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Resumo

A inspeção de peças moldadas por máquinas injetoras engloba métodos con-

vencionais de inspeção como os ópticos e os táteis, os quais possibilitam um feedback

importante para a correção da ferramenta de fabricação. No entanto, tais métodos

convencionais possuem a chamada correção iterativa, a qual geralmente requer uma

grande quantidade de tempo para ser efetuada. Soma-se a esse o fato de algumas

peças possuı́rem partes inacessı́veis devido a sua geometria complexa, as quais po-

dem apenas ser acessadas através do corte da peça - o que configura um processo

destrutivo.

A Tomografia Computadorizada (TC) aparenta então ser uma potente solução

para a inspeção de peças moldadas por injeção, uma vez que se trata de um processo

não destrutivo que tem como resultado uma nuvem de pontos de alta densidade. Essa

nuvem pode ser utilizada para uma inspeção “peça para CAD”, o que possibilita a

medição das partes não acessı́veis da peça.

Neste sentido, o projeto tem como objetivo verificar a influência de quatro fatores

controláveis de um processo de produção de peças plásticas por meio de máquinas

injetoras. Deseja-se definir os parâmetros mais crı́ticos do processo de maneira que

o erro dimensional entre as superfı́cies de interesse das peças produzidas e o modelo

CAD seja o mı́nimo possı́vel. Para tal é proposto um experimento variando os quatro

fatores de produção em torno de valores usuais de produção, obtendo assim para

cada um deles os nı́veis baixo, central e alto. A combinação das variações desses

quatro fatores resultou na produção das 62 amostras analisadas.

A tomografia computadorizada das amostras permitiu sua reconstrução tridi-

mensional, a qual é utilizada na comparação com seu modelo nominal. Dessa compa-

ração extraı́ram-se os desvios para cada superfı́cie das amostras, com o auxı́lio de

uma metodologia de separação por ordens (zero, primeira e segunda) e seus parâme-

tros. Foi gerado então um modelo matemático capaz de representar cada ordem de

desvio das superfı́cies em função dos fatores de entrada.

A partir do modelo foi possı́vel variar os parâmetros de entrada e analisar a

intensidade dos desvios nas superfı́cies, como também a influência individual de cada

fator controlável na saı́da. Por fim, foram levantados os parâmetros de produção que

exercem maior influência sobre os desvios em cada superfı́cie. Tal análise poderá
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servir para produção comercial com maior precisão dimensional, de acordo com as

superfı́cies de interesse, como também para estudos futuros.
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Abstract

The parts inspection by injection molding machines includes conventional in-

spection methods such as optical and tactile, which enables an important feedback for

correction of tool manufacturing. However, these conventional methods have an iter-

ative correction, which usually requires a lot of time to be accomplished. In addition,

some pieces have inaccessible parts due to its complex geometry, which can only be

accessed by cutting the piece - which configures a destructive process.

Computed tomography (CT) then appears to be a powerful solution for the in-

spection of injection molded parts, since it is a non-destructive process that results in a

point cloud of high density. This cloud can be used for inspection “CAD-to-Part”, which

allows measurement of non-accessible parts of the piece.

In this sense, the project aims to determine the influence of four controllable

factors of a production process of plastic parts by injection molding machines. We

intend to define the most critical parameters of the process so that the dimensional

error between the surfaces of interest produced parts and CAD model is minimized. To

this end it is proposed an experiment by varying the four factors of production to values

usual production, thereby obtaining for each of these levels low, middle and high. The

combination of the variations of these four factors has resulted in the production of 62

samples.

Computed tomography of the samples allowed a three-dimensional reconstruc-

tion, which is used in comparison with its nominal model. From this comparison were

extracted deviations for each surface of the samples with the aid of a method of sep-

aration by orders (zero, first and second) and its parameters. Was generated then a

mathematical model able to represent each order deviation of the surfaces as a func-

tion of input factors.

From the model it was possible to vary the input parameters and analyze the

surface deviations in intensity, as well as the individual influence of each controllable

factor in the output. Finally, were defined the production parameters with most influence

on each surface deviation. Such analysis could serve for commercial production with

higher dimensional accuracy according to the surfaces of interest as well as for future

studies.
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1 Introduction

Following specifications and work within satisfactory limits of tolerance are the

major challenges of dimensional quality control in production processes. For this rea-

son manufacturing tools such as injection molding require input parameters constantly

corrected in order to find an operating point that meets the criteria for the quality of its

end products.

The parts inscpection provides an important feedback for the tool correction and

can thereby reduce the dimensional errors between what is produced and designed.

Therefore, the analysis of plastic parts produced by injection molding machines intend

to keep the deviations of the surfaces inspected within the tolerance limits: if the devi-

ations are above these stipulated levels is necessary to return the system to its ideal

operation point.

Conventional inspection methods such as optical and tactile processes are it-

erative and usually require a lot of time for their execution, which may result in high

production costs. Moreover, in the case of pieces with complex geometry, difficulties in

inspecting inaccessible parts are noticed. These parts are only accessed by cutting,

resulting in its properties modification - due to internal stresses - and, consequently,

introducing a systematic error in the current measurement.

Thus, in order to achieve an optimal dimensional quality in producing parts with

increasingly smaller deviations, an optimization loop by using CT can be proposed.

The same optimization loop will be used in this project and can be divided into three

steps: measurement, comparison and action, as shown in figure 1.1.

With the strategy in place, fours factors of injection molding process were var-

ied around the usual central point and, from the combination of these parameters, 62

samples plastic parts were fabricated and inspected.

Measurement will use CT and 3D reconstruction software. The use of CT is jus-
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tified by the characteristic non-destructive process, since the Computed Tomography

can access all parts of complex geometry parts. In addition, there is a faster process

and less iteration, with provide better accuracy than conventional methods.

In sequence, the comparison is performed in software based on numerical com-

putation previously developed for this project. Here we mathematically compare the

current measurement with the CAD model of the part, also called nominal model.

Finally, the action uses data comparison - deviations - which, along with the

input parameters, generate the model that describes a cause-effect relationship. After

obtaining the critical factors of production, is provided an analysis which serves to

upgrade the machine tool and, therefore, reduce dimensional error of parts.

Figure 1.1: Optimization loop for the tool correction.

1.1: Project objectives

The project objective is to determine the influence of four controllable factors of a

production process of plastic parts by injection molding machines. We intend to define

the most critical parameters of the process so that the dimensional error between the

surfaces of interest produced parts and CAD model is minimized. In this sense, the

Design of Experiments can be considered in this experiment.
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The DOE provides an analysis of the sample surfaces deviations to CAD model

when the system is subjected to different values of input parameters and enables to

design a model that represents the behavior of the system and simulate the result of

changes in factors inputs deviations in output.

In order to quantify the influence of the input parameters in each deviation order

a separation approach was used. The separation by orders (zero or offset, first and

second) aims to create a database of outputs that will be usefull to create the deviatons

function by using linear regression. The third and higher order deviations will not be

considered in this experiment due to the resolution of CT and the uncertainty involved

in the process. The figure 1.2 shows the procedure described above:

Figure 1.2: Separation methodology.

With the aid of the software SmartInspeCT (previously developed in Matlab) and

also the separation methodology, the factors which will be relevant in each deviation or-

der of sample surfaces can be determined. In addition, it is also possible to factors that

despite being considered in the experiment are not significant for any order deviation

of a specific sample surface and can be considered a noise in the analyses.
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1.2: Methodology

The project was developed at the Laboratory for Machine Tools and Production

Engineering (Werkzeugmaschinenlabor - WZL) at the RWTH Aachen University. All

equipment and technical resources were provided by the institute. The methodology

proposed for this project was the following:

• Familiarization with separation approach by orders, CT scanner, software Ca-

lypso and CAD-to-Part comparison in software SmartInspeCT;

• Systematic study of DOE, factorial design and response surface model;

• Set-up of a program in Matlab to create and validate the model and also to per-

form the analysis;

• Measurement, tridimensional reconstruction and alignment to CAD model of 62

samples;

• Analysis and documentation of results.

In a first instance, some references were provided in order to understand the de-

viations separation approach, the CT fundamentals, software Calypso and the CAD-to-

Part comparison in software SmartInspeCT. After the familiarization with the equipment

and softwares, some modeling methods were studied and one of them was selected to

be used in the evaluating.

After these steps, the program to analyze the deviations and the influence of

input parameters was carried out. Therefore, the 62 work pieces were scanned, tridi-

mensional reconstructed and aligned to CAD model using respectively CT and soft-

ware Calypso. Finally the voxel model was compared with the nominal model using the

software SmartInspeCT and then the analyses were performed.

1.3: Document Structure

This document is organized in chapters in the form displayed below:

In chapter 1 an Introduction to the project theme and goal is provided. Chapter

2 includes the Plastic Injection Molding Process and in chapter 3 the Fundamen-

tals of X-Ray Computed Tomography technology are discussed. In chapter 4 are

4



presented the Design of Experiment and solutions chosen for the evaluating; in chap-

ter 5 the Response Surface Modeling and the separation approach understanding

are given. In chapter 6 Results and Analysis are presented from the samples in-

spection. Finally, in chapters 7 and 8 some Conclusions about the current work are

presented and possible Future Work is discussed.
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2 Plastic Injection Molding Process

The plastic injection molding process is an automated process that can be used

to produce a wide variety of parts of high quality with great accuracy, very quickly. The

process requires basically the use of an injection molding machine, raw plastic material

and a mold: the material for the part is fed into a heated barrel, mixed, and forced into

a mold cavity where it cools and solidifies to the configuration of the cavity. The steps

in this process are described in detail in the next section. A schematic representation

of a plastic injection tool follows in figure 2.1.

Figure 2.1: Schematic representation of a plastic injection tool [13].

Injection molding is used to produce mainly thin-walled plastic parts for a vari-

ety of applications, one of the most common being plastic housings. These housings

are used in a variety of products including household appliances, consumer electron-

ics, mechanical parts and automotive dashboards. Other typical applications include

different types of open containers such as buckets, toothbrushes, some musical instru-

ments or small plastic toys. Many medical devices, such as valves and syringes, are

also manufactured using injection molding.
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2.1: Phases of the Injection Molding Process

The plastic injection molding process is the most commonly used manufacturing

process for the fabrication of plastic parts and is ideal for producing high volumes of

the same object using virtually any plastic material. Though it is a complex process

that involves a series of sequential process steps. The different phases of the injection

molding process are presented below [1]:

2.1.1: Molding filling

After the mold closes, the melt flows from the injection unit of the molding ma-

chine into the relatively cool mold trough the feed channel and then into the cavity.

2.1.2: Packing

The melt is pressurized and compressed to ensure complete filling and detailed

surface replication

2.1.3: Holding

The melt is held in the mold under pressure to compensate for shrinkage as

the part cools. Holding pressure is usually applied until the gate solidifies. Once gate

solidifies occurs, melt can no longer flow into (or out of) the cavity.

2.1.4: Cooling

The melt continues to cool and shrink with no shrink compensation.

2.1.5: Part ejection

The mold opens and the cooled part is then stripped from the core of cavity, in

most cases using a mechanical ejector system.
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2.2: Plastic parts

The use of plastics materials offers inherent benefits, as well as some limitations.

Within each group of plastics materials different levels of performance are available,

and for this reason the correct choice by the product designers is so important and

crucial. Some benefits of plastic material are discussed in 1 and presented:

• Versatility;

• Relatively easy to mold into complex shapes;

• Low specific gravity;

• Sometimes transparent;

• Coloring throughout;

• Relatively low energy requirements for processing;

• Chemical resistance;

• Good electrical insulation.

In other hand, high capital investment costs for injection molders and the re-

quirement of highly skilled molding technicians represent some disadvantages of using

plastics.

But in general the use of plastics provides cheap, safe and clean plastic parts,

e.g. thin walled plastic parts. Thin wall molding reduces resource consumption and

cuts weight, reducing fuel usage and carbon emissions in shipping [12]. Some thin

wall parts can be made from recyclable plastics such as Polybutylene Terephthalate

(PBT). In addition, some Ultraviolet stabilizers and reinforcements such as talc and

glass may be mixed.

2.2.1: Ultradur B4300 G4

In this experiment was used the plastic Ultradur B4300 G4 that is an easy flowing

injection molding PBT with 20% glass fiber reinforcement for rigid, tough and dimen-

sionally stable parts. It is used to create some things such car door handles, housing

for small eletric motors, headlight retainers and drum controllers.
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3 Fundamentals of X-Ray Computed

Tomography

X-Ray Computed Tomography (CT) is a non-destructive technique for visualizing

interior features within solid objects, and for obtaining digital information on their 3D

geometries and properties. It was initially developed for medical applications and more

recently is being used for industrial purposes. In this experiment was used the CT

scanner Metrotom 1500, which was developed by the company Carl Zeiss [3.1].

CT scanning utilizes X-ray equipment to obtain cross-sectional images from a

work piece in order to produce 3D representations of components. Some of its key

uses have been flaw detection, failure analysis, metrology, assembly analysis, and

reverse engineering applications.

Figure 3.1: Metrotom CT scanner used in this project [9].
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Dimensional metrology is the most recent utilization of CT scanners for the in-

dustry. It can be used to measure not only the outer but also the inner geometry of

work pieces without the need of cutting the work pieces into slices to evaluate hidden

or inaccessible features, which is an innovative aspect on metrology [2]. So far CT is

the only technology for the holistic quality control of work pieces with non-accessible

internal features at very high resolution [3].

In this sense, the main advantages of the CT measurement over the conven-

tional processes such tactile CMM’s (Coordinate Measure Machine) or 3D laser scan-

ners are the ability to check non-accessible features for parts with high geometry and

the fact of being a non-destructive inspection method.

3.1: CT measuring operation

CT scanner basically consists of a positioning system, a X-ray tube and a detec-

tor [3.2]. The correct setup of these components is essential for the proper operation of

the CT and good quality of the measurements. Thus the X-ray Computed Tomography

has a basic sequence of operation which is presented in the following subsections.

Figure 3.2: Positioning system, X-ray tube and detector [9].

3.1.1: Settings of CT parameters

In a first instance in typical operations, some parameters such as tube voltage,

current, integration time, gain and number of projections must be set. The choice of CT

parameters affects directly the quality of the reconstruction and needs to be carefully

studied.

• Voltage: In an X-ray process, voltage and penetration are directly related. With

increasing the X-ray tube voltage, the radiation intensity and the penetration ca-
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pability will also increase. It is thus possible to X-ray different materials without

problems, e.g. plastics and metals.

Plastics generally do not have high density, so the X-ray emitted by the CT source

does not suffer much attenuation, allowing a good reconstruction of the part. In

case of denser materials such as metals, it is possible to improve the result of the

reconstruction, as well as suppress noise and artifacts by using prefilters.

• Current: The X-ray tube current enables the intensification of X-ray radiation by

defocusing and optimizes the histogram distribution. The histogram is the fre-

quency distribution of the gray scale values of the detector image.

• Integratiom time: The integration time corresponds to the exposure time of analog

cameras. If we increase the integration time, more photons are used for the

image measurement. Thus, the image signal is improved without increasing the

image blurring. Furthermore, the images become brighter. The measuring time

increases also with increasing integration time.

• Gain: The gain has an effect on the image signal and the image blurring. If we in-

crease the gain, the image signal and the image blurring increase proportionally.

Thus, the image becomes brighter and noisy. This measure does not influence

the measuring time.

• Number of projections: The number of projections influences the time and quality

of part reconstruction.

3.1.2: Setting up the workpiece

The workpiece must be set up on the rotary table in such a way that all projected

images of the workpiece are located inside the reconstruction area when a 360◦ rota-

tion is performed. In this sense, a holder was developed and will be presented in the

chapter 5.

3.1.3: Measurement

A X-ray source inside the CT machine emits X-rays that penetrate the part and

are attenuated according to the part geometry, density, material and X-ray energy. A
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detector placed behind the rotary table is used to record the intensity of the attenu-

ated x-rays. The detector provides a bi-dimensional grayscale image representing the

amount of attenuation of the current projection.

After several attenuation images from different rotation angles are obtained it is

possible to create, through a mathematical reconstruction, a 3D voxel model (equiv-

alent 3D of the pixel) in which the voxel gray value represents the absorvity of the

material. This 3D voxel model can be used to generate a 3D data set (point cloud) of

the current scanned part. A schematic figure of the CT measurement described above

is shown in figure 3.3.

Figure 3.3: Schematic description of CT operation and reconstruction process.

3.2: Uncertainty in measurement

The uncertainty of a CT measurement varies with the input parameter values

used for each measurement. It is very difficult to calculate analytically the uncertainty

in measurement of CT systems due to the existence of various factors and their inter-

actions that would have to be considered.

However, experimental investigations considering probing deviations have been

performed for custom-designed standards, e.g. step cylinders, ball bars or titanium

calotte cubes and a cylinder head [4]. According to an experiment with calibrated work

pieces proposed by [4], the variation of the parameters made the standard deviation

derived from five repetitions varies between approximately 1 and 7.5 µm.
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The mentioned experiment has shown how the CT measurement uncertainty

range can vary with the set of the parameters for each sample to be measured, and

give us an idea about the uncertainty of the computed tomography system.

3.3: CT strengths and limitations

Computed Tomography provides an entirely non-destructive 3D imaging and a

conservative reconstruction, allowing sub-voxel level details to be extraxted. CT also

requires little or no sample preparation, which can lead to cost reduction.

On the oder hand, CT has a limited resolution to about 1000-2000x the object

cross-section diameter - high resolution requires small objects. This finite resolution

causes some blurring of material boundaries. The dificulties of calibration of gray levels

to attenuation coefficients complicated by polychromatic X-rays are also a negative

aspect. Not all features have sufficiently large attenuation contrasts for useful imaging.

CT scanning is also characterized by the presence of artifacts that can compli-

cate data acquisition and interpretation. Large objects cannot be penetrated by low-

energy X-rays, reducing resolving capability. Finally, large data volumes can require

considerable computer resources for visualization and analysis. In this sense, the ex-

periments demand computers with high processing and storage capacities 10.
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4 Design Of Experiments

This experiment aims to “understand” the process as a whole in the sense that

is intended, after design and analyze, to have in hand a ranked list of important through

unimportant factors that affect the deviation surfaces.

In this regard, the Design of Experiments (DOE) appears to be a powerfull so-

lution, which provides a systematic and rigorous approach to engineering problem-

solving that applies principles and techniques at the data collection stage so as to

ensure the generation of valid, defensible, and supportable engineering conclusions.

In addition, all of this is carried out under the constraint of a minimal expenditure of

engineering runs, time, and money.

Figure 4.1: A symmetrical distribution of experimental points around a center-point
experiment.

DOE involves making a set of experiments representative with regards to a given

question. The way to do this is problem dependent, and the shape and complexity

of a statistical experimental design may vary considerably. A common approach in

DOE is to define an interesting standard reference experiment and then perform new,

representative experiments around it (figure 4.1). These new experiments are laid out

in a symmetrical fashion around the standard reference experiment in order to evaluate

and model the behavior of the system in its vicinity. Hence, the standard reference

experiment is usually called the center point [6].
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With the aid of this approach, it is possible to create functionally the process

modeling with the output being a estimated fitting mathematical function, composed of

coefficients with maximal accuracy.

4.1: Benefits of DOE

The great advantage of using DOE is that is provides an organized approach,

with which it is possible to adress both simple and tricky experimental problems. The

experimenter is encouraged to select an appropriate experimental objective, and is

then guided to devise and perform a set of experiments, which is adequate for the

selected objective.

Thus, by means of DOE, one obtains more useful and more precise information

about the studied system, because the joint influence of all factors is assessed.

4.1.1: Screening and Optimization

Screening and Optimization are the first stages of DOE methodology and will be

used on this project. They are useful to explore factors in order to reveal whether they

have an influence on the responses, and to extract detailed information about them.

4.2: Specification of factors

In DOE the first experiment procedure is to specify the input factors. The im-

portant parameters of this experiment have already been identified previously. All four

factors used to evaluate the project are controllable and quantitative and expressed

in the international system of units and their derivatives. The four injection molding

factors are presented below:

• Pressure [bar]

• Pressure time [s]

• Cooling time [s]

• Cooling temperature [◦C]
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4.2.1: Definition of the standard reference

Ideally each factor should be explored at five levels to allow a reliable quadratic

model. But, there are also good optimization designs available, which utilize only three

level per explored factor. In this sense, the standard reference has three level and is a

known operation point by WZL and was used in this experiment.

The values of the minimum, center and maximum for each input factor can be

found in table 4.1. The first factor, pressure used in plastic injection, is varied between

100 and 350 bar. The second factor, pressure time, is varied between 2 and 7 s. The

cooling used to cool the mold is represented by two factors. Cooling time is varied

between 10 and 20 s and cooling temperature is varied between 30 and 70 oC.

Factors Min Center max

Pressure [bar] 100 225 350
Pressure time [s] 2 4.5 7
Cooling time [s] 10 15 20
Cooling temperature [◦C] 30 50 70

Table 4.1: Minimum, center and maximal factors values to current DOE

4.3: Specification of responses

It is important to select responses that are relevant to the experimental goals.

In the sample surfaces, the root mean square (RMS) values of deviation orders (zero

or offset, first and second) are the most important properties and were selected to be

analyzed. As mentioned in chapter 1, the third and higher order deviations will not be

considered in this experiment due to the resolution of CT and the uncertainty involved

in the process.

The deviation orders were extracted by using the software SmartInspeCT, which

was previously developed in WZL for using in this project. The matematical background

of separation will be presented in the next chapter.

4.4: Model concept

Modeling systems can reveal the nature of the relationship between few factors

and the measured responses. For some factors and responses the relationship might
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be linear, for others non-linear, that is, curved. For some factors and responses ex-

ists a positive correlation, for others a negative correlation. These relationships are

conveniently investigated by fitting a quadratic regression model.

Models are not reality and will never represent a system perfectly, but approxi-

mate representations of some important aspects of reality. It constitutes an excellent

tool for understanding important mechanisms of the reality, and for manipulating parts

of the reality according to a desired outcome [6].

According to 8, when input factors can be varied across a continuous range of

values, the response surface methods may be used. This approach provides designs

and models for working with continuous factors and can describe the responses as

functions. Thus, the current project uses this methodology.

4.4.1: Response Surface Methodology (RSM)

Response surface methodology consist of a group of mathematical and statisti-

cal techniques used in development of an adequate functional relationship between a

response of interest and a number of associated control variables. In general, such a

relationship is unknown but can be approximated by a low-degree polynomial model of

the form:

y = f ′(x)β (4.1)

The purpose of considering a low-degree model is to predict response values

for given settings of the control variables and to determine, through hypothesis testing,

significance of the factors whose leves are presented by the input parameters.

For the current analysis, a second-degree polynomial form was performed by

using the full-quadratic response surface regression model, as the following equation:

δ = βo +
∑
i

βixi +
∑
i<j

∑
j

βijxixj +
∑
i

βiix
2
i (4.2)

Where delta represents the RMS deviation (output) and x values are the input

parameters. The values of beta are the coefficients of the function and were extracted

from a quadratic regression performed in Matlab. These coefficients will be presented

in the next chapter.
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4.4.1.1: RSM design

After the standard reference and modeling have been defined, the factors were

varied around it with the statistical software Minitab 14 in order to generate a worksheet

with the input factors of the samples.

The response surface is a regression model that requires many experiments per

varied factor. Good RSM designs should give rise to a model with small prediction

error, that means that the design must also contain replicated experiments enabling

the perfomance of a lack of fit test. Therefore, in order to generate a worksheet with

the input factors of the samples, a new response surface design was created.

The input factors were varied around the standard reference with the statistical

software Minitab 14, with a central composite, in a half gesign, and gave the output of

62 samples.

The worksheet (figure 4.2) is a display of the input factors values, and each

one of the 62 samples has different combinations of these parameters values. The

complete worksheet is shown in Appendix A.

Figure 4.2: The worksheet of the application
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4.4.1.2: Samples production

The samples were manufactured by BOIDA Kunststofftechnik GmbH following

the worksheet of input factors presented above. The factors Pressure, Pressure time,

Cooling time and Cooling temperature could be directly set and were not an issue.

All samples were produced with three replications, but only one of these was in fact

analyzed in WZL. The 62 samples used are displayed in the figure 4.3.

Figure 4.3: All 62 produced samples used in this experiment.

4.5: Regression model evaluation

For a regression model analysis and evaluation, it is necessary a basis of statisti-

cal testing, which can be performed by using an analysis of variance (ANOVA). ANOVA

makes it possible to formally evaluate the performance of models.

ANOVA is a particular form of statistical hypothesis testing - method of making

decisions using data - heavily used in the analysis of experimental data. With the

aid of ANOVA, is it possible to confirm which factors are significant in each degree of

deviation.

This evaluation will be performed in software Matlab by using the generated

coefficients and models. With the models, it is possible to simulate inputs and outputs
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ir order to analyze the behavior of deviations varying the input factors in an appropriate

range. The ANOVA analysis will be presented in the chapter 6.
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5 Response Surface Modeling

A Response surface modeling was performed in order to investigate the influ-

ence of the input parameters in the deviations of each surface of interest. For this pur-

pose, the 62 samples produced were measured in the CT scanner and then aligned to

the CAD model.

After aligning the pieces, a high density point clouds were generated and have

been used in the separation of the deviations. With deviations acquired, it was pos-

sible to generate the coefficients of the model using a quadratic regression and then

compare the response surface model performance with the original system. The steps

above will be presented one by one in this chapter and at the end some comparison

charts are displayed.

5.1: CT measurement and alignment

The first task when measuring a sample with CT is to calibrate and qualify the

positioning system. After, we have to find a way to hold the part in the CT rotational

desk. The next step is to define the CT parameters and then it is possible to start the

measurements.

With the aid of software Calypso - developed by Carl Zeiss, an alignment be-

tween the CAD model of the part and voxel model can be done by using the best-fit

function. Finally, a second high-density point cloud is generated and used in the com-

parison performed by the software SmartInspeCT.

5.1.1: Calibration and Qualification

The detector calibration analyzes the response behavior of the detector for dif-

ferent tube voltages and currents and homogenizes the active detector field. A check is
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made as to see whether there are any bad pixels [9]. For this purpose, a measuring run

is integrated in the software Metrotom OS and was performed monthly in this project.

All of the relevant geometric properties of the CT are determined with the help

of a geometric qualification test piece. This is an important prerequisite for optimal

reconstruction of the object and was also performed (figure 5.1).

Figure 5.1: Geometric qualification.

An axis qualification (figure 5.2) should always be performed after a geometric

qualification especially to prevent a “double margin” in a artifact-free reconstruction. It

was performed with the aid of a phantom, as presented in the figure 5.2.
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Figure 5.2: Axis qualification.

5.1.2: Design of a Holder

A important task when measuring a sample with the CT is to find a way to hold

the part in the CT rotational desk. In this case, the sample cannot have perpendicular

edges with the CT X-ray emission source, and any object used to hold the sample

could overlap the sample and prejudice the measure result.

To solve this problem, a holder made of low density sponge was proposed in

the software Pro/ENGINEER to hold the sample (figure 5.3). How the density of the

sponge is much less than the plastic, it did not detracted the reconstruction quality.

For optimal detection and reconstruction, as well as a good penetration of X-

rays, the angle measurement should be between 70◦and 80◦. In this sense the angle

of the holder was fixed in a value of 76.50◦.
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Figure 5.3: Holder designed in the software Pro/ENGINEER.

However, it was not possible to manufacture this holder due to unavailability

of the machine tool required. Thus another holder was developed manually with a

measurement angle of 70◦, which is also considered for optimal measurement.

Figure 5.4: One of the samples being placed in the CT to be measured.
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5.1.3: Selection of CT parameters and measurements

The next task is to define the CT parameters, such a voltage, the current, an

integration time, sensor gain, number of projections, pre-filter, etc. It was defined with

the assistance of 11, as follows:

• Voltage: 110 kV;

• Current: 550 µA;

• Integration time 1000 ms;

• Gain: 16x;

• Number of images: 500;

• Pre-filter: 0 (no pre-filter).

After the CT parameters have been defined, the measurements can now be

performed in the software Metrotom OS. An interface of this software is displayed in

the figure 5.5. The 62 samples were measured with the aid of the holder that was

described before.

Figure 5.5: Interface of Metrotom OS while measuring one sample.

The CT provides a point cloud with very high point density, which can be used

to calculate a 3D surface model. This CT reconstruction has been analyzed at the

software VG Studio Max and was considered adequate to the measurement of all of

the samples with those parameters.
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5.1.4: Calypso

After the reconstruction, the 3D surface model and the CAD model can be used

to create a new actual model in the software Calypso. This actual model is a result of

the alignment between those two data sets, by using the best-fit function.

5.1.4.1: Best-fit

Best-fit is an algorithm that starts with two data sets and an initial estimate of

the aligning rigid-body transform. It then iteratively refines the transform by alternately

choosing corresponding points in the meshes and finding the best translation and ro-

tation that minimizes an error metric based on the distance between them [7].

The best-fit function was performed in the standard method, by using the manual

run. The figure 5.6 shows the CAD and voxel models before and after best-fit. As men-

tioned above, the result of the best-fit function is the actual model, which is described

as a new point cloud.

Figure 5.6: CAD model (white) and voxel model (green) before and after best-fit.

The best-fit function in Calypso can also provide a color-coded deviation repre-

sentation. This function serves serve merely as illustration and is shown in the figure

5.7 below:
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Figure 5.7: Color-coded deviation representation of one of analyzed samples.

5.1.5: Point clouds

A new high density point cloud - .txt file - was created for each sample measured

(figure 5.8). The point cloud contains the actual points in the xyz coordinates obtained

from the alignment of the real part. This point cloud will be usefull to separate the

deviations by order in a nominal-actual comparison.

Figure 5.8: Point cloud of the sample 1.
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5.2: Separation of deviations

The deviations between a nominal and actual surface can be considered as an

overlaid of several order of geometric deviations (offset, slope, curvature, waviness)

(figure 5.9). These geometric deviations will be separated to figure out their causes

(tool geometry and injection molding process) more easily [3].

Figure 5.9: Total deviation and separation methodology.

5.2.1: Mathematical Background

For this experiment, a separation approach for flank topographies using CMM

measurements as measuring instrument was adapted and used. This approach was

proposed in [5], and all mathematical derivations presented in this section are credited

to the approach authors.

The three first forms deviations considered in the current work are:

• The 0th order form with the meaning of an offset;

• The 1st order form with the meaning of inclination;

• The 2nd order form with the meaning of curvature.

The third and higher orders deviation can be understood as waviness and will

not be considered in this experiment due to the limitations of CT and the uncertainty

involved in the process.

The separation and calculation of the concrete parameters of each order can be

done by the best-fit approximation and least square method by minimizing the sum of

the squares of residuals between deviations delta - as the input data at each separation
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step - and the best-fit function s with the parameters x of lower order form deviations.

The objective function of least sequare method is written as follows:

f(x) =
n∑

i=1

(δ − si)
2 (5.1)

5.2.1.1: The 0th order form deviations

The 0th order form deviations have meanings of an offset value or in some cases

can be described as a pitch error. Offset deviations can be responsible to several kinds

of trouble with the produced part, e.g. a connector that does not fit properly into one

product for having a smaller size than the stipulated. The best-fit function for this order

can be expressed by one parameter exactly:

s0(x, y) = z0 (5.2)

The deviations used are the current deviations between nominal and actual sur-

faces.

δ0 = δ (5.3)

5.2.1.2: The 1st order form deviations

The first order form deviations should be considered as the plane, which has the

meaning of inclination of the global topography. Adopting the equation of an arbitrary

plane as the best-fit function, the parameters for the 1st order form deviations can be

expressed by the parameters of the plane. The general form of an arbitrary plane is

written by:

Ax+By + Cz +D = 0 (5.4)

In this case the domain is considered as the set of pairs (x,y). Thus we can

rewrite the equation of an arbitrary plane as follows:

s1(x, y) = z = ax+ by + c (5.5)
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The deviations values used for the first order are the difference between the

nominal deviations and the zero order form.

δ1 = δ − s0(x, y) (5.6)

5.2.1.3: The 2nd order form deviations

The parameters for the 2nd order deviations become a set of fundamental forms

of the 2nd order and the parameters of scaling transformation, orthogonal transforma-

tion (rotation) and parallel translation. Therefore, the second order form deviations can

be interpreted as the curvature and anisotropy of the global topography. The general

form of a second order surface is given by:

a11x
2
1 + a22x

2
2 + a33x

2
3 + 2a12x1x2 + 2a23x2x3 + 2a31x3x1 + 2b1x1 + 2b2x2 + 2b3x3 + c

or

3∑
i,j=1

aijxixj + 2
3∑

i=1

bixi + c = 0 (aij = aji) (5.7)

The second order surface can also be expressed in the matrix notation by:

s(x) = x̃T Ãx̃ = (Ãx̃, x̃) = 0 (5.8)

Where the matrix Ã and x̃ are given by:

Ã =

(
A b

bT c

)
=


a11 a12 a13 b1

a21 a22 a23 b2

a31 a32 a33 b3

b1 b2 b3 c

 , x̃ =

(
x

1

)
=


x1

x2

x3

1

 (5.9)

The second order surfaces can be understood as the points that satisfy the

equation when rank(A)=0. Moreover, since the second order surface expressed as

matrix notation is a quadratic form and A is a real symmetric matrix, it is possible to

classify the surfaces in five forms as shown in figure 5.10 [5]:
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Figure 5.10: Second order surfaces forms.

These geometric forms are described by the following equations:

Name Equation

Ellipsoid X2 + Y 2 + Z2 = 1
Hyperboloid of 1 sheet X2 + Y 2 − Z2 = 1
Hyperboloid of 2 sheets −X2 − Y 2 + Z2 = 1
Elliptic paraboloid X2 + Y 2 = Z
Hyperbolic paraboloid X2 − Y 2 = Z

Table 5.1: Equations for each second order surface form.

This means that an arbitrary surface can be obtained from the proper forms

by applying a suitable rotation R, parallel translation Q and scaling transformation S

matrices. Where the matrices R, Q and S are given by:

S =


Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1

 Q =


1 0 0 Qx

0 1 0 Qy

0 0 1 Qz

0 0 0 1

 R =

(
cos θ − sin θ

sin θ cos θ

)
(5.10)

Although there are five fundamental forms we can reduce them into two types:

a paraboloid and an ellipsoid/hyperboloid function.

The paraboloid equation is given by:

z = x2 ± y2 (5.11)
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After applying the rotation, parallel translation and scaling transformation the

equation can be written by:

s2(x, y) = z =
Sz

S2
x

[cos θzx+ sin θzy −Qx]2 ± Sz

S2
y

[− sin θzx+ cos θzy −Qy]
2 +Qz (5.12)

In this project the paraboloid function has been chosen as best-fit function for the

second order. The paraboloid is enough to evaluate the curvature and the anisotropy

of the second order. In addition, it has more stability and is more time saving, as long

as it needs to calculate 4 parameters (instead of 7 as in the case ellipsoid/hyperboloid

function) [5].

In contrast with the first and zero order, the second order form cannot be solved

analytically. For a good approximation the quasi-Newton method can be used with

initial values chosen so that:

Qx = Xlenght/2, Qy = Y lenght/2, Qz = 0.0

The deviations used for the best fit, in this case, are the difference between the

nominal deviations and the sum of the zero order and first order form.

δ2 = δ − s0(x, y) − s1(x, y) (5.13)

5.2.2: SmartInspeCT

With the aid of the software SmartInspeCT, it was possible to extract de devia-

tions of each surface. The SmartInspeCT was implemented in Matlab by WZL for use

in this project and was based on the separation methodology described in the previous

section.

The software provides a nominal-actual comparison by introducing respectively

a CAD model and a point cloud of the sample measured. The CAD model is a .stl

(standard stereolitography ASCII) file which is supported in many CAD softwares. On

the other hand, SmartInspeCT provides as outputs the deviations by orders and its

parameters.

Once both models are loaded in the software and one surface is selected (figure

5.11), it is possible to start running the separation by pressing the ’Separate deviations’
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button. After the software calculates the deviations of the surface, a response window

appears with the deviation results in each order (figure 5.12).

Figure 5.11: SmartInspeCT software with the Bottom surface selected.

The response window shows two results for the offset, four results to the first

order, seven results for the second order and two results for third order and superiors,

as is shown in table 5.2. In order to simplify the analysis, just the RMS results for offset,

first and second orders were considered.

Figure 5.12: SmartInspeCT software results for the Bottom surface selected.
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Order Deviation

0. Order Off-Set (mm)

RMS Value (mm)

1. Order Inclination(a)

Inclination(b)

Plane Off-Set (c ) (mm)

RMS Value (mm)

2. Order Rotational Param. (Oz) (rad)

Translation Param. (Qx) (mm)

Translation Param. (Qy) (mm)

Translation Param. (Qz) (mm)

Escaling Param. (p1)

Escaling Param. (p2)

RMS Value (mm)

3.+ Order RMS Value (mm)

Total RMS (mm)

Table 5.2: SmartInspeCT software output parameters.

The deviation values were extracted for 6 surfaces (figure 5.13) of the samples

and were used in the system’s modeling.

Figure 5.13: Sample surfaces that have been analyzed in the project.
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5.3: Modeling

With the aid of the software Matlab, it was possible to perform a full-quadratic

regression and propose a response surface modeling. The RMS absolute deviations of

the six surfaces were considered to model the system, as well as the four input factors.

Their interactions were generated one by one, and all the influences of each factor

have been modeled.

For the representation of the model, the abbreviation of table 5.3 was used.

Factors Abbreviation

Pressure [bar] P

Pressure time [s] Pt

Cooling time [s] Ct

Cooling temp [◦C] CT

Table 5.3: Abbreviations of factors

The response surface model function with all the coefficients and factors influ-

ences is presented:

δ = a+ b ∗ P + c ∗ Pt+ d ∗Ct+ e ∗CT + f ∗ P ∗ Pt+ g ∗ P ∗Ct+ h ∗ P ∗CT + i ∗ Pt ∗
Ct+ j ∗ Pt ∗ CT + k ∗ Ct ∗ CT + l ∗ P 2 +m ∗ Pt2 + n ∗ Ct2 + o ∗ CT 2

(5.14)

The tables with the coefficients for each order deviations of the six surfaces of

interest are presented:
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Surface 1 Surface 2

Coefficients Offset First Second Offset First Second

a 7.66885 0.34133 0.12016 9.63629 0.01096 1.93990

b 3.13E-4 -4.71E-4 -2.38E-5 0.00121 7.29E-4 -0.00184

c -0.01032 0.02139 0.42561 0.01643 0,05342 -0,04121

d 0.03777 -0.01291 0.00595 0.04293 0.00908 -0.10346

e -0.00958 0.00138 -0.01798 -0.01706 -0.00362 -0.01735

f -1.05E-4 2.39E-5 -1.13E-4 -1.71E-4 1.28E-5 1.03E-4

g -1.22E-4 6.52E-5 1.34E-4 -1.75E-4 -1.33E-5 -5.23E-6

h 3.32E-5 -1.17E-5 -4.37E-5 3.89E-5 -8.13E-6 2.37E-5

i -0.00237 9.28E-4 -0.00904 -0.00262 9.09E-4 -8.20E-4

j 3.85E-5 2.46E-5 -4.21E-4 1.05E-4 3.70E-4 -0.00164

k 2.10E-4 -4.67E-5 9.61E-4 4.56E-4 2.83E-4 1.15E-4

l 4.52E-7 2.08E-8 1.78E-6 4.24E-7 -4.62E-7 1.31E-6

m 0.00701 -0.00456 -0.02722 0.00593 -0.00989 0.01298

n -4.27E-4 -1.23E-4 -0.00139 -6.04E-4 -8.35E-4 0.00343

o -3.34E-6 1.75E-5 1.32E-4 2.06E-5 -2.94E-6 1.68E-4

Surface 3 Surface 4

Coefficients Offset First Second Offset First Second

a 8.16897 0.34972 0.20397 0.56810 0.04105 -0.99065

b 0.00109 -5.23E-5 2.15E-4 -0.00291 -3.38E-4 4.98E-4

c -0.00836 -0.02064 -0.00693 0.02325 -0.01906 0.13770

d 0.03380 -0.00577 3.93E-4 -0.01230 -5.13E-4 0.07670

e -0.02225 -0.00275 -0.00114 0.00717 0.00762 0.01775

f -1.35E-4 -4.56E-6 -1.27E-5 -3.03E-5 -5.72E-5 -9.89E-6

g -2.18E-4 -9.30E-6 -1.63E-5 -4.20E-5 5.36E-5 2.52E-6

h 5.04E-5 3.6E-6 1.30E-6 2.35E-5 -7.63E-6 5.52E-6

i -0,00243 4.82E-5 -2.43E-4 -2.44E-4 5.08E-4 6.36E-4

j 2.96E-4 5.18E-5 -2.36E-5 -3.81E-4 -2.48E-4 -0.00111

k 5.26E-4 1.57E-5 -6.70E-6 1.08E-4 -1.86E-4 4.25E-4

l 1.20E-6 2.89E-7 2.69E-7 4.78E-6 -7.60E-7 -1.50E-6

m 0.00678 0.00164 0.00125 4.77E-4 0.00141 -0.01022

n -2.09E-4 2.06E-4 1.39E-4 4.88E-4 -1.36E-4 -0.00336

o 2.85E-5 1.71E-5 1.40E-5 -1.10E-4 -2.89E-5 -1.94E-4
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Surface 5 Surface 6

Coefficients Offset First Second Offset First Second

a 6.62451 0.46448 0.46216 5.38921 0.48755 0.40792

b 4.15E-4 -1.95E-4 -1.97E-4 -0.00505 -0,00138 -2.65E-4

c -0.00663 -0.00627 -0.00687 0.22961 0.01673 0.03219

d 0.06271 -0.02456 -0.02471 0.01703 -0.00724 -0.01926

e -0.00992 -1.05E-4 -1.78E-5 0.01229 0.00196 0,00494

f -1.47E-4 -5.26E-5 -5.30E-5 -7.80E-5 1.12E-4 6.90E-5

g -1.63E-4 2.11E-5 2.19E-5 -2.15E-4 7.31E-6 1.70E-5

h 3.11E-5 5.26E-6 5.34E-6 3.10E-5 6.11E-6 -2.16E-6

i -0.00376 7.04E-4 7.85E-4 -0,00651 1.48E-4 8.38E-4

j -3.95E-4 -2.27E-4 -2.35E-4 -9.86E-5 -5.71E-4 -4.53E-4

k 4.34E-4 -4.52E-5 -4.24E-5 1.13E-4 8.10E-5 2.30E-5

l 1.23E-6 -1.22E-7 -1.63E-7 1.51E-5 8.46E-7 -6.79E-7

m 0.01238 0.00164 0.00161 -0.00515 -0.00179 -0.00441

n -9.77E-4 5.67E-4 5.49E-4 0.00144 8.64E-5 4.65E-4

o -6.72E-6 7.46E-6 6.50E-6 -1.42E-4 -2.42E-5 -3.51E-5

Table 5.4: Values of coefficients for each deviation order with response surface full

quadratic model of Surfaces 1 to 6.

5.4: CT measurements and RSM comparisons

With the coefficients of each surface model, it is now possible to evaluate and

validate the models. For this purpose, the four controllable input factors were given as

entrances of the response surface model (equation 5.14) and the results were com-

pared with the measured SmartInspeCT values.

In the figures 5.14, 5.15, 5.16, 5.17, 5.18, 5.19 is possible to verify the behavior

of the model for the offset (0th degree) on each surface. The figures for first and second

orders deviation for each surface are found in appendix C.

In general, the model gave a good representation of reality when compared to

the CT measured values, with average relative errors of about 0.47 to 10.87%. The

relative errors for all samples deviations of each surface are found in appendix B.

The averages relative errors for the offset deviations are:

37



Surface 1 “Inside” - 0.58%;

Surface 2 “Bottom” - 0.47%;

Surface 3 “Triple Cavity” - 0.67%;

Surface 4 “Upper Strip” - 6.64%;

Surface 5 “Single Cavity” - 0.74%;

Surface 6 “Right Side” - 1.28%.

These results indicate the response surface model is a good model to describe

this type of input-output relationship, especially for the zero order (offset) deviations.

Figure 5.14: Deviation of CT samples measurement and response surface model calculated
values for Surface 1.

38



Figure 5.15: Deviation of CT samples measurement and response surface model calculated
values for Surface 2.

Figure 5.16: Deviation of CT samples measurement and response surface model calculated
values for Surface 3.
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Figure 5.17: Deviation of CT samples measurement and response surface model calculated
values for Surface 4.

Figure 5.18: Deviation of CT samples measurement and response surface model calculated
values for Surface 5.
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Figure 5.19: Deviation of CT samples measurement and response surface model calculated
values for Surface 6.
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6 Results and Analysis

After the response surface model was validated for each surface of interest, the

model is able to represent the plastic injection system. In this case, it is now possible to

perform an analysis of variance in order to verify how the input factors exert influence

in each degree of deviation.

Once the model has been evaluated, new inputs were simulated by varying the

parameters independently one by one around the central point of the standard refer-

ence, from its minimum to maximum. The MATLAB software was used to calculate

new outputs and also to generate charts that will assist in the analysis.

In addition, an enconding was adopted due to the parameters variation. This

encoding is necessary so that the variation of all factors can be displayed at the same

chart. Therefore, the value -1 represents the minimum value, 0 represents the central

value and 1 the maximum value of each factor.

Furthermore, an ANOVA with a significance level of 0.05 was also performed

with the aid of the software. This significance level means that all factors that have

probability lower than this value (p<0.05) are significant. These results are written in

blue in the ANOVA result tables.

6.1: Surface 1 - Inside

For the surface “Inside”, it can be concluded that the Pressure time exerts some

influence in the First and Second orders deviations (figures 6.2 and 6.3), but it can not

be considered a critical parameter in the analysis, as well as Pressure, Pressure time

and Cooling Time.
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ANOVA for Surface 1

Degrees Sum of Mean F P

Offset of freedom squares squares

Pressure [bar] 4 0.010578 0.002645 0.409092 0.801

Pressure time [s] 4 0.019570 0.004892 0.775761 0.545

Cooling time [s] 4 0.00332 0.000831 0.126052 0.972

Cooling temperature [◦C] 4 0.018455 0.004614 0.729309 0.575

First

Pressure [bar] 4 0.001332 0.000333 0.480276 0.750

Pressure time [s] 4 0.004469 0.001117 1.750209 0.152

Cooling time [s] 4 0.000132 0.000033 0.046038 0.996

Cooling temperature [◦C] 4 0.000824 0.000206 0.293391 0.881

Second

Pressure [bar] 4 0.016673 0.004168 0.261171 0.902

Pressure time [s] 4 0.126153 0.031538 2.246410 0.075

Cooling time [s] 4 0.064656 0.016164 1.069172 0.380

Cooling temperature [◦C] 4 0.065202 0.016300 1.078873 0.375

Table 6.1: ANOVA results for Surface 1.

Figure 6.1: Offset order deviations for Surface 1 according to factors variation.
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Figure 6.2: First order deviations for Surface 1 according to factors variation.

Figure 6.3: Second order deviations for Surface 1 according to factors variation.

6.2: Surface 2 - Bottom

For the 1st order deviations, it can be realized that Pressure time had more influ-

ence than the other parameters and is the only significant factor. It can be considered a

critical parameter (figure 6.5). On the other hand for the offset and second deviations,

the factors are not significant (figures 6.4 and 6.6).
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ANOVA for Surface 2

Degrees Sum of Mean F P

Offset of freedom squares squares

Pressure [bar] 4 0.011309 0.002827 0.323140 0.861

Pressure time [s] 4 0.015729 0.003932 0.453462 0.769

Cooling time [s] 4 0.008356 0.002089 0.237370 0.916

Cooling temperature [◦C] 4 0.025618 0.006405 0.753628 0.559

First

Pressure [bar] 4 0.006735 0.001684 1.793343 0.143

Pressure time [s] 4 0.016690 0.004172 5.459708 0

Cooling time [s] 4 0.008383 0.002096 2.303191 0.069

Cooling temperature [◦C] 4 0.007366 0.001841 1.984791 0.109

Second

Pressure [bar] 4 0.060360 0.015090 1.909567 0.121

Pressure time [s] 4 0.043565 0.010891 1.328712 0.270

Cooling time [s] 4 0.037328 0.009332 1.123466 0.354

Cooling temperature [◦C] 4 0.033988 0.008497 1.015774 0.407

Table 6.2: ANOVA results for Surface 2.

Figure 6.4: Offset order deviations for Surface 2 according to factors variation.
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Figure 6.5: First order deviations for Surface 2 according to factors variation.

Figure 6.6: Second order deviations for Surface 2 according to factors variation.

6.3: Surface 3 - Triple Cavity

For the offset order deviations, it can be conclude that there aren’t significant

factors (figure 6.7). Meanwhile for the first order deviations, the four parameters can

be considered critical (figure 6.8). For the second order deviations, only Cooling time

is not significant (figure 6.9).
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ANOVA for Surface 3

Degrees Sum of Mean F P

Offset of freedom squares squares

Pressure [bar] 4 0.026900 0.006725 0.608670 0.658

Pressure time [s] 4 0.008924 0.002231 0.196317 0.939

Cooling time [s] 4 0.018733 0.004683 0.418449 0.795

Cooling temperature [◦C] 4 0.020926 0.005232 0.469053 0.758

First

Pressure [bar] 4 0.004231 0.001058 8.624108 0

Pressure time [s] 4 0.004638 0.001160 10.039195 0

Cooling time [s] 4 0.002408 0.000602 3.893044 0.007

Cooling temperature [◦C] 4 0.002915 0.000729 5.001404 0.001

Second

Pressure [bar] 4 0.003658 0.000914 6.964683 0

Pressure time [s] 4 0.003433 0.000858 6.346643 0

Cooling time [s] 4 0.001662 0.000416 2.498369 0.053

Cooling temperature [◦C] 4 0.002451 0.000613 4.018102 0.006

Table 6.3: ANOVA results for Surface 3.

Figure 6.7: Offset order deviations for Surface 3 according to factors variation.
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Figure 6.8: First order deviations for Surface 3 according to factors variation.

Figure 6.9: Second order deviations for Surface 3 according to factors variation.

6.4: Surface 4 - Upper Strip

For the ffset order deviations, Pressure is the only significant factor (figure 6.10).

For the first order deviations, Cooling temperature had more influence than the other

parameters and can be considered significant (figure 6.11). For the second order de-

viations there aren’t significant factors.
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ANOVA for Surface 4

Degrees Sum of Mean F P

Offset of freedom squares squares

Pressure [bar] 4 0.050594 0.012648 4.172278 0.005

Pressure time [s] 4 0.007790 0.001948 0.514882 0.725

Cooling time [s] 4 0.006334 0.001584 0.415856 0.796

Cooling temperature [◦C] 4 0.029565 0.007391 2.173618 0.083

First

Pressure [bar] 4 0.001152 0.000288 0.562800 0.690

Pressure time [s] 4 0.002506 0.000626 1.284275 0.287

Cooling time [s] 4 0.002579 0.000645 1.325292 0.272

Cooling temperature [◦C] 4 0.004905 0.001226 2.751172 0.037

Second

Pressure [bar] 4 0.022232 0.005558 1.315590 0.275

Pressure time [s] 4 0.023504 0.005876 1.398241 0.246

Cooling time [s] 4 0.028546 0.007137 1.734688 0.155

Cooling temperature [◦C] 4 0.030458 0.007614 1.866071 0.129

Table 6.4: ANOVA results for Surface 4.

Figure 6.10: Offset order deviations for Surface 4 according to factors variation.
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Figure 6.11: First order deviations for Surface 4 according to factors variation.

Figure 6.12: Second order deviations for Surface 4 according to factors variation.

6.5: Surface 5 - Single Cavity

For the Surface 5, the parameters Pressure, Pressure time and Cooling time are

significant to the first and second orders deviations (figure 6.14 and 6.15). For the first

order deviations, there aren’t critical factors (figure 6.13).
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ANOVA for Surface 5

Degrees Sum of Mean F P

Offset of freedom squares squares

Pressure [bar] 4 0.083205 0.020801 1.917889 0.120

Pressure time [s] 4 0.085681 0.021420 1.982889 0.109

Cooling time [s] 4 0.010512 0.002628 0.216819 0.928

Cooling temperature [◦C] 4 0.050319 0.012580 1.101287 0.365

First

Pressure [bar] 4 0.004184 0.001046 4.027529 0.006

Pressure time [s] 4 0.004370 0.001093 4.260201 0.004

Cooling time [s] 4 0.003495 0.000874 3.214605 0.019

Cooling temperature [◦C] 4 0.002403 0.000601 2.064233 0.097

Second

Pressure [bar] 4 0.004077 0.001019 3.768077 0.009

Pressure time [s] 4 0.004602 0.001150 4.402648 0.004

Cooling time [s] 4 0.003520 0.000880 3.139829 0.021

Cooling temperature [◦C] 4 0.002474 0.000619 2.071571 0.096

Table 6.5: ANOVA results for Surface 5.

Figure 6.13: Offset order deviations for Surface 5 according to factors variation.
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Figure 6.14: First order deviations for Surface 5 according to factors variation.

Figure 6.15: Second order deviations for Surface 5 according to factors variation.

6.6: Surface 6 - Right Side

For the offset deviations, the factors Pressure, Pressure time and Cooling tem-

perature are significant (figure 6.16). For the first and second orders deviations there

aren’t critical parameters (figure 6.14 6.15).
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ANOVA for Surface 6

Degrees Sum of Mean F P

Offset of freedom squares squares

Pressure [bar] 4 0.243497 0.060874 2.613997 0.044

Pressure time [s] 4 0.373487 0.093372 4.444725 0.003

Cooling time [s] 4 0.107639 0.026910 1.048239 0.390

Cooling temperature [◦C] 4 0.265739 0.066435 2.901379 0.029

First

Pressure [bar] 4 0.002458 0.000614 0.439516 0.779

Pressure time [s] 4 0.002148 0.000537 0.382542 0.820

Cooling time [s] 4 0.001177 0.000294 0.207068 0.933

Cooling temperature [◦C] 4 0.002224 0.000556 0.396562 0.810

Second

Pressure [bar] 4 0.002539 0.000635 0.346207 0.846

Pressure time [s] 4 0.005438 0.001360 0.762831 0.554

Cooling time [s] 4 0.004875 0.001219 0.679993 0.609

Cooling temperature [◦C] 4 0.004325 0.001081 0.600160 0.664

Table 6.6: ANOVA results for Surface 6.

Figure 6.16: Offset order deviations for Surface 6 according to factors variation.
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Figure 6.17: First order deviations for Surface 6 according to factors variation.

Figure 6.18: Second order deviations for Surface 6 according to factors variation.

6.7: Analysis of production factors

By the presented results, it is possible to conclude that the factors are significant

to deviation orders of each surface as follows:
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6.7.1: Pressure

• Offset - Surfaces 4 and 6;

• First order - Surfaces 3 and 5;

• Second order - Surfaces 3 and 5.

According to the presented ANOVA results, the factor Pressure is not significant

to any deviations order of surfaces 1 and 2. This factor can be understood as a “noise”

in the analysis of these surfaces because of its small influence in the final deviation

results.

6.7.2: Pressure time

• Offset - Surface 6;

• First order - Surfaces 2, 3 and 5;

• Second order - Surfaces 3 and 5.

The parameter Pressure time is not significant to any deviation order in surfaces

1 and 4. It can be concluded then that this factor represents a noncritical parameter of

production and may no longer be considered in the next iteration loops for the analysis

of these surfaces.

6.7.3: Cooling time

• Offset - Not significant to any Surface;

• First order - Surfaces 3 and 5;

• Second order - Surface 5.

The parameter Cooling time is not significant in most of the surfaces analyzed.

In addition, the factor had a small influence in the offset deviations. As a result this

parameter may no longer be considered in the next iteration loops for the analysis of

surfaces 1, 2, 4 and 6.
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6.7.4: Cooling temperature

• Offset - Surface 6;

• First order - Surface 3 and 4;

• Second order - Surface 3.

The factor Cooling temperature is not significant in Surfaces 1, 2 and 5, i.e., this

parameter can be understood as a “noise” in the analysis of these surfaces and may no

longer be considered in the next iteration loops for the analysis of these three surfaces.

In the analysis above is also possible to realize that the four factors are not

significant to any deviations order of surface 1. Therefore, for a future analysis of this

part surface, new controllable factors may be considered in the next DOE.
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7 Conclusion

The use of computed tomography proved to be a valuable alternative when mea-

suring inaccessible parts in plastic parts produced by injection molding machines. With

the three-dimensional reconstruction and CAD-to-part comparisons, it was possible to

extract the deviations by orders and define a new methodology to analyze the devia-

tions on each surface of interest.

It was developed a mathematical model by using the response surface model

that was able to “predict” the deviations of the part produced in different orders for each

surface. With the analysis of variance (ANOVA), significant variables were isolated for

each surface. It was realized that some factors are not significant to any order of

deviation and may no longer enter the analysis of the next iteration loop of the process,

making it much simpler.

Finally, in the case of Surface 1 “Inside” a DOE with new controllable parame-

ters may be performed in order to analysis which factors exert some influence in its

deviations.
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8 Future Work

With the aid of the results and analysis presented in this experiment, it is now

possible to conduct further design of experiments holding significant parameters in

order to increasingly reduce dimensional errors of the surfaces of interest. In the case

of Surface 1 “Inside”, a DOE with new controllable factors may be performed in order to

analysis wich factors exerts some influence in its deviations. It is noteworthy that even

in the case of another type of geometry, it is possible to follow the same methodology

adopted to inspect plastic parts produced by injection molding machines.
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Appendix A: DOE worksheet

Sample Pressure Pressure Cooling Cooling temp.
number [bar] time [s] time [s] [◦C]

1 225 4.5 10 50
2 162.5 3.25 17.5 40
3 162.5 3.25 12.5 40
4 162.5 5.75 17.5 40
5 225 2 15 50
6 225 4.5 15 50
7 287.5 3.25 17.5 60
8 287.5 5.75 12.5 40
9 162.5 3.25 12.5 60
10 162.5 5.75 12.5 60
11 162.5 3.25 12.5 40
12 287.5 3.25 12.5 60
13 287.5 5.75 12.5 60
14 350 4.5 15 50
15 350 4.5 15 50
16 225 4.5 15 50
17 162.5 3.25 17.5 40
18 100 4.5 15 50
19 225 4.5 15 50
20 225 4.5 10 50
21 225 4.5 15 50
22 287.5 5.75 17.5 40
23 225 4.5 15 50
24 287.5 3.25 12.5 40
25 162.5 5.75 17.5 60
26 225 4.5 15 50
27 287.5 5.75 12.5 40
28 225 4.5 20 50
29 225 4.5 15 30
30 287.5 5.75 17.5 40
31 162.5 5.75 17.5 40
32 225 4.5 15 50
33 162.5 3.25 17.5 60
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Sample Pressure Pressure Cooling Cooling temp.

number [bar] time [s] time [s] [◦C]

34 225 4.5 15 50

35 162.5 5.75 12.5 40

36 225 4.5 15 50

37 225 7 15 50

38 287.5 5.75 12.5 60

39 100 4.5 15 50

40 287.5 3.25 12.5 60

41 225 7 15 50

42 162.5 5.75 12.5 60

43 162.5 5.75 12.5 40

44 225 4.5 20 50

45 287.5 3.25 17.5 40

46 225 4.5 15 30

47 287.5 5.75 17.5 60

48 225 2 15 50

49 287.5 3.25 17.5 40

50 225 4.5 15 50

51 162.5 5.75 17.5 60

52 225 4.5 15 50

53 162.5 3.25 12.5 60

54 225 4.5 15 50

55 225 4.5 15 70

56 287.5 3.25 17.5 60

57 162.5 3.25 17.5 60

58 287.5 3.25 12.5 40

59 225 4.5 15 50

60 287.5 5.75 17.5 60

61 225 4.5 15 50

62 225 4.5 15 70

Table A.1: DOE worksheet with parameters for samples production

62



Appendix B: Response surface model relative error (%)
compared to measured values

Surface 1 Surface 2

Samples Offset First Second Offset First Second

1 0.07642 1.28112 11.86443 0.23386 17.11273 19.63354

2 0.73031 4.40652 10.22155 0.68997 3.83087 4.06067

3 0.87490 10.06759 3.23884 0.59089 23.44008 9.01289

4 0.21141 6.73243 14.90836 0.19897 1.53934 5.59749

5 1.29040 14.40960 13.53647 1.29038 9.06095 12.08540

6 2.08866 14.67046 3.22515 1.86304 25.40201 19.79703

7 0.71125 2.51374 5.90333 0.32624 15.97440 2.63094

8 1.03472 8.59994 5.66707 0.87709 5.88288 2.25929

9 0.18090 3.31813 10.77570 0.10415 16.87628 17.41419

10 0.26812 1.23454 1.78577 0.22817 7.79907 14.59007

11 0.22990 1.55314 11.28387 0.24410 6.01552 10.23216

12 0.03527 1.85024 31.14979 0.19761 10.26540 11.83961

13 0.30099 1.64504 51.18208 0.21109 2.26240 9.02435

14 0.56941 4.81302 1.49727 0.59492 13.96989 65.50867

15 0.41192 3.94809 4.83667 0.40165 2.52352 14.51788

16 0.76689 7.57688 3.27587 0.78171 7.76156 13.86009

17 1.71361 11.87023 17.36717 1.50172 13.56742 36.38433

18 1.79966 14.42257 4.22815 1.38056 19.54531 6.07171

19 0.25606 0.33071 4.18241 0.34686 1.55336 50.81087

20 0.11411 0.57515 16.32315 0.36302 10.47949 8.51024

21 0.78141 8.02428 0.13907 0.39260 37.73421 15.76861

22 0.98265 10.71982 9.85051 1.30884 19.36496 3.42279

23 0.30255 2.20818 6.88048 0.28739 19.58518 18.81456

24 1.82106 13.69768 14.63274 1.83500 9.07258 48.27350

25 0.93334 14.13813 4.20838 0.50111 43.78902 0.85321

26 0.86023 11.14232 1.88476 0.74569 22.55734 16.03780

27 1.15323 6.38636 6.20824 1.15554 10.84736 3.83387

28 0.61469 5.27677 71.98198 0.41515 11.05223 1.58469
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Surface 1 Surface 2

Samples Offset First Second Offset First Second

29 0.80999 5.60717 10.51933 0.85508 3.02159 11.31656

30 0.94387 14.06008 8.76543 1.05041 3.70952 4.53435

31 0.58659 14.81535 39.57891 0.58551 1.36847 0.84454

32 0.46364 6.96271 8.14136 0.65797 1.07410 64.97699

33 0.01029 0.55528 4.00360 0.32977 18.60573 3.53509

34 0.16058 0.85666 2.97388 0.14066 0.94621 29.46654

35 0.03780 3.21489 2.61250 0.10624 5.19845 1.65534

36 0.62635 6.41587 9.05385 0.41069 18.04531 18.25016

37 0.67053 7.34730 37.82646 0.65901 9.53281 3.19935

38 0.29896 4.10369 12.21575 0.03114 39.35729 6.82803

39 0.93723 8.92264 13.73258 0.62923 21.54753 8.73708

40 0.15611 0.32105 28.76053 0.25626 23.16113 3.14989

41 0.34049 3.83149 32.12164 0.02349 20.03129 4.75063

42 1.17308 6.31383 3.09864 0.92575 2.37214 63.02938

43 0.65098 2.52865 5.61697 0.65691 0.74429 0.68626

44 0.65276 4.06773 8.20334 0.75035 1.46196 0.08079

45 0.57703 2.46731 3.96865 0.48456 4.19553 16.28217

46 2.11613 10.44127 7.16663 2.12597 5.81230 4.87921

47 0.56653 7.56259 18.60503 0.48226 11.17722 21.06892

48 0.14533 0.40711 57.09984 0.36031 19.06901 7.15604

49 0.16155 1.01127 4.90333 0.10792 8.84756 11.96624

50 1.59710 11.62253 12.54990 1.24017 15.96900 2.66604

51 0.19987 3.11741 14.56695 0.35281 10.13336 3.07837

52 3.07790 27.12187 76.66567 2.74591 31.83170 17.07326

53 0.14950 0.00151 77.91047 0.27667 24.56087 8.20769

54 1.73300 16.82518 9.43139 1.67755 17.56738 0.23093

55 0.00198 7.91297 5.71798 0.14805 0.20194 22.55035

56 0.45691 1.28187 5.45177 0.38613 0.49289 1.05778

57 0.27050 2.90163 3.29113 0.25835 13.51295 7.07223

58 0.29538 3.72525 59.49724 0.33866 7.02416 19.79168

59 1.46866 8.63953 12.26506 1.11096 22.79214 5.49272

60 0.09630 4.05116 42.01306 0.46053 7.99908 51.76236

61 0.04695 4.65818 0.19770 0.23180 14.17638 14.99600

62 1.20797 9.80414 10.21416 1.20988 9.45289 12.74557
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Surface 1 Surface 2

Samples Offset First Second Offset First Second

Bigger (%) 3.0779 27.12187 77.91047 2.74591 43.78902 65.50867

Smaller (%) 0.00198 0.00151 0.13907 0.02349 0.20194 0.08079

Average (%) 0.58181 5.0449 9.24262 0.4714 10.37244 9.01862

Table B.1: Response surface model relative error compared to measured values for Surfaces

1 and 2
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Surface 3 Surface 4

Samples Offset First Second Offset First Second

1 0.12319 8.30255 6.07516 2.50425 3.89507 1.19996

2 0.94506 0.37170 1.51069 7.94299 25.33451 0.44910

3 0.93519 7.03659 10.28004 11.84849 2.39143 5.46262

4 0.49629 1.58439 2.21699 4.55726 7.95419 6.75328

5 1.16425 17.44097 14.39172 62.94058 3.63121 19.86957

6 2.57782 0.10527 1.24977 28.39003 6.30622 24.47624

7 0.24835 0.11242 1.03422 5.79843 4.02485 18.96406

8 0.82601 2.77585 3.70229 12.14531 2.11103 10.11029

9 0.54264 7.59674 5.91588 15.62848 17.71758 1.93803

10 0.25291 0.80648 0.44545 4.09925 13.26246 3.86828

11 0.25005 3.46592 8.63613 5.96933 3.55201 6.63517

12 0.66513 9.08706 8.01979 4.55056 21.79516 14.61765

13 0.32132 1.41666 1.70021 0.62882 4.06117 3.16108

14 0.44697 15.73190 14.47425 10.01856 8.37414 17.57575

15 0.46763 0.27317 0.71833 12.23528 15.18397 21.23280

16 1.11399 0.01468 0.53322 1.60981 27.99777 14.78268

17 1.92615 5.34709 6.09296 12.28418 15.53132 0.76831

18 1.68791 3.11622 4.91024 17.79041 13.44658 16.41799

19 0.42315 1.63853 0.97610 0.30929 29.02815 10.76690

20 0.5648 1.89489 0.11866 1.19400 26.92818 5.03103

21 0.554 1.60112 0.56504 6.71881 1.54369 23.31713

22 1.96286 1.30261 2.00981 3.89798 14.24802 10.76761

23 0.38792 0.70437 1.47893 1.64269 5.86295 23.87408

24 2.37134 0.72218 1.75097 12.00741 18.08248 4.17379

25 0.23577 14.61622 15.05826 2.19398 10.32093 10.10151

26 1.0056 2.98556 3.44464 11.74365 17.01639 5.57069

27 1.34353 5.75751 5.11898 1.14518 12.05153 8.94720

28 0.43916 4.33399 4.68735 0.51605 3.96442 5.95697

29 1.75111 16.44806 15.20381 7.64931 6.60736 3.27206

30 1.72206 5.08542 4.90100 13.29439 28.16461 7.04454

31 1.06904 0.86415 0.41737 4.66970 20.78810 7.47346

32 1.09453 2.73559 2.30481 5.35593 11.84516 5.17383

33 0.51367 3.83973 3.44631 0.38330 20.83107 23.14461

34 0.10528 4.76007 4.29345 3.59499 0.59457 7.78543
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Surface 3 Surface 4

Samples Offset First Second Offset First Second

35 0.26225 2.14525 3.00329 2.74353 2.90303 26.97638

36 0.55959 2.02258 1.45776 2.58395 3.54503 5.06297

37 0.8447 4.01602 3.64828 0.58166 1.78724 8.45602

38 0.10641 0.62275 1.71899 0.25202 1.31292 5.87729

39 0.67525 6.90558 5.84877 16.39517 8.19405 5.49399

40 0.4912 3.08364 1.96921 7.24523 11.42831 21.82778

41 0.2846 2.69752 2.32931 7.62604 7.35353 0.41683

42 0.9017 3.18130 3.65004 0.94352 3.31217 2.41384

43 0.78402 1.71769 2.57116 8.74059 2.59967 10.44473

44 1.20501 4.18177 4.47804 9.06367 22.51476 6.18727

45 0.35427 7.81532 6.69115 10.37015 5.38327 0.00268

46 2.79269 3.56917 1.96775 44.27401 1.00882 1.70348

47 0.72085 1.50523 3.11676 7.35241 4.46551 11.59929

48 0.68252 8.71372 7.30366 16.51241 14.90416 14.89280

49 0.46828 6.67735 6.09177 8.63493 20.79365 1.83031

50 1.5836 2.83496 2.98319 11.98577 17.66296 26.33957

51 0.56502 7.27474 6.83338 5.39537 22.14691 8.06436

52 3.6012 0.47890 0.63444 64.60172 23.33235 4.98215

53 0.01394 6.53197 6.43470 2.00301 15.03222 12.72585

54 2.28107 2.74236 3.19093 36.34514 25.57042 7.24124

55 0.2474 2.20956 1.94982 11.20944 0.68953 1.98037

56 0.45207 0.22083 0.04804 2.48360 1.23431 18.93399

57 0.74533 6.08002 4.40982 2.67623 12.01918 11.69365

58 0.79604 6.85001 7.12677 9.88296 25.64392 3.89402

59 1.41456 3.76327 4.76303 21.37307 12.70722 25.94190

60 0.78662 1.01934 3.38623 0.29632 13.38060 19.39102

61 0.55455 7.24876 7.61896 3.72512 8.62971 22.10891

62 1.46689 1.71812 2.05009 6.56193 9.90508 2.02644

Bigger (%) 3.6012 17.44097 15.20381 64.6017 29.02815 26.97638

Smaller (%) 0.01394 0.01468 0.04804 0.25202 0.59457 0.00268

Average (%) 0.67888 3.0346 3.41543 6.64037 10.87462 7.62945

Table B.2: Response surface model relative error compared to measured values for Surfaces

3 and 4
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Surface 5 Surface 6

Samples Offset First Second Offset First Second

1 0.84321 6.37078 6.43168 1.21038 7.27751 2.85415

2 0.97506 8.92589 10.02690 2.00881 2.435 0.70415

3 0.27074 9.45462 9.45531 2.57608 15.23368 12.20360

4 0.01576 3.55574 3.80791 0.22535 5.09753 7.99482

5 3.01788 9.66094 9.56556 0.90656 2.77978 2.88008

6 2.50467 14.56623 13.67782 4.95715 11.46069 6.26646

7 0.59204 5.45357 5.67576 0.33011 8.52315 6.57916

8 1.73801 4.55844 4.93716 0.88768 10.98699 14.45914

9 0.2338 5.56388 4.62642 1.74494 14.01117 15.05348

10 0.54355 2.10045 1.89608 1.07396 6.14085 10.73995

11 0.53871 0.98603 1.39711 0.93838 3.07865 1.13428

12 0.7117 6.94763 6.98968 0.46254 17.26011 15.45583

13 0.4693 2.83952 4.11193 0.84540 7.45929 1.52150

14 1.51064 11.97603 12.61967 2.52367 4.39745 5.33340

15 0.50861 1.03618 1.05665 2.54149 11.89068 9.06452

16 0.87202 4.74487 4.98353 2.70418 7.83999 2.75535

17 2.53413 8.61135 10.09789 3.72211 5.17162 1.13797

18 2.08043 1.5127 1.88755 0.29806 2.46911 1.80955

19 0.65732 0.67741 1.65693 1.66297 3.1679 0.33620

20 0.54817 3.32022 3.89664 0.09302 14.85342 3.38127

21 0.79013 2.5648 3.79198 1.65681 3.30541 1.67222

22 1.53665 3.58387 3.88793 2.81682 2.45945 5.35067

23 0.63685 6.88595 7.42338 0.15963 12.01553 11.59885

24 2.96993 6.17125 5.69509 4.52153 6.58978 4.06937

25 1.75329 10.50191 11.86885 2.02013 0.00772 0.38061

26 1.14247 4.73686 4.13624 0.91112 8.67691 9.15543

27 1.913 2.42927 3.05445 1.23970 8.91042 9.01407

28 0.97015 5.40226 4.72380 0.75272 10.92703 19.56194

29 0.17578 13.97756 15.01869 1.46440 0.18276 2.92195

30 1.19087 6.35415 6.78468 3.73043 1.26235 1.56788

31 0.55206 4.75271 5.16312 1.81619 11.68912 14.36401

32 0.57836 6.547 6.17848 1.76955 17.09004 7.47221

33 0.0074 2.05758 2.68060 1.25783 6.92471 7.00345

34 0.5999 4.38304 5.10555 0.35791 20.77544 18.52142
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Surface 5 Surface 6

Samples Offset First Second Offset First Second

35 0.1716 5.82057 6.65631 1.67453 12.65145 11.50602

36 0.29111 7.11849 6.61226 1.20230 6.86246 4.39989

37 1.43468 5.20033 6.07092 2.30277 11.08705 12.34277

38 0.09291 0.89515 0.13231 0.16159 10.10466 9.82598

39 1.33963 3.50091 3.43368 1.58775 4.77561 1.52404

40 0.23558 1.03977 1.23769 0.27421 2.95703 5.19322

41 0.6172 2.14977 2.88557 0.26771 5.59698 4.76180

42 1.8464 2.02668 1.71343 0.94946 2.52626 11.34966

43 1.32751 5.47117 6.04131 1.11320 14.03949 17.77421

44 1.04629 0.71502 0.01144 2.49785 10.31003 12.76248

45 1.4674 6.80009 6.91513 0.57179 9.12558 5.03230

46 3.14736 1.27074 1.62526 0.47336 8.58359 11.90511

47 0.77737 0.42192 0.84471 1.11002 12.4752 14.25223

48 0.2316 8.38577 9.52737 1.63501 15.4285 17.06392

49 0.3149 1.04238 0.91617 1.87039 5.38405 0.31481

50 2.15098 1.81552 2.05012 3.15213 0.38506 0.92256

51 0.18965 7.96524 8.72380 0.21454 4.0395 6.19754

52 3.88356 5.07616 4.81750 0.66667 8.56358 4.65662

53 0.87813 6.96149 6.60361 0.12338 0.06751 0.59026

54 2.12044 8.17223 7.57120 1.58574 12.0457 14.31892

55 0.29391 1.03648 0.28972 0.54970 14.25296 15.12628

56 0.38769 0.86989 0.41212 1.43575 3.17487 1.86305

57 0.29671 4.47871 4.12125 1.32087 15.27243 14.78418

58 0.05845 10.6299 10.94397 1.88436 14.13106 4.63301

59 1.97657 8.08436 8.18556 3.36321 12.83447 11.55347

60 0.63129 3.49411 4.39274 1.66998 6.99387 7.27489

61 0.18517 1.8502 0.84068 0.83371 4.61191 0.54544

62 2.05422 4.82375 4.36048 1.45729 14.61959 15.97201

Bigger (%) 3.88356 14.56623 15.01869 4.95715 20.77544 19.56194

Smaller (%) 0.0074 0.42192 0.01144 0.09302 0.00772 0.31481

Average (%) 0.74454 4.74879 4.77065 1.28935 8.18157 6.42281

Table B.3: Response surface model relative error compared to measured values for Surfaces

5 and 6
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Appendix C: Response surface model and
SmartInspeCT comparison

Surface 1 - Inside

Figure C.1: 1st and 2nd orders deviations of CT samples measurement and response

surface model calculated values for Surface 1.

Surface 2 - Bottom

Figure C.2: 1st and 2nd orders deviations of CT samples measurement and response

surface model calculated values for Surface 2.
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Surface 3 - Triple Cavity

Figure C.3: 1st and 2nd orders deviations of CT samples measurement and response

surface model calculated values for Surface 3.

Surface 4 - Upper Strip

Figure C.4: 1st and 2nd orders deviations of CT samples measurement and response

surface model calculated values for Surface 4.
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Surface 5 - Single Cavity

Figure C.5: 1st and 2nd orders deviations of CT samples measurement and response

surface model calculated values for Surface 5.

Surface 6 - Right Side

Figure C.6: 1st and 2nd orders deviations of CT samples measurement and response

surface model calculated values for Surface 6.
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