Felipe Carraro

A stochastic Kriging approach for the

minimization of integrals

Florianépolis
2017






Felipe Carraro

A stochastic Kriging approach for the minimization of
integrals

Dissertation submitted to the Civil
Engineering Department of the Fed-
eral University of Santa Catarina as
a partial requirement to obtain the
Master’s degree.

Federal University of Santa Catarina
Department of Civil Engineering

Graduation Program in Civil Engineering

Advisor: Prof. Rafael Holdorf Lopez
Co-advisor: Prof. Leandro Fleck Fadel Miguel

Florianépolis
2017



Ficha de identificac@o da obra elaborada pelo autor,
através do Programa de Geragdo Automatica da Biblioteca Universitaria da UFSC.

Carraro, Felipe

A stochastic Kriging approach for the
mnimzation of integrals / Felipe Carraro ;
orientador, Rafael Hol dorf Lopez, coorientador,
Leandro Fl eck Fadel M guel, 2017.

157 p.

Di ssertacdo (mestrado) - Universidade Federal de
Santa Catarina, Centro Tecnol 6gi co, Programa de Poés
Graduagdo em Engenharia Civil, Florianopolis, 2017.

I nclui referéncias.

1. Engenharia Gvil. 2. mnimzacdo de integrais.
3. otimzagdo global. 4. netanodelos. 5. kriging. I.
Lopez, Rafael Holdorf. Il. Mguel, Leandro Fleck
Fadel . 111. Universidade Federal de Santa Catarina.
Progranma de Po6s- Graduagdo em Engenharia Civil. V.
Titul o.




Felipe Carraro

A stochastic Kriging approach for the minimization of
integrals

Esta Dissertacgao foi julgada adequada para a obtencéo
do Titulo de MESTRE em Engenharia Civil e aprovada
em sua forma final pelo Programa de P6s-Graduacao em
Engenharia Civil - PPGEC da Universidade Federal de
Santa Catarina.

Florianépolis, 05 de outubro de 2017:

Glicério Trichés, Dr.
Coordenador PPGEC

Comissao Examinadora:

Prof. Rafael Holdorf Lopez, Dr. (Orientador)
Universidade Federal de Santa Catarina

Prof. Breno Pinheiro Jacob, Dr.
(Videoconferéncia)
Universidade Federal do Rio de Janeiro

Prof. Marcelo Krajnc Alves, Ph.D.
Universidade Federal de Santa Catarina

Prof. Wellison José de Santana Gomes, Dr.
Universidade Federal de Santa Catarina






Resumo

Este estudo tem como objetivo propor um método eficiente baseado na
metodologia Stochastic Kriging (SK) para a solugdo de problemas de
minimizacao de integrais. O modelo SK é usado para criar uma aproxi-
macao rapida para a fungdo a ser minimizada. Além disso, estimativas
de variancia da simulagao de Monte Carlo sdo usadas para auxiliar a
otimizagao. O procedimento de otimizacao aplica o algoritmo Efficient
Global Optimization com o critério de preenchimento Augmented Ez-
pected Improvement. Observa-se que o alvo de varidncia influencia os
resultados da otimizacdo. Um alvo muito baixo faz com a otimizagao
torne-se demasiadamente custosa, enquanto que um alvo muito alto
pode estagnar a otimizacdo. Desta maneira, uma selecdo adaptativa
do alvo de variancia é proposta. De modo a verificar o desempenho do
método proposto varios testes comparativos sdo conduzidos. O método
é aplicado para diversas funcoes de referéncia da literatura submetidas
a um ruido estocéstico. Além disso, comparagoes sdo realizadas em
relacdo a um algoritmo eficiente conhecido e ao uso de quadraturas para
a avaliagdo da integral. Por fim, a abordagem proposta é também apli-
cada a um problema de engenharia estrutural. Os resultados destacam o
desempenho eficiente do método bem como a sua consisténcia ao longo

de diversas execucoes independentes.

Palavras-chave: stochastic kriging. otimizacao global. minimizacao de

integrais.






Resumo expandido

Introducéo

Atualmente, muitas dreas da engenharia como civil, mecanica, naval e
aeroespacial usam técnicas de otimizagdo como uma ferramenta para
resolver problemas reais. Apesar do aumento da capacidade computa-
cional disponivel, os ambientes de engenharia continuam a evoluir a
analisar sistemas mais complexos, que podem incluir mais detalhes, por
exemplo, modelos mais refinados. A andlise desse tipo de problema, em
termos de otimizacao, pode tornar-se inviavel uma vez que uma Unica
analise do modelo pode ser bastante custosa computacionalmente. Pode
ser necessario a avaliacdo das incertezas inerentes ao problema estudado.
Neste caso, ha ainda um custo adicional relacionado ao fato do modelo

analisado ser estocéastico.

Objetivos

Este estudo tem como objetivo propor um método eficiente baseado
na metodologia Stochastic Kriging (SK) para a solu¢ao de problemas
de minimizagdo de integrais. Mais especificamente busca-se estudar
técnicas de metamodelagem associadas a simulacdes de Monte Carlo.
A partir destas técnicas, objetiva-se a implementacao de algoritmos
computacionais bem como a realizacao de testes para a verificagdo do
desempenho obtido. Uma das metas deste estudo também é propor uma
maneira de incluir o erro cometido pela simulacao de Monte Carlo na
construcdo do metamodelo. Mais ainda, aplicar o método proposto a
um problema de engenharia, como por exemplo o de controle étimo da
resposta dindmica de estruturas sujeitas a carregamentos transientes.

Por fim, busca-se verificar a eficiéncia dos métodos estudados.



Metodologia

O modelo SK é usado para criar uma aproximagao rapida para a funcao
a ser minimizada. Além disso, estimativas de varidncia da simulacao de
Monte Carlo sdo usadas para auxiliar a otimizagdo. O procedimento
de otimizagao aplica o algoritmo Efficient Global Optimization com o
critério de preenchimento Augmented FExpected Improvement. No entanto,
este critério é modificado para que seja possivel a insercao de pontos no
modelo utilizando-se alvos de variancia diversos. Mais ainda, de forma
a balancear as caracteristicas de exploragao e refinamento da resposta,
o alvo é alterado pelo uso de uma fungao de decaimento exponencial.
Esta funcao realiza a adaptacdo do alvo conforme as caracteristicas do
ponto que deve ser adicionado ao metamodelo.

De modo a verificar o desempenho do método proposto, varios testes
comparativos sao conduzidos. Inicialmente, o método é aplicado para
quatro funcoes de referéncia da literatura submetidas a um ruido esto-
castico. As fungbes possuem 1, 2, 6 e 10 dimensoes. O ruido estocédstico
é aplicado multiplicativamente a fungdo deterministica por meio de uma
variavel aleatéria normal com média unitaria e desvio padrao arbitrado
para cada problema.

Além disso, comparagoes sdo realizadas entre o método proposto e um al-
goritmo eficiente conhecido, chamado Globalized Bounded Nelder—Mead
(GBNM). Ainda, verifica-se existe vantagem em realizar a avaliagdo da
integral que descreve o problema de otimizacao utilizando-se quadraturas
ao invés da técnica de simulagdo de Monte Carlo.

Por fim, a abordagem proposta é também aplicada a um problema de
engenharia estrutural. Neste problema o objetivo é minimizar o valor
esperado da probabilidade de falha de um pértico plano de 10 pavimentos
sujeito a agdo sismica. Uma forma de aleatoriedade do problema advém
do sismo, que é simulado utilizando-se um processo estocéstico filtrado
pelo espectro Kanai-Tajimi. A outra, vem incorporada nos parametros
estruturais de massa, amortecimento e rigidez. Estes sdo descritos por

variaveis aleatérias com uma média fixa e um certo coeficiente de



variagdo. A solucao do problema se dd com uso do método proposto sendo
que a parte dindmica do problema é solucionada a partir da equagao
de Lyapunov. Esta equacdo descreve o problema em sua formulagao de

espacgo de estado.

Resultados e discussao

Observa-se que o alvo de varidncia influencia os resultados da otimizacao.
Um alvo muito baixo faz com a otimizacao torne-se demasiadamente
custosa, enquanto que um alvo muito alto pode estagnar a otimizagao. E
esta situagdo que motiva o uso de um esquema adaptativo para a selecao
do alvo de varidncia. A partir dos resultados da otimizacao dos problemas
referéncia da literatura, observam-se redugées no custo computacional e
na variabilidade dos resultados quando da utilizacao do alvo adaptativo
em relacdo ao constante. O uso de quadraturas, em sua forma mais
simples com a utilizagdo do produto de regras unidimensionais, acresce
demasiadamente o niimero de avaliagoes para se chegar a uma resposta
similar ao obtido pelo método proposto. Com relagdo ao algoritmo
GBNM utilizado para comparacao, o método proposto se mostrou mais
eficiente e mesmo alterando-se os pardmetros internos daquele algoritimo
nao foi possivel obter um nimero de avaliagoes equivalente para a partir
do problema de duas dimensoes. Os resultados destacam o desempenho
eficiente do método bem como a sua consisténcia ao longo de diversas

execugoes independentes.

Consideracoes finais

De maneira geral pode-se dizer que os objetivos do estudo foram atingi-
dos. Conseguiu-se propor um método que incorpora o erro de Monte
Carlo na criagdo do metamodelo. Além disso, utilizando-se o algoritmo
EGO foi possivel realizar o refino iterativo do metamodelo objetivando
a localizacdo do 6timo global. Questdes como a parada inesperada do

algoritmo ou o alto niimero de avali¢des que estavam relacionadas ao



valor do alvo de variancia foram solucionados por meio do esquema
adaptativo. O método proposto obteve uma maior eficiéncia com relagao
ao numero de chamadas da func¢do objetivo além de consistentemente

chegar mais proximo ao 6timo global.

Palavras-chave: stochastic kriging. otimizacao global. minimizagao de

integrais.



Abstract

This study aims at proposing an efficient method based on the Stochastic
Kriging (SK) methodology for the solution of integral minimization
problems. The SK metamodel is used to create a fast approximation for
the function being minimized. Moreover, variance estimates from Monte
Carlo simulation are used to aid the optimization. The minimization
procedure employed the Efficient Global Optimization algorithm with
the Augmented Expected Improvement infill criterion. It can be observed
that the target variance influences the optimization results. Setting it
too low causes the optimization to becomes too costly, while setting
it too high might stall the optimization. Therefore, an adaptive target
setting is proposed. In order to verify the performance of the proposed
method multiple benchmarks are conducted. The method is applied
to a number of noisy benchmark functions from literature. Moreover,
comparisons are made against a known efficient optimization algorithm
as well as an integral evaluation approach using quadratures. At last, the
proposed approach is also applied to a structural engineering problem.
The results highlight the efficient performance of the method as well as

its consistency over multiple independent runs.

Keywords: stochastic kriging. global optimization. integral minimiza-

tion.
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1 Introduction

Optimization can be seen as the search for the best outcome
of a given process while satisfying certain restrictions. In engineering,
its use for design and planning is extensive since long back. However,
with the increasingly availability of computing power it has gained
significant popularity. In recent times, many engineering fields such as
civil, mechanical, naval and aerospace use it as a tool to solve real-life
problems.

Although the increase in available computing power, the current
engineering environment continues to evolve and the analysis of complex
systems may now include more detail, i.e., model refinements. When
dealing with large or complex models such as Finite Element Analysis
(FEA), illustrated in Figure 1, or Computational Fluid Dynamics (CFD),

each analysis can become computationally costly.

Figure 1 — FEA of a structural collapse simulation

Source — Applied Science International, LLC (2016)

Thus, refining the mathematical/mechanical model leads to a

more expensive problem to optimize. However, this is not the only
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source of added complexity. For a long time in engineering, researchers
have focused on improving structural models. One could analyze, for
example, a beam considering a higher order beam model, plasticity,
damage theories, and other sources of non- linearity, and approximate
the solution using a state-of-the-art finite element model. All of this
procedure would still be a rough representation of reality if the intrinsic
randomness of materials (rock, soil, concrete) and loads (wind, earth-
quake motion) were disregarded and a deterministic average was used
(SUDRET; KIUREGHIAN, 2000).

Impact Risk

Figure 2 — International Space Station Risk of Impact from Orbital
Debris

Source — NASA (2014b)

Accounting for the randomness present in the model makes it
possible to achieve a reliable design. For example, Figure 2 shows a
model of the International Space Station (ISS) with the associated
risk of impact by orbital debris. It cannot be known for certain how
particles free in space will behave, but by using probabilistic models it is
possible to determine which parts of the spacecraft are more vulnerable

to this source of impact. With this information designers may use more
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protective shielding in those regions with larger risk and reduce the cost
of the structure with less protection in non-critical or improbable to
be damaged parts. This type of optimization aims to effectively reduce
the probability of failure of the structure and also generate economical
savings. This is especially important considering a high investment like
the ISS, where estimated construction and operation costs reach almost
75 billion dollars (NASA, 2014a).

Orbital debris may seem a bit distant from an engineer’s daily life
but the same concept may be applied for other sources of unpredictable
loads such as: wind, earthquakes, action of waves, ice, etc. In Figure 3 two
examples of failure events associated with natural uncertain phenomena
are shown. Thus, cost and reliability are two important features in any
project and the trade-off between them should be considered.

When trying to optimize large or complex systems including also
the system’s reliability, the amount of computational resources required
may render the task intractable. An efficient optimization algorithm
must be able to find the best or at least a reasonably good result under
limited time or computational budget.

Classic optimization methods make use of gradients to try to
find extreme values of an objective function. However, considering
the FEA example, there is usually no explicit function to be used, as
the output comes from a computer simulation. Thus, obtaining the
derivatives may be either impossible or very costly to approximate.
Nevertheless, derivative-free algorithms exist, e.g. the Nelder-Mead
(NELDER; MEAD, 1965; NHAMAGE et al., 2014). Even so, both types
of algorithms may not be successful in finding the global optimum of the
usually highly non-linear, multimodal and non-convex problems that
arise in engineering. As a result of such algorithms becoming trapped at
local optimum, the outcome becomes dependent on the starting point.

Metaheuristics are another class of algorithms, widely used in en-
gineering optimization. They can be used to solve black-box functions as
they make very few assumptions about function characteristics and usu-

ally develop their search procedure based solely on evaluated responses.
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(a) Wind turbine collapse failure under
extreme wind

(b) Building collapse under earthquake
Figure 3 — Structural failure

Source — Brome (2010) and Takats (2005)

On the other hand, their usefulness is diminished when considering
expensive functions. Usually a large number of function calls are needed
in order to obtain convergence, leading to a prohibitive execution time
(HUANG et al., 2006).

Beyond both of these approaches, there is an alternative method
that can cope with the limitations discussed: metamodels. Metamodels
are simpler approximate models, created by adjusting a response surface
based on a sample of simulated points from the original model. By being
simple, the metamodel can be used as a replacement of the original
expensive function, reducing the computational burden of performing
numerous simulations. A widely applied metamodel to deal with the

type of problem discussed above is called Kriging. A prediction example
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using Kriging is shown in Figure 4.

10 T T T T
- ©- True function
81 [C_195% Confidence Interval |
g | — Kriging estimate

A Samples

8 9 10

Figure 4 — Example of Kriging metamodel prediction

Kriging in its usual formulation considers the approximation of

deterministic functions. But what if the objective function possesses

randomness? This randomness could result from, for example, uncer-

tainty in the input parameters or noise on the function response. In
such cases, a more recent extension called Stochastic Kriging may be

employed. Under this approach, the minimization problem is written

as the minimization of an integral. This integral form defines a class of

problems which are the focus of this study. This form arises naturally in
some engineering cases. Yet, some problems may be rewritten with this

integral form. Stochastic Kriging formulation, its characteristics and

how it can be employed in order to solve the class of problems discussed,

are addressed in this study.
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1.1 Objectives

1.1.1 General Objective

Develop a method based on Stochastic Kriging for the minimiza-

tion of expensive to evaluate functions that depend on an integral.

1.1.2 Specific Objectives

e Study the use of kriging metamodeling techniques coupled with

Monte Carlo simulation;

e Implement computational algorithms and test solution approaches

found in literature;

e Propose a way to include the error committed with Monte Carlo

simulation in the metamodel construction;

e Apply the metamodeling framework to a practical engineering
problem, e.g., optimal control of dynamic response under transient

loads;

e Verify the overall efficiency of the studied methods.

1.2 Dissertation structure

This dissertation is structured in chapters. The initial chapters
aim to constructively gather the knowledge for the understanding and
development of the proposed method as well as its application. With
the theoretical basis well established, the final chapters present numeri-
cal experiments with the proposed method, results are discussed and
conclusion are drawn. A brief overview of each chapter is presented
below.

In Chapter 2 the theory and formulation of general optimization
problems are presented. In addition, problem categories and optimization

algorithms are also discussed.
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Chapter 3 concisely describes the probabilistic background needed
for the characterization of random parameters. Moreover, it details how
uncertainties are considered in optimization as well as the formulation
of problems involving random variables.

Chapter 4 explains the general metamodeling concept and gives
examples of existent methods. It then, focuses in discussing the approach
used in this study: Kriging. The formulation of the Kriging predictor
and the process of parameter estimation is presented. The coupling of
optimization and metamodeling is reviewed under the Efficient Global
Optimization method.

In Chapter 5 resides the main contribution of this study. It intro-
duces the concepts for dealing with stochastic problems. Moreover, it
employs the Stochastic Kriging framework with proposed modifications
to solve a class of integral minimization problems.

In Chapter 6 a few benchmark problems are solved in order to
show the metamodeling technique efficiency as well as to demonstrate
the proper functioning of the implemented algorithms.

In Chapter 7 conclusions are drawn in respect of the results
obtained in the benchmarks as well as the overall performance of the
proposed method. Additionally, it presents suggestions regarding further
studies related to the studied topic.
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2 Optimization

Optimization might be defined as the science of determining the
“best” solutions to certain mathematically defined problems, which are
often models of physical reality (FLETCHER, 1987). Its practical use
begins with the definition of at least one objective function, which
represents a measure of performance. This function depends on certain
characteristics of the system, called design variables. Thus, the goal of
optimization is to find the design variables that return the best value
for the objective function. In an engineering context, an example could
be that of optimizing the sections of a planar steel frame (CARRARO
et al., 2016). A simple example of a frame that could be optimized is

shown in Figure 5.

YU I T S S
' A E,
AL E, A, E, o
_r
| b
|

Figure 5 — Example of a simple plane frame

Three elements characterize an optimization problem:

1. Objective function: this function associates the system parameters
and measures a certain performance value. In the steel frame
example, an objective function could be the total volume or weight
of the structure or the monetary cost to build it. In Figure 5, the

objective could be to find Aj,As and A3 which minimize the
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volume of the structure. Thus, the objective function would be
written as fop,; = Vol = Ajc + Agb + Agc, where b and c are the

lengths of beam and columns, respectively.

. Design variables: these are the input parameters which modify

the system response and can be selected in order to improve the
objective function value. In the example, the design variables could
be the steel profiles associated with groups of beams or columns.
These profiles would be chosen from a catalog, i.e. from a list of
commercially available profiles. When design variables have to be
chosen based on discrete set, the problem is classified as a Discrete
Optimization (PAPADIMITRIOU; STEIGLITZ, 1982; LEE, 2004).
On the other hand, the design variables could be the cross-sectional
area of the structural elements. In such situation, the variable may
be represented by an infinite amount of positive values. When
design variables are real or defined over a real range, they are
called continuous and the problem is a Continuous Optimization
(LUENBERGER, 1969). From Figure 5, A1, A3 and Ag could be
continuous design variables to be optimized. Additionally, there
are problems posed using both continuous and discrete variables.

Such problems are called Mixed Variable Optimization.

. Search space: this is the space that contains all the possible inputs

to the objective function. In a steel frame optimization, the search

space could be the W-shaped profiles from a standard specification.

2.1 Formulation of an optimization problem

Transcription of an optimization problem into a mathematical

formulation is a critical step. If the problem formulation is improper,

the solution for the problem is most likely going to be unacceptable

(ARORA, 2007). The usual formulation of an optimization problem is

as follows:
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Find a vector of design variables d € R™:
d:{d17d2a"'7dn}7 (21)

which minimize the objective function f : R™ x R™ — R:

fon; = f(d,x), (2.2)
with parameters:
X = {X1,X2,...,Xm}, (2.3)
subject to the constraints:
gi(d,x) <0; i=1,...,nj, (2.4)
hj(d7x) =0; j=1,... 0, (2.5)

where g;(d, x) and h;(d, x) represent the functions that establish inequal-
ity and equality constraints, respectively, while nj. and nec represent
the number of such functions.

In the frame example parameters could be, for instance, the steel
elastic modulus (Eq1, Eg, E3) or the external loads applied (Qq, Qg). Con-
straints on the objective function could come from stress restrictions on
each member, based on a design code, or a limited lateral displacement.
They could also be imposed on the design variables, for example, by
limiting the cross-sectional area to a certain range, e.g. 1 < A; < 5 cm?
for i={1,2,3} in Figure 5.

When seeking to minimize a function it may occur that there
are no imposed restrictions. In this case, the problem is classified as an
Unconstrained Optimization problem. Otherwise, if restrictions exist on
the objective function or on the design variables, the problem is from
the Constrained Optimization class.

It is assumed that the objective function is to be minimized, but
that entails no loss of generality since the minimum of —f(d, x) occurs

where the maximum of f(d, x) takes place.
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Further considerations on the terminology and aspects of this

formulation will be addressed in section 2.2.

2.2 Aspects and classification of optimization problems

This section details aspects of the optimization problem that lead

to different classification and usually different solution procedures.

2.2.1 Convexity

Convexity in an important characteristic of an optimization prob-
lem. Knowing beforehand that a function is convex enables the use of
specialized methods that exploit this property. Thus, the search becomes
faster if compared to more general methods and the solution is guaran-
teed to be a global optimum as shall be discussed in subsection 2.2.2.

In order to define a convex function, the definition of a convex
set is required. A set S is said to be convex if given any two points p;
and py in S, the line segment P1py is also in S. This concept can be
extended for the n-dimensional space. Mathematically, a parametric
representation of a line segment between points d® and d® can be

formulated as follows:

d=oad® + (1 fa)d(l); 0<a<l. (2.6)
If the entire line segment is in S, then it is a convex set (ARORA, 2004).

Considering now a function f(d) defined on a convex set S, this

function is said convex if it satisfies:

flad® + (1-a)dM) < af(d@) + (1-a)fdV); 0<a <1, (27)

This condition is necessary and sufficient and applies to n-dimensional
functions. An illustrative example of a single variable convex function
is shown in Figure 6.

In practice, applying Equation 2.7 is difficult, as an infinite

number of pair of points must be checked. Checking the Hessian of the
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f(d(g))
/
£(a
£(d)
a -
d(l) d d® E

d=ad?+ (1 —a)d®

Figure 6 — Convexity check on unidimensional function

Source — Adapted from Arora (2004)

function is a simpler alternative. A function is said to be convex when
its Hessian V2f(d), defined as:

9%t (d) 9%f(d) 9%t(d)
8d% 0d10dy o 0d10dy
d%f(d) d%f(d) 9%f(d)
VQf(d) o dds0dy 8d% 0dsddy L (2.8)
9%t (d) 9%f(d) 9%f(d)
| 0dndd; 9dnddy o oda

is at least positive semidefinite everywhere, that is, has non-negative
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eigenvalues for all points in S.

Thus, a Convex Optimization problem is one where S, f and the
inequality constraints g; are convex and the equality constraints h; are
linear. This type of problem has an important characteristic that will

be discussed in subsection 2.2.2.

2.2.2 Local or global optima

The distinction between global and local optima is relevant when
considering non-convex functions that arise in practical engineering
optimization. A local optimum is defined as a feasible point d from the
search space S such that sufficiently small neighborhoods surrounding
d contain no points that are both feasible and improving in objective
function value (ZABINSKY, 2003).

When a point has the best objective value over all the search
space, then it is referred to as global optimum. Figure 7 illustrates this
concept using a one-dimensional function. This function is multimodal,

that is, presents multiple local optima.

local optima

global optimum -

d

Figure 7 — Local and global minima
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Mathematically, considering a minimization problem, it can be stated:

A point d € S is a local optimum (minimum) of f over S if

36> 0:f(d) <f(d) and ||d-d|| < 4, Vd €S, (2.9)

and also:

A point d € S is a global optimum (minimum) of f over S if

f(d) < f(d) vd € S. (2.10)

When trying to solve an optimization problem, one is usually
interested in finding the global optimum, i.e. the best possible result.
Often, a question arises if the solution found is indeed a global minimum.
Considering Convex Optimization problems, a fundamental property is
that any locally optimal point is also globally optimal. This property
makes Convex Optimization problems somewhat easier to analyze, as
there is a guarantee of global optimality (LUENBERGER, 1969). The
other option to ensure global optimality, which is usually intractable, is
an exhaustive search on the search space. This means that unless the
problem can be shown as convex, there is no way to recognize if the
solution found can be further improved.

Several functions in engineering optimization are non-convex and
thus require special care when using optimization algorithms in order to
avoid being trapped in local solutions. This distinctive behavior among

algorithms is further discussed in section 2.3.

2.3 Aspects and classification of optimization algorithms

2.3.1 Algorithmic progression

Depending on the existence of random components in the opti-
mization procedure, the algorithmic progression behaves differently. The

algorithms can be classified in this regard as deterministic or stochastic:
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e Deterministic: Classical mathematical optimization algorithms
are usually deterministic. They iteratively improve the solution

according to some deterministic rule;

e Stochastic: Algorithms of this category possesses a random com-
ponent in its formulation. Contrary to deterministic algorithms,
running the same optimization process multiple times may lead

to different results.

2.3.2 Local Search

Local Search methods are the ones that converge to a local op-
timum. Most mathematical optimization algorithms from linear and
non-linear programming fall in this category. They usually focus on iden-
tifying and iteratively following a descent direction. To accomplish this,
they make use of the information from function evaluations, gradients
and/or the Hessian. Some examples include (NOCEDAL; WRIGHT,
2006):

e Line Searches;

e Steepest Descent;

e Conjugate Gradients;

e Simplex Methods;

e Newton Methods;

e Quasi-Newton Methods;

e Sequential Quadratic Programming (SQP);

e Interior Point Methods.
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2.3.3 Global optimization

Global optimization is distinguished from local optimization by
its focus on finding the maximum or minimum over all the search space.
When the objective function is convex, employing a local search such as
those cited in subsection 2.3.2 yields the global optimum as discussed
earlier. Moreover, this class of algorithms usually converges very fast.

On the other hand, when the function is non-convex, the solutions
from this search procedure may be local optima. The final solution
becomes dependent on the point where the search started. In order to
address this issue and still use a local search for its fast convergence
a restart procedure may be employed. The idea is to assume that the
global optimum has been found when a minimum value is achieved from
multiple runs and starting points (MUSELLI, 1997; TORII et al., 2011).

Another approach to solve this type of problem is the use of
metaheuristics. Metaheuristics are a class of algorithms well suited to
search for both local and global optima. They are mostly stochastic
and usually do not use gradients information. They also do not require
the function to be continuous or differentiable. A solution is found by
applying a set of rules and randomness. Nevertheless, convergence proof
only exists in probabilistic terms, i.e., as the number of iterations tends
to infinity the minimum found so far tends to the global minimum. They
also are usually computationally costlier, i.e., need a larger number of
function evaluations to converge, if compared to local searches or the
methods that will be discussed in chapter 4 (YOUNIS; DONG, 2010).
Still, reasonably good results can be achieved given enough time to run.

Some algorithms include:

Genetic Algorithms (GA) (GOLDBERG, 1989);

Simulated Annealing (SA) (KIRKPATRICK et al., 1983);

Particle Swarm Optimization (PSO) (KENNEDY; EBERHART,
1995);

e Ant Colony Optimization (ACO) (COLORNTI et al., 1992);
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Search Group Algorithm (SGA) (GONCALVES et al., 2015);

Imperialist Competitive Algorithm (ICA) (ATASHPAZ-GARGARI;
LUCAS, 2007; CARLON et al., 2015)

Backtracking Search Algorithm (BSA) (CIVICIOGLU, 2013);

e Probabilistic Restart (PR) (LUERSEN; RICHE, 2004).

In this study, optimization takes place considering a non-convex,
multimodal and expensive to evaluate black box function. By black box,
it is meant that no information, other than the function response is
available. This, therefore, rules out various local search techniques. Being
multimodal also makes the use of local search improper. Metaheuristics
could be a useful procedure, but given the fact that the function is
expensive to evaluate, the process might become too time-consuming.
A different approach is needed for solving this type of problem. The
approach considered in this study is metamodeling.

The metamodeling approach consists on developing fast surro-
gate models for the objective and constraint functions. The models
offer a cheap to compute transfer function between input and output
and no gradient information is required. They are especially useful for
complex, time-consuming simulations, and might be used in an opti-
mization context. The structure of the model and its formulation may
be exploited focusing specifically the search for the global optimum. It
makes this approach the best candidate to solve the type of problem
proposed. Further considerations on surrogate modeling and the use of

this methodology for global optimization will be discussed in chapter 4.
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3 Probability theory and uncer-
tainties

For now, all components of the optimization problem were taken
as deterministic. This does not map well with reality, due to the existence
of uncertainties.

In the next few sections, concepts of probability, stochastic pro-
cesses and reliability will be reviewed. Later in this chapter, the optimiza-
tion problem will be reformulated by considering those uncertainties,

under different approaches.

3.1 [Initial probability concepts

3.1.1 Events

An event F is defined as a subset of the sample space 2. The
sample space contains all possible outcomes of a random quantity. The
failure event E of a structural element, for example, may be modeled

by the event:
E=R-S<0, (3.1)

where R represents resistance and S represents solicitation.
Considering the frame example from chapter 2, another event
could be one where the elastic modulus value Eq, of the first steel
element, is between 205 and 210 GPa. For every event considered, a
probability of occurrence can be associated. This will be discussed in

subsection 3.1.2.

3.1.2 Axiomatic probability measure

For the classical probability definition, it is necessary to under-

stand the mathematical concept of o-algebra. A o-algebra is a subset
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from a set which has some special properties such as having an empty
element and being closed under union and complementation. With such
structure, it is possible to represent events and a probability measure.
Given a sample space ) and an associated o-algebra F. The probability
measure is a function P : F — [0, 1], which follows the Kolmogorov
axioms (KOLMOGOROV, 1950; SUDRET, 2007):

P(A)>0,VAeF (3.2)
P(Q) = (3.3)
P(AUB)=P(A)+P(B), VA, BEF, ANB=2.  (34)

The probability measures how probable an event occurrence is.
An impossible event will have a probability of zero, while an event that
always occurs will have unit probability. From these axioms, it is also
possible to compute the probability of unions and/or intersections of

multiple events.

3.1.3 Frequentist interpretation of probability

The axiomatic construction proposed in subsection 3.1.2 is purely
mathematical. On the other hand, when considering real world experi-
ments, a more practical view relates to the evaluation of scenarios. Under
the frequentist interpretation of probability theory, the probability of an
event is the limit of its empirical frequency. This frequency is calculated
as the number of occurrences (ny4) of an event A divided by the number

of trials n:

Freq(A) = H?A; (3.5)

Thus, the probability of event A becomes:
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3.1.4 Random variables

Random variables are a useful tool to characterize quantities
subjected to random variations. Throughout the text, they will be
denoted by capital letters. A real-valued random variable X(w) for
w € € is defined as a mapping X : © — R. In other words, it is
a function that attributes to every sample point w from the sample
space {2 a real value. The sample space €2 can be finite or countable
infinite, which results in a discrete random variable. When ) possess
an uncountable number of elements, the resulting random variable is
called continuous.

A simple illustrative example of a random variable could be the

model of fair coin toss. Calling it C, the random variable has two states:

G 1, if the outcome is heads;
0, if the outcome is tails.

(3.7)

Clearly, the variable is discrete as 2 = {0,1} and the event of a heads

outcome can be written with the following notation:

1
=5
Note that the numbers 0 and 1 are artificially assigned numerical

P{we Q| Cw)=1})=P(C=1) (3.8)

values and therefore, other values could have been associated with
the events in question. In this way, it is possible to identify possible
outcomes of a random phenomenon by numerical values. In most cases

these values will simply be the outcomes of the phenomenon (THOFT-
CHRISTENSEN; BAKER, 1982).

3.2 Density Functions

3.2.1 Cumulative Density Function

The probabilistic characteristics of a random variable can be
fully described by its Cumulative Density Function (CDF). The CDF,

or distribution function of X, evaluated at a real number x, is the
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probability that the random variable X will take a value less than or

equal to x. That is:
Fx(x) =P(X <x), xeR. (3.9)

3.2.2 Probability Density Function

It also is useful to write the probability density function (PDF).
For real continuous variables it represents the probability of the random
variable falling in an interval [x,x + dx]. It may be computed by taking
the derivative of the CDF:
frt) o= X

Figure 8 illustrates how an event probability can be computed
from the PDF. Given a certain event F = {a < X < b} C Q, its
probability is given by:

, x€R. (3.10)

b
P(E):/ fx(x)dx, (3.11)

and is represented by the hatched area in Figure 8.

Figure 8 — Illustration of a PDF

Source — Adapted from Bertsekas e Tsitsiklis (2002)
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3.3 Moments

In a mathematical context moments have the purpose of charac-
terizing the shape from a sample of points. Two important moments
are the mean and variance (MONTGOMERY; RUNGER, 2010).

3.3.1 Mean
The mean pyx is the expected value of the random variable X:

+o0
X = E[X]: / x fx(x)dx, (3.12)

-0
where E[.] is the mathematical expectancy operator.
Analogously, when considering functions of random variables, the

expected value of a function q(X) is defined as:

“+o0o
o) = BlaCO]= [ ate) sl dx. (3.1)

—00
If the mean of X has to be estimated based on a n-sized finite

sample, the following unbiased estimator can be used:

_ 1
X := H;Xi. (3.14)
1=

This estimation gives results that are more accurate as n becomes
larger, i.e., a bigger sample is evaluated. There is an error (or variance)
associated with this estimative. This variance will be estimated by using
Equation 3.18.

3.3.2 Variance

The variance, o2

, is a measure of the random variable disper-
sion around the mean. For a continuous random variable X it can be

calculated as:
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Another important measure of dispersion, derived from this mo-
ment, is the standard deviation or standard error . Unlike the variance,
it is expressed in the same units as the analyzed data. For random

variables, it is computed by taking the square root of the variance:

ox = \/g. (3.16)

If the variance of X has to be estimated based on a n-sized finite
sample, the following unbiased estimator can be used (DEVORE, 2011):

_ 1 & -9
i=1
Another measure that shall prove useful is the estimated variance of the

sample mean. The unbiased estimator can be written as:

Ve i= —. (3.18)

This result shows that as the sample size n increases, the variance of

the sample mean decreases.

3.3.3 Covariance and Correlation

Covariance is a measure of the correlation between two or more

random variables. For two random variables X1 and Xs it can be written:

Cov(X1, Xg) = E[(X1 — px, ) (X2 — p1x,)] = E[X1Xo] — pix, fix,- (3.19)

Additionally, a correlation coefficient between the variables can
be calculated. It is defined as a normalized covariance with respect to

the standard deviations of X1 and X9 and is given by:

X1, X
Cor(X1,X2) := M. (3.20)

O'X10'X2
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3.4 Gaussian Distribution

The normal or Gaussian probability distribution (named after
Karl F. Gauss [1777-1855]) is widely used due to its simplicity and wide
applicability (SCHAY, 2007). This distribution is the basis for many
statistical methods, such as the ones that will be studied in chapter 4.
A normal random variable is usually denoted by X ~ A (u, o), where p
is the distribution mean and o its standard deviation.

A standard normal random variable corresponds to Z ~ N (0,1),
that is, normal distribution with zero mean and unitary standard de-
viation. The standard normal PDF ¢(x) is defined by (BERTSEKAS;
TSITSIKLIS, 2002):

o(x) == —— exp <X22> . (3.21)

The standard normal CDF ®(x) reads:

D(x) = \/% /ZO exp (t;) dt. (3.22)

Moreover, considering the computer implementation, the following rela-
tion may be used in order to compute the CDF faster (CODY, 1969):

B(x) = % [1+erf (\’/})] (3.23)

where erf(.) is the error function, which is often available in programming
environments.

One of the useful properties of the normal distribution is its
preservation under linear transformation. Thus, the PDF and CDF can
be calculated for arbitrary p and o using the results from the standard

normal distribution:

fxx) =

Fx(x)

X;“ ) (3.24)
( ;“ ) . (3.25)

"o~

LSS
AS)
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In Figure 9 the plots of the PDF and CDF obtained from a Standard
(u= 0,0 = 1) Normal Distribution are presented, respectively.

Std. Normal Distribution

Figure 9 — PDF and CDF from standard normal distribution

3.5 Extension to multiple variables

3.5.1 PDF and CDF

The previous concepts of PDF and CDF might be extended to
the case of multiple variables. Considering a random vector X, in which
each of its components is a random variable (PAPOULIS; PILLAI,
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2002):
X =[X1,X2,..., Xyl (3.26)
The probability that X is in a region D C R" of the n-dimensional space
equals:
P(XeD)= / fx (x) dx, (3.27)
D
where
O Fx(x1,%X9,...,X
fx(x) = fx(x1,%2,...,Xn) = x (1, %2 a) (3.28)

(9X18X2 ce 8xn

is the joint probability density function (PDF) of X.

The joint cumulative density function is defined as:

Fx(x) = Fx(x1,%X2,...,%Xn) i= P(X1 <x1,X9 <x9...Xp < Xn).
(3.29)
3.5.2 Expected value of arbitrary functions

Extending the expected value of an arbitrary function (Equa-
tion 3.13) to the multivariate case, it is possible to write(PAPOULIS;
PILLAI, 2002; BERTSEKAS; TSITSIKLIS, 2002):

)

Elg(X)] :=
+oo 400 +00
/ / / g(x1,%x2,...,%Xn) fx(X1,%x2,...,Xn) dx1dxgy ... dxp.
—00 —0 —00
(3.30)

Generalizations can be made, if the function is known. For example, if

g is a linear function of the form:

g(X) =a1Xy +agXg + -+ +anXy (3.31)



48 Chapter 3. Probability theory and uncertainties

then, the expected value becomes:

E[a1 Xi4+agXg+---+ aan] = a1 E[Xl] + a9 E[Xg] + -+ anE[Xn].
(3.32)

3.5.3 Correlation and Covariance

For a random vector X, one can define the correlation and co-
variance matrices (PAPOULIS; PILLAI, 2002). The correlation matrix
1x is defined as:

X2 X3Xg .. XiXp
XoX; X2 L XoX,
Vvx = EXXT]=E
XnX; XpXo ... X2
EX? E[XiX2] .. E[XiXy]
E[XoXi] E[X3] .. E[XpXy
= . . . ) . (3.33)
E[anl] E[XHXQ] E[Xg]

The covariance matrix represents the covariance between the
elements of the vector, which in turn are random variables. It is also
called dispersion matrix or variance—covariance matrix. Its definition

reads:
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Ux = E[(X - EX]))(X - EX])'] =

o2(X1) Cov(X1,X3) ... Cov(Xy,Xy)
Cov(Xa,X1) o2(Xs) .. Cov(Xg,Xy)
. : : (3.34)
Cov(Xp,X1) Cov(XpXa) ... o2(Xy)
From Equation 3.20, one can write the following relation:
Ux = ok ix, (3.35)

which will be useful when describing the Kriging metamodel in chapter 4.

3.6 Stochastic Processes

A stochastic or random process, is a collection of random variables
or random vectors indexed by a parameter t over the same sample
space (). The indexed parameter may be time, e.g. when dealing with
the motion of a structure subjected to seismic loading, or space, e.g.
when considering the variability of the Young’s modulus within a beam
element.

Considering a random process X(w, t), for any parameter tq fixed,
X(w,tp) = Xip(w) is a random variable with prescribed properties.
When the prescribed properties of the random variables do not change
over the continuum, the process is said to be stationary. In this notation,
w is an outcome. It is possible to obtain a realization of the stochastic
process, i.e., its trajectory over the parameter t, by fixing an outcome
wg. This is shown in Figure 10 for three different w.

As it will be seen in chapter 4, the Kriging metamodel applies
this concept in its formulation. It makes use of a stationary stochastic
process to represent data points over its domain. Stochastic processes

also arise when considering problems of time-dependent reliability, which
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XQ(t)EX(bJQ,t) XS(t) = X(w37t)

mmmmmmmmme——————

K

“ =
= >
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Figure 10 — Realizations from a stochastic process

Source — Adapted from Sudret (2007)

is a topic that will be studied for the proposed application discussed in
subsection 3.10.1.

3.7 Structural Reliability

A common basis for the different levels of reliability methods
is the introduction of a so-called limit state function G (or failure
function, or g-function) which gives a mathematical definition of the
failure event in mechanical terms (LEIRA, 2013). It is a function of
random variables that determines a performance measure. This function
divides the domain in a safe region and a failure region. It is constructed
such that G(x) < 0 represents failure and G(x) > 0 represents safety or
survival. The vector x = {x1,x2,...,Xn} represents realizations of the
basic random variables X = {X1,X2,..., Xy} considered.

In a structural sense, the failure may represent any undesired per-
formance such as cracking, corrosion, excessive deformations, exceeding
load-carry capacity, local or global buckling, etc. (NOWAK; COLLINS,

2012). In the simple steel frame example discussed in chapter 2, failure
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X, #
Limit state surface
- G(X)=0
> (X)
/ /
/|
/ Failure region
4 G(X) <0
/ Safe region
/ % G(X) > 0
/
/
7

Xi

Figure 11 — Limit state representation

could be represented as a lateral displacement larger than a certain
limit or a load combination larger than the resistant strength.

An example with two random variables is depicted in Figure 11.
In that figure, considering structural reliability, the random variables
X7 and X9 could be replaced by R (resistance) and S (solicitation),
respectively. This two-variable formulation with R and S is known as
the fundamental problem of structural reliability (BECK, 2014).

From the construction of G(X) it is possible to calculate the fail-
ure probability P¢. The probability of failure represents the probability
that the combination of realizations of the random variables lies in the

failure region. That is:

Py = P(G(X) < 0), (3.36)
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or in integral form:

P = / - /G.(X)go fx (x)dx, (3.37)

where fx (x) is the joint probability density function of the n-dimensional
vector X of basic variables.

The solution of Equation 3.37 may be difficult. For instance, there
may be a large number of variables involved, the limit state function
may not be explicit (i.e., it cannot be described by a single equation),
or the solution may be impossible to calculate analytically. Several
alternative methods have been proposed to solve it. These methods will
be categorized and discussed in a uncertainty quantification context in

section 3.9.

3.8 Types of uncertainties

Uncertainties can be classified according to their main source (LOPEZ;
BECK, 2013):

e Uncertainty of model parameters: this type is related to the natural
randomness of a model parameter, for example the uncertainty in
the yield stress due to production variability or the wind loading

on a structure which is varies in time and space.

e Measurement uncertainty: is the uncertainty caused by imperfect

measurements of for example a geometrical quantity;

e Statistical uncertainty: caused by the lack of sufficient information

about the observed quantity;

e Model uncertainty: a model is an idealization of a real phenomenon.
Imperfect knowledge of the real behavior or uncertainty related on

how to represent a given quantity results in this type of uncertainty.

In this study, uncertainties on the model parameters will be taken

into account to improve the quality of the approximated response.
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3.9 Uncertainty representation and quantification

In order to represent uncertainties, two approaches are often used:
the probabilistic and possibilistic approach. The probabilistic approach
uses concepts from probability theory and represents uncertainties by
using random variables, processes and fields (FELLER, 1968; LOPEZ;
BECK, 2013). Thus, the PDF carries all the information relevant to
the uncertainty such as the mean, the variance and the median. The
PDF, however, may not be completely available. Therefore, possibilistic
approach makes use of intervals such as upper and lower bounds in
random variables to describe incomplete or imperfect data.

This study will focus on the probabilistic representation. Under
this representation, uncertainty quantification methods can be sorted
in three categories (LOPEZ; BECK, 2013):

e Analytical methods: Comprehend methods that make use of space
transformations, linearization and Taylor’s series expansion to
seek full PDF characterization, moments or the probability of
failure (PARKINSON et al., 1993; SANKARARAMAN, 2015). In
Figure 12 a diagram of the distinct information sought by these
methods is shown. Full characterization methods aim at obtaining
the PDF of the response of the system (LOPEZ et al., 2011a).
Additionaly, response variability methods compute statistical mo-
ments of the response such as its mean and/or standard deviation
(BEYER; SENDHOFF, 2007). Furthermore, reliability methods
investigate the probability of failure of the system (LOPEZ et al.,
2011b);

e Numerical integration: Probabilistic characteristics of the random
response of the system are evaluated using multidimensional nu-
merical integration. This procedure is feasible for a limited number
of variables. For high-dimensional problems, say more than 10
variables, the computational time increases considerably. There-

fore, in most applications the numerical integration procedure is
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applied only for validation of other methods with a small number
of variables (VROUWENVELDER; KARADENIZ, 2010);

e Simulation methods: Uses multiple samples to simulate and esti-
mate characteristics of the uncertain system. The Monte Carlo
Simulation (MCS) is one the most intuitive and easy to implement
simulation procedures (CAFLISCH, 1998; SANKARARAMAN,
2015). A usual drawback of MCS is the large number of simula-
tions needed for accuracy convergence. On the other hand, this
method can handle highly non-linear systems. It may also serve as
a reference to analytical solution methods, which very easily be-
come mathematically too complicated (DITLEVSEN; MADSEN,
1996).

System Full

under characterization
analysis

O e s

AN

Probabilistic
input of the

Probabilistic

lysis :> Response
analysis Variability

Reliability
methods

Figure 12 — Analytical methods

3.10 Formulation of designs in an uncertain context

When considering uncertainties, designers usually seek one or

both of the following properties: reliability and robustness. A reliable
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design means one that has a low or acceptable probability of failure.
Robust designs are those which are less sensitive to inherent parameter
variability, without removing the sources of uncertainty. Considering one
or the other and possibly coupling it with constrained or unconstrained
optimization leads to multiple problem formulations as seen in Table 1.
For this study, the scope is limited to the Robust Design formulation.
This formulation will be used when considering the Stochastic Kriging

approach that will be seen in chapter 5.

Table 1 — Different uncertain formulations

increase of numerical efforts >
Robustness >
No objective Objective function Objective function
function d, x deterministic d, x uncertain
@ . .
g No constraint th_una_l desx.gn o
£= . N (optimization without Robust design
5] function bt
= constraint)
3 >
S| =
£ =
g i) Optimal and
5 ~ Constraint function | Admissible design ﬂdl}‘i%Sil)lﬁ design Robust and admissible
9 d, x deterministic (sizing) (optimization under design
3 constraint)
g
9
Constraint function Reliable design Optimal and reliable Robust and reliable
\ d, X uncertain (reliability) design (RBDO) design (RBRDO)

Note — Gray tiles consider uncertainty

Source — Adapted from Leliévre et al. (2016)

3.10.1 Robust Design Optimization - RDO

Robust Design Optimization (RDO) is usually employed as a
multi-objective optimization problem, where the mean and variance
of the system are to be minimized (BEN-TAL; NEMIROVSKI, 2002;
BECK et al., 2015). Mean and variance may be different minimizers

and therefore could represent conflicting goals. Nevertheless, one may
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aggregate the different objectives in a single function using a weighted
sum of the objective functions (BEYER; SENDHOFF, 2007).

More generally, RDO may represent an optimization problem
taking into account uncertainties and minimizing any statistic of the
performance function. Thus, it is possible to formulate the problem as
(LOPEZ; BECK, 2013):

Find d which minimizes:

stat[f(d, X)), (3.38)

where d € R" is the design vector, X € R™ is the vector of random
parameters of the system, and stat[.] represents some statistic of the

performance function f(d, X), such as:

Py : the k'™ percentile of the performance function;
E[] : the expected value;
stat[.] = ¢ 0[] : the variance;

aE[.] + (1-a)Pyk; o € [0,1] : a multi — objective problem:;

(3.39)

It can be noticed that now the parameters are random variables,
in contrast with the deterministic formulation presented in chapter 2.

A practical application of this concept in engineering is on the
optimum control of structures subject to seismic loading. It can be cited,
for example, the project of damping systems (e.g. friction dumpers,
tuned mass dumpers) in buildings subjected to wind or earthquake
loads (ARFIADI; HADI, 2011; MIGUEL et al., 2014; LOPEZ et al.,
2015).

In the present study, the objective is to minimize the expected
value of a multivariate objective function with uncertain parameters.
Thus, it can be formulated as a RDO problem with stat[.] = E[.]. This
type of problem arises, for example, when considering robust optimal

control problems of dynamical systems. An academic example problem

aE[] + (1 - a)o?[]; a € [0,1] : a conventional multi-objective problem.
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that will be presented in section 6.4 deals with the optimization of damp-
ing device parameters on shear frame buildings subjected to earthquake
loads. This control problem involves minimizing the expected probability
of structural failure, where “failure” is related to the probability of first
passage from a safe region over a certain limiting barrier (TAFLANIDIS;
SCRUGGS, 2009).

For now, looking at a simplified problem version, suppose the
system performance is given by the function f(d, X), then the objective
function for a robust-to-uncertainties design is given by (TAFLANIDIS;
BECK, 2008):

E[f(d, X)] = / £(d, %) fx (x) dx, (3.40)

where fx is the joint PDF of the probabilistic parameters. This multidi-
mensional integral may be computed by simulation procedures. Using

MCS, one may write:

1Ns

Ens[f(d, X)] = o > f(d, Xy), (3.41)
i=1

where Ns is the number of sampled parameter vectors. Numerous evalu-
ations may be needed to approximate the multi-dimensional integral
accurately. Thus, the metamodeling approach described in chapter 4
may be used in order to solve such problem efficiently.

The approximation accuracy of Equation 3.41 depends on Ns,
i.e., as Ns — oo, Eng[f(d, X)] = E[f(d, X)]. Additionally, the error in
this approximation may be estimated by the variance of the mean ENs,
calculated using Equation 3.18. This information can then be employed
to help filter stochastic noise in the Kriging metamodel. This approach

will be detailed using an example in section 5.2.
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4 Deterministic metamodeling

Much of today’s engineering analysis consists of running complex
computer codes: supplying a vector of design variables (inputs) d and
computing a vector of responses (outputs) y. Although computer power
has been steadily increasing, the expense of running many analysis
codes remain non-trivial. For example, a single evaluation of a finite
element analysis (FEA) model may take minutes to hours, if not longer.
Thus, it often becomes impractical to perform a large number of such
simulations, for example, as required during optimization. To address
such a challenge, approximation or metamodeling techniques are often
used.

The basic approach is to construct a surrogate model or approx-
imate response surface of the analysis function, which is sufficiently
accurate at a reasonable cost. Suppose one wants to create a surrogate
model to a displacement-based FEA code. If the response (displacement)
of the analysis, given a vector of inputs d (geometry, load, boundary

conditions), is:

y = £(d), (4.1)

what is done is to construct a substitute model for the original model,

i.e. a metamodel, such that:

§=[(d) ~ £(d), (4.2)

over a given design domain. The terms metamodel, response surface
and surrogate model is used interchangeably throughout the text to

refer to the approximation in Equation 4.2.
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4.1 Metamodel approaches

Although multiple metamodel approaches exist, here are listed

some of the most actively researched methods:

e Polynomial Regression (PR) (BOX et al., 1978; MONTGOMERY;
MYERS, 1995);

e Radial Basis Functions (RBF) (DYN et al., 1986);
e Kriging (SACKS et al., 1989);

e Neural Networks (HAYKIN, 1998);

e Polynomial Chaos Expansion (SUDRET, 2008);

e Support Vector Regression (CLARKE et al., 2005).

Early use of approximation methods in engineering revolved
around the response surface methodology (RSM). The basis of this
approach is to construct a metamodel using second-order polynomial
regression with least squares fitting. It has been extensively used in
many fields of engineering (JR., 1997; LIU et al., 2000; TORII; LOPEZ,
2011; EOM et al., 2011; TORII et al., 2012). However, the use low-order
polynomials makes this approach limited in terms of flexibility. It has
been shown to produce better results only when applied locally or on
convex functions (HUSSAIN et al., 2002). Thus, the application of this
approach is not suited for engineering highly non-linear and non-convex
functions.

Among the other approaches, most of them are capable of fitting
a non-linear and non-convex function to some extent. Nevertheless,
for this study the surrogate of choice is Kriging. It has been gaining
popularity in the last decade, and has been applied in numerous branches
of science (THEODOSSIOU; LATINOPOULOS, 2006; HUANG et al.,
2011; XU et al., 2012; ZHU et al., 2014). It has been shown to produce
very accurate surfaces and offers a estimate of the committed error. This

estimative is useful because it enables the development of an integrated
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global optimization procedure. More on this procedure will be discussed

in section 4.4.

4.2 Kriging

Kriging is named after Danie Krige (KRIGE, 1951), a South
African mining engineer who first developed the method in the field of
geostatistics (CRESSIE, 1993). Initially restricted to the geostatistics,
the method was later employed in deterministic simulation, mainly
influenced by Sacks et al. (1989).

It acts as a regression model which exactly interpolates the ob-
served input/output data. The advantage of an interpolative metamodel
is the capacity of yielding globally accurate response surfaces while
ensuring that previously known response values remains the same. This
advantage is useful in optimization.

Contrary to classic regression where coefficients are estimated
to completely describe what the function is, in kriging the focus is to
estimate parameters that describe how the function typically behaves
(JONES et al., 1998). This difference may be emphasized by first looking
at a regression procedure.

Suppose there is a deterministic black box function of n variables
and ng points to be evaluated. For each point d() = (d(li), . ,dg)), the
function returns an associated value y) = y(dW), fori = 1,...ns. From
this scenario, one of the simplest ways to fit a response for this function
is by the use of linear regression. This technique treats observations as

if they are generated from the following model:

y(dD) =38, f,@D) + D (1=1...n), (4.3)
h

where f}, are functional terms, [}, are coefficients to be estimated and
¢ are normally distributed independent error terms with zero mean
and variance o2. One problem of this approach is that the form of
functional terms to be used are not known (FORRESTER et al., 2008).

A large number of terms may lead to better approximation, similarly
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to a Taylor series expansion. However, increasing the number of terms
also increases the flexibility of the model and there is danger of over
fitting the response (GELDER et al., 2014).

Regarding the form selection, another method in literature tackles
this limitation: Radial Basis Functions (RBF). Here the complex function
is modeled considering linear combinations of radially symmetric basis
centered on the known ng sampled points. Each base ¢; has a weight
parameter wi which controls how far its radius of influence goes when

computing a prediction. That is:

nNg
y(d) = wig(|d-di), (4.4)
i=1
from here, multiple basis can be chosen:
e linear ¢(r) =r
e cubic ¢(r) =13
e thin plate spline ¢(r) = r? In(r)
o Gaussian ¢(r) = e /(2%
e multiquadric ¢(r) = V12 + ¢2

e inverse multiquadric ¢(r) = 1/v1% + c2,

where the term c for the last three basis is a prescribed parameter.
In RBF the most used basis is the multiquadric, the influence of the
parameter ¢ can be seen in Figure 13.

It is important to notice that in RBF the correlation parameter
c is identical across all dimensions. For kriging this is not the case.
Moreover, the use of Gaussian basis is a key aspect of the formulation.

Given this initial insight on polynomial regression, its limitations
as well as the characteristics of RBF which shall be useful, it is possible

to discuss the kriging metamodel on its own merits.
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function

Radial distance, r

Figure 13 — Multiquadric base function

Source — Adapted from Mullur e Messac (2006)

4.2.1 Formulation

The kriging metamodel formulation combines two functions: a
global trend and a function that models local departures from the trend
(SIMPSON et al., 2001):

y(d) =M(d) + Z(d), (4.5)

where M(d) represents the global trend and Z(d) represents the local
departures. The global trend can be any sum of polynomial terms.
However, it is usually taken as a constant term p, which yields good
prediction for most situations (SACKS et al., 1989; CHEN et al., 2003).
The local departures are evaluated from a spatial correlation model.
When dealing with kriging, the interpolation is constructed using
a stochastic process approach. In this approach, the function response
at any position d is modeled as a realization of a stationary stochastic
process. The response random variable Y(d) has an assumed normal dis-

tribution with mean y and variance 2. Considering an initial sampling
plan T' = {dM),d@, ... d()}.
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The covariance between any two input points d® and 40 is given by:

Cov {Z(d(i)),Z(d(j))} =2 (d(i),d(j)) , (4.6)

where W is the correlation matrix and have the form:

n
¥ (dD,d0) =3 exp (05 [a - al|™). (4.7)
k=1

The correlation function in Equation 4.7 is clearly similar to
the Gaussian basis in the previous section. The difference is the num-
ber of parameters. While in RBF there was a single parameter, here
the variance of the basis function can be controlled in each of the n
dimensions of the design space by 6. The exponent p, can also be
varied across all dimensions but its value is usually held fixed with
px € [1,2] (FORRESTER; KEANE, 2009). A plot with the influence of
the exponent py on the correlation is shown in Figure 14. As it can be
seen, this parameter relates with the “smoothness” of the correlation.
Decreasing py makes the initial correlation drop faster, to the point
where setting pi = 0.1 leads to a near discontinuity.

This correlation basis is intuitive in the sense that when points
move close together, dl((i) 7d1((j) — 0, then exp(-6y |dl((i)fd1({j)|pk) — 1, dis-
playing very close correlation. On the other hand, when distance between
points is very large dl((i) - dl((j) — 00, then exp(—6 \dl(j) - dl((j)\pk) — 0,
exhibiting no correlation. The correlation variation with 6 can be seen
in Figure 15. There is a notion of “activity” associated with 6, that is,
it affects how far a sample point influence extends.

Clearly, these additional Kriging parameters make the model con-
struction more expensive, but this cost is compensated by the possibility
of improved accuracy in the surrogate. This gain has been demonstrated
in studies such as: Costa et al. (1999), Krishnamurthy (2005) and Kim
et al. (2009). Its usefulness depends partially on the condition of expen-
siveness of the true function. Otherwise, the parameter estimation costs
could overcome the costs of a large number of evaluations of the true

function.
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@ 40
dk - dk
Figure 14 — Influence of p on correlation

Source — Adapted from Forrester e Keane (2009)

It can be noticed that this metamodel makes very few assumptions
on the form of the landscape being approximated, which is one of
the reasons it can emulate a varied range of functions so effectively
(FORRESTER et al., 2008).

The unknown parameters 8y and py may be found by Maximum
Likelihood Estimate (MLE) (MONTGOMERY; RUNGER, 2010). In this
process, the parameters are chosen so that the model of the function’s
typical behavior is most consistent with the observed data. With the
observations vector denoted as y = {y(l), y(2), e ,y(ns)}7 the likelihood
function is written as (JONES et al., 1998):

. exp | Y1 ¥ 1)
(27)3 (02) % \/det(®) 202 ’

S|

(4.8)

where 1 is 1 X ng column vector of ones, W is the correlation matrix



66 Chapter 4. Deterministic metamodeling

@i

k

o

(@)
T

<
=~
T

exp (-0 |d

<
o
T

0o

Figure 15 — Influence of 6 on correlation

Source — Adapted from Forrester e Keane (2009)

from equation Equation 4.7, and ()T is the transpose operation.
It is usually more convenient to maximize the log-likelihood,
which can be written by taking the natural logarithm and ignoring

constant terms as:

Tol(y-1p)
202 '

log(£) = - In(o®) - % In(det(w)) - 1)

; (4.9)

Taking the derivative of Equation 4.9 with respect to both o2
and p and setting them to zero, it is possible to obtain the optimal

parameters as functions of ¥:

- 1Twly

AT (410
= “1p) T (y - 14
3 (14 (y-14) (411)

Ng
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Substituting Equations 4.10 and 4.11 back into Equation 4.9 and
again ignoring constant terms, the so-called concentrated log-likelihood

function is obtained:

Iig

-5, 1
log(£)concentrated = D) 1H(02) ) In(det(P)). (4.12)

As it can be seen, this function depends only on ¥, hence, on
the correlation parameters. This function is then maximized to obtain
the estimates ék and py. Once the optimal parameters are found, it is
possible to compute the estimates i and ;5 using Equations 4.10 and
4.11.

The parameter optimization subproblem is not trivial as it usually
contains a highly non-linear region and a long flat region at the same
time (ZHAO et al., 2010). For this reason, gradient-based algorithms
are not well suited and metaheuristics, as those seen in subsection 2.3.3,
are often applied (SONG et al., 2013). Additionally, this is the most
computationally intensive step in the metamodel creation. As can be
seen in Equation 4.9, it requires the evaluation of the determinant of ¥
as well as the computation of its inverse. The use of Gaussian basis is
advantageous in this regard, as it results in a symmetric positive definite
correlation matrix. This enables the use of Cholesky decomposition
of ¥, which increases the calculation efficiency (FORRESTER et al.,
2008; CASTRILLON-CANDAS et al., 2015). With this procedure, any
computation that required matrix inversion becomes solvable by a
forward and backward substitution on the decomposed matrix. Moreover,
the determinant can be quickly obtained by taking the square of the
product of the main diagonal terms of the decomposed matrix (FORD,
2014).

With the estimated parameters it is now possible to make function
predictions at an unknown point d, using the kriging predictor, as
derived in Sacks et al. (1989):

$(du) = i+ W (y - 1p), (4.13)
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where r is the vector of correlations of dy with the other ng sampled
points.

One of the key benefits of kriging and other Gaussian process
based models is the provision of an estimated error in its predictions.
The Mean Squared Error (MSE), derived by Sacks et al. (1989) using

the standard stochastic process approach reads:

(1-1Tw 1y)2

2 _ 5 Tq-1
s(d)=c4|1-r ¥ 'r+
(d) 1Tw11

(4.14)
Equation 4.14 has the intuitive property that it is zero at already
sampled points. This is expected, as there is no uncertainty about known

points in the deterministic case.

4.3 Sampling plan

The basis of metamodeling revolves around creating an approxi-
mation of an unknown objective function landscape based on a model
fitted using a certain number of function evaluations. In order to achieve
maximum efficiency in accessing the global response, the initial sam-
pled points must fill the design space (PRONZATO; MULLER, 2012).
Kriging accuracy increases with the existence of sampled points in the
vicinity of where predictions are being made. Therefore, it is rather intu-
itive that a uniform level of model accuracy throughout the design space
requires a uniform spread of points. Thus, the choice of an appropriate
sampling technique is generally considered critical for the performance
of any metamodeling approach (KALAGNANAM; DIWEKAR, 1997).

A commonly used sampling plan is called Latin Hypercube Sam-
pling (LHS). This technique aims to sample the design space by ensuring
uniformly spread projection of points on all axes. The logic behind this
approach is that it is wasteful to sample a variable more than once at
the same value. In Figure 16 a two-dimensional LHS or Latin Square is
shown.

Despite displaying uniformity in each dimension separately this
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ag

Figure 16 — Latin Square

sampling plan can still be improved in terms of “space-fillingness”.
Intuitively, placing all points on the main diagonal of the design space
will fulfill the projection criteria, although it would not fill the space
uniformly.

In this regard, Mitchell e Morris (1992) proposed a set of rules
used the evaluate the “space-fillingness” property, based on the maximin
metric introduced by Johnson et al. (1990). Let {01, d2, ... dm} be the list
of the unique values of distances between all possible pairs of points in a
sampling plan I', sorted in ascending order. Moreover, let k1, K2, ..., Kkm
be defined such that x; is the number of pairs of points in I' separated
by the distance ¢;. The Morris-Mitchel criteria considers a maximin plan
as one that maximizes the distance J and also minimizes the number
of points J within that distance. This verification starts from the pair
(01, k1) and is extended to the following m pairs as needed in order to
avoid ties. The distance measure between any two points d® and d? is
computed by the p-norm as follows (MORRIS; MITCHELL, 1995):

P

n
5(d®,a% = | S jag-alp | (4.15)
=1



70 Chapter 4. Deterministic metamodeling

where usually p = 1 (Manhattan distance) or p = 2 (Euclidian distance).
In Figure 17 a random sample plan (Figure 17a) and a LHS optimized
by the Morris-Mitchel criteria (Figure 17b) are presented. Clearly, the
second case shows points that are more distanced from each other,

therefore improving the space filling on the unit cube.

(a) Random Sampling (b) Morris-Mitchel LHS

Figure 17 — Illustration of designs with different space-fillingness

4.4 Efficient Global Optimization

Efficient Global Optimization (EGO) is the name of the frame-
work developed by Jones et al. (1998), which exploits the information
provided by the kriging metamodel to iteratively add new points, improv-
ing the surrogate accuracy and at the same time seeking its minimum.

According to Jones (2001), methods for selecting search points
can be divided in two categories: two-stage and one-stage approaches.
In that study, seven methods are presented, as shown in Table 2.
Most current and popular approaches are two-staged. They can be

described by the following steps:

1. Construct initial sampling plan;



4.4. Efficient Global Optimization 71

Table 2 — Selection methods

Method for selecting search points
- One-stage approach: evaluate
Two-stage approach: first fits surface, '
‘ " suria hypothesis about optimum based
then find the next iterate by optimizing an N
nd the nex on implications for the response
auxiliary function based on the surface
surface
Minimize | Minimize a | Maximize Goal sceking: | Optimization:
Kind of Response Surface Maximize | . ® !
the Lower the find point that | find point that
. o Expected . A
Response | Bounding | Probability of achievesa | minimizes an
‘ " ’ Improvement | ‘
Surface | Function | Improvement given target objective
Quadratic polynomials
Not interpolating Q P !
’ and other regression 1
(smoothing)
models
Fixed basis | Thin-plate
functio splines,
No statistics. | Multiquadrics
Tuned basis
Interpolating functions. ) 2 6 7
o Kriging 3 4 5
Statistical
interpretation

Source — Adapted from Jones (2001)

2. Compute responses on sampled points and fit initial metamodel;

3. Iterate, adding infill points which optimize an auxiliary function.

These steps are repeated until a termination criterion is met, e.g.,
maximum number of function evaluations. Methods in this category
usually differ by the auxiliary function being optimized.

Alternatively, in one-stage approaches, step 2 is skipped and the
initial metamodel is constructed based on the credibility of a hypothesis.
This hypothesis may be, for example, that the surface interpolates the
observed data and additionally a target response.

Methods 1 and 2 consist of adding points that minimize the
surface using quadratic polynomials and kriging, respectively. Method 1
is promptly discarded considering that the regression model keeps its
quadratic characteristics. Thus, adding new points does not necessarily
improve the accuracy of the response. Method 2, on the other hand, is
capable of finding a local optimum. Nevertheless, it lacks exploratory
features in order to search for the global optimum. It may fail in case
the surface minimum coincides with a sampled point of the function.

Methods 3 to 7 as in Table 2 are the ones that attempt to use

kriging statistical information to guide the search for the global optimum.
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Method 3 determines its next iterate by minimizing a “statistical lower
bounding function”. This function is usually expressed by the kriging
predictor minus a number of standard errors. As noted by Jones (2001),
in Method 3 the iterate is not dense, i.e. it does not guarantee global
convergence (TORN; ZILINSKAS, 1989). The remaining methods 4 to
7 are all suitable to finding a global optimum. In this study, however,
emphasis will be given to Method 4, which maximizes the probability
of improvement and also on its promising modification called Enhanced
Method 4 (JONES, 2001). This is due to its desirable characteristic of
enabling the addition of multiple points to the surrogate. Although not
implemented in this study, this feature may enable exploiting parallel

computing.

4.5 Probability of Improvement - PI

The fourth method described by Jones (2001), consists on adding
new points to the kriging metamodel which maximize the auxiliary
Probability of Improvement measure. By the premise that kriging pre-
diction §(d) is the realization of a random variable Y(d), it is possible

to define an improvement event as:

I(d’ Ymin) = maX(O’ Ymin — Y(d))7 (416)

where y,;, is the current best solution. Thus, the probablity of improve-

ment over this current solution can be written as:

PO, )] = @ (222 ), (4.17)

where ® denotes the normal cumulative density function as shown in
Equation 3.22. A graphical interpretation of this probability can be seen
in Figure 18. It shows the prediction along with a vertical Gaussian
distribution with variance s?(d) centered around §(d). The probability
of improvement is the area enclosed by the normal distribution below

the current best observed value.
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Figure 18 — A graphical interpretation of the probability of improvement

Source — Adapted from Forrester e Keane (2009)

This method is intuitively convergent. As the function is sampled
more and more around the current best point, the standard error tends
to zero. Consequently, the search is directed to unexplored regions, i.e.,
with larger uncertainty (FORRESTER et al., 2008).

4.6 Enhanced Method 4 - EM4

It turns out that the improvement event defined earlier is very
modest. This causes the search to sample many points around the
present best in a local manner before exploring other regions of the
landscape.

To address this shortcoming it is possible define the improvement

based on a target response as in:

I(d’ Ytarget> = max(O, Ytarget — Y<d))’ (4'18)

where yiarge Can be any arbitrary value, i.e., a fraction of the present

best solution.
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This formulation can give a better balance between exploration
and exploitation but it also makes the search very sensible to the choice
Of Yiarget- If the target improvement is too small, the search will be highly
local, as discussed earlier, moving to a more global search only after
searching nearly exhaustively around the current best point. Moreover, if
the target improvement is too high, the search will be excessively global,
and the algorithm will be slow to fine-tune any promising solutions
(JONES, 2001).

In Enhanced Method 4 multiple targets are evaluated, represent-
ing small, moderate and big improvements. By selecting several search
points in each iteration it is possible to search both globally and locally
in each iteration. This infill criteria allows one to take advantage of any
parallel computing capabilities.

The target creation procedure suggested by Jones (2001), can be

calculated as follows:

Ytarget = Ymin — a(fmax — fmin), (4.19)

where y;, is minimum value of the surface, fjax and fj, are the
maximum and minimum response from the sampled points, respectively,
and « is the factor which controls the quantity of improvement being
searched. An o = 0.001 means a very modest improvement which usually
results in points close to the current best. On the other hand, an o = 0.5
seeks a very large improvement over the present best, corresponding to
half the estimated amplitude of the function.

Searching multiple targets in each iteration results in multiple
optimization procedures. This means that a larger computational effort
is needed. However, this cost becomes less relevant if all optimizations
are made in parallel. Although searching multiple targets is beneficial,
adding a large number of points to the model may not be. When
searching over multiple a, points tend to cluster around the present best
and promising unexplored regions. Instead of adding the total amount
of searched targets, a clustering procedure is employed and just the best

target within a cluster is added to the model.
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f(d) = sin(d) + sin(%d)

—_— True function
-----  Kriging prediction
A Sampled points
¢ Points that maximize PI

Figure 19 — Illustration of clustering over multiple targets

Figure 19 illustrates this situation. The same function presented
in subsection 2.2.2 is shown. After the construction of a Kriging ap-
proximation with 6 sampled points, points that maximize the PI are
searched. Those points, plotted as diamonds in the figure, form two
clusters when considering 10 different targets of varying «. Under the
Enhanced Method 4 approach, from these clusters, two points with the
best improvement would then be added to the model. In this example,
the clusters formed are easy to identify.

In practice, when considering multi-dimensional functions the
clusters are identified by some arbitrary criteria, usually involving a
“distance” threshold. The number of points added depends on this
clustering threshold. The manner to cluster points and set targets is
very important to this method and improvements for these procedures
have been studied recently in Viana e Haftka (2010), Chaudhuri e Haftka
(2014) and Chaudhuri et al. (2015).






"

5 Stochastic metamodeling

5.1 Kriging for noisy data

As discussed, kriging is an interpolative model, i.e., sampled
points are taken as exact, and deterministically represent the function
output. However, when considering noisy data, such as the random
variables used to describe uncertainty, the exact output ceases to exist.
The realization of the random variables results in one of many possible
objective function values.

One simple approach used by Beers e Kleijnen (2003) consists
of using the average over a certain number of sample replications in
the deterministic kriging formulation. They show that this approach
performs better than the use of some regression models.

Figure 20 displays how the number of replications affects the
approximated function. It shows a graph of a deterministic function and
its noisy counterpart under two representations: the first shows the plot
from a single function evaluation, the second shows the resulting plot
from an average of 100 simulations. It is possible to see that the average
gives a much better approximation than a single noisy simulation.

Another approach is to allow the kriging model to regress data.
This may be achieved by introducing a regularization or regression
parameter A (POGGIO; GIROSI, 1990). Ideally, it should be set to the
variance of the noise in the response (KEANE; NAIR, 2005). Although
this variance is usually unknown, one approach is to add it to the
list of parameters that need to be estimated in the MLE procedure
(FORRESTER et al., 2008). An alternative approach, which is proposed
by this study, is to set A as the estimated variance from probability
theory over a number of output replications. More on this approach is
discussed considering a practical example in section 5.2.

The A parameter is added to the leading diagonal of the kriging
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Figure 20 — Function plot - Problem 1

correlation matrix ¥, defined in Equation 4.7. Forrester et al. (2006)
redefines the kriging prediction in order to keep using the infill criteria

seen in section 4.4 while considering the regression parameter.

5.2 Kriging exploiting Monte Carlo variance

As seen in section 5.1, it is possible to use the kriging metamodel
to filter or regress stochastic noise. To accomplish this, the regression

parameter A\ should be set to the variance of the noise.
Moreover, this study aims to solve the type of problem stated in
subsection 3.10.1, 7.e., the minimization of an expected value E[f(d, X)].
This expected value may be computed using Monte Carlo simulation.
Ideally, the number of samples from the Monte Carlo simulation should
be infinite. Since this is not possible, the estimated variance may be
used as a measure of error when computing E[f(d, X)] with a finite
number of samples. The expression to compute this value originates

from probability theory and was shown in Equation 3.18.
Thus, the proposed approach is to use the estimated variance
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information from the Monte Carlo simulation in the regression parameter
A from kriging. The goal here is to use the noise filtering capabilities of
kriging to reduce the number of function evaluations when adding new
points to the stochastic metamodel. It becomes possible to construct
the kriging model based on a “known” error that is enforced by the
Monte Carlo procedure.

Responses may be evaluated for a certain input until the variance
of the mean reaches an arbitrary target. If the target variance is set
too high, kriging may not be able to correctly regress the data and
the approximation error will be large. On the other hand, if the target
variance is set too low, a large number of function evaluations are needed.
This trade-off is precisely what is observed in Figure 21. It shows an
one-dimensional function approximated over a number of different target

variances. The function is written as:

f(d, X) = —(16(dX)? - 24dX + 5) exp (-dX), (5.1)

where X ~ N (1,0.1).

For each point placed in the model, new replications are made and
the variance estimate is updated until it becomes lower than the target.
The number of Objective Function Evaluations (OFE) is presented for
each curve. It gives an insight of the computational burden required
for the optimization. As seen in the figure, the number of OFE grows
exponentially when exponentially decreasing the target variance. This
observation will be used when developing an adaptive targeting decay
function in section 5.5.

In order to compare the regressing kriging prediction with the
noiseless model, the approximate value of the Root Mean Squared Error
(RMSE) was calculated. It serves as a measure of the model accuracy.

It is computed as:

(5.2)
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Figure 21 — Comparison of multiple target variances
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where n. is the number of comparisons made between the approximated
response § and the analytical function y. For the plots in Figure 21, 100
points are compared, which coincides with the points used for plotting.
Observing the plots, it is possible to note that for this problem a variance
of 1073 yields the best approximation considering a reasonable number of
OFEs. For reference, timings from a machine using a 3.5 GHz processor
are also displayed.

More generally, it is clear from Figure 21 that the incorporation
of the information from the Monte-Carlo estimation may be useful in
lowering the computational cost of the optimization. How to achieve a
good trade-off between accuracy and computational cost is matter that

will be addressed in the following sections.

5.3 Stochastic Kriging - SK

More recently, Ankenman et al. (2010) proposed an extension to
the kriging deterministic methodology to deal with stochastic simulation.
Their main contribution was to fully account for the sampling variability
that is inherent to a stochastic simulation. In order to accomplish this,
they characterized both the intrinsic error inherent in a stochastic
simulation and the extrinsic error that comes from the metamodel
approximation. This approach is mainly used in the mathematical field
of operations research for prediction (STAUM, 2009).

It will become evident how such methodology fits well with the
class of problems we are aiming to solve. In these problems, the minimiza-
tion of the objective function f},; can be written as the minimization

of the integral:

min fop;(d) = /f(d,x) fx(x) dx, (5.3)

where fx is a density function, d is the vector of design variables and
X the paramaters that model the uncertainty about the system. A
PDF describes the available system knowledge related to these parame-

ters. This integral denotes the expected performance of the system. It
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arises not only on robust design context as seen in subsection 3.10.1
but also in performance-based engineering (MOEHLE; DEIERLEIN,
2004; SPENCE; GIOFFRE, 2012; BECK et al., 2014; SPENCE; KA-
REEM, 2014; BOBBY et al., 2016) and Optimal Design of Experiments
(FEDOROV, 1972; STEINBERG; HUNTER, 1984; MULLER, 2005;
PRONZATO, 2008). The proposed SK metamodeling approach may be
useful for solving these and other problems that may be written as the
minimization of any integral.

It is often impossible to solve such integrals analytically. Numeri-
cal integration such as quadrature procedures may be employed although
its accuracy is reduced for high dimensional problems. Alternatively,
simulation techniques may be utilized. The integral can be viewed as the
expected value over the uncertainties domain. It can be approximated

by a Monte Carlo integration as in:

B 1@, X)) = 1 37 1(d, X5). (5.4)

Us i3

It is known that such a procedure requires a large amount of
function evaluations. Considering a black-box expensive function, the
computational cost may be prohibitive. In the proposed approach,
stochastic kriging is used to construct an approximate model, in which
is easier to perform the optimization procedure. This approximation is
created with information from the multiple simulations, compensating
the stochastic noise. Thus, Monte Carlo is applied to solve the stochastic
layer of the problem while also using its information to help create the
model approximation.

The SK formulation can be seen as an extension of the determin-

istic case:

9(d;) = M(di)+Z(di)+€j(di), i=12,..,n ,i=1,2,...,ng (5.5)

where M(d) is the usual average trend, Z(d) accounts for the model

uncertainty and is now referred as extrinsic noise and the additional
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term ¢;j, called intrinsic noise, accounts for the simulation uncertainty
from the j-th replication where n; is the total number of replications.
The intrinsic noise is assumed independent and identically distributed
(i.i.d) across replications and possesses a Gaussian distribution with
zero mean and covariance matrix (ANKENMAN et al., 2010):

1 & .
(Ze)ji = Var n—r;q(di) . i=1,2,.. 0. (5.6)
J:

The assumptions of independence and normal error are briefly
explored considering a function with a distribution different from the
Gaussian in Appendix C. The variance is often unknown and needs to
be estimated. Using point estimate from the replications sample leads

to:

(Se)ii = 1) D F(d)-§(di)?), i=1,2,.ms (5.7)
r(r i=1

where §(d;) represents the mean from the i-th point replicates. This
is the same unbiased estimator seen in Equation 3.18. Assuming the
intrinsic noise with a Gaussian distribution is advantageous for the
formulation of the predictor and the estimated error. As shown by
Ankenman et al. (2010), the Best Linear Unbiased Predictor (BLUP)
of SK is:

F(dy) =2+ 10 (¥ + )y - 14), (5.8)

which is the usual Kriging prediction from Equation 4.13 with the added
diagonal correlation matrix from the intrinsic noise. This leads to the
same result discussed in section 5.1 with the use of a regularization
parameter. That is, when the intrinsic noise is homogeneous across the

domain:

Se = AL (5.9)
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where X is the regularization parameter and I an identity matrix.

It is important to note however, that there is the possibility
of heterogeneous noise variance. In such case, sampled points provide
different terms for the diagonal in the correlation matrix X¢. Equation 5.9
is still valid in this case but A becomes a vector o variances instead of
a constant value. Kriging estimation with heterogeneous noise is a key
aspect that enables the development of the adaptive variance target
selection that will be explored in section 5.5.

Regarding the estimated error, it also becomes an extension of
the deterministic case (FORRESTER et al., 2008). It reads:

1-1T(T + 3 r
1T(P + 211

$2(du) = 02 |1+ A(du) - rT(® + ) Ir + )|

(5.10)
where A(dy) is the noise variance term that depends on dy in the
heterogeneous noise case. The optimal MLE parameters o2 and /i

become, respectively:

= , (5.11)
and

o 1T(w 4 x)ly
FE @ s

Newer developments in SK literature propose different manners

(5.12)

to obtain the intrinsic variance. Kleijnen e Mehdad (2016) compares
the point estimate from Equation 5.7 with two other methods, namely
Distribution-free Bootstrapping (DB) and Parametric Bootstrapping
(PB). They conclude that using DB leads to a more conservative variance
estimate and that it may be faster than using Monte Carlo replications.
Kaminski (2015) proposes a new update method for sequential observa-
tions in addition to the use of smoothed variance evaluations to compute
the intrinsic noise. Chen e Kim (2014) consider the case of unbiased
samples, where the classic estimator no longer holds. In a different di-

rection, Plumlee e Tuo (2014) suggests an approach where the intrinsic
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error is not assumed Gaussian distributed. Emulators are built via an
approach called Quantile Kriging producing less instability in variance
estimation.

Considering the use of SK for optimization a few contributions
may be cited. Picheny et al. (2013) benchmarked different infill criteria
for the noisy case. Differently from the deterministic case, when there is
noise in the objective function, multiple evaluations from the same input
will lead to different results. In order to attenuate these effects, different
criteria may be employed taking into account the noise. From that study,
a modification of the deterministic Expected Improvement criterion
called Augmented Expected Improvement obtained good performance.
Sun et al. (2014) developed a new algorithm based on Gaussian processes
which aims to balance exploration and exploitation and is applied to
discrete optimization. Qu e Fu (2014) developed a new approach to
enhance the SK accuracy when gradients are available. It uses them to
extrapolate additional responses. Additionally, considering optimization
use, the update procedure in Kaminski (2015) may be used to avoid

recomputation of model parameters at each iteration.

5.4 Infill criteria for noisy evaluations

As discussed in section 5.3 the use of a stochastic kriging model
allows to filter noise without having to guess the functional form of the
underlying trend. Although SK gives a good noise filtering model, the
error estimates are no longer appropriate for use when choosing points
at which to run new computer experiments (FORRESTER et al., 2006).

Probability of Improvement and Expected Improvement are two
popular infill criteria for the EGO algorithm. They can combine local
exploitation and global exploration into a single figure of merit. Locatelli
(1997) has proven that a search based on running new experiments at
points of maximum expected improvement of a kriging interpolation
converges toward the global optimum. This is an important property

that is exploited in deterministic kriging optimization. However, in the
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presence of noisy functions, the key condition required by Locatelli’s
proof no longer holds, namely, that the error is zero at a sampled point.
Sampling twice the same point will give different results because of the
underlying noise. Thus, it is important to take into account this added

uncertainty when choosing the next infill point.

5.4.1 Augmented Expected Improvement - AEI

The AEI criterion was proposed by Huang et al. (2006). It is
treated as an extension of the Expected Improvement (EI) criteria. In
EI, the infill point selected is the one that maximizes the expected value
of the improvement measurement. This improvement definition requires
a target value to indicate the greediness of the search. Recalling the

improvement definition from Equation 4.18:

I(d, Ytarget) := max(0, Ytarget — Y(d)), (5.13)

the yiarget for EI is usually chosen as the minimal solution found so
far. For the AEI infill criteria this target is the so-called effective best

solution d** and is computed as:

d** = argmin(d® + asg)) fori=1,...,ng, (5.14)

where d(!) represents each of the sampled points, sr(li ) the corresponding
kriging error, obtained by taking the square root of the MSE in Equa-
tion 4.14 and « is an arbitrary constant which the authors recommend
setting to 1.

The criterion can be calculated as the expected improvement over

the effective best solution multiplied by a penalization term:

(5.15)

AEI(d) = E[I(d, d*")] (1 VA )

s2(d) + A\
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where E[I(d, d**)] represents the expected value of the already defined
improvement, sg the kriging estimated error and A the intrinsic output
noise. For now, A is considered a constant, however when dealing with
multiple variances (heterogeneous noise) it becomes A(d). Such case
will be seen in section 5.5.

The second term, which is a penalty factor, amplifies the impor-
tance of the kriging variance and thus enhances exploration, avoiding
multiple simulations over the same input. This is a criterion defined
heuristically, although it has been shown to be efficient in many cases
(PICHENY; GINSBOURGER, 2014). Comparatively, EM4, as discussed
in section 4.6, follows the same idea of computing an improvement but
instead considers multiple targets corresponding to different levels of
desired improvement. It does not have, however, a mechanism to com-
pensate noise.

Multiple benchmark tests are conducted for two different func-
tions in order to verify the advantage on using an infill criterion that
accounts for the noisy output. The tests consist of multiple runs of the
EGO algorithm coupled with two infill criteria. In this test, EM4 and
AEI are compared. In the comparison, noisy functions are considered
under the stochastic kriging framework. The parameter that relates
both criteria is the number of infill points. Fixating the number of
infill points makes it possible to perceive which criterion needs the
least amount of iterations to achieve a solution close to the optimum.
The variance target is also varied during the experiment. This target
variable determines the Monte Carlo sample size and effectively the
computational cost involved in each iteration. Lower targets mean a
higher computational cost by iteration but also a closer approximation
to the deterministic output.

In order to reduce the variability of results, the figures present
the average of 10 independent runs of the EGO algorithm for each con-
figuration. For both functions being benchmarked, error bars represent
the 5 and 95 percentiles of the independent runs results.

The first function considered the one-dimensional case and is
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here named Problem 1. It is the fifth global optimization benchmark
problem presented in Gavana (2016). It is defined as follows:

min f,5(d) = /f(d7x) fx(x) dx, (5.16)

where

f(d, X) = —(1.4 - 3dX) sin(18dX), (5.17)

Domain: d € [0,1.2];

Deterministic global optimum: —1.48907 at d = 0.96609;

Noise: X ~ N(1,0.3);

Optimum with 10000 simulations = -1.48333.

Figure 22 presents the results for a number of different configura-
tions. It is possible to notice the trend of improvement when considering
more infill points and also lower variance target. For the target variance
of 0.01, AEI performed significantly better than EM4 for 20 and 30 infill
points. For a number of infill points larger than 50, both algorithms
were similar for every variance target.

The same approach was followed for the benchmarks on the
second function. This time the function being evaluated was a noisy
tilted Brain. The tilt comes from the 5d; term, which is added to the
function in order to force the existence of a single global optimum.

Writing it as the minimization of an integral:

min fop;(d) = /f(d7x) fx(x) dx, (5.18)
where,
f(d, X) = a(daXy — b(d;X1)% + ¢(d; X;) —1)?
+s(1—t)cos(d1X1) + s+ 5(d1X1),
a=1,b=51/(4nr?), c=5/m, r=6, s =10, t = 1/(8n)

(5.19)
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Figure 22 — Infill criterion on one-dimensional noisy function

e Domain: d; € [-5,10], dg € [0, 15];

Noise: Xj ~ N (1,0.1); i={1,2};

Optimum with 10000 simulations = -16.6637.

Deterministic global optimum: —16.644 at d = {-3.689, 13.630};

Figure 23 shows the results for a number of different configura-
tions. Again, it is possible to notice the advantage of using AEI over

EMA4 for noisier outputs. Comparatively with the one-dimensional ex-

periment, in this case EM4 performance is more pronounced for all

configurations.

Overall, it is clear that the AEI modifications make it cope better
with noise. This is mainly caused by the penalty parameter used, which

includes both the kriging error and noise estimates. Moreover, lowering
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Figure 23 — Infill criterion on two-dimensional noisy function

the target variance makes the response approach the deterministic case
where both criteria perform similarly.

5.4.2 Example

In order the better visualize the optimization procedure, an ex-
ample is presented. The function being optimized is the one-dimensional
stochastic Problem 1 function from Equation 5.17. This function is
disturbed by a multiplicative noise following a Gaussian distribution.
A plot of an observation of the noisy function over the domain can be
seen in Figure 24.

At the first stage, a SK model is fitted from a certain number
of observations. In this example the initial sample size is five. Each
observation is replicated a number of times in order to achieve the

desired variance target. Different targets imply in different error es-
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Figure 24 — Noisy function

timates. In fact, the more a point is evaluated for a fixed input, the
less uncertainty exists about its output. This difference is illustrated in
Figure 25. Figure 25a shows a kriging model based on a variance target
of 1.00. Similarly, Figure 25b shows the kriging model resulting from the
same initial sample, but in this case with a target variance of 0.01. In
the first case, a lower number of simulations is needed. Nevertheless, it
is possible to perceive the high uncertainty of the model caused by the
noise. This uncertainty is illustrated by the dashed lines that correspond
to the interval +s and -s from the prediction. Here s, the so-called Root
Mean Squared Error, is a measure of the estimated error computed by
taking the square root of the MSE presented in Equation 4.14.

In deterministic optimization, the estimated error is exactly zero
at sampled points. However, in the presence of noise it only approaches
zero as the number of Monte Carlo replications increases. As a result, the
uncertainty is diminished depending on how lower the target variance is.
That is precisely the reason why using deterministic infill criteria like
EMA4 or EI is not so valuable. The sampled points continue to display an
estimated error, which is caused by the noise. If there is still uncertainty,
the infill criteria will continue to look for a possible improvement and

will possibly sample the same point multiple times. This behavior leads
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to a stall of the optimization procedure.
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Figure 25 — Different model based on the estimated error

Still, comparing both cases in Figure 25 it can be seen that the
RMSE interval is closer to the sampled points in Figure 25b while
the it is barely disturbed in Figure 25a. Although a larger number of
evaluations is needed in order to achieve a lower target variance, it can

be seen that it may improve the prediction. Having a more accurate
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description of the function with a lower estimated error on sampled
points makes the infill criteria approach the deterministic case which is

globally convergent.
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Figure 26 — AEI plot over the domain

After the SK model construction, the next step in the optimization
procedure is the refinement of the model by adding infill points. Using
the AEI criterion, the point that minimizes the utility function composed
of an Expected Improvement term and a penalty term is added to the
model. Continuing the example with the lower variance model, Figure 26
illustrates how the AEI infill works. The auxiliary plot presented below
the function plot represents the negative of the AEI measure over the
domain. The circled point indicates the selected infill point, which is
shown to minimize the AEI measure.

Figure 27 shows the progress of the optimization in two moments.
In Figure 27a the 5th infill is added to the model. The search still has not
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found the optimal valley. This is mainly caused by the lack of knowledge
between 0.8 and 1.2, where only predictions were computed. For this
reason, it is important to have an initial sample design with the space-
fillingness property. For this example, the initial sample was randomly
selected. Nevertheless, the search proceeds and after some evaluations on
the initial valley the algorithm starts exploring more uncertain regions.
By the infill 20, it is possible to see in Figure 27b that the algorithm
already sampled around the optimum multiple times. Therefore, the
Augmented Expected Improvement is very low and directed in that
single region.

When considering the previous model with target variance of
1.00, a different situation occurs. As seen in Figure 29, the optimization
process stalls at the first valley found and never explores other regions.
This is caused by the lack of information gained by each point added to
the model. Each infill is inserted considering the unit target variance.
Because the estimated error remains almost the same, the infill criterion
becomes highly local, avoiding exploration of potentially better regions.
The penalization from AEI only takes effect when s2 is low, which is
not the case when the target variance is high. Thus, there is a margin
for optimization on the selection of the variance target. A higher target
reduces computational cost but can become highly local. A lower target
may need higher computational cost but the refined model is more easily
exploited. A trade-off between these characteristics must be made in

order to achieve a highly efficient optimization.

5.5 Adaptive target

As seen in the previous section, the variance target plays an
important role when using the Monte Carlo approach coupled with
Stochastic Kriging. Setting it to either too small or too high values
may prejudice the optimization. By being too small, the target forces a
large number of evaluations on a single point, effectively compromising

the computational budget. Nevertheless, setting it too high may stall
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Figure 27 — Refinement of the model seeking the optimal value



96 Chapter 5. Stochastic metamodeling

the search for the lack of information obtained in each infill. Moreover,
another weakness of high variance target is the increase of total number
of infill points. It is not desirable to have excessive points in the model.
As seen in Equation 4.13, each new model update involves the inversion
or Cholesky decomposition of a matrix. This matrix size equals the
number of points in the model. This means that with a large number
of points the operations on higher dimensional matrices may be too
intensive to justify the gains from a lower number of evaluations of the
real function. Thus, part of the success on the optimization approach
resides in the target selection. However, which target to choose? A main
contribution of this study is to offer a solution for this question. The
proposed approach consists on an adaptive target selection. It aims to
balance the trade-off between accuracy and computational cost. The
idea is similar to an exploration versus exploitation aspect of any global
optimization procedure. This approach starts with a high target with
relatively low computational cost and gradually reduces it after the
global trends of the functional surface has been explored.

The EGO algorithm starts, as usual, with the creation of the
sampling plan. All initially sampled points are evaluated a single time,
ignoring the default target variance. After the construction of the kriging
model with the noisy sample plan, the infill stage begins. Each new
infill point is added to the model after being simulated up to the
corresponding target variance. A fluxogram of the optimization process,
including the proposed adaptive target selection is shown in Figure 28.

The adaptation is parametrized by the number of points in the
model contained in a hypercube centered in the infill point. When the
infill is located within an unsampled region, its target variance is the
default higher value. Moreover, when the infill is located in a region
with existing sampled points, a lower target variance is used. This is
done to allocate more computational budget on regions that need to be
exploited. Thus, it indicates the purpose of the infill. Isolated infill points
focus on exploring the landscape, where higher precision is not needed.

When they start to group up, the focus changes to surface exploitation.
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Figure 28 — Fluxogram of the algorithm

In this situation, the variance target value is diminished, increasing the
model precision. By doing so, it also avoids the clustering of multiple
inaccurate points that causes the stalling observed in Figure 29.
Supose q is the point that maximizes the infill criteria. The
expression used to calculate the adaptive target value for the EGO

iteration is:

target
exp(1/2+1/2-n+9/19 - ngjoge — 1/100 - ngjoge - 1)
(5.20)

This expression involves the dimension of the problem n and ngjge, the

targetadapt =

number of close points already sampled, which is calculated as:

Ng

naose = {1+ [@-dP)| <me, Vie{t.2,..m},  (521)
=1
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Figure 29 — Stalling at infill 20 with target variance 1.00

where 1y corresponds to half the side-length of a hypercube around
the infill point selected. This value is set to 0.1 for all benchmarks.
This value is independent of the problem bounds because the domain is
normalized to a unit hypercube before the metamodel creation.

Figure 30 presents the plot of the variance target decay function
for different problem dimensions. The reasoning behind the construction
of this function is twofold. First, it displays an exponential decay of the
target value. Second, the curves show a higher decrease in the target
value as the problem dimension increases.

The choice of an exponential decay seems to be the most intuitive
considering how the number of function evaluations increases and the
error decreases. This aspect was observed in Figure 21. If a linear model
was used instead, the target would decrease very slightly with few closer
points. Yet, it would drop abruptly as ngjoqe approached its maximum
value. This would cause, initially, an unnecessary number of infill points
added to the model without a reasonable gain of information. Further

in the optimization, the target would drop abruptly resulting in a large
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Figure 30 — Target decay varying with problem dimension

number of evaluations. With the proposed approach, the targets starts
high initially and is progressively lowered when points begin to cluster
around an optimum value.

The other aspect of the expression relates to the problem dimen-
sion. With low dimensional problems, the input space is relatively small.
It becomes easier for the infill points to cluster. Thus, the targeting
decay cannot be too aggressive at risk of expending too much computa-
tional resources. At higher dimensions ngjyse does not increase so fast.
Thus, it allows for a more significant target decay.

As an example, Figure 31 presents the benchmark results com-
paring constant and adaptive target for a one-dimensional function.
The benchmark function is Problem 1, which was already presented in
Equation 5.17. The results represent the average of 100 independent runs
with error bars displaying the 5 and 95 percentiles. Further numerical
results for higher dimensional problems will be presented in chapter 6.
For this one-dimensional case the adaptive approach at 100 evaluations

is already very close to the deterministic optimum. By selectively ex-
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pending the computational budget, the proposed approach is able to
converge faster to the basin of attraction. This improvement is further

noticeable when increasing the function noise, as seen in Figure 31b.
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6 Numerical results

For the testing of several different approaches in kriging optimiza-
tion and evaluation of problems that are discussed in this chapter a
specialized computing environment was developed. Although third-party
packages such as UQLab (MARELLI; SUDRET, 2015) and DiceKrig-
ing (ROUSTANT et al., 2012) exist, their use was discarded for the
lack of desired features and/or control. Moreover, the development of
this independent environment enhanced the author’s understanding on
the underlying topics. It also offered flexibility by the implementation
of multiple approaches and set the basis for future developments and
implementations. The implementation focus was on Kriging metamodel-
ing using EGO’s optimization framework. It was created using Matlab
(THE MATHWORKS, INC., 2015) and was initially based on snippet
codes from Forrester et al. (2008) for sampling plan creation and kriging
prediction. EGO was implemented along with all methods from Table 2.

All methods, including the enhanced version of Method 4 were
tested and validated by the optimization of benchmark functions. One-
stage approaches, corresponding to Methods 6 and 7, were tested but
later discarded due to the excessive computational resources needed to
complete each optimization. Computing time was increased by a factor
of 2 to 10 if compared to two-stage approaches. It relates to the fact that
such procedure results in a parameter estimation problem with twice the
dimension of the original. From one-stage approaches, Enhanced Method
4 performed the best and was the selected method to continue with the
preliminary experiments. It showed good balance of exploration and
exploitation, computational efficiency and has parallelization capabilities,
as explained in section 4.6.

For the sampling plan creation step, a ng = 7n rule was used for
all problems solved with EGO. This means that the initial sampling plan

size started with seven times the number of dimensions of the problem.
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Although some authors, such as Forrester e Keane (2009), suggest using
ng = 10n, both rules were tested and ng = 7n was considered enough
regarding the final optimization result.

For the MLE optimization step, four metaheuristic algorithms
were evaluated: Genetic Algorithm (GA) (GOLDBERG, 1989), Proba-
bilistic Restart (PR) (LUERSEN; RICHE, 2004), Backtracking Search
Algorithm (BSA) (CIVICIOGLU, 2013; SOUZA; MIGUEL, 2016; SOUZA
et al., 2016) and Particle Swarm Optimization (KENNEDY; EBER-
HART, 1995). They were tested for different combinations of parameters
on different surfaces generated by Kriging approximations. From the
conducted tests, BSA has shown too much emphasis in exploration
and was slow to converge. PR and GA presented similar convergence
but the execution time of GA was generally faster. Yet, PSO with the
default parameters from the Matlab (THE MATHWORKS, INC., 2015)
implementation obtained slightly more accurate results than GA and
was generally the fastest method employed. Thus, it was selected as the
default parameter optimization method.

In the following sections, the performance of EGO is evaluated by
the use of benchmark test functions. These functions are stochastic. Here,
the measure of the computational cost is the number of evaluations
of the objective function. Since the benchmarked functions are not
expensive to evaluate, it becomes pointless to discuss wall clock timings.
Thus, this information is not presented. In section 6.1 the noisy output
is addressed with Stochastic Kriging with adaptive variance target while

section 6.2 aims to show how it compares against another algorithm.

6.1 EGO performance on stochastic benchmark functions

The main application of the metamodeling procedure deals with
functions involving random variables, as discussed in subsection 3.10.1.
Therefore, stochastic versions of the benchmark functions are used. This
is accomplished by inserting a multiplicative random noise to the input

variables. The noise follows a Gaussian distribution with a specified
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standard deviation for each problem analyzed. These functions possess a
single global optimum and most of them are multimodal, making them
good candidates to assess the method’s exploration and exploitation
capabilities.

In this first preliminary study, deterministic kriging is used. How-
ever, parameter variability should be taken into consideration. This
is addressed with the approach presented in section 5.1, where each
point is replicated a number of times and the average output is ac-
cepted similarly as a deterministic response. For the presented problems,
100 replications are used when computing the estimated E[f(d, X)].
Precision of this estimate increases with the number of replications,
as seen in subsection 3.3.1. For the considered problems, this number
of reevaluations is verified as enough to reduce the variability of the
expected value estimate.

Moreover, it is important to stress that the optimization procedure
presented depends on random quantities. Therefore, the resulting value is
not deterministic and may change after running the algorithm again. For
this reason, when dealing with stochastic algorithms, it is appropriate
to present statistical results over a number of algorithm runs. Thus,
for each problem average and standard deviation over multiple runs
are presented along with the minimum found. Moreover, considering
the response variability, for each problem the expected value of the
deterministic global optimum considering 10000 simulations from the
stochastic function is presented. It is obtained by taking the average
output of those simulations where each evaluation uses the same known
input, which minimizes the deterministic function. This value is different
from the deterministic optimum and depends on the characteristics of
the random variables present in the formulation.

Figures 33, 34, 36 show benchmark results. The benchmark com-
pared constant with adaptive targeting for a limited number of function
evaluations. Each figure represents the average results from multiple
runs of the algorithm. The number of independent runs is 100 for the
1D function and 40 for the 2D and 6D functions. The benchmarks are



106 Chapter 6. Numerical results

conducted considering two different noise values for each function. The
iteration procedure stopped after the infill step reached a number of
evaluations larger than the maximum permitted. Error bars from each
figure are presented in order for the result variability to be observed.
Each bar represents one standard deviation. Moreover, in order to re-
duce the influence of the initial sampling plan, the same plan is used

for both constant and adaptive targeting.

6.1.1 Branin tilted

Writing the optimization problem as the minimization of an integral it

becomes:

min fop;(d) = /f(d,x) fx(x) dx, (6.1)

where

f(d,X) = a(daXo-b(d; X1)%+c(d1 X1 )-1)2+s(1-t) cos(dy X1 )+s+5(dy X1),
(6.2)
a=1,b=51/4nr?), c=5/m, r=6, s =10, t = 1/(8n).

This is a modified Branin function where a term 5d; is added to
the function. This modification forces the existence of a single global
optimum value. The plot of the deterministic version of this function is

shown in Figure 32.

e Domain: d; € [-5,10], d2 € [0,15];

e Deterministic global optimum: —16.644 at d = {-3.689,13.630}.

In the second function seen in Figure 33 both approaches im-
proved the solution similarly with the increase of available evaluations.
Nevertheless, the adaptive targeting presented a mean closer to the

optimum for all maximal evaluations targets.
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10

Figure 32 — Function plot - Branin tilted

6.1.2 Hartman 6D

This is multi-modal benchmark function with six local minima.
Writing the stochastic version of the problem as minimization of an

integral becomes:

min fop;(d) = /f(d,x) fx(x) dx, (6.3)
where
4
f(d, X) = — Z Qj exp | — Z Aij (dej - Pij)Q , (6.4)
i=1 j=1
with

10 3 17 350 1.7 8

- 005 10 17 01 8 14
a=(1.0,12,30,327T, A=

335 17 10 17 8

17 8 0.05 10 0.1 14
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(b) Noise stardard deviation at 0.3

Figure 33 — 2D Function - Limited number of evaluations
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and

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

P=10"*.

e Domain: d; € [0,1] for i = {1..6};

e Deterministic global optimum: —3.32237 at d = {0.20169,0.150011,0.476874,
0.275332,0.311652,0.6573}.

For the second function, the benchmark in Figure 34 presented
the largest difference between both approaches. It can be noted that
the adaptive target selection behaves better when noise is increased.
As there is more noise, it takes more evaluations to reach a certain
target and it becomes prohibitive to expend the computational budget
on precise exploration points. That causes the difference seen in the
second benchmark. Moreover, the adaptive target setting may enable
the optimization to run longer than the constant counterpart may.
Without the early termination proposed in the benchmark, a small
constant target would try to exploit the whole domain instead of only

the promising regions.

6.1.3 Levy 10D

The last benchmark problem is a n-dimensional multimodal
stochastic function. As usual, the problem is written as an integral

minimization:

min fop,;(d) = /f(d,x) fx(x) dx, (6.5)
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where

n—-1

£(d,X) = sin®(rw1)+ > _(wi—1)?[1+10 sin® (mw;i+1)]+(wi—1)*[14sin® (2mwy)],
i=1
(6.6)

with w; = 1+ % for i = {1,...,n}. The benchmark was evaluated

considering a dimension of 10.

e Domain: d; € [-10,10] for i = {1..10};

e Deterministic global optimum: 0 at d = {1,1,...,1}.

Lewy Function

1’ !ﬂ.lﬂ!f,f! .
i
i Hﬂ!f%fﬁ' |

11 52)

Figure 35 — Levy function for the 2-dimensional case

The benchmark results are presented in Figure 36. Similarly
as the previous tests, the adapative targeting obtains better average
results than the constat counterpart. Moreover, increasing the maximum
number of function evaluations consistently decreases the variability of
results, represented by the error bars. The method obtain reasonable
results using a relatively small number of function evaluations even

considering a very large 10-dimensional search space.
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Figure 36 — 10D Function - Limited number of evaluations

6.2 Comparative against another approach

It became clear from previous sections that the EGO algorithm
described might be successfully employed in the optimization of noisy
functions. In this section, the presented method is compared against
another optimization procedure, which also focuses on a lower computa-
tional cost. The chosen algorithm for the comparative is called Globalized
Bounded Nelder-Mead (GBNM). It was developed by Luersen e Riche
(2004) and consists of a probabilistic restart procedure on a Nelder-
Mead local search (NELDER; MEAD, 1965).

A question remains as how to employ and fairly compare GBNM
with EGO as it does not possess the same framework for dealing with
noisy functions. It is common practice, when there is an output noise,
to construct a mean convergence plot. From this plot, the number of
evaluations needed for the mean to converge is identified. This number
is then used as constant replication number for every sampled point.

Figure 37 shows an example from a 1D noisy function. The mean



6.2. Comparative against another approach 113

becomes stable after approximately 100 simulations. This is the same
function compared in Figure 31. If 100 simulations were employed for
each new point in the model, the computational cost would be much

higher than the 150 upper bound used in the proposed approach.
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Figure 37 — Mean convergence for 1D noisy function

In Figure 38 a comparison is presented between GBNM and EGO
with constant target variance. The problem being optimized is Problem
1. This is the same problem discussed in, section 5.5.

In this comparison the average solutions of 50 runs are presented
for two different noise levels. The stopping criterion for both approaches
is a maximum number of function evaluations. For the noise 0.1 both
had a maximum of 150 evaluations. Error bars are presented with the 5
and 95 percentile values. It can be seen that EGO displays a reduced
dispersion of the results. Moreover, by iteratively refining the metamodel
the best result found matches the optimum value. The same does not
happen when considering GBNM. The approach takes the minimum of
multiple restarts considering the constant target. In some runs, due to
the noise involved, the minimum found is less than the deterministic
optimum.

For the second noise level, the maximum number of evaluations
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Figure 38 — Comparison between two approaches with 1D function

differs in each method. EGO maintains the 150 evaluations while GBNM
increases the maximum to 1000 evaluations. This is done because even
using the least computationally demanding parameters with GNBM,
the number of evaluations cannot become lower. By comparing both
approaches in the second noise level, it can be seen that GBNM re-
mains with a large spread and that EGO produces results closer to the

deterministic optimum on average.

6.3 Advantage against quadratures

Another benchmark is conducted in order to evaluate the perfor-
mance of the proposed integral evaluation with adaptive targets against
a quadrature approach. Reiterating, the problem being solved is written

as:

min fop;(d) = /f(d,x) fx(x) dx, (6.7)
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The benchmark considers two approaches. First, the minimization of the
integral using EGO with the AEI infill criteria and adaptive targeting.
Second, the same problem but instead using EGO with the deterministic
EM4 infill criteria and evaluating the integral using a quadrature. Since
the characteristics of the random variables in X are known for the
problems analyzed, it is possible to compute the integral by the definition
in Equation 6.7 instead of resorting to simulation. Therefore, the goal
is to verify if quadratures can compete with the proposed solution in
terms of performance and applicability.

For consistency reasons, the problems solved here are the same
1D and 2D functions already discussed in subsections 5.4.1 and 6.1.1. In
the following benchmark, a Gaussian quadrature algorithm is employed.
It follows the algorithm described in Davis (1984), using a product rule
for multidimensional integration.

In both problems, the maximum number of infills is set to 30.
From this setting, some experiments were conducted in order to verify
the number of quadrature points that resulted in a similar response
compared to a fixed Monte Carlo variance target. Considering the
Gaussian quadrature procedure, the grid of points that is evaluated
is a function of the chosen number of quadrature segments in each
dimension.

For the 1D problem, called Problem 1, the noise is applied mul-
tiplicatively on the inputs by a random variable with unit mean and
standard deviation 0.3, that is, X ~ A/(1,0.3). In this case, it is possi-
ble to compare both approaches under the same maximum number of
evaluations. In the first situation 5 quadrature points are used. For the
second, the number of quadrature points is increased to 20. The AEI
stopping criterion is set to the same number of evaluations of the EM4
quadrature.

Figure 39 presents the results for the 1D case, where error bars
represent the 5 and 95 percentiles from 50 independent runs. It can
be seen that AEI Adaptive outperforms EM4 with quadrature. It can

achieve results closer to the deterministic optimum with less dispersion.
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When the maximum number of evaluations is increased to 600, both
approaches lead to improved results. However, it can be seen that even
by increasing the total budget, EM4 with quadrature performs worse
than AEI with the initial budget.

1D - target = 107 - AEI Adaptive

- EM4 Quadrature

-1.6 Deterministic Optimum

Average solution

150 600

Maximum function evaluations

Figure 39 — 1D Quadrature

For the second problem, called Branin tilted, the noise multiplied
to each input comes from the two- element Gaussian random vector
X ~ N(1,0.01). Again, AEI with adaptive target heavily outperforms
the quadrature approach, as seen in Figure 40. In the first situation,
AFEI is limited to 1000 evaluations while EM4 uses 20 quadrature seg-
ments in each dimension. Considering this number of segments in each
dimension for this 2D problem results in a grid with 20?2 = 400 different
points to be evaluated on each infill step. The large spread and the
distant average from the optimum indicate that the quadrature may
not have enough precision. The second situation considers an increased
number of quadrature segments. It is increased from 20 to 50 for each

dimension, which improves the quadrature precision. However, it also
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heavily increases the total number of evaluations considering a fixed
number of infill points. In this situation, EM4 with quadratures can
only obtain a result similar to AEI Adaptive by increasing 75 times the

computation cost.

2D - target = 10™ noise = 0.01 B A1 Adaptive

- EM4 Quadrature

Average solution

1000 12000 5000 75000

Maximum number of evaluations

Figure 40 — 2D Quadrature

The trend of a higher number of evaluations required for the
quadrature procedure is further increased when considering higher di-
mensional problems. Suppose one wants to solve a six dimensional
problem. The number of evaluations would depend on the number of
divisions on the hyper-rectangular region that is being integrated. If,
for example, 20 segments for each dimension were used. This number
already proved to be insufficient for the level of noise present in these
benchmarks. Nevertheless, 206 = 64000000 evaluations would be re-
quired. Moreover, that would be only one step in the EGO algorithm,
thus being replicated for every infill point that is added to the model. It
clearly becomes unfeasible for higher dimensions. Thus, AEI augmented

with the adaptive target variance remains as a more applicable and
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efficient approach to solving the proposed class of problems.

6.4 Application: Tuned-Mass Dumper system optimization

As discussed in section 5.3, there are several engineering problems
where the proposed integral minimization could be employed. In this
section, one application in the field of structural dynamics is shown. It
involves the seismic vibration control of a structure. In order to achieve
the best performance, one must determine the optimal parameters of
a Tuned-Mass Dumper (TMD) that shall be installed on a structure
subjected to seismic excitation. A structure from literature is analyzed
and the TMD parameters are subject to the optimization procedure.

The TMD is a mass-spring-damper system, which aims to reduce
the vibrational energy that is transfered to the primary members of
the structure. There is a growing interest on the study of TMD to
date. This is due to the fact that amongst the numerous passive control
techniques, the TMD is one of the simplest and most reliable control
devices (CHAKRABORTY; ROY, 2011).

In the TMD design optimization process, the design variables
are usually the stiffness and damping of the energy dissipation system.
Considering an n-story MDOF linear building structure with a mass
damper installed at the top floor, the equation of motion of the combined

system subjected to ground acceleration can be written as follows:

Mi(t) + Ca(t) + Kz(t) = —m 7g(t), (6.8)

where z is the (n+1) dimensional response vector representing the

displacements relative to the ground:

z(t) = {71,722, ..., 7n, 24}, (6.9)

Zg is the ground acceleration, m is mass vector:

m = {mjp, my, ...,my, mq }, (6.10)
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and M, C and K are matrices corresponding to the mass, viscous

damping and the stiffness of the structure, respectively. They can be

written as:
- -
mo
M= (6.11)
my
L mq
_(01 + c2) —c2 |
—C2 (c2+c3) —c3
—¢3
c= . (6.12)
. Cen
—n (cn4cq) —cq
L —Cd €a |
(k1 + ko) —ko ]
—ko (k2 +k3) ks
—ks
K= . (6.13)
) e
~kn (kn +kq) -kq
L —kq kq |

where mj is the mass of the i-th floor, mq is the mass of the damper,
¢i is the damping of the i-th floor, c¢q is the damping of the damper,
k; is the stiffness of the i-th floor, kq is the stiffness of the damper, z;
is the displacement of the i-th floor relative to ground and zq is the
displacement of the damper relative to ground.

The structure being analyzed here is a classic example from liter-
ature. It has already been studied by several authors (HADI; ARFIADI,
1998; LEE et al., 2006; LOPEZ et al., 2015). It consists of a ten-story
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shear frame structure as illustrated in Figure 41. Each story has an
assumed height of 3 meters, resulting in a total height (h) of 30 meters.
During the event of an earthquake, the displacement of the top floor
should not exceed a certain barrier.

The goal in this problem is to minimize the expected value of the
failure probability of the structure over the design parameters domain
considering different barrier levels. The problem is solved for three
different barrier levels, which are imposed as fractions of total height.
The reliability index 3 is used to measure the reliability of the system.
A higher 8 implies a lower failure probability. Thus, considering the
design vector d = [kq, ¢q] and the stochastic parameters vector X, the

problem can be stated:

Find : d
which minimizes : /fﬁ(d,x) fx(x) dx (6.14)
subject to : dMM < d, < dT n={1,2}.

The upper bound and the lower bound value of the stiffness (kq)
and damping coefficient (c¢q) of the TMD are 0-4000 kN /m and 0-1000
kNs/m.

To determine the optimum TMD parameters, a stationary earth-
quake excitation is assumed, which can be modeled as a white noise
signal with constant spectral density, Sg, filtered through the Kanai-
Tajimi spectrum (KANAI, 1957; TAJIMI, 1960). The power spectral

density function is given by:

wt‘} + 4w1?§f2w2
(w2 - wf2)2 + 4wf2§1?w2

s(w) =So (6.15)

where & and wy are the ground damping and frequency, respectively.
Their values are adopted as { = 0.6, wy = 37.3rad/s (MOHEBBI et al.,
2013). The term Sg acts as a scaling factor and in this context represents
the amplitude of the bedrock excitation spectrum. Its value is adopted

as Sp = 1 x 103m? /s3. This combination of parameters corresponds to
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an earthquake with 0.38g peak ground acceleration on a medium firm
soil (CHEN; LUI, 2005).

Additionally to the seismic noise signal, another source of un-
certainty is taken into account. The structural parameters from the
floors and the TMD are considered random variables with a Gaussian
distribution. Their assumed mean values and Coeflicient of Variation
(C.0.V) are shown in Table 3. In Figure 42 it can be seen how irregular
the surface becomes when considering the output without simulation,

i.e. the result of a single evaluation for each input.

Figure 42 — Noisy reliability surface over design variables range

For the calculation of the reliability index the design life time
(tp) of the structure is considered to be 50 years. Moreover, the rate of
arrival (v) of earthquake events is of 1 every 10 years and each event had
the duration tg of 50 seconds. Given this information, it is possible to
calculate 5 considering the time-dependent reliability of oscillators. The

underlying concepts as well as the formulation and assumptions that
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Table 3 — Statistical properties of structural parameters

Mean C.0.V. [%]

Story  650.0 x 10° 15
Stifness [N/m]
TMD kq 15
Story  360.0 x 10° 05
Mass [kg]
TMD  108.0 x 103 05
. Story  6.20 x 10° 25
Damping [Ns/m|]
TMD ca 25

lead to the reliability index result are further explored in Appendix A.

Moreover, in order to obtain a faster objective function evaluation,
the problem is rewritten using the state space formulation. Appendix B
details the solution procedure based on the Lyapunov equation. By
solving the Lyapunov equation of the problem for the covariance matrix,
it is possible to extract the variance of the displacements and velocities
from each degree of freedom. Therefore, it becomes straightforward to
calculate the standard deviation of those quantities, which are in turn
needed for the reliability index computation.

After having described the problem and the aspects leading to
its solution, the problem nature is emphasized. The problem presented
here is strictly academic. Aspects of the real structure are not taken into
account and simplifications were made such as: assuming the structural
response linear elastic, assuming that the excitation comes from a
stationary process, assuming that the random variables of each floor are
uncorrelated, etc. Nevertheless, it remains as a fairly complex problem
comprehending the engineering fields of optimization, control, dynamics
and reliability.

Table 4 shows the optimization results using the proposed Stochas-
tic Kriging approach with adaptive variance targeting. The stopping
criterion of the algorithm is a maximum number of function evaluations

of 1000. Three cases labeled (a), (b) and (c¢) are considered employing
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different barrier levels. The stiffness (kq) and damping (cq) are displayed
along with the corresponding Bmax found. Additionally, the Spean result
is shown, which represents the average of 25 independent runs of the
algorithm. For comparison, the reliability index for the uncontrolled
case is also displayed. It can be seen that decreasing the barrier level
results in smaller values of 3, thus increasing the failure probability.
Notable increases in 3 were achieved. Taking for example the case (b),
the system reliability increases from 1.37 without TMD to 4.24 by using
the TDM with the reported parameters. It terms of failure probability
it means decreasing Py from 8.5 x 1072 to 1.1 x 107°. Looking at case
(c), the structure that would certainly fail without TMD achieves a
reliability index of 2.48 (6.6 x 1073 failure probability) when using the
optimized TMD parameters. Moreover, Bmean results remained close
to Bmax. It shows that the proposed approach could obtain reasonable
results in multiple runs despite all the random parameters and limited

number of function evaluations.

Table 4 — TMD optimization results

Case kq (MN/m) Cq (MNS/m) PBmax  Pmean  Buncontrolled

(a) h/300 3.053 0.153 6.68  6.31 3.70
(b) h/400 2.963 0.152 424 3.99 1.37
(¢) h/500 3.018 0.160 248 231 fail

In Figure 43, the Monte Carlo convergence for a single input is
shown. The average value of —f starts to converge around 150 simu-
lations. Thus, it becomes clear that using the standard approach of
using this fixed number to simulate every input would lead to a higher
computational cost. Simulating only seven different points would cause
the maximum number of evaluations of 1000 to be exceeded. However,
using the proposed approach only points closer to the optimum are
simulated a higher number of times. Moreover, by using the Monte Carlo

variance estimates it regress the surface structure and avoid further
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computational costs.
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Figure 43 — Monte Carlo convergence curve

In Figure 44, the resulting surface generated by the proposed
algorithm, considering the case (b) barrier level is illustrated. Comparing
it against Figure 42 shows how the surface becomes smooth by the
regression capabilities of Stochastic Kriging. The red dots in Figure 44
represent the points that were sampled. Some are scattered over the
domain, which most likely belong to the initial sampling procedure
using Latin Hypercubes. Yet, numerous points are concentrated close to
minimum value of —3. Those are the points obtained by the infill step,
with the maximization of the AEI criterion and considering adaptive
variance target. This application possess the characteristics which the
proposed algorithm is particularly efficient at solving, i.e., problems
with numerous random variables but a relatively small number of design
variables (n < 10).
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Figure 44 — Surface generated by Stochastic Kriging with sampled
points
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7 Conclusions and future stud-
ies

7.1 Conclusions

In this study an effective method based on Stochastic Kriging for
the minimization of functions that depend on an integral was proposed.
The method has been based on using variance estimates from Monte
Carlo simulation to aid the regression metamodel construction. More-
over, modifications in the AEI infill criteria were proposed. As seen,
considering a large fixed variance target may stall the optimization. Yet,
if the variance target is too small, the cost becomes prohibitive. In this
study, an adaptive targeting approach was employed. By being adapted
based on proximity of known points it achieved a better balance between
exploration and exploitation.

In order to assess the effectiveness of the proposed method, nu-
merous benchmark tests were conducted. The proposed method was
first tested against deceptive noisy benchmark functions from literature.
Problems with up to 10 dimensions were analyzed and a comparison
was made between the proposed adaptive variance targeting and the
use of a fixed target. The proposed method obtained better results in
all comparisons. Moreover, it was observed that higher dimensions and
higher noise lead to a greater difference in results, favoring the proposed
approach.

Another benchmark conducted compared the EGO algorithm
using a constant target, against a successful algorithm from literature.
The algorithm, called GBNM, was based on restarted local searches.
It obtained worse results than EGO both in terms of efficiency, with
a larger number of evaluations required as well as consistency, with a
bigger 5 to 95 percentile range over multiple runs.

Consisting of an integral minimization approach, the proposed
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method was also compared against a common tool used for this type of
problem: quadratures. The quadrature was employed in a Deterministic
Kriging environment as replacement for the Monte Carlo simulation used
in Stochastic Kriging. The best infill criterion found for Deterministic
Kriging was used, i.e. EM4. The quadrature used a simple Gauss rule for
one dimension extended for multiple dimensions by the product of rules.
It was observed that the approach using quadratures performed worse
in the one-dimensional case and that the computational cost heavily
increased with the increase of the problem dimension in reason of the
high number of points by dimension needed for an accurate result and
the use of product of quadrature rules.

Lastly, a structural engineering application was analyzed. It con-
sisted of a ten-story shear frame subjected to seismic excitation. The
problem had multiple random variables and the objective was to find
the minimum expected value of the failure probability of the structure
by selecting the optimal TMD parameters. The problem was success-
fully solved and the best results found were presented. The proposed
approach was able to obtain good results efficiently and consistently for
the three different cases considered.

Overall, the modification proposed to the EGO algorithm and its
use case for the minimization of integrals by incorporating the Monte
Carlo variance estimates yielded convincing results. Different types of
problems were solved and the approach maintained its computational ef-
ficiency. Moreover, when comparing against other approaches it required
a smaller number of function evaluations and presented less variability
of the results over multiple independent runs.

The method limitation resides in the inherent size limitation of
EGO coupled with the Kriging metamodel, 4.e. the need of inversion
or decomposition of the covariance matrix at each iteration step. This
may render the task more computationally demanding than working
directly on the objective function. Thus, it becomes more attractive for
problems where each function evaluation is known to be computationally

demanding. Nevertheless, the method usefulness and applicability was
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shown in a practical engineering problem. It became evident how it
can work efficiently for cases where the number of design variables is
relatively small but there are numerous stochastic parameters involved

in the objective function.

7.2 Future studies

As for further studies, a number of extensions may be pursued
both in terms of formulation of the studied method as well the applica-

bility to other types of problems. Here are listed a few suggestions:

e Use of gradients or Hessian information on the SK model;
e Application for problems with constraints;

e Application for multi-objective optimization problems;

e Study other forms of adaptivity of the target variance;

e Investigate efficiency gain by avoiding the computation of the

Kriging hyperparameters at every iteration of EGO;

e Investigate other ways to estimate the variance of each sampled

point.
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APPENDIX A - Time-dependent
reliability of oscillators

The classical reliability problem for an oscillator is depicted
in Figure 45. For a specified excitation duration event tg, a specific,
scalar displacement response of the oscillator Z(t) should not exceed
a given critical response level. This critical response, defines a barrier
(£b), which should not be exceeded. This barrier can be the relative
displacement between floors, displacement of top floor or any other
critical displacement measure. It may also represent permanent damage

like cracking of concrete, or ultimate failure due to loss-of-equilibrium.

barrier level

= Sample of Z(t)

Figure 45 — Barrier

For a given barrier level b and excitation duration tg, the failure

probability is calculated following the classical Poisson model (MELCH-
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ERS, 1999):

Pi(b, te) = 1 exp (2 /0 - v;(b,t)dt) , (A1)

where v is the up-crossing rate. When considering a stationary excita-

tion and a time-invariant barrier b(t) = b, the crossing rate becomes:

/ " F (b, )dt = v (D) t. (A2)
0

For a linear system excited by a Gaussian process, the response

is Gaussian and the crossing rate is evaluated as:

Oy 1 b2
v (b) = £ —exp (%c?) ) (A.3)

V4
where 0, and o; are the standard deviation of the displacement and of
the velocity response, respectively.

The structural loading from an earthquake, which is the applica-
tion topic, is described by the arrival of an unknown number of events.
The same reasoning can be applied to many types of environmental
loads such as winds, storms, sea weaves, etc. The arrival of the events
is modeled as a Poisson process, and for a design life tp, the failure

probability becomes:

Pe(b,tp) = > Pe(b, teli) pi(tp) (A.4)
i=1

where P¢(b,tg|i) is the conditional probability of failure, given the
occurrence of exactly i events during the design life, and p;(tp) is the

probability of having exactly i events, given by the Poisson distribution:

(V tD)i e}i{!p(_v tD) (A5)

pi(tp) =

where v is the arrival rate of events. If independence among events is

assumed, the conditional failure probability is given by:

Ps(b, tgli) =1 (1 - Pg(b,tg))". (A.6)
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The failure probability can be converted into the more convenient
reliability index () by using the classical First Order Reliability result
(MADSEN et al., 1985):

B =-0 1 (Pe(b,tp)), (A7)

where @ is the standard Gaussian cumulative distribution function.
Clearly, this index is a function of the vector of design parameters d

as well as the vector of structural parameters X. Thus, one can write

p = p(d,X).
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APPENDIX B - Solving TMD
Random Response Based on
Lyapunov Equation

Recalling from Equation 6.8, the equation of motion for the

n-floor shear building with a single TMD at the top is:

Mi(t) + Ca(t) + Kz(t) = —m 7g(t). (B.1)

Moreover, the process of the excitation of the base is assumed to
be a white noise process w(t) filtered by the Kanai-Taijimi filter. It can
be written as (LUTES; SARKANI, 2004):

g (t) + 2wrzs + wizg = —w(t)

(B.2)
Zg(t) = 7¢(t) + w(t) = 2&weze + waZf7

where & and wy are, respectively, the damping ratio and the frequency
of the filter.

For numerical analysis, i.e. with MATLAB, it is often conve-
nient to write second order differential equations as a set of first order

equations. Introducing the space state vector:

s = {Zl) ZQ’ ""Zn7Zd’Zf7Z.1’Z.27 "'7Z.rl) Z.(iﬁz.f}’ (B'3)

the state space system description can replace Equations B.1 and B.2
with the equivalent formulation (SOONG; GRIGORIU, 1993):

§=As+f (B.4)
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where f is the vector f = {0,0,...,~w(t)}, and A it the system matrix of
size (2n +4) x (2n + 4), written as:

0 I
(B.5)

Hy, H.
where 0 and I are null and identity submatrices of size (n + 2) x (n +
2), respectively. Additionaly, H and H. are respectively written as

(MARANO et al., 2007):

and

28wy

2
M) s
H.

[
—
™
-3
~—

28wy
0 v - 0 —28wy

The covariance matrix of the vector s is defined as:

s = E[(s — ps)(s — ps) . (B.-8)

Due to the excitation considered being a zero-mean process, the response
is also a zero-mean process. Therefore, the covariance of the response is

given by:

I's = E[ss]. (B.9)
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For the stationary case, the Lyapunov equation can be used to
solve for the covariance matrix (GAJIC; QURESHI, 1995). It states:

ATs +TsAT + B=0 (B.10)

where the input matrix B for the excitation considered is a null matrix,
except for the last element B(gp, 14 9ny4) = 27Sp.

After solving the Lyapunov equation, it is possible to extract
the variances of the displacements and velocities from all the degrees
of freedom of the structure. This is done by taking the elements from
the main diagonal of I's. This procedure of finding the variances is
considerably more efficient than using a time-stepping algorithm, such
as Newmark (SORENSEN; ZHOU, 2003). This advantage is beneficial
in an optimization environment, where the Lyapunov equation must be

solved numerous times.
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APPENDIX C - Intrinsic noise

assumption

Here an experiment is conducted in order to verify the plausibility
of a Stochastic Kriging assumption. As seen in section 5.3, SK considers
the intrinsic noise to be i.i.d from a Gaussian distribution. The goal here
is to compute multiple error measures from a Monte Carlo integration
procedure, and verify the normality hypothesis. The integral analyzed

can be written as:

1
f(x):/o exp(x) cos? (x)dx, (C.1)

The exact value of this integral can be derived analytically as:

1
exact = 1—0(6(5 + 2sin(2) + cos(2)) — 6) ~ 1.14037, (C.2)

where this value is used to compute the error from the Monte Carlo
integration. Considering the random variable in the function, it is

possible to obtain an estimate of the exact solution as:

— Y exp(x)cos?(x), with x ~ U(0,1) (C.3)

where U is the uniform distribution and ng is the number of samples.
The analysis is conducted by taking 5 batches of 2000 independent
Monte Carlo runs and subtracting the results from the exact value of
the integral. Each batch corresponds to an increasing value of ng. Each
error vector is then tested for normality using the Anderson-Darling
test (ANDERSON; DARLING, 1952).
Figure 46 presents the p-value results of the normality test along

with an histogram of the data for each fixed number of evaluated samples.
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It can be seen from the p-values, that for this case the hypothesis of
normality cannot be rejected with 95% confidence in any case. Moreover,
the more samples are used more probably normal the errors become.
This relates to the Central Limit Theorem, which states that, in most
situations, when independent random variables are added, their properly
normalized sum tends toward a normal distribution (DEVORE, 2011).
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Figure 46 — Histograms of the intrinsic errors
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