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Resumo

Este trabalho foi realizado no Laboratório de Máquinas-Ferramenta (Werkzeug-

maschinenlabor - WZL) da universidade RWTH-Aachen, em Aachen, Alemanha. O

projeto tem o objetivo de analisar a influência de fatores controláveis de um processo

de produção de peças de plástico por meio de máquinas injetoras. Deseja-se en-

contrar um ponto ótimo para esses fatores de maneira que o erro dimensional en-

tre as peças produzidas e o modelo CAD seja o mı́nimo possı́vel. Para atingir esse

objetivo, é proposto um experimento no qual se variam seis fatores controláveis em

torno de seus valores usuais de produção, obtendo assim para cada um deles os

nı́veis baixo, central e alto. A combinação das variações destes seis fatores nos leva

à produção de 53 amostras que passaram por um processo de reconstrução tridimen-

sional utilizando-se tomografia computadorizada. Após a reconstrução as peças foram

comparadas com seu modelo em CAD e os seus desvios foram analisados utilizando-

se uma metodologia de separação por ordens (zero, primeira, segunda, terceira e

superiores) com o uso de um software previamente desenvolvido em Matlab no WZL

para uso neste projeto. Foi então gerado um modelo matemático capaz de representar

os valores dos desvios em cada ordem em função dos parâmetros de entrada. Com

o uso deste modelo é possı́vel prever o tipo de desvio e a sua intensidade em função

dos parâmetros escolhidos no momento da produção da peça. A influência individual

de cada parâmetro sobre a saı́da também foi analisada, e os fatores mais crı́ticos do

processo (que exercem maior influência sobre os desvios) foram definidos. Por fim,

foi simulado um novo ponto de produção que, de acordo com o modelo produzido,

minimiza os desvios e poderá ser utilizado como ponto central para próximos estudos

ou para produção comercial com maior precisão dimensional.
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Abstract

This work was performed at the Laboratory for Machine Tools (Werkzeugmaschi-

nenlabor - WZL) of the RWTH-Aachen University, Aachen, Germany. The project aims

to analyze the influence of controlled factors in plastic parts production process by in-

jection molding machines. It is desirable to find an optimal point for these factors so

that the dimensional error between the parts produced and the CAD model is mini-

mized. To achieve this goal, we propose an experiment in which six controllable factors

vary around their usual production values, defining for each three levels: low, middle

and high. The combination of variations of these six factors leads to the production

of 53 samples. The samples were measured using three-dimensional computed to-

mography. After reconstruction the parts were compared with its CAD model. Their

deviations were analyzed using a method of separation by deviation orders (zero, first,

second, third and above) with a at WZL previously developed software to be used in

this project. Then, a mathematical model capable of representing the values of the

deviations in each order as a function of the input parameters was created. Using this

model it is possible to predict the type of deviation and its intensity depending on the

chosen parameters at the time of production of the piece. The individual influence of

each parameter on the output was also analyzed, and the most critical factors of the

process (which most influence on deviations) were defined. Finally, a new production

point was defined. According to the produced model, the deviations were minimized.

The new parameter set may be used as a central point for further studies and for com-

mercial production with higher dimensional accuracy.
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1 Introduction

The dimensional quality control is an extremely important factor to ensure that

produced parts follow its specifications and meet satisfactorily the levels of dimensional

tolerances for these stipulated.

Plastic injection tools require constantly analysis of its produced pieces in order

to ensure that the deviations of the parts conform to tolerance stipulated levels. If the

deviations are above these levels, a correction of injection factors is needed to return

the system to its ideal operation point. The same optimization loop can be used to

produce parts with increasingly smaller deviations and will be used in this project with

this purpose.

Figure 1.1: Tactile CMM measurement system [1].

Currently for the sample inspection of injection molded plastic parts mainly opti-

cal and tactile measurement (figure 1.1) processes are used, whereas the geometry of

the tools’ cavity, used to form the part, is deduced from the measurement of the geom-

etry of the part itself. Inaccessible features are revealed by cutting the parts, wherein
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the geometry of the part may change, e.g. by release of internal stress or feathering.

The tool correction based on this conventional inspection process is iterative and can

be very time consuming. The delay of the start of production due to the non-approved

tool causes high costs [2].

Due to this scenario, an optimization loop (figure 1.2) is proposed making use of

CT measure system and math analytical software. As in this method the CT measuring

is non-destructive and independent of the shape of the samples, the optimization can

be performed faster, more accurate and with less iteration loops compared to other

measurement systems such as optical and tactile.

The proposed optimization loop can be divided into three parts: Measure, Com-

pare and Act, as is presented below:

Figure 1.2: Optimization loop for the tool correction.

• Measure: An experiment is proposed to vary some plastic injection factors around

an operation point and samples are produced with a combination of different val-

ues of these factors. Then, all samples are measured with CT and tridimension-

ally reconstructed;

• Compare: Mathematically compare the measured part 3D reconstruction with its

reference (CAD model) in order to analyze deviations;

• Act: With the comparison data, model the process and simulate the factors that

minimize deviations, and update the machine tool with these values. A new ex-

periment can be done around this operation point, restarting another iteration of

the optimization loop.
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1.1: Project objectives

The project objective is to reduce the amount of iteration loops for the tool correc-

tion by giving, more rapid, accurate and meaningful parameters for the tool correction.

In order to achieve this goal, a DOE is proposed to analyze the samples deviation to

CAD model when subjected to different values of input parameters. Therefore, it is

possible to create a model that represents the behavior of the system and simulate a

point where the deviations are minimal.

A separation approach of the deviations in different orders was used to quan-

tify the influence of the input factors in each deviation order (zero, first, second, third

and residuals). The order zero will also be represented by offset. For this separation

analysis, the software SmartInspect (previously developed in Matlab) was used.

By making use of this separation methodology it is possible to determine which

factors will be relevant in each deviation order. It is also possible to find factors that

despite being considered in the experiment are not significant for any order of deviation

and can be considered a noise in the analyses and removed from the next iteration

loop, making the whole process easier.
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2 Plastic parts highlights

Product designers have a big variety of different materials when selecting the

material of construction for a particular product. Plastic is one of those materials and

compete with other materials such as steel, wood, ceramics or glass. In most cases

each one of the materials offer inherent benefits and of course some limitations. Some

plastics characteristics that can be crucial for the designer’s choice is presented [3]:

• Versatility;

• Relatively easy to mold into complex shapes;

• Low specific gravity;

• Sometimes transparent;

• Coloring throughout;

• Relatively low energy requirements for processing;

• Chemical resistance;

• Good electrical insulation.

But it also presents some disadvantages:

• Expensive equipment investment;

• Potentially high running costs;

• Need to design moldable parts.
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2.1: Molding process

Injection molding is used to create many things such as wire spools, packaging,

bottle caps, automotive dashboards, pocket combs, some musical instruments, one-

piece chairs and small tables, storage containers, mechanical parts (including gears),

and most other plastic products available today. Injection molding is the most common

method of part manufacturing. It is ideal for producing high volumes of the same object.

The injection molding process is a high speed, automated process that can be

used to produce plastic parts with very complex geometries. The process can produce

either very small or very large parts using virtually any plastic material. It is important,

however, for part designers to recognize that the design of the product will ultimately

determine the ’ease of molding’ or ’manufacturability’ of the part, as well as tooling

requirements and costs.

Figure 2.1: Schematic representation of a plastic injection tool [4].

The injection molding process is a complex process that involves a series of

sequential process steps. The different phases of the injection molding process are

presented below [3]:
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2.1.1: Molding filling

After the mold closes, the melt flows from the injection unit of the molding ma-

chine into the relatively cool mold trough the feed channel and then into the cavity.

2.1.2: Packing

The melt is pressurized and compressed to ensure complete filling and detailed

surface replication

2.1.3: Holding

The melt is held in the mold under pressure to compensate for shrinkage as

the part cools. Holding pressure is usually applied until the gate solidifies. Once gate

solidifies occurs, melt can no longer flow into (or out of) the cavity.

2.1.4: Cooling

The melt continues to cool and shrink with no shrink compensation.

2.1.5: Part ejection

The mold opens and the cooled part is then stripped from the core of cavity, in

most cases using a mechanical ejector system.
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3 Computed tomography

X-Ray computed tomography (CT) is a rather new technology in manufacturing

metrology as the first devices designed specifically for metrological purposes came to

the market after the year 2000.

After being used for medical purposes, the use of this technology in non-destructive

manufacturing metrology made sense. The incorporation of manufacturers known from

CMM metrology assured the traceability of CT systems and made the use of it as a

measurement device possible.

The volumetric model which results from each measurement offers not only high

point density known from optical metrology but even represents the whole volume of a

measurement object holistically. As a result it is possible to analyze interior and hidden

features of an object in addition to evaluations on the surface without destroying the

workpiece [5].

3.1: CT operation

The CT is a non-destructive technique to obtain cross-sectional images from a

work piece. A schematic figure of the CT operation is shown in figure 3.1. In a typical

procedure, a work piece is placed on a rotary table and parameters, such as tube volt-

age, exposure time and number of projections, are set. A source inside the CT machine

emits x-rays that penetrate the part and are attenuated according to the part geometry,

density, material and x-ray energy. A detector placed behind the rotary table is used

to record the intensity of the attenuated x-rays. The detector provides a bi-dimensional

grayscale image representing the amount of attenuation of the current projection. After

several attenuation images from different rotation angles are obtained it is possible to

create, through a mathematical reconstruction, a 3D voxel model (equivalent 3D of the

pixel) in which the voxel gray value represents the absorvity of the material. This 3D
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voxel model can be used to generate a 3D data set (point cloud) of the current scanned

part.

Figure 3.1: Schematic description of CT operation and reconstruction process.

3.2: Determination of the uncertainty in measurement

Currently, there is no standard that set the uncertainty of a CT measurement,

but is known that it varies with the input parameter values (such as Tube voltage, Tube

current, pre-filter thickness, exposure time, Detector sensitivity) used for each mea-

surement. It is very difficult to calculate analytically the uncertainty in measurement

of CT systems due to the existence of various factors and their interactions that would

have to be considered. However, experimental investigations considering probing de-

viations have been performed for custom-designed standards, e.g. step cylinders, ball

bars or titanium calotte cubes and a cylinder head [6]. According to an experiment

with calibrated work pieces proposed by [6], the variation of the parameters made the

standard deviation derived from five repetitions varies between approximately 1 and

7.5 µm. This experiment has shown how the CT measurement uncertainty range can

vary with the set of the parameters for each sample to be measured, and give us an

idea about the uncertainty of the computed tomography system.
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Figure 3.2: Calibrated work piece being used to determine CT uncertainties.

3.3: CT limitations

The use of CT for measuring plastic parts is very convenient, since such mate-

rials generally do not have high density, so the x-rays emitted by the CT source does

not suffer much attenuation, allowing a good reconstruction of the part.

However, it does not occur with the use of denser materials such as metals. With

this kind of material analysis, the high density of the material can compromise the qual-

ity of the reconstruction of parts. Besides this, the choice of appropriate parameters of

CT also directly affects the quality of the reconstruction.
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4 Separation methodology

The CT provides a point cloud with very high point density, which can be used

to calculate a 3D surface model as described in chapter 3. This 3D surface model and

the CAD-model can be used to create a nominal-actual comparison, e.g. in form of a

color-coded deviation representation (figure 4.1).

Figure 4.1: Color-coded deviation representation of one of analyzed samples.

In this nominal-actual comparison different orders of geometric deviations (off-

set, slope, curvature, waviness) are overlaid (figure 4.2). These geometric deviations

will be separated to figure out their causes (tool geometry and injection molding pro-

cess) more easily and to be able to adapt specifically the tool correction (e.g. process

of eroding) [2].

A separation approach for flank topographies using CMM measurements as

measuring instrument was proposed in [7]. This approach was adapted and used for

10



Figure 4.2: Total deviation and separation methodology.

the current work. All mathematical derivations presented in this chapter are credited to

the approach authors.

The punctual deviations between a nominal and actual surface can be consid-

ered as an overlaid of several order form deviations. In this project we will consider,

basically, the three first global forms deviations and the residuals forms:

• The 0th order form with the meaning of an offset;

• The 1st order form with the meaning of inclination;

• The 2nd order form with the meaning of curvature;

• The residual forms composed by the 3rd order form, with the meaning of wavi-

ness, plus the higher orders.

The global forms and residuals are represented in figure 4.3.

Figure 4.3: Global forms and residuals from deviations separation.
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The separation and calculation of parameters of each order can be done by best-

fit approximation and least square method by minimizing the sum of the squares of the

residual deviations and the best-fit function s for each order. The objective function is

given by:

f(x) =
n∑

i=1

(δ − si)
2 (4.1)

4.1: The 0th order form deviations

The 0th order form deviations have the meaning of an offset or in some cases

can be described as a pitch error. The best-fit function for this order is given by:

s0(x, y) = z0 (4.2)

The deviations used are the current deviations between nominal and actual sur-

faces.

δ0 = δ (4.3)

4.2: The 1st order form deviations

The first order form deviations are considered as a plane which has the meaning

of inclination of the global topography. The equation of a plane is given by:

Ax+By + Cz +D = 0 (4.4)

In this case the domain is considered as the set of pairs (x,y). Thus the best-fit

function s for this order can be written as:

s1(x, y) = z = ax+ by + c (4.5)

The deviations values used for the first order are the difference between the

nominal deviations and the zero order form.

δ1 = δ − s0(x, y) (4.6)
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4.3: The 2nd order form deviations

The second order form deviations can be interpreted as the curvature and anisotropy

of the global topography. The general form of a second order surface can be written

as:

a11x
2
1 + a22x

2
2 + a33x

2
3 + 2a12x1x2 + 2a23x2x3 + 2a31x3x1 + 2b1x1 + 2b2x2 + 2b3x3 + c

or

3∑
i,j=1

aijxixj + 2
3∑

i=1

bixi + c = 0 (aij = aji) (4.7)

The second order surface can also be expressed in the matrix notation by:

s(x) = x̃T Ãx̃ = (Ãx̃, x̃) = 0 (4.8)

Where the matrix Ã and x̃ are given by:

Ã =

(
A b

bT c

)
=


a11 a12 a13 b1

a21 a22 a23 b2

a31 a32 a33 b3

b1 b2 b3 c

 , x̃ =

(
x

1

)
=


x1

x2

x3

1

 (4.9)

The second order surfaces are the points that satisfy the equation S(x)=0 when

rank(A)=0. Moreover, since the second order surface expressed as matrix notation is

a quadratic form and A is a real symmetric matrix, it is possible to classify the surfaces

in five forms as shown in figure 4.4.

Figure 4.4: Second order surfaces forms.
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These forms are, basically, described by the following equations:

Name Equation

Ellipsoid X2 + Y 2 + Z2 = 1
Hyperboloid of 1 sheet X2 + Y 2 − Z2 = 1
Hyperboloid of 2 sheets −X2 − Y 2 + Z2 = 1
Elliptic paraboloid X2 + Y 2 = Z
Hyperbolic paraboloid X2 − Y 2 = Z

Table 4.1: Equations for each second order surface form.

This means that an arbitrary surface can be obtained from the proper forms

by applying a suitable rotation R, parallel translation Q and scaling transformation S

matrices. Where the matrices R, Q and S are given by:

S =


Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1

 Q =


1 0 0 Qx

0 1 0 Qy

0 0 1 Qz

0 0 0 1

 R =

(
cos θ − sin θ

sin θ cos θ

)
(4.10)

Although there are five fundamental forms we can reduce them into two types:

a paraboloid and an ellipsoid/hyperboloid function.

The paraboloid equation is given by:

z = x2 ± y2 (4.11)

After applying the rotation, parallel translation and scaling transformation the

equation can be written by:

s2(x, y) = z =
Sz

S2
x

[cos θzx+ sin θzy −Qx]2 ± Sz

S2
y

[− sin θzx+ cos θzy −Qy]
2 +Qz (4.12)

In this project the paraboloid function has been chosen as best-fit function for the

second order. The paraboloid is enough to evaluate the curvature and the anisotropy

of the second order. In addition, it has more stability and is more time saving, as long

as it needs to calculate 6 parameters (instead of 7 as in the case ellipsoid/hyperboloid

function). [7]
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In contrast with the first and zero order, the second order form cannot be solved

analytically. For a good approximation the quasi-Newton method can be used with

initial values chosen so that:

Qx = Xlenght/2, Qy = Y lenght/2, Qz = 0.0

The deviations used for the best fit, in this case, are the difference between the

nominal deviations and the sum of the zero order and first order form.

δ2 = δ − s0(x, y) − s1(x, y) (4.13)

4.4: SmartInspeCT software

The SmartInspeCT is a software created by WZL in Matlab environment based

on the separation methodology described in this chapter. The software inputs are a

nominal file (CAD model) and an actual file (point cloud). After the CAD model is

loaded, the user must select one surface of the part to be analyzed (figure 4.6) by

clicking on it with the mouse cursor.

Figure 4.5: SmartInspeCT software interface.

The CAD model filetype used for this application is a standard STL (stereolitog-

raphy) ASCII file which is supported in many CAD softwares. The STL file contains

unstructured information (vertices and normals of triangles) from the model in the form
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of triangles.

On the other hand, the point cloud contains the actual points in the xyz co-

ordinates obtained from the measurement of the real part. This information can be

introduced to the software using three different formats: STL ASCII file (.stl), text file

(.txt) and spreadsheet file (.xlsx).

In this project, the SmartInspeCT ’Best-fit’ feature was not used. Instead of that,

the best-fit was performed in Calypso software and will be described in chapter 5.

Once both models are loaded in the software and one surface is selected (figure

4.6), it is possible to start running the separation by pressing the ’Separate deviations’

button. After the software calculates the deviations of the surface, a response window

appears with the deviation results in each order (figure 4.7).

Figure 4.6: SmartInspeCT software with the upper surface selected.

The response window shows two results for the offset, four results to the first

order, seven results for the second order and two results for third order and superiors,

as is shown in table 4.2. Although all this deviations have been calculated, once the

main objective of the project is to minimize all deviations, and also in order to simplify

the analysis, just the RMS results for offset, first, second, third and superior orders

were considered. So, from now on, when a value of any order deviation is cited, it

means its RMS value.
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Figure 4.7: SmartInspeCT software results for the upper surface selected.

Order Deviation

0. Order Off-Set (mm)

RMS Value (mm)

1. Order Inclination(a)

Inclination(b)

Plane Off-Set (c ) (mm)

RMS Value (mm)

2. Order Rotational Param. (Oz) (rad)

Translation Param. (Qx) (mm)

Translation Param. (Qy) (mm)

Translation Param. (Qz) (mm)

Escaling Param. (p1)

Escaling Param. (p2)

RMS Value (mm)

3.+ Order RMS Value (mm)

Total RMS (mm)

Table 4.2: SmartInspeCT software output parameters.

The methodology used to perform all comparisons using SmartInspeCT soft-
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ware will be presented in chapter 5.

4.4.1: SmartInspeCT modifications

As previously described, the SmartInspeCT software was already developed in

WZL to be used in this project, but some modifications had to be done because of

the geometry of the samples analyzed and in order to make the comparison most

automated possible.

4.4.1.1: Region Growing Algorithm

The region growing algorithm segments surfaces with continuity in their normal.

How the part analyzed in this work has rounded corners, some different surfaces of the

sample was understood by the original software to be only one surface, what made it

not work for those surfaces. In order to fix this issue, the comparative parameter that

fragments the surfaces has been changed to be more accurate to rounded corners

surfaces.

4.4.1.2: XLS file auto save

Throughout the project, 13 surfaces of each 53 samples has been compared

through the SmartInspect software. How the software returns 15 results for each com-

parison, more than 10.000 data values were taken from the software to be later ana-

lyzed.

In order to make this process automated and easier, a xls file auto save feature

was implemented. With this modification, after each comparison, the 15 results of the

SmartInspeCT software were automated written to a xls file. The software interface

(figure 4.5) was modified to include a check button in which the user decides to save

or not the results in a xls file.
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5 DOE - Design Of Experiment

DOE involves making a set of experiments representative with regards to a given

question. The way to do this is problem dependent, and the shape and complexity

of a statistical experimental design may vary considerably. A common approach in

DOE is to define an interesting standard reference experiment and then perform new,

representative experiments around it (figure 5.1). These new experiments are laid

out in a symmetrical fashion around the standard reference experiment. Hence, the

standard reference experiment is usually called the center point [8].

Figure 5.1: DOE with center point and other points obtained trough factors variation.
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5.1: Factors analyze

In DOE, there are two fundamental types of variables, factors (inputs) and re-

sponses (outputs) - as is shown in figure 5.2. The responses inform us about proper-

ties and general conditions of the studied system or process. The responses are, in

this case, the samples shape deviations between the measurement and the nominal

CAD model. On the other hand, factors are the controllable inputs, and will be our tools

to manipulate the system.

Figure 5.2: System process describes the relationship between Factors and Responses.

In this project, six controllable injection molding most important factors were

selected and are presented below:

• Pressure [bar]

• Pressure time [s]

• Cooling time [s]

• Injection rate [cc/s]

• Cylinder temperature [◦C]

• Temperature [◦C]

Since these factors exert an influence on the system, it is usually possible to

force the system towards a region where the responses becomes better. With the use

of the DOE methodology, a modeling of the system can be build and the factors chosen

in order to make the responses as good as possible.
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5.2: Selection of appropriate model

It is of utmost importance to recognize that a model is an approximation, which

simplifies the study of the reality. A model will be never 100% perfect, but can still be

very useful. It constitutes an excellent tool for understanding important mechanisms of

the reality, and for manipulating parts of the reality according to a desired outcome [8].

When making a DOE, there are some different models that can be used, and

each of them can be better or worse depending on the characteristics of the process

and the desired goals to be achieved.

For the current project, describing how the response varies as a function of the

different input factors and determine these factors values that give optimal responses

(minimum deviation) is the main goal. According to [9], Factorial design could be used

for this kind of experiment, but when input factors can be varied across a continuous

range of values, other treatment designs may be more efficient. Response surface

methods are designs and models for working with continuous factors when finding

optima or describing the response is the goal. Even so, factorial analyzes have also

been done in order to compare the results.

Figure 5.3: Design of experiments with full factorial design (left), response surface with
second-degree polynomial (right).
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5.3: Samples generation

In DOE methodology, new experiments are done around the standard reference

(figure 5.1), in order to evaluate and model the behavior of the system in the vicinity of

the center point.

The standard reference used is a known operation point by WZL, and the factors

were varied around it with the statistical software Minitab 14 to create a worksheet with

the input factors of the samples.

The values of the minimum, center and maximum for each input factor were

entered in the Minitab software, and can be found in table 5.1.

Factors Min Center max

Pressure [bar] 400 500 600
Pressure time [s] 1 1.5 2
Cooling time [s] 7 10 13
Injection rate [cc/s] 10 20 30
Cylinder temp [◦C] 250 260 270
Temperature [◦C] 60 75 90

Table 5.1: Minimum, center and maximal factors values to current DOE

In the Minitab 14 software, a new Response surface DOE was created, with a

central composite, in a Half Design, and gave the output of 53 samples.

The worksheet (figure 5.4) is a display of the values on the above table, and

each one of the 53 samples has different combinations of these factors values. The

complete worksheet is shown in Appendix B

5.4: Samples build

After the input factors have been defined, the samples production has started.

The factors Pressure, Cooling time, Injection rate and Cylinder temperature can be

directly set and were not an issue, but the Temperature represented a problem while

producing the samples. Due to the inaccuracy of the plastic injection equipment to

measure and control the temperature, and the long time that takes to change the tem-

perature set-point (temperature change has great inertia due to the need for cooling

or heating large quantities of plastic and the entire injection system of the machine),

some samples were produced with a different values of temperature that was specified

22



Figure 5.4: Worksheet with combination of levels for each factor

in the worksheet. This fact can have introduced a systematic error in the model, but

made the production costs lower.

All samples were produced with three replications, but only one of those was in

fact analyzed in WZL, the other two replications were sent to a third company to be

measured, in order to hereafter compare the results.

Figure 5.5: All 53 produced samples used in this experiment.
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5.4.1: Samples defects

Four of the fifty-three samples presented visual defects (as figure 5.6) and were

not considered in the analysis once it was not possible to execute the best-fit in order

to compare those samples with the CAD model. The loose of those four samples also

contributes to an inaccuracy of the modeling.

Figure 5.6: Four defect samples (bottom) and non-defect sample (top).

5.5: CT measurement

The first task when measuring a sample with the CT is to find a way to hold

the part in the CT rotational desk. In this case, the sample cannot have perpendicular

edges with the CT X-ray emission source, and any object used to hold the sample

could overlap the sample and prejudice the measure result. To solve this problem, a

low density sponge was used to hold the sample. How the density of the sponge is

much less than the plastic, it did not detracted the reconstruction quality.
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Figure 5.7: One of the samples being placed in the CT to be measured.

The next task is to define the CT parameters, such an exposition time, number

of pictures, sensor gain, pre-filter, etc. It was defined with the assistance of Fabricio

Borges, a master’s CT student, and [10], as follows:

• Voltage: 100 kV;

• Current: 550 µA;

• Integration time 1000 ms;

• Gain: 16x;

• Number of images: 500;

• Pre-filter: 0 (no pre-filter).

This CT reconstruction has been analyzed at the software VG Studio Max (figure

5.9) and was considered adequate to the measurement of all of the samples with those

parameters.
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Figure 5.8: Interface of Metrotom OS while measuring one sample.

Figure 5.9: 3D representation of sample voxel model.
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5.6: Best-fit, point clouds and comparison

The Best-fit is the alignment between the CT 3D reconstruction and the CAD

model that was done for each sample in the Calypso software. It is an algorithm that

starts with two data sets (CAD and 3D reconstruction) and an initial estimate of the

aligning rigid-body transform. It then iteratively refines the transform by alternately

choosing corresponding points in the meshes and finding the best translation and ro-

tation that minimizes an error metric based on the distance between them [11].

Figure 5.10: CAD model (white) and voxel model (green) before best-fit.

Figure 5.11: CAD model (white) and voxel model (green) after best-fit.

After the voxel model was aligned with the CAD, the point cloud can be created,

and will be used as an input of the SmartInspeCT Matlab software to calculate the

deviations of the part and the CAD models.

The comparison is one of the most important parts of the project, and will inform

us how much each sample differed from the CAD model in each order (zero, first,
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second, third and residuals) as proposed in chapter 4.

For the analysis, 13 surfaces (figure 5.12) of the samples were chosen to have

its deviation compared with the CAD model trough the SmartInspeCT software. Each

sample had the same surfaces analyzed, and the average of the absolute deviations

was considered as input to model the system. This average method was chosen be-

cause the desired model have to be independent of the surfaces of the sample, being

capable to represent the entire part in just one model.

Figure 5.12: Sample surfaces that have been analyzed in the project.

5.7: System modeling

For the system modeling, both response surface and factorial methodology were

analyzed and compared. As it was previously proposed by [9], the response surface

methodology presented better results than the factorial model.
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5.7.1: Factorial modeling

In factorial modeling, the factors are considered with only two levels (often la-

beled + and -). For this reason, the factorial models are linear, i.e., unlike response

surface models, no quadratic or higher order influence of one factor is considered in

the model. This difference can be notice when comparing both models response, in

appendix E.

Because of the Minitab 14 software limitations, and little influence of higher or-

ders for the factorial modeling, only the factors themselves, and their interactions one

by one (up to second degree) was used to create the system model. The factorial

model function and the parameters for each deviation order is presented:

Factors Abbreviation

Pressure [bar] P

Pressure time [s] Pt

Cooling time [s] Ct

Injection rate [cc/s] Ir

Cylinder temp [◦C] Ct

Temperature [◦C] T

Table 5.2: Abbreviations of factors

δ = a+ b ∗ P + c ∗ Pt+ d ∗Ct+ e ∗ Ir+ f ∗Ct+ g ∗ T + h ∗ P ∗ Pt+ i ∗ P ∗Ct+ j ∗ P ∗
Ir+ k ∗ P ∗Ct+ l ∗ P ∗ T +m ∗ Pt ∗Ct+ n ∗ Pt ∗ Ir+ o ∗ Pt ∗Ct+ p ∗ Pt ∗ T + q ∗Ct ∗

Ir + r ∗ Ct ∗ Ct+ s ∗ Ct ∗ T + t ∗ Ir ∗ Ct+ u ∗ Ir ∗ T + v ∗ Ct ∗ T
(5.1)
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Deviation a b c d e f

Offset 0.254833 0.000733 -0.05949 0.013558 0.000544 -0.00096

First 0.439707 0.000296 -0.07808 -0.00047 -0.00499 -0.0016

Second 0.312854 0.000592 -0.08655 0.003695 -0.00481 -0.00122

Third 0.892813 0.00053 -0.18414 0.009369 -0.00809 -0.00342

Deviation g h i j k l

Offset -0.00565 -3.71E-05 3.35E-07 -2.32E-06 -2.31E-06 -4.56E-07

First -0.00399 -6.99E-06 2.53E-06 -6.19E-07 -6.51E-07 -1.44E-06

Second -0.00436 -1.50E-05 1.58E-07 -1.09E-06 -1.38E-06 -2.30E-06

Third -0.00831 -3.19E-05 3.70E-06 -1.43E-06 -1.29E-06 -1.83E-06

Deviation m n o p q r

Offset -8.9E-05 0.00012 0.000254 5.84E-06 5.13E-05 -3.60E-05

First 0.000417 0.000314 0.000153 0.000386 -4.42E-05 1.53E-05

Second 0.000756 0.000386 0.000145 0.000468 -3.37E-05 -4.36E-07

Third -0.00015 0.000744 0.000627 0.000218 -8.41E-05 -1.21E-05

Deviation s t u v

Offset -7.34E-05 -1.22E-07 1.51E-06 2.74E-05

First -6.81E-05 1.37E-05 2.07E-05 1.62E-05

Second -6.31E-05 1.28E-05 2.36E-05 1.88E-05

Third -8.25E-05 2.26E-05 3.29E-05 3.42E-05

Table 5.3: Values of constants for each deviation order with factorial model.

After the model was calculated, the input factors used to produce the samples

were given as entrance of this model, and the resulted was compared with the mea-

sured values, in order to validate the model.

In general, the model represented well the reality, with average errors of about

2.9 to 9.6%. In figure 5.13 it is possible to see the comparison of the measured values

deviation, and the values calculated with the model for the offset (0th degree). The

absolute errors for all samples deviations is found in appendix C.

By the comparison in figure 5.13, we conclude that, even with all the uncertain-

ties in the manufacturing and measuring processes, the generated model was able to
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Figure 5.13: Deviation of CT samples measurement and factorial model response values.

represent the real plastic injection system.

5.7.2: Response surface modeling

Response surface methodology (RSM) is a collection of mathematical and sta-

tistical techniques for empirical model building. By careful design of experiments, the

objective is to optimize a response (output variable) which is influenced by several in-

dependent variables (input variables). An experiment is a series of tests, called runs,

in which changes are made in the input variables in order to identify the reasons for

changes in the output response.

Generally, the structure of the relationship between the response and the inde-

pendent variables is unknown. The first step in RSM is to find a suitable approximation

to the true relationship. The most common forms are low-order polynomials (first or

second-order)[12].

For this analyzes, a Response surface modeling was proposed. In the response

surface methodology, a full-quadratic model was used, that is, besides only the factors

themselves, and their interactions one by one (as used in factorial modeling), in this

model the quadratic influence of each factor has also been modeled. For the represen-

tation of the model, the same abbreviation of table 5.2 was used. Response surface

model function and the parameters for each deviation order is presented:

δ = a+b∗P+c∗Pt+d∗Ct+e∗Ir+f ∗Ct+g∗T+h∗P 2+i∗Pt2+j∗Ct2+k∗Ir2+l∗Ct2+

m∗T 2+n∗P ∗Pt+o∗P ∗Ct+p∗P ∗Ir+q∗P ∗Ct+r∗P ∗T +s∗Pt∗Ct+t∗Pt∗Ir+u∗
Pt∗Ct+v∗Pt∗T +w∗Ct∗Ir+x∗Ct∗Ct+y∗Ct∗T +z∗Ir∗Ct+aa∗Ir∗T +ab∗Ct∗T

(5.2)
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Deviation a b c d e f

Offset 0.557024 0.000374 -0.09494 0.010432 -0.00397 -0.00342

First 0.962526 6.14E-05 -0.07881 0.010253 -0.00632 -0.00872

Second 1.77584 0.000575 -0.13479 0.026125 -0.00766 -0.01521

Third -2.06E-01 0.000134 -0.19906 0.009018 -0.00876 0.004741

Deviation g h i j k l

Offset -1.07E-04 -1.23E-08 7.86E-03 4.20E-04 1.48E-05 2.13E-06

First 7.15E-03 8.43E-08 3.90E-03 1.90E-04 -1.14E-06 1.13E-05

Second 0.003955 -1.42E-07 0.019398 -5.71E-04 3.23E-05 2.50E-05

Third -0.00408 2.68E-07 0.004695 0.000265 -1.57E-05 -1.70E-05

Deviation m n o p q r

Offset -3.61E-05 -3.14E-05 3.85E-07 -1.06E-06 -1.06E-06 -4.47E-07

First -7.06E-05 -5.27E-06 2.24E-06 -6.86E-08 -1.21E-07 -1.47E-06

Second -5.19E-05 -1.45E-05 -2.76E-08 -5.09E-07 -8.20E-07 -2.33E-06

Third -2.73E-05 -2.98E-05 3.65E-06 -9.90E-07 -8.55E-07 -1.83E-06

Deviation s t u v w x

Offset -2.62E-04 0.000167 0.000315 -8.21E-05 5.50E-05 -3.11E-05

First -2.09E-04 3.29E-04 2.01E-04 1.43E-04 -3.56E-05 3.09E-05

Second 0.000299 0.00039 0.000172 0.0003 -2.68E-05 1.14E-05

Third -3.49E-04 0.000761 0.000657 0.000135 -8.09E-05 -6.71E-06

Deviation y z aa ab

Offset -1.57E-04 1.14E-05 2.44E-06 3.08E-05

First -2.98E-04 1.66E-05 2.32E-05 2.49E-05

Second -2.38E-04 1.67E-05 2.54E-05 2.49E-05

Third -1.62E-04 2.61E-05 3.38E-05 3.74E-05

Table 5.4: Values of constants for each deviation order with response surface full quadratic

model.

In this case it was possible to confirm the statement of [9], that when treatment

factors can be varied across a continuous range of values, Response surface meth-

ods treatment designs may be more efficient. In this situation, the Response surface
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method model, when compared to the CT measured values, returned most error values

between 2.4 to 11.5%, and was considered better than the factorial model.

In the figure is possible to see how the model followed the model for the offset

(0th degree). The absolute errors for all samples deviations is found in appendix D.

Figure 5.14: Deviation of CT samples measurement and response surface model calculated
values.

5.7.3: Response surface versus factorial models

The models were different, but both gave a good representation of reality. The

response surface model was better in orders 0th and 1st, while the factor model was

better in the orders 2nd and 3rd plus residuals. The complete error data for both models

is presented in appendix C and D.

By analyzing of error, the response surface model was chosen to be the main

model representation of the project, due to its accuracy in lower orders (0th and 1st),

and the better treatment with continuous range of inputs.

The below figure illustrate the offset deviation for the factorial and response sur-

face models, compared with SmartInspeCT software values. In this first order analyzes,

it is possible to realize that the two models were very similar, but the response surface

model was slightly better.
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Figure 5.15: Deviation of CT samples measurement and both models calculated values.
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6 Results

With the system’s models, it is now possible to simulate inputs and outputs in

order to define which factor represents most influence of each degree of deviation.

Based on the models, we used the Matlab and Minitab software to evaluate if each one

of the factors are significant or not for each kind of deviation.

With the Matlab software, and using the response surface model, the influence

of each factor separately in the center point has been analyzed. Factors were varied

independently one by one around the central point from its minimum to maximum, and

the amplitude of their influence on deviation was analyzed with the assistance of charts

that are shown in this chapter.

How the factors have different ranges of variation, an encoding was adopted in

which the value -1 represents the minimum value, 0 represents the central value and 1

the maximum value of each factor. This encoding is necessary so that the variation of

all factors can be displayed at the same chart.

In order to confirm which factors are significant, an analysis of variance (ANOVA)

was performed in Minitab with a significance level of 0.05, i.e., all factors that have

probability lower than this value (p<0.05) are significant. These results are written in

red in the ANOVA result tables.

ANOVA is a particular form of statistical hypothesis testing heavily used in the

analysis of experimental data. A statistical hypothesis test is a method of making de-

cisions using data. A test result (calculated from the null hypothesis and the sample)

is called statistically significant if it is deemed unlikely to have occurred by chance.

A statistically significant result (when a probability (p-value) is less than a threshold

(significance level)) justifies the rejection of the null hypothesis.
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6.1: Offset deviations

With the aid of the graph of factors variation one by one and table of results of the

ANOVA, it can be concluded that Temperature, Pressure time and Cooling time are sig-

nificant to the offset deviation. On the other hand, Pressure and Cylinder temperature

are not significant in the Offset deviation results.

Figure 6.1: Offset deviations according to factors variation.
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ANOVA for Offset deviations

Degrees Sum of Mean F P

of freedom squares squares

Pressure [bar] 2 0.000435 0.0002175 2.31 0.111

Pressure time [s] 2 0.0014981 0.000749 10.54 0

Cooling time [s] 2 0.0009932 0.0004966 6.05 0.005

Injection rate [ccm/s] 2 0.0004476 0.0002238 2.38 0.104

Cylinder temperature [◦C] 2 0.0003918 0.0001959 2.06 0.139

Temperature [◦C] 41 0.0046743 0.000114 8.65 0.003

Table 6.1: ANOVA results for offset deviations analysis.

6.2: First order deviations

For the first order deviations, the Temperature had more influence than the other

parameters and is the only significant factor.

Figure 6.2: First order deviations according to factors variation.
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ANOVA for First order deviations

Degrees Sum of Mean F P

of freedom squares squares

Pressure [bar] 2 0.0001456 0.0000728 1.84 0.17

Pressure time [s] 2 0.0000358 0.0000179 0.43 0.655

Cooling time [s] 2 0.0000598 0.0000299 0.72 0.491

Injection rate [ccm/s] 2 0.0000853 0.0000426 1.04 0.361

Cylinder temperature [◦C] 2 0.0000181 0.000009 0.21 0.808

Temperature [◦C] 41 0.0018867 0.000046 4.1 0.029

Table 6.2: ANOVA results for first order deviations analysis.

6.3: Second order deviations

For the second order deviations, Temperature and Pressure time are the signifi-

cant factors.

Figure 6.3: Offset deviations according to factors variation.
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ANOVA for Second order deviations

Degrees of Sum of Mean F P

freedom squares squares

Pressure [bar] 2 0.0000617 0.0000308 0.59 0.558

Pressure time [s] 2 0.0003048 0.0001524 3.25 0.048

Cooling time [s] 2 0.0001038 0.0000519 1.01 0.372

Injection rate [ccm/s] 2 0.00006 0.00003 0.57 0.567

Cylinder temperature [◦C] 2 0.0000582 0.0000291 0.56 0.577

Temperature [◦C] 41 0.0024369 0.0000594 15.15 0.001

Table 6.3: ANOVA results for second order deviations analysis.

6.4: Third order deviations

For the third order deviations, only Temperature is a significant factor.

Figure 6.4: Offset deviations according to factors variation.
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ANOVA for Third order deviations

Degrees of Sum of Mean F P

freedom squares squares

Pressure [bar] 2 0.000147 0.000073 0.52 0.598

Pressure time [s] 2 0.000337 0.000169 1.23 0.302

Cooling time [s] 2 0.00006 0.00003 0.21 0.812

Injection rate [ccm/s] 2 0.000086 0.000043 0.3 0.741

Cylinder temperature [◦C] 2 0.000135 0.000068 0.48 0.623

Temperature [◦C] 41 0.0065623 0.0001601 13.38 0.001

Table 6.4: ANOVA results for Third order deviations analysis.

By the presented results, is possible to see that the factors are significant to

deviation orders as follows:

• Temperature - Offset, First, Second and Third orders;

• Pressure time - Offset and Second order;

• Cooling time - Offset;

• Pressure - Not significant to any deviation order;

• Injection rate - Not significant to any deviation order;

• Cylinder temperature - Not significant to any deviation order.

According to the presented ANOVA results, the factors Pressure, Injection rate

and Cylinder temperature were not significant to any deviations order, i.e., these factors

can be understood as a ”noise” in the analysis because of its small influence in the final

deviation results. With this conclusion, these parameters may no longer be considered

in next iteration loops, making the whole process much easier.

In all ANOVA results tables is possible to see that the Temperature factor has a

higher degree of freedom that the other factors. This fact is due that while producing the

samples, it was not possible to keep the temperature in only three levels, as previously

described in section 5.4.

To compare the influence of having more than three levels for the temperature,

the ANOVA has been done considering only the original three levels of temperature,
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and then the temperature lost its significance in first, second and third orders. Although,

the coefficient that measures the fit of the model with the variables has decreased

from about 90% to about 10%. So, the first ANOVA proposed was used to obtain the

results of this project. The ANOVA results with three temperature levels can be seen in

appendix A.

6.5: Response optimizer

With the Response surface model and using the Response optimizer function

on Minitab 14 software, the combination of factors that return the smallest possible

deviation can be found.

In this Minitab feature, it is possible to minimize the value of each deviation, in

order to find the input factors that should be used to reach this goal. It is still possible

to define weight and importance for each considered deviation order (figure 6.5), but

since this is an academic research and all deviations is desirable to be minimized,

weight and importance was set 1 for all orders. However, in an industrial application,

these parameters could be changed according to priorities of each project.

Figure 6.5: Response optimizer interface in Minitab.

The output of the response optimizer is a new set of factors (new center point),
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and an estimate of the deviation for each order with use of those parameters as is

displayed in figure 6.6.

Figure 6.6: Response optimizer result in Minitab.

Response optimizer results

Center point New calculated
used in analysis center point

Pressure [bar] 500 600
Pressure time [s] 1.5 2
Cooling time [s] 10 7.2
Injection rate [ccm/s] 20 19
Cylinder temperature [◦C] 260 270
Temperature [◦C] 75 59.3

Table 6.5: New center point calculated with response optimizer.

With the results of the Response optimizer, the deviations measured in the cen-

ter point used in this analysis and the simulated results for the new calculated center

point have been compared with each other. Through this comparison it is possible to

visualize the improvement of the new calculated center point compared to the original

center point used in the proposition of this experiment. The values of the deviations

are displayed in table 6.6.
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Deviation [mm] Offset First Second Third Sum
order order order

Center point used in analysis 0.1372 0.0296 0.0342 0.0595 0.2605
New calculated center point 0.1056 0.0000 0.0059 0.0402 0.1517
Absolute improvement 0.0316 0.0296 0.0283 0.0193 0.1088
Relative improvement (%) 23.03 100 82.75 32.44 41.77

Table 6.6: Comparison between measured and calculated deviations.

With the interpretation of the given results, it is possible to conclude that just this

first optimization loop run has made all deviations lower, improving the total accuracy

of the tool.

6.5.1: Offset deviations

The offset is one of the most important deviations to be considered when ana-

lyzing the dimensional properties of one sample. Offset deviations can be responsible

to several kinds of trouble with the produced part, e.g. a connector that does not fit

properly into one product for having a smaller size than the stipulated. In this sense,

the reduction of 23% in the offset deviations can be considered a good achievement,

but there is still room for improvement. Even after the optimization loop, the offset

deviation represents almost 70% of the sum of all deviations.

6.5.2: First order deviations

For the calculated factors input, the first order deviations has reached zero. This

is an important achievement in the project, once no kind of improper inclination can

be expected in the surfaces of the pieces produced with the set of given parameters

according to the model.

6.5.3: Second order deviations

Second order deviations has also presented a major breakthrough, being the

error calculated for the new center point almost six times smaller than the measured

error for the center point used in analysis. For the new calculated center point the

second order deviations represents 3.89% of the sum of deviations.
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6.5.4: Third order and residual deviations

Third and superior orders deviation can be understood as waviness and unde-

sirable roughness in the samples, and can be a crucial factor when the smoothness of

the parts is important to assure some characteristics of it, for example when producing

the bottom of a computer mouse, it is desired that the part has a smaller roughness to

reduce frictional forces and ease the handling of the product by the user. This kind of

deviations has presented a significant improvement of 32% and for the new calculated

center point represents 26.5% of the sum of deviations. Despite the result, it serves

only informative character, because the resolution of CT and the uncertainty involved

in the process does not allow accurate conclusions about the third and higher order

deviations.

6.5.5: Sum of deviations

The sum of all deviations orders has decreased from 0.2605 mm to 0.1517 mm

(relative improvement of 41.77%) with the application of this optimization loop.

Although it is a significant improvement, the best tolerances that can normally be

met in injection molding, with classical equipment are inside of a total composite error

between 0.05 and 0.15 mm [13]. The total deviation values of 0.2605 mm measured

and 0.1517 calculated for the new center point are both above this range, what suggest

that more progress can be done with new iterations of this methodology to approximate

the total deviation to zero or at least to the lower reference of 0.05 mm.
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7 Conclusion

With this work it was possible to define a methodology for correcting plastic

injection machines more quickly and efficiently compared with traditional methods of

measurement such as tactile or optical. The use of tomography, although still a new

technology in industrial metrology, proved to be a valuable tool during the project.

With the completion of this work several objectives were achieved, as listed be-

low:

7.1: Modeling

We conducted a mathematical model able to relate the input values of the con-

trollable factors to ”predict” the deviations of the part produced in different orders.

7.2: Elimination of ”noise”

With the analysis of variance (ANOVA), it was concluded that the factors Pres-

sure, Injection rate and Cylinder temperature are not significant in any order of con-

sidered deviations. Therefore, these variables may no longer enter the analysis of the

next iteration loop of the process, making it much simpler. Because of it, the next loop

iteration will require only 20 samples, compared to 53 needed in this experiment with

the six factors analyzed.

7.3: Defining optimal point

Using the Response Optimizer in Minitab 14, a new set-point was defined at

which the deviations considered in this document are minimized. According to the

deviations calculated for the new point, offset is 23% lower than the average obtained
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for the original center point. Deviations of first order reached zero, while the second

has decreased 82.75% and third 32.44%. The sum of all deviations presented 41.77%

improvement, going from 0.2605 mm to 0.1517 mm.

This new defined set point will also work as a central point for carrying out an

experiment in order to increasingly reduce the errors of injection molding machines

with successive loops of the process as described herein. In general the work has met

the initial goals, which were kept in creating a system model and defining a new set of

factors that minimizes the deviations and to be the new center point to the next iteration

of the system. The surprise was the discovery of non-significance in three of the six

factors considered in the analysis. But still, this is a good result since with fewer factors

the next analysis iteration loop will become much simpler.
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8 Future prospects

Future prospects for the project are to conduct further experiments to increas-

ingly reduce the error of the parts produced trough making new optimization loops like

the one presented in this document. The sum of all orders deviation in the new calcu-

lated center point is still 0.1517 mm, and with the error proposition in [13], is possible to

conclude that this deviation can be reduced with more interactions of this optimization

loop, in order to find another set of factors that makes the deviations even lower.

With the three significant variables isolated in this first study only 20 samples

would be produced in the next experiment. In this way, it will probably be possible

to assure the production with just the three levels of temperature in order to minimize

possible errors in the system. It is also desirable that further experiments are performed

and compared with this to validate the model proposed herein.

Finally, the implementation of an updatable database with values of each new

measured part to be added. The new measures would be considered in the model,

thus making it more independent of the part geometry.
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Appendix A: ANOVA with three levels of temperature

Factor Degrees of Sum of Mean F P
freedom squares squares

ANOVA for Offset deviations
Pressure [bar] 2 0.000435 0.0002175 2.31 0.111
Pressure time [s] 2 0.0014981 0.000749 10.54 0
Cooling time [s] 2 0.0009932 0.0004966 6.05 0.005
Injection rate [ccm/s] 2 0.0004476 0.0002238 2.38 0.104
Cylinder temperature [◦C] 2 0.0003918 0.0001959 2.06 0.139
Temperature [◦C] 2 0.0010928 0.0005464 6.84 0.003

ANOVA for First order deviations
Pressure [bar] 2 0.0001456 0.0000728 1.84 0.17
Pressure time [s] 2 0.0000358 0.0000179 0.43 0.655
Cooling time [s] 2 0.0000598 0.0000299 0.72 0.491
Injection rate [ccm/s] 2 0.0000853 0.0000426 1.04 0.361
Cylinder temperature [◦C] 2 0.0000181 0.000009 0.21 0.808
Temperature [◦C] 2 0.0000799 0.0000399 0.97 0.385

ANOVA for Second order deviations
Pressure [bar] 2 0.0000617 0.0000308 0.59 0.558
Pressure time [s] 2 0.0003048 0.0001524 3.25 0.048
Cooling time [s] 2 0.0001038 0.0000519 1.01 0.372
Injection rate [ccm/s] 2 0.00006 0.00003 0.57 0.567
Cylinder temperature [◦C] 2 0.0000582 0.0000291 0.56 0.577
Temperature [◦C] 2 0.0000245 0.0000123 0.23 0.795

ANOVA for Third order deviations
Pressure [bar] 2 0.000147 0.000073 0.52 0.598
Pressure time [s] 2 0.000337 0.000169 1.23 0.302
Cooling time [s] 2 0.00006 0.00003 0.21 0.812
Injection rate [ccm/s] 2 0.000086 0.000043 0.3 0.741
Cylinder temperature [◦C] 2 0.000135 0.000068 0.48 0.623
Temperature [◦C] 2 0.000082 0.000041 0.29 0.751

Table A.1: ANOVA with only three levels of temperature.
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Appendix B: DOE worksheet

Sample Pressure Pressure Cooling Injection Cylinder Temp. Real
number [bar] time [s] time [s] rate temp. [◦C] temp.

[ccm/s] [◦C] [◦C]

1 400 1.5 10 20 260 75 74.5
2 500 1.5 10 20 260 75 75.1
3 500 1.5 10 20 260 75 75.2
4 500 1 10 20 260 75 75.9
5 500 1.5 10 20 260 75 74.7
6 500 1.5 10 30 260 75 74.9
7 500 1.5 10 20 260 75 74.9
8 500 1.5 7 20 260 75 80.3
9 500 1.5 10 20 260 75 74.8
10 600 1.5 10 20 260 75 74.9
11 500 1.5 10 20 260 75 74.7
12 500 2 10 20 260 75 73.8
13 500 1.5 10 20 260 75 74.7
14 500 1.5 13 20 260 75 70.3
15 500 1.5 10 20 260 75 74.8
16 500 1.5 10 10 260 75 75
17 500 1.5 10 20 260 75 74.9
18 500 1.5 10 20 260 90 82.9
19 500 1.5 10 20 260 60 67.3
20 400 1 13 30 250 60 61.4
21 400 1 7 10 250 60 69.8
22 600 1 13 10 250 60 62.3
23 600 2 7 10 250 60 71
24 600 1 7 30 250 60 73.9
25 400 2 13 10 250 60 59.3
26 400 2 7 30 250 60 70.9
27 600 2 13 30 250 60 61.5
28 500 1.5 10 20 250 75 73.6
29 400 2 13 30 250 90 77.9
30 400 2 7 10 250 90 86
31 600 1 7 10 250 90 89.4
32 600 2 13 10 250 90 79.3
33 600 2 7 30 250 90 88.6

51



Sample Pressure Pressure Cooling Injection Cylinder Temp. Real

number [bar] time [s] time [s] rate temp. [◦C] temp.

[ccm/s] [◦C] [◦C]

34 600 1 13 30 250 90 81.3

35 400 1 7 30 250 90 91.1

36 400 1 13 10 250 90 80.6

37 400 1 13 30 270 90 82.6

38 400 1 7 30 270 60 77.4

39 600 2 13 10 270 60 62.5

40 400 1 13 10 270 60 62.7

41 400 2 7 10 270 60 71.8

42 600 2 7 30 270 60 71.8

43 400 2 13 30 270 60 61.9

44 600 1 13 30 270 60 62.9

45 600 1 7 10 270 60 73.2

46 500 1.5 10 20 270 75 74

47 600 1 7 30 270 90 92.1

48 400 2 13 10 270 90 80.5

49 600 2 13 30 270 90 80.9

50 400 2 7 30 270 90 90.1

51 600 2 7 10 270 90 89.6

52 400 1 7 10 270 90 91.9

53 600 1 13 10 270 90 81.5

Table B.1: DOE worksheet with parameters for samples production
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Appendix C: Factorial model absolute error compared
to measured values

Offset 1st Order 2nd Order 3rd Order

1 0.002121584 0.084330129 0.047351 0.040211588
2 0.030583694 0.175093164 0.262942 0.036676361
3 0.012429524 0.07280779 0.015466 0.687499648
4 0.008186574 0.148182024 0.059267 0.092357949
5 0.016201093 0.075279747 0.059536 0.134795043
6 0.026229483 0.170033977 0.061228 0.077239177
7 0.020024404 0.056579278 0.041368 0.027376421
8 0.004187401 0.079749259 0.2337 0.119757517
9 0.023434438 0.006125526 0.049124 0.013043999

10 0.040918585 0.147251229 0.115353 0.050797144
11 0.055941851 0.124979082 0.019369 0.067476801
12 0.000241234 0.091151399 0.284564 0.034668009
13 0.024191035 0.044699221 0.053839 0.047086888
14 0.028079793 0.013792933 0.048712 0.12136833
15 0.01458656 0.049695018 0.185872 0.059393886
16 0.011317584 0.020466607 0.040504 0.084289663
17 0.037467277 0.067114437 0.030772 0.015141994
18 0.002302336 0.080512916 0.031514 0.069800723
19 0.043770467 0.255913212 0.261819 0.043090795
20 0.024554354 0.145662811 0.030503 0.145705337
21
22 0.106866903 0.203576688 0.128349 0.212362528
23 0.007613827 0.101878064 0.218839 0.06439859
24 0.044172506 0.009529685 0.140737 0.019496258
25
26 0.050716634 0.057854069 0.022386 0.072748731
27 0.063339592 0.201208745 0.140123 0.061696269
28 0.034250069 0.136139972 0.047047 0.1435279
29 0.051600337 0.082499666 0.034058 0.112543029
30
31 0.040459076 0.162187225 0.05765 0.107123155
32 0.016641819 0.125756874 0.062654 0.065209663
33 0.048687783 0.182522061 0.129213 0.139957574
34 0.007967265 0.032977842 0.255976 0.001556969
35 0.014567269 0.072811962 0.035546 0.07473526
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Offset 1st Order 2nd Order 3rd Order

36

37 0.025006151 0.078240157 0.206091 0.093509758

38 0.03012155 0.112368657 0.050165 0.123662992

39 0.004100962 0.000656558 0.018933 0.071348385

40 0.028627684 0.211724498 0.130313 0.089807705

41 0.029787464 0.018686431 0.264148 0.042522537

42 0.036376992 0.019601261 0.007441 0.022510278

43 0.062482845 0.142207745 0.049126 0.159747024

44 0.018484956 0.019037434 0.012095 0.025775899

45 0.005599755 0.069559001 0.022762 0.04877245

46 0.001208563 0.065856813 0.00066 0.019690524

47 0.005292705 0.051906682 0.015267 0.00381593

48 0.001303634 0.038831885 0.209226 0.07697944

49 0.04131461 0.002118322 0.008 0.04721319

50 0.08374583 0.290504789 0.147423 0.252629798

51 0.043437798 0.091181172 0.020809 0.217986938

52 0.0628939 0.135300707 0.100521 0.06845168

53 0.011703868 0.096781549 0.049591 0.031207751

Smaller 0.000241234 0.000656558 0.00066 0.001556969

Bigger 0.106866903 0.290504789 0.284564 0.687499648

Average 0.02867636 0.09638625 0.092203 0.090587051

Table C.1: Factorial model absolute error compared to measured values

* the samples 21, 25, 30 and 36 were defective and for this reason they were not

measured due to impossibility to make the best-fit.
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Appendix D: Response surface model absolute error
compared to measured values

Offset 1st Order 2nd Order 3rd Order

1 0.009031047 0.093556096 0.083217774 0.035676887
2 0.016760313 0.135496769 0.309714606 0.011554653
3 0.026815413 0.123700056 0.078246925 0.771823626
4 0.010647852 0.140484669 0.211517206 0.070491577
5 0.03095082 0.028331758 0.117811606 0.091048088
6 0.014690493 0.104549917 0.074798063 0.008810025
7 0.005936108 0.108649259 0.101535744 0.079047184
8 0.019151534 0.024955199 0.196698634 0.116891092
9 0.00933024 0.043567984 0.016316996 0.064124677
10 0.017783137 0.120255377 0.127029811 0.044638055
11 0.071268399 0.080554325 0.043795782 0.020326064
12 0.002831064 0.110929081 0.049511519 0.068117759
13 0.010027583 0.097738534 0.112467147 0.001094814
14 0.011685964 0.061455875 0.017481654 0.1246159
15 0.000354575 0.102179542 0.111900549 0.011965741
16 0.00627654 0.052155321 0.111694218 0.019467452
17 0.023629743 0.119703608 0.091604097 0.06619744
18 0.023869954 0.085377235 0.026096694 0.00029467
19 0.009524575 0.043155861 0.223944736 0.043785329
20 0.037516568 0.087061157 0.111461791 0.117418127
21
22 0.089820317 0.217356438 0.066532379 0.228919582
23 0.015854681 0.089587204 0.284484323 0.047074321
24 0.030005175 0.031110048 0.065192301 0.000873729
25
26 0.027728631 0.110579957 0.064493234 0.100194489
27 0.061124567 0.169353878 0.207480685 0.02571144
28 0.028487135 0.132127829 0.077543557 0.082186651
29 0.024831812 0.056016543 0.09726347 0.131324145
30
31 0.054652541 0.153356184 0.13817571 0.090497124
32 0.002436241 0.055495691 0.001632017 0.035349439
33 0.051825818 0.237808796 0.05132247 0.186481798
34 0.000518185 0.031814414 0.312991334 0.031185881
35 0.004862857 0.006321324 0.09289761 0.109976718
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Offset 1st Order 2nd Order 3rd Order

36

37 0.017998526 0.160208893 0.111085543 0.14554387

38 0.010146523 0.085949018 0.145910439 0.145713342

39 0.005681953 0.014996087 0.080869303 0.035415389

40 0.047416334 0.189371138 0.210285488 0.060636336

41 0.00283248 0.00562988 0.104881477 0.072309143

42 0.00120395 0.006565507 0.10448717 0.042240286

43 0.06682269 0.2571659 0.049546318 0.231621929

44 0.004955112 0.029595719 0.088813661 0.06908789

45 0.016455246 0.006459921 0.071912689 0.013114087

46 0.02053167 0.102859731 0.114253911 0.08060698

47 0.000928764 0.007930514 0.087199952 0.042572286

48 0.022682762 0.000163366 0.291389643 0.115376277

49 0.009215794 0.029475879 0.093914115 0.069829897

50 0.079397852 0.256229671 0.189753259 0.22618451

51 0.044584776 0.120991019 0.084014901 0.276765728

52 0.05209028 0.194542601 0.016443885 0.109045441

53 0.021630218 0.080528462 0.139047736 0.001575342

Smaller 0.000354575 0.000163366 0.001632017 0.00029467

Bigger 0.089820317 0.2571659 0.312991334 0.771823626

Average 0.023975608 0.093947944 0.115523758 0.093363331

Table D.1: Response surface model absolute error compared to measured values

* the samples 21, 25, 30 and 36 were defective and for this reason they were not

measured due to impossibility to make the best-fit.
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Appendix E: Response surface and factorial models
comparison
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