying
systems were presented. The main difference between them is the
prediction model. The I-SSMPC uses the last control action in an
augmented state vector to compute the prediction model. On the other
hand, the NI-SSMPC uses the state space system without modification.
Additionally, a formulation to calculate a terminal value for a linear
time varying system was presented in order to implement a terminal
cost in the MPC cost function. The aim of this terminal cost is to
guarantee stability for the control system and to reduce the prediction
horizon.

In the next chapter, these formulations are applied to the
Tilt-rotor UAV with suspended load to solve the path tracking
problem.
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4 MPC BASED ON THE ERROR MODEL OF A
TILT-ROTOR UAV WITH SUSPENDED LOAD

The aim of this chapter is to solve the path tracking problem
of the Tilt-rotor UAV in load transportation tasks. In the previous
chapter the theory of a model predictive controller for time-varying
linear systems was introduced. This theory is applied to the error
linear model of the Tilt-rotor UAV with suspended load, presented
in Chapter 2, to synthesize two types of controllers, each one with a
different prediction model. The predictive controllers use the linear
error model (2.63). Consequently, the model predictive controllers
based on state space systems (SSMPC) presented in Chapter 3 are
extended to an error based predictive control approach (E-SSMPC).

In section 4.1, the incremental predictive controller based on the
linear error model is proposed. Section 4.2 presents the non-incremental
predictive controller based on the linear error model of the aircraft.
Finally, in section 4.3, both controllers are tuned. Simulation results
are presented in the next chapter in order to validate the controllers.

4.1 I-SSMPC BASED ON THE ERROR MODEL OF A
TILT-ROTOR

In this section, the Tilt-rotor UAV with suspended load model
is used in the incremental model predictive formulation, presented in
Section 3.1, to solve the path tracking problem. Consider the linear
error model equation (2.63). This model is based on the error control
signal between the current and reference control inputs. Therefore,
the incremental error action is defined as ∆u(k) = ũ(k) − ũ(k − 1),
where ũ(k − 1) is the last error control signal. Thus, as mentioned
in Section 3.1.1, to improve the incremental prediction model, the
state space is augmented with the last control error action, defining
the new incremental error state vector as ˜̄xa(k) = [˜̄xs(k) ũ(k − 1)].
Accordingly, the augmented system takes the following form:

[
˜̄xs(k + 1)
ũ(k)

]
=

[
Az(k) Bz

0 I

][
˜̄xs(k)
ũ(k − 1)

]
+

[
Bz
I

]
∆u(k). (4.1)

For better visualization, the equation can be rewritten in a
compact form, as:
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˜̄xa(k + 1) = Āz(k) ˜̄xa(k) + B̄z ∆u(k). (4.2)

Then, expanding the LTV system (4.2) throughout the
prediction horizon N and the control horizon M , the predicted output
model is computed:

x̂ = P (k|k)û+Q(k|k)˜̄xa(k), (4.3)

where matrix P (k|k) is quite different from the one presented in (3.5),
because in this case only matrix Az(k+j) is time varying, as described
below:

P (k|k) =

B̄z 0 0 0

Λ̂(k, 2, 1)B̄z B̄z 0 0
...

...
. . .

...

Λ̂(k,M, 1)B̄z Λ̂(k,M, 2)B̄z . . . B̄z
Λ̂(k,M + 1, 1)B̄z Λ̂(k,M + 1, 2)B̄z . . . Λ̂(k,M + 1,M)B̄z + %(k,M + 1,M)

...
...

...
...

Λ̂(k,N, 1)B̄z Λ̂(k,N, 2)B̄z . . . Λ̂(k,N,M)B̄z + %(k,N,M)


(4.4)

Q(k|k) =


Λ̂(k, 0, 1)

Λ̂(k, 0, 2)
...

Λ̂(k, 0, N − 1)

Λ̂(k, 0, N)

 . (4.5)

where:

%(k, i, j) =

 i−1∑
l=j+1

Λ̂(k, i, l)

 B̄z + B̄z, (4.6)

and the term Λ̂ defined in (3.7), is the product of the variations of the
matrix Āz(k + j), according to the accelerations of the predefined reference
trajectory. However, to simplify the problem of calculating these matrices, it
is possible to assume that the prediction model takes into account only the
system for instant k, defining the future matrix Āz(k + j) as Āz(k). When
the matrix Āz(k) is assumed constant throughout the prediction horizon, a
model uncertainty is added to the system; however, this is possible consider
that the terminal cost function is calculated in order to guarantee the stability
of the entire family of models within the trajectory accelerations ranges.
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In this context the matrices P and Q are redefined as follows:

P (k|k) =

B̄z 0 · · · 0
Āz(k|k)B̄z B̄z · · · 0
Āz(k|k)2B̄z Āz(k|k)B̄z · · · 0

...
...

. . .
...

Āz(k|k)MB̄z Āz(k|k)M−1B̄z · · · B̄z + ε(k, i)
...

...
. . .

...
Āz(k|k)N−1B̄z ĀN−2

z (k|k)B̄z · · · ĀN−M
z (k|k)B̄z + ε(k, i)


,

(4.7)

Q(k|k) =


Āz(k|k)
Āz(k|k)2

...
Āz(k|k)N

 , (4.8)

where:

ε(k, i)


0 if M = N

N−M∑
i=1

ĀN−M−i
z B̄z if M < N

. (4.9)

Nevertheless, the state prediction vector x̂ in equation (3.8) is redefined
as the error prediction vector, considering the future variation of the
states, and û is redefined as the increment vector of the future error of
the control, as expressed by:

x̂ =


˜̄xa(k + 1|k)
˜̄xa(k + 2|k)
˜̄xa(k + 3|k)

...
˜̄xa(k +N |k)

 , û =


∆u(k|k)

∆u(k + 1|k)
∆u(k + 2|k)

...
∆u(k +M − 1|k)

 . (4.10)

With the goal of having the entire formulation based on the error
model, the objective function compounded by the stage cost presented
in (3.11) and the terminal cost in (3.36), must be rewritten taking into
account the error model as follows:
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V (x̄a(k),∆u(k)) =

N−1∑
i=1

[δ˜̄xa(k + i|k)]′ Σρ [δ˜̄xa(k + i|k)]

+

M−1∑
j=0

[∆u(k + j|k)]′ Σλ [∆u(k + j|k)] + [δ̃x̄a(k +N |k)]′ L [δ˜̄xa(k +N |k)],

(4.11)

where δ˜̄xa(k+ j|k) = ˜̄xa(k+ j|k)− ˜̄xr(k+ j|k). Besides, this objective
function can be represented in the matrix form, as presented in (3.11).
However, to include the terminal cost in this function, the terminal
value L must be included in the last term of the main diagonal of
the weighting state matrix Wy, that represents the prediction horizon
k +N , as:

Wy =


Σρ 0 . . . 0 0
0 Σρ . . . 0 0
...

...
. . .

...
...

0 0 . . . Σρ 0
0 0 . . . 0 L

 . (4.12)

Additionally, the state weighting matrix Σρ has the form
expressed in (3.12), and Wu is a diagonal matrix with M blocks of
Σλ, which is represented in equation (3.13). In the objective function
(4.11), the predefined reference trajectory vector (3.14) takes the form
of the future reference error vector as:

ˆ̃̄xr =

 x̄r(k + 1|k)− x̄r(k|k)
...

x̄r(k +N |k)− x̄r(k +N − 1|k)

 =

 ˜̄xr(k + 1|k)
...

˜̄xr(k +N |k)

 (4.13)

In order to calculate the control law when constraints are not
considered, equation in (??) is reformulated yielding to:

û = (P ′ Wy P +Wu)−1 P ′ Wy (ˆ̃̄xr −Q ˜̄xa(k)) (4.14)

Nevertheless, as the predictive controller is based on the error model,
the result of the last equation is the increment of the control error action
instead of the increment control action that was presented in section
3.1.3. Therefore, considering that the controller has an incremental
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prediction model, the error control action at instant k considers the
incremental error action calculated at this instant and the last control
error action as:

ũ(k) = ũ(k − 1) + ∆û(k|k). (4.15)

Thus, the control action applied to the aircraft is obtained adding
the control reference to the error signal as follows:

u(k) = ũ(k) + ur(k). (4.16)

Remembering that the aim of this work is to obtain the control
action subject to constraints, the terms in the equation (3.16), must be
rewritten in the following form:

G = 2 [P T Wy P +Wu],

f ′ = 2(Q ˜̄xa(k)− ˆ̃̄xr)T Wy P , (4.17)

c = (Q ˜̄xa(k)− ˆ̃̄xr)T Wy (Q ˜̄xa(k)− ˆ̃̄xr),

Ar, br = Constraints matrices.

With the objective of reformulating the input constraint
presented in section 3.1.3.1, as a function of the error model, the
inequality ũmin ≤ ũ(k+j−1|k) ≤ ũmax is used to express the limits of
the error control signal. However, this error must take into account the
maximum and minimum admissible values of the actuators. Therefore,
it is possible to extend the inequality with the control error definition
as follows:

ũmax(k + j − 1|k) = umax − ur(k + j − 1|k), (4.18)

ũmin(k + j − 1|k) = umin − ur(k + j − 1|k),

where umax and umin, constant for the entire prediction horizon, are
the maximum and minimum admissible values that can be applied by
the actuators. Thus, the constraint equation can be written as:[

Tm
−Tm

]
û ≤

[
ˆ̃umax − ˜̄u(k − 1)
˜̄u(k − 1)− ˆ̃umin

]
, (4.19)

where ˆ̃umax and ˆ̃umin are the maximum and minimum control error
vector. They are obtained expanding equations (4.18) throughout the
prediction control. Considering the state constraints, the inequality
(3.21) is rewritten as ˜̄xamin(k + i|k) ≤ ˜̄xa(k + i|k) ≤ ˜̄xamax(k + i|k),
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where the maximum and minimum error states values are defined as:

˜̄xamin(k + i|k) = x̄amin − x̄r(k + i|k), (4.20)

˜̄xamax(k + i|k) = x̄amax − x̄r(k + i|k),

where x̄amax and x̄amin are the maximum and minimum values
that the states can take assuming that the aircraft is in a confined
environment. Thus, the matrix form of the constraint given by:[

P
−P

]
û ≤

[
ˆ̃̄xamax −Q˜̄xa(k|k)

Q˜̄xa(k|k)− ˆ̃̄xamin

]
, (4.21)

where ˆ̃̄xamax and ˆ̃̄xamin are the maximum and minimum error state
vector obtained expanding equation (4.20) throughout the prediction
horizon. In this context, the constraint matrices Ar and br are defined
using (4.19) and (4.21) as:

Ar =


Tm
−Tm
P
−P

 , br =


ˆ̃umax − ˜̄u(k − 1)
˜̄u(k − 1)− ˆ̃umin
ˆ̃̄xamax −Q˜̄xa(k)

Q˜̄xa(k)− ˆ̃̄xamin

 . (4.22)

4.2 NI-SSMPC BASED ON THE ERROR MODEL OF A
TILT-ROTOR

In this section, the non-incremental predictive control
formulation presented in (3.2) is applied to the linear error model of
the Tilt-rotor UAV, obtained in Section 2.7, to predict the system’s
behavior. Rewriting the discrete linear error model presented in the
equation (2.65) in the following form:

˜̄xs(k + 1 + i|k) = Az(k + i|k)˜̄xs(k + i|k) +Bzũ(k + i|k), (4.23)

it is possible to find the prediction model extending this equation to the
future, where i = 1, 2, ..N . By doing this, the prediction error model is
written as follows:

x̂ = P (k|k)ũ+Q(k|k)˜̄xs(k). (4.24)

As mentioned before, in the linear error model (2.7), only the
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matrix Az(k) is time varying. For this reason, the matrices P and Q
are modified as:

P (k|k) =

Bz 0 0 0
Λ(k, 2, 1)Bz Bz 0 0

...
...

. . .
...

Λ(k,M, 1)Bz Λ(k,M, 2)Bz . . . Bz
Λ(k,M + 1, 1)Bz Λ(k,M + 1, 2)Bz . . . Λ(k,M + 1,M)Bz + %(k,M + 1,M)

...
...

...
...

Λ(k,N, 1)Bz Λ(k,N, 2)Bz . . . Λ(k,N,M)Bz + %(k,N,M)


,

(4.25)

Q(k|k) =


Λ(k, 0, 1)
Λ(k, 0, 2)

...
Λ(k, 0, N − 1)

Λ(k, 0, N)

 , (4.26)

where:

%(k, i, j) =

 i−1∑
l=j+1

Λ̂(k, i, l)

Bz +Bz, (4.27)

and the product variation Λ of matrix Az(k+ j) is given by expression
(3.7). Nevertheless, as mentioned in last section, it is possible useA(k+
j|k) = A(k|k), in order to reduce the computational cost. Thereby,
matrices P and Q are simplified and expressed by:

P (k|k) =

Bz 0 0 · · · 0
Az(k|k)Bz Bz 0 · · · 0
Az(k|k)2Bz Az(k|k)Bz Bz · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

Az(k|k)MBz Az(k|k)M−1Bz Az(k|k)M−2Bz · · · Bz + ε(k, j)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Az(k|k)N−1Bz Az(k|k)N−2Bz Az(k|k)N−3Bz · · · Az(k|k)N−MBz + ε(k, j)


(4.28)

Q(k|k) =


Az(k|k)
Az(k|k)2

...
Az(k|k)N

 , (4.29)
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where:

ε(k, j)


0 if M = N

N−M∑
i=1

AN−M−i
z Bz if M < N.

(4.30)

The error state prediction vector x̂ (resulting from Equation (4.24)),
and the incremental control error vector û are expressed, respectively,
as:

x̂ =


˜̄xs(k + 1|k)
˜̄xs(k + 2|k)
˜̄xs(k + 3|k)

...
˜̄xs(k +N |k)

 , û =


ũ(k|k)

ũ(k + 1|k)
ũ(k + 2|k)

...
ũ(k +M − 1|k)

 . (4.31)

In order to calculate the future error action, the objective
function, formed by the stage cost presented in (3.29) and the terminal
cost in (3.36) applied to the linear error model, is expressed by:

V (x(k),u(k)) =

N−1∑
j=1

[δ˜̄xs(k + i)]TΣρ [δ˜̄xs(k + i)]

+

M−1∑
j=0

[ũ(k + j)]T Σλ [ũ(k + j)] + [δ˜̄xs(k +N)]TL[δ˜̄xs(k +N)],

(4.32)

where δ˜̄xs(k + i|k) = ˜̄xs(k + i|k) − ˜̄xr(k + i|k). In order to express
this function in a matrix form, as presented in equation (3.29), the
terminal value is added to the last term of the main diagonal in the
state weighting matrix Wy, as presented in (4.12). The predefined

reference error vector ˆ̃̄xr is expressed in (4.13), and the error control
reference vector ûr takes the form:

ûr =

 ur(k|k)− ur(k − 1|k)
...

ur(k +M − 1|k)− ur(k +M − 2|k)

 =

 ũr(k|k)
...

ũr(k +M − 1|k)

 .
(4.33)
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In the absence of constraints, the control variation could be
computed as:

û = (P TWyP +Wu)−1[P TWy(ˆ̃̄xr −Q˜̄xs(k)) +Wuûr]. (4.34)

As mentioned in Section 3.2.3.2, the error control action at the
instant k is composed by the first p terms of the vector û. Otherwise,
as the predictive model is based on the error model, the control action
applied to the system is calculated by:

u(k) = ũ(k|k) + ur(k). (4.35)

In order to calculate the control considering the constrained
problem, the QP formulation presented in 3.2.3.1 is reformulated as
a function of the error system, where the terms G, f ′ and c are given
by:

G = 2[P TWyP +Wu],

f ′ = 2(Q˜̄xs(k)− ˆ̃̄xr)TWyP −Wuûr, (4.36)

c = (Q˜̄xs(k)− ˆ̃̄xr)TWy (Q˜̄xs(k)− ˆ̃̄xr) + ûTrWuûr,

Ar, br = Constraints matrices.

As mentioned before, the constraint matrices consider the
physical limitation of the actuator as input constraints and assume
that the aircraft is operating in a confined environment as output
constraints.

Therefore, the input constraints, formulated in section 3.2.3.1,
must be applied to the error model of the Tilt-rotor UAV. Considering
that the error control signal is the difference between the control action
and the reference control action, the input constraints take the form:

ũmin(k + i|k) ≤ ũ(k + i|k) ≤ ũmax(k + i|k), (4.37)

where the maximum and minimum values of the error signal are
calculated by equation (4.18).

With the objective to apply these constraints to the QP
formulation, equation (4.37) is expanded throughout the control
horizon and expressed in a matrix form as:[

Im
−Im

]
û≤

[
ˆ̃umax
−ˆ̃umin

]
. (4.38)
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On the other hand, the state constraints, presented in section
3.2.3.1, considering that the error states are the difference between the
states and the predefined reference trajectory, can be rewritten based
on the error model as follows:

˜̄xsmin(k + i|k) ≤ ˜̄xs(k + i|k) ≤ ˜̄xsmax(k + i|k), (4.39)

where the maximum and minimum error states values are defined as
the difference between the admissible values of the estates with the
predefined trajectory of the aircraft:

˜̄xsmin(k + i|k) = x̄smin − x̄r(k + i) (4.40)

˜̄xsmax(k + i|k) = x̄smax − x̄r(k + i).

In order to apply these constraints to the QP formulation,
equations (4.40) can be expressed in a matrix form expanding
throughout the prediction horizon, i = 1, 2, ...N , as shown below:[

P
−P

]
û ≤

[
ˆ̃̄xsmax −Q˜̄xs

Q˜̄xs − ˆ̃̄xsmin

]
, (4.41)

where ˆ̃̄xsmax and ˆ̃̄xsmin are the maximum and minimum error estate
vectors. Finally, using inequalities (4.38) and (4.41), it is possible to
build the constraint matrices Ar and br:

Ar =


Im
−Im
P
−P

 , br =


ˆ̃umax
−ˆ̃umin

ˆ̃̄xsmax −Q˜̄xs(k)

Q˜̄xs(k)− ˆ̃̄xsmin

 . (4.42)

4.3 TUNING OF MODEL PREDICTIVE CONTROLLERS

In this section, the MPC tuning parameters used in the
simulations are discussed. Considering that the LQR controllers
are equivalent to infinite horizon, unconstrained Model Predictive
Controllers, the input and state weighting matrices of the MPC will be
used in the LQR to compare the performance between these controllers
in simulations.
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4.3.1 State and Input Weight Matrices

The first set of tuning parameters, which are common to both
LQR controller and MPC, are the weights on the states Σρ and control
inputs Σλ. In this work, both matrices are chosen to be diagonal,
reducing the number of tunable entries inside the matrix and making
possible to manage the states and the control inputs independently.

According to Rawlings & Mayne (2009), high values of Σρ in
comparison to Σλ drive the state to the origin quickly, resulting in a
strong control action. On the other hand, by penalizing the control
action through high values of Σλ relative to Σρ, reduces the control
action and slow down the rate at which the state approaches the origin.

Choosing appropriate values of Σρ and Σλ is not always trivial,
and is one of the challenges faced in practice. For this reason, these
matrices were tuned heuristically with a starting point given by the
Bryson’s inverse square method (JOHNSON; GRIMBLE, 1987). The input
and state weigh matrices are given by:

Σλ =diag

(
1

(17000− freq)2
,

1

(17000− freq)2
,

1

20002
,

1

20002

)
(4.43)

Σρ =diag
(

2, 2, 2,
3

π2
,

4

π2
,

5

π2
,

1

π2
,

1

π2
,

5

π2
,

5

π2
,

1

4
,

1

4
, (4.44)

1

4
,

1

9π2
,

1

9π2
,

1

9π2
,

1

100π2
,

1

100π2
,

1

9π2
,

1

9π2

)
.

For MPC and LQR control with integral action, three
times higher penalties were placed on the states to be integrated
(translational position x, y, z and the yaw angle ψ). These penalties
are added as final terms of equation (4.44) with the following values:

Σρi =

[
6, 6, 6,

150

π2

]
. (4.45)
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4.3.2 Terminal Cost

The terminal value is one of the most important terms in this
work, because with this term it is possible to reduce the prediction
horizon, as mentioned in Section 3.3. To calculate this value, the LMI
presented in equation (3.47) is used, where the matrices Dz and Cz
must be chosen to satisfy the condition of CT

zDz = 0. The weights of
both matrices are chosen in order to obtain the same weights presented
in equations (4.43) and (4.44) when DT

zDz = Σ0λ and CT
z Cz = Σρ

are considered. These matrices are given by:

Dz =


014,1 014,1 014,1 014,1

1
(17000−freq) 0 0 0

0 1
(17000−freq) 0 0

0 0 1
2000 0

0 0 0 1
2000

 (4.46)

Cz =diag(
√

2,
√

2,
√

2,

√
3

π
,

√
4

π
,

√
5

π
,

√
1

π
,

√
1

π
,

√
5

π
,

√
5

π
,

(4.47)

1

2
,

1

2
,

1

2
,

1

3π
,

1

3π
,

1

3π
,

1

10π
,

1

10π
,

1

3π
,

1

3π
).

In addition, another parameter to be defined to calculate this
LMI is the maximum and minimum trajectory accelerations of the
states x, y, z. As the system model is time varying, these values
define the polytope for the LMI formulation. The predefined trajectory
is presented in the next chapter. The maximum and minimun
accelerations for this trajectory are:

ẍ = [−0.5 0.5],

ÿ = [−0.5 0.5], (4.48)

z̈ = [−0.5 0.5].

4.3.3 Prediction and Control Horizon

The prediction horizon N and control horizon M are parameters
that have to be tuned in an MPC. As mentioned before, one of the ways
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to guarantee stability in MPC is to have a larger prediction horizon,
but this approach is not suitable in practical terms because it demands
a very high computational cost. Nevertheless, with a sampling time of
12 ms, and due to the presence of the terminal cost presented in section
3.3, a prediction horizon of N = 5 was chosen. In the other hand, the
minimum possible control horizon that could be used was M = 1 for
I-SSMPC and M = 2 for NI-SSMPC, and this value was chosen for the
simulations.

4.3.4 Constraints Parametrization

As mentioned before, input constraints are assumed as physical
limitations of the actuators, and state constraints are defined assuming
UAV is in a confined environment. Thus, the control signals’ values
are constrained to {fr, fl} ∈ [0, 17] N and τr, τl ∈ {−2, 2} N.m, which
correspond to the actuators’ specification.

Furthermore, the system states constraints are settled as
presented in Table 3.

Table 3 – Output constraints applied to Tilt-rotor with suspended load.
State Maximum Minimum Unit

x −4 4 m
y −4 4 m
z −0 5.5 m
φ −0.5236 0.5236 rad
θ −0.5236 0.5236 rad
ψ −0.5236 0.5236 rad
αr −0.5236 0.5236 rad
αl −0.5236 0.5236 rad
γ1 −0.5236 0.5236 rad
γ2 −0.5236 0.5236 rad

In addition, the interval for the translational (m/s) and
rotational(rad/s) velocities are [−3, 3], and the constraint for the
integral action of the error states is [−0.5, 0.5].
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4.4 SUMMARY

In this chapter, the MPC controllers based on the linear error
model of Tilt-rotor UAV with suspended load was presented. These
controllers are designed to improve the path tracking problem of the
aircraft while stabilizing the suspended load. Two strategies were
synthesized. Additionally, tuning parameters were presented in order
to compare the performance of MPC against LQR controller.

The next chapter presents several simulation in different
scenarios with the objective to demonstrate the effectiveness of the
proposed controllers.
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5 SIMULATION RESULTS

In this chapter, simulation results are presented in order
to evaluate the performance of the proposed controllers. These
simulations are obtained in scenarios designed to test different
capabilities of the proposed MPCs. With the aim of better appreciate
the differences presented by these controllers, a smooth trajectory was
chosen. The model parameters of the Tilt-rotor used in the simulations
are given in Table 1, which are taken from a real implementation
made by the project ProVant. Besides, the tuning parameters of the
controllers were presented in Section 4.3.

As mentioned before, the unconstrained MPC formulation is very
similar with an LQR controller. For this reason, some simulations
compare the performance between the designed controllers and the
LQR controller, in order to prove the benefit of using the presented
approach.

Section 5.1 describes the scenarios where the controllers, given
in Chapter 4, are tested. Also, the predefined trajectory used for
all simulations is presented. Additionally, the disturbances affecting
the Tilt-rotor UAV are defined. Furthermore, simulation results
considering the first scenario are presented in Sections 5.2 and 5.3
for incremental and non-incremental MPCs, respectively. Simulation
results for parametric uncertainties are presented in Section 5.4.
In section 5.5 quantitative results derived from the simulations are
presented.

5.1 SIMULATION PROTOCOL

In this section, the scenarios used to simulate the controllers
proposed throughout this dissertation are presented. The purpose of
these scenarios is to ensure the same test conditions for the controllers,
in order to compare them.

The simulation are executed with the proposed MPC strategies,
in order to demonstrate the capabilities for solving the path
tracking problem and stabilizing the suspended load when persistent
disturbances affect the whole system. The simulations have the
structure presented in Figure 7, where it is considered the non-linear
model (2.55), and saturation of the actuators in order to achieve a more
realistic simulation of the Tilt-rotor aircraft.
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Trajectory Reference

Control Reference

Model Predictive
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Disturbances

Nonlinear model
of the Tilt-rotor

Figure 7 – Simulation structure.

Furthermore, with the aim of testing the robustness of the
controllers, an amount of ±30% was applied to the inertial tensors,
suspended load and body mass of the Tilt-rotor UAV. Additionally,
they were considered constant disturbances affecting all degrees of
freedom of the Tilt-rotor UAV with suspended load, where aerodynamic
forces and moments are applied in different instants of time with
the objective to test the disturbance rejection ability of the proposed
controllers. The value of the disturbances used in the simulations are
presented in Table 4.

Table 4 – Disturbance parameters
Disturbance Value Time Unit
Fextx 1 15 N
Fexty 1 25 N
Fextz 2 50 N
Fextφ 0.2 30 N.m
Fextθ 0.2 35 N.m
Fextψ 0.2 40 N.m
Fextαr 0.1 45 N.m
Fextαl 0.2 60 N.m
Fextγ1 0.1 65 N.m
Fextγ2 0.1 75 N.m

On the other hand, simulations results are used to compare
the proposed controllers with a LQR LTV controller in order to
show the improvement obtained with the proposed approach. Finally,
the simulation scenarios consider the pre-defined reference trajectory
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presented in Figure 8, which is a circular trajectory defined by:

xr(t) = 3 cos(
π

50
t) [m], yr(t) = 3 sin(

π

50
t) [m], (5.1)

zr(t) = 3− 2 cos(
π

50
t) [m], ψr(t) = 0 [rad]. (5.2)

Also, the take-off position of the aircraft is considered as: q(0) =[
3 0 1 01×7

]
[m].
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Figure 8 – Reference trajectory of the Tilt-rotor with suspended load

In this context, in sections 5.2 and 5.3 the first scenario is
presented for the incremental and non-incremental MPC, respectively,
These simulations consider nominal parameters in the inertial tensors
and body mass. Additionally, the disturbances presented in Table 4
are applied to the vehicle. In section 5.4 the second and third scenarios
are presented taking into account parametric uncertainties of +30 and
−30, respectively. These uncertainties are considered in inertial tensors,
body mass of the aircraft and the mass of the suspended load. Also,
disturbances are considered.

Additionally, in order to have a quantitative comparison of the
results obtained in the simulation, some performance indexes are used.
The first index is the Mean Square Error (MSE) of the error states.
Secondly, the Total Variation index is calculated for all control signals.
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5.2 I-SSMPC

In this section, it is presented the first simulation scenario for a
I-SSMPC, where the Tilt-rotor UAV with suspended load is tracking a
trajectory while affected by constant disturbances.

The controller parameters used in this simulation were presented
in Section 4. The trajectory performed by the Tilt-rotor with
suspended load while tracking the reference is illustrated in Figure 9;
this trajectory is compared to the one one obtaining by using the LQR
controller. It is possible to notice that both controllers are able to
track the trajectory. Furthermore, the load is stabilized and performs
a similar path than the aircraft. Broadly, the I-SSMPC has slightly
lower overshoots than the LQR controller in the aircraft trajectory,
but, the load path is quite similar.
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Figure 9 – Reference trajectory of the Tilt-rotor with suspended load
made by I-SSMPC by LQR controller.

In Figure 10 translational and rotational states are presented.
Specifically, in Figure 10a the time evolution of the translational states
shows how the estates reach the reference trajectory given for them.
Also, it can be seen that the states x, y and z of I-SSMPC have a slightly
better performance than the LQR controller. These states present lower
overshoot with the same time response.

In Figure 10b, it can be noticed that the roll and pitch angles
reach equilibrium point while there are no disturbances. However, when
a disturbance affects the system, these angles change the equilibrium
point in order to compensate the states that the controller is tracking.
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(a) Translational position (x, y, z) of the Tilt-rotor UAV with respect to the
inertial frame.
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(b) Rotational position (φ, θ, ψ) of the Tilt-rotor UAV around the local axis.

Figure 10 – Time evolution of translational and rotational positions
performed by the Tilt-rotor UAV applying the proposed I-SSMPC and
LQR controller
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In this context, rate change of the LQR controller is greater than
I-SSMPC. In contrast, yaw angle is able to track the reference for
this state. As presented in Table 4, the disturbances affecting the
load angular position appear in time 65 [s] and 75 [s] for γ1 and γ2,
respectively. Note that at this time instants, in Figure 10b, the states
present more oscillatory response compared to other perturbations, due
to the fact that suspended load is the slowest dynamic in the system.
Finally, comparing Tilt-rotor attitude given by the I-SSMPC with LQR
controller, it presents better performance.
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Figure 11 – Time evolution of αr and αl performed by Tilt-rotor
applying the proposed I-SSMPC and LQR controller.

Figures 11 and 12 show the time responses of the servomotor
and suspended load angular position. Servomotors angular position,
illustrated in Figure 11, have the same situation as the attitude states,
where the equilibrium point of the αr and αl angles is achieved in
the absence of disturbances. Then, this equilibrium point changes to
compensate the other states. On the other hand, the load position
response, represented in Figure 12 shows that the LQR controller has
better performance in these states than I-SSMPC, since they have a less
oscillatory response and the overshoots are lower. It should be noticed
that the oscillation amplitude of I-SSMPC is grater than LQR control,
because load stabilization needs an aggressive control action, and as
I-SSMPC takes into account the physical limitations of actuators, it
produces a smoother control action than LQR controller. The time
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Figure 12 – Time evolution of γ1 and γ2, performed by Tilt-rotor
applying the proposed I-SSMPC and LQR controller

response of thrust forces and torques of servomotors are presented in
Figure 13. Considering only the trust forces in Figure 13a, the variation
of the control action, presented by the I-SSMPC is lower than the
one obtained by the LQR controller, which means that the I-SSMPC
generates a less aggressive control action. Also, it can be noticed that
the left force is slightly lower than the right force. This situation is due
to the position of the center of mass which is shifted to the right side.
In contrast, the right torque applied to the servomotor is lower than
the left torque when a direct disturbance affects it.

I-SSMPC presented better performance compared to the LQR
controller since the states have less overshoot and the stationary state
changes are lower. However, the suspended load has slightly more swing
with I-SSMPC. In the case of the control signal, it was shown that
I-SSMPC generates a smoother control action since the increments are
smaller when compared with the LQR controller.

5.3 NI-SSMPC

In this section simulation results for the NI-SSMPC are
presented, where the tuning parameters used are shown in Section
4.3 and Tilt-rotor UAV parameters are given in Table 1. The main
difference of this controller lies in the non-use of integral action in
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(a) Thrust Forces (fr, fl) generated by the Tilt-rotor UAV.
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Figure 13 – Time evolution of thrust forces and torques applied to
Tilt-rotor UAV by the proposed I-SSMPC and LQR controller.
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the control signal, resulting in a more aggressive control action. For
this reason, the last control horizon, M = 1, was modified to M =
2, because with the previous value the controller generates a very
aggressive control action, which destabilizes the system. The simulation
results are depicted in Figures 14 to 17.

In Figure 14 the path tracking performed by the Tilt-rotor UAV
is presented for both controllers, NI-SSMPC and LQR. It shows very
similar behavior than the last approach, where the path made by LQR
controller has higher overshoots compared to the proposed one.
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Figure 14 – Reference Trajectory of the Tilt-rotor with suspended load
made by I-SSMPC and LQR controller.

In Figure 15a, corroborate that I-SSMPC has a good trajectory
tracking since the translational motion response converges quickly
to the reference, when a perturbation affects the system and the
overshoot of LQR response is higher than the NI-SSMPC. Otherwise,
the attitude states are presented in Figure 15b, where the steady-state
value reached by the LQR controller is slightly bigger than the
NI-SSMPC in the case of roll angle, but the others values have
the same behavior. Additionally, figures 15 and 16 show oscillatory
responses for both controllers when load disturbances affects the
system, being the oscillation amplitude greater with the NI-SSMPC,
because, as presented in Figure 17b, the control action in this controller
is smoother.

Figure 16b shows the same situation presented in the last
controller, where the overshoots of load states are bigger in the
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(a) Translational position (x, y, z)of the Tilt-rotor UAV with respect to the
inertial frame.
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(b) Rotational position (φ, θ, ψ) of the Tilt-rotor UAV around the local axis.

Figure 15 – Time evolution of translational and rotational positions
performed by the Tilt-rotor UAV applying the proposed NI-SSMPC
and LQR controller.



69

NI-SSMPC. This demonstrates that both controllers, I-SSMPC and
NI-SSMPC, produce more oscillations in the suspended load.
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(a) Servomotor angular position (αr, αl) of the Tilt-rotor UAV.
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(b) Suspended Load angular position (γ1, γ2) of the Tilt-rotor UAV.

Figure 16 – Time evolution of rotors and suspended load angular
position, performed by the Tilt-rotor UAV applying the proposed
NI-SSMPC and LQR controller

Considering Figure 17, it is noticed that variations of the thrust
forces and torques are smaller in the NI-SSMPC. This fact reflects
that the proposed MPC produces smoothest control actions than LQR
controller.
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Figure 17 – Time evolution of thrust forces and torques applied to the
Tilt-rotor UAV by the proposed NI-SSMPC and LQR controller.



71

5.4 SIMULATION WITH PARAMETRIC UNCERTAINTIES

This section presents the second and third simulation scenarios,
where parametric uncertainty are considered in the inertia tensor and
body mass of the Tilt-rotor. The parametric uncertainties values are
−30% and 30% in the non-linear model. These simulations are used to
verify the robustness of proposed controllers.

It is possible to notice in Figure 18 that the proposed controllers
are able to track the reference trajectory of states x, y, z and ψ,
with parametric uncertainties and constant disturbances. It can be
seen that when uncertainty is +30%, the system has fewer oscillations
in the states since it is heavier. Additionally, it can be noticed in
the time response of the angular position αr, in Figure 19, when a
disturbance affects the system, applied the NI-SSMPC controller with
the uncertainty of −30%, the transient response almost reaches the low
limit of the constraint.

The last situation reflects the robustness of the controller is
not only subject to its tuning parameters, but also depends on the
constraints that are imposed on the system, i.e., from Figure 19b,
it is possible to see that the state reached the restriction, and when
the controller enters in any constraint, this generates a very aggressive
control action, which can destabilize the control system, as shown in
Figure 20 in time 75 [s].

On the other hand, when an uncertainty of +30% is applied to
Tilt Rotor UAV, the transient responses of the states are not too far
from the equilibrium point. Therefore, the problem with the limits of
the constraints is not present.

However, another situation must be considered in this case. As
seen in Figure 20a, when the system has a parametric uncertainty of
+30%, the thrust forces have greater steady state value than calculated
in Table 2, because the aircraft mass was increased by the uncertainty.
This results in a reduction of capability to reject disturbances by the
controller, and loss of lift.

5.5 SIMULATION ANALYSIS

In this section, some numerical results derived from simulations
are presented in order to perform quantitative comparisons between
controllers. Some performance indexes have been computed. On one
hand, the mean square error (MSE) is used to assess the difference
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(b) Rotational states position (φ, θ, ψ) of the Tilt-rotor UAV around local axis.

Figure 18 – Time response of translational and rotational positions with
parametric uncertainties in Tilt-rotor model.
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(b) Suspended Load angular position (γ1, γ2) of the Tilt-rotor UAV.

Figure 19 – Time response of rotors and suspended load angular
position with parametric uncertainties in Tilt-rotor model.
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Figure 20 – Control signal of thrust forces and torques applied to
Tilt-rotor UAV with parametric uncertainties.
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between the linear and angular position and the reference trajectory.
On the other hand, the total variation index is used to measure the
total control action used by each controller.

The total variation index is presented in Table 5, where it can
be noticed that the proposed controllers have smother control effort
than LQR controller, because MPC considers constraints in the control
signal and this one is calculated with the future information of the
reference. However, the best performance is presented by I-SSMPC;
this controller uses the incremental approach considering the last
applied control signal to calculate the new one, producing a smoother
control action.

Table 5 – TV index performance analysis
States LQR I-SSMPC NI-SSMPC
fr 24.681662 14.171920 17.427798
fl 22.775579 13.044563 16.526173
τl 6.005928 5.260038 6.226658
τr 4.594553 3.891857 4.362787

The MSE indexes obtained for each controller are shown in
Table 6. It can be observed that proposed controllers obtained better
performance than LQR, except for the load states. This situation
occurs because, in order to avoid a large swing of the load, it is
necessary to stabilize the Tiltrotor UAV quickly, which requires an
aggressive control action. As presented in the Table 5, the control
signal is smoother in the proposed controllers. Furthermore, the indexes
obtained for the position states shown a good performance obtained.

Table 6 – MSE index performance analysis
States LQR I-SSMPC NI-SSMPC
x 0.001327 0.000326 0.000293
y 0.000267 0.000075 0.000068
z 0.000043 0.000005 0.000006
φ 0.002986 0.002293 0.002290
θ 0.009667 0.008594 0.008568
ψ 0.000148 0.000059 0.000050
αr 0.030251 0.025467 0.025455
αl 0.012984 0.011369 0.011358
γ1 0.008005 0.013034 0.013028
γ2 0.012706 0.015684 0.015669
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On the other hand, the NI-SSMPC approach reached better
performance than the I-SSMPC with respect to the MSE index. This
better states performance is obtained with a more aggressive control
action provided by the NI-SSMPC (see table 5). Additionally, the
presented simulations showed that LQR and MPC controllers have
very similar behaviors, since MPC cost function is similar to the LQR
controller when restrictions are not considered and there is an infinite
prediction horizon. However, MPC formulation is most appropriate
and presents better performance than LQR controller when considering
restrictions and finite prediction horizon.

5.6 SUMMARY

In this chapter the simulation results for the Tilt-rotor UAV with
suspended load were presented. Three scenarios were considered to
determine the performance of the proposed controllers. First scenario
considers nominal parameters, a smooth trajectory and constant
disturbances applied to all degrees of freedom. Then, the second
and third scenarios consider parametric uncertainties in the inertia
tensor and body mass. Two model predictive controllers were tested.
An incremental predictive control is simulated considering the first
scenario. This controller presents good performance solving the path
tracking problem, being able to reject sustained disturbances with
a smooth control action. On the other hand, the non-incremental
predictive controller has presented better performance when performing
path tracking than the previous one, with good capabilities to reject
constant disturbances, although, the control action generated is more
aggressive. In order to evaluate the inherent robustness of the
proposed controllers against small perturbations, they were subjected
to the second and third scenarios. Both controllers have good
path tracking capabilities in presence of parametric uncertainties and
constant disturbances. However, this robustness could be lost if the
perturbations send the states too far from the operation point or if
the state is very close to the restriction. Finally, some quantitative
performance indexes were calculated to demonstrate the effectiveness
of these controllers. These indexes were compared to a LQR controller
which is similar to the proposed ones when no constraints are
considered. In these results, it was corroborated the smoothness of
the control action compared to the LQR controller and the good
performance in the output states.



77

6 PRACTICAL IMPLEMENTATION

In order to test the proposed controller in a real situation, a
Tilt-rotor UAV was developed by the ProVANT project. In this chapter
it is described the Tilt-rotor UAV, including its hardware configuration
and software implementation. Then, some discussion is performed
about preliminary results obtained with the UAV.

6.1 PROVANT PROJECT

The ProVANT project aims the assembly of a small scale
Tilt-rotor UAV. Additionally, this project has the interest in developing
an open platform in order to test controllers, estimators and embedded
systems designed for UAVs. Into this project, the first version
of the UAV was developed in Donadel (2015), a second version is
being assembled by the UFMG ProVANT team, and a third version
assembled in this dissertation. It is worth to say that the third version
of this aircraft was developed from scratch.

The first version of the Tilt-rotor UAV was based on a
mathematical model that did not consider the dynamics generated
by the servomotors. For this reason, the control signals used in
that approach were thrust forces and reference position for tiltable
mechanisms (servomotors). Moreover, this version does not consider
the inclination β in the servomotors. On the other hand, it has only
one computer to read sensors, estimate states and control actuators.
Additionally, the thrust forces generated by the rotors of this version
are almost equal to the weight of the aircraft, reducing maneuverability
of the aircraft. In the second version, it is considered other body
structure and material in order to reduce the weight of the aircraft,
other servomotors controlled by torque reference were used in order to
consider the dynamics generated by the servomotors.

In the third version, assembled in this master thesis, the
structure of the first version and the servomotors used in the second
version were considered. Therefore, rotors more powerful were used
in order to increase the payload of the aircraft. With the aim
of implementing the controllers developed in this dissertation, two
computers were considered, one computer is used in the same way as
in the first and second versions, and the other computer is used to
implement the model predictive controller.
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6.2 GENERAL DESCRIPTION

The physical structure of the aircraft is depicted in Figure 21.
It is similar to the first version, where carbon fiber is used in the arm
to connect the rotors with the main body. However, in this version
these arms have a support that gives five degrees of inclination to the
servomotors, equal to the assumption made in the mathematical model.
The main body structure is composed by glass fiber that supports the
embedded system and the electronic devices. Also, it was included
a landing gear made with aluminum, in order to give support to the
aircraft. Additionally, it was designed a support for the camera and the
suspended load, made in glass fiber. The smaller parts of the aircraft
were designed in the software SolidWorks R© and printed using 3D
printers available at the Automation and Systems Department (DAS)
at UFSC and at the Electronic Engineering Department (DELT) at
UFMG.

Figure 21 – Tilt-rotor UAV second prototype assembly

In Figure 22, it is presented how the embedded system
is structured with respect to the tasks. The Sensor and
Actuator Processing subsystem is responsible for managing the
electro-mechanical devices of the Tilt-rotor UAV, and the Control
and Estimation subsystem for calculating the control action and
execute the load position estimation. Therefore, Sensor and
Actuator Processing subsystem is responsible for managing sensors and
actuators, estimating the attitude and altitude, reading radio control
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data and communicating with the other subsystem. Moreover, Control
and Estimation subsystem is responsible for computing the control
action, communicating with the base station in order to obtain a
telemetry of the system, estimating load position and communicating
with the other subsystem.

Actuator 
Control

Attitude 
Estimation

Altitude 
Estimation Control

Radio Comunication

ComunicationControl 
Calculation

Telemetry
Load 

Position 
Estimation

Sensor and Actuator Processing Subsystem

Control and Estimation Subsystem

Figure 22 – Tilt-rotor UAV general description

In this dissertation, as presented in Figure 23, other embedded
computer is used in order to calculate the control action due to the high
computational cost of the proposed MPC formulation. The Sensor and
Actuator Processing subsystem is supported by Discovery STM32f4
board computer, and the Control and Estimation subsystem by Beagle
Bone Black computer. The two systems are exchanging information
through a serial interface using the MultiWii protocol. The data sent
is related to the estimated states, system status and control actions.

The specifications of each computer are presented in Table 7.
As mentioned before, the Beagle Bone Black presents better processing
capability than the Discovery board computer, consequently, this single
computer was chosen to calculate control algorithms. Specifically, this
computer is very used in image processing due to its graphic engine
which can be used for matrix calculation.

6.3 SENSOR AND ACTUATOR PROCESSING SUBSYSTEM

In this section is described the Sensor and Actuator Processing
subsystem. As presented in Figure 22, this subsystem is responsible
for managing sensors and actuators of the Tilt-rotor UAV and uses as
computational system the Discovery STM32F4 board computer, which
is connected to other devices (Figure 23) throughout a shield developed
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Item BeagleBone Black Discovery STM32F4

Processor
Sitara AM3358BZCZ

1GHz
Cortex-A8

STM32F407VGT
168MHz

Cortex-M4

SDRAM Memory 512 MB 192KB

On-board Flash 4GB 8-bits eMMC 1MB

Floating Point NEON FPU

Graphics Engine SGX530 3D, 20M Not Available

Power 5V@210-460 mA 5V@100-500 mA

Table 7 – Single board computers specifications
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by ProVANT team1. Most of the software used in the Discovery
computer is based on the first version presented in Donadel (2015). The
software was structured with a single thread of execution, which was
responsible for estimating states, calculating control signals, reading
sensors, controlling actuators, and sending telemetry data to the base
station.

Moreover, as this dissertation uses two computers that need to
exchange information between them, it was necessary to implement
another task responsible for communication. In this way, the software
was restructured into two threads, as presented in Figure 24.

ti_DataProcessing
uavSystem::t_DataProcessing.Impl

ti_Communication
uavSystem::t_Communication.Impl

fg_ControlDataInfg_StateDataOut

fg_ControlDataOutfg_StateDataIn

dp_ControlIndp_ControlIn dp_StateOut dp_StateOut

SC1 SC2

SV1SV2

activation=( periodic ,12,'ms )
deadline=(12, ms )

activation=( periodic ,6,'ms )
deadline=(6, ms )

Figure 24 – AADL representation of the software on the Sensor and
Actuator Processing subsystem.

In this figure, the suffixes In and Out represent input and output
data of the execution thread, respectively. The term SVi represents the
name of the connectors between the shared variables of the execution
threads. Nevertheless, these connectors represent only data interchange
between threads and not a variable defined within the program.

6.3.1 DataProcessing execution thread

In order to represent the algorithm of the Tilt-rotor UAV
software, it is used the flowchart representation based on the notation

1Further information can be found in: https://github.com/proVANTbr/provant-hardware/tree/master/electronics/stm32f4discovery-shield
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presented in Ashok (2003) and is described in the Appendix B.1.
In these graphics the modules developed in Donadel (2015) were

marked with the symbol *. The thread of DataProcessing is described
in Figure 25. This thread is responsible for reading the sensors,
estimating the states and writing the control values to the actuators.
The execution period was set with respect to the servomotors sampling
time, which update the angular position and velocities every 12 ms. The
algorithm begins with the initialization of variables and communication
interfaces, for example, I2C interface for reading the IMU device
or USART interface for controlling the servomotors. The attitude
estimation process reads the linear acceleration, angular velocities
and the magnetic field direction of the Earth from the IMU device,
and estimates the states. This subprocess is detailed in Subsection
6.3.1.1. Radio data reading is a pulse-width modulation (PWM)
interpreter which separates 6-channel information into six variables
into the software. This information is received via a Turnigy 9x radio
receiver of 2.4 GHz from the radio control. Following, the altitude
estates are estimated, and the position and velocities of the servomotors
are read. Then, all shared variables are updated. The shared variables
are used to exchange information between threads. In this case, the
output shared variables (fg StateDataOut) are the states estimated and
the status of the system. Besides, the input shared variable contains
the control action values (fg ControlDataIn). Finally, the torque and
forces, calculated by the controller, are transformed into PWM values
and applied to the actuators devices and the thread goes to sleep for
the remaining time of the execution period.

6.3.1.1 Attitude Estimation

The Attitude Estimation subprocess, in Figure 25, estimates
the attitude of Tilt-rotor UAV. The formulation used is described
in Donadel (2015) and is based on Mahony, Kumar & Corke (2012).
This algorithm uses the measurements of linear acceleration, angular
velocity, and the magnetic field direction of the earth to estimate
angular position and velocity. These informations are provided by the
GY-87 inertial measurement unit (IMU), which communicates with the
Discovery board through I2C interface communication. This device is
composed by three sensors: MPU6050 measures linear acceleration and
angular velocities; HMC5883L is a magnetometer; and the BMP180 is a
barometer. As this device was not used in the first version assembled in
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Donadel (2015), the libraries of each sensor were developed and can be
found in the software repository of the ProVANT project2. The sensors’
configuration setup are presented in Table 8, where full-scale range is
the upper and lower limits of what the accelerometer or gyroscope
measurements, and LSB sensitivity is the smallest amount of change
that can be detected by the sensor. This value is used to compute the
physic value given by the raw data of the sensor.

Item Full Scale Range LSB Sensitivity

Accelerometer ±4 [g] 8192 LSB/g

Gyroscope ±2000 [Hz] 16.4 LSB/◦/s

Table 8 – Setup configuration of MPU6050 sensor

6.3.1.2 Altitude Estimation

The altitude estimation of the Tilt-Rotor UAV is performed
using the HC-SR04 ultrasonic ranging module. This sensor, managed
by an Arduino mini, measures the altitude value with respect to
the floor. Then, this data is sent to the Discovery board through
USART communication interface at 115.2 Kbps. The vertical velocity is
estimated using the altitude estimation as presented in Donadel (2015).
The firmware used in the Arduino mini is available in ProVANT devices
repository3.

6.3.1.3 Servomotor States Reading

This process is responsible for reading the angular position and
velocities of each servomotor. The servomotors used to control the
inclination of the rotors are Herkulex DRS-0201, which are controlled
by torque reference. This servomotor provides the actual position and
velocity, but the velocity values need to be filtered, since this signal is
noisy. A low pass filtered is used with cutoff frequency at 5 Hz. The
values given by the servomotor are updated every 12 ms. Moreover, it
uses a serial communication with transmission speed of 666 KBps. The

2Further information can be found in: https://github.com/proVANTbr/provant-software/tree/develop-control2/io-board/stm32f4/base/modules/io
3ProVant devices repository available in: https://github.com/proVANTbr/provant-devices
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software library for these servomotors was implemented by ProVant
team of UFMG and in this dissertation was added to the Tilt-rotor
embedded software.4

6.3.1.4 Control Actuation

The servomotors are controlled by torque reference, through
PWM values. These values are calculated in direct relationship to
the reference torque, where the maximum value configured in the
servomotor is 1023, representing the maximum torque value of 2 N.m.
In the case of thrust forces, two BL-CTR V3 electronic speed controllers
(ESC) controls the brushless motors, which are the actuator that
generate the thrust forces. The ESC device is controlled by a PWM
value which is sent through I2C communication from Discovery board.
The brushless motors used in this version are AXI 2826/12 GOLD,
which can generate 18.5 N of thrust force. As the control action is
given in Newton, the relation between the force generated by the motor
and the PWM set in the ESC was obtained from a experimental test.
The test was performed increasing the motor velocity with intervals
of 5 units until reaching the value of 255. Then, it was possible to
approximate the behavior of the motor to a fifth-order polynomial, as
presented in Figure 26.
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Figure 26 – Curve of behavioral for the AXI 2826/12 GOLD motor

4Further information can be found in: https://github.com/proVANTbr/provant-software/tree/develop/io-board/stm32f4/base/modules/io
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6.3.2 Communication execution thread

The thread Communication is responsible to communicate with
the other embedded computer. This communication is performed
through a serial interface, using the MultiWii protocol. This protocol
was used in the first version of the Tiltrotor UAV for communicating
unidirectionally with the base station. In this dissertation, the protocol
was extended in order to become bidirectional with the Beaglebone
Black computer. The algorithm implemented in the Communication
thread is presented in Figure 27. First, the communication interface
is initialized, then, the input shared variables (fg StateDataIn),
containing the states of the Tilt-rotor and the system status, are
updated. Next, it sends the states values (dp StateOut) to the
other embedded computer and receives back the control action
(dp ControlIn). When the state information is sent, the algorithm
waits for reply of control data. If these data do not arrive within
3 ms, it is considered as lost communication and restarted. On the
other hand, when the control data are received, this information is
evaluated in order to determine if there are any errors. If there is an
error, the last control data are used, otherwise, the shared variables
(fg ContorlDataOut) are updated. Finally, the thread goes to sleep for
the remaining time.

6.4 CONTROL AND ESTIMATION SUBSYSTEM

In this section, the Control and Estimation subsystem, supported
by the Beaglebone Black single board computer, is described. This
level is responsible for calculating the control action, estimating the
angular position of the suspended load, sending telemetry information
to the base station and communicating with the Sensor and Actuator
Processing subsystem. Considering that Beaglebone Black computer
must execute the proposed MPC in a short period of time, the operating
system Debian Jessie 8.2 compiled with hardware floating point was
considered. This operating system provides support for two main
features of Beaglebone Black computer, with high acceleration when
working with vectors or matrices. The first feature is the NEON
technology. This technology consist of an accelerator processor SIMD
(Single Instruction Multiple Data), in which during the execution of
one instruction, the same operation will occur on up to 16 data sets
in parallel. The second feature is the hardware floating-point, which
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accelerates the operations performed with a single precision floating
point.

Moreover, the formulation proposed in Chapter 3 uses operations
with matrices and a quadratic programing solver. In this way, two
libraries were chosen to develop the MPC formulation. Eigen library,
with NEON technology capabilities, used for computing matrices
operations, and qpOASES library used for fast calculation of the QP
formulation.

As presented in Figure 28, the software, in the BeagleBone Black
computer, is structured with three execution threads, corresponding to
the tasks of communication with Discovery board, control calculation,
and sending telemetry information to the base station. Thread
CommLowLevel is responsible for receiving the states of the system
(dp InputStates) and sending the control values (dp ControlOut)
throughout the serial communication, ContinousControl calculates the
control action and DataProcessing sends the telemetry information to
the base station. In this figure, the suffixes in and out represent input
and output data of the execution thread, respectively. The term SVi
represents the name of the connectors between the shared variables of
the execution threads. Nevertheless, these connectors represent only
data interchange between threads and not a variable defined within
the program.

6.4.1 CommLowLevel execution thread

This thread is responsible for receiving the states from the Sensor
and Actuator Processing subsystem, and sending the control data. As
presented in Figure 29, this program begins with the initialization of
serial interface, setting the transmission velocity in 921.6 Kbps. Then,
the input shared variables are updated; in this case the input variable
contains the control actions that will be sent to the Sensor and Actuator
Processing subsystem. Next, the program enters a wait state for the
data sent from the Sensor and Actuator Processing subsystem. When
this information arrives, a validation is performed in order to detect
errors in the data. If the data is correct the output shared variables are
updated, otherwise the last values are maintained. Finally, the thread
goes to sleep for the remaining time of 6 ms. On the other hand, if
the data information does not arrive in 3 ms the communication is
restarted.
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Figure 28 – AADL representation of the software on the Control and
Estimation subsystem.
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6.4.2 DataProcessing execution thread

This thread is responsible for sending telemetry information
to the base station. These data are sent through HC-06 Bluetooth
module, which communicates with the BeagleBone Black through serial
interface. As mentioned before, the MultiWii protocol is used in the
communication between the Tilt-rotor and the base station. The data
are the following:

• Angular position of the Tilt-rotor expressed in degrees.

• The translational position and velocities of the Tilt-rotor UAV in
meters and meters per second, respectively.

• The angular position and velocities of the Tilt-rotor UAV in
radian and radians per second, respectively.

• The angular position and velocities of the rotors in radian and
radians per second, respectively.

• The calculated control action in newtons and newtons meter.

The algorithm of this thread begins with the initialization of the
serial interface. Then, the shared variable are updated and sent to the
base station. The sampling time was configured with 100 ms.

6.4.3 DiscreteControl execution thread

This thread is responsible to calculate the control action of the
Titl-rotor UAV. This program was developed with the ability to use
the controllers as objects that can be called by the software. This
object receives as parameters the states of the system and the status of
software, then it returns the control action. As presented in Figure 30,
the code starts by initializing the control variable. In this process if
the controller used is an LQR, the feedback gain matrix is initialized.
Moreover, if MPC controller is considered, the tilt-rotor model and
the MPC tuning parameters are initialized. Next, the input shared
variables are updated and the states are sent to the controller’s object
to calculate the control action. Finally, the values received from the
controller are updated into the output shared variables. The execution
period of this thread was setup at 12 ms, like the DataProcessing.
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6.4.3.1 Control Calculation

In this section is described the generalized algorithm of the
proposed controllers presented in Figure 31. This algorithm uses two
libraries to calculate the control action. First, the Eigen library5 is used
for matrix operations. It can support all matrix sizes, any numeric type,
and has explicit vectorization, allowing to work with NEON technology.
The second library used to solve the QP problem is qpOASES6. It is
an implementation of the online active set strategy. It has several
theoretical features that make it suited for model predictive control
(MPC) applications. Furthermore, it can deal with semi-definite,
ill-posed or degenerated QP problems.

In order to use this library, some modifications in the constraints
are performed in the proposed formulation, since the QP problem in
this library is quite different, as follows:

J(x) =
1

2
x′Hx+ x′g

lb ≤x ≤ ub
lbA ≤ Ax ≤ ubA.

In this context, the constraint’s inequalities are rewritten in the
following form for the I-SSMPC:[

ˆ̃umin − ˜̄u(k − 1)
ˆ̃̄xamin −Q˜̄xa(k)

]
≤
[
Tm
P

]
û ≤

[
ˆ̃umax − ˜̄u(k − 1)
ˆ̃̄xamax −Q˜̄xa(k)

]
(6.1)

and for the NI-SSMPC as presented below:[
ˆ̃umin

ˆ̃̄xsmin −Q˜̄xs(k)

]
≤
[
Im
P

]
û ≤

[
ˆ̃umax

ˆ̃̄xsmax −Q˜̄xs(k)

]
. (6.2)

6.4.3.2 Load Position Estimation

In order to solve the problem of measuring the load position,
the test bench shown in Figure 32 was implemented. The load has

5Eigen library is available at: http://eigen.tuxfamily.org/index.php?title=Main Page
6qpOases library is available at: https://projects.coin-or.org/qpOASES
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a mass of 80 grams, which is hanging by four nylon cords. These
cords are supported by a glass fiber base. A camera is fixed on this
base through an anti-vibration support. The load position is measured
using image processing with the CMUCAM2 camera, which provides
simple vision capabilities to small-embedded systems in the form of
an intelligent sensor. This camera is able to track any color previously
configured, then it sends a packet with some information through serial
interface. This packet has the x and y coordinates of the object center
with respect to the upper left corner of the frame, the bounding box,
the number of pixels tracked and a confidence value. A software was
developed to test the camera. This program sends the color of the
load to be tracked by the camera. Then, the coordinates of the center
of the object are read and the position with respect to the camera is
calculated with the following equations:

xl =
xf
2
− xo pixels, (6.3)

yl =
yf
2
− yo pixels,

where xl and yl are the position of the load with respect to the camera,
xo and yo are the coordinates of the object center, xf and yf are the
size of the frame.

6.5 PRELIMINARY RESULTS

Some preliminary results obtained with the system were
obtained. However, during the preliminary tests some issues were
identified which did not allow to obtain flight results. The first
identified problem is related to the communication between computers.
According to tests performed, sometimes, the package information
is lost because the MultiWii protocol does not guarantee package
reception. However, it is able to detect errors in the submitted
information. Considering this capability, as first solution, it was
implemented an acknowledge message in the Multiwii protocol. First,
the low-level subsystem sends the states to the high-level subsystem,
then, the low-level subsystem waits for the acknowledge message of
the other subsystem, if the acknowledge message is not given in 3
ms, the low-level subsystem sends again the states. In the case of
the high-level subsystem, it begins waiting for the states from the
low-level subsystem; when they arrive, if the data is correct, it sends an
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(a) (b)

Figure 32 – Structure of the test bench for the CMUCAM2 camera

acknowledge message, on the opposite it waits again for the package.
The problem with this solution is that the Multiwii protocol works in
phases. On the one hand, it sends the package, and on the other hand,
it receives the package. If one thread lost any phase, the program locks
up because the computer does not know when the other one is writing
or reading.

In this context, it was developed a partial solution when an error
is detected. This solution used the last value that was received correctly
and reduce the period of the communication threads on each computer
to 6 ms, in order to have an exchange of information twice faster than
the control calculation.

Other problem is related to the tuning parametrization of the
system. This is not trivial and it is one of the biggest challenges of these
systems. Considering the explanation in Section 2.6, the dynamics of
the servomotors was set in the mathematical model as close as possible
to the actual model, in order to reduce the difficulty of the system
parameterization. However, it was not possible to stabilize the system.

Nevertheless, some preliminary results were obtained with the
system. The first result considers communication time of the system.
This is an important parameter, as the control calculation is executed in
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the BeagleBone Black computer and this value are applied by Discovery
board, the time between reading and actuating must be less than 12
ms, which is the sample time of the system. In this context, the
mean time measured between sending the states and obtaining the
control signal was 2 ms. Considering the MPC implementation in the
BeagleBone Black, it was measured the time for solving the QP problem
and the error between the control calculated in simulation and in the
BeagleBone Black. The results were a mean time of 8 ms and an error
of 2%. Therefore, the system is able to read the sensors, calculate the
control action and act in 10 ms, which is less than the time sample of
the system.

6.6 SUMMARY

In this chapter, the practical implementation of the Tilt-rotor
UAV was described. The general structure was based on the first
version of this aircraft; however, some improvements were applied in the
Tilt-rotor assembled in this work, like the use of servomotors controlled
by torque reference, the addition of a second computer in order to
implement the MPC formulation derived in this work, the addition of
a IMU with barometer, and the use of camera to estimate the load
position. Furthermore, a brief explanation of the whole system was
provided, starting from the physical structure, passing by hardware
implementation and ending with the description of the software. Also,
some preliminary results were discussed, with the aim to prove that is
possible to apply this approach in a real application.
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7 CONCLUSIONS

In this Master dissertation two MPC strategies for the path
tracking problem of a Tilt-rotor UAV with a swing-free suspended
load were developed. These controllers were able to track a reference
in x, y, z, and ψ while stabilizing the other states, considering
constant disturbances affecting all degrees of freedom and parametric
uncertainties in the inertia tensor and body mass of the Tilt-rotor UAV.

An accurate non-linear model of the Tilt-rotor UAV with
suspended load was presented and implemented considering dynamics
generated by the rotors when they tilt and by the suspended
load, modeled as a simple pendulum. The non-linear model is
composed by ten degrees of freedom comprising three translational
and three rotational DOF for Tilt-rotor UAV, two rotational DOF for
servomotors, and two rotational DOF for the suspended load.

Considering the proposed control strategies, a linear error state
space system was obtained when the non-linear model was linearized
throughout a generic trajectory. From this linearization procedure a
time-varying linear model based on the states and control error was
obtained. In this model, the state matrix varies as a function of the
trajectory acceleration. In order to perform the path tracking of the
Tilt-rotor UAV with suspended load, the state vector was augmented
with an integral action in the translational position and yaw angle,
providing constant disturbances and parametric uncertainties rejection
capabilities to the system.

The predictive controllers proposed in this work used the
incremental and non-incremental formulation. These controllers are
time variant and are based on the error state space model of the
Tilt-rotor UAV. With the aim to consider physical limitations of
the actuators and the fact that the aircraft is flying in a confined
environment, there were included inputs and state constraints in the
MPC formulation.

On the other hand, a terminal cost was added in the cost function
of the MPCs in order to guarantee stability. However, as the model is
time varying, the terminal value was calculated with an LMI approach,
where the vertices of the polytope are given by the system evaluated
at the maximum and minimum acceleration values of the trajectory.

The proposed controllers were simulated with the non-linear
model applying constant disturbances. Furthermore, the simulation
results were compared to a LQR controller. The results showed
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a successful accompaniment to the reference trajectory and a good
disturbance rejection. Furthermore, both controllers presented better
performance than the LQR controller. However, the I-SSMPC used
smoother control action but has higher states error, compared with
NI-SSMPC. It should be noticed, that both controllers have higher
error in the suspended load states. Both controllers presented smoother
control action than the LQR controller, also, as confirmed with the
MSE value of the states x, y, z and yaw, the controllers had a good
path tracking capabilities. It is worth to say that, in the simulation
results both controllers were able to respect the constraints.

About the simulation with parametric uncertainties, both
controllers presented an inherent robustness against ±30% variation
in the values of inertia tensors and body mass. However, a very limited
restriction could reduce the robustness of the system.

7.1 FUTURE WORKS

In the following a list of possible future works related to this
dissertation, is proposed:

• Formulate the non-linear model of the Tilt-rotor with suspended
load with Newton-Euler approach. In the mathematical model
presented in this dissertation, the inertia matrix inversion was
needed to obtain the non linear model. This procedure is
complex, considering that the system is higher coupled and
non-linear. In this case, it could be interesting to formulate the
model with this approach.

• Implement soft constraints in the states that, in this work, were
only stabilized. The operating point of those states is always
changing, therefore, considering soft constraints could give more
freedom to the system.

• Demonstrate stability of the MPC formulation presented in this
dissertation.

• Execute flight test with the Tilt-rotor developed by ProVANT
project using the formulation implemented in this dissertation.

• Extend the proposed LMI formulation in order to consider the
system uncertainties in the terminal cost.
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• Explore a communication protocol for embedded systems that
guarantee package reception. The control action needs to
be applied as quickly as possible. Therefore in this work
it was calculated in a dedicate computational board, which
requires a proper communication protocol capable of exchanging
information faster and without data loss when updating variables.

• Develop and implement a load position estimator. The frame rate
of the camera is not fast enough to provide the position of the
load. Therefore, it is necessary to implement an estimator for
these states.

• Study control tuning strategies for such systems. One of the
challenges in practical implementation of this control system
is the control tuning. Thus, it could be helpful if some
methodologies are used.
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A.1 TILT-ROTOR UAV LINEAR MODEL WITH SUSPENDED
LOAD

The linear model matrices obtained from the non-linear model
(2.62) are presented in (A.1) and (A.2) for matrices A(t) and B,
respectively.

A(t) =

[
010×3 010×7 I10
010×3 Υ10×7 A8

]
(A.1)

where Υ = [A1 · a A2 · a A3 · a A4 · a A5 · a A6 · a A7 · a],
with a = [ẍ ÿ z̈ 1] and ẍ, ÿ, and z̈ the accelerations of the
desired trajectory.

A1 =



−0.000035346 −0.15886 −0.000057162 −0.00059514

−8.0193 · 10−6 0.0026811 −0.99972 −9.8073
0.00017011 0.76458 0.000084491 0.0008288

1.5394 · 10−7 0.0007104 −0.00047742 −0.0046833
−0.00053207 −2.3914 −0.00090363 −0.0094132

4.7409 · 10−6 0.021005 0.0078218 0.076732
0.00060363 2.713 0.0015813 0.016059
0.00060351 2.7125 0.00021781 0.0026832

−1.444 · 10−7 −0.00064612 −0.000074445 −0.00073044
0.00053007 2.3824 0.0007921 0.0082504



A2 =



9.3366 · 10−6 0.003236 0.99982 9.8082

6.0917 · 10−7 0.0027382 −7.3698 · 10−6 −0.000072297

−1.4418 · 10−7 −0.0012442 0.015391 0.15099
−0.000080008 −0.3596 0.00013326 0.0013073
0.000012925 0.058061 0.00085312 0.0083691
−0.001988 −8.9347 −0.0088264 −0.086587

−0.00018597 −0.83579 −0.0016184 −0.015877
0.00016055 0.72162 −0.000079855 −0.00078338

4.9897 · 10−6 0.022431 −0.00011855 −0.001163
−0.000010298 −0.046258 −0.00074197 −0.0072788


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A3 =



−0.00017018 −0.76487 0 0

2.6768 · 10−7 0.0012031 1.4844 · 10−10 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



A4 =



0.00024004 1.038 1.055 10.35

−3.1156 · 10−7 −0.0013527 −0.0012291 −0.012058

−1.5446 · 10−6 −0.0066776 −0.0068284 −0.066987

3.0928 · 10−6 0.013453 0.011557 0.11338
0.0019397 8.3894 8.4866 83.254
0.0010627 4.5999 4.5561 44.695
−0.0018398 −7.957 −8.0577 −79.046
−0.002025 −8.7587 −8.8517 −86.836

−2.4688 · 10−6 −0.010744 −0.0090947 −0.089219
−0.0014604 −6.3168 −6.3802 −62.589



A5 =



−0.00022313 −1.0439 1.0586 10.385

−3.5844 · 10−7 −0.0016709 0.0015454 0.015161

1.4276 · 10−6 0.0066806 −0.0068162 −0.066867

3.9699 · 10−6 0.018485 −0.016576 −0.16261
−0.0018055 −8.4453 8.5238 83.618
0.00098988 4.6262 −4.5732 −44.863
0.0018849 8.8161 −8.8896 −87.207
0.0017123 8.0095 −8.0923 −79.386

−3.256 · 10−6 −0.015157 0.013499 0.13242
0.00136 6.361 −6.4101 −62.883


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A6 =



9.0923 · 10−9 0.00004041 0.000011768 0.00011545

4.0557 · 10−7 −0.00015676 0.051106 0.50135

7.1498 · 10−6 0.032136 −0.000027396 −0.00026876

−8.4459 · 10−7 0.00063884 −0.11449 −1.1232

1.6663 · 10−7 0.00074177 0.00018501 0.0018149

−1.64 · 10−8 0.000012809 −0.0022337 −0.021912

−1.6743 · 10−7 −0.00073784 −0.0003788 −0.003716

−1.6457 · 10−7 −0.00074006 0.000010562 0.00010361
−0.000016025 0.0048518 −1.9847 −19.47
0.000036676 0.16485 −0.0001615 −0.0015843



A7 =



−6.768 · 10−7 0.00021883 −0.084181 −0.82581

−2.3248 · 10−9 −9.9961 · 10−6 −0.000011694 −0.00011472

−1.1917 · 10−8 −0.000050919 −0.000068182 −0.00066886

3.4363 · 10−8 0.00014721 0.00018671 0.0018316

−5.168 · 10−6 0.0016571 −0.64244 −6.3023

1.5613 · 10−6 0.0069779 0.0010164 0.009971

5.2843 · 10−6 −0.0010432 0.64009 6.2793

5.0121 · 10−6 −0.0022595 0.6399 6.2774
−0.000073832 −0.33183 −0.00016658 −0.0016341
−0.000012373 0.0033383 −1.5218 −14.929



A8 =



2.2211 2.2205 −9.215 · 10−9 0.000026997

0.0013136 −0.000039515 −7.1926 · 10−7 9.1711 · 10−9

0.0037593 0.0037633 2.1812 · 10−8 5.4179 · 10−8

−0.020078 −0.00013921 0.000091155 −1.4549 · 10−7

35.444 35.437 −1.4629 · 10−7 0.00051049

−0.50352 0.4351 1.6219 · 10−6 −4.5522 · 10−7

−58.893 −35.264 2.8695 · 10−7 −0.00050859

−35.264 −49.228 4.2406 · 10−9 −0.0005085

0.017495 0.00025855 −0.00031661 1.2777 · 10−7

−31.009 −31.003 1.2777 · 10−7 −0.00068343


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B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

5.8514 · 10−7 −5.8627 · 10−7 −0.0072859 −0.0072837

0.000372 −0.00037272 −4.309 · 10−6 1.2962 · 10−7

0.00047596 0.00047847 −0.000012332 −0.000012345

−0.0052431 0.0052532 0.000065861 4.5665 · 10−7

8.8973 · 10−6 −8.9145 · 10−6 −0.11627 −0.11624
−0.00016133 0.00016164 0.0016517 −0.0014272
−0.000022911 0.000022955 0.19319 0.11568

5.2109 · 10−6 −5.221 · 10−6 0.11568 0.16148

0.0045003 −0.004509 −0.00005739 −8.4811 · 10−7

−7.7231 · 10−6 7.738 · 10−6 0.10172 0.1017


(A.2)
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A.2 STATE FEEDBACK GAIN MATRIX OF LQR CONTROLLER

The gain matrix used in the LQR controller is given :

KeT =



13360.0 −18121.0 −28996.0 −38357.0
−58426.0 59070.0 −18.49 −1553.4
−39041.0 −39151.0 1127.5 −826.02
56955.0 −57609.0 −170.29 322.64
26391.0 −35717.0 −48048.0 −70269.0
−6124.8 2538.7 −9312.2 14435.0
14984.0 −14015.0 −34278.0 −23673.0
26375.0 −28926.0 −25320.0 −65864.0
15346.0 −15478.0 −128.95 1021.5
−3669.0 3918.1 2097.8 6059.3
8187.3 −11121.0 −16366.0 −22729.0

−26429.0 26728.0 32.427 −469.43
−12569.0 −12600.0 171.66 −201.76

3572.2 −3613.5 −6.7018 −214.39
5085.3 −5405.6 −7062.8 −11001.0
−1174.9 1083.6 −1628.3 3479.4
1603.7 −1434.8 −2215.9 −2704.9
2693.4 −2475.0 −2924.6 −5383.2
1953.8 −1983.1 −54.258 0.77362
1128.0 −1450.1 −2189.4 −3220.8
9201.2 −12512.0 −21452.0 −27213.0

−51097.0 51643.0 −95.524 −1657.5
−42590.0 −42619.0 1505.7 −891.15
−10854.0 3895.0 −20999.0 26364.0



(A.3)
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APPENDIX B -- Symbols Used in the Flowcharts
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B.1 SYMBOLS USED IN THE FLOWCHARTS

The descriptions of each symbol used in the flowcharts are the
following:

Symbols Name Function

Start/End

Indicates the
beginning or end

point of a program.

Data

Input and output
of any type of data

Process

Indicates any
processing function

Subroutine

Indicates a
predefined process,

such as a
subroutine or a

module.

Decision

Indicates a decision
point and the
action to take

depending on the
answer to the

comparison given.


