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Fixed-income portfolio optimization based on dynamic
Nelson-Siegel models with macroeconomic factors for the Brazilian

yield curve

Abstract

The study investigates the statistical and economic value of forecasted yields generated
by dynamic yield curve models which incorporate a large macroeconomic dataset. The
analysis starts off by modeling and forecasting the term structure of the Brazilian nominal
interest rates using several specifications for the Dynamic Nelson-Siegel (DNS) framework,
suggested by Diebold & Li (2006). The first exercise concerns the incorporation of macro
factors extracted from a large macroeconomic dataset, including forward-looking variables,
to compare the forecast performance between some macroeconomic representations of the
DNS model and itself. The results for forecast horizons above three months support the
evidence for the incorporation of one macro factor that summarizes broad macroeconomic
information regarding mainly inflation expectations. The conclusion that macroeconomic
information tends to improvement in yield curve forecasting extend results found in previous
literature. In order to assess the economic value of those forecasted yields, a fixed-income
portfolio optimization using the mean-variance approach of Markowitz (1952) is performed.
The analysis indicate that good yield curve predictions are important to achieve economic
gains from forecasted yields in terms of portfolio performance. Preferred forecasted yields
for short forecast horizons perform quite well for optimal mean-variance portfolios with
one-step-ahead estimates for fixed-income returns, while forecasted yields generated by
a macroeconomic DNS specification outperforms in terms of portfolio performance with
twelve-step-ahead estimates. Therefore, there is an economic and statistical gain from
considering a large macroeconomic dataset to forecast the Brazilian yield curve dynamics,
specially for longer forecast horizons and for medium- and long-term maturities.

Keywords: Fixed-income portfolio optimization. Brazilian yield curve. Dynamic Nelson-
Siegel model. Macroeconomic factors. Yield curve forecasting. Mean-variance approach.
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Resumo

O estudo investiga o valor estatístico e econômico dos rendimentos previstos por modelos
dinâmicos da curva de juros que incorporam um grande conjunto de dados macroeconômicos.
A análise parte da modelagem e previsão da estrutura a termo das taxas de juros nominais
brasileiras, usando diversas especificações para o modelo Dinâmico de Nelson-Siegel (DNS),
sugerido por Diebold & Li (2006). O primeiro exercício diz respeito à incorporação de macro-
fatores extraídos de um grande conjunto de dados macroeconômicos, incluindo variáveis
de expectativas, para comparar o desempenho de previsão entre algumas representações
macroeconômicas do modelo DNS e ele mesmo. Os resultados para horizontes de previsão
acima de três meses apoiam a evidência para a incorporação de um fator macro que
resume principalmente informações gerais sobre expectativas de inflação. A conclusão
de que informação macroeconômica tende a aprimorar a previsão da curva de juros
estende os resultados encontrados na literatura recente. Para avaliar o valor econômico
dos rendimentos previstos, é realizada uma otimização de carteira de renda fixa usando a
abordagem de média-variância de Markowitz (1952). A análise indica que boas previsões
para as curvas de juros são importantes para obter ganhos econômicos com os rendimentos
previstos em termos de desempenho do portfólio. Rendimentos previstos com maior precisão
para horizontes de previsão curtos atingem bons resultados para portfólios ótimos que
utilizam estimativas de um passo a frente para os retornos de renda fixa, enquanto que
rendimentos previstos gerados por uma especificação macroeconômica do modelo DNS
atingem bom desempenho para a otimização que utiliza estimativas de doze passos a frente.
Portanto, há um ganho econômico e estatístico ao considerar um grande conjunto de dados
macroeconômicos para prever a dinâmica da curva de juros brasileira, especialmente para
horizontes de previsão mais longos e para maturidades de médio e longo prazo.

Palavras-chaves: Otimização de portfólio de renda fixa. Curva de juros brasileira. Mod-
elo dinâmico de Nelson-Siegel. Fatores macroeconômicos. Previsão da curva de juros.
Abordagem de média-variância.
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1 Introduction

There is a wide heterogeneity between term structure models that try to fit
and forecast the dynamic behavior of yield curves. Traditional term structure models
decompose interest rates into a set of yield latent factors, such as level, slope and curvature
(LITTERMAN; SCHEINKMAN, 1991). Even providing good in-sample fit (Nelson & Siegel
(1987); Dai & Singleton (2000)) and satisfactory results for out-of-sample forecasts (Duffee
(2002); Diebold & Li (2006)), the economic meaning of such models is limited since they
neglect a macroeconomic environment that could affect interest rates of different maturities.
Many yield curve models simply ignore macroeconomic linkages. Nonetheless, there are
macroeconomic forces that shape the term structure, so that changes in macro variables
can affect future yield curves and expectations of future interest rates (GÜRKAYNAK;
WRIGHT, 2012). Thereby, researchers have begun to use a joint macro-finance modeling
strategy, which provides the most comprehensive understanding of the term structure of
interest rates.

The development of term structure models that integrate macroeconomic and
financial factors is recent in economic research. Ang & Piazzesi (2003), Diebold et al. (2006)
and Hördahl et al. (2006) provide the pioneering studies that incorporate macroeconomic
information to explain the dynamics of the yield curve through time. Diebold et al. (2006)
provide a macroeconomic interpretation of the Dynamic Nelson-Siegel (DNS) model,
suggested by Diebold & Li (2006). They combine observable macroeconomic variables,
basically related to real activity, inflation, and monetary policy, and yield factors into the
Vector Autoregression (VAR) that governs the dynamics of factors. While these studies
consistently find significant relationships between macroeconomic variables and government
bond yields, they ignore potential macroeconomic information that could be useful for
yield curve modeling and forecasting.

More recently, a literature that uses large macroeconomic datasets has emerged,
based on the idea that monetary authorities use rich information sets to take decisions
about short-term rates (BERNANKE; BOIVIN, 2003). Moench (2008) proposed to use the
“Factor-Augmented VAR” (BERNANKE et al., 2005) procedure to jointly model the yield
curve dynamics and macro factors extracted from a large macroeconomic dataset. Pooter et
al. (2010) and Favero et al. (2012) also use “data-rich environments” for the term structure
by extracting common macro factors through dimensionality reduction techniques, such
as principal component analysis. In general, these studies consistently reveal that the
inclusion of few macroeconomic principal components leads to better out-of-sample yield
forecasts compared to benchmark models that use individual macro variables or do not
incorporate macroeconomic information. The key point is that if dynamics of the yield
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curve and macroeconomy are correlated, the incorporation of macro factors into term
structure models can improve forecast accuracy and possibly generate better information
for fixed-income portfolio analytics.

Term structure models play an important role in fixed-income asset pricing, strategic
asset allocation, and, of course, portfolio analytics. The evolution of the yield curve is
essential to compute the risk and return characteristics of one’s fixed-income portfolio
(BOLDER, 2015). In order to take an active position in a fixed-income portfolio, based on
the mean-variance approach of Markowitz (1952), dynamic yield curve models are used to
generate yield forecasts for selected maturities, which are then used to compute expected
fixed-income returns. The fixed-income portfolio problem essentially consists in predicting
the distribution of returns for a set of securities and select the optimal vector of portfolio
weights conditional on one’s expected returns and risk preferences.

Although the mean-variance approach of Markowitz has been widely explored in
the context of equity portfolios, little is known about portfolio optimization in fixed-income
markets. A recent literature, kick-started by Kokn & Koziol (2006), that exploits the
risk-return trade-off in bond returns has emerged. Kokn & Koziol (2006) employ the
Vasicek (1977) model to perform a mean-variance bond portfolio selection. Caldeira et al.
(2016) extend this approach by employing dynamic factor models for the term structure
and derive simple closed-form expressions for expected bond returns and their covariance
matrix based on forecasted yields. Thornton & Valente (2012) assess the economic value of
the predictive power of forward rates for bond excess returns. These studies contribute to
validate the use of the term structure models to perform mean-variance optimization in the
fixed-income context. The present study solves an alternative version of the mean-variance
optimization problem, following Caldeira et al. (2016), and uses datasets of Brazilian
nominal interest rates.

This study contributes to the present literature by assessing the economic value of
forecasted yields generated by yield curve models incorporating a large macroeconomic
dataset. That is, it combines the benefits from incorporating macroeconomic information
into term structure models and the use of those forecasted yields to assess their economic
value through a portfolio optimization analysis. The incorporation of macroeconomic
factors into term structure models has the theoretical premise of increasing the model’s
predictive power. In this sense, the main question is the following: Is there some economic
gain, in terms of portfolio performance, from incorporating macroeconomic information
into term structure models? Hence, the major purpose is to investigate the magnitude of
the statistical and economic gain with the incorporation of a large macroeconomic dataset
into the Dynamic Nelson-Siegel model.

The empirical evidence indicates that the incorporation of one macro factor, which
summarizes broad macroeconomic information regarding mainly inflation expectations,
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contributes to improve yield curve predictions for 6- and 9-month-ahead forecast horizons,
specially for medium and long-term maturities. Furthermore, estimates for alternative
specifications of the DNS framework suggest that imposing further restrictions on factor
dynamics can lead to forecast improvements in favor of some parsimonious specifications
with less number of estimated parameters. In the context of portfolio selection, good yield
curve predictions proved to be important to achieve better results in terms of portfolio
performance. Parsimonious yield curve models without macroeconomic information and
with better forecast accuracy for short forecast horizons perform quite well for optimal
mean-variance portfolios with one-step-ahead estimates for fixed-income returns. On the
other hand, forecasted yields generated by a macroeconomic specification for the term
structure provide better information to perform a mean-variance portfolio optimization
which uses twelve-step-ahead estimates for fixed-income returns.

The outline of the study is as follows. Part I is composed by a literature review
that focuses on: (i) term structure of interest rates, Chapter 2; (ii) term structure models,
mainly the class of Nelson-Siegel models, Chapter 3; (iii) the relationship between the term
structure and macroeconomy, Chapter 4; and (iv) fixed-income portfolio optimization,
Chapter 5. Part II discusses the theoretical models for the yield curve, the empirical data
and the estimation methodology, which comprises a principal component analysis, the
state-space model and Kalman filter, and the closed-form expressions for the distribution of
fixed-income returns. Part III discusses the empirical results regarding in-sample and out-
of-sample yield curve estimates and the application to fixed-income portfolio optimization.
Finally, Chapter 14 involves the concluding remarks.



Part I

Literature Review
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2 The term structure of interest rates

The term structure of interest rates expresses the relationship between spot rates
from different maturities at any point in time, being obtained by prices or yields of
fixed-income instruments negotiated in financial markets. Public bonds, for example, are
instruments used in financing public debt and pay for their holder a monetary amount in
some future date, known as maturity. Furthermore, the yield that the bond pays until its
maturity is closely related to the time value of money, i.e., the idea that money available
at the present time is worth more than the same amount in the future due to its potential
earning capacity. Investors must be compensated for elements that deteriorate the value of
money over time. The major example is inflation: an increase in price level before bond’s
maturity deteriorates its nominal value, causing loss of purchasing power for the bond’s
holder1. Hence, the core principle of fixed-income theory is based on the assumption that
money can earn interest over time.

Diebold & Rudebusch (2013) discuss three key theoretical bond market constructs
and the relationships among them: the discount curve, the forward rate curve, and the
yield curve. The yield curve expresses the graphic construction of the term structure of
interest rates by tracing yields against a set of maturities τ = (τ1, τ2, ..., τN) for a given
issuer at a point in time. Let Pt(τ) denote the price of a zero coupon bond, without default
risk, of maturity τ in period t, and with maturity value equal to unity. Zero coupon bonds
do not pay periodic coupons, so that investors receive bond’s face value and earnings only
at maturity. Thus, Pt(τ) is the present value of $1 receivable τ periods ahead. Furthermore,
yt(τ) is its continuously compounded yield to maturity at time t2. The basic assumption is
that Pt(τ) yields the present value of future cash flow promised by the issuer, discounted
by a discount factor,

yt(τ) = − log(Pt(τ))
τ

, (2.1)

where τ can assume any value in the set of possible maturities.

There is an immediate relationship between the yield curve and the discount curve,
and the knowledge of one allows someone to build another. From yield curve (2.1) we
obtain the discount curve,

Pt(τ) = e−τyt(τ). (2.2)

For a bond with maturity τ that pays periodic coupons ci in periods ti, the discount curve
1 Another element is the credit risk, which deteriorates bond’s value by increasing default probability of

the bond issuer.
2 The yield yt(τ) is commonly used as an annualized rate, and it is thus considered in this study.



Chapter 2. The term structure of interest rates 28

follows:
Pt(τ) =

n∑
i=1

cie
−(ti−t)yt(τ).

The forward rate at time t, applied to interval between τ1 and τ2, relates to the
spot rate3 yt(τ), and is defined as

ft(τ1, τ2) = τ2yt(τ2)− τ1yt(τ1)
τ2 − τ1

= 1
τ2 − τ1

∫ τ2

τ1
yt(u)du. (2.3)

The forward rate expresses the marginal rate of return for holding a bond for an additional
period τ2 − τ1 > 0. In other words, forward rates represent the rate on a commitment to
buy a one-period bond at a future date, as if investors were performing transactions at
a current interest rate applied to a future date. The limit case of (2.3), when τ2 is quite
close to τ1, expresses the nominal curve of instantaneous forward rates,

ft(τ) = −P ′t (τ)/Pt(τ), (2.4)

where P ′t (τ) represents the first derivate of the function Pt(τ). The function ft(τ) describes
the instantaneous rate of return of an investment for a short time.

Eq. (2.4) reveals that discount curve and the forward rate curve are fundamentally
related, so that knowledge of the discount curve lets one calculate the forward rate curve.
Finally, Eqs. (2.2) and (2.4) imply the relationship between the yield curve and forward
rate curve:

yt(τ) = 1
τ

∫ τ

0
ft(u)du. (2.5)

In particular, the spot rate yt(τ) is an arithmetic average of the instantaneous forward
rates. Therefore, the yield curve yt(τ) is the average rate of decline in forward rates for
the interval between 0 and τ .

Thus, knowledge of any one of Pt(τ), yt(τ), or ft(τ) implies knowledge of the other
two curves, the three are effectively interchangeable (DIEBOLD; RUDEBUSCH, 2013).
Hence, with no loss of generality it is possible to work with any of those curves. According
to (BOLDER, 2015), a wide range of important information is embedded in those curves
ranging from fundamental issues such as the time value of money, expected monetary
policy actions, and inflationary expectations to more complicated, but equally important
ideas such as risk premia, assessments of creditworthiness, and relative liquidity.

In practice, yield curves are not observed, because in real financial markets one can
observe just a few bond maturities (e.g., three-month, twelve-month, five-year, ...), which
only allows to plot discrete points of yields against their maturities. The theoretical yield
curve is a smooth and continuous curve constructed through these discrete points observed
in financial markets. For this reason, yield curves must be estimated from observed bond
3 The spot rate is commonly used to represent the lower term deposit rate of return possible in the

economy.
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prices. At any point of time t, there will be a set of information about bonds with different
maturities τ and different cash flow payments, which can be used to construct those curves.
This exercise of adjusting the term structure of interest rates across the whole maturity
spectrum is the role of yield curve modeling.

2.1 Interpolation
As a matter of fact, the issuance of debt bonds is not continuous in time, besides

being different by maturity and cash flow payment. As a result, not all possible maturities
will be observed at any time t and one will only have a few discrete points of yields against
maturities. However, obtaining a complete and continuous yield curve that reflects the
same class of securities is of great importance for policy makers and financial analysts who
need to associate interest rates for any maturity. That is, the empirical yield curve needs to
be converted into a smooth and continuous curve that connects the discrete points observed
in financial markets. The first approach to yield curve construction is due to McCulloch
(1971), who employs a cubic spline discount function interpolation to model the yield curve
between missing maturities. An improved and most popular alternative to yield curve
construction is due to Fama & Bliss (1987), who construct yields from estimated forward
rates at the observed maturities. According to Diebold & Rudebusch (2013), this approach
sequentially constructs the forward rates necessary to price successively longer-maturity
bonds. Those forward rates are often called “unsmoothed Fama-Bliss” forward rates, and
they are transformed to unsmoothed Fama-Bliss yields through Eq. (2.5).

Choudhry (2011) discusses some popular interpolation methods to fit a smooth
yield curve using observed bond prices. The most common approaches refer to linear
interpolation, logarithmic interpolation, polynomials, cubic splines, and statistical models,
which use the parametric form of Nelson & Siegel (1987). As stated in Caldeira (2011),
commonly, polynomials with known forms (such as Laguerre polynomials) are used as
functions that link maturities to interest rates. Although, there is no theoretical model
behind this approach. It is assumed that the term structure can be explained by a
polynomial function f . Since one estimates the coefficients of f that best fit the actual
rates observed in financial markets, it is possible to obtain the interest rate associated
with any maturity. The term structure obtained with this method is called interpolated
yield curve.

Cubic splines interpolation, proposed by McCulloch (1971), employes piecewise
combinations of cubic functions to fit the yield curve. In other words, a piecewise polynomial
smoothly connects the yield curve between each pair of vertices (or knot points) of the
observed yield data. Hence, the goal of cubic spline interpolation is to get an interpolation
formula that is continuous in both the first and second derivatives, both within the intervals
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and at the interpolating vertices. The computation of interpolated yields between two
vertices requires the settlement of some smoothness criteria for the polynomial function,
which ensures a continuously differentiable curve: (i) the level of the cubic spline and its
two first derivatives are identical at the knot points and (ii) the second partial derivative
of each curve point must be continuous between two vertices. The technique produces
interpolated curves that preserve certain smoothness, precision and rigor in its process.

Assuming that maturities τ1, ..., τN and yields yt(τi), ..., yt(τN) are observed, the
yield for any maturity τ , where τ is a point between two vertices (τi ≤ τ ≤ τi+1), follows
the function,

yt(τ) = ai + bi(τ − τi) + ci(τ − τi)2 + di(τ − τi)3, (2.6)

where

y
′

t(τ) = bi + 2ci(τ − τi) + 3di(τ − τi)2,

y
′′

t (τ) = 2ci + 6di(τ − τi),

y
′′′

t (τ) = 6di.

The idea of cubic splines interpolation is to complete each cubic spline by assessing the
coefficients (ai, bi, ci, di,) for 1 ≤ i ≤ N − 1. That is, in each interval (τi, τi+1), the method
can fit a flexible line through the points (τi, yt(τi)) and (τi+1, yt(τi+1)) using the formula
given by (2.6). The imposed constraints that contribute to form a system of simultaneous
equations are:

(i). The interpolation function passes through given vertices, so that ai = yt(τi) for
i = 1, 2, ..., N − 1 and aN−1 + bN−1hN−1 + cN−1h

2
N−1 + dN−1h

3
N−1 = yt(τN) = aN ,

where hi = τi+1 − τi;

(ii). The interpolation function passes through given vertices, so that ai + bihi + cih
2
i +

dih
3
i = ai+1 for i = 1, 2, ..., N − 2;

(iii). The interpolation function is continually differentiable, so that bi+2cihi+3dihi = bi+1

for i = 1, 2, ..., N − 2.

This constitutes a system with 3N − 4 equations with 4N − 4 unknown parameters.
Therefore, there is still N linear constraints to be specified.

Defining the derivative of the interpolation function to the right of the upper
endpoint as,

bN = bN−1 + 2cN−1hN−1 + 3dih2
N−1.

In the general case, the specification of the remaining N constraints is equivalent to the
specification of (b1, b2, ..., bN ). In particular, if one defines (b1, b2, ..., bN ), then, (c1, c2, ..., cN )



Chapter 2. The term structure of interest rates 31

and (d1, d2, ..., dN ) follows straightforward, for each i, and two equations with two unknown
parameters come up:

mi = ai+1 − ai
hi

,

ci = 3mi − bi+1 − 2bi
hi

,

di = bi+1 + bi − 2mi

hi
,

for i = 1, 2, ..., N − 1.
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3 Term structure models

In general, many forces are at work at moving interest rates. Identifying these forces
and understanding their impact on yields, is therefore of crucial importance (POOTER et
al., 2010). Term structure models aim to specify the behavior of interest rates, seeking to
identify the driving forces, also called factors, that help to explain prices of fixed-income
securities of all kinds. These factors are stochastic in nature, and thus carry an uncertainty
character. Hence, yield curve modeling is based on probability theory and specifies a
statistical process that describes the stochastic character of those factors who impact
on interest rates. The fact that the term structure is influenced by a number of factors1

reveals a non trivial process for the yield curve modeling and forecasting.

A term structure model can describe the form of the yield curve at a given point
in time or/and the dynamics of the yield curve through time. The first perspective
encompasses a mathematical exercise of fitting a static yield curve, while the second
question seeks to understand how the yield curve moves across time. A dynamic yield
curve model, therefore, seeks to use statistical techniques to describe the future evolution
of the yield curve in a manner that is consistent with its observed behaviour (BOLDER,
2015).

Significant progress has been made in term structure modeling, whereas the set of
term structure models is divided into three major popular classes: affine, arbitrage-free
(AF) and statistical models, which include the Nelson & Siegel (1987) approach. The
literature on affine term structure models was kick-started by Vasicek (1977) and Cox et
al. (1985), later characterized by Duffie et al. (1996) and classified by Dai & Singleton
(2000)2. Affine models describe the dynamics of the term structure as a function of a small
number of factors, such as the short rate. However, affine models are inconsistent with
the no-arbitrage hypothesis once they have difficulty in adjusting the yield curve across
the entire maturity spectrum. This fact leds to the formulation of arbitrage-free models,
which use adjustment factors to allow the model to match the empirical yield curve more
effectively.

Nonetheless, some problems emerge from the restrictions that arbitrage-free models
impose to factor loadings, as the deterioration of the empirical fit to yield data. Nelson &
Siegel (1987) suggest a statistical representation of the yield curve, seeking to improve
empirical fit of term structure models. A step further, the Dynamic Nelson-Siegel approach
1 For example, the constant adjustment of investors’ expectations about inflation is an impact factor on

the components of the yield curve.
2 A survey of issues regarding the specification of affine term structure models in continuous time are

explored in Piazzesi (2010).
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seeks not only to improve the yield curve fit over time, but also to perform efficient
forecasts about the future yield curve dynamics. The class of Nelson-Siegel models has
been a popular choice among central bankers supported by its appealing features concerning
smoothness and parsimony.

3.1 Affine term structure models
Affine models are based on the assumption of an economic equilibrium in a particular

interest rate market, and they are developed using risk-neutral probabilities. These models
assume that securities with similar maturities must have similar returns, otherwise no
investor would buy those securities with lower expected return. Such a difference can not
persist in an economic equilibrium environment. Affine models specify that bond prices
depend on state variables, typically associated with the short rate r, which follow a normal
Gaussian distribution. Gürkaynak & Wright (2012) define that affine models are so called
because they define yields of different maturities as affine functions (constant plus a linear
term) of factors3, which form a state vector and capture the yield curve movements over
time.

Two of the most popular bond pricing models are those constructed by Vasicek
(1977) and Cox et al. (1985). They are known as one-factor models and describe the
process of the term structure as a function of one single state variable, the short rate r.
Since we can not predict the future path of r with certainty, it is natural to set r as a
random variable. Its future value can take various possible outcomes, namely an associated
probability distribution. Thus, one-factor models aim to specify the stochastic process that
describes the dynamics of the variation process of r, which ultimately is the treatment
of randomness of the bond prices and forward rates. The fact is that one can not know
the future level of forward rates, but they can be estimated by modeling the current spot
rates. Wilmott (2007) discusses the mathematical foundation of affine term structure
models by modeling the dynamics of the short rate, which is assumed to be a continuous
random variable. Thus, the role of one-factor models is to specify the stochastic process
that describes the variation of the short rate. The standard Wiener process is a popular
choice of stochastic process.

The short rate suffers dynamic shocks that cause variations in its value. If the
variations of r are normally distributed and shocks follow a Wiener process, denoted by
dW , r is a stochastic process that changes its value instantly according to its mean µ̄

and standard deviation σ, and whose pattern of variation follows a stochastic differential
equation:

dr = µ̄(r, t) dt+ σ(r, t)dW. (3.1)
3 Piazzesi (2010) characterizes that yt(τ) is a linear function of a state vector ft with parameters A(τ)

and B(τ) that depends on maturity τ : yt(τ) = A(τ) +B(τ)′ft.



Chapter 3. Term structure models 34

The term µ̄ can be seen as an observed trend that influences the direction of the instanta-
neous variation dr, avoiding that the stochastic component carry the spot rate to infinite
levels. Hence, one-factor models describe the dynamic process of the variation in r as a
function of time and dW , where the first term of (3.1) is the deterministic component and
σ(r, t)dW is the stochastic element.

Vasicek (1977) and Cox et al. (1985) (CIR) assume a similar structure for the
deterministic component, which incorporates a mean reversion term:

µ̄ = κ(θ − r), (3.2)

where parameter κ controls mean reversion, i.e., the adjustment speed of the short yield
according to its distance from the average long-term rate θ, which ultimately controls the
yield curve shape. The difference between them concerns the addition of a multiplicative
standard deviation component (

√
r) into the stochastic component for the CIR model.

Once the behavior of the short rate is identified, one can build the complete term
structure from expected yields for any future period using (2.2). Hence, one-factor models
capture the dynamics of the short rate following the functional form (3.1), which in turn is
used to model the complete forward curve. Note that this approach uses only one source
of randomness and assumes that all forward rates move in the same direction, resulting in
high correlation between bond returns of different maturities. For this reason, affine models
are not capable to reproduce the different shapes of the observed yield curve in a dynamic
and accurate way. Therefore, for having such a dependency between yields of different
maturities, one-factor models are inconsistent with the hypothesis of no-arbitrage. Besides
that, the single factor structure severely limits the scope for interesting term structure
dynamics, which rings allow in terms of both introspection and observation (DIEBOLD;
RUDEBUSCH, 2013).

Examining the yield curve movements over time, one can clearly notice that there
are more than just a common factor operating in term structures, which involve multiple
factors in the real world. Multifactor models are directly developed from one-factor models,
but they incorporate more than just one factor4. Their implementation and calibration is
a demanding and time consuming process, rightfully because they incorporate a larger
amount of information and estimated parameters. In response to the difficulty that one-
factor models have in adjusting the complete term structure, multifactor models have been
developed to improve yield curve modeling along its entire maturity spectrum. The Heath
et al. (1992) model is a general structure regarding multifactor models, which models not
only short rates but long-term rates too, using the entire term structure as an input to
the process.
4 Some examples of state factors used in multifactor models: long-term yield, real interest rate adjusted

by inflation-linked bonds, current inflation rate, spread between short and long-term yields, among
others.
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3.2 Arbitrage-free models
The whole class of AF models for the term structure assumes that financial markets

eliminate opportunities of riskless arbitrage across maturities and over time. Arbitrage-
free models hold theoretical cross-sectional restrictions on factor loadings for absence of
arbitrage opportunities in well-organized markets, specifying the risk-neutral evolution of
the yield factors and its risk premia5. There is a concern in adjusting the observed yield
curve, so that the observed yields are close to those estimated by the AF model. This
accurate adjustment ensures the consistency of the model with the family of observed
curves in the market.

In theory, the hypothesis of absence of arbitrage opportunities is characterized by
consistency between parameters describing the dynamic evolution of the curve under a
risk-neutral measure, and a family of parameterized curves under a physical measure. In
the context of Björk & Christensen (1999), consistency between a term structure model
M and a certain family of parameterized forward rate curve G refers to test if family G
contains all curves estimated by M . When pair (M , G) is consistent, which ensures the
absence of arbitrage opportunities between bonds of different maturities over time, the
term structure model produces forward rate curves that belongs to the relevant family,
eliminating the need of changing model parameters each period t.

Ho & Lee (1986) introduced the first AF model, applying the structures of Vasicek
(1977) and Cox et al. (1985). The model describes the following stochastic process for the
short rate:

dr = θ(t) dt+ σ dW (t), (3.3)

where the second term of (3.3) is constant and independent of r. The function θ(t) is
dependent on time describing the average movement of the spot rate and its direction.
Hull & White (1990) describe an extension of Vasicek (1977) where the spot rate follows:

dr = κ(θ − r) dt+ σ dW (t). (3.4)

In short, the assumption of no-arbitrage guarantees that, after accounting for risk,
the dynamic evolution of yields over time is consistent with the cross-sectional shape of the
yield curve at any point in time. Some problems emerge from the no-arbitrage imposition
that may degrade the empirical performance of a misspecified model, explaining why
models like the canonical affine AF models often exhibit poor forecasting performance.
Duffee (2002) argue that affine AF models do not exhibit good empirical fit. Besides that,
the estimation procedure is problematic in the economic perspective since the maximum
likelihood function has several maximum points and there are nonlinear relationships
between parameters and yields. Kim & Orphanides (2005) discuss that the maximum
5 Specific restrictions of an arbitrage-free model may be found in Ang & Piazzesi (2003).
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likelihood function appears to have multiple points of local maximum with similar values
but not equivalent, which generate different implications for economic behavior. Joslin et
al. (2014) argue that a standard practice to bypass the numerous likelihood maxima is
to set to zero most parameters that are statistically insignificant, and then analyse the
constrained model.

3.3 The class of Nelson-Siegel models

3.3.1 Nelson-Siegel

Nelson & Siegel (1987) suggest a flexible and parsimonious structure with less
parameterization to fit a smooth yield curve to unsmoothed yields. The static Nelson-Siegel
(NS) representation specifies the evolution of the yield curve factors, such as the dynamics
of risk premiums, and proves that a linear combination of three smooth exponential factors6

can properly adjust the different formats of the entire yield curve at any time:

y(τ) = β1 + β2

(
1− e−λτ
λτ

)
+ β3

(
1− e−λτ
λτ

− e−λτ
)
, (3.5)

where parameter λ controls the exponential decay rate of the curve, or the rate at which
factor loadings decay to zero7. Thus, (3.5) suggests a functional form for fitting the cross
section of unsmoothed bond prices or yields.

Parsimony and flexibility provide the most appealing features of NS framework.
A parsimonious approximation of the entire yield curve promotes smoothness between
yield vertices, ensuring empirical tractability and trustworthy estimates. The flexibility
of NS representation to represent the various formats of the yield curve8 can be seen
by the interpretation of model coefficients as measures of short, medium and long-term
components of the curve. According to the way that each factor shock affects the curve,
Litterman & Scheinkman (1991) named β1, β2 and β3 as level, slope and curvature factors
of the term structure. They are unobserved, or latent, whereas the associated loadings
are restricted by a functional form that imposes smoothness of loadings across maturities
(DIEBOLD; RUDEBUSCH, 2013).

The static Nelson-Siegel form has long been very popular among financial market
practitioners and central banks for curve fitting at a point in time because of its considerable
statistical appealing. However, Björk & Christensen (1999) and Filipović (1999) prove
that under the absence of no-arbitrage conditions there is no nontrivial model governed
by stochastic processes and consistent with the family of Nelson-Siegel curves, i.e., NS
6 More specifically, a constant plus a Laguerre function, which consists in polynomials multiplied by

exponential decay terms on the domain [0,∞) that can approximate any forward rate curve.
7 Parameter λ can also be interpreted as β3 maximum point.
8 As stated in Diebold & Li (2006, p. 348), Nelson-Siegel model is capable of replicating a variety of

yield curve shapes: upward sloping, downward sloping, humped, and inverted humped.
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models are not theoretically arbitrage-free. In another way, the NS framework does not
contain the necessary restrictions to eliminate opportunities for riskless arbitrage.

3.3.2 Dynamic Nelson-Siegel

Diebold & Li (2006) introduced the dynamic component to the static Nelson-Siegel
framework through time-varying parameters. Furthermore, up to Diebold & Li (2006) few
term structure models gave importance to out-of-sample forecasting. They perform a new
interpretation of the NS framework by introducing dynamic 9 and efficient forecasting
perspective for out-of-sample period10. The mechanics of Dynamic Nelson-Siegel (DNS)
follow the functional form of Nelson & Siegel (1987), which has a good fit to the observed
interest rates for different maturities and moments of time, but with the incorporation of
a time-series environment through time-varying factors:

yt(τ) = β1t + β2t

(
1− e−λτ
λτ

)
+ β3t

(
1− e−λτ
λτ

− e−λτ
)
. (3.6)

DNS carries cross-sectional and time-series perspectives, representing a spatial and temporal
linear projection of yt(τ) on the time-varying variables β1t, β2t and β3t, which can be
interpreted respectively as long, short and medium-term latent factors11.

The interpretation of the yield latent factors refers to the inspection of the factor
loadings (1, ((1 − e−λτ )/λτ), ((1 − e−λτ )/λτ − e−λτ )). The long-term variable β1t drives
the term structure level since limτ→∞ yt(τ) = β1t, which loading is constant at 1 at all
maturities. An increase in β1t shifts the entire yield curve equally, as its factor loading is
identical at all maturities. The loading on β2t is a function that starts at 1 but decays
monotonically with maturity. Fluctuations on β2t generate greater deviations in short-term
yields. Diebold & Li (2006) define β2t as the difference between a ten-year yield and a
three-month yield, yt(120)−yt(3)12. In this case, an increase of β2t indicates greater positive
feedback from long-term yields compared to short yields. In addition, it is important to
note that the instantaneous yield depends on both the level and slope factors, because
yt(0) = β1t + β2t. At least, Diebold & Li (2006) define medium-term factor related to
curvature as twice the two-year yield minus the sum of the ten-year and three-month
yields, 2yt(24)− yt(3)− yt(120). The loading on β3t increases at middle maturities and
9 The dynamic is fundamental to model the evolution of the securities market (CHRISTENSEN et al.,

2011).
10 Diebold & Li (2006) argue that equilibrium and arbitrage-free models focus only on fitting the term

structure at a given point of time to ensure the absence of arbitrage opportunities. As they seek to
incorporate dynamic and the out-of-sample forecast perspective to yield curve, the authors use a model
capable to describe the future dynamics of the yields for different maturities over time.

11 The DNS form is included in the set of so-called three-factor (level, slope and curvature) models.
12 Other authors, as Frankel & Lown (1994), define the slope factor as yt(∞)− yt(0), which is exactly

equal to −β2t. However, the following discussion interpret the slope of the yield curve as the spread in
interest rates between long and short-term maturities.
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then decays to zero. So, an increase in β3t has little effect on short and long-term yields,
but increases the medium-term yields.

DNS is a leading example of a “dynamic factor model”. According to Diebold &
Rudebusch (2013), dynamic factor models provide appealing features because yield data
actually display factor structure. Some key reasons to prove the statistical appealing:
(i) factor structure generally provides a highly accurate empirical description of yield
curve data, because just a few constructed variables or factors can summarize bond price
information; (ii) statistical tractability, by providing a valuable compression of information,
effectively collapsing an intractable high-dimensional modeling situation into a tractable
low-dimensional situation. Beyond good fit and forecast performance of DNS, its simplicity
confirms the increasing popularity of the DNS structure.

State-space representation of DNS

Diebold & Li (2006) show that it is possible to interpret the DNS model in state-
space system format, assuming that the dynamic latent factors are state variables and follow
a stochastic first-order vector-autoregressive. The state-space model can be summarized
by the matrix notation:

(ft − µ) = A(ft−1 − µ) + ηt, (3.7)

yt = Λft + εt, (3.8)

for t = 1, ..., T . The parameter ft is the state vector (level, slope and curvature factors), µ is
the factor mean, A is the state transition matrix, ηt is the state equation factor disturbances,
Λ is the sensitivity matrix of the measurement equation, εt is the measurement equation
disturbances, and yt is the N × 1 vector of observed yields for N different maturities τi at
time t, so that yt = [yt(τ1), yt(τ2), ..., yt(τN )]′, where τ1 is the shortest maturity considered
and τN is the longest.

The measurement equation (3.8) adds a stochastic error term to the deterministic
DNS curve, which relates the set of N yields to the unobserved yield factors13, which are
emphasized as level (Lt), slope (St) and curvature factors (Ct). So, the factor loadings
matrix Λ relates the yield curve dynamic to the constructed factors. The transition equation
(3.7) determines the common factor dynamics as a first-order process, which incorporates
higher-order dynamics if it is necessary. The covariance structure of the measurement
and transition disturbances specify that the vectors ηt and εt are mutually orthogonal,
orthogonal to the initial state vector and white noise processes:ηt

εt

 ∼ WN

0
0

 ,
Q 0

0 H

 , (3.9)

13 According to (DURBIN; KOOPMAN, 2012), the state-space representation allows one to study the
development of the state factors over time using the set of observed yields in financial markets.
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E(f0η
′

t) = 0, (3.10)

E(f0ε
′

t) = 0. (3.11)

The system requires that the covariance matrix of measurement disturbances H is diagonal,
so that the disturbances εt of different maturities are uncorrelated 14. Further, the covariance
matrix of transition disturbances Q is not diagonal, so that the disturbances ηt can be
correlated in time, allowing for correlated shocks between state factors. Later we will see that
Diebold et al. (2006) expand the system (3.7)-(3.11) by simply introducing macroeconomic
factors in the state factors vector. Therefore, this state-space representation is not unique,
so that measurement and transition equations accommodate transformations; as the
inclusion of a constant in both equations, which is generally inconsequential.

3.3.3 Arbitrage-free Nelson-Siegel

As reported by Diebold & Rudebusch (2013), the lack of freedom from arbitrage
motivated Diebold et al. (2005) and Christensen et al. (2011) to introduce the class of
arbitrage-free Nelson-Siegel (AFNS) yield curve models, which maintain the dynamic
nature and good empirical performance of DNS framework, but adds the theoretical
requirement of no-arbitrage condition. Basically, the authors impose absence of arbitrage
opportunities to DNS, making it theoretically more satisfactory. Otherwise, they keep
the theoretical rigor of AF models but incorporate DNS elements to make it empirically
interesting. The DNS model can easily be transformed into an arbitrage-free structure when
desirable (DIEBOLD; RUDEBUSCH, 2013). The no-arbitrage version of DNS contains the
associated restrictions on factor loadings that ensure absence of arbitrage. The calculations
of Christensen et al. (2011) show that affine AF models yields the DNS structure plus a
correction term that ensures the necessary restrictions of no-arbitrage. It is also called
“yield-adjustment term”, which is time-invariant and depends only on bond maturity15.

14 According to Diebold et al. (2006), this assumption is common in the literature for simplifying model
estimation by reducing the number of parameters. In the estimation of affine models for the term
structure, the assumption of independent and identically measurement errors are also added to observed
yields.

15 The analytical AFNS model decomposition and its yield-adjustment term are carried out in Appendices
A and B of Christensen et al. (2011).
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4 The term structure and the macroeconomy

Surprisingly, the literature on term structure models delayed in incorporating
macroeconomic foundations. There have always been divergent modeling strategies between
finance and macro literature concerning to interest rates. Finance models described the
short-term interest rate as a linear function of a few unobserved latent factors, whereas
long-term rates reflected changes in risk premiums. In contrast, the macro literature has
an appeal to model short-term rates as a function of the central bank objetives regarding
inflation and output. Moreover, macro models explain long-term yields supported by the
“expectations hypothesis” of the term structure, which suggests that long-term rates are
risk-adjusted averages of expected future short rates. As stated in Diebold & Rudebusch
(2013), both the DNS and the affine no-arbitrage dynamic latent factor models provide
useful statistical descriptions of the yield curve, but in their original, most basic, forms
they offer little insight into the nature of the underlying economic forces that drive
its movements. The economic meaning of such models is limited since they neglect a
macroeconomic environment that could affect interest rates of different maturities.

A literature that explores different approaches to jointly model the term structure
and the macroeconomy has emerged lately. Besides that, some active progress to solve this
missing link has been made. The first natural approach to incorporate macroeconomic
foundations was performed by no-arbitrage affine models that combined latent yield and
macro factors into the affine function for the short-term interest rate. This affine function
is assumed to depend on macro factors that measures economic variables such as inflation,
real activity, credit, among others. Ang & Piazzesi (2003), Hördahl et al. (2006) and
Rudebusch & Wu (2008) provide examples that incorporate this idea through an affine
no-arbitrage structure with macroeconomic variables.

Ang & Piazzesi (2003) introduced the effects of the macroeconomy to the term
structure combining macro-financial factors that determine spot rate dynamics through
macro factors from the Taylor rule. Their results show that output shocks have a significant
impact on medium-term yields and curvature, while inflation surprises largely affect the
level of the entire yield curve. Despite the effects are limited, incorporating macro factors
extracted from inflation and real activity data series into the model improve interest rate
forecasts. Diebold et al. (2006) provide a macroeconomic interpretation of the DNS model
by combining macro and yield factors into transition equation of the state-space model,
where macroeconomy affects latent factors through state transition matrix that governs
the factor vector-autoregressive dynamics. Their estimates for U.S. Treasury bonds try
to find a correlation between latent factors and macroeconomic variables related to real
activity, inflation, and a monetary policy instrument, showing that the level factor is highly
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correlated with inflation and the slope factor is highly correlated with real activity. The
curvature factor appears to be unrelated to any of the main macroeconomic variables.

The other possibility to model the effects of macroeconomics on the yield curve is
composed by the class of structural models with dynamic factors. These models emphasize
the macro structure of the economy, incorporating macro shocks through the law of motion
of factors, which is founded on some economic model based on agents utility maximization.
Usually, this is a new-Keynesian macroeconomic model with micro-foundations which
defines macro factors dynamics through IS curve equation, Phillips curve and monetary
policy rule. Rudebusch & Wu (2008) and Bekaert et al. (2010) provide examples of macro-
finance specification for structural models using the no-arbitrage condition. Rudebusch
& Wu (2008) obtain a good fit to the macro-finance data, revealing that the level factor
respond to market expectations for central bank reaction to its inflation objective function,
while the slope factor captures central bank reaction to business cycle. The great feature
of structural models for the term structure is that they allow one to calculate yield curve
responses to diverse macroeconomic shocks.

More recently, a literature that uses larger macroeconomic information sets has
emerged. Bernanke & Boivin (2003) argue that central banks monitor and explore rich
information sets into their monetary policy decisions. However, the inclusion of a large
number of individual variables largely increase the number of parameters to be estimated.
Bernanke & Boivin (2003) employ a factor-model approach, explored by Stock & Watson
(2002a) and Stock &Watson (2002b), that allows for extracting few factors which summarize
the systematic information in large datasets. In short, their evidences suggest that central
banks base its policy decision upon a broad set of conditioning information, so that the
hypothesis that monetary policy authorities exploit only a limited amount of information
is rejected. Once central banks decision about short interest rates affects the entire term
structure, incorporating information about the overall state of the economy could improve
yield forecasts. The extraction of common factors that explains most of high-dimensional
data variation can be performed through dimensionality reduction techniques, such as
principal component analysis. Examples for models that use “data-rich environment” for
the term structure are Moench (2008) and Favero et al. (2012)1. For the Brazilian economy,
Almeida & Faria (2014) and Vieira et al. (2017) already reproduced the basis of the original
studies. Pooter et al. (2010) argue that macroeconomic variables interact best with the
yield curve when introduced as factors from data-rich environments, revealing that the
inclusion of few principal components leads to better forecast performance compared to
the use of individual variables.

Moench (2008) use a “factor-augmented” (BERNANKE et al., 2005) procedure as
1 Furthermore, Ludvigson & Ng (2009) also apply principal component analysis to obtain macro factors,

which are used to predict excess bond returns.
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the state equation that describes the dynamics of the short-term interest rate conditional
on a large macroeconomic information set. Their forecast exercise provides better out-
of-sample yield forecasts at intermediate and long horizons, particularly for short and
medium-term maturities, than benchmark models such as DNS and the affine yield
factor model of Duffee (2002). Almeida & Faria (2014) replicate the model proposed by
Moench (2008) for the Brazilian economy and estimate the DNS model incorporating
macroeconomic factors. As the original study, the authors show that their approaches have
better predictive performance than benchmark models, despite having a deterioration of
the results with increased maturity for the factor-augmented model. At least, Vieira et al.
(2017) combine the factor-augmented VAR methodology with DNS model for the Brazilian
yield curve, extracting macro factors from a large data containing forward-looking variables
of market expectations about future macro-financial scenario. This model improves the
predicting accuracy of extant models in literature, particularly at short-term horizons.

Differentiation of macro-finance models is given by the set of macroeconomic
information incorporated, specific macro structural model, and restrictions imposed on
those dynamic interactions between macro and financial factors. As described before,
macroeconomic information can be incorporated by simply adding common macro variables,
such as inflation and real activity, or by macro factors extracted from a large number of
macroeconomic time series variables, which is proved to improve predictive accuracy of
the models. The relationship between macro-financial factors concerns to the way that
shocks propagate between both classes of factors; if the vector-autoregressive that governs
factor dynamics captures a unidirectional or bidirectional “feedback”. Ang & Piazzesi
(2003) and Hördahl et al. (2006) imposes restrictions so that only macro variables affect
yield curve components and the macroeconomy is determined independently of the yield
curve factors. On the other hand, Diebold et al. (2006) allow bidirectional dynamics for
macro-yield interactions, i.e., an unrestricted VAR in the transition equation of DNS
model. They find a significant bidirectional interaction, where yield curve also contains
important information about future macro scenarios.

The basis of correlation between the macroeconomy and the yield curve is largely
explained by the expectations hypothesis, which relates both the long and short end
of the yield curve. If the central bank response to the state of the economy governs
the short-term rate, ultimately expectations about future longer-term interest rates also
depend upon macro variables. So, it is plausible that the response of monetary policy to
macroeconomic shocks contributes to explain and forecast the dynamics of the yield curve
through time. Christensen & Rudebusch (2012) argue that not only central bank bond
purchase programmes affect yields, but announcements of central bank plans also affect
financial markets through the signalling channel. They analyse the response of government
bond yields to bond purchase programmes of the Federal Reserve and the Bank of England,
finding significant responses of the US and UK yield curve components to central bank
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announcements. In parallel, Oliveira & Ramos (2011) find that unanticipated shocks of
monetary policy are capable to affect the Brazilian nominal yield curve maturing up to 2
years.

Changing the viewpoint, if the term structure contains relevant information on
investor expectations about the future economic conditions, it can be a useful tool to
capture information that helps monetary policy decision. Nimark (2008) discusses that
central banks can increase the welfare of their objective function by using securities market
information about macro fundamentals. Thus, the study of macro effects on yield curve
dynamics is important for policy makers who need to extract macroeconomic expectations
from financial markets, especially to make decisions that may affect interest rates. The key
point is that if macroeconomy and yield curve components are correlated, the incorporation
of macro factors can generate term structure models that forecast better than those without
macroeconomy effects (ANG; PIAZZESI, 2003), which is of great interest here.
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5 Fixed-income portfolio optimization

The portfolio approach suggested by Markowitz (1952) is one of the cornerstones
of modern finance theory. Although the mean-variance approach of Markowitz has been
widely explored in the construction of equity portfolios, little is known about portfolio
optimization in fixed-income markets. Kokn & Koziol (2006) point out some reasons why
bond portfolio optimization is only recently explored. First, at the time when Markowitz’s
approach became more widely recognized as a useful tool for portfolio management, interest
rates were not particularly volatile and a portfolio approach seemed somehow unnecessary.
Second, severe difficulties to implement Markowitz’s approach might have discouraged
further work: the large number of parameters needed when using a large number of assets
and the variation of bond moments over time.

To the extent that the interest rate markets become more volatile and unstable,
bonds with different cash flow payments are created and advanced term structure models
has been developed, it is natural to think about the potential for risk diversification
and optimization of fixed-income portfolios. In addition, securities of different cash flow
payments, reflecting their defined coupons and maturity values, are imperfect substitutes,
which suggests that there may be “preferred-habitat” investors who have maturity-specific
demand or duration-specific demand1 (CHRISTENSEN; RUDEBUSCH, 2012). Accordingly,
a recent literature that exploits the bond portfolio selection in a mean-variance context
has been emerged.

Kokn & Koziol (2006) are the precursors in this literature by performing a mean-
variance bond portfolio selection employing the Vasicek (1977) model. The authors estimate
the expected returns, return variances, and covariances of different German bonds, showing
that a small number of risky bonds is sufficient to achieve portfolios with quite promising
predicted risk-return profiles. Caldeira et al. (2016) extend their approach to the general
class of dynamic factor models of the term structure, and derive simple closed-form
expressions for expected bond returns and their covariance matrix based on forecasted
yields. Their empirical evidence for the US market shows that proposed optimal bond
portfolios has better performance than traditional yield curve strategies, used in bond desks,
in terms of Sharpe ratio. Another reference in this context is Thornton & Valente (2012),
which assess the economic value of the predictive power of forward rates for bond excess
returns in an out-of-sample forecasting exercise. In particular, they investigate the economic
gains accruing to an investor who exploits the predictability of bond excess returns relative
to the no-predictability alternative consistent with the expectations hypothesis. Their
findings confirm that it is very difficult to improve performance upon a simple naïve
1 For example, investors who seek for bonds that pay higher coupon rates.
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benchmark.

The strategic asset allocation exercise is essentially a prediction problem and an
optimization problem, where the investor seeks an optimal combination of securities in an
uncertain environment, which point out the non-trivial aspect of the problem (BOLDER,
2015). The fixed-income portfolio problem essentially consists in predicting the distribution
of return outcomes for a set of securities and select the optimal vector of portfolio weights
conditional on one’s predicted distribution and risk preferences. An important stage of the
portfolio choice problem is the tactical planning, which refers to the decision for taking a
passive or active position and implementing the chosen strategy. A passive positioning
essentially tries to replicate all the risk factors of a benchmark strategy; deviating from one
or more of the risk factors associated with the benchmark is called an active strategy2. The
active positioning is based on a forecast of future market changes, because the portfolio
and benchmark will respond differently to them, so that the portfolio manager must decide
in which direction and by how much the risk factor value of the portfolio will deviate from
those of the strategic benchmark (FABOZZI et al., 2006).

In line with Choudhry (2003), active portfolio management can be broken down
into four basic categories: (i) the expectations approach, which aims to predict the direction
of interest rates changes; (ii) the yield curve approach, which seeks to gain from predicting
the changes in the shape and levels of the yield curve; (iii) the yield spread strategy, which
attempts to make gains from changes in yield spread between individual bonds or bond
sectors; and (iv) the fair value approach, which aims to assess the valuation of individual
securities and identify mispriced bonds. Here, the analysis is interested in the second
approach, whereas the yield curve forecasting exercise will indicate future changes in the
shape of the yield curve3, which are then used to generate forecasts of bond returns. In
other words, the yield curve strategy is aimed at achieving gains from identifying changes
at specific maturities of the term structure of interest rates.

The fixed-income portfolio optimization contributes to the present study in order
to assess the economic value of the forecasted yields generated by the yield curve models.
In particular, the yield curve strategy is employed to compute optimal portfolios using
closed-form expressions for expected fixed-income returns and their covariance matrix.
Moreover, the empirical implementation focuses on evaluating whether the incorporation
of macroeconomic information into the DNS model generates economic gains in terms
of fixed-income portfolio performance by choosing allocations in risky assets based on a
trade-off between expected return and risk.
2 In other words, active positioning involves deviating from the market exposures embedded in the

strategic benchmark.
3 The main types of shifts in the yield curve are the following: upward and downward parallel shifts,

flattening and steepening yield curve twists, and changes in the humped shape, so-called butterfly
twists. For instance, the most common changes are a combination of a downward shift and steepening,
or an upward shift and flattening (CHOUDHRY, 2003).
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5.1 The mean-variance approach of Markowitz
The approach suggested by Markowitz (1952) is the most common formulation of

portfolio choice problems, which point out that investors allocate their wealth in risky
assets based on the trade-off between expected return and risk. The mean-variance portfolio
problem calculates the optimal portfolio weights based solely on one-step-ahead return
forecasts, assuming that investors are risk averse4. Hence, at the time of the portfolio
choice, it is assumed that investors are only concerned with the expected returns for the
h-step-ahead forecast horizon and its covariance matrix, defined by µrt|t−h and Σrt|t−h ,
respectively.

The mean-variance portfolio problem can be formulated by minimizing the portfolio
variance for a particular h-step-ahead expected return, subject to additional restrictions
on the vector of optimal weights wt:

Min
wt

w
′

t Σrt|t−h wt −
1
δ
w
′

t µrt|t−h

subject to : w
′

tı = 1; wt ≥ 0. (5.1)

where ı is an appropriately sized vector of ones and δ is the investor’s risk aversion coefficient.
Vector µrt|t−h collects the h-step-ahead expected returns for maturities τ1, ..., τN , so that
its dimension is N × 1, while the covariance matrix Σrt|t−h is N ×N . The optimization
problem is subject to both constraints, the non-negative individual weights, which restricts
short sales, and the budget constraint, which ensures that all wealth is invested in risky
assets.

As the mean-variance problem solves a quadratic utility function, the necessary and
sufficient condition for optimization is to solve the optimal weights wt for the first order
condition. According to Brandt (2009), the Markowitz paradigm yields two important
economic insights: (i) the diversification of a portfolio with imperfectly correlated assets
reduces the portfolio investment adjusted-risk without dropping its returns; and (ii) once
a portfolio is fully diversified, higher expected returns can only be achieved at the cost of
greater risk. In other words, it is possible to decrease the nonsystematic risk by adding
more assets to portfolio, proving the benefit of diversification. The mean-variance model is
efficient in capturing these two fundamental aspects of portfolio choice theory.

A common criticism to the single period problem is its inherent myopic aspect,
once myopic portfolio weights are calculated based solely on single-step-ahead expected
returns, with no concerns to longer, multi-period investment horizons and intermediate
portfolio rebalancing. However, the dynamic optimization problem carries multiple long-
term forecasts, which are less accurate, and also allows to accumulate errors from different
4 For two assets with the same expected return, investors prefer the less risky. This implies that a greater

expected return can only be achieved when the investor takes a greater risk.
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forecast horizons, impacting negatively on the dynamic optimization results. Brandt (2009)
describes that a common justification from practitioners is that the expected utility loss
from errors that could creep into the solution of a complicated dynamic optimization
problem outweighs the expected utility gain from investing optimally as opposed to
myopically5. For instance, Lan (2015) compares the performance of myopic versus dynamic
portfolio policies and concludes that myopic behavior can even lead to utility gains for the
real-time investor.

5.2 Risk factors
In measuring risk, the portfolio manager is essentially interested in the statistical

distribution of the portfolio returns, which depend on a relevant set of risk factors. Any
variable that can impact on the value of a security is considered a risk factor. The risk
factors associated with a hypothetical asset class exhibit different characteristics, differing
in level of volatility or dependence with other risk factors, and can be separated into
financial, monetary policy and macroeconomic risk factors, among others. Assessing the
uncertainty of future returns is essentially equivalent to measuring the risk of one’s portfolio
(BOLDER, 2015). The portfolio return is the compensation that an investor has received
for being exposed to such risk factors. This section aims to describe key measures that
emerge from the discount curve (2.2), which links the portfolio return to some relevant
risk factors influencing the value of fixed-income securities.

Starting from scratch, equation (2.1) shows an inverse relationship between the
present value of a cash flow and its continuously compounded yield, so that an increase
(decrease) in yt(τ) drops (raises) the present value of each cash flow, leading to a reduction
(increase) in the current security value, Pt(τ). Thus, the security’s value decreases with
positive changes in interest rates, but at decreasing rates, because of the convexity aspect
of the function. One can formalize this relationship by calculating the first derivate of the
security’s value with respect to a change in its yield,

∂Pt(τ)
∂yt(τ) = ∂

∂yt(τ)

(
n∑
i=1

cie
−(ti−t)yt(τ)

)

= −
n∑
i=1

ci(ti − t)e−(ti−t)yt(τ). (5.2)

In other words, the equation explicits the sensitivity of Pt(τ) to an infinitesimal change in
its yield. Now, it is clear to note from (5.2) that the sensitivity depends on two key risk
factors, or exposures: the yield to maturity and time.
5 Brandt (2009) characterize some situations where it is optimal to invest myopically with a single-period

horizon.
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One can obtain the percentage change in the security’s value (gain or loss) for a
small change in yt(τ) by dividing both sides of (5.2) by Pt(τ):

DM = 1
Pt(τ)

∂Pt(τ)
∂yt(τ)

= − 1
Pt(τ)

n∑
i=1

ci(ti − t)e−(ti−t)yt(τ), (5.3)

which represents the modified duration, denoted by DM ; a well-known measure of the risk
of a fixed-income security. According to Bolder (2015), equation (5.3) provides, in short,
the analytic representation of a security’s exposure to its yield. The equation can also be
used as a local measure of exposure6, when one is interested in computing the exposure of
the fixed-income security to changes in yields solely at particular areas of the yield curve.
For example, an investor fearing a specific movement at the 1-year rate, would like to
know the sensitivity of its bond’s value to a 50 basis-point movement in the particular
yield with maturity τi = 12 months.

The concept of duration can have different meanings, which sometimes is quoted
as a sensitivity and sometimes it is described as a cash-flow weighted time to maturity
of a fixed-income security. From the second perspective, duration establishes an average
maturity of the future cash flow promised by the issuer. For a bond that pays periodic
coupons, there are intermediate portions of the expected cash flow being paid at specific
moments before maturity. In this case, the bond maturity is not equivalent to duration.
Some important insights emerge from the association between duration and bond volatility:
(i) the duration increases with maturity, but at decreasing rates, so that the higher the
duration, the more exposed the security is against changes in interest rates; (ii) the higher
the yield to maturity, the shorter the duration, because higher intermediate payments
have higher relative weight on the cash flow.

Regarding equation (2.1) again, it is noteworthy that the security’s value is not
a linear function of its yield. That is, some degree of non-linearity emerges from the
relationship between security’s price and yield. For this reason, even though being quite
reasonable for relatively small yield changes, the linear approximation performed by the
modified duration is not fully accurate for sizeable changes in yt(τ). The second derivative
of the discount curve with respect to yt(τ) seeks to efficiently capture the full exposure of
a fixed-income security to the yield factor:

∂2Pt(τ)
∂yt(τ)2 = ∂2

∂yt(τ)2

(
n∑
i=1

cie
−(ti−t)yt(τ)

)

=
n∑
i=1

ci(ti − t)2e−(ti−t)yt(τ). (5.4)

6 Generally called as the key-rate duration.
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As done before, one can normalize the total variation by dividing (5.4) by Pt(τ):

1
Pt(τ)

∂2Pt(τ)
∂yt(τ)2 = 1

Pt(τ)

n∑
i=1

ci(ti − t)2e−(ti−t)yt(τ), (5.5)

obtaining the bond convexity factor7. Therefore, duration and convexity provide a basis
for understanding the exposure of a fixed-income security to changes in market interest
rates, whereas the convexity measure seeks to correct the approximation performed by the
modified duration.

In respect to time exposure, to understand the sensitivity of a bond’s value to
changes in time, one can simply replicate the mathematical derivations made before:

∂Pt(τ)
∂t

= ∂

∂t

(
n∑
i=1

cie
−(ti−t)yt(τ)

)

= yt(τ)
n∑
i=1

cie
−(ti−t)yt(τ) = yt(τ)Pt(τ). (5.6)

And to compute a kind of time duration, one need to divide both sides of (5.6) by Pt(τ):

Dt = 1
Pt(τ)

∂Pt(τ)
∂t

= 1
Pt (τ) yt(τ)Pt(τ) = yt(τ), (5.7)

where the percentage change of the security’s value to a small variation in time is well
approximated by its yield.

At least, an important risk factor comes up from the credit risk linked to a fixed-
income security, which is the probability of default associated with the bond issuer. The
credit risk can be considered one element of the spread between the security’s yield and
the corresponding risk-free rate, which is generally the shortest maturity bond issued by
the national government. This spread between some particular bond and the risk-free
borrower represents an additional premium required by the market, and decreases with
better credit quality. One can decompose the mathematical expressions for the impact of
spread movements on the bond price, assuming an additive decomposition of the bond’s
yield into the risk-free component and an idiosyncratic credit spread component. From
the decomposition, one can see that there is nothing different about the sensitivity of the
bond price whether the yield change comes from a movement in the risk-free rate, the
credit spread, or the overall yield (BOLDER, 2015).

7 It is also worth to note that bonds with higher convexity benefit the investor when interest rates
fluctuate: the decrease (increase) in Pt(τ) is relatively smaller (higher) in response to a positive
(negative) variation in yt(τ).
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6 Theoretical models for the yield curve

6.1 Specification of the yield factors model
According to Diebold & Li (2006), the DNS model describes the yields of different

maturities as a linear function of unobserved yields latent factors, where a first-order
vector-autoregressive process governs the dynamic movements of Lt, St and Ct over time.
The system (3.7)-(3.11) constituted by the transition and measurement equations can be
better visualized as follows:

Lt − µL
St − µS
Ct − µC

 =


a11 a12 a13

a21 a22 a23

a31 a32 a33



Lt−1 − µL
St−1 − µS
Ct−1 − µC

+


ηt(L)
ηt(S)
ηt(C)

 ,

yt(τ1)
yt(τ2)

...
yt(τN)

 =


1 1−e−λτ1

λτ1
1−e−λτ1
λτ1

− e−λτ1

1 1−e−λτ2
λτ2

1−e−λτ2
λτ2

− e−λτ2

... ... ...
1 1−e−λτN

λτN

1−e−λτN
λτN

− e−λτN



Lt

St

Ct

+


εt(τ1)
εt(τ2)

...
εt(τN)

 .

The DNS model specified by the system (3.7)-(3.11) has several parameters to be estimated
and will be denominated as DNS-VAR(3) model henceforward. The transition matrix A is
3× 3 and has 9 free parameters, the mean factors µ is 3× 1 and has 3 free parameters, and
the measurement matrix Λ is N × 3 and includes only one free parameter, λ. In addition,
the matrix Q is 3×3 and contais 6 free parameters (one variance term for each of the latent
factors and three covariance terms among themselves, making matrix Q symmetric), and
the matrix H is N × 1 and has N free parameters (one variance term for each one of the
N yields of different maturities). The DNS-VAR(3) model is widely used as a benchmark,
and here it will be the object of comparison to models that incorporate macroeconomic
factors.

The choice for the DNS structure is motivated by its statistical appealing features,
being quite simple, flexible and stable to estimate. Besides that, DNS reveals good out-
of-sample forecasting performance, which is of great interest here. The class of AFNS
models covers the theoretical lack of no-arbitrage conditions of DNS, but it is a bite more
complicated to estimate because it involves higher parameterization; i.e., the application
of AFNS has a relative cost of estimation procedure. Following Diebold & Rudebusch
(2013), DNS is almost arbitrage-free, as is. Ultimately, the features of the DNS yield curve
model fit very well for the current purpose.
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6.2 Specification of the macroeconomic models
The belief that yield curve dynamics are closely linked to macroeconomic devel-

opments motivates the incorporation of macroeconomic information in term structure
models. Following Diebold et al. (2006), the introduction of relationship between the
components of the yield curve and macroeconomic factors consists simply in incorporating
macro factors as exogenous explanatory variables into the state vector and corresponding
expansion of the matrices that form the state-space model (3.7)-(3.11). The approach here
simply replaces the individual macroeconomic variables used in Diebold et al. (2006) by a
small number of macroeconomic factors obtained from a large set of possible regressors.
Therefore, the model structure only contemplates effects of macro factors to yield factors
in future time periods via dynamic interaction in the transition equation; macro factors
affect yield latent factors one-period-ahead, which in turn determine the yields.

The assumption that in a DNS environment, the yield curve can be simply decom-
posed by Lt, St, and Ct, remains valid. The three yield factors are all that one needs to
explain most yield variation (DIEBOLD; RUDEBUSCH, 2013), so that the inclusion of
macro factors will be useful for yield curve modeling in order to explain the dynamics of the
yield factors. Thus, macroeconomic factors extracted from a large set of macroeconomic
variables are linked to yield factors, so that a kind of two-step DNS procedure is employed.
First, yield factors (level, slope, curvature) and macro factors (e.g., broad real activity and
broad inflation expectations) are extracted, and then all factors are analyzed in a joint
vector autoregression.

The expansion of the DNS-VAR(3) model to macroeconomic representations of
the DNS form is given by the incorporation of one and two macro factors, denoted
by X1 and X2, to the state vector. The state vector is now f

′
t = (Lt, St, Ct, X1

t ) for
the model denominated DNS-VAR(4)1, f ′t = (Lt, St, Ct, X2

t ) for the model denominated
DNS-VAR(4)2 and f

′′
t = (Lt, St, Ct, X1

t , X
2
t ) for the model denominated DNS-VAR(5).

Sometimes, these macroeconomic specifications will be regarded as yields-macro models.
Table 1 summarizes the general DNS specifications used in the estimation procedure.

The inclusion of the K = 1, 2 macroeconomic factors is motivated by the principal
components analysis, which extract a small number of common factors from a panel
series composed by 182 macroeconomic variables. The approach is supported by the set
of conditioning information that monetary authorities take into account when deciding
interest rates levels. The ordering of the state factors in f ′t and f

′′
t is performed this way

because the information of the yield curve is observed at the beginning of each month.
The expansion of the DNS model also requires an appropriate increase in the dimensions
of the matrices that form the system (3.7)-(3.11)1, leading to a substantial increase in the
1 By the way, for the DNS-VAR(3+K) model the matrix A is now (3 +K)× (3 +K), whereas µ and ηt

are (3 +K)× 1. The non-diagonal matrix Q is now (3 +K)× (3 +K). The measurement equation
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number of parameters to be estimated.

Table 1 summarizes the denominations of the general DNS specifications described
above and that will be used in estimation procedures.

Table 1 – General DNS specifications set.

Model Specification Factors
DNS-VAR(3) Level (Lt), Slope (St), Curvature (Ct)
DNS-VAR(4)1 Level (Lt), Slope (St), Curvature (Ct) and 1st Macro Factor (X1

t )
DNS-VAR(4)2 Level (Lt), Slope (St), Curvature (Ct) and 2nd Macro Factor (X2

t )
DNS-VAR(4) Comprehends the DNS-VAR(4)1 and DNS-VAR(4)2 models
DNS-VAR(5) Level (Lt), Slope (St), Curvature (Ct), 1st Macro Factor (X1

t ) and 2nd Macro Factor (X2
t )

yields-macro Comprehends the DNS-VAR(4) and DNS-VAR(5) models

matrix (Λ) is now N × (3 +K), while the other matrices that form the measurement equation still
remains the same; εt is N × 1 and H is N ×N . In particular, the K rightmost columns of Λ contain
only zeros so that the yields still load only on the yield curve factors. The row(s) of Λ regarding the K
macro factors are null for the effects of the three yield latent factors on macro factors.



54

7 Data description

The estimation procedure uses the following data. The macroeconomic factors are
extracted from a macro panel containing 182 monthly time series for the Brazilian economy.
Table 5 in Appendix A shows the macroeconomic panel data, whereas the individual
variables are classified in various economic categories as follows: money growth (about 6%
of the total set of variables), consumption and sales (10.5%), credit (5.5%), employmet,
wage and income (9.4%), price (22.5%), production and real activity (18.7%), financial
and risk (5%), fiscal (5.5%), and external sector (17%). Regarding the timing of the macro
series, it is worth to note that the observation of macroeconomic data by agents only
happens after a certain time of the reference month, because several variables take some
time to be released. In general, the macro series are released with a lag of one up to three
months. For example, the observed inflation variable IPCA is released until the tenth
day of the following month from the reference. For this reason, the econometrician needs
to be careful about the use of contemporaneous information, that may exaggerate the
benefits of using macroeconomic information when forecasting yields (POOTER et al.,
2010). Thereby, the analysis assumes that agents have an expectation or trustworthy proxy
about the current macroeconomic scenario.

Most part of the macroeconomic dataset originates from Rossi & Carvalho (2009)
and Almeida & Faria (2014), while the forward-looking variables are based on some variables
used by Vieira et al. (2017). The forward-looking variables refers to market expectations
about several key economic variables, available in the weekly market reports published by
the Central Bank of Brazil, so-called Focus report1. Given the high-inflationary past of the
Brazilian economy, the monetary authority monitors the market expectations about daily
indicators of real activity, external sector, fiscal accounts, and mainly inflation. The market
forecasts contained in the Focus report consists in 1-month-ahead until 5-year-ahead
expectations. All forward-looking variables considered come from the weekly Focus report,
released by the Central Bank of Brazil every Monday, focusing on the mean of market
expectations for 1-1.5 year ahead, 2-2.5 year ahead and 3-5 year ahead. This gives a solid
information about the future state of the Brazilian macroeconomy.

Time series regarding Brazilian interest rates are removed from the macro dataset
to avoid complications that could emerge for the estimation process from not using
an arbitrage-free model. Moench (2008) and Koopman & Wel (2013) also remove all
variables relating to interest rates, arguing that central banks do not take into account
the information contained in yields when making monetary policy decisions.
1 In particular, it contains surveys with approximately 100 financial market participants who provide

their predictions about the future value of some key economic variables.
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The yields data consists in monthly observed yields of Brazilian Inter Bank Deposit
Future Contract (DI-futuro) negotiated at the Brazilian Mercantile and Futures Exchange
(BM&F), which is the entity that offers and determines the number of maturities with
authorized DI-futuro contracts2. According to Caldeira et al. (2013), the DI-futuro contract
with maturity τ is a zero-coupon future contract in which the underlying asset is the
DI-futuro interest rate accrued on a daily basis, capitalized between trading period t and
τ . The contract value is set by its value at maturity, R$ 100,000.00, discounted according
to the accrued interest rate negotiated between the seller and the buyer. Technically,
the DI-futuro rate has an underlying asset, the average daily rate of Brazilian interbank
deposits3 (borrowing/lending) calculated and released by the Clearinghouse for Custody
and Settlements (CETIP). Despite being traded daily, the DI-futuro rate is expressed in
annually compounded terms, based on 252 business days. Caldeira et al. (2010) explicit
that when buying a DI-futuro contract for the price at time t and keeping it until maturity
τ , the gain or loss is given by:

100, 000
∏ζ(t,τ)

i=1 (1 + yi)1/252

(1 +DI∗)ζ(t,τ)/252 − 1
 , (7.1)

where yi denotes the DI-futuro rate, (i − 1) days after the trading day, and DI∗ is the
interest rate agreed between the seller and the buyer. The function ζ(t, τ) represents the
number of working days between t and τ . Therefore, the DI-futuro contract negotiates the
accrued interest rates, based on market expectations about the future behavior of DI rates,
in the period ranging from the trade date to maturity. The DI-futuro contract is very
similar to the zero-coupon bond, except for the daily payment of marginal adjustments.
Every day the cash flow is the difference between the adjustment price of the current day
and the adjustment price of the previous day, indexed by the DI-futuro rate of the previous
day. With respect to liquidity, as reported by BM&F, the DI-futuro market traded a total
of 309,308,981 contracts in 2015 (about US$ 6.2 billion, in exchange rate from December,
2015), compared to 286,125,664 contracts in 2014.

Information about DI-futuro contracts are taken from the first business day of the
month in which the contract is due. The interpolated yield curves are obtained by cubic
splines interpolation, which allows one to convert observed yields into relevant maturities.
The present study converts data into the following N = 14 different maturities; τ = 3,
6, 9, 12, 15, 18, 21, 24, 27, 30, 36, 42, 48 and 60 months. The estimation procedure is
carried out for the in-sample period from 2003:04 to 2012:11, while the predictive analysis
is performed for the out-of-sample period from 2012:12 to 2016:03; a total of T = 116
in-sample and S = 40 monthly out-of-sample observations.
2 The DI-futuro contract is a broad fixed-income market, trading currently about 29 maturities with

authorized contracts every day.
3 The DI rate reflects the average cost of interbank transactions and is an extremely important reference

for various banking operations of the national financial system.
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8 Principal component analysis

In a large macroeconomic dataset some groups of economic variables often move
together, because they measure the same driving forces governing the behavior of the
system. Thus, a system with abundant and redundant information contains only few
driving forces that generates the entire original data. The principal component analysis
(PCA) takes advantage of this redundancy of information, which identify the patterns
in data and replace a group of variables that measure the same phenomenon by a few
new variables. The method generates a set of new variables, called principal components,
which form a linear combination of the original variables. The usefulness of PCA regards
to data dimensionality reduction without much loss of information, solving the problem of
analysing data in large multivariate systems.

The principal components can be extracted through the calculation of eigenvectors
from the covariance matrix of the original data. The eigenvectors of the covariance matrix
reflect vectors that characterise the original data and successfully account for variance in
the observed variables. By definition, all the eigenvectors of a matrix are orthogonal to
each other, so that there is no redundant information, where eigenvectors with the highest
eigenvalues are the principle components of the dataset. Thus, ordering the eigenvectors
by eigenvalue, highest to lowest, gives the principal components in order of significance.
There will be some principal components with small eigenvalues, what enables one to leave
out some components and still account for most of the variance in the observed variables,
ending with less dimensions than the original data.

The procedure of principal components extraction in large panels of time series
requires stationarity. For this reason different preadjustments are applied to the time
series in the dataset when necessary, particularly first difference and first difference of
the logarithm. Table 5 in Appendix A displays the necessary transformations for each
macroeconomic variable to obtain stationary series. Finally, I standardize all variables to
have mean zero and unit variance.

Bernanke et al. (2005) discuss the two-step approach for extracting common factors
from the panel of macro data prior to estimating the term structure model. In this study,
the common macro factors are also extracted prior to estimating the yield curve models,
serving as input for the state vector of the DNS models. As in Bernanke et al. (2005)
and replicated by Moench (2008), the dimensionality reduction exercise is achieved using
standard static principal components following the approach suggested by Stock & Watson
(2002a) and Stock & Watson (2002b). It is assumed that Xt, the R-dimensional multivariate
time series containing the macroeconomic variables, admit a factor model representation
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with common factors F ,
Xt = αFt + εxt , (8.1)

where εxt is a R × 1 vector idiosyncratic components. According to Moench (2008), if
V denote the eigenvectors corresponding to the kx largest eigenvalues of the R × R

cross-sectional variance-covariance matrix XX ′ of the data, subject to the normalization
F
′
F/R = Ir, then estimates F̂ of the factors and α̂ the factor loadings are given by

F̂ =
√
RV and α̂ =

√
RX

′
V . As mentioned before, the common factors are estimated as

the eigenvectors corresponding to the kx largest eigenvalues of the variance-covariance
matrix XX ′ . In another way, factors represent a linear combination of optimally weighted
variables from the large macro dataset1. In addition, the PCA procedure is computationally
simple and achieves plausible results.

In practice, the true number of common factors which capture the common variation
in the dataset X is not known, but a small number of factors are capable to explain most
of variation of all variables in the dataset. Because of this and computational constraints,
the number of macro factors to be included in the estimations is limited. Later I will show
that the analysis use two common macro factors, where both explain about 24.8% of the
overall variation in observed variables2.

Exterkate et al. (2013) investigate some additional issues regarding PCA and yield
curve forecasting, exploring various ways of incorporating macroeconomic information
in the Nelson-Siegel framework. First, they investigate whether it is useful to take the
forecast objective explicitly into account when constructing the macro factors. The idea is
to investigate whether it is desirable to include all available data in PCA or just those
variables that are most correlated with the variable that one aim to predict. Second,
whether it pays off to construct factors from groups of related macro variables, instead of
one large pool of all available variables. The findings can be summarized: (i) for longer
maturities, it is better to form groups of related variables and then extract factors from
these groups, explicitly considering the forecast objective when constructing factors; (ii)
for shorter maturities, and for medium maturities at shorter horizons, it is even better to
extract principal components from all available information; (iii) in times where yields are
highly volatile, macroeconomic variables are of substantive help in forecasting the yield
curve. Hence, the extraction of macro factors from the large panel data seems to be a
correct way to proceed the analysis.

1 Exterkate et al. (2013) discuss different methods to achieve a dimension reduction as least angle
regression, principal component regression, principal covariate regression, partial least squares, hard
thresholding and soft thresholding.

2 Note that I made a somewhat ad hoc choice for the maximum number of factors used in the following
analysis, based solely on the marginal contribution of each factor to the forecasting exercise. Models
with too many macro factors, above than two, provide forecasts that do not improve prediction accuracy.
These empirical results are not reported to save space and can be provided upon request.
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9 State-space model and Kalman filter

The DNS state-space structure represented by (3.7)-(3.11) implies that Kalman
filter is immediately applicable for optimal filtering and smoothing of the latent yield
factors (DIEBOLD; RUDEBUSCH, 2013). The unobserved state vector ft and unknown
parameters of the system can be estimated by several procedures. Diebold & Li (2006)
introduced the two-step DNS approach. They treat λ as a calibrated parameter, so that
in the first stage the measurement equation can be estimated by OLS to obtain a three-
dimensional time series of estimated factors for each period t. In the second stage, the
temporal dynamics of the estimated factors can be specified as AR(1) or VAR(1) processes,
for example1. However, the simplicity of the two-step procedure comes with a cost. The
approach ignores and transfers in an unknown way the estimated residuals from the first
stage to the estimates of the subsequent stage, distorting the second-step inference and
revealing itself an inefficient approach of estimation.

Diebold et al. (2006) introduced the one-step DNS, proving that it is possible to
estimate simultaneously both the transition and measurement equations by maximum
likelihood using Kalman filter. This in turn, seeks to estimate λ and obtain the conditional
distribution of vector ft given the set of information contained in the vector of observed
variables Yt = {y1, ..., yt}, building the likelihood function to be maximized. For the
macroeconomic DNS structure, the one-step DNS is not absolutely one-step once macroe-
conomic factors are obtained separately from the state-space estimation. Thus, macro
factors primarily extracted from principal component analysis are simply combined with
yield latent factors in the state transition equation. The present study apply the one-step
DNS, which is considered efficient by allowing one to do all estimation simultaneously.

Following the procedure described in Caldeira et al. (2010, p. 35), the one-step
DNS uses Kalman filter to construct the likelihood function to be maximized and obtain
the parameters estimates. Define ft|t−1 as the expectation for the state vector ft given
the set of information Yt−1 = {y1, ..., yt−1} and its estimated covariance matrix to period
t equal to Pt|t−1. For values of ft|t−1 and Pt|t−1, when observation yt−1 is available, the
prediction error can be calculated as vt = yt − Λft|t−1. Thus, after the next observation yt,
a more accurate inference of ft|t and Pt|t could be performed:

ft|t = ft|t−1 + Pt|t−1Λ′F−1
t vt,

Pt|t = Pt|t−1 − Pt|t−1Λ′F−1
t ΛP ′t|t−1,

1 For the macroeconomic DNS structure, the two-step approach just links the yield factors and macro
factors extracted from a large set of macroeconomic variables, analyzing all factors in a joint vector
autoregression.
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where ft|t and Pt|t are the filtered states and its filtered covariance matrix, and Ft =
V ar(yt|yt−1, ..., y1) = ΛPt|t−1Λ′ + H is the covariance matrix of prediction errors of the
observed variable. It is possible to note that filtered states in time t are the predicted
states for t plus an adjustment term based on the reliability of the observations, equal to
Kt vt. The parameter Kt = Pt|t−1Λ′F−1

t is also called Kalman gain. In short, Kalman filter
algorithm estimates for t = 1, ..., T the one-step-ahead state forecasts for period t (ft|t−1),
its variance-covariance matrix (Pt|t−1), and the one-step-ahead observation forecasts for
period t (yt|t−1) and its estimated variance-covariance matrix (Ft); feeding the forecasted
and filtered estimates into the data likelihood function.

For a certain time series YT = {y1, ..., yT}, Kalman filter algorithm works recursively
for t = 1, ..., T with initial values for the set of unknown parameters collected in θ. The
vector θ is composed by parameters of matrices A, Q and H, together with the vector
of average factor states µ and parameter λ, which are treated as time-invariant. The
estimation of θ uses a numerical optimization method that maximizes the log-likelihood
function2, which is constructed via decomposition of the one-step-ahead prediction error:

l(θ) = −NT2 log(2π)− 1
2

T∑
t=1

log|Ft| −
1
2

T∑
t=1

v
′

t log(F−1
t )vt. (9.1)

Theoretically, the maximum likelihood estimator obtained is preferable to two-step DNS
approach3, as the joint estimation of the transition and measurement equation parameters
produces efficient estimates of yields.

The Kalman filter procedure starts with initial values for states (f0), initial values
for coefficients of state transition matrix (A0), initial state disturbance loading matrix
(B0), initial values for observation innovation matrix (D0) and initial value for parameter
λ0, forming the initial set of parameters (θ0)4. For DNS-VAR(3) model, θ0 comes from
the two-step DNS approach; initial state values are simply the average of level, slope and
curvature factors filtered in two-step DNS approach and λ0 is calibrated at 0.0726, as
suggested by Diebold & Li (2006). For yields-macro models, A0 and B0 are set to zero,
D0 with respect to yield components comes from the two-step DNS approach while the
part related to macro factors is set to zero, and f0 and λ0 follow the assumptions made
for DNS-VAR(3) model.
2 The MATLAB estimation code uses “fminunc” function to optimize the procedure of finding the

unknown parameters.
3 Diebold & Rudebusch (2013) discuss other estimation alternatives for state-space DNS, like expectation

maximization (EM) and Bayesian one-step methods.
4 To compute the model estimation code on MATLAB platform one need to transform the system

of Eqs. (3.7)-(3.9) in to the formulation supported by the SSM functionality of the Econometrics
Toolbox. The transformation requires that the vectors of disturbances ηt and εt must equal ηt = But

and εt = Dεt respectively, where B is the state disturbance loading matrix and D is the observation
innovation matrix. The vectors ut and εt of disturbances are defined as uncorrelated, unit-variance
white noise processes, and their covariance matrices are identity matrices. It is possible to notice that
the covariance of ηt must equal the covariance of the scaled white noise process But; similarly happens
with covariance of et, so that Q = BB

′ and H = DD
′ .
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Immediately, if information is available by time t, for the forecast horizon h-step-
ahead the construction of out-of-sample forecasts consists simply in forecasting the factors
for a given forecast horizon and apply them to the yield curve equation explored in (3.6):

ft+h|t = Et(ft+h|yt, ..., y1) = µ+
t+h∏
j=t+1

Aj (ft|t − µ) = µ+ Ah(ft|t − µ), (9.2)

yt+h|t = Et(yt+h|yt, ..., y1) = ΛEt(ft+h|yt, ..., y1) = Λµ+ Λ(Ah(ft|t − µ)). (9.3)

Again, the application of Kalman filter is convenient to extract the optimal general h-
step-ahead prediction of both the yield factors and the observed yields (ft+h|1:t, yt+h|1:t).
From (3.9), it is worth to remember that the disturbances ηt and εt have zero mean, which
implies that estimation errors in-sample do not pass along forecasts. As filtered state vector
ft|t equals smoothed states at period t in this case5, one can use any of these estimates to
compute predicted states for horizon t+ h.

5 Filtered state vector at period t, when using all information up to t corresponds to smoothed states. By
definition, the smoothed states at period t using all available information T is ft|T = E[ft|yT , ..., y1].
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10 The distribution of log-returns

Following the discussion in Caldeira et al. (2016), factor models for the term
structure of interest rates are designed to model only the bond yields. Thus, the forecasting
stage of yield curve models aim for modeling merely moments of the expected yields.
However, the fixed-income portfolio problem requires estimates of the expected return of
each security, as well as estimates of their covariance matrix. The following mathematical
decompositions show that it is possible to obtain expressions for the expected return
of fixed-income securities and their covariance matrix based on the distribution of the
expected yields.

The mean-variance portfolio optimization is performed for two different forecast
horizons: (i) first, one-step-ahead forecasts for log-returns of DI-futuro contracts are
used to optimize fixed-income portfolios with monthly rebalancing; and subsequently
(ii) twelve-step-ahead forecasts for log-returns are used to find optimal portfolios with
annual rebalancing. For this reason, the portfolio choice problem requires moments of the
expected yields for one-month- and one-year-ahead forecast horizons. The system of Eqs.
(3.7)-(3.9) implies that the distribution of one-step-ahead forecasts for yt, of any maturity
τi, is normally distributed, i.e. yt|t−1 ∼ N(µyt|t−1 ,Σyt|t−1), with moments given by1:

µyt|t−1 = Et−1[yt] = Λft|t−1, (10.1)

and
Σyt|t−1 = Λ(APt−1|t−1A

′ +Q)Λ′ +H, (10.2)

where ft|t−1 denotes the predicted value of the unknown factors ft conditional on period
t−1 information, and the covariance matrices Q and H, defined in (3.9), are time-invariant.
Eq. (10.1) follows straightforward from Eq. (9.3), which define the expectation of yields
for the h-step-ahead forecast horizon. Note that the covariance matrix of the true, but
non-observable states (ft), would be given simply by Q. However, as stated in Eq. (10.1),
predicted states based on filtered estimates of ft−1 are used when computing expected
yields. Thus, Eq. (10.2) takes into account the uncertainty in the Kalman filter estimates
of the unobserved factors through APt−1|t−1A

′, containing the covariance matrix of the
filtered states (Pt−1|t−1) and not only the covariance matrix of the unobserved factors, Q2.
Therefore, the first term in Eq. (10.2), APt−1|t−1A

′ +Q, adjusts for the fact that filtered
estimates are used in (10.1), and not the true value of states.
1 Durbin & Koopman (2012, p. 112) define the general formulations for the conditional mean square

error matrix and conditional mean of the covariance matrix of predicted states.
2 For comparison, Caldeira et al. (2013) use the true value of the state vector and show that the second

moment of yt|t−1 just takes into account the covariance matrix of the unobserved factors, Q.
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Similarly, the distribution of twelve-step-ahead forecasts is normally distributed,
i.e. yt|t−12 ∼ N(µyt|t−12 ,Σyt|t−12), with moments given by:

µyt|t−12 = Et−12[yt] = Λft|t−12, (10.3)

and

Σyt|t−12 = ΛPt|t−12Λ′ +H

= Λ(APt−1|t−12A
′ +Q)Λ′ +H

= Λ(A(APt−2|t−12A
′ +Q)A′ +Q)Λ′ +H

= Λ(A2Pt−2|t−12A
′ 2 + AQA′ +Q)Λ′ +H

= Λ(A2(APt−3|t−12A
′ +Q)A′ 2 + AQA′ +Q)Λ′ +H

= Λ(A3Pt−3|t−12A
′ 3 + A2QA′ 2 + AQA′ +Q)Λ′ +Ht|t−12

= ...

= Λ(A12Pt−12|t−12A
′ 12 +

12∑
i=1

Ai−1QA′ i−1)Λ′ +H. (10.4)

Note that, in this case, the term (A12Pt−12|t−12A
′ 12 + ∑12

i=1 A
i−1QA′ i−1) adjusts for the

fact that the model uses filtered estimates for the twelve-step-ahead forecasts of yields
and accumulates the uncertainty in the Kalman filter estimates for each step forecast.

Using the fact that the price of a security with maturity τi at time t, Pt(τi), is the
present value at time t of $1 receivable τi periods ahead, the bond price for a particular
maturity τi can be computed following the discount curve (2.2), Pt(τi) = exp(−τi · yt(τi)).
To compute the realized return, rt(τi), of holding that security from t − h to t while
its maturity decreases from τi to τi−h, one can use the bond price and the log-return
expressions,

rt(τi) = log
(
Pt(τi−h)
Pt−h(τi)

)
= logPt(τi−h)− logPt−h(τi) = −τi−h · yt(τi−h) + τi · yt−h(τi).

(10.5)
It is clear to note from (10.1)-(10.5) that the vector of h-step-ahead forecasts of log-returns,
rt|t−h, also follows a Normal distribution N(µrt|t−h ,Σrt|t−h) with mean given by:

µrt|t−h = −τi−h ⊗ µyt|t−h(τi−h) + τi ⊗ yt−h|t−h(τi), (10.6)

where µyt|t−h(τi−h) is the mean vector of the expected yields with maturity τi−h at time t
conditional on period t− h information, yt−h|t−h(τi) is the vector of observed yields with
maturity τi at time t− h, and ⊗ represents the Hadamard (elementwise) multiplication.
The conditional covariance matrix of the expected log-returns, which is positive-definite,
is given by:

Σrt|t−h = τ ′i−hτi−h ⊗ Σyt|t−h . (10.7)
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The discussion above solves the problem for obtaining estimates of the expected
log-returns for fixed-income securities and their covariance matrix based on yield curve
models such as the DNS model, which are essential inputs to the portfolio choice problem
based on the mean-variance approach suggested by Markowitz. All ingredients necessary to
calculating the closed-form expressions (10.6)-(10.7) are easily retrieved from the Kalman
filter estimation discussed in Chapter 9. In particular, predicted states ft|t−h, and the
covariance matrix of filtered states, Pt−h|t−h, which are used to determine the moments
(10.1)-(10.2), are direct products of the Kalman filter recursions and are readily available3.

3 The MATLAB function called “filter” can also be used to compute the moments µyt|t−h
and Σyt|t−h

.
The output of the function reports the forecasted observations and the covariance matrix of filtered
states.
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11 Preliminary evidence

Fig. 1 shows the resulting three-dimensional surface for the nominal yields of
Brazilian DI-futuro contracts as a function of maturity over time. The graph reveals some
stylized facts common to yield curve data, as its dynamics through time and its various
possible shapes and levels. Over the first years of the sample period the Brazilian nominal
yields decreased quickly, changing from rates above 20% to yields near 10% per year in
2006. The decreasing path of Brazilian yields goes until December, 2012, as the inflation
was reduced over the years. Since then, yield curves started an increasing shift in level,
following the advance of inflation expectations. For most part of the period, the yield
curves reflected an upward sloping and concave shape, being slightly downward sloping in
2005, 2008 and 2015.

Figure 1 – Brazilian nominal yields in three dimensions, observed from DI-futuro contracts at
maturities ranging from 3 months to 5 years during the sample period 2003:04-2016:03.

In respect to the extraction of common factors from the large macroeconomic
dataset, the analysis use two macro factors, where both explain about 24.8% of the
overall variation in observed variables. In table 5 of Appendix A I have grouped 182
macroeconomic variables into 9 economic categories. In order to provide some insights
about the macroeconomic content in each factor extracted, Fig. 2 displays the correlation
coefficient between every macro variable and each of the first principal components. The
first macro factor (X1) exceeds 16.6% of the total variance of the original data and
correlates mostly with the following economic categories: production and real activity,
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price, employment, wage and income. The second factor (X2) accounts for 8.24% of
the variation in original data and correlates mostly with real activity variables, external
sector and most prominently with inflation expectations. Besides that, the individual
forward-looking variables are highly correlated with the common macro factors, specially
X1.

Figure 2 – Correlation between macro common factors and individual macroeconomic series.

The correlations described above give an indication that X1 is possibly related to
business cycle, while X2 is likely to represent the price level and central bank’s efforts
to control inflation. In order to confirm these primary assumptions, Fig. 3 plots the X1

and X2 time series against some highly correlated individual macroeconomic variables.
The first macro factor exhibited in panels (a) and (b) is a relatively smooth time process
that clearly shows characteristics related to business cycle once it strongly correlates with
market expectations for GDP and the General Registration of Employed and Unemployed
(CAGED). The graph from panel (a) undoubtedly evidence that X1 follows the path that
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market expectations are delineating for the one-year-ahead Brazilian economic scenario.
For example, the negative values for X1 in the beginning of 2003, 2008 (recent financial
crisis) and after 2013, are clearly associated with recession periods. For these reasons, X1

can be labelled as business cycle factor.

On the other hand, panels (c) and (d) reveal a noisier process for X2. Factor X2

presents a relative strong and positive correlation with market expectations for next 12
months IGP-DI and market expectations for 2-2.5 years ahead IPA-M, both inflation
indexes. Fig. 2 also displays other strong correlations betweenX2 and inflation expectations,
specially for prices administrated by contracts and monitored. Thus, it is plausible to
assume that the second macro factor reflect mainly inflation future scenarios, and can be
labelled as inflation factor. These common factors extracted here are in line with findings
in Koopman & Wel (2013) and Pooter et al. (2010), where the first macro factor resembles
the real activity and the second factor is mostly related to price indexes.

(a) (b)

(c) (d)

Figure 3 – Plots of common macro factors and individual most correlated macroeconomic
variables.

Next, table 2 presents summary statistics for the yield dataset at various maturities,
including the yield latent factors and the first two standardized macroeconomic factors.
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The table reports the mean, standard deviation, minimum and maximum, as well as the
25%, 50% (median) and 75% quantiles, and sample autocorrelations at displacements of
1 and 12 months. As analysed in Diebold & Rudebusch (2013), several important yield
curve facts emerge: (i) time-averaged yields increase with maturity revealing an increasing
and slightly concave shape; which reports some kind of term premium, perhaps due to
risk aversion, liquidity preferences, or preferred habitats; (ii) yield volatilities decrease
with maturity until τ = 30-month and then slightly increase; the first behavior is normal
as long rates involve averages of expected future short rates according to expectations
hypothesis, but the second one could suggest some kind of unusual uncertainty scenario
expected for long-term; (iii) yields are highly persistent, as evidenced by the very large
1-month and significant 12-month spread autocorrelations, specially for shorter maturities.

Table 2 – Summary statistics of yield curve and macro series.

Mean Sd
Quantiles

ρ̂(1) ρ̂(12)
Min Q(25%) Median Q(75%) Max

DI-futuro yields (by maturity)
3 0.1300 0.0385 0.0703 0.1058 0.1214 0.1477 0.2617 0.9548 0.5116
6 0.1304 0.0371 0.0707 0.1057 0.1224 0.1508 0.2501 0.9576 0.5278
9 0.1309 0.0358 0.0719 0.1056 0.1242 0.1536 0.2441 0.9540 0.5335
12 0.1317 0.0348 0.0731 0.1083 0.1247 0.1546 0.2427 0.9506 0.5314
15 0.1325 0.0340 0.0734 0.1104 0.1255 0.1552 0.2429 0.9463 0.5268
18 0.1333 0.0333 0.0747 0.1123 0.1260 0.1560 0.2439 0.9414 0.5236
21 0.1339 0.0327 0.0766 0.1128 0.1262 0.1562 0.2442 0.9377 0.5241
24 0.1345 0.0322 0.0786 0.1139 0.1269 0.1571 0.2440 0.9345 0.5244
27 0.1351 0.0319 0.0800 0.1145 0.1267 0.1578 0.2454 0.9309 0.5244
30 0.1355 0.0317 0.0810 0.1151 0.1269 0.1577 0.2471 0.9278 0.5271
36 0.1361 0.0317 0.0819 0.1166 0.1270 0.1571 0.2516 0.9220 0.5317
42 0.1367 0.0318 0.0834 0.1180 0.1273 0.1575 0.2564 0.9172 0.5343
48 0.1371 0.0319 0.0846 0.1185 0.1272 0.1583 0.2575 0.9167 0.5342
60 0.1375 0.0322 0.0864 0.1182 0.1273 0.1569 0.2579 0.9185 0.5355

Yield curve latent factors (level, slope and curvature)
Lt 0.1408 0.0355 0.0942 0.1200 0.1287 0.1522 0.2884 0.8954 0.4792
St -0.0138 0.0277 -0.0794 -0.0315 -0.0176 0.0016 0.0558 0.8829 -0.0146
Ct -0.0017 0.0384 -0.1124 -0.0258 0.0020 0.0227 0.1103 0.8720 -0.0276
First two standardized principal components (PC) from the macro series
1st PC 0 1 -2.6934 -0.5574 0.1206 0.7820 1.5682 0.9113 0.4939
2st PC 0 1 -2.7784 -0.7503 -0.0165 0.6053 4.3350 0.4402 0.2468
Notes: The table presents the descriptive statistics for DI-futuro contracts over the period 2003:04-
2016:03. The monthly yield curves were constructed using cubic splines interpolation. For each maturity,
the table displays the mean, standard deviation (Sd), minimum (Min), 25% quantile, median, 75%
quantile, maximum (Max), and sample autocorrelations at displacements of 1 (ρ̂(1)) and 12 (ρ̂(12))
months. In addition, it shows the statistics for the latent factors of yield curve, defined as level, slope
and curvature, and for the first two standardized principal components extracted from the macro
dataset, presented in table 5, Appendix A.

The observed yields data show an asymmetric distribution, where most of the
observations concentrate in lower rates. In line with this fact, the level factor is skewed to
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the right due to high observed yields of the first years of the sample period, intensifying data
in the first two quantiles. The slope factor is negative for most part of the observations and
concentrate in the second quantile of its sample distribution. The observations regarding
X1 pursue areas with positive values. So, as X1 is highly correlated with business cycle, its
sample statistics reflect that there are more procyclical periods in the Brazilian economy
overall the sample period. The observations of X2 point to a sample distribution slightly
skewed to the left, where data variation is larger for negative values and central observations
concentrate in the third and positive quantile. When it comes to sample autocorrelations,
the latent yield factors and X1 exhibit high persistences at displacement of 1 month, while
X2 shows a moderate persistence.

Before estimating the different DNS specifications, I analyse the correlations
between observed yields, latent yield factors and various lags of the macro factors to check
whether macro factors capture predictive information about interest rates. In particular,
the purpose is to investigate whether the extracted macro factors are potentially useful
explanatory variables in a term structure model. Table 6 in Appendix B summarizes those
correlations, reporting that interest rates for some relevant maturities jointly with level
and slope factors, are most strongly correlated with the short end of the yield curve. This
fact highlights the potencial of yield factors to explain dynamic yield curve movements
through time. The contemporaneous and 1 month lagged correlations from panels A and
B exhibit a negative correlation that ranges from 0.21 to 0.27 between X1 and observed
yields. The aspect of these relationships demonstrate convergence to economic theory,
where ascending economic periods are compatible with low interest rates. On the other
hand, X2 reveals a relative much stronger and positive correlation with observed yields
and yield factors, whereas the correlation coefficient decrease with the lag length. These
findings help motivating the usefulness of the incorporation of macro factors to the yield
curve model specifications.

Moreover, two interesting findings with respect to the inflation factor emerge.
First, the medium and long-term interest rates depend more heavily on X2 than short
maturities; a similar finding is stated in Koopman & Wel (2013), where macro factors
have a much stronger impact on interest rates associated with medium maturities. Second,
it is interesting to observe that the inflation factor is highly correlated with both the
level and curvature of the yield curve for all panels. Economic theory broadly suggests
that the nominal yield curve level should be linked to the level of expected inflation
(DIEBOLD; RUDEBUSCH, 2013). Dijk et al. (2014), for example, argue that long-run
inflation expectations drive the level factor. This evidence indicates that factors extracted
from the macroeconomic dataset might be useful for forecasting interest rates, where X2

exhibit a greater potencial to explain yield curve movements.
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12 Estimating term structure models

12.1 In-sample estimates
This section explores the results obtained from estimating the DNS specification

models represented by DNS-VAR(3) and the set of yields-macro models defined in Sec-
tions 6.1 and 6.2. Table 7 in Appendix C reports the estimates of the coefficients in the
state transition matrix for DNS-VAR(3), DNS-VAR(4)2 and DNS-VAR(5) models. In
addition, table 8 in Appendix C displays the descriptive statistics of the measurement
disturbances. Thus, estimates for DNS-VAR(4) model just consider the inflation factor,
X2, which correlates with yield factors and improve forecast accuracy as will be reported
later. The results indicate that on average the estimated models provide a good fit to
the yield curve across the entire maturity spectrum, except for very short maturities. For
maturities above 9 months the models fit the observed data efficiently well. This bad fit
behavior for short maturities also is reported by Diebold et al. (2006), where estimated
errors for yields of 3-months maturity are relatively higher. The fact of more pronounced
adjustment at the medium and long end of the yield curve is a general feature of the DNS
framework.

Table 8 also reports that the mean and standard deviation of the measurement
disturbances from DNS-VAR(4)2 and DNS-VAR(5) estimates outperform DNS-VAR(3)
model for maturities over 12 months. That is, yield curve estimates of the macroeconomic
specifications for medium and long-term maturities are more accurate than DNS-VAR(3)
estimates. Furthermore, the estimated errors of DNS-VAR(5) model are higher compared
to DNS-VAR(4)2 model. These results sign for a path where macroeconomic information
can improve yield curve predictions, at least for longer maturities.

Most of estimates for the leading diagonal of transition matrix A present high
coefficients, ranging from 0.48 to 0.95 for ft, confirming the high persistence level of the
entire set of latent factors. Even macro factors are consistently significant at a level of 1%
regarding to their persistence coefficients, whereas those for X2 have values between 0.44
and 1.01. On the other hand, the estimated off-diagonal elements of A are all smaller than
0.12 in absolute values for DNS-VAR(3) and DNS-VAR(4)2 models. Besides the small
bilateral effects between factors of ft, the estimates reveal many significant off-diagonal
relationships between the components of the yield curve. For example, the 1-month lagged
slope factor consistently affect the level factor at significant and positive values, as well
as the lagged curvature factor continually impact on slope factor. For the DNS-VAR(5)
model, the whole set of estimated off-diagonal coefficients regarding ft are significant at
1% level and range from 0.04 to 0.34 in absolute values.
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The estimates for yields-macro models do not report significant effects of macro
factors on yield factors, except for curvature factor, which responds to X1 one period
lagged in DNS-VAR(5) model. A similar finding was reported by Koopman & Wel (2013),
highlighting the importance of the dynamic interactions between the lagged curvature
factor and business cycle features. In addition, the yield factors do not impact on macro
factors at significant levels, except for DNS-VAR(5) model where X2 respond to shocks in
curvature 1-month lagged. The lack of significant relationships between macro factors and
yield factors is not necessarily a sign of poor prediction performance for the macroeconomic
specifications.

The fitted yield curve also can be seen in Fig. 4, which plots the time series for 12-
and 60-month maturity of observed and fitted yields estimated by DNS-VAR(4)2 model. It
is noteworthy that the DNS framework is capable to capture the cross-sectional variation
of Brazilian nominal yields, fitting quite well the different shapes of the yield curve during
the in-sample period.

(a) Realized and fitted annualized 12 months yields (b) Realized and fitted annualized 60 months yields

Figure 4 – Observed and fitted time series for two selected interest rates, the 12-month yield
and the 60-month yield, estimated by DNS-VAR(4)2 model for in-sample period.

12.1.1 Alternative model specifications

The unrestricted DNS model (3.7)-(3.11), and its macroeconomic structure, are
a general model specification for the yield curve dynamics. Nonetheless, those general
specifications could carry the problems of overparameterization and loss of degrees of
freedom. An unrestricted state transition matrix provides a very general linear model of
yields typically with good in-sample fit, but the large number of estimated coefficients
may reduce its value for out-of-sample forecasting (DIEBOLD; RUDEBUSCH, 2013).
Further, previous literature have shown that parsimonious models often outperform more
sophisticated models (POOTER et al., 2010). Thus, this suggests that there could be
some parsimonious factor structures that can reduce the risk of overfitting and improve
the out-of-sample forecast accuracies relative to the unrestricted model.
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This section could in principle consider an almost unlimited number of alternative
models. I primarily consider combinations of a restricted vector-autoregressive for the
transition matrix A and a restricted structure for the covariance matrix Q. The previous
section reports small off-diagonal effects between factors, although some statistically
significant relationships, which support the following discussion that consider a set of
restrictions on matrix A, matrix Q, and on the number of factors. The restrictions are
applied to the following general specification models: DNS-VAR(3), DNS-VAR(4)2 and
DNS-VAR(5). Even for diagonal structures, the estimates maintain effects of macro factors
on the components of the yield curve aiming to explore the potential contributions of the
macroeconomy to yield curve forecasting. The alternative models representing the different
restrictions applied are as follows:

1. The first restriction is to set diagonal structures for both the matrix A and Q. These
restriction models are denoted by DNS-AR(3), DNS-AR(4)2 and DNS-AR(5). As
the model structure only contemplates effects of macroeconomic factors to the yield
curves in future time periods via dynamic interaction in the transition equation, the
diagonal structures for A and Q are just applied to the yield factors. The restriction
implies that I do not model any yields-to-macro feedbacks, allowing only for a
unidirectional link from macro factors to yields. Hence, the DNS-AR(3) specification
represents a complete first-order autoregressive structure, whereas yield factors also
depend on macroeconomic factors in DNS-AR(4)2 and DNS-AR(5) specifications1.

2. The second restriction is to allow the transition equation to be unrestricted while the
covariance matrix Q is only diagonal when it comes to yield factors interactions. The
difference to the first specifications is that now the yield factors can affect each other,
so that matrix A is fully estimated. The general models with these restrictions are
now denoted by DNS-VAR(3)Q−diag, DNS-VAR(4)2,Q−diag and DNS-VAR(5)Q−diag,
respectively.

3. The third restriction inverts the second one, allowing the transition covariance matrix
Q to be unrestricted while matrix A has a diagonal structure applied to yield factors
interactions. Now, the general specifications are denoted by DNS-VAR(3)A−diag,
DNS-VAR(4)2,A−diag and DNS-VAR(5)A−diag, respectively.

4. The fourth restriction is to estimate the general models, limit the matrix Q to
be diagonal and set to zero the least significant estimated parameters of matrix
A, following the analysis process stated in Christensen & Rudebusch (2012). The
selection of significant coefficients of matrix A follows the general-to-specific modeling
strategy, discussed in Hendry (2001), which restricts the least significant parameter in
the estimation to zero and then re-estimates the model. The best fitting specification

1 The difference in the estimation refers to matrices A and Q, where just the off-diagonal elements
regarding the yields latent factors interactions are set to zero in DNS-AR(4)2 and DNS-AR(5).
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is based on values for Akaike and Bayes information criteria (AIC and BIC). The
general models following the proposed selection process are now denoted by DNS-
VAR(3)S, DNS-VAR(4)2,S and DNS-VAR(5)S, respectively, and their transition
matrices follows the subsequent structures:

A3S =

k
S
11 0 0
kS

21 kS
22 kS

23

0 0 kS
33

 , A4S =


kS

11 0 0 kS
14

kS
21 kS

22 kS
23 kS

24

kS
31 0 kS

33 0
0 0 0 kS

44

 , A5S =


kS

11 0 0 0 kS
15

kS
21 kS

22 kS
23 0 kS

25

0 0 kS
33 kS

34 0
0 0 0 kS

44 0
0 0 0 kS

54 kS
55

 .

5. The fifth and last restriction imposed is to allow for a smaller number of factors,
whereas the curvature factor is not included in the factors vector. The literature
commonly chooses three yield factors as the appropriate structure (DIEBOLD; LI,
2006), but the purpose is to investigate whether the curvature factor has an impact
on fitting and forecasting yields data. So, the general specifications are reduced to
two yield factors (level and slope), keeping the unrestricted structures for A and Q.
These alternative specifications are denoted by DNS-VAR(2)C , DNS-VAR(3)2,C and
DNS-VAR(4)C , respectively.

Table 10 in Appendix E reports the goodness-of-fit statistics covering the in-sample
estimates. The statistics clearly show that the DNS-VAR(3) model maximizes the log
likelihood value (log L) and minimizes the values for AIC and BIC. Then, the DNS-
VAR(3)A−diag, DNS-VAR(3)Q−diag, DNS-VAR(3)S and DNS-AR(3) models also present
good in-sample fit. Therefore, specifications with small number of estimated parameters
present highest values for log L and smaller values for AIC and BIC. Looking at the
yields-macro alternative specifications, those that consider only one macro factor report
better results than those specifications that incorpore two macro factors, which clearly
exhibit relative poor adjustments compared to their pair. Moreover, the class of models that
apply the fifth restriction report the poorer in-sample adjustments. The key point to note
here is that the general DNS-VAR(3) model provide the most parsimonious specification
choice of all estimated models, followed by other specifications with small number of
estimated parameters.

The evaluation of in-sample adjustment, reported by table 11 in Appendix E,
examine the (trace) root mean squared error (RMSE) relative to benchmark, which in
this case is the DNS-AR(3) model, supported by its relatively small number of estimated
parameters. The RMSE statistic for maturity τi and for model m is calculated as follows:

RMSEm(τi) =

√√√√ 1
T

T∑
t=1

(ŷt(τi)− yt(τi))2, (12.1)

where ŷt(τi) is the predicted yield for the maturity τi at time t, and yt(τi) is the observed
yield. To evaluate the measurement disturbances of each model the trace root mean squared



Chapter 12. Estimating term structure models 74

error (TRMSE) is also reported:

TRMSEm(τi) =

√√√√ 1
N

1
T

N∑
i=1

T∑
t=1

(ŷt(τi)− yt(τi))2. (12.2)

Lower values for RMSE and TRMSE indicate better in-sample fit.

The estimates for relative TRMSEs reveal that most part of the alternative models
outperform the in-sample estimation of the benchmark, whereas DNS-VAR(3) and DNS-
VAR(5)A−diag achieve the best in-sample fit to observed data. A large set of alternative
models outperform the benchmark for short and medium-term maturities, represented by
3, 6 and 36 months. The alternative specifications provide the best adjustment compared
to benchmark at very short maturities. In general, the estimates present a similar empirical
fit between the whole set of alternative models, except for the class of specifications
considering the fifth restriction, which reveal a poor in-sample performance, i.e., the
curvature factor is important to fit in-sample data.

12.2 Forecast performance evaluation
In the previous section, it has been shown that the whole set of DNS models provide

a fairly good in-sample fit to Brazilian nominal yields data. In this section, I perform
the out-of-sample forecast exercise of the DNS-VAR(3) and yields-macro models using a
rolling window analysis. This implies that the multiple step ahead forecasts explored here
are closely related to an investor’s pseudo real-time decision. However, the analysis is not
based on fully real-time data once some macroeconomic variables of panel 5 in Appendix
A are constructed from the revised dataset and some macro information have not been
released yet at the time when a forecast is made.

The forecast exercise for the multiple forecast horizons of 1-, 3-, 6-, 9- and 12-
month-ahead are performed with rolling window samples of size T = 116. The first
estimation sample is from April, 2003, to November, 2012; the second rolling window
contains observations for period t = 2 (May, 2003) through T + 1 (December, 2012), and
so on. Predictions are made for T + h at the end of each rolling window, where h is the
forecast horizon. Hence, the out-of-sample forecasts are carried out over the time interval
from December, 2012, to March, 2016. The number of rolling window samples is S = 40,
whereas the last 11 rolling window samples have some restrictions related to forecast
horizons. That is, there are 40 out-of-sample forecasts for 1-month horizon, 39 for 2-month
horizon, and so on until 29 out-of-sample forecasts for 12-month horizon.

The evaluation of out-of-sample forecasts requires some measures to compute the
errors for each maturity τi. Given a time series of S out-of-sample forecasts for h-period-
ahead forecast horizon, the root mean squared forecast error (RMSFE) calculates a forecast
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error measure for maturity τi at forecast horizon h and for model m:

RMSFEm(τi) =

√√√√ 1
S

S∑
t=1

(ŷt+h|t(τi)− yt+h(τi))2, (12.3)

where yt+h(τi) is the yield for the maturity τi observed at time t+ h, and ŷt+h|t(τi) is the
corresponding forecast made at time t. The performance analysis also reports the trace
root mean squared forecast error (TRMSFE), which calculates the trace of the covariance
matrix of the forecast errors across all N maturities:

TRMSFEm(τi) =

√√√√ 1
N

1
S

N∑
i=1

S∑
t=1

(ŷt+h|t(τi)− yt+h(τi))2 (12.4)

The Diebold & Mariano (1995) test is applied to compare forecast accuracy between
two competing models. The Diebold-Mariano (DM) statistic tests whether the out-of-
sample forecast error from modelm1 for maturity τi (em1

t+h|t(τi)) is statistically different from
the forecasts of the competing model m2 (em2

t+h|t(τi)), where e
ml
t+h|t(τi) = yt+h(τi)− ŷmlt+h|t(τi)

for l = 1, 2. As the forecast exercise is computed for out-of-sample observations, in practice
one has a series of forecast errors for maturity τi. The accuracy of each forecast series for
τi is measured by a particular loss function (L(emlt+h|t(τi))), which in this case is assumed
to be a squared error loss function equal to (emlt+h|t(τi))2. The null hypothesis of DM test
determine the equality between the expectation of L(em1

t+h|t(τi))2 and L(em2
t+h|t(τi))2, against

the alternative hypothesis of difference between those expectations. Hence, the test is
based on the loss differential dt+h = L(em1

t+h|t(τi))2−L(em2
t+h|t(τi))2, testing for the null where

the loss differential has zero expectation for all t:

H0 : E[dt] = 0. (12.5)

Assuming that d̄ = 1
S

∑S
t=1 dt is the sample mean of the loss differential, the DM

test statistic for different forecasting methods (DMm) can be computed as:

DMm = d̄√
δ̂
S

d→ N(0, 1), (12.6)

where δ̂ is a consistent estimate of the asymptotic (long run) covariance matrix of the loss
differential (cov(dt, dt−j)). In another way,

√
δ̂/S is a consistent estimate of the standard

deviation of d̄. The long-run variance is used in the statistic because the sample of dt is
serially correlated for h>1, and for a variety of reasons (DIEBOLD; MARIANO, 1995).
The Newey & West (1987) estimate is employed to calculate robustly δ̂, which allows
controlling for the serial correlation in the forecasting errors. The DM statistic requires only
one assumption: the loss differential must be covariance stationary (DIEBOLD, 2015)2. A
2 It is worth remembering that the DM test is designed to emphasize that the errors are driven by

forecasts, not models (DIEBOLD, 2015). After Diebold & Mariano (1995), some researchers (Clark &
McCracken (2001), Giacomini & White (2006)) elaborated alternative predictive accuracy tests, which
emphasize the fully-articulated econometric models used to the out-of-sample forecasting.
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negative value for the DMm statistic indicates predictive superiority of the first model
of the pair, which in this case is model m1. The probability to reject the null of equal
predictive accuracy is higher when absolute values for DMm are higher. Absolute values
higher than 1.96 indicate rejection of the null hypothesis at the 5% level.

Table 3 reports the summary statistics of forecast performance for the general
specifications: DNS-VAR(3), DNS-VAR(4) and DNS-VAR(5). The table presents the
RMSFE and TRMSFE statistics for the τ maturities and for 1-, 3-, 6-, 9- and 12-month-
ahead forecast horizons, showing where a competitor yields-macro model outperforms the
DNS-VAR(3) model and when Diebold-Mariano test rejects the null of equal forecasting
accuracy between them. Some basic considerations can be made: (i) the DNS-VAR(5) and
DNS-VAR(4)1 clearly underperform the general DNS framework for the entire maturity
and forecast horizon spectrum; (ii) the DNS-VAR(4)2 consistently outperform the DNS-
VAR(3) model for most maturities and for forecast horizons longer than one month. The
DM test rejects the null hypothesis at a 5% level of the DNS-VAR(4)2 model for particular
cases: (i) 6-month-ahead predictions for some medium- and long-term maturities, and (ii)
9-month-ahead predictions for the long end of the yield curve. Therefore, it is possible
to affirm that the DNS-VAR(4)2 model forecasts quite well for medium- and long-term
maturities and for forecast horizons longer than one month.

The DM test also rejects the null for most forecasted yields of DNS-VAR(4)1

and DNS-VAR(5) models, confirming the inferior performance of these specifications in
relation to DNS-VAR(3). Both models that include the business cycle factor forecast
poorly, supporting the evidence of relatively small impact of X1 on the Brazilian yield
curve. In other words, the incorporation of macro factors containing information strongly
correlated with business cycle do not contribute to predict the Brazilian yield curve. In
such cases, the superiority of forecast perfomance of the DNS-VAR(3) model is clearly
shown.

The forecasts produced by the DNS-VAR(4)2 model provide the lowest RMSFEs
and TRMSFEs for most predictions above 1-month horizon, while DNS-VAR(3) model
provide the lowest values for 1-month-ahead forecasts. Thus, the inclusion of the inflation
factor into the general DNS framework appears to lead to lower RMSFEs for most interest
rates and most forecast horizons above 1 month. In addition, the results for the DM tests
confirm the significant improvements of DNS-VAR(4)2 model for 6- and 9-month-ahead
predictions, specially for medium- and long-term maturities. Overall, the results imply the
support for the incorporation of a macro factor that summarizes broad macroeconomic
information regarding mainly inflation expectations. This evidence confirms the previous
viewpoint that suggested a strong correlation between the nominal yield curve level and
expected inflation.

Appendix D also reports the forecast results for yields-macro models using only
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forward-looking variables as macroeconomic information. Those evidence converge to
previous results, where the DNS-VAR(4) model that incorporates an inflation expectation
factor provides lowest RMSFEs and TRMSFEs for the entire maturity spectrum and for
forecast horizons above 3 months.

The forecast exercise confirms the estimates reported by Moench (2008), Pooter et
al. (2010), Koopman & Wel (2013), Almeida & Faria (2014), among other studies. Moench
(2008) finds that a no-arbitrage FAVAR model with macroeconomic appeal provides better
out-of-sample yield forecasts at intermediate and long horizons than various benchmarks
including the affine three factor model of Duffee (2002) and the general DNS framework.
Pooter et al. (2010) show that adding macro factors does indeed improve the forecast
accuracy of several term structure models such as those suggested by Diebold et al. (2006)
and Ang & Piazzesi (2003), specially for subperiods with substantial uncertainty about
the future path of interest rates. Koopman & Wel (2013) validate the incorporation
of macroeconomic variables in a smooth dynamic factor model, which improves the
performance for forecasting the US term structure compared to a set of dynamic models
without macroeconomic information. For the Brazilian term structure, Almeida & Faria
(2014) confirm the better predictive performance of the model proposed by Moench (2008)
when compared to the usual benchmarks.

12.2.1 Alternative model specifications

The summary statistics of forecast performance of the various alternative speci-
fications described in Section 12.1.1 are reported by table 12 of appendix E. The table
presents the forecast analysis for 1-, 6-, 9- and 12-month-ahead and for maturities 3, 6, 12,
24, 36, 48 and 60 months, performed with rolling window samples. Each forecasted yield
is compared to benchmark, which is the random walk (RW) model. Using the estimated
yields for each maturity τi at each rolling sample for the forecast horizons, the RMSFE
and TRMSFE are calculated, where Diebold-Mariano statistic tests for superior predictive
performance between the alternative specifications and benchmark.

To compare the out-of-sample forecasting performance of the alternative speci-
fications, I choose the random walk as the benchmark because of the high persistence
processes observed in yield data. The t+ h-step-ahead forecasts for an yield of maturity τi
of the RW model are given by: yt+h|t(τi) = yt(τi). That is, a h-step-ahead forecast is simply
equal to the most recently observed value yt(τi). The RW model is a good benchmark
for judging the relative prediction power of other models, since yields of all maturities
are close to being non-stationary. Thus, in practice, it is difficult to beat the RW in
terms of out-of-sample forecasting accuracy. Many other studies that consider interest
rate forecasting have shown that consistently outperforming the RW is a difficult task
(see, for example, Duffee (2002); Ang & Piazzesi (2003); Hördahl et al. (2006); Moench
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(2008)). Nevertheless, since Diebold & Li (2006) study, favorable evidence for interest rate
predictability against RW model has been reported.

The RW model shows good prediction accuracy for 1-month-ahead forecasts, where
no alternative specification outperform the benchmark in terms of TRMSFE. However,
in terms of RMSFE some specifications with fewer estimated parameters (DNS-AR(3),
DNS-VAR(3), DNS-VAR(3)Q−diag, DNS-VAR(3)A−diag and DNS-VAR(2)C) outperform
the benchmark for medium- and long-term maturities. The forecast accuracy of the
alternative specifications increases with the forecast horizon. For forecast horizons equal
to and above 6-month-ahead, there are various alternative models that outperform the
benchmark for almost all maturity spectrum, as DNS-AR(3), DNS-VAR(3), DNS-VAR(4)2,
DNS-VAR(3)Q−diag, DNS-VAR(4)2,Q−diag, DNS-VAR(3)A−diag, DNS-VAR(3)S and DNS-
VAR(2)C . For longer forecast horizons, 9- and 12-month-ahead, the DNS-VAR(5)Q−diag

model also outperforms the benchmark for the entire maturity spectrum, suggesting a
specification in which the business cycle factor contributes to yield curve forecasting. The
imposition of restrictions in the covariance matrix Q also proved to generate good yield
forecasts. In general, the alternative specifications outperform the RW model in terms of
TRMSFE when the forecast horizon is equal to and longer than 6 months.

The DNS-AR(3), DNS-VAR(4)2 and DNS-VAR(2)C models provide the forecasted
yields with lowest RMSFEs and TRMSFEs for 9- and 12-month-ahead forecast horizons,
whereas DNS-AR(3) and DNS-VAR(2)C represent specifications with relative small number
of estimated parameters. The DNS-VAR(2)C model consistently beats the benchmark
for forecast horizons equal to and above 6 months and for the entire maturity spectrum,
which suggests that the curvature factor is not so important to yield curve forecasting.

The DM test rejects the null of equal forecasting accuracy in favor to the following
outperforming models for longer forecast horizons and specially for medium- and long-
term maturities: DNS-AR(3), DNS-VAR(3), DNS-VAR(4)2, DNS-VAR(3)Q−diag, DNS-
VAR(4)2,Q−diag, DNS-VAR(3)A−diag, DNS-VAR(3)S and DNS-VAR(2)C . Nonetheless, the
DM test also rejects the null in favor to the RW model relative to some DNS specifications
that present a poor forecast ability, as the DNS-VAR(4)2,A−diag and DNS-VAR(5)A−diag,
particularly for shorter forecast horizons.

In short, the evidence indicate that imposing further restrictions can lead to
improvements in forecast accuracy, pointing to specifications with less number of estimated
parameters. Moreover, the contribution of macroeconomic information seems to be relevant
through the DNS-VAR(4)2, DNS-VAR(4)2,Q−diag and DNS-VAR(5)Q−diag models for longer
forecast horizons, and specially for medium and long-term maturities. Therefore, the results
provide enough information to affirm that it is difficult to beat the benchmark for very
short forecast horizons, while different DNS specifications can easily beat the benchmark
forecasts for longer forecast horizons, specially for medium and long-term maturities.
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To visualize some general findings, Fig. 5 illustrates the actual yields and those
predicted by the random walk, DNS-AR(3), DNS-VAR(3) and DNS-VAR(4)2 models for
some selected forecast horizons in March, 2015. The forecasted yield curves reveal the
deterioration of the benchmark forecasts in relation to DNS-VAR(3) and DNS-VAR(4)2

with the increase of the forecast horizon. Furthermore, the DNS-VAR(4)2 model seems to
capture relatively well the changes in the 12-month ahead yield curve.

(a) 1-month ahead yield curves (b) 3-month ahead yield curves

(c) 6-month ahead yield curves (d) 12-month ahead yield curves

Figure 5 – Observed and forecasted annualized yield curves (in %) for four selected forecast
horizons, 1-, 3-, 6- and 12-months-ahead, estimated by the random walk, DNS-AR(3),
DNS-VAR(3) and DNS-VAR(4)2 models in March, 2015.
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Table 3 – (Trace)-Root Mean Squared Forecast Errors of DNS-VAR(3) and yields-macro models.
DI-futuro data from 2003:04 to 2016:03, whereas out-of-sample period is 2012:12-
2016:03.

Panel A: DNS-VAR(3) model Panel B: DNS-VAR(5) model

Maturities
Forecast horizon Forecast horizon

1-M 3-M 6-M 9-M 12-M 1-M 3-M 6-M 9-M 12-M
3 0.486 0.969 1.817 2.472 2.978 1.424∗ 2.422∗ 3.357∗ 6.536∗ 14.204∗
6 0.478 0.987 1.761 2.313 2.739 1.491∗ 2.435∗ 3.275∗ 6.217∗ 13.395∗
9 0.502 1.021 1.691 2.185 2.581 1.565∗ 2.487∗ 3.211∗ 5.936∗ 12.710∗
12 0.536 1.043 1.641 2.112 2.468 1.622∗ 2.508∗ 3.166∗ 5.705∗ 12.141∗
15 0.546 1.049 1.610 2.058 2.381 1.654∗ 2.530∗ 3.112∗ 5.482∗ 11.585∗
18 0.574 1.084 1.620 2.033 2.329 1.687∗ 2.542∗ 3.048∗ 5.239∗ 11.063∗
21 0.600 1.114 1.628 2.020 2.287 1.708∗ 2.537∗ 2.985∗ 5.009∗ 10.565∗
24 0.615 1.125 1.643 2.020 2.264 1.717∗ 2.527∗ 2.942∗ 4.805∗ 10.090∗
27 0.617 1.132 1.654 2.005 2.250 1.718∗ 2.519∗ 2.912∗ 4.608∗ 9.640∗
30 0.622 1.139 1.652 1.994 2.241 1.722∗ 2.511∗ 2.891∗ 4.422∗ 9.212∗
36 0.624 1.134 1.658 2.001 2.242 1.728∗ 2.511∗ 2.838∗ 4.112∗ 8.452∗
42 0.630 1.138 1.675 2.012 2.257 1.726∗ 2.507∗ 2.818∗ 3.880∗ 7.811∗
48 0.633 1.132 1.670 2.012 2.262 1.717∗ 2.510∗ 2.816∗ 3.699∗ 7.292∗
60 0.640 1.125 1.670 2.023 2.267 1.727∗ 2.550∗ 2.869∗ 3.519∗ 6.624

TRMSFE 0.581 1.087 1.672 2.094 2.406 1.660∗ 2.507∗ 3.022∗ 5.026∗ 10.581∗

Panel C: DNS-VAR(4)1 model Panel D: DNS-VAR(4)2 model

Maturities
Forecast horizon Forecast horizon

1-M 3-M 6-M 9-M 12-M 1-M 3-M 6-M 9-M 12-M
3 1.864 2.925 4.304∗ 5.949∗ 8.216∗ 0.523 1.069 1.724 2.202 2.483
6 1.834 2.936 4.251∗ 5.823∗ 7.924∗ 0.520 1.044 1.638 2.015 2.285
9 1.793 2.920∗ 4.185∗ 5.706∗ 7.688∗ 0.556 1.043 1.560 1.894 2.121
12 1.773 2.908∗ 4.103∗ 5.595∗ 7.430∗ 0.592 1.051 1.520 1.798 2.010
15 1.738 2.873∗ 4.020∗ 5.454∗ 7.215∗ 0.616 1.049 1.484 1.731 1.912
18 1.714 2.848∗ 3.929∗ 5.323∗ 7.001∗ 0.645 1.067 1.484∗ 1.695 1.841
21 1.687 2.803∗ 3.853∗ 5.206∗ 6.793∗ 0.665 1.090 1.489∗ 1.669 1.787
24 1.661 2.763∗ 3.784∗ 5.087∗ 6.614∗ 0.677 1.095 1.495∗ 1.647 1.760
27 1.638 2.725∗ 3.697∗ 4.979∗ 6.459∗ 0.680 1.102 1.497∗ 1.641 1.757
30 1.612 2.694∗ 3.607∗ 4.884∗ 6.322∗ 0.687 1.106 1.502∗ 1.636∗ 1.756
36 1.594 2.617∗ 3.511∗ 4.712∗ 6.077∗ 0.703 1.121 1.510 1.639∗ 1.765
42 1.571 2.564∗ 3.429∗ 4.572∗ 5.889∗ 0.709 1.125 1.520∗ 1.657∗ 1.786
48 1.548 2.510∗ 3.347∗ 4.455∗ 5.724∗ 0.711 1.122 1.515∗ 1.661∗ 1.797
60 1.518 2.431∗ 3.228∗ 4.275∗ 5.468∗ 0.715 1.121 1.516 1.677 1.813

TRMSFE 1.685 2.756∗ 3.818∗ 5.169∗ 6.822∗ 0.646 1.086 1.534 1.762 1.932

Notes: The table presents the forecasting performances of DNS-VAR(3) model and yields-macro models.
In particular, it reports the root mean squared forecast errors (RMSFE) and trace RMSFE (TRMSFE)
obtained by using individual DNS-VAR(3), DNS-VAR(4)1, DNS-VAR(4)2 and DNS-VAR(5) models. The
values reported are divided by 1× 10−2. The RMSFE is reported for each model for the τ maturities and for
1-, 3-, 6-, 9- and 12-month-ahead forecast horizons. The latest line of each panel reports the TRMSFE for
the different forecast horizons. The evaluation sample refers to 2012:12-2016:03 (40 out-of-sample forecasts),
being 40 out-of-sample forecasts for 1-month horizon, 39 for 2-month horizon, and so on until 29 out-of-sample
forecasts for 12-month horizon. Numbers in bold indicate that the alternative yields-macro models from
panels B, C and D outperform the DNS-VAR(3) model, otherwise indicate underperformance. The star
on the right of the cell entries indicate where Diebold-Mariano test rejects the null of equal forecasting
accuracy between the competitor yields-macro model and DNS-VAR(3) model, with 5% probability of the
null hypothesis.
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13 Application to fixed-income portfolio op-
timization

13.1 Methodology for evaluating portfolio performance and imple-
mentation details

This section aims to assess the economic value of the forecasting ability of the
major yield curve models estimated previously. The empirical implementation of the
mean-variance optimization problem defined by (5.1) is performed by using one- and
twelve-step-ahead estimates of the vector of expected returns and its covariance matrix
considering five alternative values for the risk aversion coefficient δ: 0.0001, 0.01, 0.1, 0.5
and 1. Following the recursive estimation strategy of the yield curve models, the optimal
mean-variance portfolios are also computed recursively as new h-step-ahead estimates for
DI-futuro returns are known. Moreover, optimal mean-variance portfolios using one-step-
ahead forecasts for DI-futuro returns are rebalanced on a monthly basis, while portfolios
using twelve-step-ahead forecasts are rebalanced on an annual basis. Thus, the empirical
analysis with monthly rebalancing computes the optimal portfolio for each period over
the S out-of-sample observations ranging from December, 2012 to March, 2016, giving a
sample of 40 optimal portfolio weights, wt.

Otherwise, the optimization with annual rebalancing computes the optimal portfolio
for twelve consecutive months at 11:2012, 11:2013, and 11:2014. Nevertheless, the portfolio
performance statistics are computed for every month of the out-of-sample period. The
last rebalancing procedure is performed at November, 2014, because from March, 2015,
on there are no forecasts for 12-month-ahead yields being considered by the yield curve
models. Moreover, rebalancing frequency is important when dealing with fixed-income
assets, because the securities in the portfolio can age and be closer to maturity. For
this reason, the shortest maturity considered here is τi = 15 months, because DI-futuro
contracts with maturity lower or equal to 12 months will already be matured before the
subsequent rebalancing process. This only allows the computation of performance statistics
until January, 2016, because at February, 2016 the 15-month security will already be
matured, so that the number of out-of-sample observations is equal to 38.

It is clear that the scenario with annual rebalancing requires more diligence regarding
implementation procedure and computation of performance statistics. Note that, after one
period, an optimal portfolio containing securities that yield an average duration of τi at
the time of the mean-variance optimization, becomes a portfolio with average duration τi−1

and so on until the next rebalancing process, changing the characteristics of the original
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portfolio over time. Thus, the computation of the time series of portfolio returns need to
take care about the constant decrease of the time-to-maturity of its securities.

The performance analysis use some alternative criteria to evaluate the performance
of the optimal mean-variance fixed-income portfolios. First of all, I describe the evaluation
criteria related to portfolio excess return relative to the risk-free rate (Rft), which is
consider to be the short Brazilian Interbank Deposit (CDI) rate. The average gross (i.e.,
before transaction costs) excess return relative to the risk-free rate (r̄x) is calculated as
follows:

r̄x = 1
S

S∑
t=1

rxt,

where rxt = w
′
t−1Rt − Rft denotes the gross excess portfolio return at time t and Rt =

[rt(τi), ..., rt(τN)]′ is a vector collecting DI-futuro returns of all maturities considered.

According to Han (2006), it would be appropriate to consider transaction costs
when rebalancing the portfolio weights frequently. The empirical scenario with annual
rebalancing can alleviate the impact of transaction costs on portfolio performance. However,
the less frequent rebalancing means that the portfolio weights will be outdated, which
could negatively affect the portfolio performance because investors would be investing away
from the optimal one (CALDEIRA et al., 2016). In line with Thornton & Valente (2012)
and Corte et al. (2008), the performance analysis also considers the excess return net of
transaction costs (rxnett ), which takes into account the negative impact of transaction costs
on portfolio average performance, and is calculated as:

rxnett = (1− c · turnovert)(1 + rxt)− 1, (13.1)

where c is the fee that must be paid for each transaction and turnovert is the portfolio
turnover at time t, defined as the fraction of wealth traded between periods t− 1 and t,
i.e,

turnovert =
N∑
i=1

(|wi,t − wi,t−1|).

The parameter wi,t is the optimal weight of maturity τi at time t. The level of transaction
costs being considered is 5 bps, reflecting a fixed percentage for each rebalance trade.
Similarly to r̄x, the average excess portfolio return net of transaction costs is defined as
r̄xnet = 1

S

∑S
t=1 rx

net
t . Moreover, statistics regarding the volatility (standard deviation) of

the net excess return (σ̂) and the risk-adjusted net excess return (SR) measured by the
Sharpe ratio are calculated as follows,

σ̂ =

√√√√ 1
S

S∑
t=1

(rxnett − µ̂p)2,

SR = r̄xnet

σ̂
,
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where µ̂p denotes the sample mean of the portfolio net excess return. Ultimately, the
performance analysis takes into account the average duration in years of the portfolios,
which allows one to better understand the composition of the optimal portfolios. The
average duration of a fixed-income portfolio is calculated as 1

S

∑S
t=1 w

′
tτ , where here τ

regards to the vector of individual security durations. A higher (lower) average portfolio
duration suggests that the optimal portfolio is invested in long (short) maturities. As
described in Section 5.2, a portfolio with higher duration carries a higher exposure to
changes in market interest rates.

13.2 Results for mean-variance portfolios
Table 4 reports the out-of-sample performance of mean-variance portfolios of DI-

futuro contracts that use estimates of yields from the random walk (RW)1, DNS-AR(3),
DNS-VAR(3) and DNS-VAR(4)2 model specifications. For the scenario which considers
one-step-ahead estimates and more frequent portfolio rebalancing (Panel A in Fig. 4),
the overview indicates that positive excess return statistics are essentially obtained when
the risk aversion coefficient is higher than 0.1, where the annualized net excess returns
range from 0.40% to 1.57%. The RW and DNS-AR(3) models also report positive net
excess returns for some δ’s smaller than 0.5. The best overall performance in terms of
Sharpe ratio is achieved by the mean-variance portfolio obtained with the RW model
with δ = 0.5 (SR = 0.472). When lower risk aversion is considered, most of the results
indicate negative Sharpe ratios and higher volatility levels. This scenario with lower risk
aversion (δ’s between 1× 10−4 and 0.1) shows annualized net excess returns ranging from
-2.96% to 1.09% and an annualized standard deviation ranging from 20.1% to 4.46% across
all model specifications. As expected, an increase in the risk aversion coefficient leads
to decreases in portfolio volatility as well as decreases in the average duration, that is,
optimal portfolios are invested in short-term maturities. This result is intuitive since lower
maturity securities are less risky, allowing investors with higher risk aversion to lower
portfolio risk by investing in shorter maturities. This evidence is even more pronounced
for the RW model, which quickly decreases volatility and duration with the increase of δ,
investing basically in 3- and 6-month maturities for δ’s higher than 0.1. For instance, the
average portfolio duration across specifications for an investor with risk aversion coefficient
δ = 1 is 0.85 year, whereas the same figure for an investor with δ = 1× 10−4 is 2.25 years.

On the other hand, the scenario which considers twelve-step-ahead estimates for
DI-futuro returns and an annual portfolio rebalancing (Panel B in Table. 42) reports
negative net excess returns across all model specifications and across all levels of the risk
1 It is noteworthy that the covariance matrix of the expected log-returns obtained from forecasted yields

of the RW model is simply the sample covariance from the in-sample observations.
2 Panel B does not report the results for δ = 0.01 because they are all equal to δ = 1× 10−4.
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Table 4 – Performance of optimal DI-futuro contracts mean-variance portfolios.

Panel A: one-step-ahead estimates with monthly rebalancing
Yield Curve Model Mean gross exc. R (%) Mean net exc. R (%) Std. Dev. (%) Sharpe Ratio Duration (years)

δ=0.0001
Random Walk -1.143 -1.218 21.981 -0.055 2.600
DNS-AR(3) -2.860 -2.910 23.375 -0.125 1.919
DNS-VAR(3) 0.880 0.820 23.134 0.035 2.356
DNS-VAR(4)2 -0.905 -0.983 24.664 -0.040 2.163

δ=0.01
Random Walk 1.081 1.008 13.040 0.077 1.615
DNS-AR(3) -2.908 -2.960 23.132 -0.128 1.879
DNS-VAR(3) 0.108 0.042 22.330 0.002 2.261
DNS-VAR(4)2 -0.897 -0.975 24.642 -0.040 2.162

δ=0.1
Random Walk 1.135 1.092 4.463 0.245 0.626
DNS-AR(3) -1.121 -1.156 20.109 -0.058 1.462
DNS-VAR(3) -0.527 -0.584 21.167 -0.028 1.978
DNS-VAR(4)2 -0.126 -0.195 21.282 -0.009 1.919

δ=0.5
Random Walk 0.521 0.511 1.083 0.472 0.287
DNS-AR(3) 1.182 1.139 14.777 0.077 1.064
DNS-VAR(3) 0.574 0.524 16.069 0.033 1.416
DNS-VAR(4)2 0.531 0.459 18.076 0.025 1.434

δ=1
Random Walk 0.405 0.401 0.889 0.451 0.261
DNS-AR(3) 1.234 1.196 8.872 0.135 0.760
DNS-VAR(3) 1.622 1.572 13.544 0.116 1.187
DNS-VAR(4)2 1.052 0.987 15.382 0.064 1.227

Panel B: twelve-step-ahead estimates with annual rebalancing
Yield Curve Model Mean gross exc. R (%) Mean net exc. R (%) Std. Dev. (%) Sharpe Ratio Duration (years)

δ=0.0001
Random Walk -1.662 -1.667 20.750 -0.080 3.303
DNS-AR(3) -0.394 -0.400 8.379 -0.048 1.487
DNS-VAR(3) -2.763 -2.765 23.940 -0.116 3.618
DNS-VAR(4)2 1.019 1.014 15.938 0.064 2.434

δ=0.1
Random Walk -1.463 -1.468 8.958 -0.164 1.882
DNS-AR(3) -0.394 -0.400 8.379 -0.048 1.487
DNS-VAR(3) -3.093 -3.097 22.447 -0.138 3.397
DNS-VAR(4)2 -0.372 -0.377 8.430 -0.045 1.502

δ=0.5
Random Walk -1.039 -1.044 7.527 -0.139 1.749
DNS-AR(3) -0.560 -0.566 7.829 -0.072 1.408
DNS-VAR(3) -2.098 -2.103 11.011 -0.191 2.066
DNS-VAR(4)2 -0.394 -0.400 8.379 -0.048 1.487

δ=1
Random Walk -0.657 -0.662 7.041 -0.094 1.555
DNS-AR(3) -0.688 -0.690 10.311 -0.067 1.302
DNS-VAR(3) -1.170 -1.175 8.227 -0.143 1.801
DNS-VAR(4)2 -0.531 -0.536 7.894 -0.068 1.422

Notes: Performance statistics for mean-variance portfolios using the random walk, DNS-AR(3), DNS-VAR(3) and DNS-VAR(4)2

model specifications to compute the forecasted yields for the out-of-sample period from 2012:12 to 2016:03. Panel A reports the
statistics for the portfolio optimization using one-month-ahead estimates for DI-futuro returns, while Panel B reports the statistics
using one-year-ahead estimates. The optimal portfolios are rebalanced on a monthly basis for Panel A estimates, and on an annual
basis for Panel B. The statistics of gross and net excess returns, standard deviation, and Sharpe ratio are annualized and the
average portfolio duration is measured in years. The excess return is calculated using the short Brazilian Interbank Deposit (CDI)
rate as the risk-free asset. The level of transaction costs for all rebalance trade is 5 bps. Parameter δ denotes the value of the risk
aversion coefficient.

tolerance considered, except for the DNS-VAR(4)2 model with δ = 1 × 10−4 and 0.01.
This portfolio selection exercise reports similar annualized results for δ = 1× 10−4 and
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δ = 0.01, which for the DNS-VAR(4)2 model are: r̄x equal to 1.019%, r̄xnet =1.014%,
volatility (measured by the standard deviation) equal to 15.93%, SR = 0.064 and average
duration equal to 2.43 years. The DNS-VAR(4)2 model also minimizes losses for higher δ’s.
The general results show that annualized net excess returns range from -3.097% to 1.014%,
and the annualized standard deviation ranges from 7.04% to 23.94%, whereas the Sharpe
ratio ranges from -0.191 to 0.064. As before, an increase in the risk aversion coefficient
leads to decreases in in the average duration, indicating optimal portfolios invested mostly
in long-term maturities for lower levels of δ. Moreover, the impact of transaction costs is
relatively small for estimates with annual portfolio rebalancing, whereas net excess returns
are very close to gross excess returns.

The key difference compared to Panel A concerns the average portfolio duration: it
is higher across all model specifications and δ’s for the estimates with annual rebalancing;
e.g., the average portfolio duration across specifications for δ = 1 is now 1.52 years
and for δ = 1× 10−4 is 2.71. The comparison also suggests that optimal mean-variance
portfolios with monthly rebalancing deliver higher net excess returns than those with
annual rebalancing, pointing out a gain in rebalancing the portfolio weights frequently to
keep optimal allocation updated.

Table 4 shows that negative net excess returns prevail in most optimal mean-
variance portfolios. In rising interest rate environments, as the out-of-sample period,
fixed-income prices suffer from the increase in interest rates in the short term, i.e, rising
rate environments can result in negative fixed-income returns. A bond’s total return
comprises not just price changes, but also income, so that the income on a bond can
help offset falling prices, cushioning the overall total return. It turns out that the optimal
mean-variance portfolios can not benefit from increased yields over the long term because
of rebalancing: investors do not hold fixed-income securities until their maturity, which
makes them vulnerable to mark to market process. That is, the rebalancing process applied
here turns portfolio’s total returns highly dependent on price changes, once securities
in portfolio do not mature. For this reason, the income returns are not enough to offset
the price decline in DI-futuro contracts. Moreover, the optimal portfolios with annual
rebalancing present higher negative excess returns than those with monthly rebalancing:
the yield curve models underestimate the climb in 12-month-ahead interest rates over
the out-of-sample observations, generating optimal mean-variance portfolios with higher
average duration and exposure to price changes.

The composition of optimal portfolio allocations can also be seen in Figs. 8 and
9 in Appendix F, which plot the average portfolio weight in each maturity, and for each
level of the risk aversion coefficient across all model specifications. The visual inspection
of these figures indicates that optimal portfolio allocations are invested mostly in shorter
maturities as one move to higher levels of risk aversion. In the two extreme cases where
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δ = 1× 10−4 and δ = 1, the optimal allocations are mostly concentrated in the longest
and in the shortest maturities, respectively. For intermediate levels of the risk aversion
coefficient, the optimal allocations are more diversified across maturities.

At least, Fig. 6 illustrates the performance of the optimal DI-futuro mean-variance
portfolios by plotting the cumulative net returns over the out-of-sample period obtained
with the alternative specifications when δ is equal to 1× 10−4 and 1. The figure suggests
that DNS-AR(3) and DNS-VAR(3) specifications deliver better performance for mean-
variance portfolios using one-step-ahead estimates for returns and for δ = 1× 10−4 during
most part of the out-of-sample period. For δ = 1 × 10−4, the RW model reports more
stable and higher cumulative returns. Further, the DNS-VAR(4)2 presents better portfolio
performance using twelve-step-ahead estimates. The best overall performance in terms
of cumulative net returns until January, 2016, are achieved by mean-variance portfolios
obtained with the RW model and with δ = 1 for one-step-ahead estimates (33.17%)
and with the DNS-VAR(4)2 with δ = 1× 10−4 for one-year-ahead estimates (31.631%).
Therefore, there is a benefit from monthly rebalancing and paying more transaction costs,
avoiding deviations from the optimal mean-variance portfolio. In the general context, the
alternative yield curve models achieve similar cumulative net returns at January, 2016,
except for the RW and DNS-VAR(3) at the twelve-step-ahead scenario with δ = 1× 10−4,
which considerably underperforms their competitors.

It is also noteworthy the big drop in cumulative net returns for the one-step-ahead
estimates in September, 2015. At the end of August, 2015, there is a deterioration of the
Brazilian macroeconomic fundamentals due to the perception of a downturn in medium-
and long-term fiscal scenario. In September 9, 2015, Brazil loses investment-grade rating
from Standard & Poor’s (S&P). Financial markets reacted with capital flight to safer
investments and a consequent increase in premium required for holding Brazilian securities.
Fig. 7 helps to visualize the scenario where short DI-futuro yields slightly rise while
long-term yields suffer a large increase from July, 2015, to September, 2015, reflecting a
large deterioration in long-term expectations about Brazilian macroeconomic foundations.
In fact, term structure models fail to capture this change in yield curves, specially in the
slope factor. Once investors with more risk-averse preferences tend to hold short-term
maturities, they are not affected so much as the less risk-averse investors with δ = 1× 10−4

evidenced by panel (a) of Fig. 6. The only exception is the RW model, which is invested in
very short maturities during this period and does not report that big fall in net returns.

In general, the results from the optimal mean-variance portfolios based on estimates
for DI-futuro returns reveal that in most cases it is difficult to obtain positive Sharpe ratios
for the period analysed. Just for some cases the performance of the optimal portfolios
beats the risk-free asset: (i) in the high risk aversion context across all model specifications
for the scenario with monthly rebalancing; and (ii) in the low risk aversion context for the
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(a) (b)

(c) (d)

Figure 6 – Cumulative net returns (in %): mean-variance portfolios with δ = 1× 10−4 and δ = 1
for 1- and 12-step-ahead forecasts over the out-of-sample period.

Figure 7 – Observed yield curves from July, 2015, to September, 2015.

DNS model with an inflation factor and for the scenario with annual rebalancing.

The link between the performance of the alternative yield curve models in forecasting
yields and the performance of optimal portfolios indicates that better accuracy in yield
curve forecasting leads to an improvement in terms of portfolio performance based on the



Chapter 13. Application to fixed-income portfolio optimization 88

mean-variance approach. Looking back at Section 12.2, specifications with a small number
of parameters show better forecast accuracy for short forecast horizons, in contrast to
better performance of the DNS-VAR(4)2 specification for longer forecast horizons. It is
noteworthy that these findings are consistent with the performance evaluation described
in this section, highlighting the relevance of good yield curve predictions to achieve better
results in terms of portfolio performance.

In order to verify the portfolio performance for an alternative out-of-sample period,
which also considers a falling interest rates environment, I reproduce the portfolio optimiza-
tion exercise for the out-of-sample period from May, 2011, to March, 2016, with T = 97 and
S = 59. The period with falling interest rates comprises 09:2011 to 04:2013. The estimates
for the scenario which considers one-step-ahead estimates for DI-futuro returns are slightly
similar to those reported before, whereas higher risk-averse investors obtain positive excess
returns across all model specifications. Nonetheless, more encouraging results are found for
investors with smaller δ. For instance, the RW model can achieve mean net excess returns
of 3.68% for δ = 0.01 and 2.14% for δ = 1× 10−4. This means that optimal mean-variance
portfolios can achieve quite satisfying results in falling interest rates environments. The
big difference concerns the scenario with twelve-step-ahead estimates, which now obtains
positive excess returns across all model specifications and across all levels of risk aversion
considered, except for the RW model, which reports poor performances for δ = 1×10−4 and
0.01. Less risk-averse investors achieve better portfolio performance, and invest basically in
DI-futuro contracts with maturity below 24 months. As well as before, the DNS-VAR(4)2

model reports higher Sharpe ratio and returns (SR = 0.148 and r̄xnet =1.461% for δ’s
smaller than 0.1). At first glance, the out-of-sample period is quite relevant to determine
the portfolio performance in the context of fixed-income. These empirical results are not
reported to save space and can be provided upon request.

Furthermore, the yield curve is the most common risk factor that fixed-income
securities are exposed to. It turns out that the yield curve is itself driven by a set of macroe-
conomic risk factors. From this perspective, the incorporation of a broad macroeconomic
information into term structure models can play an important role to improve performance
of fixed-income portfolios. The evidence show that the incorporation of one macro factor
related to inflation expectations into the DNS model leads to an improvement in terms of
portfolio performance when considering twelve-step-ahead estimates of DI-futuro returns.
That is, macroeconomic information contributes to improve efficiency in terms of portfolio
performance for optimal fixed-income portfolios with annual rebalancing. Hence, there is
an economic gain from considering macroeconomic information to forecast the yield curve
dynamics, specially for medium- and long-term maturities.
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14 Concluding remarks

The recent literature on yield curve forecasting suggests that the incorporation of
a large macroeconomic dataset into term structure models improve forecast performance
(POOTER et al., 2010). Most part of the current studies test for statistical benefits
from incorporating macroeconomic information into term structure models, but little is
known about the economic value of those forecasted yields. Besides testing for statistical
improvement, this study uses a fixed-income portfolio analysis in order to assess the
economic value of forecasted yields generated by yield curve models with macro factors
extracted from a large macroeconomic dataset.

The out-of-sample forecast exercise support the evidence that a DNS yield curve
model incorporating one macro factor, which summarizes broad macroeconomic information
regarding mainly inflation expectations, outperforms the general DNS model for (i) 6-month-
ahead predictions and for some medium- and long-term maturities, and (ii) 9-month-ahead
predictions for the long end of the yield curve. In general, this macroeconomic specification
forecasts quite well for medium- and long-term maturities and for forecast horizons longer
than one month. The forecast exercise indicates that a specification of the general DNS
framework with an inflation factor is particularly useful to predict the Brazilian nominal
yield curve dynamics. Similar findings are also reported in Diebold et al. (2006), Moench
(2008), Koopman & Wel (2013), Almeida & Faria (2014), among others.

Furthermore, estimates for alternative specifications of the DNS framework suggest
that imposing further restrictions on factor dynamics can lead to improvements in forecast
accuracy in favor of some parsimonious specifications with less number of estimated
parameters. Most of the alternative DNS specifications outperform the random walk model
when the forecast horizon is equal to and longer than 6 months, and specially for medium
and long-term maturities. In line with numerous studies since Ang & Piazzesi (2003) and
Diebold & Li (2006), these results report favorable evidence for yield curve forecasting
against the random walk model when considering longer forecast horizons.

The results for mean-variance portfolios with one-step-ahead estimates for DI-
futuro returns and monthly rebalancing indicate that positive excess returns are obtained
for higher risk aversion coefficients. Otherwise, the portfolio optimization with twelve-
step-ahead estimates and annual rebalancing reports negative excess returns across all
models and across all levels of risk tolerance, except for forecasted yields from the DNS
model which incorporates an inflation factor and for lower risk aversion coefficients. This
macroeconomic specification also minimizes the loses for higher risk aversion coefficients.
In general, negative net excess returns prevail in most optimal mean-variance portfolios;
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in few cases it is possible to observe positive Sharpe ratios for the period analysed. This
evidence is a consequence of the rising interest rates environment, where income returns
on DI-futuro contracts are not enough to offset their price decline over the out-of-sample
period.

Moreover, the estimates suggest that optimal mean-variance portfolios with monthly
rebalancing deliver higher net excess returns than those with annual rebalancing, pointing
out a gain in rebalancing the portfolio weights frequently to keep optimal allocation
updated. This basically happens because yield curve models underestimate the climb in
12-month-ahead interest rates over the out-of-sample observations, generating optimal
mean-variance portfolios with higher average duration and exposure to price changes.

The overview indicates that good yield curve predictions are important to achieve
economic gains from forecasted yields in terms of portfolio performance. It is clear that
yield curve models with better forecast accuracy for short forecast horizons perform quite
well for optimal mean-variance portfolios with one-step-ahead estimates for DI-futuro
returns. In parallel, the DNS model with an inflation factor, which has better forecast
accuracy for longer forecast horizons, outperforms in terms of portfolio performance with
twelve-step-ahead estimates. Therefore, there is an economic and statistical gain from
considering a large macroeconomic dataset to forecast the yield curve dynamics, specially
for longer forecast horizons and for medium- and long-term maturities.
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Table 5 – Macroeconomic variables panel

Series Description Unit TF Source
Money growth

1 M0 - monetary base - mean R$ - million 3 Bacen
2 M0 - expanded monetary base - end of period R$ - million 3 Bacen
3 M0 - monetary base - currency issued - mean R$ - million 3 Bacen
4 M0 - monetary base - bank reserves - mean R$ - million 3 Bacen
5 Sight deposits - mean of working days R$ - million 3 Bacen
6 Savings deposits - end of period R$ - million 3 Bacen
7 Term deposits - total - with incorpored earnings R$ - million 3 Bacen
8 M1 - end of period R$ - million 3 Bacen
9 M2 - end of period - new concept R$ - million 3 Bacen
10 M3 - end of period - new concept R$ - million 3 Bacen
11 M4 - end of period - new concept R$ - million 3 Bacen

Consumption and sales
12 Real revenues - industry * Index (2006=100) 3 CNI
13 Electric Energy Consumption Gwh 3 Eletrobras
14 Electric Energy Consumption - other sectors Gwh 3 Eletrobras
15 Electric Energy Consumption - commerce Gwh 3 Eletrobras
16 Electric Energy Consumption - industry Gwh 3 Eletrobras
17 Electric Energy Consumption - households Gwh 3 Eletrobras
18 Apparent Consumption - gasoline - mean - qt/day Barrel - thousand 3 ANP
19 Apparent Consumption - petroleum derivatives - mean - qt/day Barrel - thousand 3 ANP
20 Apparent Consumption - ethanol fuel - mean - qt/day Barrel - thousand 3 ANP
21 Apparent Consumption - fuel oil - mean - qt/day Barrel - thousand 3 ANP
22 Apparent Consumption - diesel oil - mean - qt/day Barrel - thousand 3 ANP
23 Apparent Consumption - LPG gas - mean - qt/day Barrel - thousand 3 ANP
24 Domestic Sales - trucks Units 3 Fenabrave
25 Domestic Sales - busses Units 3 Fenabrave
26 Domestic Auto-sales Units 3 Fenabrave
27 Domestic Sales - light commercial vehicles Units 3 Fenabrave
28 Domestic Sales - automotive vehicles Units 3 Fenabrave
29 Real sales - industry - São Paulo (SP) Index (2006=100) 3 Fiesp
30 Real sales - retail * Index (2011=100) 3 IBGE/PMC

Credit
31 Credit operations to the public sector R$ - million 3 Bacen
32 Credit operations to the public sector - federal government R$ - million 3 Bacen
33 Credit operations to the public sector - state and municipal governments R$ - million 3 Bacen
34 Credit operations to the public sector - industry R$ - million 3 Bacen
35 Credit operations to the public sector - housing R$ - million 3 Bacen
36 Credit operations to the public sector - rural R$ - million 3 Bacen
37 Credit operations to the public sector - commerce R$ - million 3 Bacen
38 Credit operations to the public sector - individuals R$ - million 3 Bacen
39 Credit operations to the public sector - other services R$ - million 3 Bacen
40 Credit operations to the private sector R$ - million 3 Bacen

Employment, wage and income
41 General Registration of Employed and Unemployed (CAGED) Net employment 1 CAGED
42 Personnel employed - industry * Index (2006=100) 3 CNI
43 Formal employment - general index Index 3 MTE
44 Formal employment - processing industry Index 3 MTE
45 Formal employment - food and beverages Index 3 MTE
46 Formal employment - construction Index 3 MTE
47 Formal employment - commerce Index 3 MTE
48 Formal employment - services Index 3 MTE
49 Formal employment - direct public administration Index 3 MTE
50 Unemployment rate - Metropolitan region of SP (MRSP) Percentage (%) 3 Seade/PED
51 Unemployment rate - hidden - MRSP Percentage (%) 3 Seade/PED
52 Hours worked - industry * Index (2006=100) 2 CNI
53 Real minimum wage R$ 3 IPEA
54 Minimum wage - power parity of purchase (PPP) US$ 3 IPEA
55 Real wage - mean - industry - SP Index (2006=100) 3 Fiesp
56 Real average income - salaried - main job in MRSP * Index (2000=100) 3 Seade/PED
57 Payroll - general industry Index (2001.01=100) 3 IBGE/Pimes

Continued on the next page
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Price
58 IPCA - general * Index (1993=100) 3 IBGE/SNIPC
59 IPCA - food and beverages Var. % (p.m.) 1 IBGE/SNIPC
60 IPCA - housing Var. % (p.m.) 1 IBGE/SNIPC
61 IPCA - health personal care Var. % (p.m.) 1 IBGE/SNIPC
62 IPCA - transport Var. % (p.m.) 1 IBGE/SNIPC
63 IPCA - regulated prices Var. % (p.m.) 1 Bacen
64 IPCA - market prices Var. % (p.m.) 1 Bacen
65 IPCA - household items Var. % (p.m.) 1 IBGE/SNIPC
66 IPCA - personal expenses Var. % (p.m.) 1 IBGE/SNIPC
67 IPCA - clothing Var. % (p.m.) 1 IBGE/SNIPC
68 IPCA - market prices - marketables Var. % (p.m.) 1 Bacen
69 IPCA - market prices - unmarketables Var. % (p.m.) 1 Bacen
70 INPC - general * Index (1993=100) 3 IBGE/SNIPC
71 IPA Source - agricultural products Index (1994.08=100) 3 FGV/IGP
72 IPA Source - industrial products Index (1994.08=100) 3 FGV/IGP
73 IPA-EP - general Index (1994.08=100) 3 FGV/IGP
74 IGP-DI - general Index (1994.08=100) 3 FGV/IGP
75 INCC - general Index (1994.08=100) 3 FGV/IGP
76 IPC - general Index (1994.08=100) 3 FGV/IGP
77 Brazil Commodities Index * Index (2005.12=100) 3 Bacen
78 IPCA - market expect. for next 12 months - mean * Var. % (p.y.) 1 Focus
79 IPCA - market expect. for 2-2.5 years ahead - mean Var. % (p.y.) 1 Focus
80 IPCA - market expect. for 3-5 years ahead - mean Var. % (p.y.) 1 Focus
81 INPC - market expect. for next 12 months - mean * Var. % (p.y.) 1 Focus
82 INPC - market expect. for 2-2.5 years ahead - mean Var. % (p.y.) 1 Focus
83 INPC - market expect. for 3-5 years ahead - mean Var. % (p.y.) 1 Focus
84 IGP-DI - market expect. for next 12 months - mean * Var. % (p.y.) 1 Focus
85 IGP-DI - market expect. for 2-2.5 years ahead - mean Var. % (p.y.) 1 Focus
86 IGP-DI - market expect. for 3-5 years ahead - mean Var. % (p.y.) 1 Focus
87 IGP-M - market expect. for next 12 months - mean * Var. % (p.y.) 1 Focus
88 IGP-M - market expect. for 2-2.5 years ahead - mean Var. % (p.y.) 1 Focus
89 IGP-M - market expect. for 3-5 years ahead - mean Var. % (p.y.) 1 Focus
90 IPA-DI - market expect. for next 12 months - mean * Var. % (p.y.) 1 Focus
91 IPA-DI - market expect. for 2-2.5 years ahead - mean Var. % (p.y.) 1 Focus
92 IPA-DI - market expect. for 3-5 years ahead - mean Var. % (p.y.) 1 Focus
93 IPA-M - market expect. for next 12 months - mean * Var. % (p.y.) 1 Focus
94 IPA-M - market expect. for 2-2.5 years ahead - mean Var. % (p.y.) 1 Focus
95 IPA-M - market expect. for 3-5 years ahead - mean Var. % (p.y.) 1 Focus
96 Prices adm. by contracts and monitored - for 1-1.5 years ahead - mean Var. % (p.y.) 1 Focus
97 Prices adm. by contracts and monitored - for 2-2.5 years ahead - mean Var. % (p.y.) 1 Focus
98 Prices adm. by contracts and monitored - for 3-5 years ahead - mean Var. % (p.y.) 1 Focus
Production and Real Activity
99 Gross Domestic Product (GDP) R$ - million 3 Bacen
100 Economic Activity Index of Central Bank (IBC-Br) * Index (2002=100) 3 Bacen
101 Industrial production (IP) - general industry - quantum * Index (2012=100) 3 IBGE/PIM-PF
102 IP - processing industry - quantum * Index (2012=100) 3 IBGE/PIM-PF
103 IP - intermediate goods - quantum * Index (2012=100) 3 IBGE/PIM-PF
104 IP - consumer goods - quantum * Index (2012=100) 3 IBGE/PIM-PF
105 IP - consumer durables - quantum * Index (2012=100) 3 IBGE/PIM-PF
106 IP - consumer goods semi and non-durables - quantum * Index (2012=100) 3 IBGE/PIM-PF
107 IP - capital goods - quantum * Index (2012=100) 3 IBGE/PIM-PF
108 IP - machinery and equipment - quantum Index (2012=100) 3 IBGE/PIM-PF
109 IP - beverages - quantum Index (2012=100) 3 IBGE/PIM-PF
110 IP - pulp, paper and paper products - quantum Index (2012=100) 3 IBGE/PIM-PF
111 IP - metallurgy - quantum Index (2012=100) 3 IBGE/PIM-PF
112 IP - furniture - quantum Index (2012=100) 3 IBGE/PIM-PF
113 IP - textile - quantum Index (2012=100) 3 IBGE/PIM-PF
114 Installed Capacity Utilization - industry Percentage (%) 1 CNI
115 Consumer Confidence Index Index 3 Fecomercio
116 Economic Conditions Index Index 3 Fecomercio
117 Future Expectations Index Index 3 Fecomercio
Production and Real Activity
118 GDP - Agriculture - market expect. for 1-1.5 years ahead - mean Var. % (p.y.) 1 Focus
119 GDP - Agriculture - market expect. for 2-2.5 years ahead - mean Var. % (p.y.) 1 Focus
120 GDP - Agriculture - market expect. for 3-5 years ahead - mean Var. % (p.y.) 1 Focus
121 GDP - Industry - market expect. for 1-1.5 years ahead - mean Var. % (p.y.) 1 Focus
122 GDP - Industry - market expect. for 2-2.5 years ahead - mean Var. % (p.y.) 1 Focus
123 GDP - Industry - market expect. for 3-5 years ahead - mean Var. % (p.y.) 1 Focus
Continued on the next page
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124 GDP - Services - market expect. for 1-1.5 years ahead - mean Var. % (p.y.) 1 Focus
125 GDP - Services - market expect. for 2-2.5 years ahead - mean Var. % (p.y.) 1 Focus
126 GDP - Services - market expect. for 3-5 years ahead - mean Var. % (p.y.) 1 Focus
127 GDP - market expect. for 1-1.5 years ahead - mean Var. % (p.y.) 1 Focus
128 GDP - market expect. for 2-2.5 years ahead - mean Var. % (p.y.) 1 Focus
129 GDP - market expect. for 3-5 years ahead - mean Var. % (p.y.) 1 Focus
130 Industrial Production - market expect. for 1-1.5 years ahead - mean Var. % (p.y.) 1 Focus
131 Industrial Production - market expect. for 2-2.5 years ahead - mean Var. % (p.y.) 1 Focus
132 Industrial Production - market expect. for 3-5 years ahead - mean Var. % (p.y.) 1 Focus
Financial and Risk
133 Treasury Bill - 3 months % (p.y.) 2 FRED
134 Treasury Bill - 2 years % (p.y.) 2 FRED
135 Treasury Bill - 10 years % (p.y.) 2 FRED
136 LIBOR - based on U.S. dollar - 1-month % (p.y.) 2 FRED
137 LIBOR - based on U.S. dollar - 3-month % (p.y.) 2 FRED
138 LIBOR - based on U.S. dollar - 12-month % (p.y.) 2 FRED
139 EMBI+ - Brazilian Risk % (p.y.) 2 JP Morgan
140 Stock Index - Ibovespa - closing Index (1999.01=100) 3 Anbima
141 Companies value - Ibovespa R$ - million 3 BM&Fbovespa
Fiscal
142 Gross debt - general government % GDP 2 Bacen
143 Public primary budget result - market expect. for 1-1.5 years ahead - mean % GDP 2 Focus
144 Public primary budget result - market expect. for 2-2.5 years ahead - mean % GDP 2 Focus
145 Public primary budget result - market expect. for 3-5 years ahead - mean % GDP 2 Focus
146 Public nominal budget result - market expect. for 1-1.5 years ahead - mean % GDP 2 Focus
147 Public nominal budget result - market expect. for 2-2.5 years ahead - mean % GDP 2 Focus
148 Public nominal budget result - market expect. for 3-5 years ahead - mean % GDP 2 Focus
149 Government net debt - market expect. for 1-1.5 years ahead - mean % GDP 2 Focus
150 Government net debt - market expect. for 2-2.5 years ahead - mean % GDP 2 Focus
151 Government net debt - market expect. for 3-.5 years ahead - mean % GDP 2 Focus
External sector
152 Exchange rate - end of period R$/US$ 2 Bacen
153 Internacional Reserves - liquidity concept US$ - million 3 Bacen
154 Imports - prices Index (2006=100) 3 Funcex
155 Imports - capital goods - quantum Index (2006=100) 3 Funcex
156 Imports - quantum Index (2006=100) 3 Funcex
157 Exports - prices Index (2006=100) 3 Funcex
158 Exports - quantum Index (2006=100) 3 Funcex
159 Exports - aggregate factor - basic products - (FOB) US$ - million 3 MDIC
160 Exports - aggregate factor - insdustrialized products - (FOB) US$ - million 3 MDIC
161 Exports - aggregate factor - manufactured products - (FOB) US$ - million 3 MDIC
162 Exports - aggregate factor - semi-manufactured products - (FOB) US$ - million 3 MDIC
163 Imports - (FOB) US$ - million 3 MDIC
164 Exports - (FOB) US$ - million 3 MDIC
165 Trade Balance - amount - (new methodology - BPM6) US$ - million 2 Bacen
166 Terms of trade Index (2006=100) 3 Funcex
167 Current Account - amount US$ - million 2 Bacen
168 Exports - market expect. for 1-1.5 years ahead - mean US$ - billion 3 Focus
169 Exports - market expect. for 2-2.5 years ahead - mean US$ - billion 3 Focus
170 Exports - market expect. for 4-5 years ahead - mean US$ - billion 3 Focus
171 Imports - market expect. for 1-1.5 years ahead - mean US$ - billion 3 Focus
172 Imports - market expect. for 2-2.5 years ahead - mean US$ - billion 3 Focus
173 Imports - market expect. for 4-5 years ahead - mean US$ - billion 3 Focus
174 Current Account - market expect. for 1-1.5 years ahead - mean US$ - billion 2 Focus
175 Current Account - market expect. for 2-2.5 years ahead - mean US$ - billion 2 Focus
176 Current Account - market expect. for 3-5 years ahead - mean US$ - billion 2 Focus
177 Foreign Direct Investment - market expect. for 1-1.5 years ahead - mean US$ - billion 3 Focus
178 Foreign Direct Investment - market expect. for 2-2.5 years ahead - mean US$ - billion 3 Focus
179 Foreign Direct Investment - market expect. for 3-5 years ahead - mean US$ - billion 3 Focus
180 Exchange rate - market expect. for 1-1.5 years ahead - mean R$/US$ 2 Focus
181 Exchange rate - market expect. for 2-2.5 years ahead - mean R$/US$ 2 Focus
182 Exchange rate - market expect. for 3-5 years ahead - mean R$/US$ 2 Focus
Notes: Each macroeconomic series has been deflated according to its monetary unit of measure. (*) Series with seasonal adjustment at
source; the other series have been deseasonalized using a stable seasonal filter with additive decomposition. Forward-looking variables do
not need seasonal adjustment, because they all refer to annual values. Transformation (TF): (1) Original serie (in level); (2) First difference;
(3) First difference of the natural logarithm. The sample is composed by data from 2003:04 to 2016:03, where the credit series (31-40) has
been discontinued after 2014:12, serie 29 is not available for 2015:12-2016:03, and series 96-98 about inflation of administrated prices are
not available for 2003:04-2003:05.
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APPENDIX B – Correlation between yield
curve and macro factors

Table 6 – Correlation between yield curve and macro factors.

yt(3) yt(6) yt(12) yt(24) yt(48) yt(60) Lt St Ct

Panel A: Contemporaneous correlation of macro factors and yields
X1
t -0.266 -0.268 -0.258 -0.243 -0.252 -0.253 -0.270 -0.128 0.284

X2
t 0.451 0.447 0.446 0.460 0.485 0.491 0.500 0.061 -0.320

yt(3) 1.000 0.994 0.978 0.950 0.905 0.887 0.790 0.534 -0.322
Panel B: Correlation of 1 month lagged macro factors and yields

X1
t−1 -0.217 -0.226 -0.227 -0.217 -0.227 -0.227 -0.263 -0.150 0.301

X2
t−1 0.383 0.385 0.387 0.411 0.447 0.456 0.476 0.132 -0.302

yt−1(3) 0.991 0.993 0.983 0.953 0.903 0.883 0.772 0.563 -0.277
Panel C: Correlation of 6 months lagged macro factors and yields

X1
t−6 0.045 0.021 0.013 0.032 0.042 0.041 -0.305 -0.067 0.328

X2
t−6 0.253 0.248 0.253 0.293 0.364 0.384 0.433 0.210 -0.266

yt−6(3) 0.825 0.857 0.877 0.858 0.818 0.802 0.695 0.630 -0.119
Panel D: Correlation of 12 months lagged macro factors and yields

X1
t−12 0.281 0.269 0.260 0.256 0.230 0.218 -0.453 -0.037 0.222

X2
t−12 0.203 0.201 0.194 0.224 0.291 0.312 0.501 0.193 -0.328

yt−12(3) 0.657 0.678 0.696 0.706 0.734 0.746 0.672 0.672 -0.013
Notes: The table summarizes the correlation patterns between the yields and macro factors
used for estimating yields-macro models. X1

t and X2
t denote the macro factors extracted

form the large macro panel for the Brazilian economy, yt(3) to yt(60) denote the yields
of maturities 1- to 60-months, respectively, and Lt, St and Ct are the yield factors. All
correlation coefficients regarding observed yields yt(3) to yt(60) are statistically different
from zero, except for X1

t−6 of panel C.
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APPENDIX C – In-sample estimates

Table 7 – Estimated transition matrices A.

Panel A: DNS-VAR(3) model
Lt−1 St−1 Ct−1

Lt 0.9540∗∗ 0.0961∗∗ -0.0112
0.0431 0.0470 0.0521

St 0.0907∗ 0.8576∗∗ 0.1122∗∗
0.0508 0.0580 0.0561

Ct -0.0428 0.0195 0.9184∗∗
0.0933 0.0684 0.0581

Panel B: DNS-VAR(4)2 model
Lt−1 St−1 Ct−1 X2

t−1

Lt 0.7290∗∗ 0.0976∗∗ -0.0881∗ 0.0011
0.0850 0.0505 0.0503 0.0009

St 0.0825 0.7141∗∗ 0.0726∗ 0.0004
0.0784 0.0438 0.0416 0.0007

Ct -0.0358 0.0437∗∗ 0.6018∗∗ -0.0012
0.0817 0.0198 0.1819 0.0028

X2
t 0.0167 -0.0007 -0.0134 1.0119∗∗

8.1912 13.7008 6.6454 0.1641

Panel C: DNS-VAR(5) model
Lt−1 St−1 Ct−1 X1

t−1 X2
t−1

Lt 0.8641∗∗ 0.0718∗∗ -0.0429∗∗ -0.0001 0.0005
0.0054 0.0157 0.0183 0.0004 0.0005

St 0.1660∗∗ 0.8287∗∗ 0.1702∗∗ 0.0000 0.0001
0.0073 0.0180 0.0079 0.0004 0.0004

Ct -0.3421∗∗ 0.2768∗∗ 0.4815∗∗ 0.0017∗∗ 0.0009
0.0386 0.0603 0.0354 0.0007 0.0007

X1
t 0.1562 -0.1376 -0.0098 0.8696∗∗ -0.1541∗∗

1.6531 3.8703 1.9845 0.0111 0.0135
X2
t 0.2156 -0.1918 0.1815∗∗ -0.4440∗∗ 0.4476∗∗

3.0958 8.6696 0.0835 0.0224 0.0264

Notes: The table presents the estimated transition matrices for
the DNS-VAR(3), DNS-VAR(4)2 and DNS-VAR(5) models for the
in-sample period from 2003:04 to 2012:11. The standard errors are
shown under each corresponding coefficient.
∗ Estimated coefficients statistically significant at a level of 10%.
∗∗ Estimated coefficients statistically significant at a level of 1%.
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Table 8 – Descriptive statistics of the measurement disturbances.

Maturities
DNS-VAR(3) DNS-VAR(4)2 DNS-VAR(5)
Mean Sd Mean Sd Mean Sd

3 0.2327 0.5476 0.2571 0.5949 0.2521 0.5852
6 0.0915 0.2263 0.1074 0.2662 0.1041 0.2582
9 0.0078 0.0558 0.0176 0.0810 0.0156 0.0764
12 -0.0158 0.0554 -0.0102 0.0429 -0.0113 0.0444
15 -0.0139 0.0611 -0.0111 0.0523 -0.0117 0.0536
18 -0.0056 0.0516 -0.0046 0.0499 -0.0047 0.0506
21 -0.0033 0.0310 -0.0033 0.0316 -0.0033 0.0323
24 0.0006 0.0192 0.0001 0.0177 0.0002 0.0190
27 0.0057 0.0245 0.0050 0.0229 0.0051 0.0228
30 0.0041 0.0262 0.0036 0.0256 0.0036 0.0251
36 -0.0030 0.0393 -0.0028 0.0395 -0.0030 0.0405
42 -0.0030 0.0489 -0.0017 0.0468 -0.0023 0.0481
48 -0.0081 0.0711 -0.0057 0.0662 -0.0066 0.0646
60 -0.0400 0.1757 -0.0355 0.1743 -0.0371 0.1704

Notes: The table reports the mean and standard deviation (Sd) of the errors
from the measurement equation of DNS-VAR(3), DNS-VAR(4)2 and DNS-
VAR(5) models for the 14 different maturities, which estimated coefficients
are reported in table 7. Numbers in bold indicate where absolute values of
yields-macro models outperfm DNS-VAR(3) model results.
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APPENDIX D – Analysis with only
forward-looking macro variables

As stated in Vieira et al. (2017), I also perform the alternative analysis considering
the extraction of principal components only from forward-looking variables. The idea is
to check whether the variation of expectations about the future state of the economy
contribute to explain current yield curve movements. The first two common factors
extracted from the panel of macroeconomic forward-looking variables, here denominated as
X1,e and X2,e, account for 54.14% of the variation in original data and strongly correlates
with X1 and X2; the correlation between the first macro factors is around 0.96 while for
the second ones is near 0.72. Here, X1,e explain about 37.48% of the overall variation
in observed variables and correlates mostly with market expectations for inflation and
economic activity. In parallel, X2,e explain about 16.6% and correlates highly with the
entire set of groups, composed by price, production, fiscal and external sector, but more
strongly with inflation expectations.

Table 9 reports the summary statistics of forecast performance for macro specifica-
tions using only forward-looking variables as macroeconomic information. The evidence
here converge to previous results, where the DNS-VAR(4)2,e model, which incorporates
X2,e, provides lowest RMSFEs and TRMSFEs for the entire maturity spectrum and for
forecast horizons above 6 months. The DM test rejects the null hypothesis at a 5% level
for some 6-, 9- and 12-month-ahead predictions of the DNS-VAR(4)2,e model, while some
forecasted yields of DNS-VAR(4)1,e and DNS-VAR(5) models rejects the null of DM
statistic.
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Table 9 – (Trace)-Root Mean Squared Forecast Errors of yields-only and yields-macro models
regarding only forward-looking macro variables (Focus data). DI-futuro data from
2003:04 to 2016:03, whereas out-of-sample period is 2012:10-2016:03.

Panel A: DNS-VAR(3) model Panel B: DNS-VAR(5) model

Maturities
Forecast horizon Forecast horizon

1-M 3-M 6-M 9-M 12-Month 1-M 3-M 6-M 9-M 12-M
3 0.508 0.967 1.808 2.501 3.066 0.490 1.016 2.036 3.071 4.455
6 0.465 0.961 1.740 2.347 2.793 0.502 1.135 2.182 3.149 4.517
9 0.483 0.986 1.665 2.198 2.610 0.543 1.242 2.260∗ 3.176 4.554
12 0.518 1.006 1.604 2.111 2.482 0.585∗ 1.309∗ 2.298∗ 3.190 4.582
15 0.530 1.011 1.565 2.048 2.386 0.601∗ 1.334∗ 2.306∗ 3.188 4.556
18 0.558 1.043 1.567 2.020 2.325 0.632∗ 1.370∗ 2.338∗ 3.164 4.518
21 0.583 1.070 1.570 1.999 2.286 0.658∗ 1.383∗ 2.323∗ 3.129 4.481
24 0.597 1.078 1.578 1.997 2.263 0.666∗ 1.373∗ 2.302∗ 3.098 4.449
27 0.598 1.083 1.585 1.989 2.242 0.665∗ 1.353∗ 2.278∗ 3.057 4.407
30 0.603 1.088 1.580 1.975 2.223 0.664 1.341∗ 2.248∗ 3.012 4.359
36 0.607 1.081 1.579 1.969 2.221 0.655 1.309∗ 2.201∗ 2.944 4.291
42 0.614 1.082 1.591 1.976 2.231 0.651 1.279 2.165∗ 2.889 4.225
48 0.616 1.073 1.582 1.970 2.234 0.649 1.251 2.118 2.834 4.173
60 0.622 1.061 1.574 1.972 2.245 0.649 1.220 2.049 2.754 4.084

TRMSFE 0.567 1.043 1.615 2.083 2.413 0.618 1.284 2.224∗ 3.050 4.406
Panel C: DNS-VAR(4)1 model Panel D: DNS-VAR(4)2 model

Maturities
Forecast horizon Forecast horizon

1-M 3-M 6-M 9-M 12-M 1-M 3-M 6-M 9-M 12-M
3 0.625 0.978 1.720 2.477 3.090 0.489 0.954 1.542∗ 2.073 2.747
6 0.596 1.103 1.911 2.631 3.339 0.472 0.900 1.458∗ 1.971 2.567
9 0.652 1.202 2.034 2.770 3.560 0.498 0.963 1.377∗ 1.846 2.417
12 0.686 1.279∗ 2.134 2.865 3.695 0.550 1.018 1.323∗ 1.758 2.279
15 0.717 1.323∗ 2.192∗ 2.926 3.786 0.571 1.054 1.286 1.657 2.132
18 0.749 1.375∗ 2.240∗ 2.976 3.844 0.604 1.086 1.273 1.582 2.022
21 0.776 1.414∗ 2.266∗ 3.007 3.869 0.619 1.102 1.263∗ 1.513∗ 1.946
24 0.787 1.431∗ 2.281∗ 3.019 3.879 0.628 1.110 1.259∗ 1.471∗ 1.878
27 0.793 1.452∗ 2.284∗ 3.026 3.889 0.629 1.105 1.271∗ 1.430∗ 1.823
30 0.801 1.462∗ 2.278∗ 3.019 3.883 0.635 1.114 1.287∗ 1.402∗ 1.781
36 0.811 1.484∗ 2.266∗ 3.002 3.855 0.644 1.122 1.302 1.372∗ 1.738
42 0.819 1.492∗ 2.246∗ 2.985 3.822 0.648 1.112 1.322∗ 1.357∗ 1.718
48 0.821 1.480∗ 2.221∗ 2.958 3.785 0.650 1.105 1.329 1.344∗ 1.701∗
60 0.827 1.480∗ 2.184∗ 2.915 3.722 0.657 1.097 1.331∗ 1.330∗ 1.681∗

TRMSFE 0.751 1.363∗ 2.167∗ 2.903 3.723 0.596 1.062 1.332∗ 1.597 2.058

Notes: Here, the table presents the forecasting performances of the different models. It reports the root mean
squared forecast errors (RMSFE) and trace RMSFE (TRMSFE) obtained by using individual DNS-VAR(3)
model and yields-macro model with one and two macro factors. The values reported are divided by 1× 10−2.
The RMSFE is reported for each model for the τ maturities and for 1-, 3-, 6-, 9- and 12-month-ahead forecast
horizons. The latest line of each panel reports the TRMSFE for the different forecast horizons. The evaluation
sample refers to 2012:10-2016:03 (42 out-of-sample forecasts), being 42 out-of-sample forecasts for 1-month
horizon, 41 for 2-month horizon, and so on until 31 out-of-sample forecasts for 12-month horizon. Numbers
in bold indicate that the alternative DNS-VAR(4)2 model from panel B outperform the DNS-VAR(3) model,
otherwise indicate underperformance. The star on the right of the cell entries indicate where Diebold-Mariano
test rejects the null of equal forecasting accuracy between the competitor DNS-VAR(4)2 model and DNS-VAR(3)
model, with 5% probability of the null hypothesis.
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APPENDIX E – Estimates of the alternative
DNS specifications

Table 10 – In-sample statistics of the alternative DNS specifications.

Specifications
Goodness-of-fit statistics

k log L AIC BIC
DNS-AR(3) 24 8526.6 -17025.2 -16959.1
DNS-AR(4)2 34 8221.0 -16373.9 -16280.3
DNS-AR(5) 45 8033.9 -15977.9 -15853.9
DNS-VAR(3) 33 8627.4 -17188.7 -17097.9
DNS-VAR(4)2 46 8172.6 -16253.1 -16126.5
DNS-VAR(5) ∗ 62 8106.2 -16054.1 -15883.4
DNS-VAR(3)Q−diag 30 8549.9 -17039.8 -16957.2
DNS-VAR(4)2,Q−diag 43 8182.4 -16278.8 -16160.4
DNS-VAR(5)Q−diag ∗ 59 7975.7 -15833.4 -15671.0
DNS-VAR(3)A−diag 27 8607.3 -17160.6 -17086.3
DNS-VAR(4)2,A−diag 37 8305.3 -16536.5 -16434.6
DNS-VAR(5)A−diag ∗ 48 8097.6 -16099.1 -15967.0
DNS-VAR(3)S 26 8541.65 -17031.3 -16959.7
DNS-VAR(4)2,S 36 8090.78 -16109.6 -16010.4
DNS-VAR(5)S ∗ 45 8026.92 -15963.8 -15839.9
DNS-VAR(2)C 24 7871.8 -15695.7 -15629.6
DNS-VAR(3)2,C 34 7588.3 -15108.5 -15014.9
DNS-VAR(4)C 47 7357.9 -14621.7 -14492.3
Notes: The table shows the summary statistics of 18 alterna-
tive specifications of the DNS model for Brazilian DI-futuro
yields, which are estimated for the in-sample data from 2003:04
to 2012:11. Each specification is listed with its maximum log
likelihood value (log L), number of estimated parameters (k),
Akaike information criterion (AIC) and Bayes information cri-
terion (BIC), which minimum values are given in bold. The
star on the right of models DNS-VAR(5), DNS-VAR(5)Q−diag,
DNS-VAR(5)A−diag and DNS-VAR(5)S indicate that they are
estimated with the MATLAB function called “refine”, which
refine initial parameters to aid state-space model estimation.
If state-space estimation fails to converge, or converges to an
unsatisfactory solution, then “refine” might find a better set of
initial parameter values to pass to estimate.
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Table 11 – Relative RMSE and TRMSE of the alternative DNS specifications.

Specifications
Maturities

TRMSFE
3 6 12 18 24 36 48 60

DNS-AR(3) 0.0065 0.0029 0.0004 0.0005 0.0002 0.0004 0.0007 0.0017 0.0020
DNS-AR(4)2 0.988 0.979 1.058 0.999 0.992 0.986 1.029 1.012 0.988
DNS-AR(5) 0.984 0.975 1.057 1.002 1.005 0.998 1.014 1.011 0.984
DNS-VAR(3) 0.909 0.840 1.390 1.043 0.975 0.965 1.080 1.042 0.911
DNS-VAR(4)2 0.990 0.987 1.064 1.007 0.898 0.967 1.004 1.029 0.992
DNS-VAR(5) 0.954 0.922 1.181 1.026 0.974 0.980 1.020 1.023 0.955
DNS-VAR(3)Q−diag 1.000 1.002 1.004 1.001 1.007 1.004 0.998 0.999 1.000
DNS-VAR(4)2,Q−diag 1.024 1.045 0.961 0.997 1.002 1.010 0.948 0.978 1.025
DNS-VAR(5)Q−diag 0.999 1.001 1.006 1.005 1.003 1.002 0.990 0.998 0.999
DNS-VAR(3)A−diag 0.939 0.894 1.259 1.026 0.976 0.964 1.064 1.039 0.941
DNS-VAR(4)2,A−diag 0.940 0.893 1.263 1.031 0.975 0.963 1.063 1.038 0.941
DNS-VAR(5)A−diag 0.936 0.894 1.276 1.033 0.977 0.969 1.057 1.037 0.938
DNS-VAR(3)S 0.994 0.991 1.023 0.998 1.003 0.998 1.010 1.002 0.995
DNS-VAR(4)2,S 1.023 1.038 0.892 0.997 1.019 0.969 1.087 1.020 1.025
DNS-VAR(5)S 0.994 0.991 1.024 1.003 0.994 0.996 1.008 1.009 0.995
DNS-VAR(2)C 1.590 2.106 4.825 0.417 2.221 2.184 3.786 2.288 1.826
DNS-VAR(3)2,C 1.589 2.106 4.837 0.412 2.223 2.185 3.786 2.289 1.826
DNS-VAR(4)C 1.590 2.105 4.816 0.419 2.227 2.184 3.786 2.288 1.826
Notes: The table presents the relative RMSE and TRMSE of the alternative estimated specifications of the
DNS model for the in-sample data from 2003:04 to 2012:11. Each value is compared to benchmark, which is the
DNS-AR(3) model, while the values in the row corresponding to the DNS-AR(3) model are real values for RMSE
and TRMSE. Numbers smaller than one (shown in bold) indicate that the alternative model outperform the
benchmark, whereas numbers larger than one indicate underperformance.
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Table 12 – Relative RMSFE and TRMSFE of the alternative DNS specifications.

Panel A: Forecast horizon: 1-month-ahead

Specifications
Maturities

TRMSFE
3 6 12 24 36 48 60

Random Walk 0.0032 0.0037 0.0049 0.0063 0.0066 0.0066 0.0067 0.0058
DNS-AR(3) 1.1927 1.0512 1.0534 0.9816 0.9873 1.0074 1.0207 1.0064
DNS-AR(4)2 1.7219 1.4325 1.2610 1.0942 1.0773 1.0821 1.0851 1.1453
DNS-AR(5) 7.9686 6.9047 5.1090 3.8593 3.7712 3.8355 3.9769 4.3478
DNS-VAR(3) 1.5009∗ 1.2891∗ 1.0941 0.9772 0.9496 0.9516 0.9573 1.0087
DNS-VAR(4)2 1.6141∗ 1.4023∗ 1.2078 1.0755 1.0698 1.0701 1.0696 1.1212
DNS-VAR(5) 2.4525 2.1321 1.7318 1.4589 1.4607 1.4832 1.5097 1.5667
DNS-VAR(3)Q−diag 1.5292∗ 1.2739∗ 1.0849 0.9755 0.9551 0.9575 0.9664 1.0098
DNS-VAR(4)2,Q−diag 1.6652 1.2954 1.1325 1.0253 1.0196 1.0186 1.0212 1.0661
DNS-VAR(5)Q−diag 1.6530 1.5033 1.3785 1.2582 1.2482 1.2536 1.2569 1.2940
DNS-VAR(3)A−diag 1.3288∗ 1.0912 1.0404 0.9850 0.9765 1.0044 1.0266 1.0078
DNS-VAR(4)2,A−diag 1.6819∗ 1.5337∗ 1.3746∗ 1.2005∗ 1.1777∗ 1.1913∗ 1.2118∗ 1.2511
DNS-VAR(5)A−diag 2.2338∗ 2.0167∗ 1.6937∗ 1.4473∗ 1.3918∗ 1.3793∗ 1.3670∗ 1.5067
DNS-VAR(3)S 1.4081∗ 1.2794∗ 1.1389 1.0164 0.9983 1.0138 1.0235 1.0506
DNS-VAR(4)2,S 1.3632∗ 1.3358 1.3133 1.1300 1.1159 1.1060 1.1021 1.1653
DNS-VAR(5)S 9.9898 7.4159 4.2906 2.3616 1.8662 1.6338 1.4883 3.2172
DNS-VAR(2)C 1.9537∗ 1.4584∗ 1.0430 0.9296 0.9188 0.9346 0.9554 1.0018
DNS-VAR(3)2,C 2.2865∗ 1.8051∗ 1.3808∗ 1.1948∗ 1.1925 1.1872 1.2040 1.2807
DNS-VAR(4)C 3.5477∗ 2.8711∗ 2.1302∗ 1.6825 1.6552 1.6195 1.5944 1.8505

Panel B: Forecast horizon: 6-month-ahead
Random Walk 0.0143 0.0146 0.0156 0.0173 0.0183 0.0185 0.0185 0.0169
DNS-AR(3) 0.7863∗ 0.8315 0.8500 0.8689 0.8732∗ 0.8875∗ 0.8923∗ 0.8632
DNS-AR(4)2 1.5616 1.4156 1.2112 1.0169 0.9536 0.9378 0.9228 1.0908
DNS-AR(5) 4.2099 3.8557 3.2413 2.6188∗ 2.3744∗ 2.3155∗ 2.3044∗ 2.8420
DNS-VAR(3) 1.2686∗ 1.2082∗ 1.0526 0.9493 0.9048∗ 0.9031 0.9009∗ 0.9889
DNS-VAR(4)2 1.2035 1.1237 0.9751 0.8636∗ 0.8239∗ 0.8193∗ 0.8179∗ 0.9075
DNS-VAR(5) 2.2131 2.1564 2.0031 1.7281 1.5797 1.5420 1.5180 1.7776
DNS-VAR(3)Q−diag 1.1160 1.0701 0.9397 0.8659∗ 0.8370∗ 0.8417∗ 0.8434∗ 0.8984
DNS-VAR(4)2,Q−diag 1.2902 1.2529 1.1374 1.0124 0.9787 0.9800 0.9781 1.0564
DNS-VAR(5)Q−diag 1.0373∗ 1.0538∗ 1.0806∗ 1.0726∗ 1.0481∗ 1.0490∗ 1.0454∗ 1.0602
DNS-VAR(3)A−diag 0.9168∗ 0.9360∗ 0.9284∗ 0.9528 0.9530 0.9737 0.9815 0.9497
DNS-VAR(4)2,A−diag 1.1587 1.1741 1.2679 1.4971 1.6432 1.7806 1.8886 1.5231
DNS-VAR(5)A−diag 1.8320∗ 1.8143∗ 1.7180∗ 1.5606∗ 1.4605∗ 1.4390∗ 1.4194∗ 1.5830
DNS-VAR(3)S 1.2033∗ 1.1934∗ 1.0867 0.9928 0.9382 0.9279∗ 0.9180∗ 1.0126
DNS-VAR(4)2,S 1.5215 1.5299 1.4306 1.1532 1.0189 0.9520 0.9189 1.1987
DNS-VAR(5)S 1.8908 2.0598∗ 2.1008∗ 1.7902∗ 1.5048 1.3493 1.2459 1.7452
DNS-VAR(2)C 0.9362 0.9311∗ 0.8485∗ 0.7741∗ 0.7237∗ 0.7120∗ 0.7038∗ 0.7866
DNS-VAR(3)2,C 1.7603 1.6707 1.5166 1.2951 1.1976 1.1715 1.1554 1.3520
DNS-VAR(4)C 1.8625 1.7231 1.4877 1.1796 1.1000 1.0935 1.0830 1.2972
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Panel C: Forecast horizon: 9-month-ahead

Specifications
Maturities

TRMSFE
3 6 12 24 36 48 60

Random Walk 0.0208 0.0206 0.0212 0.0218 0.0225 0.0226 0.0228 0.0217
DNS-AR(3) 0.6808∗ 0.7126∗ 0.7353∗ 0.7797∗ 0.7988∗ 0.8145∗ 0.8153∗ 0.7702
DNS-AR(4)2 1.7515 1.5929 1.3061 1.0381 0.9432 0.9128 0.8832 1.1719
DNS-AR(5) 4.2925 3.9950 3.4710 2.9590∗ 2.7025∗ 2.6168∗ 2.5616∗ 3.1668
DNS-VAR(3) 1.1887∗ 1.1222 0.9973 0.9252 0.8893∗ 0.8901∗ 0.8875∗ 0.9639
DNS-VAR(4)2 1.0586 0.9776 0.8493∗ 0.7545∗ 0.7285∗ 0.7347∗ 0.7360∗ 0.8110
DNS-VAR(5) 1.8626 1.8735 1.7887 1.6576 1.5686 1.5312 1.4990 1.6816
DNS-VAR(3)Q−diag 1.0364 0.9821 0.8824∗ 0.8300∗ 0.8049∗ 0.8093∗ 0.8094∗ 0.8606
DNS-VAR(4)2,Q−diag 1.2071 1.1853 1.0737 0.9635 0.9030 0.8828 0.8670 1.0003
DNS-VAR(5)Q−diag 0.8858 0.9187 0.9714 0.9908 0.9884 0.9952 0.9858 0.9767
DNS-VAR(3)A−diag 0.8855∗ 0.8990∗ 0.8979∗ 0.9228∗ 0.9283∗ 0.9478∗ 0.9501 0.9199
DNS-VAR(4)2,A−diag 1.0157 1.0377 1.2565 1.7787 2.1383 2.4111 2.5866 1.8261
DNS-VAR(5)A−diag 1.8688∗ 1.8777∗ 1.8271∗ 1.7536∗ 1.6960∗ 1.6812∗ 1.6564∗ 1.7649
DNS-VAR(3)S 1.0986 1.0807 1.0116 0.9485 0.8976∗ 0.8777∗ 0.8568∗ 0.9616
DNS-VAR(4)2,S 1.6605 1.6639 1.5291 1.2207 0.9907 0.8651 0.8010∗ 1.2746
DNS-VAR(5)S 2.3400 2.5549 2.6132 2.2543 1.8407 1.5720 1.3774 2.1918
DNS-VAR(2)C 0.9158∗ 0.9054∗ 0.8509∗ 0.7856∗ 0.7266∗ 0.7032∗ 0.6839∗ 0.7938
DNS-VAR(3)2,C 2.1988 2.1690 2.0129 1.8438 1.7492 1.7155 1.6838 1.8958
DNS-VAR(4)C 2.4401 2.3247 2.0385 1.6991 1.5274 1.4653 1.4210 1.8210

Panel D: Forecast horizon: 12-month-ahead
Random Walk 0.0261 0.0261 0.0261 0.0254 0.0257 0.0256 0.0256 0.0257
DNS-AR(3) 0.6016∗ 0.6162∗ 0.6373∗ 0.6938∗ 0.7227∗ 0.7426∗ 0.7476∗ 0.6819
DNS-AR(4)2 2.2077 1.9787 1.6416 1.3173 1.1424 1.0622 1.0097 1.4813
DNS-AR(5) 5.3483 4.9616 4.4375 4.0282∗ 3.7239∗ 3.5948∗ 3.5153∗ 4.2045
DNS-VAR(3) 1.1404 1.0513 0.9449 0.8927∗ 0.8729∗ 0.8838∗ 0.8869 0.9347
DNS-VAR(4)2 0.9509 0.8771 0.7695∗ 0.6939∗ 0.6870∗ 0.7023∗ 0.7094∗ 0.7506
DNS-VAR(5) 1.5601 1.5506 1.5221 1.5064 1.4572 1.4522 1.4475 1.5006
DNS-VAR(3)Q−diag 0.9885 0.9156 0.8330∗ 0.7986∗ 0.7858∗ 0.7976∗ 0.8010∗ 0.8303
DNS-VAR(4)2,Q−diag 1.2524 1.1986 1.0984 1.0321 0.9725 0.9582 0.9493 1.0581
DNS-VAR(5)Q−diag 0.8068 0.8467 0.8955 0.9063 0.8793 0.8648 0.8466 0.8802
DNS-VAR(3)A−diag 0.8729∗ 0.8720∗ 0.8700∗ 0.8950∗ 0.9028∗ 0.9202∗ 0.9218∗ 0.8909
DNS-VAR(4)2,A−diag 1.0650 1.0217 1.3280 2.2302 2.8402 3.2949 3.6073 2.2859
DNS-VAR(5)A−diag 2.2500∗ 2.1550∗ 2.0701∗ 2.0703∗ 2.0241∗ 2.0225∗ 2.0155∗ 2.0747
DNS-VAR(3)S 1.0099 0.9678 0.9115∗ 0.8701∗ 0.8276∗ 0.8102∗ 0.7907∗ 0.8824
DNS-VAR(4)2,S 2.1721 2.1661 2.0122 1.6367 1.2475 0.9848 0.8297 1.6847
DNS-VAR(5)S 3.5884 3.8276 3.8746 3.3798 2.6787 2.2027 1.8584 3.2844
DNS-VAR(2)C 0.9002∗ 0.8763∗ 0.8358∗ 0.7878∗ 0.7417∗ 0.7227∗ 0.7032∗ 0.7971
DNS-VAR(3)2,C 3.9441 3.9056 3.8067 3.8178 3.7315 3.7260 3.7204 3.8022
DNS-VAR(4)C 4.1541 3.8890 3.4816 3.1189 2.8789 2.7876 2.7309 3.2731
Notes: The table presents the relative RMSFE and TRMSFE of the alternative estimated specifications of the DNS
model for the out-of-sample period of 2012:12 to 2016:03 and for the 1-, 6-, 9- and 12-month-ahead forecast horizons.
Each value is compared to benchmark, which is the random walk, while the values in the rows corresponding to the
random walk model are real values for RMSFE and TRMSFE. Numbers smaller than one (shown in bold) indicate
that the alternative model outperform the benchmark, whereas numbers larger than one indicate underperformance.
The star on the right of the cell entries indicate where Diebold-Mariano test rejects the null of equal forecasting
accuracy between values of the alternative models and benchmark, with 5% probability of the null hypothesis.
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APPENDIX F – Optimal portfolio
allocations

(a) (b)

(c) (d)

(e)

Figure 8 – Optimal portfolio allocations: average mean-variance portfolio weight in each maturity,
for 1-step-ahead forecasts over the out-of-sample period.
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(a) (b)

(c) (d)

(e)

Figure 9 – Optimal portfolio allocations: average mean-variance portfolio weight in each maturity,
for 12-step-ahead forecasts over the out-of-sample period.
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APPENDIX G – Optimal mean-variance
portfolio for 6-step-ahead forecasts

Table 13 – Performance of optimal DI-futuro contracts mean-variance portfolios.

Six-step-ahead estimates with semi-annual rebalancing
Yield Curve Model Mean gross exc. R (%) Mean net exc. R (%) Std. Dev. (%) Sharpe Ratio Duration (years)

δ=0.0001
Random Walk -3.145 -3.153 23.729 -0.133 3.237
DNS-AR(3) 0.162 0.154 6.275 0.025 1.053
DNS-VAR(3) -0.093 -0.106 15.551 -0.007 2.263
DNS-VAR(4)2 1.075 1.065 10.752 0.099 1.553

δ=0.01
Random Walk -2.831 -2.842 16.885 -0.168 2.367
DNS-AR(3) 0.162 0.154 6.275 0.025 1.053
DNS-VAR(3) -0.093 -0.106 15.551 -0.007 2.263
DNS-VAR(4)2 1.075 1.065 10.752 0.099 1.553

δ=0.1
Random Walk -1.379 -1.388 8.921 -0.156 1.551
DNS-AR(3) 0.162 0.154 6.275 0.025 1.053
DNS-VAR(3) -0.093 -0.106 15.551 -0.007 2.263
DNS-VAR(4)2 0.499 0.489 7.546 0.065 1.277

δ=0.5
Random Walk -0.127 -0.134 4.432 -0.030 1.008
DNS-AR(3) -0.270 -0.273 3.243 -0.084 0.830
DNS-VAR(3) -0.443 -0.457 6.647 -0.069 1.359
DNS-VAR(4)2 0.159 0.150 5.544 0.027 1.026

δ=1
Random Walk -0.141 -0.143 2.984 -0.048 0.806
DNS-AR(3) -0.355 -0.357 3.079 -0.116 0.803
DNS-VAR(3) -0.506 -0.518 5.065 -0.102 1.194
DNS-VAR(4)2 -0.106 -0.111 3.616 -0.031 0.896

Notes: Performance statistics for mean-variance portfolios using the DNS-AR(3), DNS-VAR(3) and DNS-VAR(4)2 model specifi-
cations to compute the forecasted yields for the out-of-sample period from 2012:12 to 2016:03. The table reports the statistics
for the portfolio optimization using six-month-ahead estimates for DI-futuro returns. The optimal portfolios are rebalanced on
a semi-annual basis. The statistics of gross and net excess returns, standard deviation, and Sharpe ratio are annualized and the
average portfolio duration is measured in years. The excess return is calculated using the short Brazilian Interbank Deposit (CDI)
rate as the risk-free asset. The level of transaction costs is 5 bps. Parameter δ denotes the value of the risk aversion coefficient.

(a) (b)

Figure 10 – Cumulative net returns (in %): mean-variance portfolios with δ = 1 × 10−4 and
δ = 1 for 6-step-ahead forecasts over the out-of-sample period.
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(a) (b)

(c) (d)

(e)

Figure 11 – Optimal portfolio allocations: average mean-variance portfolio weight in each matu-
rity, for 6-step-ahead forecasts over the out-of-sample period and for δ = 1× 10−4

and δ = 1.


	Title page
	Approval
	Acknowledgements
	Epigraph
	Fixed-income portfolio optimization based on dynamic Nelson-Siegel models with macroeconomic factors for the Brazilian yield curve
	Fixed-income portfolio optimization based on dynamic Nelson-Siegel models with macroeconomic factors for the Brazilian yield curve
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Literature Review
	The term structure of interest rates
	Interpolation

	Term structure models
	Affine term structure models
	Arbitrage-free models
	The class of Nelson-Siegel models
	Nelson-Siegel
	Dynamic Nelson-Siegel
	Arbitrage-free Nelson-Siegel


	The term structure and the macroeconomy
	Fixed-income portfolio optimization
	The mean-variance approach of Markowitz
	Risk factors


	Theoretical Models, Data and Estimation Methodology
	Theoretical models for the yield curve
	Specification of the yield factors model
	Specification of the macroeconomic models

	Data description
	Principal component analysis
	State-space model and Kalman filter
	The distribution of log-returns

	Empirical Results and Discussion
	Preliminary evidence
	Estimating term structure models
	In-sample estimates
	Alternative model specifications

	Forecast performance evaluation
	Alternative model specifications


	Application to fixed-income portfolio optimization
	Methodology for evaluating portfolio performance and implementation details
	Results for mean-variance portfolios


	Concluding remarks
	Bibliography
	Appendix
	Macroeconomic variables panel
	Correlation between yield curve and macro factors
	In-sample estimates
	Analysis with only forward-looking macro variables
	Estimates of the alternative DNS specifications
	Optimal portfolio allocations
	Optimal mean-variance portfolio for 6-step-ahead forecasts


