
Optimal oil production network
control using Modelica

Monografia submetida à Universidade Federal de Santa Catarina

como requisito para a aprovação da disciplina:

DAS 5511: Projeto de Fim de Curso

Marco Aur élio Schmitz de Aguiar

Florianópolis, agosto de 2013

Aknowlegment

I would like to express my special thanks of gratitude to my supervisor at NTNU,

Andres Codas Duarte, as well to my supervisor at UFSC, Professor Eduardo Campono-

gara, who gave knowledge, advices and incentive to do this project.

I would also like to thank my parents and friends who helped to keep cheerful

and focused, even from distance.

I would like to thank the NTNU, the Department of Engineering Cybernetics, and

the IO Center for receiving me and giving me the support so I could have an nice stay

and a good work environment.

At last, I would like to thank to Brazilian Government and the CNPQ for giving

me the opportunity for this exchange program called “Ciência sem fronteiras” (Science

without borders). Which I believe can be very beneficial to transform the country in one

of the leading centers for scientific research.

i

Resumo

Na ultima década, diversos trabalhos desenvolveram técnicas para otimiza-

ção estática da produção. Ao mesmo tempo, engenheiros de controle vem usando

otimização para controlar a dinâmica de poços, separadores e outro elementos da

rede de produção. Este trabalho visa preencher o gap entre essas duas áreas distin-

tas. Ele tenta responder uma questão comum que surge ao desenvolver problemas

de otimização estática, o que está ocorrendo com as dinâmicas do sistema?

Para esse propósito, um modelo dinâmico da rede de produção de petróleo foi

desenvolvido. Ele contém os principais elementos: poço, manifold, pipeline, sepa-

rador, compressor de gás e linha de injeção de gas-lift. Uma linguagem de mode-

lagem de sistemas chamada Modelica foi usada para transcrever estes modelos para

eles serem usados no ambiente computacional JModelica.org. Esse ambiente conecta

ferramentas do estado da arte para simulação e otimização de sistemas dinâmicos.

Além de criar uma ferramenta que possibilite a compreensão do que está ocor-

rendo com as dinâmicas do sistema, este trabalho se propõe a resolver um problema

que não seja notado em outras formulações. Um problema no qual uma manutenção

programada dos compressores reduzirá sua capacidade de fluxo, se não manejado

de forma adequada, poderá levar a um transitório onde é necessário queimar parte da

produção no flare.

Três problemas de otimização são formulados e comparados. O primeiro, uma

formulação simplista que faz o tracking de um setpoint. Na sequência, é criado um

problema de maximização da produção. Por último, é formulada uma combinação de

tracking com minimização do uso do flare.

Os problemas de otimização são discretizados usando o collocation method, um

método que faz a formulação explı́cita do problema e descarta o uso de simuladores. A

otimização é realizada usando o nonlinear solver IPOPT. Os Jacobianos, as Hessianas

e os gradientes são obtidos com a ferramenta de diferenciação automática CasADi.

Após a analise dos resultados, verificamos que é necessário o tratamento di-

nâmico do problema e a ausência desta abordagem leva a condições na qual o flare

é usado. Para evitar tal situação tanto a formulação de maximização de produção,

quanto a formulação de tracking com alta penalização do flare podem ser usadas.

ii

Abstract

In the last decade several works have developed techniques to solve the steady

state production optimization problem. At the same time, control engineers have used

optimization to control the dynamics of wells, separators and other production network

elements. This work aims to fill the gap between this two distinct areas of study. It

tries to answer a common question that arises when developing static optimization

problems, what is happening with the system dynamics?

For this, a dynamic model of an oil and gas production network was developed.

It contains the main elements: wells, manifolds, pipelines, separators, gas compres-

sors and gas-lift injection line. A system modelling language named Modelica was

used to transcript these models, so they could be used in the computational environ-

ment JModelica.org. This environment connects state-of-the-art tools to simulation and

optimization of dynamic systems.

Beside creating a tool that allows the understanding of what is happening in

the dynamic domain, this works proposes to solve a dynamic problem that might be

unnoticed in other formulations. A problem where a scheduled compressors mainte-

nance will reduce the compressors flow capacity and if not well handled may lead to a

temporary flare condition.

Three optimization problems are formulated and compared. At first an naive

approach that only tracks a setpoint is proposed. After, a production maximization

problem is created. At last, a combination of tracking and flare minimization is sug-

gested.

Each optimization problem is discretized using the collocation method, a explicit

formulation that discards the use of simulators. The optimization is solved using the

IPOPT nonlinear solver. The Jacobians, Hessians, and gradients are obtained using

the CasADi automatic differentiation tool.

After the analysis of the results, it is seen that the an approach that treats the

dynamics is necessary and the lack of such treatment leads to a flaring condition. Both,

the production maximization and the tracking formulation with high penalization, were

able to solve the problem without using the flare.

iii

Contents

1 Introduction 1

2 Model and Background 3

2.1 Network . 3

2.2 Well Model . 6

2.3 Manifold . 9

2.4 Pipeline-Riser Model . 9

2.5 Separator . 11

2.6 Compressor . 14

2.7 Models Coupling . 19

3 Modelica and JModelica.org 24

3.1 Modelica . 24

3.2 Optimica . 25

3.3 JModelica.org . 26

4 Nonlinear Model Predictive Control 28

4.1 Problem Discretization . 28

4.1.1 ODE Solvers . 28

4.1.2 Collocation Method . 31

4.1.3 Collocation Method Example . 33

4.1.4 NLP Optimization Formulation 34

4.2 Objective Function . 37

4.2.1 Tracking Problem . 37

4.2.2 Production Maximization Formulation 37

iv

4.3 Test Case: Compressor Scheduled Maintenance 38

4.3.1 Solving Approaches . 39

5 Results 41

5.1 Instance definition . 41

5.2 Computational Setup . 45

5.3 Maximization Problem . 45

5.4 Tracking Problem . 47

5.5 Compressor Maintenance Results . 49

5.5.1 Naive Approach . 49

5.5.2 Transient Optimization . 51

5.5.3 Hybrid Approach . 51

5.6 Computation Analysis . 54

6 Conclusion 55

Bibliography 57

Appendix A: Dynamic Models 61

A.1 Well Model . 61

A.2 Flowline Model . 64

A.3 Manifold . 66

A.4 Separator . 68

A.5 Compressor . 71

A.6 Production Network . 73

A.7 Objective Functions . 74

A.7.1 Tracking Problem . 74

A.7.2 Maximization Problem . 74

A.8 Constraints . 74

v

Appendix B: Modelica Examples 75

B.1 Example 1: Van der Pol Oscillator . 75

B.2 Example 2: The Quadruple-Tank Process 76

B.3 Example 1: Minimum time problem with Van der Pol Oscillator 78

vi

Chapter1: Introduction

A current trend in the science and society is the search for more efficient and

effective means to explore the natural resources. This trend combined with a uprising

demand for fossil energy culminated in the necessity of the oil industry to enhance the

development of new technologies.

Between these technologies, the “smart field” [24] contrasts among the others.

This technology develops hardwares and softwares to allow the optimal operation of

oilfields. The development became a challenge to the industry and the academic part-

ners. In the software part, many works have been developing nonlinear [21, 2] and

piecewise linear [14, 9, 30] formulations for maximize the static production of oil fields.

Static models are easier to be formulated when compared to dynamic models, it

can be done by interpolating simulators or field data. The optimization of a static can

obtain results faster than dynamic models, but it ignores how the system is behaving in

the continuous time.

In the dynamic system area, several works model and control a single element

of network, but hardly more than one element is treated per time. In this work, an oil

production network is modeled but for this dynamic models are used. In such way, it

aims to be able to solve problems that requires the whole network without missing the

transitory characteristic.

The production is composed by:

• Gas-lift wells that extract oil, gas, and water from the reservoir.

• Sub-sea manifolds that gathers the flow from different wells.

• Pipelines and risers that transport the flow from the sea bed to the processing

unit.

• Separators that separate the incoming three phase flow to three different outlets,

the separation efficiency may change depending on the conditions.

• Compressors that increases the pressure from the separator gas outlet to the

exportation line.

1

Gas-lift injection line and manifold that take part of the flow of the exportation line and

redirect then to be inject in the wells.

The models equations were coded using a system modeling language named

Modelica, this language permit the description of systems in a intuitive way. The com-

putational environment JModelica.org was used to compile the production network

model, this environment also interface the model with state-of-the-art simulation and

optimization tools.

This work may be relevant to answer some of questions that may rise when

doing static optimization, however the tool developed allows to go further create new

formulations. A practical problem is created to explore the system model and it pos-

sible applications it is created. A scheduled compressor maintenance will restrict the

compressor flow capacity. In such condition, it might be necessary to flare part of the

production if the problem is not well handled.

To solve this problem three optimization formulations were created. At first, it

is created a optimal tracking problem that follows the static production maximization

solution. The second approach is a production maximization problem. The third for-

mulation combines the track following of the first formulation with a flare minimization.

Each formulation is compared qualitative using figures and qualitative using the solver

report.

The model is discretized using the collocation method, an explicit formulation

for solving DAEs that discard the use of simulators. The open-source nonlinear solver

IPOPT is used to solve the optimization problems. the CasADi automatic differentiation

tool is used to obtain the Jacobians, Hessians, and gradients.

Chapter 2 describes the models used and how they are coupled. Chapter 3

discusses about the tools used to accomplish this work. Chapter 4 shows the dis-

cretization method and the nonlinear formulation. Chapter 5 show and argument the

results. Chapter 6 gives the final conclusions and the possibility for future works.

2

Chapter2: Model and Background

In this chapter, the models that were used to describe the oil network will be

formulated.

The chapter begins with an overview of the main elements of network and how

they interact. Afterwards each of the models is specified based on literature references

and considering some changes to fit the purpose of this work. At last it is given a

description of how the models are connected to form the network.

2.1: Network

This works wishes to develop a model that is suitable for simulation, control, and

optimization. For this, not only the component dynamics must be considered but also

the interactions between them and the restrictions that it may lead.

For instance, the literature usually assumes that there is unlimited lift-gas avail-

ability or it is bounded by some arbitrary value. However, when analyzing the network

as a compound system we can see that the limit on gas injection depends on the mass

balance of how much is produced, exported, and injected. For these reasons a macro-

scopic view of the system is necessary to rightfully control and optimize a network.

The network starts with the producing elements, the well takes as input the lift-

gas flow rate and as output, the production mass flow. Besides, it is related to the

pressure with the gas-lift manifold and production manifold.

The production manifold gathers the flow from many inlets and redirects to only

one outlet. This is used to connect the wells to the pipeline.

The pipeline and the riser are modeled together, since they have similar func-

tionality and dynamics. As input it takes the flow coming from the well and delivers

it to the separator. It shares the pressure with the manifold at the inlet and with the

separator at the outlet. Between the inlet and outlet a pressure drop is created due to

friction and gravitational effects.

The separator takes the three phase flows coming from the riser and discharges

in three outlets. If the separation is not perfect, oil and gas flows within water through

3

the water outlet. In the same way, part of the gas leaves through the oil outlet. The sep-

aration efficiency is given by the mass flow through the separator and by the separator

pressure, which is a free variable.

The compressor is responsible for increasing the pressure so that the gas can be

transported by the pipeline to the shore. Before the compressor there is a exhaustion

valve that leads to the flare and in case the compressor can not process all the flow

part can be burned.

The system components and free variables of the network are presented in the

Figure 2.1. The decision variables are highlighted with a circle and all other variables

can be determined using the system equations.

The free variables are:

• ww
gl is the lift-gas injection rate in the well w.

• ps, the pressure of the separator s.

• wc
fl, the gas mass flow to be burned in the flare that is located before compressor

c.

• wc
sl, the recirculation flow through the anti-surge line in compressor c.

After this overview, each model will be specified in a different section, starting

from the bottom until the export line.

4

Manifold 1

Manifold 2

Liquids

Output

Gas

Output

Separator 1

Separator 2

Well 1

Lift-gas injection

Injection

F
la

re

Export

Compressor 1

Gas-Lift

Manifold

Liquids

Output

F
la

re

Compressor 2

Gas

Output

Pipeline &

Riser 1

Pipeline &

Riser 2

Well 4

F
igu

re
2.1:

N
etw

ork
S
ch
em

atic

5

2.2: Well Model

The well is the main actuator of an oil reservoir, it is composed by several dif-

ferent parts. In Figure 2.2 we summarize a gas-lifted well representing the following

components: gas-lift choke, injection valve, annulus, tubing, casing, packer, and pro-

duction choke.

Tubing

Annulus

Reservoir

Injection
valve

Production

choke

Gas Lift

Choke

Casing

Packer

Gas in

Production

out

Figure 2.2: Well schematic [11]

The operation of a gas-lifted well can be described by the simple steps:

1. The injected gas passes through the gas-lift choke and builds up the annulus

pressure.

2. As the pressure in the annulus exceeds the pressure in the tubing, gas starts to

flow through the injection valve.

6

3. The injected gas mixes with the fluid emanating from the reservoir and reduces

the overall density.

4. With a lower density the counter-pressure induced by the fluid is reduced making

easier for the fluid to flow to the surface.

A gas-lifted well may operate in different regimes [17, 16]. Some of them with

periodic dynamics as a consequence of an intermittent gas rate through the injection

valve. This oscillatory behavior is not the aim of this work. Thus, it is assumed that

casing-heading and density wave are avoided by a lower level control and operational

constraints or are non existent.

For the gas-lifted well dynamic model we searched in the literature for the most

used models. A Hammerstein Model [28] was discarded because it is tuned to char-

acterize the dynamics but not the nonlinearities and discontinuities that are intrinsic of

the system, besides this model need to be fitted to simulator data.

Plucenio’s Model [27] is based on Partial Derivatives Equations (PDEs) that

might be good to represent the well alone, however it is dispendious to represent in

a complex network once it generates a high number of states.

Binder’s Model [8] is an extension of Eikrem’s Model, a model that has been

developed and used in the last 10 years [11, 12, 1, 18]. An earlier version of the

model was compared with OLGA simulator [18], even with the simplicity the results

have considerable fidelity. The model has only 3 ODEs and some algebraic equations

and still it can represent most of the characteristics and restrictions in the well. For

these reasons, this is the model that it will be used.

The main assumptions of the model are:

• Oil Production is described by Vogel’s Equation [35].

• The gas production and water production are given by the water-liquid ratio (wa-

tercut) and gas-oil ratio (GOR).

• The distribution of the masses of the three fluids happens without transport delay.

• Friction between the fluids and the annulus/tubing wall is not considered.

• Pressures are obtained by the ideal gas law and gravitational affect of liquids.

7

The model describes the dynamical system using 3 states and 3 inputs — wgl,

upc, and pds:

ṁ =




ṁga = win − wgi

ṁgt = wgr + wgi − wgp

ṁlt = wlr − wlp




wout = fc(m, pds, upc)

Mass of gas in the Annulus

Mass of gas in the Tubing

Mass of liquid in the Tubing

Choke flow

(2.1)

In the annulus, the input of lift gas win increases the annulus gas mass mga, while the

flow through the injection valve wgi reduces it. The gas coming from the reservoir wgr

adds up to the gas coming from the annulus wgi and is reduced from the gas flowing

through the production choke wgp giving the dynamic of gas mass in the tubing. The

liquid mass in the tubing is the time integral of the liquid flowing from the reservoir wlr

discounted by the outgoing liquid flow through the production choke wlp. The output

vector of gas, oil, and water flows wout is as function of the states m = (mga, mgt, mlt)

(Eq. 2.1), the opening in the production choke upc, and the choke downstream pressure

pds, which depends on the pipeline states. The whole set of equations is presented in

Appendix A.1.

The main difference between Eikrem’s and Binder’s models is that the last one

considers not only production of oil but also water.

The main difference between Eikrem’s and Binder’s models is that, in Binder’s

model, the reservoir produces not only oil and gas, but water as well. Therefore, some

changes were made in the density and pressure equations as can be seen in [8].

Both models consider the opening of the production choke upc as a controllable

variable, however to reduce the complexity of the problem we assume that it is always

fully open, since any other position of the choke would reduce the oil production which

is against the objective of maximizing production.

An additional modification to Binder’s model was necessary to fit the non-return

characteristic in the gas-lift choke. There should be flow in the choke only if the pres-

sure in the annulus is lower than the pressure before the choke, in the gas-lift manifold.

Due to this limitation, the lift-gas injection must be within the bounds:

0 ≤ wgl ≤ wmax
gl = fgv(pgm − pta) (2.2)

being wmax
gl the flow when the gas-lift choke is fully open. It can be found using the

choke function, which is dependent of the pressure difference between the gas-lift

8

manifold (pgm) and the top of the annulus (pta).

2.3: Manifold

The manifold is a coupling element. It is modeled with no dynamics or complex

equations. It is used to connect many components to a single one, Figure 2.3. It can

be a three-phase flow manifold, as those in the production line, or a single-phase flow

manifold, as the lift-gas manifold.

Figure 2.3: Manifold Schematic

The outlet flow, in the manifold, is the sum of all inlet flows. The flow is assumed

to be perfectly mixed. The pressure at the inlet and outlet are considered the same.

wout =
∑

i∈I

βiwi
in (2.3a)

piin = pout, ∀i ∈ I (2.3b)

βi ∈ {0, 1}, ∀i ∈ I (2.3c)

where wout is the outlet flow and pout is outlet pressure. wi
in is the inlet flow and piin the

inlet pressure of the input i. βi is the opening of the inlet valve i, which can be either

fully open (βi = 1) or fully closed (βi = 0). I is the set of manifold inputs. The model is

also the Appendix A.3.

2.4: Pipeline-Riser Model

In this section it is modeled the pipeline and the riser, elements that connect the

subsea manifold to the offshore platform. For the same reasons that were explained in

the well modeling, we are not interested in oscillatory behaviors.

9

During the literature research several models were found, which focus on model-

ing the turbulent regimes. Slug flow models are described by Taitel [34, 33], Di Meglio

[10], Stasiak [31, 32], Masella [23], and Jahanshahi [19]. The last one presents a table

(p. 1639 — Table 1) which compares his model with the state-of-the-art Multiphase

Flow Simulator OLGA and other early proposed models. The conclusion that we can

obtain from the table is that the model proposed by Jahanshahi [19] has a fair trade off

in accuracy and complexity. It contains a reduced number of states when compared to

models that use Partial Differential Equations (PDE).

Jahanshahi [19] assumes that:

• The system has two components: a horizontal flowline and a vertical riser.

• Each component has two state variables, one for the liquid mass and another for

the gas mass.

• The connection is made by a virtual valve and the valve opening is given by a set

of equations related to the height of liquid in the lowest part of the pipeline.

• The boundary conditions are the constant inflow of gas wg and liquid wl (with

constant watercut) and the static pressure ps at the end of the pipeline.

• In both elements, the gas is assumed to be ideal and the pressure drop due to

friction is disregarded.

• The horizontal pipeline has a stratified flow, whereas a perfect mix is assume in

the riser.

L2

L1

Figure 2.4: Pipeline and Riser Schematic

The flowline and riser have different flow regimes [37, 26]. As discussed in Sec-

tion 2.2 regimes with oscillatory dynamics are out of the scope of this work. Therefore

the model was simplified to avoid such conditions.

10

The assumption of constant watercut at the inlet will not hold if different produc-

tion wells are connected to the same pipeline. For this reason, the states related to the

liquid phase were split in 2, water and oil, in both sections.

The final model has 6 states. In the pipeline mgp, mop, and mwp, are the mass

of gas, oil, and water, respectively. In the riser mgr, mor, and mwr, once again, are the

mass of gas, oil, water. Figure 2.4 sketches the system with the modifications.

The set of equations of the model can be summarized as:

ṁ =




ṁgp = wg,in − wg,pr

ṁop = wo,in − wo,pr

ṁwp = ww,in − ww,pr

ṁgr = wg,pr − wg,out

ṁor = wo,pr − wo,out

ṁwr = wo,pr − ww,out




yp,out = f1(m)

pds = f2(m)

Gas mass in the pipeline

Oil mass in the pipeline

Water mass in the pipeline

Gas mass in the riser

Oil mass in the riser

Water mass in the riser

Outflow

Pressure at the entrance

(2.4)

The vector of states m = (mgp, mop, mwp, mgr, mor, mwr) do the balance of mass in the

system. The system inputs are the inflow of gas wg,in, oil wo,in, and water ww,in. The

flow through the virtual valve that connects the two elements are the gas flow wg,pr, the

oil flow wo,pr, and the water flow ww,pr. The system outlet flow is composed by the gas

flow wg,out, oil flow wo,out, and water flow ww,out.

The model equations including the changes can be found in Appendix A.2. For

the original model it is suggested the reference [19].

2.5: Separator

The separator developed in this section is inspired by the Sayda’s physical-

based model [29]. This model includes transient dynamics, but since its settling time is

considerable faster than those in the wells and pipelines they will be discard.

This element will determine how much hydrocarbons are flowing along the water

through the water outlet and how much gas within the oil goes through the oil outlet.

The separator is basically a tank with fluid flowing through it. It has a three-phase

flow inlet and three outlets: a water outlet — that may discharge gas and oil as well, an

oil outlet — that can discharge gas also, and a gas outlet. The separator is divided in

11

four volumes: the mixture, the water phase, the oil phase, and the gas phase. Figure

2.5 shows a schematic.

Figure 2.5: Separator Schematic

The separator pressure can be determined by the mass and volume of gas inside

of the separator using the ideal gas equation. Since the separator length is relatively

short when compared to pipelines, the pressure drop due to the friction through the

separator is so small that it is negligible and pressure of all outlets are equal to the inlet

pressure:

pin = pout (2.5)

Being pin the inlet pressure and pout the pressure in all outlets.

The separator outlet pressure is defined as a controlled variable and it is as-

sumed that a lower-level control loop controls the outlet gas valve to keep the pressure

in the determined reference. This regulation dynamic is faster than other dynamics,

therefore it is not considered in this model. In addition, two level controllers for the

water-mixture level and the oil level are assumed to keep them in a predetermined

reference. Since the heights and pressures have no dynamics, there is no mass accu-

mulation inside the separator, therefore we can assure that all the inlet flow is leaving

by one of the outlets.

qin =
∑

p∈P

qpout (2.6)

12

where qin is a three-phase mass flow and each qpout is an outlet mass flow. P is the set

of the outlets, they can be g, o or w, standing for the gas, oil, and water outlet.

What determines the separation efficiency between water and the mixture is the

angle Φ of the interface between this two elements. This angle is the same as the angle

formed by the movement of water droplets inside of the mixture. The droplets speed

vector is composed by the speed of water flowing through the separator (horizontal

component) and gravitational effect (vertical component), which is given by Stoke’s law

[22]:

Φ = tan−1

(
vv
vh

)
(2.7)

where Φ is the surface angle, vh is the horizontal component of the water flow, and vv

is the vertical component induced by the gravitational effect.

The separation is perfect if the surface touches the oil phase, as it happens

in Figure 2.5. Otherwise we need to virtually extend the separator to have perfect

separation, as it happens in Figure 2.6. The perfect separation happens when the

water and oil phases meet. It does not happen in L anymore, but the perfect separation

happens on L1. The ratio of the volumes of the mixture inside and virtually outside of

the separator gives the water-mixture separation index. If the separation is not perfect,

oil and gas flow through the water outlet.

Figure 2.6: Virtual Separator Schematic

The oil-gas separation efficiency is based on Raoult’s law and Dalton’s law of

partial pressures [25], which basically says that the composition of a fluid at equilib-

rium depends on the fluid pressure and the vapor pressure of the components. In

mathematical format:

xi = yi
Pv,i

P
(2.8)

13

where xi is the mole fraction of the component in the liquid phase. yi is the mole

fraction of the component in the vapor phase. We assume that the gas has only one

component and the oil will not vaporize to the gas phase, in which case yi = 1. Pv,i

is the vapor pressure of the component i, and P is the mixture pressure. Let g be the

only the gas component, then:

xg =
Pv,g

P
(2.9)

Using Eq. 2.9 we can find the amount of gas that flows out through the oil

outlet and how much flow through the gas outlet. The whole equations set appears in

Appendix A.4.

2.6: Compressor

Three compressor models in the study of Grong [13] were examined to find one

that suits this work. However, a new model was elaborated and it might fit better our

purposes.

The first of the three models is a physical-based model which describes very well

the dynamics of the compressor in the simulations as is shown in [13]. Nevertheless,

the performance relies on physical design parameters which are difficult to measure

and non-existent in the commercial compressor data sheets. For this reason, it is very

difficult to implement.

To overcome the lack of information to build a physical model, the following mod-

els will only use typical data given by manufacturers. The compressor map, Figure 2.7,

is given in the compressor data sheet and contains the compressor static behavior. On

its abscissa axis there is the compressor volumetric inlet flow and on the ordinate axis

there is the pressure gain through the compressor. Moreover, the chart is composed

by several lines. Each line represents the compressor characteristic for a given com-

pressor speed. Figure 2.7 presents two boundaries with dashed lines. The surge line

is a limit which separate the map of the unstable flow region. The physical explanation

is similar to the stall effect in airplanes wings. The other boundary is the choke line,

this limit represent the maximum flow that the compressor can handle.

The next model [13] uses a 4th order polynomial function to approximate all

speed lines in the compressor map. The parameters of the polynomial function are

speed dependent and are fitted in a least square way from experimental data. The

14

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Inlet Flow rate (m
3
/s)

P
re

s
s
u
re

 R
a
ti
o

10450 rpm

9500 rpm

8550 rpm

7600 rpm

Surge Line

Choke line

Figure 2.7: Compressor map

fidelity is not very good if compared to the other models in the studies thereof, and the

calculation time is very similar to the physical model [13].

The third model of Grong, Table Lookup Model, creates a 4th order polynomial

approximation for each speed line. The operation of the compressor must be done over

the predetermined speed lines; however, new speed lines can be created by interpo-

lating the compressor map data. The model fits more precisely than the prior models

however it takes much longer to calculate [13].

In a very similar way, the previous models use the information from the compres-

sor map to define the dynamics of the compressor.

The fourth model does not have states, since the dynamics of the compressor

are much faster than those in the wells and pipelines. Figure 2.8 shows the basic

representation of the model.

This model has the objective to assure that the compressor is running within the

map limits. For this, the map boundaries are approximated by polynomial and distance

vectors from the operation point to each boundary are calculated. If all vectors have

negative values it means that system is operating inside of the map. The boundaries,

in Figure 2.8, are: 10450 rpm — the maximum speed (upward), 7600 rpm — the

15

FSSC

FS

Figure 2.8: Compressor model schematic

minimum speed (downward), surge line (leftward), and choke line (rightward)

It is assumed that there is a lower level controller for the speed of the compressor

to ensure that it is keeping the output pressure constant and at its desired reference.

Since it has no dynamics, all the mass flow that enters in the system compressor leaves

it:

win = wout (2.10)

The compressor map is expressed in volumetric flow while the rest of the system

is modeled with mass flow, so we convert the flow using the ideal gas equation and the

conditions at the compressor inlet:

qvol =
winRT

pinMg

(2.11)

where qvol is the volumetric flow, win is the mass flow, R is the ideal gas constant, T is

the temperature at the entrance of the compressor, pin is the pressure upstream, pout

is the pressure downstream, and Mg is the gas molar mass. And the pressure ratio

16

through the compressor is defined:

rp =
pout
pin

(2.12)

The map is valid for normalized conditions of inlet pressure and temperature, so

to be used in different conditions it need be adjusted:

qvol = qvol
T

Tmap

pmap

pin
(2.13a)

rp = rp
T

Tmap
(2.13b)

The approximation of each of the four boundary lines of the compressor map is

made by a second order equation. The upward boundary fu(q), the downward bound-

ary fd(q), the leftward boundary fl(q), and rightward boundary fr(q) are defined:

fi(qvol) = aiq
2
vol + biqvol + ci, ∀i ∈ {u, d, l, r} (2.14)

The parameters ai, bi, and ci for each i are obtained by solving an unconstrained least

squares problem with the compressor map data. The result of the approximation is

shown in Figure 2.9.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Inlet flow rate (m
3
/s)

P
re

s
s
u
re

 r
a
ti
o

f
l
(q)

f
r
(q)

f
u
(q)

f
d
(q)

10450 rpm

9500 rpm

8550 rpm

7600 rpm

Figure 2.9: Compressor map approximation

Given a pressure ratio rp we can find projection of the leftward and rightward

17

boundaries in the flow rate axis is solving the second order equation:

ql,vol =
−bl +

√
b2l − 4al(cl − rp)

2al
(2.15a)

qr,vol =
−br +

√
b2r − 4ar(cr − rp)

2ar
(2.15b)

To measure the distance from the current operating point to the boundaries it

was created four variables:

νu = rp − fu(qvol) (2.16a)

νd = fd(qvol)− rp (2.16b)

νl = ql,vol − qvol (2.16c)

νr = qvol − qr,vol (2.16d)

(2.16e)

The inequalities in Eq. 2.17 ensure that the compressor is operating inside of

the map.

νb ≤ 0, ∀b ∈ {u, d, l, r} (2.17)

We can increase the operation region using a recirculation line. The recirculation

line redirects part of the outlet flow to the inlet. In this way we can increase the inflow

of the compressor to avoid the operation before the surge line. For this we write:

ŵin = win + wsl (2.18a)

wout = ŵout − wsl (2.18b)

where wsl is the flow through the surge control line, ŵin is the new compressor inflow

and ŵout is the new outflow. Look in Figure 2.8 for a better understanding.

If we replace win in the Eq. 2.11 by ŵin, then we can move to the right, parallel

to the abscissa axis in the compressor map, making it possible to leave the infeasible

region.

The whole set of equations of this model is shown in a compact format in Ap-

pendix A.5.

18

2.7: Models Coupling

In this section we will discuss how we can connect all the subsystems to form

the oil production network with the lift-gas injection loop.

The network inputs are the vector lift-gas injection in the wells wgl, the vector

separator pressure p, the vector of exhaustion flare valve flow wfl, and vector of surge

control line flow in the compressor wsc.

wgl = [w1
gl, . . . , w

Nw

gl]T (2.19a)

p = [p1, . . . , pNs]T (2.19b)

wfl = [w1
fl, . . . , w

Nc

fl]T (2.19c)

wsc = [w1
sc, . . . , w

Nc

sc]
T (2.19d)

where:

• Nw is the number of wells in the network,

• Np is the number of pipelines,

• Ns is the number of separators,

• Nc is the number of compressors.

With these parameters the following sets can be defined:

• W = {1, . . . , Nw} is the set of wells in the network,

• P = {1, . . . , Np} is the set of pipelines,

• S = {1, . . . , Ns} is the set of separators,

• C = {1, . . . , Nc} is the set of compressors.

Besides, we have the sets the connects two elements:

• the set SP that have pairs of separators and pipelines that are connected ((p, s) ∈

Sp → p ∈ P, s ∈ S),

• the set CS contains pairs of compressors and separators that are connected

((s, c) ∈ CS → s ∈ S, c ∈ C).

19

Let the subscripts be a reference to the model, being: w a well model, m a

manifold, p a pipeline mode, s a separator model, and c a compressor model. The

superscript is the index for a specific element of a set. Let x be a vector of state

variables of a specific model, f the state derivative function, the vector y be the model

algebraic variables, and g be the algebraic function that defines y. In y there are all

variables that are not states. For instance xww has the well state variables of well w in

the set W. We have the system states:

ẋww = fw(x
w
w, y

w
w) ∀w ∈ W (2.20a)

ẋpp = fp(x
p
p, y

p
p) ∀p ∈ P (2.20b)

and the system algebraic equations:

gw(x
w
w, z

w
w) = 0 w ∈ W (2.21a)

gp(x
p
p, z

p
p) = 0 p ∈ P (2.21b)

gs(y
s
s) = 0 s ∈ S (2.21c)

gc(y
c
c) = 0 c ∈ C (2.21d)

The following equations connect the system free variables with the respective

element variables. The variables and components can be localized using Figure 2.10.

ww
in = ww

gl ∀w ∈ W (2.22a)

psout = ps ∀(s) ∈ S (2.22b)

wc
in = ws

out − wc
fl ∀(c, s) ∈ Cs (2.22c)

wc
sl = wc

sc ∀c ∈ C (2.22d)

where ww
in is the well model flow input, psout is the separator model pressure output, wc

in

is the compressor model flow input, ws
out is the separator model flow output, and wc

sl is

the compressor model anti-surge line flow.

The equation that connects the well with the gas-lift manifold is:

pwin = pgm ∀w ∈ W (2.23)

where pgm is the gas-lift manifold pressure, and pwin is the well input pressure of the well

w.

20

Manifold 1

Manifold 2

Liquids

Output

Gas

Output

Separator 1

Separator 2

Well 1

Lift-gas injection

Injection

F
la

re

Export

Compressor 1

Gas-Lift

Manifold

Liquids

Output

F
la

re

Compressor 2

Gas

Output

Pipeline &

Riser 1

Pipeline &

Riser 2

Well 4

F
igu

re
2.10:

N
etw

ork
S
ch
em

atic

21

The manifold equations that connect wells and pipelines are:

wp
in =

∑

w∈W

βw,pw
w
out ∀p ∈ P (2.24a)

pwout =
∑

p∈P

βw,pp
p
in ∀w ∈ W (2.24b)

where wp
in is the pipeline input pressure, βw,p is the manifold routing binary variable,

ww
out is the well outlet flow, pwout is the well pressure at the outlet, and ppin is the pipeline

inlet pressure.

The set of equations that connect the pipeline and the separator are:

ws
in = wp

out ∀(s, p) ∈ Sp (2.25a)

psin = ppout ∀(s, p) ∈ Sp (2.25b)

where ws
in is the separator inlet flow, and psin is the separator inlet pressure.

The connection of the separators and the compressors is made by Eq. 2.22c

and by:

pcin = psout ∀(c, s) ∈ Cs (2.26a)

pcout = pexp ∀c ∈ C (2.26b)

where pcin is the compressor inlet pressure, psout is the separator outlet pressure, pcout is

the compressor outlet pressure, and pexp is the exportation line pressure.

The exportation line equations are given by:

wg
exp =

∑

c∈C

wc
out − wgm (2.27a)

wo
exp =

∑

s∈S

ws,o
o,out (2.27b)

ww
exp =

∑

s∈S

ws,w
w,out (2.27c)

where wg
exp is the amount of gas that is exported, wc

out is the compressor outlet flow,

wgm is the flow to the gas-lift manifold, wo
exp is the amount of oil that is exported, ws,o

o,out

is the oil flow through the separator oil outlet, ww
exp is the exported water, and ws,w

w,out is

the water flow through the separator water outlet.

22

The gas-lift manifold equations are:

pgm = pexp (2.28a)

wgm =
∑

w∈W

ww
gl (2.28b)

The whole set of equations is in Appendix A.6.

23

Chapter3: Modelica and JModelica.org

In this chapter it is presented the tools used to model the system and solve the

optimization problem.

First the Modelica language is presented, commenting its uses and applications.

After, it is given a brief explanation about the Modelica extension named Optimica.

And at last it is discussed JModelica.org, a toolbox that implements a Modelica and

Optimica compiler and gathers several important tools for solving optimal problems.

3.1: Modelica

Modelica is a non-proprietary object-oriented language developed to model dy-

namic behavior of technical systems in a simple way. The models are described using

differential, algebraic, and discrete equations. Models can also be composed by other

models in a hierarchical structure.

Unlike other languages, as MATLAB or C++, Modelica has a syntax very close

to the mathematical formulation. The focus of this language is to spare the user from

programming repetitive routines and leaving him time to focus on the development of

the model itself.

Modelica is a textual language, however there are several environments that pro-

vide a graphical user interface. Some implementations are free and others commercial.

Free environments are: OpenModelica (Linköping University) and JModelica.org (Lund

University). Commercial environments are: CATIA Systems (Dassault Systemes), Dy-

mola (Dynasim), MapleSim (MapleSoft), MathModelica (Wolfram Research), and oth-

ers.

The language has academic and industrial applications in many areas e.g.: ve-

hicle dynamics, hydraulics, combustion, air conditioning, electrical and electronic sys-

tems, and control. Industrial partners are essentially automotive companies such as

Audi, BMW, Daimler, Ford, Toyota, and VolksWagen. Conferences on this language

have been happening almost every year since 2000 in Europe and North America,

with more than 600 papers published in these conferences.

Some examples of the usage of the language can be found in Appendix B.

24

3.2: Optimica

Modelica does not support natively formulations of optimization problems, since

it was developed for simulation purposes only. Some of the main elements for op-

timization are not present, as the objective function, constraints, or the optimization

horizon.

The objective of Optimica [4] is to offer the user a way to express optimization

problems using Modelica models. Optimica is a Modelica extension designed to permit

a high-level specification of dynamic optimization problems based on Modelica models.

It was first defined in [20].

Dynamic optimization problem presents three levels of information. In the first

level the canonical description of the optimization problem. This contains the cost func-

tion, free variables and parameters, the optimization interval, and the constraints. In

the second level it is specified the transcription method for discretization of the problem

from the continuous time to a discrete time mesh. The third level is the algorithm level,

where the tolerances and algorithm tuning parameters are specified.

The Optimica fits in the first level, giving an easy way to represent such kind of

information. The remaining levels are usually dealt by the Optimica implementation,

because this task is critical and very error prone. Although, the implementation gives

you options to define the way it is done.

Optimica introduces three main features in Modelica standard:

• Optimization class, a new class of objects can be instantiated. It represents the

optimization problem. Necessarily it needs an objective function and optimization

variables. It is important to note that the prediction horizon can be an optimization

variable.

• A constraint section inside of optimization elements. In this section we can de-

clare equality and inequality variable constraints.

• Access variables in time. With the Modelica standard we can not access variables

in a specific time. With Optimica we are able to make constraints like: x(tf) = 0

(variable x at the final time tf must be equal to 0) or y(5) ≤ 1 (variable y at time 5

must be less than 1)

25

3.3: JModelica.org

JModelica.org [4, 5, 3] is an open-source Modelica-based platform for optimiza-

tion and simulation of dynamic systems. It aims to be a viable and stable platform for

industrial applications, at the same time that it has flexibility for the academia develop

new algorithms and studies.

The JModelica environment consists of a collection of software modules, includ-

ing compilers for Modelica and Optimica, a code generator for C, a run-time library in

C, a simultaneous optimization algorithm, and a library for integration with the scripting

language Python. Also internally it connects with three other very used tools: Sundials,

CasADi and IPOPT.

Sundials [15] is a package of ODE and DAE solvers that was developed to be

a robust time integrator and nonlinear solver. The most used solver is CVODE an

ODE solver with the ability to solve some special types of DAE that can automatically

calculate sensibilities.

CasADi [6] is s symbolic framework for automatic differentiation and numeric

optimization. It applies both symbolic and numeric differentiation in low-level for quick

and efficient calculations. It has an important use for ODE and DAE systems where

the solvers need the system Jacobian for simulation and sensibility calculation.

IPOPT [36] is a package for large-scale nonlinear optimization. It is based on

the Interior-Point Method. Being more specific, it is a primal-dual interior-point algo-

rithm with a filter line-search method. Although, we can simplify this by saying that is

an algorithm that can robustly find local minima for non-convex problems and global

minima for convex problems [36]. It also has an automatic problem scaling function,

some heuristics for speeding up convergence, and some techniques to increase the

robustness.

Together, these software form a complete tool for formulating and solving dy-

namic optimization problems based on Modelica models. The data flow of the JModel-

ica.org is illustrated in Figure 3.1. It is typical that the solution of dynamic optimization

problems require multiple iterations, where the cost function, the constraints, the tran-

scription method, and even the model are refined in order to obtain satisfactory results.

The result then typically needs to be analyzed and the optimization formulation param-

eters adjusted. The use of high-level description languages then relieves the user of

the costly and error-prone task of encoding the model and optimization formulations

26

in less suitable languages. In effect, the focus of the design process is shifted from

encoding of the problem into formulation of the problem, which translates into more

efficient design processes.

Modelica

Code

JModelica.org

Optimica

Code

Python

Code

Code

Compiler

Python

Interface

ODE

Solver

Automatic

Differ.

Tool

Nonlinear

Solver

Figure 3.1: Network Schematic

27

Chapter4: Nonlinear Model Predictive Control

In this chapter we present a method to discretize the continuous model proposed

in Chapter 2, afterward it is shown several optimization problems that uses the network

model.

4.1: Problem Discretization

This section was based on [7], it starts with a recapitulation of techniques for

solving ODEs, after, the collocation method is presented followed by an example of

use, and at last it is shown how to formulate optimization problems using the collocation

method.

4.1.1: ODE Solvers

The representation made in Chapter 2 uses DAEs to describe the system, there-

fore to obtain the system answer over time a Initial Value Problem (IVP) need to be

solved. This means that we have an initial condition and DAEs, by integrating the

system a system time-dependent solution is obtained.

Let Eq. 4.1a define the system in the time interval t ∈ [0, T], the analytical

solution of this ODE is given by 4.1b.

ẋ = f(x, t) (4.1a)

x(t) = x(0) +

∫ t

0

f(x, t) dt (4.1b)

where x is a vector of states, f(·) is nonlinear time variant function. Due to the size and

the complexity of the systems such analytical integral is usually very dispendious to

find, becoming impractical to use. To overcome this problem numerical approximation

are used.

Numerical methods approximates the continuous time dynamic system by a dis-

crete time dynamic system. They divide the time interval [0, T] into sub-intervals [ti−1, ti]

with i ∈ [1, . . . , N], assuming a stepsize hi for each i interval. Being ti = ti−1 + hi, the

states approximation zi ≈ x(ti), where x(ti) is the exact solution Eq. 4.1b in the time ti.

28

In the interval endpoints, the current and the subsequent states approximation must be

equal to maintain the continuity. Figure 4.1 shows a comparison between the analytical

solution and a numerical approximation using the Euler method and how the time grid

is created. The system is a simple linear system ẋ = −x
2
, with x(0) = 1. The analytical

solution (blue line) is x(t) = e−
t
2 .

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

k

V
al

ue

x(t)
s

k

Figure 4.1: Example using Euler Method, h = 1 and N=6

Numerical methods can be categorized in two big groups: explicit or implicit

methods.

The explicit methods uses the information of the current states and it derivative

to find the next state. It is easier to implement and faster to compute, however a

bad tuning can lead to instabilities in the solver. A very common explicit method is the

Euler method (Eq. 4.2), it uses only the prior state and it derivative to find the next step.

Figure 4.1 shows an application of this method for a linear system, where hi = 1 ∀i.

zi = zi−1 + hif(zi−1, ti−1) (4.2)

A more complex method, but widely used is the explicit fourth order Runge-

Kutta (ERK) method. The ERK uses not only one evaluation per time interval but it

combines the derivative of four points inside of the time interval to obtain the next state

approximation, as Eq. 4.3 shows. This method have a higher accuracy compared

to the Euler method. But still, as explicit method it may have some stability issues

29

depending on the system convergence rate.

zi = zi−1 +
1

6
h(k1 + 2k2 + 2k3 + k4) (4.3a)

k1 = f(ti−1, zi−1) (4.3b)

k2 = f(ti−1 +
1

2
h, zi−1 +

h

2
k1) (4.3c)

k3 = f(ti−1 +
1

2
h, zi−1 +

h

2
k2) (4.3d)

k4 = f(ti−1 + h, zi−1 + hk3) (4.3e)

where k1 is the derivative at the start of the interval. k2 is the derivative at the middle of

the interval using the state calculated using k1. k3 is the derivative at the middle of the

interval, again, but using k2. k4 is the derivative at the end of the interval, calculated

using k3. It is clearly notable that dependencies are progressive, k2 depends on k1, but

not the other way around.

The implicit methods use not only the current state but the next state and it

derivative to solve the DAEs. It has a greater improvement in the stability, however it is

necessary to solve an equation to find the next state at each time interval. Among the

implicit methods the most commons are backward Euler method, implicit Runge-Kutta

(IRK), and collocation method.

The backward Euler allows us to clearly see that the state calculation is not

straight forward and a equation need to be solved, usually using some iterative algo-

rithm. Eq. 4.4 shows the Backward Euler method, to calculate the next state it uses the

current state and the derivative of the next state. This dependency of the next state on

it derivative makes necessary the use of a iterative solver. Usually a Newton-Raphson

method is used, but for more complex systems a nonlinear solvers is necessary.

zi = zi−1 + hif(zi, ti) (4.4)

In the same way that explicit Runge-Kutta enhances the accuracy of the forward

Euler, the implicit Runge-Kutta (IRK) makes the backward Euler method more precise.

Different from the ERK, the IRK have a crossed relation in calculation of k values, for

instance the value of k1 is dependent of k4. This cross dependence makes necessary

to solve equations.

The collocation method can be formulated as a IRK, it has some properties that

makes it interesting for dynamic optimization. This topic will be cover in the following

30

subsection.

4.1.2: Collocation Method

The Collocation method is a special case of IRK where the interval are approxi-

mated by a n-th order polynomial.

The time is divided in N intervals, each i ∈ [1, . . . , N] intervals have a timestep

hi. For every timestep a polynomial of K +1 order approximates the state. We denom-

inate this polynomial by zK(t), it can be represented in several ways i.e. power series,

Newton divided difference, or B-splines. However to develop the collocation method it

is preferred the Lagrangian interpolation polynomials, the reason is that this class of

polynomial have stability properties, null error for some kind of problems and the formu-

lation is easier because polynomial coefficients have the same bounds as the states,

which means that a state constraint can be applied to the approximation coefficients

directly.

The approximation with K+1 interpolation points in the sub-interval i is defined:

t = ti−1 + hiτ (4.5a)

zK(t) =

K∑

j=0

ℓj(τ)zij (4.5b)

where:

t ∈ [ti−1, ti], (4.6a)

τ ∈ [0, 1] (4.6b)

ℓj(τ) =
K∏

k=0, 6=j

(τ − τk)

(τj − τk)
(4.6c)

with τ0 = 0, τj < τj+1, j = 0, . . . , K − 1. In which the variables represent:

• τ is the variable that select a specific time in the interval, being 0 the beginning of

the interval and 1 the end.

• τk and τj are collocation points, these values are taken from tables.

• ℓj(·) is the Lagrangian interpolation base.

• zij is the state value ate the collocation point j in the interval j, this is the free

variable that should be adjusted.

31

Differentiating Eq. 4.5a:

dt = hi dτ (4.7)

Taking the the derivative of the Eq. 4.5b we have

dzK(t)

dτ
=

K∑

j=0

dℓj(τ)

dτ
zij (4.8)

In the collocation points tik = ti−1 + hiτk, it is desired that the model and the

polynomial approximation have the same derivative, so we state:

dzK(tik)

dt
= f(zK(tik), tik), k = 1, . . . , K (4.9)

Using the derivative in Eq. 4.7, the derivative in Eq. 4.9, and the state derivative

define in Eq. 4.8 we have:

K∑

j=0

zij
dℓj(τk)

dτ
= hif(zik, tik), k = 1, . . . , K (4.10)

This is the definition for a single sub-interval i. In the case that we have N > 1,

we need to ensure the continuity of the system stating:

z1,0 = z0 (4.11a)

zi+1,0 =

K∑

j=0

ℓj(1)zij, i = 1, . . . , N − 1 (4.11b)

zf =
K∑

j=0

ℓj(1)zNj (4.11c)

where z1,0 is the first state value at the begin of the first sub-interval, zi+1,0 is the value

of the state at the begin of the interval i, and zf is the value of the state at the end of

the simulation period.

Summarizing, this method creates a time mesh, each time interval is approx-

imated by a polynomial of K + 1 order represented in the Langrangrian base. The

polynomials are differentiated and forced to be equal to the system derivative. The

value of the state at the beginning of the sub-interval is equal to the value at the end of

the prior sub-interval. To clarify the understanding, in the next subsection an example

will be explained.

32

4.1.3: Collocation Method Example

For this example, we define the system:

dz

dt
= z2 − 2z + 1, z(0) = −3 (4.12)

with t ∈ [0, 1]. This system has an analytical solution given by z(t) = (4t− 3)/(4t + 1).

However we are going to calculate the numerical approximation using the collocation

method in the Radau collocation points with K = 3 the collocation points are τ0 = 0,

τ1 = 0.155051, τ2 = 0.644949, and τ3 = 1.

Using the Eq. 4.10 with N = 1 elements, and h = 1/N we have

3∑

j=0

zij
dℓj(τk)

dτ
= h(z2ij − 2zik), k = 1, . . . , 3, i = 1 (4.13)

Developing the Lagrangian base described in the Eq. 4.6c and taking it derivative we

find:

dℓ0(τk)

dτ
= −30τ 2k + 36τk − 9 (4.14a)

dℓ1(τk)

dτ
= 46.7423τ 2k − 51.2392τk − 10.0488 (4.14b)

dℓ2(τk)

dτ
= −23.7423τ 2k + 20.5925τk − 1.38214 (4.14c)

dℓ3(τk)

dτ
= 10τ 2k −

16

3
τk +

1

3
(4.14d)

(4.14e)

Substituting Eq. 4.14 in Eq. 4.13 we find:

z0(−30τ 2k + 36τk − 9) + z1(46.7423τ
2
k − 51.2392τk + 10.0488)

z2(−23.7423τ 2k + 20.5925τk − 1.38214) + z3

(
10τ 2k −

16

3
τk +

1

3

)

= (z2k − 2zk + 1), k = 1, . . . , 3

(4.15)

Solving this equations system we have z1 = −1.65701, z2 = 0.032053, z3 =

0.207272 with z0 = −3. Figure 4.2 compares the solution using the collocation method

and the analytical solution. To increase the fidelity of the approximation we could in-

crease the number of time discretizations N or the number of collocation point K.

33

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

τ

z
(τ

)

Analytical Solution

Collocation (N=1, K=3)

Collocation Points

Figure 4.2: Example analytical and approximation solution

4.1.4: NLP Optimization Formulation

Assuming a continuous time dynamic optimization problem in the format:

min ψ(t, x(t), y(t), u(t)) (4.16a)

s.t.: ẋ = f(t, x(t), y(t), u(t)) (4.16b)

g(t, x(t), z(t), u(t)) = 0 (4.16c)

xL ≤ x(t) ≤ xU (4.16d)

yL ≤ y(t) ≤ yU (4.16e)

uL ≤ u(t) ≤ uU (4.16f)

t0 ≤ t ≤ tf (4.16g)

where:

• ψ is objective function, usually a time integral.

• x(t), z(t), and u(t) are states, algebraic variables, and controls, respectively.

• f(·) and g(·) are states function and algebraic variables function, respectively.

• The states boundaries are xL and xU .

• The algebraic variables boundaries are xL and xU .

34

• The controls boundaries are xL and xU .

The state variables can be discretized using the collocation method show in

Subsection 4.1.2, but the control profiles and the algebraic variables can also be repre-

sented using the Lagrangian interpolation polynomials. Being u(t) the control profiles

and the algebraic variables y(t). Using the Lagrangian base inside of the i sub-interval

they are defined as:

u(t) =

K∑

j=1

ℓ̄j(τ)uij (4.17a)

y(t) =
K∑

j=1

ℓ̄j(τ)yij (4.17b)

(4.17c)

where:

ℓ̄j(τ) =
K∏

k=1, 6=j

(τ − τk)

(τj − τk)
(4.18)

In the case that the objective function is a time integral, in the format:

ψ(x(t), y(t), u(t)) =

∫ tf

t0

h(x(t), y(t), u(t)) dt (4.19)

we can transform this in a state φ(t):

φ̇ = h(x(t), y(t), u(t)) (4.20)

And replace the objective function by minφ(tf), and use the collocation method to

approximate φ(t) like the other state variables.

35

Using this approximation we can transform the optimization problem in Eq. 4.16

in to the finite element problem:

min φ(tf) (4.21a)

s.t.:

K∑

j=0

zij
dℓj(τk)

dτ
− hif(t, zik, yik, uik, tik) = 0, k ∈ {1, . . . , K}, i ∈ {1, . . . , N}

(4.21b)

g(t, zik, yik, uik, tik) = 0, k ∈ {1, . . . , K}, i ∈ {1, . . . , N} (4.21c)

zi+1,0 =

K∑

j=0

ℓj(1)zij, i ∈ {1, . . . , N − 1} (4.21d)

zf =

K∑

j=0

ℓj(1)zNj (4.21e)

xL ≤ zik ≤ xU (4.21f)

yL ≤ yik ≤ yU (4.21g)

uL ≤ uik ≤ uU (4.21h)

z1,0 = z0 (4.21i)

Note that the variable bounds are same of the continuous time formulation, they are

applied straight to the collocation points, this ease of application of constraints are

one of the reasons that the Lagrangian interpolation polynomial is chosen. However,

such constraints can only me ensured at the collocation points and not in the interval

between them.

Assuming that z approximates the oil network states, y is the algebraic variable,

and f(·) and g(·) their functions as defined in Subsection 2.7 we can optimize the sys-

tem over a objective function. The objective function will be define in the next section.

An important remark about optimizing using Modelica and Optimica is that the

optimization problem that we need to state should follow the format in Eq. 4.16 (con-

tinuous time) and the computational environment, in this case JModelica.org, will auto-

matically discretize the problem to the problem in Eq.4.21.

36

4.2: Objective Function

4.2.1: Tracking Problem

The objective of this formulation is to bring the system from the initial conditions

to given reference.

Defined a reference for some of the states, algebraic variables, or inputs, we can

formulate a minimization problem to obtain the optimal transient using a quadratic ob-

jective function. This objective function integrates the weighted quadratic error between

the states, algebraic variables, and controls, and their references.

minψ =

∫ tf

t0

(z − zref)
TQz(z − zref) + (y − yref)

TQy(y − yref)

+ (u− uref)
TRu(u− uref) dt

(4.22)

where Qz is the states weighting factor, Qy is the algebraic variables weighting factor,

and Ru is the inputs weighting factor.

This formulation is very common and very flexible allowing the control of different

variables of the system. Such objective function could be used to make field production

follow a production planing, make the wells to follow production references, or make the

system try at most to follow input reference.

4.2.2: Production Maximization Formulation

In this formulation, the developed dynamic model is used to maximize the oil

production. This formulation aims to replace the traditional static optimization. Even if

it calculation is more costly, it can be more effective for treating events that occurs in a

minute or hourly timescale, i.e. temporary constraints.

The objective function will maximize the integral of the profit function, which is

composed by the gains with oil and gas exportation, and the cost of water treatment,

flaring, and gas-lift injection.

maxψ =

∫ tf

t0

kgq
g
exp + koq

o
exp + kwq

w
exp + kflwfl + kglwgm dt (4.23)

where kg is the gas profit, ko is the oil production profit, kw is the water treatment cost,

kfl is the flaring cost, kgl the gas-lift injection cost.

37

4.3: Test Case: Compressor Scheduled Maintenance

To show the potential of the developed model, a test case that goes beyond the

system normal operational condition is generated.

The production maximization can be achieved by static optimization, however it

may be inefficient for the case that the system is no constant for all the optimization

period.

For test purpose, it is suggested that a scheduled compressor maintenance will

change the operational condition of the compressor map. It makes the compressor

unable to handle the flow at the static production maximum.

To emulate the reduction of the compressor flow capacity the equations that

approximate the left and right border of the compressor map that in Section 2.6 were

defined as

ql,vol =
−bl +

√
b2l − 4al(cl − rp)

2al
(4.24a)

qr,vol =
−br +

√
b2r − 4ar(cr − rp)

2ar
(4.24b)

are redefined as:

ql,vol = fc(t)
−bl +

√
b2l − 4al(cl − rp)

2al
(4.25a)

qr,vol = fc(t)
−br +

√
b2r − 4ar(cr − rp)

2ar
(4.25b)

with:

fc(t) = 1− kcmθ(t− tt) (4.26)

where kcm is a scaling factor that says how much the compressor capability were re-

duced and θ(t− tt) is a Heaviside function (also known as unit step function), and tt is

the event triggering time.

The θ(t − tt) is a discontinuous function and it may lead to problems when opti-

mizing the system because the automatic differentiation tool CasADi can not handle it,

thus it is approximated by sigmoid function:

θ(t− tt) ≈
1

1 + e−2(t−tt)
(4.27)

The Figure 4.3 shows the approximation in a time range of 20 seconds, with the

38

trigger at 10 seconds.

0 5 10 15 20

0

0.25

0.5

0.75

1

Time (s)

F
un

ct
io

n
V

al
ue

Step function

Approximation function

Figure 4.3: Step function approximation

The approximation takes about five seconds to change from zero to one. If we

consider that the system dynamics are about thousand seconds, then we can say that

this approximation is good enough.

4.3.1: Solving Approaches

Using the formulations defined in Section 4.2 three different approaches are

suggested, two of them requires a statical optimal solution for production maximization

problem. As the static optimization is out of the scope of this work, an heuristic is

proposed.

The heuristic used to find the statical optimal solution uses the the production

maximization formulation defined in Subsection 4.2.2 to obtain a control profile. After

at transitory moment, the control remains steady for a long period, this steady value is

assumed to be the static optimal control. For example, in the Figure 5.4 the optimal

control can be obtained at 15000 seconds.

The three approaches are:

39

1. Naive Approach: using the tracking formulation (Eq. 4.22) makes the system

to follow the static optimal control at any cost, the intention of this approach is

to simulate the conditions in which no dynamic optimization is used. The injec-

tion rates reference and separator pressures reference are defined by the static

production maximization solution.

2. Optimal Transient: Obtained solving the production maximization problem in Eq.

4.23. This formulation changes the values of gas-lift injection, separator pressure,

anti-surge flow rate, and flare flow rate to obtain the best transient. A high cost

on flaring is used to make the algorithm to avoid flaring conditions.

3. Hybrid Approach: use the tracking formulation, as the naive approach, although

with a much higher weighting at the flare penalization to avoid situations with

flaring.

The naive approach represents the simple application of the static optimiza-

tion result. The parametrization of Eq. 4.22 have Qz = Qy = 0 and the quadratic

terms related surge control (wsl) are nulls (Ru,wsl
= 0). As the flaring amount (wfl) is

a system input, if we do not define how it should be assigned the optimal solution

may have a unnecessary flaring, so a weighting must be given for the flaring. How-

ever the objective of this formulation is tracking not flaring reduction, the terms related

to tracking should be much larger than those related to the flaring ((wfl)
TRu,wfl

wfl ≪

(wgl − wgl,ref)
TRu,wgl

(wgl − wgl,ref) + (ps − psref)
TRu,ps(p

s − psref)).

Meanwhile, the Hybrid Approach tries to reach the static optimal at same time

that it void to use the flare. Compared to the first approach in which the objective is to

follow the optimal static control settings using as less flaring as possible, this approach

balance tracking with flaring reduction. The reason is that the using of flaring can be

really costly and might be more important to avoid it than to maximize the production.

To make this approach an higher value for kfl is adopted, ensuring that the term related

to the flare have about the same magnitude than tracking term ((wfl)
TRu,wfl

wfl ≈ (wgl −

wgl,ref)
TRu,wgl

(wgl − wgl,ref) + (ps − psref)
TRu,ps(p

s − psref))

40

Chapter5: Results

In this chapter, the results of the optimizations using the model and the formu-

lations presented in this work are shown. First, an oil production network instance is

formulated. Afterwards, it is presented the computation setup used to run the opti-

mization problems. The results of the tracking problem, maximization problem, and the

compressor problem approaches are analysed qualitatively. At last, the computational

results are reviewed.

5.1: Instance definition

The synthetic oil network was create. It has 8 wells, grouped in two clusters,

each group is connected to one of the two subsea manifold, those are connected to

two pipeline-risers that brings to production to the surface. At the processing unit, two

separators separates the income flow, at the gas outlet of each separator a flare valve

is preceded by a compressor. Compressors outflow are divided in two, part goes to

the exportation line and part goes to the gas-lift manifold and is reinjected in the wells.

The Figure 5.1 illustrates the network.

The parametrization of the wells are displayed in Table 5.1. Besides those pa-

rameters, all wells have the same value for reservoir pressure (25 × 106 Pa) and the

valve coefficients: gas-lift choke (1.6×104), injection valve (1.6×104), production choke

(1.4× 103).

Table 5.1: Wells parameters

Well Annular Vol. Tubing. vol Tubing inj. point Watercut GOR Qmax

m3 m3 m kg/kg
kg/kg

m3

/s
1 30 18 400 0.35 0.08 0.025
2 30 18 400 0.80 0.12 0.050
3 25 15 800 0.30 0.10 0.035
4 30 18 600 0.50 0.09 0.010
5 25 15 500 0.25 0.09 0.020
6 30 18 400 0.35 0.08 0.025
7 30 18 400 0.80 0.12 0.050
8 25 15 800 0.30 0.10 0.035

The pipelines have 13 km of horizontal length and 600 m of vertical length, both

41

parts with 20 cm of diameter, the roughness is 2.8 × 10−5 m The temperature of fluid

inside of the pipeline is assumed to be at 330 K.

The separator has 2.62 m of the horizontal length and 1.46 m of diameter. The

water droplets have an average diameter of 500 µm. The water-mixture level is fixed at

0.73 m and the oil level is fixed at 1.02 m.

The gas injection must be at least 1 kg/s and not higher than 3 kg/s in each

well. At the separators, the minimum pressure is 50 × 105 Pa and maximum pressure

is 60× 105 Pa.

The compressor map before the scheduled maintenance have the boundaries

as in Figure 5.2, after a reduction of 35% it turns in the map shown in Figure 5.3.

42

Gas-lift

Manifold
Well 1 Well 2

Manifold

1

Separator

1

Flare 1 Flare 2

Manifold

2

Separator

2

Pipeline-

Riser 1

Pipeline-

Riser 2

Compressor

1

Compressor

2

Gas

Export

Oil

Export

Water

Export

F
igu

re
5.1:

N
etw

ork
in
stan

ce
sch

em
atic

43

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1.5

2

2.5

3

3.5

4

4.5

Inlet flow rate (m3/s)

P
re

ss
ur

e
ra

tio

f
l
 (q)

f
r
 (q)

f
u
 (q)

f
d
 (q)

Figure 5.2: Compressor map before maintenance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1.5

2

2.5

3

3.5

4

4.5

Inlet flow rate (m3/s)

P
re

ss
ur

e
ra

tio

f
l
 (q)

f
r
 (q)

f
u
 (q)

f
d
 (q)

Figure 5.3: Compressor map after maintenance

44

5.2: Computational Setup

To solve this problems it was used an Asus notebook model N76V, equipped

with a processor Intel i7-3610QM @ 2.30 GHz, 8GB of RAM, and a SAMSUNG 830

solid state disk.

This machine is running Windows 7 64 bits. The JModelica.org is version 1.9,

which comes with Python 2.8, Sundials package version 2.4, and CasaADi 1.6. The

IPOPT general tolerance was set to 10−4, the maximum number of iterations was 100,

and the MUMPS parameter “mumps mem percent” was 50...

5.3: Maximization Problem

The parameters of Table 5.2 were used to test the objective function defined

in Section 4.2.2. The system at the initial condition have already reached the steady

state after the application of the control lower bounds: the gas injections of 1kg/s and

separators pressure of 50× 105. The system initial guess assumes a gas injections of

1.5kg/s in all wells and pressure of 50× 105 in both separators.

Table 5.2: Flow values

Coefficient Value
kg 1
ko 10
kw -1
kfl -1000
kgl -1

Figure 5.4 shows the control setup for the production maximization. The algo-

rithm gives an initial blow at the beginning to rise the mass states, since the system

was operating in the lower condition. After about 4000 seconds the system settle and

remains constant until the last 5000 seconds. At the end of the simulation, the algo-

rithm gives a final blow in the compressor and turns all injections to the minimum, this

happens because it increases the derivative of the objective function, as it can be seen

in Figure 5.5. To avoid this kind of behavior, some techniques can be used e.g. input

blocking. The flare values obtained by the solver are so small that can be considered

zero.

45

0 5000 10000 15000 20000 25000 30000
Time (s)

1.0

1.5

2.0

2.5

3.0

3.5 Gas Inj W1
Gas Inj W2
Gas Inj W3
Gas Inj W4

0 5000 10000 15000 20000 25000 30000
Time (s)

1.0

1.5

2.0

2.5

3.0

3.5
Gas Inj W5
Gas Inj W6
Gas Inj W7
Gas Inj W8

0 5000 10000 15000 20000 25000 30000
Time (s)

5084000

5086000

5088000

5090000

5092000

5094000

5096000

Sep. Pres. 1
Sep. Pres. 2

Figure 5.4: Maximization optimal controls

0 5000 10000 15000 20000 25000
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0
Flare 1
Flare 2

0 5000 10000 15000 20000 25000 30000
Time (s)

245

250

255

260

265

270

275

280

285

|d cost/dt|

Figure 5.5: Maximization flare and derivative of cost function

46

5.4: Tracking Problem

The tracking problem was solved using the formulation in Eq. 4.22 with the

parameters:

Qz,wout
=




1 0 0

0 1 0

0 0 0.001


 (5.1a)

Ru,wgl
= 0.1 (5.1b)

Ru,wfl
= 1000 (5.1c)

The system reference to be tracked are the the gas production of 5 kg/s and the oil

production of 25 kg/s. All the other parameters were set to zero.

The system initial conditions was the inputs lower bounds: gas injections at

1 kg/s and separator pressure at 50 × 105 Pa. The algorithm first guess is obtained

using injections at 1.5 kg/s and separators pressure at 50× 105 Pa.

Figure 5.6 shows that after 50000 seconds the controls settle and remain in con-

stant until the end of the prediction window, were the the same behavior that happens

in the maximization happens in this formulation.

Figure 5.7 shows that the flaring is null. The gas, oil, and water exportation are

kept constant for the all the prediction window after a transitory in the start.

47

0 5000 10000 15000 20000 25000 30000
Time (s)

1.0

1.5

2.0

2.5

3.0

3.5 Gas Inj W1
Gas Inj W2
Gas Inj W3
Gas Inj W4

0 5000 10000 15000 20000 25000 30000
Time (s)

0.5

1.0

1.5

2.0

2.5

3.0

Gas Inj W5
Gas Inj W6
Gas Inj W7
Gas Inj W8

0 5000 10000 15000 20000 25000 30000
Time (s)

5200000

5400000

5600000

5800000

6000000
Sep. Pres. 1
Sep. Pres. 2

Figure 5.6: Tracking optimal control profiles

0 5000 10000 15000 20000 25000 30000
Time (s)

0.0

0.2

0.4

0.6

0.8

Flare 1
Flare 2

0 5000 10000 15000 20000 25000 30000
Time (s)

0

5

10

15

20

25

30

35

Gas Exp
Oil Exp
Water Exp

0 5000 10000 15000 20000 25000 30000
Time (s)

0

5

10

15

20

25

|d cost/dt|

Figure 5.7: Tracking flare, flow exportation, and derivative of cost function

48

5.5: Compressor Maintenance Results

In this section we show the results of the methods discussed in Section 4.3. In

all the cases the system is operating at the static maximum point, which was obtained

using the heuristic explained in Subsection 4.3.1. First, the naive approach results are

shown and discussed, followed by the transient optimization, and at last, the hybrid

approach is reviewed.

The initial guess for the algorithm are 1.5 kg/s of gas injection for all wells and

a pressure of 50 × 105Pa in both separators. The plots in this section were chopped

in the last 5000 seconds since the “final blow” effect that happens at the end of pre-

diction window, as seen in the last sections, are not interesting for the analysis of the

approaches.

5.5.1: Naive Approach

As explained in Section 4.3, this approach requires a steady state optimal solu-

tion and an heuristic is used to obtain it. The control assumed to be optimal at steady

state are those at 15000 seconds in the Figure 5.4. For the tracking problem the pa-

rameters are Ru,wgl
= 10, Ru,ps = 10−11, and Ru,wFl

= 0.1. The reason for such small

value for the separator pressure tracking is that the pressure is around 5.5 MPa, while

the mass flow is in the range from 1 to 3 kg/s.

In Figure 5.8, we can see that the inputs are almost all constant during the first

period, showing that the system manage to keep on the reference. A small change in

the pressure happens as the system foresee the changes.

After the compressor maintenance, the system is not able to keep the injections

reference anymore because there is no gas to feed the wells freely. The solver tries

to distribute the available gas, so the injections get as closer as possible to their refer-

ences. The separator pressure could not remain at the reference since the compressor

map changes makes that the static optimal operation point become unfeasible. Figure

5.9, shows that as a reflex of the restraint of the compressor flow capability, the flare

needed to be used.

49

0 5000 10000 15000 20000 25000
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Gas Inj W1
Gas Inj W2
Gas Inj W3
Gas Inj W4

0 5000 10000 15000 20000 25000
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Gas Inj W5
Gas Inj W6
Gas Inj W7
Gas Inj W8

0 5000 10000 15000 20000 25000
Time (s)

5050000

5100000

5150000

5200000

5250000

5300000

5350000

5400000

5450000

Sep. Pres. 1
Sep. Pres. 2

Figure 5.8: Naive approach control settings

0 5000 10000 15000 20000 25000
Time (s)

0.0

0.2

0.4

0.6

0.8

Flare 1
Flare 2

0 5000 10000 15000 20000 25000
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

|d cost/dt|

Figure 5.9: Naive approach flare and cost derivative

50

5.5.2: Transient Optimization

For the transient optimization approach, the coefficients needed in the formula-

tion Eq. 4.23 are given in Table 5.2.

Figure 5.10 shows the control profiles for the maximization problem. We can see

that the algorithm foresee the reduction in the compression capability and reduces the

flow right before the compressor constraint. As the in the naive approach, the changes

forces to increase the pressure in both separators to keep the feasibility. But differently,

this formulation can completely suppress the flaring during the transition, as shown in

Figure 5.11.

0 5000 10000 15000 20000 25000
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Gas Inj W1
Gas Inj W2
Gas Inj W3
Gas Inj W4

0 5000 10000 15000 20000 25000
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Gas Inj W5
Gas Inj W6
Gas Inj W7
Gas Inj W8

0 5000 10000 15000 20000 25000
Time (s)

5050000

5100000

5150000

5200000

5250000

5300000

5350000

5400000

5450000

Sep. Pres. 1
Sep. Pres. 2

Figure 5.10: Optimal transient control settings

5.5.3: Hybrid Approach

For the hybrid approach, the coefficients of the objective function in Eq. 4.22

were set as Ru,wgl
= 10, Ru,ps = 10−11, and kfl = 10000.

The consequence of this changes, in relation to the naive approach, is a control

action much similar to the production maximization approach. As it can be seen in

Figure 5.12, the algorithm reduces injection foreseeing the compressor changes, as in

51

0 5000 10000 15000 20000 25000
Time (s)

0.0

0.2

0.4

0.6

0.8

Flare 1
Flare 2

0 5000 10000 15000 20000 25000
Time (s)

250

251

252

253

254

255

256

257

258

259

|d cost/dt|

Figure 5.11: Optimal transient flare and cost derivative

the production maximization. However, the separator pressures behaves like the naive

approach having some a movement before the compressor capacity reduction.

As shown in Figure 5.13, this formulation can also completely operate during the

transition without using the flare, which can not be achieved by the simple application

of the static optimal control.

52

0 5000 10000 15000 20000 25000
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Gas Inj W1
Gas Inj W2
Gas Inj W3
Gas Inj W4

0 5000 10000 15000 20000 25000
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Gas Inj W5
Gas Inj W6
Gas Inj W7
Gas Inj W8

0 5000 10000 15000 20000 25000
Time (s)

5050000

5100000

5150000

5200000

5250000

5300000

5350000

5400000

5450000

Sep. Pres. 1
Sep. Pres. 2

Figure 5.12: Hybrid approach control settings

0 5000 10000 15000 20000 25000
Time (s)

0.0

0.2

0.4

0.6

0.8

Flare 1
Flare 2

0 5000 10000 15000 20000 25000
Time (s)

0

1

2

3

4

5

6

7

|d cost/dt|

Figure 5.13: Hybrid approach flare and cost derivative

53

5.6: Computation Analysis

The computational analysis of the methods describe in this section were made

based in 5 items: solving time, number of iterations, number of variables, number of

equality constraints, and number of inequality constraints.

The first part of the Table 5.3 presents the test of the formulations. We can see

that both perform very similarly, even taking an extra iteration the tracking problem have

a faster solving time, when compared to the production maximization. The tracking

formulation have a slightly higher number of variables and equality constraints, while

both have the same number of inequality constraints.

Table 5.3: Formulations and Approaches computational indicators

Method Solving Time Iter. Variables Eq. Constr. Ineq. Constr.
Tracking Problem 21.64 22 63216 60976 1288
Production Max. 22.72 21 62493 60253 1288
Naive Approach 24.05 24 63216 60976 1288
Transient Opt. 24.15 27 62332 60092 1288
Hybrid Approach 21.79 23 63216 60976 1288

The second part of the Table 5.3 have the three approaches for the compressor

problem. Their solving time do not have a big difference, however the hybrid approach

have a faster computing time. While the transient optimization takes more iterations to

solve the problem, each iteration is faster if compared to the naive approach, since they

have about the same solving time. The transient optimization have a greater number

of variables, but this difference may not be the reason for the an increased number of

iterations. The number of equality constraint for all there cases are also very similar.

The author points that the comparison of the computational performance can be

a little bit subjective, since the methods performance have a big dependence on the

algorithm’s first guess and the in the problem formulation, and some times they need

to be tuned to get the results in the reasonable time.

54

Chapter6: Conclusion

In this work, we followed the construction of an dynamic model of network con-

taining models were developed and taken references. This network were composed

by the most common elements: wells, manifolds, pipelines, separators, and compres-

sor. However, due to the simplicity and flexibility of the tool that was used, this network

could be expanded or have your elements replaced to other studies.

An interesting tool was presented in this work, the JModelica.org which imple-

ments compiler for Modelica and Optimica, and gather tools for simulation and opti-

mization. Modelica and Optimica allows to model and create dynamic optimization

problems with easiness.

The optimization of this network was made using sophisticated method for dy-

namic optimization, the collocation method. This is one the preferred methods when a

simulator is not desired. The method was shown, after a quick review of ODE solving

techniques, followed by and explanatory example and demonstration of how it can be

used to formulate nonlinear optimization problems.

An problem was created in order to demonstrate the application of the developed

model, the optimization method, and the computational tools. A situation in which the a

compressor scheduled maintenance reduces compressor capability. For this problem,

three formulations are proposed.

An synthetic oil production network is created to test and compare the methods.

The methods have their performance evaluated quantitatively and qualitatively.

As result, we can see that the simple application of the static optimal solution,

naive approach, may lead to undesirable conditions. The transient optimization and the

hybrid approach were able to operate without creating undesirable flaring conditions.

Both were able to leave an maximum operation point and move to another condition

without using the flare to relive the gas overflow. Due to system dynamic this problem

is not trivial to solve.

Thinking in an application of this work for production maximization, we can have

either a dynamic production maximization approach or an layered approach, in which

a static production maximization and tracking problem that handles the real time prob-

lems. Such layered would have the advantage of allowing more complex problems in

55

the static optimization layer, possibly including an the wells routing problem.

As continuation of this work, some points can be highlighted:

• in the case in which an static optimization problem define a optimal well-pipeline

routing, using the model developed in this work formulate an optimization problem

that finds the best time and order to the rerouting be made.

• Make the Modelica codes for the developed model more user friendly and release

then, so other researchers can use and extend it for new oil-related researches.

• The JModelica.org passes to CasADi all the states and algebraic equations, how-

ever some special type of algebraic equations can be ease simplified. The appli-

cation some algorithm that simplify the model equations reducing the number of

variables and equations could lead to a better computational performance.

56

Bibliography

[1] Ole M. Aamo, G.O. Eikrem, H.B. Siahaan, and Bjarne A. Foss. Observer Design

for Multiphase Flow in Vertical Pipes with Gas Lift - Theory and Experiments.

Modeling, Identification and Control: A Norwegian Research Bulletin, 26(2):65–

80, 2005.

[2] Marco Aurelio Schmitz Aguiar, Thiago Lima Silva, and Eduardo Camponogara. A

Mixed-Integer Convex Formulation for Optimal Operation of Gas-Lifted Oil Fields

with Facility, Routing, and Pressure Constraints. In EngOpt 2012 - International

Conference on Engineering Optimization, pages 1–10, Rio de Janeiro - Brazil,

2012.

[3] J. Åkesson, K.-E. Årzén, M. Gäfvert, T. Bergdahl, and H. Tummescheit. Mod-

eling and optimization with Optimica and JModelica.org – Languages and tools

for solving large-scale dynamic optimization problems. Computers & Chemical

Engineering, 34(11):1737–1749, November 2010.

[4] Johan Åkesson, M. Gäfvert, and T. Tummescheit. JModelica – an Open

Source Platform for Optimization of Modelica Models. 6th Vienna International

Conference on Mathematical Modelling, 2009.

[5] Joel Andersson, J. Åkesson, F Casella, and Moritz Diehl. Integration of CasADi

and JModelica.org. In 8th International Modelica Conference, 2011.

[6] Joel Andersson, Johan Åkesson, and Moritz Diehl. CasADi – A symbolic pack-

age for automatic differentiation and optimal control. In Recent Advances in

Algorithmic Differentiation, volume 87, pages 297–307. Springer Berlin Heidel-

berg, 2012.

[7] L.T. Biegler. Nonlinear Programming: Concepts, Algorithms, and Applications to

Chemical Processes. SIAM e-books. Society for Industrial and Applied Mathe-

matics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), 2010.

[8] Benjamin Julian Tø mte Binder. Production Optimization in a Cluster of Gas-Lift

Wells. Master’s thesis, Norwegian University of Science and Technology, 2012.

57

[9] Andrés Codas and Eduardo Camponogara. Mixed-integer linear optimization

for optimal lift-gas allocation with well-separator routing. European Journal of

Operational Research, 217(1):222–231, February 2012.

[10] Florent Di Meglio, Glenn-Ole Kaasa, and Nicolas Petit. A first principle model

for multiphase slugging flow in vertical risers. In Proceedings of the 48h IEEE

Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese

Control Conference, pages 8244–8251. IEEE, December 2009.

[11] Gisle Eikrem, Ole Aamo, and Bjarne Foss. On Instability in Gas Lift Wells and

Schemes for Stabilization by Automatic Control. SPE Production & Operations,

2008.

[12] Gisle Eikrem, Lars Imsland, and Bjarne Foss. Stabilization of gas-lifted wells

based on state estimation. In IFAC Symposium Adchem, pages 1–6, 2004.

[13] Torbjørn Sønstebø Grong. Modeling of Compressor Characterisics and Active

Surge Control. Master’s thesis, Norwegian University of Science and Technology,

2009.

[14] Vidar Gunnerud and Bjarne Foss. Oil production optimization – A piecewise lin-

ear model, solved with two decomposition strategies. Computers & Chemical

Engineering, 34(11):1803–1812, November 2010.

[15] AC Hindmarsh, PN Brown, and KE Grant. SUNDIALS: Suite of nonlinear and dif-

ferential/algebraic equation solvers. ACM Transactions on Mathematical Software,

31(3):363–396, 2005.

[16] Bin Hu. Characterizing gas-lift instabilities. PhD thesis, Norwegian University of

Science and Technology, 2004.

[17] Bin Hu and Michael Golan. Gas-lift Instability Resulted Production Loss and Its

Remedy by Feedback Control: Dynamical Simulation Results. In Proceedings of

SPE International Improved Oil Recovery Conference in Asia Pacific. Society of

Petroleum Engineers, October 2003.

[18] Lars Imsland. Topics in Nonlinear Control: Outpit Feedback Stabilization and

Control of Positive Systems. PhD thesis, Norwegian University of Science and

Technology, 2002.

58

[19] Esmaeil Jahanshahi and Sigurd Skogestad. Simplified Dynamical Models for Con-

trol of Severe Slugging in Multiphase Risers. In Bittanti Sergio, editor, 8th IFAC

World Congress, pages 1634–1639, August 2011.

[20] Åkesson. Johan. Optimica – An Extension of Modelica Supporting Dynamic Op-

timization. In 6th International Modelica Conference 2008, volume 312, Bielefeld,

Germany, January 2008.

[21] Vassileios D. Kosmidis, John D. Perkins, and Efstratios N. Pistikopoulos. Opti-

mization of Well Oil Rate Allocations in Petroleum Fields. Industrial & Engineering

Chemistry Research, 43(14):3513–3527, July 2004.

[22] Horace Lamb. Hydrodynamics. Cambridge University Press, 1994.

[23] JM Masella, QH Tran, D Ferre, and C Pauchon. Transient simulation of two-phase

flows in pipes. International Journal of Multiphase Flow, 24:739–755, 1998.

[24] Gustavo Moises, Tuerte Rolim, and Jose Formigli. GeDIg: Petrobras Corporate

Program for Digital Integrated Field Management. In Proceedings of Intelligent

Energy Conference and Exhibition, pages 1–7. Society of Petroleum Engineers,

February 2008.

[25] Pierre Perrot. A to Z of Thermodynamics. Oxford University Press, 1998.

[26] PF Pickering, GF Hewitt, MJ Watson, and CP Hale. The prediction of flows in

production risers-truth & myth. IIR Conference, pages 1–16, 2001.

[27] Agustinho Plucenio, C. A. Ganzaroli, and Daniel J. Pagano. Stabilizing gas-lift well

dynamics with free operating point. In 2012 IFAC Workshop on Automatic Control

in Offshore Oil and Gas Production, pages 95–100, 2012.

[28] Agustinho Plucenio and Daniel J. Pagano. Gas-lift optimization and control with

nonlinear MPC. Advanced Control of Chemical Processes, 7(1), 2009.

[29] AF Sayda and JH Taylor. Modeling and Control of Three-Phase Gravilty Separa-

tors in Oil Production Facilities. In American Control Conference ACC ’07, 2007.

[30] Thiago Lima Silva, Andres Codas, and Eduardo Camponogara. A Computational

Analysis of Convex Combination Models for Multidimensional Piecewise-Linear

Approximation in Oil Production Optimization. 2012 IFAC Workshop on Automatic,

pages 292–298, 2012.

59

[31] Marina Stasiak. Tecnica de controle para supressão de golfadas em risers de

produção de petroleo. Master’s thesis, Universidade Federal de Santa Catarina,

2012.

[32] Marina Stasiak, Daniel J. Pagano, and Agustinho Plucenio. A new discrete slug-

flow controller for production pipeline risers. In 2012 IFAC Workshop on Automatic

Control in Offshore Oil and Gas Production, pages 122–127, Trondheim, Norway,

2012.

[33] Y Taitel and D Barnea. Simplified transient simulation of two phase flow using

quasi-equilibrium momentum balances. International Journal of Multiphase Flow,

23(3):493–501, June 1997.

[34] Yehuda Taitel, Ovadia Shoham, and JP Brill. Simplified transient solution

and simulation of two-phase flow in pipelines. Chemical Engineering Science,

44(6):1353–1359, January 1989.

[35] J.V. Vogel. Inflow Performance Relationships for Solution-Gas Drive Wells.

Journal of Petroleum Technology, 20(1), January 1968.

[36] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point

filter line-search algorithm for large-scale nonlinear programming. Mathematical

Programming, 106(1):25–57, April 2005.

[37] MJ Watson. Flow regime transitions and associated phenomena. PhD thesis,

London University, 1999.

60

Appendix A: Dynamic Models

A.1: Well Model

These are the equations of the model described in 2.2.

Mass balances:

ṁga = wgl − wgi (A.1a)

ṁgt = wgr + wgi − wgp (A.1b)

ṁlt = wgl − wgi (A.1c)

Mass flows:

wgi = Civ

√
ρgi max(0, pai − pti) (A.2a)

wp = Cpc

√
ρp max(0, pai − pti) (A.2b)

wgp =
mgt

mt

wp (A.2c)

wlp =
mlt

mt

wp (A.2d)

wop = (1− rwc)wlp (A.2e)

wwp = rwcwlp (A.2f)

wlr = ρlQmax

(
1− (1− C)

(
pbh
pr

)
− C

(
pbh
pr

)2
)

(A.2g)

wgr = rglrwlr (A.2h)

wmax
gl = Cgl

√
ρgl max(0, pgm − pta) (A.2i)

61

Pressures

pai =


 RTa

VaMg
+

g

2Aa


mga (A.3a)

pp =
RTtmgt

MgVt −Mgρ
−1
l mlt

−
gmt

2At
(A.3b)

pti = pp +
gmt

At
(A.3c)

pbh =


1 + rglr +

rglrgMgLw

2RTt


 pti + ρlgLw

1 + rglr −
rglrgMgLw

2RTt

(A.3d)

pta =


 RTa

VaMg
−

g

2Aa


mga (A.3e)

Densities:

ρgi =
Mg

RTa
pai (A.4a)

ρp =
ρlMgppmt

ρlRTtmlt +Mgppmgt
(A.4b)

ρl = rwcρw + (1− rwc)ρo (A.4c)

ρgl =
Mg

RTa
pgm (A.4d)

62

Table A.1: Well model variables

Name Type Explanation
ṁga State Mass of gas in the annulus
ṁgt State Mass of gas in the tubing
ṁlr State Mass of liquid in the tubing
wgi Algebraic Mass flow through the injection valve
wp Algebraic Mass flow through production choke
wgp Algebraic Gas production
wlp Algebraic Liquid production
wop Algebraic Oil production
wwp Algebraic Water production
wlr Algebraic Liquid extracted from reservoir
wgr Algebraic Gas extracted from the reservoir
ρgi Algebraic Gas density upstream of the injection valve
ρp Algebraic Production density upstream of the production choke
pai Algebraic Pressure upstream of the injection valve
pp Algebraic Pressure upstream of the production valve
pti Algebraic Pressure downstream of the injection
pbh Algebraic Pressure at the bottom hole
pai Algebraic Pressure upstream of the injection valve

Table A.2: Well model variables

Name Type Explanation
Civ Tunning Injection valve coefficient
Cpc Tunning Production Choke
rwc Reservoir Reservoir watercut
Qmax Reservoir Reservoir theoretical maximum flow
C Constant Voegel’s constant
pr Reservoir Reservoir pressure
rgor Reservoir Gas-oil ratio
R Constant Ideal gas constant
Ta Well Annulus temperature
g Constant Gravity
Va Well Annulus Volume
Mg Parameter Gas molar mass
Aa Well Annulus section area
Tt Well Tubing temperature
Vt Well Tubing Volume
At Well Tubing section area
rglr Reservoir Gas-liquid ratio
Lw Well Tubing length from reservoir to injection point
ρl Parameter Liquid mass density
ρw Parameter Water mass density
ρo Parameter Oil mass density

63

A.2: Flowline Model

These are the equations of the model described in 2.4.

Mass balances:

ṁg,p = wg,in − wg,lp (A.5a)

ṁo,p = wo,in − wo,lp (A.5b)

ṁw,p = ww,in − ww,lp (A.5c)

ṁg,r = wg,lp − wg,out (A.6a)

ṁo,r = wo,lp − wo,out (A.6b)

ṁw,r = ww,lp − ww,out (A.6c)

Horizontal pipeline:

Vg,p = Vp −
mo,p

ρo
−
mw,p

ρw
(A.7a)

pin =
mg,pRTp
Vg,pMg

(A.7b)

ρg,p =
mg,p

Vg,p
(A.7c)

ρl,p =
ρoρw

ρwmo,p + ρomw,p
(mo,p +mw,p) (A.7d)

αl,p =
ρwmo,p + ρomw,p

ρoρwVp
(A.7e)

Us,l,p =
ρwwo,in + ρoww,in

ρoρwπr2p
(A.7f)

µl,p =
mo,p

mo,p +mw,p

µo +
mw,p

mo,p +mw,p

µw (A.7g)

Rep =
2ρl,pUs,l,prp

µl,p
(A.7h)

fp =

{
−1.8 log10

[(
εp

3.7Dp

)1.11

+
6.9

Rep

]}−2

(A.7i)

∆Pf,p =
αl,pLpρl,pfpU

2
s,l,p

4rp
(A.7j)

64

Vertical riser:

Vg,r = Vr −
mo,r

ρo
−
mw,r

ρw
(A.8a)

pr,t =
ρg,rRTr
Mg

(A.8b)

ρg,r =
mg,r

Vg,r
(A.8c)

ρl,r =
ρoρw

ρwmo,r + ρomw,r
(mo,r +mw,p) (A.8d)

ρm,r =
mg,r +mo,r +mw,r

Vr
(A.8e)

αl,r =
ρwmo,r + ρomw,r

ρoρwVr
(A.8f)

Us,l,r =
wo,inρw + ww,inρo

ρoρwAr

(A.8g)

Us,g,r =
wg,in

ρg,rAr
(A.8h)

Um,r = Us,l,r + Us,g,r (A.8i)

µl,r =
mo,r

mo,r +mw,r
µo +

mw,r

mo,r +mw,r
µw (A.8j)

Rer =
2ρm,rUm,rrr

µl,r

(A.8k)

fr =

{
−1.8 log10

[(
εp

3.7Dr

)1.11

+
6.9

Rer

]}−2

(A.8l)

∆Pf,r =
αl,rLrρl,rfrU

2
s,l,p

4rr
(A.8m)

65

Connection between pipeline and riser:

pl,p = pin −∆Pf,p (A.9a)

pl,r = pr,t +∆Pf,r + ρm,rgLr (A.9b)

Ag,p =
Vg,p
Vp

Ap (A.9c)

Al,p = Ap −Ag,p (A.9d)

αl,t =
2(mo,r +mw,r)

Vrρl,r
−
Al,p

Ap

(A.9e)

ρt,m = αl,tρl,r + (1− αl,t)ρg,r (A.9f)

wg,lp = Kg,pAg,p

√
ρg,p max{0, plp,p − plp,r} (A.9g)

wo,lp = Kl,pAO,p

√
ρomax{0, plp,p − plp,r}zo,p

mo,r

mg,r +mo,r +mw,r

(A.9h)

ww,lp = Kl,pAW,p

√
ρw,p max{0, plp,p − plp,r}zw,p

mw,r

mg,r +mo,r +mw,r

(A.9i)

wg,out = Kg,r

√
ρt,m max{0, pr,t − pout}

mg,r

mg,r +mo,r +mw,r
(A.9j)

wo,out = Kl,r

√
ρt,m max{0, pr,t − pout}

mo,r

mg,r +mo,r +mw,r
(A.9k)

ww,out = Kl,r

√
ρt,m max{0, pr,t − pout}

mw,r

mg,r +mo,r +mw,r
(A.9l)

A.3: Manifold

These are the equations of the model described in 2.3.

wout =
∑

i∈I

βiwi
in (A.10a)

piin = pout, ∀i ∈ I (A.10b)

βi ∈ {0, 1} ∀i ∈ I (A.10c)

66

Table A.3: Manifold model variables

Name Type Explanation
wi

in Variable Manifold i-th inlet flow
piin Variable Manifold i-th inlet pressure
wout Variable Manifold outlet flow
pout Variable Manifold outlet pressure
βi Binary Variable Opens/Closes the inlet

67

A.4: Separator

These are the equations of the model described in 2.5.

Separator:

vv =
2

9

(ρh − ρw)gd
2
d

µw

(A.11a)

vh =
L

τ
(A.11b)

τ =
mw

ww
w,out

(A.11c)

θ = cos−1

(
R− h

R

)
(A.11d)

Φ = tan−1

(
hw
L

)
(A.11e)

Φ1 = tan−1

(
vv
vh

)
(A.11f)

L1 = h cot
[
min (Φ,Φ1)

]
(A.11g)

h1 = L tan
[
min (Φ,Φ1)

]
(A.11h)

θ1 = cos−1

(
1−

h1
R

)
(A.11i)

VS1 = R2L1

{
θ − 0.5 sin(2θ)−

3 sin θ − 3θ cos θ − sin3 θ

3(1− cos θ)

}
(A.11j)

VS2 = R2L

{
θ − 0.5 sin(2θ)−

3 sin θ1 − 3θ1 cos θ1 − sin3 θ1
3(1− cos θ1)

}
(A.11k)

Water phase:

ε =
VS2
VS1

(A.12a)

wg
w,out = (1− ε)wg

in (A.12b)

wo
w,out = (1− ε)wo

in (A.12c)

ww
w,out = ww

in (A.12d)

Oil Phase:

x =
Pin

Pv

(A.13a)

wg
o,out = xεwg

in (A.13b)

wo
o,out = εwo

in (A.13c)

68

Gas Phase:

wg
g,out = (1− x)εwg

in (A.14a)

69

Table A.4: Well model variables

Name Type Explanation
vh Algebraic Droplets’ horizontal velocity
τ Algebraic Time for water cross the separator
mw Algebraic Water mass in separator
wgi Algebraic Mass flow through the injection valve
wp Algebraic Mass flow through production choke
wgp Algebraic Gas production
wlp Algebraic Liquid production
wop Algebraic Oil production
wwp Algebraic Water production
wlr Algebraic Liquid extracted from reservoir
wgr Algebraic Gas extracted from the reservoir
ρgi Algebraic Gas density upstream of the injection valve
ρp Algebraic Production density upstream of the production choke
pai Algebraic Pressure upstream of the injection valve
pp Algebraic Pressure upstream of the production valve
pti Algebraic Pressure downstream of the injection
pbh Algebraic Pressure at the bottom hole
pai Algebraic Pressure upstream of the injection valve

70

A.5: Compressor

These are the equations of the model described in 2.6.

Flows:

wout = win (A.15a)

ŵin = win + wsl (A.15b)

wout = ŵout − wsl (A.15c)

qvol =
ŵinRT

pinMg

(A.15d)

qvol = qvol
Tmap

T

pin
pmap

(A.15e)

Pressures:

rp =
pout
pin

(A.16a)

rp = rp
T

Tmap
(A.16b)

Quadratic approximations:

fi(qvol) = aiq
2
vol + biqvol + ci, ∀i ∈ {u, d, l, r} (A.17a)

ql,vol =
−bl +

√
b2l − 4al(cl − qvol)

2al
(A.17b)

qr,vol =
−br +

√
b2r − 4ar(cr − qvol)

2ar
(A.17c)

Slack variables:

νu = rp − fu(qvol) (A.18a)

νd = fd(qvol)− rp (A.18b)

νl = ql,vol − rp (A.18c)

νr = qvol − rr,p (A.18d)

νb ≤ 0, ∀b ∈ {u, d, l, r} (A.18e)

71

Table A.5: Compressor model variables

Name Type Explanation
win Input Inlet flow
pin Input Inlet pressure
wout Variable Outlet flow
pout Variable Outlet pressure
wsl Input Flow through surge control line
rp Variable Pressure ratio
qvol Variable Volumetric flow at the map conditions
rp Variable Pressure ratio at the map conditions

fu(qvol) Functions Quadratic functions approximating the map upper bound
fd(qvol) Functions Quadratic functions approximating the map lower bound
fl(qvol) Functions Quadratic functions approximating the map left bound
fr(qvol) Functions Quadratic functions approximating the map right bound
ql,vol Variable Projection of the left bound in the flow axis at the operation point
qr,vol Variable Projection of the right bound in the flow axis at the operation point

72

A.6: Production Network

Wells:

ww
in = ww

gl ∀w ∈ W (A.19a)

pwin = pgexp ∀w ∈ W (A.19b)

Manifold:

wp
in =

∑

w∈W

βw,pw
w
out ∀p ∈ P (A.20a)

pwout =
∑

p∈P

βw,pp
p
in ∀w ∈ W (A.20b)

Separator

ws
in = wp

out ∀(s, p) ∈ Sp (A.21a)

psin = ppout ∀(s, p) ∈ Sp (A.21b)

psin = ps ∀(s) ∈ S (A.21c)

Compressor:

wc
in = ws

out − wc
fl ∀(c, s) ∈ Cs (A.22a)

pcin = psout ∀(c, s) ∈ Cs (A.22b)

pcout = pexp ∀c ∈ C (A.22c)

Export Line:

wg
exp =

∑

c∈C

wc
out − wgm (A.23a)

wo
exp =

∑

s∈S

ws,o
o,out (A.23b)

ww
exp =

∑

s∈S

ws,w
w,out (A.23c)

Lift gas manifold:

pgm = pexp (A.24a)

wgm =
∑

w∈W

ww
gl (A.24b)

73

A.7: Objective Functions

A.7.1: Tracking Problem

minψ =

∫ tf

t0

(z − zref)
TQz(z − zref) + (y − yref)

TQy(y − yref)

+ (u− uref)
TRu(u− uref) dt

(A.25)

A.7.2: Maximization Problem

maxψ =

∫ tf

t0

kgq
g
exp + koq

o
exp + kwq

w
exp + kflwfl + kglwgm dt (A.26)

A.8: Constraints

1. All masses should be non-negative,

2. All flows should be non-negative,

3. Injection should be smaller than the maximum determined in the well (ww
gl ≤

ww,max
gl , ∀w ∈ W),

4. The compressor map violation variables must be non-positive.

74

Appendix B: Modelica Examples

B.1: Example 1: Van der Pol Oscillator

To show how simple it is to describe a model using Modelica language in this

subsection we will model the Van der Pol oscillator.

The Van der Pol oscillator is a non-linear system composed by two states and

one input. The state equations are:

ẋ1 = x2 (B.1a)

ẋ2 = (1− x21)x2 − x1 + u (B.1b)

y = x1 (B.1c)

where x1 and x2 are the states, u is the system input, and y is the system output.

Further, x1,0 and x2,0 are the system initial conditions. Transcribing it to Modelica we

have:

1 model VanDerPol

2 parameter Real x1_0 = 0; // x_1 initial cond

3 parameter Real x2_0 = 1; // x_2 initial cond

4

5 Real x1(start = x1_0); // x_1 state

6 Real x2(start = x2_0); // x_2 state

7

8 input Real u; // control signal

9 output Real y; // system output

10 equation

11 der(x1) = x2;

12 der(x2) = (1 - x1^2) * x2 - x1 + u;

13 x1 = y;

14 end VanDerPol;

In line 1, we initiate a component declaration saying the type of element it is followed

by its name. Line 2 and 3, the initial conditions are declared, parameter means that

this variable is not time dependent and Real means that it is in real domain. Line 5

and 6, states are declared and using start we indicate the initial conditions. Line 8

and 9, system input and output are declared using the respective keywords. Line 10

75

indicates that the equating starts. Line 11 and 12, der indicates that we are defining

the derivative of x1 and x2 Line 13, we define the that the output of the system is x1,

note that as Modelica describe mathematically the model y = x1 and x1 = y are the

same.

B.2: Example 2: The Quadruple-Tank Process

Other very recurrent model for control is the four tank process. It have four

cylindrical tanks, two pumps, and two valves. Tanks 3 and 4 leak in tanks 1 and 2,

respectively. The pump 1 sends the flow to tank 1 and 4, whilst the pump 2 sends the

flow to tank 2 and 3. The configuration is shown in B.1.

Figure B.1: Quadruple-tank process

76

The system dynamics are:

dh1
dt

= −
a1
A1

√
2gh1 +

a3
A1

√
2gh3 +

γ1k1
A1

v1 (B.2a)

dh2
dt

= −
a2
A2

√
2gh2 +

a4
A2

√
2gh4 +

γ2k2
A2

v2 (B.2b)

dh3
dt

= −
a3
A3

√
2gh3 +

(1− γ2)k2
A3

v2 (B.2c)

dh4
dt

= −
a4
A4

√
2gh4 +

(1− γ1)k1
A1

v1 (B.2d)

We can see that this problem is composed by four identical subsystems. To

make the coding simpler we will exploit this. Each tank have one state, one inlet flow,

and one outlet flow.

Listing B.1: Tank Modelica model

1 model Tank

2 import SI = Modelica.SIUnits;

3 import g = Modelica.Constants.g_n;

4

5 parameter SI.Area A = 4.9e-4;

6 parameter SI.Area a = 0.03e-4;

7

8 SI.Height h(start=0.05);

9 input SI.VolumeFlowRate q_in;

10 output SI.VolumeFlowRate q_out;

11 equation

12 A*der(h) = q_in - q_out;

13 q_out = a*sqrt(2*g*h);

14 end Tank;

Line 1 starts the model declaration. Line 2 imports the SI units library from Modelica

standard library. Line 3 imports the gravitational acceleration from Modelica library.

Line 5 defines the tank area, which is a parameter for the model. It could be used Real

as the example before, however declare the unit of variables and parameters is a good

practice in Modelica. Line 6, declaration of the tank orifice area. Line 8, define the

state h with initial value of 5 cm. Line 9, the inlet flow is the tank input. Line 10, the

outlet flow is tank output. Line 11, we integrate the volume in the tank using the height

and the inlet and outlet flow (Aḣ = qin − qout). Line 12, define the outlet flow.

Now to compose the system we will create four tanks and add two pumps.

77

Listing B.2: Four Tank Modelica model

1 model fourTanks

2 import SI = Modelica.SIunits;

3

4 Tank t1, t2 , t3 , t4;

5

6 parameter Real k1 = 0.56e-6;

7 parameter Real k2 = 0.56e-6;

8 parameter Real gama1 = 0.30;

9 parameter Real gama2 = 0.50;

10

11 input SI.Voltage v1 , v2;

12 output SI.Height y1 , y2;

13 equation

14 t1.q_in = t3.q_out + k1*gama1*v1;

15 t2.q_in = t4.q_out + k2*gama2*v2;

16 t3.q_in = k1*(1-gama1)*v1;

17 t4.q_in = k2*(1-gama2)*v2;

18 y1 = t1.h;

19 y2 = t2.h;

20 end fourTanks;

Line 4, as Tank was defined we can use it to instantiate objects. Lines 6-9 define the

pump parameters. Lines 14-17 define the input of each system. Lines 18-19 indicates

the system output.

Using this structure we can ease change the tank model, use a conic tank for

instance. The routing of tanks or even the number of tanks can be changed without

any effort.

B.3: Example 1: Minimum time problem with Van der Pol Oscilla tor

Using the model stated in B.1 we are going to develop a optimization problem

that the objective is to reach a specific condition in a less time as possible subject to

constraints.

Consider that we want to bring to oscillator to origin as fast as possible, but

having the control between the bounds −1 ≤ u ≤ 1. For this we state the optimization

78

problem

min tf (B.3a)

s.t.: ẋ = f(x, u) (B.3b)

x1(tf) = 0 (B.3c)

x2(tf) = 0 (B.3d)

− 1 ≤ u ≤ 1 (B.3e)

where x is the Van der Pol oscillator states, u is the control input, f(x, u) is the state

function, and tf is the final time. This system can be transcribed to Optimica as:

Listing B.3: Tank Modelica model

1 optimization VDP_Opt(objective = finalTime ,

2 startTime = 0,

3 finalTime(free=true ,min=0.2,initialGuess=1))

4

5 extends VanDerPol;

6 constraint

7 x1(finalTime)=0;

8 x2(finalTime)=0;

9 u >= -1;

10 u <= 1;

11 end VDP_Opt;

At line 1, the optimization class indicates that this is a optimization problem, the ob-

jective function is the finalTime, simulation starts at 0, and final time is an optimization

(free) variable with the minimum value of 0.2 and the initial guess of 1. Line 5 say that

this problem will use the definitions of the Van der Pol model. Line 6 indicates the begin

of the declaration of constraints. Lines 7-10 implement the system constraints.

lxxix

	Introduction
	Model and Background
	Network
	Well Model
	Manifold
	Pipeline-Riser Model
	Separator
	Compressor
	Models Coupling

	Modelica and JModelica.org
	Modelica
	Optimica
	JModelica.org

	Nonlinear Model Predictive Control
	Problem Discretization
	ODE Solvers
	Collocation Method
	Collocation Method Example
	NLP Optimization Formulation

	Objective Function
	Tracking Problem
	Production Maximization Formulation

	Test Case: Compressor Scheduled Maintenance
	Solving Approaches

	Results
	Instance definition
	Computational Setup
	Maximization Problem
	Tracking Problem
	Compressor Maintenance Results
	Naive Approach
	Transient Optimization
	Hybrid Approach

	Computation Analysis

	Conclusion
	Bibliography
	Appendix A : Dynamic Models
	Well Model
	Flowline Model
	Manifold
	Separator
	Compressor
	Production Network
	Objective Functions
	Tracking Problem
	Maximization Problem

	Constraints

	Appendix B : Modelica Examples
	Example 1: Van der Pol Oscillator
	Example 2: The Quadruple-Tank Process
	Example 1: Minimum time problem with Van der Pol Oscillator

