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Resumo  

Este relatório visa explanar o trabalho realizado durante o estágio na cidade 

de Aachen na Alemanha no laboratório WZL da universidade RWTH Aachen, 

detentora de um dos melhores cursos de engenharia mecânica da Alemanha. Este 

estágio teve duração de 10 meses, entre setembro de 2013 e junho de 2014. O 

estágio foi caracterizado como projeto final de curso, que tem como sua função 

validar a disciplina obrigatória de mesmo nome para o curso de Engenharia de 

Controle e Automação da Universidade Federal de Santa Catarina. 

O WZL der RWTH Aachen têm como uma de suas áreas de atuação o ramo 

de metrologia e qualidade do controle de fabricação. Existem muitos processos de 

fabricação metal mecânica analisados e estudados pelo laboratório, dentre eles o 

processo de fresamento e o teste do alinhamento da ferramenta de corte desse tipo 

de máquinas. São estudados vários métodos inovadores para tornar o teste 

alinhamento da ferramenta de corte mais rápido e eficiente, reduzindo custos. 

Dentre esses métodos, foi proposto um novo método de teste do alinhamento 

da ferramenta de corte, englobando um sistema absoluto de medição a laser por 

interferometria existente no laboratório, conceitos de um sistema de medição 

desenvolvido no Linear Collider Alignment and Survey (LiCAS) e um sensor PSD 

(Position Sensitive Detector), capaz de medir a posição do laser.  

Diante dessa proposta, foram realizados estudos no campo de interferometria 

para a concepção de um esquema que possibilitasse realizar as medições 

requisitadas envolvendo os conceitos anteriormente citados. Com a concepção de 

um esquema, foram pesquisados os componentes a serem comprados que 

satisfizessem os requisitos mínimos de desempenho. 

Após a compra dos equipamentos, o sistema foi montado juntamente com os 

componentes já existentes. Porém, necessitou-se da elaboração de um processo de 

calibração para o sensor PSD, o que não foi previsto no primeiro cronograma e 

acabou causando um leve atraso. Foi desenvolvido um software na linguagem NI 

LABview para realizar a leitura do sensor PSD no computador e sua calibração. 
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Os dados da calibração tornaram possível ver em qual condição o sensor 

PSD desenvolvia melhor desempenho e pôde ser levado em conta para a montagem 

do esquema final.  

A partir disso, métodos para a validação das medições realizadas pelo 

sistema desenvolvido foram desenvolvidos e analisados.   
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Abstract  

This report aims to explain about the work done during the internship in 

Aachen, Germany at the Laboratory of the Machine Tools and Production 

Engineering (WZL) RWTH Aachen University, owner of one of the best mechanical 

engineering graduation course from Germany. This internship lasted 10 months, from 

September of 2013 to June of 2014. This internship was made for the final course 

project chair of the Control and Automation Engineering graduation course of the 

Federal University of Santa Catarina. 

The Laboratory of the Machine Tools and Production Engineering (WZL) 

RWTH Aachen studies in one of his interest areas metrology and quality control 

manufacturing. There are a lot of metalworking manufacturing processes being 

studied and analyzed by the laboratory, the milling process and the test of the 

alignment of the cutting tool are among them. A lot of innovative methods for testing 

faster and more accurate the alignment of the cutting tool are being studied in order 

to reduce costs and improve quality. 

Among these methods, it was proposed a new test method to check the 

alignment of the cutting tool using an existent absolute laser interferometry 

measurement system, concepts from a measurement system developed by the 

Linear Collider Alignment and Survey (LiCAS) and a PSD (Position Sensitive 

Detector) sensor, able to measure the laser position. 

With this new proposal, studies were conducted in the field of interferometry to 

design a scheme that would allow performing the required measurements involving 

the concepts mentioned above. With a scheme developed, components that fulfilled 

the necessary performance requirements were searched to be purchased. 

After the purchase of the equipment, the system was assembled together with 

the existing components. However, it was needed to prepare a calibration process for 

the PSD sensor, which was not specified in the first schedule and ended up causing 

a slight delay. A Software in LabVIEW language for reading the PSD sensor on the 

computer and calibration was developed. 
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Calibration data made it possible to see in what condition the PSD sensor 

developed better performance and could be taken into account when assembling the 

final scheme.  

 Afterwards, methods for validating the measurements performed by the 

developed system were developed and analyzed. 
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Chapter 1: Introduction 

Machine tools and all kinds of measuring machines with three or more axes 

can be widely found in the industry at all areas of modern production. These 

machines can be found from automotive to aerospace industries, from production of 

consumer goods to medical goods. The trend toward individualized goods and 

minimize the lots sizes demands a huge flexibility of the machine tools. Following this 

concept, instead of relying on single purpose machines, production cells are built in 

order to improve this flexibility. The market of machine tools is growing and needs 

more performance from each machine separately.  

The key to improve the performance for a modern production cell is to improve 

the ability to manufacture accurate parts. In order to achieve this accuracy of 

production, a controlled and deterministic manufacturing process is needed. The 

repeatability of the machine is necessary to control the process; while the geometric 

accuracy can be achieved by a feedback loop trough part metrology or using 

accurately calibrated machine tools to produce the parts.  

In consequence of shorter product life cycles and small series production, the 

absolute accuracy of machine tools is really necessary and important. 

Short-production ramp up times do not allow an iterative optimisation of the 

product quality. McKeown introduced the term volumetric accuracy to define the 

ability of a machine to produce accurate 3D shapes [ 2 ]. Volumetric accuracy 

minimizes the ramp up cost for new or changing processes. Volumetric accuracy of 

machine tools and co-ordinate measuring machines (CMMs) has to be assured by 

precise and traceable metrology. The information gained may be used to 

characterize the machine or to increase the accuracy by numerical compensation. 

[ 1 ] 

To increase the absolute accuracy of the machine tools is really important to 

perform an error mapping and a subsequent compensation of geometric errors. For 

this purpose, it is extremely required an understanding of the sources and the effects 

of geometry errors in machines and calibration procedures. 
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Following this philosophy, every company wants to be really competitive in 

your work field. So the company needs to power the efficiency and quality to deliver a 

better product with lower price. This force the companies to improve the process 

quality to high standards. The companies need to get better in any small detail and 

save resources. 

 One of these details consists in checking the alignment of the cutting tool from 

a milling machine, which helps improvig the absolute accuracy of the machine. 

Providing a good test of the alignment of the cutting tool helps to deliver more 

accuracy to the operation, resulting in a higher quality product. Improving the speed 

of the alignment test helps to get this product faster, reducing its cost. Thinking this 

way is proposed here an innovative method for the testing process of the machine’s 

alignment.  

 The results of this research can be used alone or maybe integrate with other 

existing test tool or research for the machine alignment.  

 The development of this test method is explained in the next chapters. 

1.1: Company Overview: WZL 

The Laboratory of the Machine Tools and Production Engineering (WZL) 

RWTH Aachen is placed at RWTH Aachen University. The laboratory is responsible 

for studies in these main fields: 

 Metrology and Quality Management 

 Production Engineering 

 Manufacturing Technology 

 Machine Tools 

The WZL has about 830 employees. About 220 scientific staff coordinate and 

handle our research projects. They are supported by 190 non-academic staff and 

420 student assistants. 

The Laboratory is known worldwide for decades been synonymous with 

successful and pioneering research and innovation in the field of production 

technology. The Machine Tool Laboratory is managed by the four professors 

Christian Brecher, Fritz Klocke, Robert Schmitt and Günther Schuh. Figure 1 shows 

the main building of the WZL. 
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Figure 1 - WZL der RWTH 

1.1.1: Macro and Coordinate Metrology Group 

There are specific departments in the laboratory, this work takes place at the 

Macro and Coordinate Metrology Group department. 

The integration of coordinate measuring technology in the manufacturing 

environment opens up extensive rationalization potentials. The work of the group 

focus in the holistic approach and continuous development of the CAx-based process 

chain from design and test planning to test data.  

The group developed against these background solutions for all issues of 

process optimization and assist to obtain a continuous integration of this complex, 

high-performance measurement technology to the production environment. 

 

1.2: Problem Presentation and Objectives 

All the machine tools used to do metalwork processes are subjected to 

different forces and different temperatures during the operation, which after certain 

time causes some misalignment in the machine and can cause errors in the 

operation resulting in a product with low aggregate quality. This low quality product 

probably will have to be remade. So there is a waste of material and time, leading to 
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a waste of money, which should be avoided. In the next subsections it will be 

presented the source of these errors.  

1.2.1: Alignment Errors Source 

The accuracy of machine tools and CMMs is affected by many error sources. 

These error sources may cause a change in the geometry of the machine’s 

components present in the machine’s structural loop. According to ANSI and ASME 

standards [ 3 ] a structural loop is defined as an assembly of mechanical components 

which maintain a relative position between specified objects. In a machine tool, the 

structural loop includes the spindle shaft, the bearings, the housing, the guideways 

and frame, the drives and the tool and work-holding fixtures. Due to a change in 

geometry of these structural loop components, the actual endeffector position and 

orientation relative to the workpiece differs from its nominal position and orientation, 

resulting in a relative orientation and positioning error. The magnitude of this 

positioning and orientation error depends on the sensitivity of the machine’s 

structural loop on various error sources. 

The following reported major error sources affect the accuracy of the relative 

end-effector position and orientation [ 4 ] [ 5 ] [ 6 ]: 

 Kinematic errors; 

 Thermo-mechanical errors; 

 Loads; 

 Dynamic forces; 

 Motion control and control software. 

In precision instruments and machines many parts interact to achieve a final 

accuracy. Each part contributes to the total accuracy due to deviations caused by the 

above-mentioned effects. Although in practice the interaction between these effects 

plays an important role in the overall system behaviour, here we will focus on these 

effects separately. [ 1 ] 

1.2.1.1: Kinematic Errors  

Kinematic errors are errors due to imperfect geometry and dimensions of 

machine components as well as their configuration in the machine’s structural loop, 

axis misalignment and errors of the machine’s measuring systems [ 7 ] [ 8 ] [ 9 ]. If 



 

18 

the position of one axis influences the location and component errors of another, then 

the single errors of this axis are functions of the axis under test and of the influencing 

axis. Furthermore location errors might also become functions of axis positions. In 

principle, the systematic of kinematic errors stays the same, but the error functions 

become more complicated. [ 1 ] 

1.2.1.2: Thermo-mechanical Errors 

Due to the presence of, sometimes changing, internal and external heat/cold 

sources in machine tools and CMMs and the very often significant expansion 

coefficients and expansion coefficient differences of machine part materials, the 

resulting thermal distortion of the machine’s structural loop often dominate the 

accuracy of an executed task [ 10 ] [ 11 ]. Expansion coefficient differences may lead 

to thermal stresses if rules of exact constraint design have not been met carefully. 

Changed thermal conditions may cause location and component errors of machines. 

[ 1 ] 

1.2.1.3: Loads 

If a machine exhibits non-rigid body behaviour, location erros and component 

errors change due to internal or external forces [ 12 ]. In some cases, the weight and 

position of for instance the workpiece or moving carriages of the machine, or the 

static machining—or measuring forces can have a significant influence on the 

machine’s accuracy due to the finite stiffness of the structural loop. Schellekens et al. 

[ 12 ]  and Spaan [ 5 ] have shown that these errors can be significant when 

compared to the kinematic errors of a machine tool or CMM. For instance, if straight 

guideways bend due to the weight of the moving slide, the slide will show a vertical 

straightness and a pitch error motion. This is called ‘‘quasi-rigid behaviour’’. Such 

effects will be caught by measuring the error motions and do not change the 

systematic of the error description. [ 1 ] 

1.2.1.4: Dynamic Forces 

The trajectory to be realized by a machine tool or a CMM is also affected by 

the dynamic behavior of the machine’s structural loop. In this case (rapidly) varying 

forces such as machining forces, measuring forces or forces caused by accelerations 
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or decelerations should be considered instead of quasi-static ones. Vibrations may 

result in a deformation of the structural loop of the machine under consideration. The 

deformations due to vibrations in the structural loop are often hard to compensate. 

This is due to the very often unknown amplitude and in particular the phase angle of 

the vibration frequencies. This contributes to the uncertainty of the tool/probe position 

relative to the workpiece. Relevant information concerning deviations due to dynamic 

forces can be found in [ 6 ] [ 13 ]. 

Motion control and control software effects on the geometrical error can be 

significant. In the analysis, they are often distinguishable from the errors caused by 

other error sources by applying different feed speeds and/or accelerations for the 

same motion path. 

However, precision machining or measuring is often carried out at small feed 

speeds, with small acceleration and decelerations as well as small 

cutting/measurement forces. Error correction and compensation, without taking these 

dynamic forces into account, can, nevertheless, be successful in these cases. [ 1 ] 

 

 

Figure 2 - Hermle Milling Machine 
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Figure 2 shows an example of the machine tool that is the subject of this study. 

1.2.2: Project Objectives 

To avoid problems due to these errors in the final product, a test of the 

alignment of the cutting tool must be done, among some operations to check if the 

alignment remains acceptable. There are some conventional technics to do this 

alignment test, like using a complex and expensive machine, which can be very 

accurate but takes a long time and effort. So the subject of this research is to develop 

an innovative alignment test method with new technologies based on laser 

techniques that aim to be easy and faster than traditional methods. It is expected to 

use some of the powerful capabilities of the laser measurement system owned and 

sensors to measure laser position too. 

This project has the following main steps: 

 Research and study of laser measurement techniques; 

 Search and buy hardware that could fit the specifications; 

 Software development 

 Calibration of the sensors; 

 Built of the system; 

 Validation. 

This work has the general objective of: 

 Research and development of a faster and more efficient method of 

testing the alignment of machine tool; 

And there are some specific objectives: 

 Make use of the laser measurement system owned; 

 Create knowledge for further projects; 

 Create an accurate and reliable system; 

 Create a knowledge base of sensors to read laser position. 

 

 

1.3: Document Structure 

This work is divided into seven chapters. The first one gives a brief 

introduction about the company, describes the context of the project and provides its 

motivations and objectives.  
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The second chapter presents a bibliographical revision of the concepts of 

interferometry, how a PSD (Position Sensitive Detector) sensor works and the Linear 

Collider Alignment and Survey (LiCAS) concept, which the system was based. 

The third chapter explains the concept that was developed to create the 

measurement system and presents the mathematical background of this concept too. 

The fourth chapter presents all the components used in the system divided 

into two categories, hardware and software. 

The fifth chapter shows how the calibration of the PSD (Position Sensitive 

Detector) was performed. In this chapter it is presented the system mounted and the 

design of a platform for the whole system. Further, some techniques to validate the 

system are presented. 

The sixth chapter presents the results obtained: the calibration of the PSD 

sensor and the results of the validation tests for the project.  

The seventh and last chapter shows the conclusions obtained during the 

realization of the project, and it leaves, as well, suggestions for future improvements 

in the system. 
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Chapter 2: Theoretical Background 

This chapter presents theoretical information about the main physics concepts 

that are the background for the project.   

2.1: Introduction to Interferometry 

The phenomenon of interference occurs when two light waves are superposed, 

and the result of the intensity at any point depends on whether they increase or 

decrease each other. When two waves with the same frequency combine, the 

resulting pattern is determined by the phase difference between the two waves. 

Therefore, the waves that are in phase will be subjected to constructive interference  

as well as the waves that are out of phase will go through destructive interference. 

This phenomenon can be observed in Figure 14:  

 

Figure 3 - Interference between coincident Light waves [ 14 ] 

The wavelength of visible light is very small and a few alterations in the optical 

path difference create measurable changes in the intensity of an interference pattern. 

For this reason the optical interferometry allows highly accurate measurements.  

With the basic principle of using a very small, stable and accurately defined 

wavelength of light as a unit of measure, interferometry acquires substantial 

information using the phenomenon of interference applied in many electromagnetic 

waves. 
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Optical interferometry has been applied as a laboratory technique since the 

last century, and various advanced developments and research have increased its 

scope and accuracy, which made the optical interferometry benefits functional for an 

ample range of measurements. More details about interferometry can be found in 

[ 14 ]. 

2.1.1: Two-Beam Interferometers 

To get measurements utilizing interference, it is essential to acquire an optical 

arrangement where two beams must interfere after they have followed separate 

paths. One path is called the reference path, while the other is the measurement path. 

Then, the optical path difference between the interfering wavefronts is:     

∆p = p1 – p2 = ∑(n1*d1) - ∑(n2*d2) 

Where “n” is the refractive index, and “d” the length, of each section in the two 

paths.  

In order to produce a stationary interference pattern, it is important that the 

phase difference between the two interfering waves do not change with time. Thus, 

the two interfering beams must have the same frequency, which means they have to 

derive from the same source.  

Wavefront division and amplitude division are the two methods generally used 

to divide the beam in two parts from a single source. Wavefront division uses 

apertures to isolate two beams from separate portions of the primary wavefront, while 

in amplitude division, two beams are derived from the same portion of the original 

wavefront using some optical elements. Figure 4 shows the interference of two 

beams formed by wavefront division: 

 

Figure 4 - Interference of two beams formed by wavefront division. [ 14 ] 
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Figure 5 - Techniques for amplitude division: (a) a beam splitter, (b) a 

diffraction grating, and (c) a polarizing prism. [ 14 ] 

Figure 5 shows techniques for amplitude division.   

Some types of interferometers and their applications are: 

• The Rayleigh interferometer - gas analysis; 

• The Michelson/Twyman–Green interferometer – measurements of length 

and optical testing; 

• The Mach–Zehnder interferometer - fluid flow, heat transfer, and the 

temperature distribution in plasmas; 

• The Sagnac interferometer - rotation sensing. [ 14 ] 

 

Figure 6 - The Rayleigh interferometer. [ 14 ] 

 

Figure 7 - The Michelson interferometer. [ 14 ] 
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Figure 8 - The Mach–Zehnder interferometer [ 14 ] 

 

Figure 9 - Two forms of the Sagnac interferometer: one with an even number 

of reflections in each path (a), and the other with an odd number of reflections in 

each path (b). [ 14 ] 

 

2.1.2: Laser Interferometers 

An interferometer is a very precise instrument that measures distances with 

high accuracy. The idea of a laser interferometer is to use the principle of 

interferometry to retrieve the information of the destructive and constructive 

superposition of the electromagnetic waves during the data acquisition.   

It works taking a laser beam and dividing it into two parts using a beam splitter: 

one of the beams (which is the reference beam) travels to a reflector and from there 
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to a detector, while the other beam travels through the distance that is being 

measured, pass onto a second reflector and goes back through the beam splitter, 

and onto the same detector as the first beam. Since the second beam travels a 

different distance to the first beam, it gets out of phase. The two beams reunite at the 

detector and interfere, thus the phase difference between them creates an 

interference fringes/pattern. Therefore, by observing and measuring the fringes, it is 

possible to calculate accurately this distance. Figure 10 shows an Interferometer 

example. 

 

 

Figure 10 - Interferometer example [ 14 ] 

In laser interferometric systems, in which distances are measured precisely, 

the wavelength of the utilized laser light in a medium must be cognized with high 

accuracy. The wavelength is determined by the vacuum frequency of the used light, 

the speed of light in the vacuum and the refractive index of the medium. Commonly 

the vacuum frequency of laser light has an uncertainty around      and     , while 

the speed of light in vacuum is constant. The predominant uncertainty component 

derives, therefore, from the uncertainty of the refractive index of air.  

2.1.3: Frequency Scanning Interferometry 

This is the measurement method used by the Multiline System used in the 

project, and follows the explanation:  
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In the simplest FSI system, a single tunable laser is used to compare 

interferometers with unknown optical path differences (OPD) to a common reference 

interferometer. Each interferometer is assumed to be an amplitude-splitting, two-arm 

interferometer. 

The frequency of the laser is scanned continuously in one direction, to induce 

continuous, unidirectional phase changes in the reference interferometer and in all 

measured interferometers of unknown OPD. Each unknown interferometer is 

measured by comparing the phase change in its signal with the corresponding phase 

change in the signal from the reference interferometer. 

In the following discussion, separate notation is used for the reference 

interferometer and the measured interferometers. The phase of the reference 

interferometer, with optical path difference (OPD) “ ” illuminated by a single laser of 

frequency “ ”, is given by: 

  (
  

 
)     

Similarly, the phase of a measured interferometer with OPD “ ” is given by: 

  (
  

 
)    

As the laser is tuned through a frequency interval “  ”, the induced phase 

change in each interferometer (“  ” or “  ”) is therefore proportional to the OPD (“ ” 

or “ ” respectively). The interferometer phase ratio, q, is defined as: 

  
  

  
 

In the absence of OPD drift, this phase ratio q is equal to the ratio “   ”. The 

basic aim in an FSI measurement is to find “ ” for each interferometer, so that the 

interferometer OPD can be determined using: 

  
 

 
 

 

If there is OPD drift during the frequency scan, the OPD derived using 

equation “  =   /   “ with the phase ratio “ ”, measured using a single laser, would be 
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in error. A second laser is required to enable an appropriate correction to be applied. 

[ 15 ] 

2.2: Introduction to Position Sensitive Detector (PSD) 

The PSD sensors are used in the system because of the wavelength of the 

measurement laser, which is not visible causing no possibilities to use CCD cameras. 

The Position Sensitive Detector (PSD) is a sensor, basically made of diodes, 

that tracks the laser and returns the position in the sensor range. The sensor can be 

one dimension or two dimensions. In this study is used a two dimensions PSD, so is 

this one will be presented. 

There are two main PSD types: lateral effect and segmented detector. The 

quadrant detector, from the segmented family, was chosen because is more accurate 

and there were more possible options for the laser wavelength used.  

The quadrant detector (QD) is a position detector based on the photovoltaic 

effect to determine the relative position of the light spot projected on its surface. It is 

made of four identical p–n junction photodiodes and the photodiodes are separated 

by small gaps called the dead area. Compared to other position sensitive detectors 

such as the lateral effect PSD and the charged coupled device, QD has the 

advantage of fast response frequency, wide response wavelength, high response 

sensitivity and wide operating temperature range. Due to these advantages, QD has 

been widely used to measure the beam displacement. Recently, the QD is becoming 

more and more important in the area of nanotechnology. However, when QD is used 

for high-precision measurements, some factors will influence QD measurement 

accuracy, dynamic range and sensitivity. The non-linear relationship between the 

light spot position and its estimate is reported in some literatures. The spot 

movement mode, spot energy distribution, and dead area will influence the dynamic 

range and the detection sensitivity. Thus, these factors analysis is highly desirable to 

improve the measurement accuracy of QD and enhance QD applications. [ 16 ] 
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2.2.1: Theoretical Model of the PSD 

QD consists of four junctions placed symmetrically with respect to the center 

shown in Fig. 1. The photocurrents will be generated when a light beam is projected. 

The conventional formulas to estimate the beam position are expressed as follows: 

    
           

           
 

    
           

           
 

Where “ ” and “ ” are the estimate of the beam position in the x and y 

directions, k is the slope constant whose value is dependent on the beam profile, and 

“  ”, “  ”, “  ”, and “  ” are the photocurrents measured at each quadrant. [ 16 ] 

Figure 11 shows a schematic diagram for an example of quadrant detector:  

 

Figure 11 - Schematic diagram of the quadrant detector [ 16 ] 

2.3: Introduction to the Linear Collider Alignment and Survey 

(LiCAS) Concept 

The Linear Collider Alignment and Survey (LiCAS) group aims to provide an 

optical metrology system for the survey and alignment of a Linear Collider. It uses a 

combination of Frequency Scanning Interferometry (FSI) and Laser Straightness 

Monitors (SM) inside a vacuum. Both techniques have their origin in particle physics 
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detector alignment and have been developed at the University of Oxford. FSI is an 

interferometric length measurement system which was originally developed for the 

online alignment of the ATLAS Inner Detector. The SM is used in the alignment 

system of the Zeus MicroVertex Detector. [ 17 ] 

The Laser Straightness Monitors (SM) allow the LiCAS survey train to 

measure inter-car transverse displacements and rotations. The technology has been 

used in the alignment system of the Zeus MicroVertex detector (MVD) which was 

developed at the University of Oxford. 

In the survey train a collimated fibre coupled laser is used which has low 

longitudinal coherence length (50μm) but high transverse coherence. This allows 

efficient coupling into a single-mode optical fibre but reduces interference from 

spurious reflections. The beam is intercepted by a beam-splitter and the reflected 

beam goes to a CCD camera. The beam passes through six beam splitters in total; 

one beam-splitter per car. At the last car, the beam is reflected back via a 

retroreflector. The beam subsequently passes through the same beam splitters; thus 

each beam-splitter is intercepted twice. A second camera on the car observes the 

reflection off the second interception. This arrangement is illustrated in Figure 12. By 

correlating the images from the two cameras one can differentiate translations from 

rotations. 

 

Figure 12 - Optical arrangement of SM in the LiCAS Survey Train: It shows one car 
which has been translated and one which has been rotated. It shows that for a 
translation, both beams on the CCD cameras move in concert. However for a 

rotation, the beams on the CCD move in contrary. [ 18 ] 
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In the Zeus MVD, the length of the SM is 2 m. For LiCAS the range of the SM 

must be twice the length of the train which is 50 m. To have a beam with minimal 

divergence requires a wide beam diameter to be greater than the CCD viewing area. 

This is compensated for by adding demagnification optics in front of the CCD 

cameras. The LiCAS SM uses two parallel beams to allow measurements of rotation 

about the z-axis 1. This is illustrated in Figure 13. As the car rotates about the z axis, 

one observes the angle of the beams with respect to the CCD changes. The use of 

the single beam-splitter and retroreflector is one possible configuration for a SM. 

Another possible arrangement is to use two beam splitters at right-angles to each 

other. This avoids the need for a retroreflector. Both arrangements are currently 

under evaluation. [ 18 ] 

 

Figure 13 - Two SM beams allow rotation about the z axis to be measured: As the 
car rotates, the angle of the beams with respect to the CCD changes [ 18 ] 
 

The LiCAS uses CCD image cameras to read out the laser position, before in 

this document was explained why this project uses Position Sensitive Detector (PSD) 

to read out the laser position and not CCD image cameras. 
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Chapter 3: The Laser Measurement System Concept 

This chapter explains about the concept developed to create the laser 

measurement system and its capabilities. It also gives an analysis of the 

mathematical background. 

3.1: The Concept developed for the Laser Measurement System 

The proposed system should be able to perform measurements in length, 

rotation and lateral displacement. The system should be as more accurate as 

possible, taking into account the cost-benefit. Based on the LiCAS concept it was 

developed an idea of how to create this measurement system. 

3.1.1: Schematic Diagram of the Laser Measurement System 

 

Figure 14 - Schematic diagram of the measurement system concept 

The system will be mounted on a platform composed by the PSD 1, PSD 2, 

beamsplitter and retroreflector. The laser source will remain disconnected from the 

whole system. Figure 14 shows the main schematic diagram or the measurement 

system concept. 

3.1.1.1: Components of the System 

The system is composed by the following components: 
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 Laser Source: it is the laser that comes from the laser interferometry 

measurement system. 

 Beamsplitter: it is a glass cube with a plate inside that splits the laser in 

two separated perpendicular beams.  

 PSD 1 and PSD 2: these are the Position sensitive detectors to read 

out the laser position. 

 Retroreflector: this is hollow retroreflector that reflects the laser beam 

back. 

More technical details about the system components are presented in the 

chapter 4.  

3.1.1.2: Trajectory of the Laser Beam 

The laser beam starts its path in the laser source and then it goes to the 

beamsplitter that splits the laser beam into two beams: one goes to the PSD 1 and 

the other one goes through the beamsplitter. The one that goes through the 

beamsplitter hits the retroreflector and comes back to the beamsplitter. The laser 

beam splits again and the opposite happens: one beam goes to the PSD 2 and the 

other beam goes through the beamsplitter and hits the laser source. This last beam 

is used by the laser interferometry measurement system. The first split is shown in 

Figure 15 and both, first and second, are shown in Figure 16: 

 

Figure 15 - First split in the beamsplitter 
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Figure 16 - First and second laser beam split together 

3.1.1.3: Laser Energy Division 

The laser splits its energy in the path when the laser beam splits. The 

beamsplitter has the characteristic of 50%/50% energy splitting in both ways. 

Considering that the initial energy from the laser source is 100% and an ideal 

situation, the first splits sends 50% of the energy to the PSD 1 and the remaining 50% 

of the energy to the retroreflector. The reflector reflects this 50% energy back and the 

beamsplitter splits it again: 25% to the PSD 2 and 25% is sent back to the laser 

source. Figure 17 helps to understand the energy splitting. 

 

Figure 17 - Diagram of the energy splitting (i.e. means initial energy). 

In Figure 17, the arrows near the percent values in the image are only used for 

demonstrating the direction of the laser. 
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3.1.2: Variables Measured 

There are 3 kinds of displacement that are measured by the system: 

 Length measurement: it is performed by the laser interferometry 

measurement system, and it uses the laser that comes back from the 

Beamsplitter. It reads the distance between the laser source and the 

retroreflector. The whole system (except the laser source) can move parallel to 

the laser source. This is shown in Figure 18 and the black arrows sign the 

movement direction. 

 Rotation measurement: the rotation of whole system (except the laser 

source) can be measured by reading the outputs from the PSDs that change 

when the system rotates. This is shown in Figure 19 and the black arrows sign 

the movement direction. 

 Lateral displacement measurement: the whole system (except the laser 

source) moves perpendicularly to the laser source. This displacement changes 

where the laser hits the beamsplitter, so it changes where it hits the PSD too. 

This change can be read out to calculate the lateral displacement, which is 

shown in Figure 20 (black arrows sign the movement direction).  

 

 

Figure 18 - Length measurement 
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Figure 19 - Rotation movement 

 

Figure 20 - Lateral displacement 
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3.2: Mathematical Background 

This section aims to show the mathematical calculations that are done in order 

to get the measurement results. In the end, there is an error propagation analysis for 

the rotation measurement calculation.  

3.2.1: Length Measurement 

This measurement is performed by the interferometry laser system owned by 

the laboratory. The mathematical explanation about this measurement follows the 

idea given in chapter two (section 2.1.2). The only different thing about this 

measurement in a comparison with a normal measurement is that there is the glass 

cube in the beam’s path and the laser loses more energy than normally expected. 

These effects will be presented in the results chapter. 

3.2.2: Rotation Measurement 

 

Figure 21 - Rotation measurement schema 

The schema in Figure 21 presents two different positions for the same laser 

beam in different times. The goal is to know the rotation, in the schema the “b” angle. 

The distance “d” is fixed and it is from the center of the beamsplitter to the center of 

the PSD 1. The “Position 1” is the setup position and “Position 2” is a possible 

measurement position.  The “y” value can be known by reading PSD 1 data output. 

Trigonometric laws allow saying that: 
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The second equation returns as a result the “b” angle. A calculation with the 

width of the PSD 1 measurement range returns the maximal angle that can be 

measured.  

This calculation does not take account of the diffraction and refraction that can 

occur when the incidence angle of the laser is different from zero degree. 

Considering small rotation angles this error can be ignored for now.  

3.2.3: Lateral Displacement Measurement 

 

Figure 22 - Lateral displacement schema 

The schema in Figure 22 presents two different positions for the same laser 

beam in different times. The goal is to know the lateral displacement, in the schema 

the “c” distances. The “Position 1” and “Position 2” are two possible measurement 

positions.  The “c” value can be known by reading PSD 1 data output. Trigonometric 

laws allow saying that the distance “c” in the PSD 1 is the same distance “c” between 

“Position 1” and “Position 2”. 

3.2.4: Error Propagation Calculation 

Considering the rotation measurement, it is needed to know the distance from 

the center of the beamsplitter to the PSD sensor (“d” in Figure 21). This 
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measurement is exposed to some error because must be performed manually. There 

are others difficulties to perform this measurement like the PSD sensor is not on the 

surface of the mounting case and is not so easy to see where the middle of the 

beamsplitter is. These difficulties can be solved, but still it can cause some error in 

the measurement.  

On this purpose an error propagation analysis was performed to see the 

influence of this measurement error in the final result. 

 The variable that must be analyzed is “ ”, the distance in the PSD is “ ” (“y” 

in Figure 21) and “ ” is the angle. 
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It can be seen that error in “ ” dominates as long as the relative error of “ ” is 

small. 
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Chapter 4: Hardware and Software System Components 

This chapter presents technical information about the hardware and software 

used in the project. The technical details were taken from the product datasheet.   

4.1: The Absolute Multiline System 

The Absolute Multiline system is an absolute measuring interferometer to 

measure and control lengths between 0,2 to 20 meters within 24 channels. The 

system is expandable to 50 channels. The patented “Snapshot Phase Shifting 

Interferometry” realizes a precision of the length measurement of 0,5 μm +0,5μm/m. 

The system needs a short time to determine a length. This measuring time decreases 

with shorter distances. The measurement is done with two frequency-scanned lasers. 

A gas cell assures traceability of their frequencies. For more information consult the 

datasheet in [ 19 ]. 

 

Figure 23 - The Multiline measurement system by Etalon 
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4.1.1: Measurement Line 

Method: direct, absolute length measuring system 

Accuracy of displacements: 0.5 μm + 0.5 μm/m 

Wavelength: Pilot 635 nm (alignment laser) / Measuring 1410-1510 nm 

Laser class: 2 

Reflectors: 24 hollow retroflector 

Collimators: 24 FC-collimators with fine adjustment knobs 

Environment: USB humidity and pressure sensor 

Interface: USB-2 

4.1.2: Working Range 

Measurement range: 0,2m – 20m 

Channels: 24 

Max. Frequency: 100 kHz per snapshot 

Snapshots: 2 /s 

4.1.3: Environmental Conditions 

Temperature range for accuracy specification: 15 °C to 35 °C 

Humidity: 0% to 80% non-condensing 

4.1.4: Additional Tools 

Etalon provides with the Multiline laser measurement system tools for aligning 

the laser and adjusting it and the reflectors. The hollow reflector can be seen in 

Figure 24. The mount and adjust tools for the laser collimators can be seen in Figure 

25.  

Hollow Retroreflectors are constructed of three first surface mirrors assembled 

into a corner cube. This produces a lightweight “hollow corner cube” that is totally 

insensitive to position and movement. The result is that parallel incident light is 

reflected back to the source with great accuracy, regardless of the angle of incidence. 
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Since the optical path is in air, this configuration eliminates material absorption and 

chromatic aberrations present in solid glass prism-type retroreflectors.  

 

 

Figure 24 - Hollow retroreflector 

 

Figure 25 - Laser mounting and adjustment tool and collimator 

 

4.2: The Position Sensitive Detector (PSD) THORLABS PDQ30C  

 The PDQ30C is a large area, four quadrant type position sensing detector 

fitted with an Indium-Gallium-Arsenide (InGaAs) photodiode for precise path 

alignment of light in the 1000 to 1700 nm infrared (IR) range. The sensor is 

segmented into four separate active areas, allowing it to measure beams with a spot 

size up to 3 mm. For optimal use, a spot size diameter of less than 0.5 mm is 

recommended.  
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The sensor outputs three analog voltages. The X-axis and Y-axis signals are 

proportional to the light difference sensed by the left-minus-right and top-minus-

bottom pairs of photodiode elements in the detector array, while the SUM signal is 

proportional to the total amount of light falling on the sensor. For more information 

consult the datasheet in [ 20 ] 

Figure 26 shows the diagram of the PSD electric signals: 

 

Figure 26 - PSD electric signals diagram 

The segmented-quadrant position sensors consists of four distinct yet identical 

quadrant-shaped photodiodes that are separated by a ~0.1 mm gap and together 

form a circular detection area capable of providing a 2D measurement of the position 

of an incident beam. When light is incident on the sensor, a photocurrent is detected 

by each sector (labeled A, B, C, and D as shown in the Figure 27). From these 

signals difference signals can be determined using an appropriate A/D converter. 

The sum of all four signals is also determined for normalization purposes. The 

normalized coordinates (X, Y) for the beam's location are given by the following 

equations: 

  
(   )  (   )

       
 
     

   
 

  
(   )  (   )

       
 
     

   
 

If a symmetrical beam is centered on the sensor, four equal photocurrents will 

be detected, resulting in null difference signals, and hence, the normalized 

coordinates will be (X, Y) = (0, 0). The photocurrents will change if the beam moves 

off center, thereby giving rise to difference signals that are directly proportional to the 

beam displacement from the center of the sensor. [ 21 ] 

Q2 Q1

Q3 Q4

X-axis sensor: (Q2 + Q3) - (Q1 + Q4)
Y-axis sensor: (Q1 + Q2) - (Q3 + Q4)
SUM: (Q1 + Q2 + Q3 + Q4)
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Figure 27 - PSD with an incident beam 

Figure 27 presents an example of a incident laser beam in the PSD quadrant 

detector, while Figure 28 presents the Spectral Response of the PSD and Figure 29 

shows a picture of the sensor. 

 

Figure 28 - PSD Spectral Response 
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Figure 29 - Position Sensitive Detector PDQ30C by THORLABS 

4.2.1: Position Sensitive Detector (PSD) Technical Data 

Electrical Specification  

Wavelength Range 1000 – 1700 nm  

Peak Responsivity 1 A/W @ 1630 nm  

Transimpedance gain 10,000 V/A  

Max Photocurrent 1 mA  

Output Voltage Range ±4 V to ±14 V 

Signal Output Offset 0.4 mVtyp (7 mVmax)  

Bandwidth 150 kHz  

Recommended Spot size < Ø0.5 mm  

Supply Voltage Requirement ±5V to ±15V DC, 35 mA  

Operating Temperature 10 °C – 40 °C 

Sensor Size Ø3.0mm 

4.2.2: PSD Data Acquisition System 

The TQD001 is a T-Cube Interface for use with the PDQ30C position sensing 

detector. Its top overlay has a 9-light display that indicates a beam’s position on the 

sensor. The unit has three SMA connections for monitoring the X and Y difference 

signals as well as the sum signal. The T-Cube can also interface with a computer via 

USB1.1 and uses our APT software.  
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X & Y Diff Outputs Female SMA -10 V to >10 V  

Sum Output Female SMA 0 to >10 V  

X & Y Position Demand Outputs SMA 0 to >10 V  

Closed Loop X & Y Position Control PID  

Closed Loop Bandwidth 200Hz  

USB Version 1.1 

Input Voltage Requirements +15 V (200 mA), -15 V (50 mA), +5 V (50 mA)  

 

Figure 30 - PSD data acquisition system 

For more information consult the datasheet in [ 22 ]. The DAQ is shown in 

Figure 30. 

4.3: The Cube Beamsplitter Edmund Optics 

The model used was a Non-Polarizing Cube Beamsplitter 25mm 1100-

1600nm (reference code: #47-236). For more information consult the datasheet in 

[ 23 ]. 
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Figure 31 - Beamspliiter modus operandi 

Figure 31 gives a basic idea of how the beamsplitter works and Figure 32 is a 

chart that relates the transmission rate with the laser beam wavelength, which for this 

case is 1550 nm.  

 

 

Figure 32 - Beamsplitter Chart Transmission versus Wavelenght 

 

4.3.1: Beamsplitter Technical Data 

Dimensions 25 mm 

Dimensional Tolerance ±0.1 mm 
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Clear Aperture > 90% 

Surface Accuracy (λ) 1/8 

Surface Quality 40-20 

Beam Deviation (arcminutes) ±2 

Substrate N-BK7 

Transmission 45 %  

Transmission Tolerance ±5% 

Absorption < 10% 

Polarization < 6% 

Coating Telecom: < 0.5% 1100 - 1620nm  

 

 

4.4: Software Programming Language 

4.4.1: The NI LABview Programming Language 

National Instruments LABview was chosen because the student has a big 

knowledge of this programming language and there is a library developed by the 

PSD manufacturer (THORLABS) to read the data from the PSD data acquisition 

system. 

LABview is a graphic programming language developed by National 

Instruments that provides fast development and virtual instrumentation as its biggest 

benefit.   

4.4.2: The THORLABS Support Library   

THORLABS provides a test software called “APT User” to test the sensor and 

perform some basic tasks. The library provided takes advantage of the “ActiveX” 

technology that can be implemented in LABview.   
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Chapter 5: Implementation of the Measurement System 

5.1: PSD Calibration Development 

The PSD amplitude output depends on the laser used, the laser shape and 

power. A calibration of the PSD sensor was necessary and a conceptual idea of how 

to perform this calibration was developed.  

5.1.1: The Calibration Idea 

There is a Linear Stepper Motor (from Newport model UE34CC) with a 

powerful resolution of 2 micrometers available in our workplace. The main idea 

consists in fixing each component of the system except the PSD, which is plugged in 

the Stepper Motor axis. All components are held while the PSD can perform small 

user predefined steps. These steps must follow one direction and the initial point 

must be the lowest or highest point of the PSD range according to the movement 

direction. If the movement is to up, initial point is the highest in PSD range and the 

opposite if the movement direction goes down. This methodology is good because it 

evaluates the whole PSD range, including the center where the PSD is more linear.  

The simplified flow chart of the calibration procedure is ( Figure 33 ): 

 

Figure 33 - Calibration flow chart 

The results of this test return position data versus power intensity information 

from the PSD. Some linear fit can be performed on these results and returns how 

many volts per micrometer the PSD is able to develop for each axis (x and y).   

Figure 34 shows a schema of the calibration setup. 

Moves predefined 
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Figure 34 - Calibration schema 

5.1.2: Calibration Software 

The main functions of the calibration software are: 

 Control the Newport stepper motor 

 Acquire data from the PSD DAQ 

 Show graphically the laser position in the PSD 

 Control the calibration procedure 

 Save the data from the calibration: 

o Position data from the stepper motor; 

o Xdiff, Ydiff e SUM signals from PSD; 

o Time and data from computer. 

The software was developed in LABview programming language as described 

before. 

The implementation of the control of the Newport Stepper Motor is made with 

the LABview library provided by Newport. The main functions in use are: Homing 

(moves to home position), Move Absolute, Move Relative, Set Parameters (speed 

and acceleration). The driver from Newport is connected to a computer USB port. 

The communication with the PSD data acquisition hardware is made by USB. 

The software is able to read the data from the PSD: the Xdiff, Ydiff and SUM signals. 

The software uses a function from the PSD DAQ library that allows to show 
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graphically the laser position in the PSD, what was really helpful to perform the 

alignment for the calibration. 

A flow chart of the calibration procedure was developed and implemented in 

the software. The flow chart of the calibration is shown in Figure 37. 

During the calibration the program saves the data in a “TDMS” (Technical 

Data Management Streaming) file format. This is a LABview standard file format and 

it can be easily open in Microsoft Excel. 

 

Figure 35 - Screenshot Calibration Software 

Figure 35 shows a screenshot of the calibration software. The blue square with 

green lines shows the position of the laser beam dot in the PSD sensor. The box 

“Calibration Method PSD moving” is the user interface to control the calibration of the 

PSD. The range of the calibration is set using “Positive and Negative Z” (Z refers to 

the axis of the Linear Stepper Motor) limit and the other parameters are “Wait time” 

and “Step” size. The “Saving data from PSD only” saves data from the PSD 
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according to the “Times to repeat” and “milliseconds to wait”. This box pretends to get 

the background value from the ambient light and other perturbations that affect the 

measurement, for this test there is no laser beam in the sensor, just the sensor in 

stand-by mode.  

The software includes functions for other forward tests. The “Rotation Stage 

Testing” works similarly to the “Calibration Method PSD moving”, but now the 

software control the rotation stage and not the Linear Stepper Motor anymore. This 

box is used for the Rotation Stage validation idea. 

 

Figure 36 - Example data from calibration 

Figure 36 - Example data from calibration shows how the data from the 

calibration is saved. There is one column to Xdiff (X volts), one to Ydiff (Y volts), SUM, 

Z position (Linear Stepper Motor position), Date and Time and for this measurement 

(X axis) X axis signal normalized (X volts/Sum).    
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Figure 37 - Calibration software flow chart 
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5.2: Mount for the Complete System  

A mount for the system was developed. In this mount the 2 PSDs, the 

beamsplitter and the retroreflector are able to fit. Figure 38 shows the CAD file for the 

mount. The bigger hole in the front side is for the laser beam go throw. The 

beamsplitter is transparent while the PSDs and the retroflector are black. There is a 

cover that closes the mount on purpose to be dark inside and reduce perturbations in 

the PSD sensor caused by the light.  

 

Figure 38 - Screenshot from the Mount CAD File 

5.3: Validation Ideas for the Measurement System  

After the calibration of the Position Sensitive Detector (PSD) the system is 

able to perform all the measurements required. The measurement system needs 

validation, for this purpose two ideas were analyzed on how to compare the 

measurements of the system with another reliable measurement system.  
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5.3.1: Rotation Stage Validation 

The next set-up was done with a rotation stage machine. This rotation 

machine can be controlled by the computer. The idea consists in inserting the 

rotation stage into the system, fixing the beamsplitter in the center of the rotation 

stage and perform small rotation steps. The rotation position data from the rotation 

stage can be compared with the data from the PSD. This aims to test the rotation 

measurement capability of the system.  

 

Figure 39 - Rotation Stage validation idea mount 

The red laser beam in Figure 39 is illustrated to help the understanding, 

because the laser beam is invisible. The A letter represents the PSD, the B letter 

represents the retroreflector, the C letter represents the Rotation Stage Machine and 

the D letter represents the Laser Source (collimator).  

5.3.2: Length Measurement Validation 

The Absolute Multiline System is responsible for length measurement. The 

Multiline does not perform the same measurement as normal, because now there is 

the beamsplitter in the laser beam path. The influence of the beamsplitter must be 
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analyzed. For this, it can be performed for the same distance one measurement with 

the beamsplitter and another one without the beamsplitter in the laser beam path. 

The results of both measurements must be compared. If the beam splitter causes 

some difference in the result, a correction must be in the calculations of the length 

measurement. The same mounting of the rotation stage validation can be used, but 

the beamsplitter must be perpendicular to the laser source and not rotated. 
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Chapter 6: Results 

6.1: PSD Calibration Results 

The calibration procedure of the PSD presented interesting results and proved 

that is possible to use the sensor for the desired objective. All calibration 

measurements were done according to the procedure explained in section 5.1.1. 

Totally there were performed 10 measurements for each axis and then a weighted 

mean was applied. This aims to look for the repeatability of the sensor.  After the 

weighted mean, a linear least square fit [ 24 ] was applied and the straightness of the 

each axis was analyzed. Theoretically, both axes should deliver the same calibration 

results, but some differences can happen due to the alignment, vibration, light and 

other perturbations. 

The next charts (Figure 40 and Figure 41) show a calibration measurement for 

each axis. In the chart, the left upper chart shows the position in the PSD (Xdiff or 

Ydiff signal divided by the SUM signal versus) versus the position in the Linear 

Stepper Motor. The lower chart on the left shows the signal shift in the other axis 

(should be constantly zero but alignment errors cause some shift). The upper chart 

on the right shows how the residuals from the linear least square fit change, in the 

best straightness case it should stay constant. The lower right chart shows a zoom 

from the selected area of the lower left chart. The theory of the sensor asserts that 

the sensor is more linear in the center and this is seen clearly in the graph PSD 

position versus Linear Stepper Motor position, because the measurement is made 

from one border to the other border of the sensor. Based on this, the center area of 

the sensor is more linear and was chosen to be used, the red line area.  
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Figure 40 – Calibration chart from PSD X axis 



 

59 

 

Figure 41 - Calibration chart from PSD Y axis 
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Due to the lack of repeatability of the system, setup not stable, difficult to 

perform the same alignment, beside others, a statistical weighted mean was applied.  

From the statistical weighted mean: 

 

The results from the weighted mean for each axis are: 

 

               

               

The “ ” is the distance from the PSD center to the laser position in the PSD. 

The “ ” refers to inner error, the statistical error from the uncertainty of each 

individual error. The “  ” is the compatibility error and it is bigger due to the difficulty 

of reproducing equal measurements.  

Beside the statistical errors from the weighted mean, we still have some 

fluctuation in the PSD signal value, this error is about 0.0004 volts. As SUM and Ydiff 

or Xdiff are used, this error is doubled. There is an association of errors and after 

some calculation, it returns the error is about 3%.  

The accuracy of the sensor, in the best case, is 1 micron plus 1 micron for 

each 100 microns error. The results prove that the sensor has enough performance 

to be used for the expected objective.  

The calibration presented some errors and had to be redone several times. 

Errors according to the ground vibration, luminosity and alignment of the laser beam 

mainly. The PSD showed to be very sensitive to touches in the fiber optic cable, so it 

is necessary to be careful with the fiber cables during measurements. 
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Figure 42 - Calibration of Y axis of the PSD 

Figure 42 shows the mount for one calibration measurement for the Y axis. 

The PSD is fixed into the Linear Stepper Motor axis. The red laser beam is illustrated 

to help the understanding, because the laser beam is invisible. The A letter 

represents the PSD, the B letter represents the Beamsplitter and the C letter 

represents the Laser Source (collimator). 

6.2: Validation Results 

This section presents the results from the validation ideas presented in section 

5.3. 

6.2.1: Rotation Stage Results 

The distance from the center of the beamsplitter to the center of the PSD 

sensor surface (“d”) was measured manually, but as mentioned before there is a big 

error associated with this measurement. The result was 82.00 ± 3.00 mm.  
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The PSD calibration software was adapted to control the rotation stage and 

save the data for this test. The software saved the angle position of the rotation stage, 

the Xdiff and SUM signals. A chart (Figure 43) was made based in the validation test 

results. The curve in the chart is position in the PSD (Xdiff/SUM) versus angle in the 

rotation stage.  

Analyzing the chart is possible to see that there is a linear area (the red line 

area) for small angle range. The red line is the least square fit applied to check the 

straightness. The angle “ϕ” is the center of the linear area. The 10.92 is the sum of 

the squares of the vertical deviations from the least squares fit. The distance “d” was 

calculated using the angle of the rotation stage and the position of the laser in the 

PSD. It returns a value of 84.37 ± 0.49 mm. 

A comparison of both “d” measurements: 

 Manual: 82.0000 ± 3.0000 mm 

 Software: 84.3700 ± 0.4891 mm 

 

Figure 43 - Rotation measurement validation chart 

There is a possible match of the results for “d” which proves that is possible to 

use the system to read the angle rotation. There is an acceptable error included due 

to the refraction in the beamsplitter that is not being taken into account.  Further, a 
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best estimation for the manual measurement should be performed and a method to 

include in the calculation the refraction in the beamsplitter should be developed.     

6.2.2: Length Measurement Results 

The same length measurement was made in two different ways: one with the 

beamsplitter in the laser beam path and the other one without the beamsplitter in the 

laser beam path. It means that the laser source and the retroflector were kept in the 

same position for both measurements.  

The measurements were performed by the Multiline System software, and 

were made 30 measurements for each method and the average was taken. 

Results of the measurements: 

 

 

 

The results show that the beamsplitter inserts some interference in the length 

measurement. The source of this error is because the Multiline System uses the 

index of refraction of the air for the whole laser beam path, but now there is some 

glass (25 mm) in the laser path two times because it is a round trip. The refraction 

index of the glass is bigger than the refraction index from the air. Basically the laser 

beam takes more time to develop the round-trip when the beam splitter is in the 

system and it makes Multiline System think the laser traveled a longer way. 

A correction based on the results should be studied and implemented in the 

final software.  

Beamsplitter Measurement (mm) 

With  419.5887037 

Without 406.5554768 

Difference 13.0332269 
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Chapter 7: Outlook  

7.1: Conclusions  

The results of the projects lead to conclude that is possible to use the concept 

of the proposed measurement system to measure the desired variables that are 

required to test the alignment of a machine tool. The measurement system can be 

used by itself to test the alignment or it can be integrated with another system in 

order to improve the performance and flexibility of the whole system. 

The calibration procedure adopted to calibrate the Position Sensitive Detector 

(PSD) proved that the PSD develops a reliable performance and fits the accuracy 

requirements. The PSD can be used in another project with the knowledge based 

created by the project. The PSD was affected with a lot of small perturbations like 

ambient light, vibrations from other machines and the laser fiber cable not being 

stationary. All theses small effects were taken into account and helped to build a 

better mounting for the complete system. The Multiline alignment laser, that is visible, 

influenced in the PSD measurements, so there was a need of turning this laser off 

after aligning the laser and only keep the measurement lasers on to avoid noise. 

The length measurement done by the Multiline System showed some 

differences from the normal length measurement, but corrections can be researched 

and applied to get the correct measurement values. This measurement can be 

performed even with the beamsplitter rotating small angles, just a correction need to 

be researched and developed. This procedure allows to have more than one different 

measurement at the same time, both rotation and length measurement can be 

performed in parallel. 

The validation idea of the rotation measurement proved that the system 

delivers enough performance and fit the specifications for measuring small angles for 

machine tool alignment test.  

Research and development still needs to be done to optimize the concept and 

test some improvements and variations that can be applied to the measurement 

concept. The final mount will turn the concept able to be used not only for alignment 
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of machine tool testing, but for any kind of machine that performs similar movements. 

All the results show that the measurement system has a great future. 

 

7.2: Further Research Questions 

The following steps of the project consist in developing the final software, 

based on the calibration software, in order to read out all the measurements and 

return the values to the user and produce the mounting for the system and mount 

and test the system in the new mounting. The second Position Sensitive Detector 

(PSD) must be bought and calibrated the same way as the first PSD to complete the 

measurement system. The second PSD will bring new possibilities for the system, 

like to read both PSDs at the same time to improve the result reliability. 

The project showed other interesting topics of research like the influence of 

the glass of the beamsplitter in the interferometry measurement made by the 

Multiline System. This research can be applied to the system to help improve the 

performance. 

The calculation of the rotation measurement does not take into account the 

diffraction and refraction that can occur when the incidence angle of the laser is 

different from zero degree (into the beamsplitter surface). A new calculation including 

the diffraction and refraction of the laser beam could be studied and developed. The 

results of both measurements could be compared and analyzed.   

The measurement system developed is portable (the sensor mount) and 

maybe can be applied to other measurement needs as robot alignment tests and 

other machines with the same or similar movements measured by the system.  

A comparison with other methods actually used or in development in the 

laboratory for testing the alignment of machine tool should be performed, to help 

identifying possible advantages and disadvantages of the measurement system 

developed. 

Furthermore, other validation ideas should be developed to test the 

measurement system and compare with the actual results.  
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