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RESUMO

Uma rede dinâmica linear (LDN) é um sistema de subsistemas
interligados que são acoplados através de dinâmicas e restrições, que
podem modelar sistemas geograficamente distribuídos, como redes de
tráfego urbano. Para o controle preditivo baseado em modelo (MPC)
de LDNs, um algoritmo dual distribuído é proposto para otimizar os si-
nais de controle em um horizonte de predição. Enquanto um problema
mestre atualiza multiplicadores Lagrangeanos e fatores de penalidade
para as restrições, um problema escravo é decomposto em um conjunto
de subproblemas distribuídos cujas variáveis são restritas apenas em si-
nal. Sob condições de convexidade, foi demonstrado que o algoritmo
distribuído produz uma sequência de iterandos que converge para o
ótimo global. Numa aplicação ao controle de tempo de verde em redes
de tráfego veicular urbano, o algoritmo distribuído produziu soluções
ótimas o que confirma a convergência estabelecida pela análise teórica.

Palavras-chave: Otimização distribuída; Lagrangeano aumentado;
Controle distribuído; MPC; Redes dinâmicas lineares; Controle de
tráfego urbano.





ABSTRACT

A linear dynamic network (LDN) is a system of interconnected
subsystems that are coupled through dynamics and constraints, which
can model geographically distributed systems such as urban traffic net-
works. For model predictive control (MPC) of LDNs, a distributed dual
algorithm is proposed for optimizing control signals over a prediction
horizon. While a master problem updates Lagrangian multipliers and
penalty factors for the constraints, a slave problem is decomposed into
a set of distributed subproblems whose variables are constrained only
in sign. Under convexity assumptions, the distributed algorithm was
shown to produce a sequence of iterates converging to the globally
optimal solution. In an application to green-time control of an urban
traffic network, the distributed algorithm yielded optimal solutions that
corroborate the theoretical analysis.

Keywords: Distributed optimization; Augmented Lagrangian; Dis-
tributed control; MPC; Linear dynamic networks; Urban traffic con-
trol.
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1 INTRODUCTION

1.1 MOTIVATION

Geographically distributed systems arise from the intercon-
nection of dozens, and even hundreds, of dynamic subsystems that
influence and impose constraints on one another. In urban traffic
networks, for instance, each intersection is a subsystem whose con-
trol variables correspond to green time signals, and whose state is
characterized by vehicle queues that evolve in time under the in-
fluence of the neighboring subsystems. Physical and technological
constraints are translated into road capacity, speed limits, and the
splitting of green time signals at the intersections [1].

The management and control of large dynamic systems re-
mains a challenge, despite the scientific and technological advance-
ment witnessed in the last decades. Two extremes of control strate-
gies are the centralized and decentralized control. Decentralized con-
trol advocates the independent design of control laws for each sub-
system, while considers the influence from other subsystems as per-
turbations [2]. On the other hand, centralized control provides sys-
tem wide operation by explicitly considering the interactions and
constraints between subsystems. Despite being scalable, decentral-
ized strategies can be very restrictive with respect to stability and
often do not offer guarantees with respect to a performance crite-
rion, since the distributed controllers (agents) can work at cross pur-
poses. Instead, centralized control strategies, such as model-based
predictive control (MPC) [3], optimize a performance criterion but
are not always scalable for geographically distributed systems, and
may also lack robustness due to the concentration of communica-
tions and computation at the control center.

Aiming to combine the desirable features of centralized and
decentralized control, research in the past decades led to the devel-
opment of hierarchical and distributed control for large-scale sys-
tems [4]. Hierarchical control employs models that are structured
in layers which operate at different time scales, delegating the deci-
sions to the various layers. The top layer relies on simplified models
to make system wide prediction and reach decisions that are in-
formed to the lower layers which, in turn, rely on detailed models to
make local decisions that are consistent with the strategies received
from the upper layers. While hierarchical control operates with lay-
ers that vary from simplified and far reaching to detailed and local,
distributed control tackles complexity by dividing the control effort
among the distributed systems.

21



22 Chapter 1. Introduction

Motivated by the need of distributed control strategies to
operate geographically distributed systems, this dissertation pro-
poses a new distributed algorithm for a class of linear dynamic net-
works. The Linear Dynamic Network (LDN) of concern consists of
a directed graph whose nodes represent dynamic subsystems and
whose arcs model the influence of the upstreams on the down-
streams subsystems. As such, the dynamics of subsystem state is
characterized by a discrete-time linear dynamic equation that de-
pends on the local state and controls, and also on the control signals
of the upstream subsystems. Constraints can be imposed on the lo-
cal controls and state, there by inducing constraint couplings among
the subsystems which render distributed optimization a challenge.
According to the classification from [5], the problem of operating
the considered LDN is a kind of Decoupled Cost and Coupled Con-
straint (DCCC) problem, which becomes Coupled Cost and Coupled
Constraint (CCCC) if the state variables are eliminated by replacing
them with the dynamic equations.

Linear dynamic networks are convenient models for a wide
range of systems, particularly urban traffic networks. Intersections
are modeled as nodes of the LDN, while roads are represented
by arcs. Despite the long-lasting research and developments world-
wide [6], urban signal control is still an area susceptible of further
improvements, particularly under saturated traffic conditions. The
usually limited availability of space in the urban centers prevents
the extension of the existing infrastructure, and, along with the con-
tinuously increasing mobility requirements, urge for solutions that
will release the serious congestion problems through the best possi-
ble utilization of the available infrastructure. From the control point
of view, this may be translated into the employment of actuated sys-
tems that respond automatically to the prevailing traffic conditions.
In view of the relevance of traffic control, this dissertation will con-
sider and application of the distributed algorithm to the green-time
control of an urban traffic network.

1.2 OBJECTIVE

The main objective of this dissertation rests on the design,
convergence analysis and computational test of a distributed dual
algorithm based on the augmented Lagrangian for the distributed
control of linear dynamic networks. The choice of such algorithm
comes from one its strong points, which is the ability to handle cou-
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pling inequalities and equalities, whereas other algorithms such as
the distributed interior-point method cannot tackle equalities [7].

Augmented Lagrangian methods are a certain class of algo-
rithms for solving constrained optimization problems. They have
similarities to penalty methods in that they replace a constrained op-
timization problem by a series of unconstrained problems and add
a penalty term to the objective; the difference is that the augmented
Lagrangian method adds yet another term, designed to mimic a La-
grange multiplier. By dualizing the coupling constraints with an aug-
mented Lagrangian, the optimization problem for the entire LDN is
decomposed into a set of distributed problems, coupled only in the
objective, thereby enabling the design of a distributed algorithm. To
this end, a distributed gradient projection method will be developed
for optimizing the augmented Lagrangian.

1.3 DISSERTATION ORGANIZATION

This dissertation is organized as follows.
Chapter 2 presents the key concepts and mathematical con-

cepts necessary for the understanding of this dissertation.
Chapter 3 presents linear dynamic networks (LDN), their ad-

vantages and applications, such as control and problem decomposi-
tion.

Chapter 4 presents the algorithm core to the dissertation, the
dual augmented Lagrangian algorithm which has an outer and in-
ner loop. The inner loop consists of a distributed gradient-projection
algorithm that optimizes the augmented Langrangian. The outer
loop uses the approximated solution produced by the inner loop to
update the Lagrangian multipliers and penalty factor.

Chapter 5 presents the application of distributed dual algo-
rithm to the green-time control of an urban-traffic network, con-
trasting its performance against an off-the-shelf algorithm and a
standard version of the augmented Lagrangian method in which
the inner loop consists of a centralized gradient-projection method.

Finally, Chapter 6 concludes the dissertation with some final
remarks and directions for future work.





2 MATHEMATICAL FUNDAMENTS

This chapter contains some mathematical fundaments impor-
tant to the understanding of this dissertation. In Section 2.1 we
review the basis of optimization, presenting a number of different
configurations and paths to solution of said problems. In Section 2.2
basics concepts of Model Predictive Control are presented, to serve
as a refresher to the reader.

2.1 BRIEF REVIEW OF OPTIMIZATION

In continuous optimization, the variables in the model are
nominally allowed to take on a value from a continuous range, usu-
ally real numbers. This feature distinguishes continuous optimiza-
tion from discrete or combinatorial optimization, in which the vari-
ables may be binary (restricted to the values 0 and 1), integer (for
which only integer values are allowed), or more abstract objects
drawn from sets with finitely many elements. Continuous optimiza-
tion problems are typically solved using algorithms that generate a
sequence of values of the variables, known as iterates, that converge
to a solution of the problem. A continuous optimization problem is
to find a solution vector x∗, for function f(x) such that

f(x∗) ≤ f(x), ∀x ∈ R
n. (2.1)

Note that there is no loss in generality in concentrating here on
minimization, since

max f(x) = −min f(x). (2.2)

In deciding how to step from one iterate to the next, the algorithm
makes use of knowledge gained at previous iterates, and informa-
tion about the model at the current iterate, possibly including in-
formation about its sensitivity to perturbations in the variables. The
continuous nature of the problem allows sensitivities to be defined
in terms of first and second derivatives of the functions that define
the model.

There are a number of subclasses of optimization problems.
The simplest being the unconstrained minimization:

min
x∈Rn

f(x). (2.3)

25



26 Chapter 2. Mathematical Fundaments

A more complex subclass is equality constrained minimization,

min
x∈Rn

f(x) (2.4a)

subject to di(x) = 0, i = 1, . . . , q, (2.4b)

and inequality contrained minimization,

min
x∈Rn

f(x) (2.5a)

subject to ci(x) ≥ 0, i = 1, . . . , p, (2.5b)

For the purpose of generalization, we can assume that the general
form of optimization problems is as below:

min f(x) (2.6a)

subject to ci(x) ≥ 0, i = 1, . . . , p (2.6b)

di(x) = 0, i = 1, . . . , q, (2.6c)

in which c(x) : Rn → R
p and d(x) : Rn → R

q.
The most fundamental issues are: How to define a solution to

the problem, and how to recognize such a point? These issues be-
come more complex as we expand the classes of functions allowed
in the formulation. The type of solution most amenable to analysis
is a local solution. A point x∗ is a local solution if x∗ is feasible, and
there is an open neighborhood N around x∗ such that f(x∗) ≤ f(x)
for all feasible points x ∈ N . Further, x∗ is a strict local solution
if f(x∗) ≤ f(x) for all x ∈ N , with x 6= x∗. A global solution is
a point x∗ such that f(x∗) < f(x) for all feasible x. It is dificult
to verify global optimality, even when the objective and constraints
are smooth, because of the dificulty of gaining a global perspective
on these functions. However, in convex optimization, where the ob-
jective f is a convex function and the set of feasible points is also
convex, all local solutions are global solutions.

For unconstrained optimization of a smooth function f , we
have the following necessary condition.

If x∗is a local solution of min
x

f(x), then ∇f(x∗) = 0

where ∇f(x) denotes the gradient of f . Note that this is only a
necessary condition; it is possible to have ∇f(x) = 0 without x
being a minimizer. To complement this result, we have the following
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suficient condition.

If we have a point x∗such that ∇f(x∗) = 0 with ∇2f(x∗)

positive definite, then x∗is a strict local solution of min
x

f(x).

Turning to constrained optimization, for general form (2.6)
with smooth functions, identification of local solutions becomes so-
mewhat more complex. We can obtain a necessary condition based
on the gradients of ∇f , ∇c and ∇d, but this depends on an addi-
tional condition called a constraint qualification.

A central role in characterizing solutions of constrained opti-
mization problems is played by the Lagrangian function, defined as
follows:

L(x, λ, µ) = f(x)−

p∑

i=1

λici(x)−

q∑

i=1

µidi(x). (2.8)

This is a linear combination of objective and constraints, where the
weights λi and µi are called Lagrange multipliers. At a local solution
x∗ for (2.6), the following conditions will hold for some values of
λi and µi

∇xL(x
∗, λ∗, µ∗) = 0 (2.9a)

ci(x
∗) ≥ 0, i = 1, . . . , p (2.9b)

di(x
∗) = 0, i = 1, . . . , q (2.9c)

λ∗
i ≥ 0, i = 1, . . . , p (2.9d)

λ∗
i ci(x

∗) = 0, i = 1, . . . , p (2.9e)

Condition (2.9e) is a complementarity condition that indicates com-
plementarity between each inequality constraint value ci(x

∗) and
its Lagrange multiplier λ∗

i : For each i, at least one of these two
quantities must be zero. Roughly speaking, the Lagrange multipli-
ers measure the sensitivity of the optimal objective value f(x∗) to
perturbations in the constraints ci. The conditions (2.9) are often
known as the Karush-Kuhn-Tucker conditions, or KKT conditions for
short, named after those who discovered the conditions.

2.1.1 Penalty Function Optimization

One fundamental approach to constrained optimization is to
replace the original problem by a penalty function that consists of:
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• The objective of the original optimization problem.

• One additional term for each constraint, positive when the
current point x violates that constraint and zero otherwise.

Most approaches define a sequence of such penalty functions, in
which the penalty terms for the constraint violations are multiplied
by some positive coefficient. By making this coefficient larger and
larger, we penalize constraint violations more and more severely,
thereby forcing the minimizer of the penalty function closer and
closer to the feasible region for the constrained problem. The sim-
plest penalty function of this type is the quadratic penalty function,
in which the penalty terms are the squares of the constraint viola-
tions. For the equation (2.6) we can define a penalty function Q
such as:

Q(x, µ) = f(x) +
1

2µ
([c(x)]−)2 +

1

2µ
(d(x))2 (2.10)

where [y]− denotates max(−y, 0). A general framework for algo-
rithms based on the penalty function (2.10) can be specified as
follows.

Algorithm 1: Quadratic Penalty

input: starting parameters µ0 > 0, tolerance τ > 0,
starting point xs

0

for k := 0, 1, 2, . . . do
find an approximate minimizer xk of Q(:, µk) starting
at xs

k

if ||Q(x, µk)|| ≤ τ then
stop with an approximate solution xk;

choose the next penalty factor: µk+1 ∈ (0, µk);
update the starting point for the next iteration to
xs
k+1 = xk

output: xs
k

The parameter sequence µk can be chosen adaptively, based
on the difficulty of minimizing the penalty function at each iter-
ation. When the minimization of Q(x;µk) proves to be expensive
for some k, we choose µk+1 to be only modestly smaller than µk;
for instance µk+1 = 0.7µk. If we find the approximate minimizer
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of Q(x;µk) cheaply, we could try a more ambitious reduction, for
instance µk+1 = 0.1µk.

A more complex approach is given by the barrier method.
We start by describing the concept of barrier functions. Given the
inequality-constrained problem described by (2.5), the strictly fea-
sible region is defined by

F0 = {x ∈ R
n|c(x) > 0} (2.11)

Barrier functions for this problem have the properties that

• they are infinite everywhere except in F0.

• they are smooth inside F0.

• their values approach +∞ as x approaches the boundary of
F0.

The most important barrier function is the logarithmic barrier fun-
tion, which has the form

−

p∑

i=1

log ci(x) (2.12)

where log(·) denotes the natural logarithm. For the problem in (2.5),
the objective function of the barrier subproblem is given by

P (x, µ) = f(x)− µ

p∑

i=1

log ci(x). (2.13)

Since the minimizer x(µ) of P (x;µ) lies in the strictly feasible set F0

(where no constraints are active), we can in principle search for it
by using unconstrained minimization algorithms. Unfortunately, the
minimizer x(µ) becomes more and more difficult to find as µ → 0.
The scaling of the function P (x;µ) becomes poorer and poorer, and
the quadratic Taylor series approximation (on which Newton-like
methods are based) does not adequately capture the behavior of
the true function P (x;µ). The generic algorithm to solve log-barrier
function is very similar to the quadratic penalty function shown in
Algorithm 1. Algorithm 2 gives the steps of the logarithmic barrier
method.

We now discuss an algorithm known as the method of mul-
tipliers or the augmented Lagrangian method. This algorithm is re-
lated to the quadratic penalty algorithm, but it reduces the possibil-
ity of ill conditioning of the subproblems that are generated in this
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Algorithm 2: Logarithmic Barrier

input: starting parameters µ0 > 0, tolerance τ > 0,
starting point xs

0

for k := 0, 1, 2, . . . do
find an approximate minimizer xk of P (:, uk) starting
at xs

k

if ||P (x, uk)|| ≤ τ then
stop with an approximate solution xk;

choose the next penalty factor: µk+1 ∈ (0, µk);
update the starting point for the next iteration to
xs
k+1 = xk

output: xs
k

approach by introducing explicit Lagrange multiplier estimates at
each step into the function to be minimized. It also tends to yield
less ill conditioned subproblems than does the log barrier approach,
and it dispenses with the need for iterates to stay strictly feasible
with respect to the inequality constraints. The quadratic penalty
function Q(x;µ) penalizes constraint violations by squaring the in-
feasibilities and scaling them by 1/(2µ), however, the approximate
minimizers xk of Q(x;µk) do not quite satisfy the feasibility condi-
tions d(x) = 0. Instead, they are perturbed slightly to approximately
satisfy

d(xk) = −µkλ
∗. (2.14)

To be sure, this perturbation vanishes as µk → 0. We can alter the
function Q(x;µk) to avoid this systematic perturbation, that is, to
make the approximate minimizers more nearly satisfy the equality
constraints d(x) = 0. By doing so, we may avoid the need to de-
crease µ to zero, and thereby avoid the ill conditioning and numeri-
cal problems associated with Q(x;µ) for small values of this penalty
parameter.

The augmented Lagrangian function LA(x, λ, µ) for the equal-
ity constrained problem achieves these goals by including an ex-
plicit estimate of the Lagrange multipliers λ in the objective.

LA(x, λ, µ) = f(x)−

q∑

i=1

λidi(x) +
1

2µ

q∑

i=1

d2i (x) (2.15)

We see that the augmented Lagrangian differs from the (stan-
dard) Lagrangian, in Eq (2.8), by the presence of the squared terms,
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while it differs from the quadratic penalty function, in Eq (2.10), in
the presence of the summation term involving λ. In this sense, it is
a combination of the Lagrangian and quadratic penalty functions.
We also have to update λ, so that they approximate λ∗, which is
the λ that minimizes LA(x, λ, µ). For that we can use the following
equation:

λk+1
i = λk

i −
di(xk)

µk

, i = 1, . . . , q (2.16)

To understand that result, consider the problem given by (2.4).
Its KKT conditions are given by:

∇f(x∗) +

q∑

i=1

λ∗
i∇di(x

∗) = 0 (2.17)

Now if we take the KKT condition of the problem defined by
(2.15) we get:

∇f(x̄) +

q∑

i=1

∇di(x̄)(λi −
di(x̄)

µ
) = 0 (2.18)

The problems (2.17) and (2.18) are equivalent, we can re-
place the term λi −

di(x̄)
µ

by λ̄i and get the same condition as the
previous problem, so

x̄ → x∗ (2.19a)

λ̄ → λ∗ (2.19b)

λk+1
i = λk

i −
di(x̄)

µk

(2.19c)

which is exactly Equation (2.16) with x̄ = xk.
When the problem formulation contains general inequality

constraints, as in formulation (2.5), we can convert it to a problem
with equality constraints and bound constraints by introducing slack
variables s and replacing the inequalities c(x) ≥ 0, by:

c(x)− s = 0, s ≥ 0 (2.20)

By defining the augmented Lagrangian in terms of the constraints
c(x) − s = 0 and applying the bound constraints s ≥ 0 explicitly,
we obtain the following subproblem to be solved at iteration k of



32 Chapter 2. Mathematical Fundaments

Algorithm 3: Augmented Lagrangian

input: starting parameters µ0 > 0, tolerance τ > 0,
starting point xs

0 and λ0

for k := 0, 1, 2, . . . do
find an approximate minimizer xk of LA(:;λ

k, µk)
starting at xs

k

if ||∇xLA(x;λ
k;µk)|| ≤ τ then

stop with an approximate solution xk;
update Lagrange multipliers using (2.16) to obtain
λk+1

choose the next penalty factor: µk+1 ∈ (0, µk);
update the starting point for the next iteration to
xs
k+1 = xk

output: xs
k

Algorithm 3.

min
x,s

f(x)−

p∑

i=1

λk
i (ci(x)− si) +

1

2µ

p∑

i=1

(ci(x)− si)
2 (2.21a)

subject to

s ≥ 0 (2.21b)

2.1.2 Gradient Projection

Gradient projection methods use a feasible direction obtained
by solving a subproblem with quadratic cost. While the subproblem
may be more complex, the resulting convergence rate is typically
better [8]. Gradient projection methods for minimizing a continu-
ously differentiable mapping f : R

n → R on a nonempty closed
convex set Ω ∈ R

n were originally proposed in [9, 10]. It is helpful
to study the general problem

min{f(x) : x ∈ Ω}, (2.22)

because it clarifies the underlying structure of the algorithms. Most
of the current interest in projected gradient has been concerned
with the case where Ω is defined by the bound constraints:

Ω = {x ∈ R
n : l ≤ x ≤ u} (2.23)
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Given an inner product norm ‖ · ‖ and a nonempty closed
convex set Ω, the projection into Ω is the mapping P : Rn → Ω
defined by P (x).

P (x) = argmin{‖z − x‖ : z ∈ Ω}. (2.24)

Given the projection P into Ω, the gradient projection algorithm is
defined by

xk+1 = P (xk − αk∇f(xk)) (2.25)

where αk > 0 is the step, and ∇f is the gradient of f with respect
to the inner product associated with the norm ‖ · ‖.

The simplest gradient projection method is a feasible direc-
tion method of the form

xk+1 = xk + αk(x̄k − xk) (2.26)

where
x̄k = [xk − sk∇f(xk)]+. (2.27)

In this equation, [·]+ denotes projection on the set Ω, αk ∈ (0, 1] is
a setpsize, and sk is a positive scalar. So, to obtain the vector x̄k we
take a step −sk∇f(xk) along the negative gradient, then project the
result xk−sk∇f(xk) on Ω. Finally, we take a step along the feasible
direction (x̄k − xk) using the stepsize αk.

The scalar sk can also be view as a stepsize. When αk = 1 for
all k, then xk+1 = x̄k and the method becomes

xk+1 = [xk − sk∇f(xk)]+. (2.28)

If xk − sk∇f(xk) is feasible, the gradient projection iteration
becomes an unconstrained steepest descent iteration. Note that we
have x∗ = [x∗−s∇f(x∗)]+ for all s > 0 if and only if x∗ is stationary.
Thus the method only stops if and only if it encounters a stationary
point.

In order for the method to make practical sense, the projec-
tion operation need to be simple. This happens if Ω has a simple
structure. For example

Ω = {x|αi ≤ xi ≤ βi, i = 1, . . . , n} (2.29)

the i-th coordinate of the projection of a vector x is given by

[x]+ =





αi if xi ≤ αi

βi if xi ≥ βi
xi otherwise

(2.30)
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There are several stepsize selection procedures in the gradi-
ent projection method. The Limited Minimization Rule sets sk con-
stant; that is

sk = s : constant, k = 0, 1, . . . (2.31)

and αk is chosen by minimization over [0, 1]; that is

f(xk + αk(x̄k − xk)) = min
α∈[0,1]

f(xk + α(x̄k − xk)). (2.32)

The Armijo Rule Along the Feasible Direction uses a constant sk as
depicted in Equation (2.31), but αk is chosen by the Armijo rule
over the interval [0, 1]. In particular, for fixed scalars β and σ ∈ (0, 1),
we set αk = βmk , where mk is the smallest nonnegative integer m
for which

f(xk)− f(xk + βm(x̄k − xk)) ≥ −σβm∇f(xk)′(x̄k − xk). (2.33)

A variation of the Armijo rule is the Armijo Rule Along the
Projection Arc. Here the stepsize αk is fixed at 1.

αk = 1, k = 0, 1, . . . (2.34)

and the stepsize sk is determined by successive reduction until an
Armijo-like inequality is satisfied. This means that xk+1 is deter-
mined by ther Armijo-like search on the projection arc

{xk(s)|s > 0} (2.35)

where, for all s > 0, xk(s) is defined by

xk(s) = [xk − s∇f(xk)]+. (2.36)

In particular, for fixed scalars with s̄ > 0, β and σ ∈ (0, 1), we set
sk = βmk s̄, where mk is the smallest nonnegative integer m for
which

f(xk)− f(xk(βms̄)) ≥ −σβm∇f(xk)′(xk − xk(βms̄)) (2.37)

We can also use both parameters constant for all k, with

sk = s constant (2.38a)

αk = 1 (2.38b)
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To check the convergence rate of the method we assume f to
be a quadratic function

f(x) =
1

2
x′Qx− b′x (2.39)

where Q is positive definite, and let x∗ denote the unique minimum
of f over Ω. We consider the case of constant setpsize (αk = 1 and
sk = s for all k), then

||xk+1 − x∗|| = ||[xk − s∇f(xk)]+ − [x∗ − s∇f(x∗)]+||

≤ ||xk − s∇f(xk)− (x∗ − s∇f(x∗))||

= ||(I − sQ)(xk − x∗)||

= max{|1− sm|, |1− sM |}||xk − x∗||

(2.40)

where m and M are the minimum and maximum Eigenvalues of
Q. We conclude that the gradient projection method suffers from a
slow convergence rate, since Equation (2.40) is precisely the rate
of convergence estimate obtained for the unconstrained steepest
descent method with constant setpsize [8].

2.2 MODEL PREDICTIVE CONTROL

Model predictive control (MPC) is an advanced method of
process control that has been in use in the process industries, chem-
ical plants and oil refineries since the 1980s. The main reasons for
its popularity are the constraint-handling capabilities and the easy
extension to multivariable processes. From the academic side the
interest in MPC mainly came from the field of self-tuning control.
Model predictive controllers rely on dynamic models of the process,
most often linear empirical models obtained by system identifica-
tion. The main advantage of MPC is the fact that it allows the cur-
rent timeslot to be optimized, while keeping future timeslots in ac-
count. This is achieved by optimizing over a finite time-horizon, but
only implementing the current timeslot. MPC has the ability to an-
ticipate future events and can take control actions accordingly. PID
and LQR controllers do not have this predictive ability. MPC is based
on iterative, finite-horizon optimization of a plant model.

At time t the current plant state is sampled and a cost mini-
mizing control strategy is computed (via a numerical minimization
algorithm) for a relatively short time horizon in the future: [t, t+T ].
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An online calculation is used to find a cost-minimizing control strat-
egy until time t + T . Only the first step of the control strategy is
implemented, then the plant state is sampled again and the calcu-
lations are repeated starting from the new current state, yielding a
new control and new predicted state path. As all controller design
methodologies, MPC also has its drawbacks:

• A detailed process model is required. This means that either
one must have a good insight in the physical behavior of the
plant or system identification methods have to be applied to
obtain a good model.

• The methodology is open, and many variations have led to a
large number of MPC methods.

• Although, in practice, stability and robustness are easily ob-
tained by accurate tuning, theoretical analysis of stability and
robustness properties are difficult to derive.

Model predictive control techniques give flexibility in the op-
eration of unit processes by adjustment of the control structure
on the basis of given controller objectives, specified operating con-
straints and actual operating conditions. Model predictive control
techniques allow for adjustment of controlled process characteris-
tics in accordance with actual demands.

The model predictive control techniques together with in-line
model-based optimization techniques enable the operation of unit
processes so that undesired dynamic behavior are compensated for
and that the process outputs approximate the desired behavior. The
compensation of non-desired dynamic behavior is restricted by the
internal mechanisms of the process and by limitations stemming
from the controller. MPC is rather a methodology than a single tech-
nique. The difference in the various methods is mainly the way the
problem is translated into a mathematical formulation, so that the
problem becomes solvable in the limited time interval available for
calculation of adequate process manipulations in response to exter-
nal influences on the process behavior (disturbances). However, in
all methods, five important items are part of the design procedure:

• Process model and disturbance model.

• Performance index.

• Constraints.
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• Optimization.

• Receding horizon principle.

Linear models are mostly chosen to represent processes. On
the basis of the model a prediction of the process signals over a
specified horizon is made. The state space description is the most
general system description, it is well suited for multivariable sys-
tems, while still providing a compact model description. The com-
putations are usually well conditioned and the algorithms easy to
implement.

An important difference between Model Predictive control
(MPC) and PID-kind design-methods is the explicit use of a model.
This aspect is both the advantage and the disadvantage of MPC.
The advantage is that the behavior of the controller can be studied
in detail, simulations can be made and possible failures in plant or
controller can be well-detected. The disadvantage is that a detailed
study of the plant behavior has to be done before the actual MPC-
design can be started. Most of work for MPC is in modelling and
identification of the plant. The models applied in MPC serve two
purposes:

• Prediction of expected future process output behavior on the
basis of inputs and known disturbances applied to the process
in the past.

• Calculation of the next process input signal that minimizes the
controller objective function.

The models required for these tasks do not necessarily have to be
the same. The model applied for prediction may differ from the
model applied for calculation of the next control action. In practice
though both models are almost always chosen to be the same [11].

An example of a non-linear performance-index or cost func-
tion for optimization is given by:

J =

N∑

i=1

wxi
(ri − xi)

2 +

N∑

i=1

wui
u2
i (2.41)

where xi is the i-th controlled variable, ri is the i-th reference vari-
able, ui is the i-th manipulated variable, wxi

is the weighting coeffi-
cient reflecting the relative importance of xi and wui

is the weight-
ing coefficient penalizing relative big changes in ui. In practice in-
dustrial processes are subject to constraints.
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Specific signals must not violate specified bounds due to safe-
ty limitations, environmental regulations, consumer specifications
and physical restrictions such as minimum and/or maximum tem-
perature, pressure, level limits in reactor tanks and flows in pipes.
Careful tuning of the controller parameters may keep these values
away from the bounds. However, because of economical motives,
the control system should drive the process towards the constraints
as close as possible, without violating them: Closer to limits in gen-
eral often means closer to maximum profit. Therefore, predictive
control employs a more direct approach by modifying the optimal
unconstrained solution in such a way that constraints are not vio-
lated. This can be done using optimization techniques such as linear
programming (LP) or quadratic programming (QP) techniques.

In most cases the constraints can be translated in bounds on
control, state or output signals. An optimization algorithm will be
applied to compute a sequence of future control signals that min-
imizes the performance index subject to the given constraints. For
linear models with linear constraints and a quadratic performance
index the solution can be found using quadratic programming algo-
rithms. In some cases, the optimization problem will have an empty
solution set, so the problem is not feasible. In that case we will have
to relax one or more of the constraints to find a solution leading to
an acceptable control signal.

Predictive control uses the receding horizon principle. This
means that after computation of the optimal control sequence, only
the first control sample will be implemented, subsequently the hori-
zon is shifted one sample and the optimization is restarted with
new measurements. At time k the future control sequence given by
{u(k|k), . . . , u(k+N−1|k)} is optimized such that the performance-
index J is minimized subject to constraints. At time k the first ele-
ment of the optimal sequence (u(k) = u(k|k)) is applied to the real
process. At the next time instant the horizon is shifted and a new
optimization at time k + 1 is solved.

Because of the computational complexity of the centralized
MPC, the application area of this type of control is restricted to
only relatively small-scale MIMO systems. A distributed approach
(DMPC) seems to be the only solution for large-scale dynamically
coupled systems. The DMPC is structured as a decentralized law,
with a local controller for each subsystem. To achieve better closed-
loop control performance, some level of communication may be
established between the different controllers, which leads to dis-
tributed model predictive control. With respect to the DMPC algo-
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rithms available in the literature, a classification can be made ac-
cording to the topology of the communication network, the differ-
ent communication protocols used by the local controllers, and the
cost function considered in the local controller optimization prob-
lem [4].

Within the wide set of distributed MPC algorithms proposed
in the literature, a classification can be made depending on the
topology of the communication network. Specifically, the following
cases can be considered:

• information is transmitted (and received) from any local reg-
ulator to all the others (fully connected algorithms);

• information is transmitted (and received) from any local regu-
lator to a given subset of the others (partially connected algo-
rithms).

A partially connected information structure can be convenient in
the case of large scale systems made by a great number of loosely
connected subsystems. In these cases, restricting the information
exchange among directly interacting subsystems produces a negligi-
ble performance deterioration. The exchange of information among
local regulators can be made according to different protocols:

• information is transmitted (and received) by the local regula-
tors only once within each sampling time (noniterative algo-
rithms);

• information can be transmitted (and received) by the local
regulators many times within the sampling time (iterative al-
gorithms).

It is apparent that the amount of information available to the lo-
cal regulators with iterative algorithms is higher, so that an overall
iterative procedure can be set-up to reach a global consensus on
the actions to be taken within the sampling interval. To this regard
however, a further classification has to be considered:

• distributed algorithms where each local regulator minimizes a
local performance index (independent algorithms);

• distributed algorithms where each local regulator minimizes a
global cost function (cooperating algorithms).
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2.3 SUMMARY

In this chapter we reviewed some concepts of optimization.
We showed three classes of optimization problems, the unconstrai-
ned optimization, equality contrained optimization and inequality
constrained optimization. Futhermore we expanded those cases to
a generalized optimization problem and explored optimality condi-
tions known as the KKT-conditions.

With this review we can advance and showcase algorithm to
solve problems of concern. We demonstrated three differents algo-
rithms and explained their own particularity, similarities and dis-
tinctions between each other, especially the Augmented Lagragian,
which is the focus of this dissertation. Shortly thereafter the gra-
dient projection method was introduced, a powerful algorithm to
solve optimization problems.

Finally, a review of Model Predictive Control was presented,
developing its fundamentals which are essential to the development
of this dissertation.



3 PROBLEM DEFINITION

In this chapter we show how to formulate a problem into a
Linear Dynamic Network, which has many advantages, such as the
simplicity in its decomposition and as such the simplicity in creating
a distributed problem. This chapter also presents how to define a
MPC problem as a LDN.

3.1 LINEAR DYNAMIC NETWORK (LDN)

A linear dynamic network is a directed graph G = (V, E),
where V = {1, . . . , n} is the vertices and E ⊆ V × V is the arcs,
whose nodes model subsystems and whose arcs represent the direct
influence between subsystems. The set I(i) = {j : (j, i) ∈ E} ∪ {i}
is the input neighborhood of subsystem i which contains the subsys-
tems that affect its dynamics. The LDN depicted in Figure 3.1 has
n = 6 nodes where I(1) = {1} and I(3) = {2, 3, 6}. The state of
subsystem i are xi ∈ R

ni while its controls are ui ∈ R
pi . The state

of subsystem i is governed by discrete-time linear dynamics:

xi(t+ 1) = Aixi(t) +
∑

j∈I(i)

Bi,juj(t). (3.1)

This is a simplified form of the dynamics treated in [12, 5, 7]
which allow for the state of the upstream subsystems to affect down-
stream subsystems. Because such an extension will require the dis-
tributed subsystems to consider more distant subsystems depending
on the length of the prediction horizon, this work assumes the sim-
plified dynamics to keep the presentation simple. The LDN with
dynamic equation (3.1) can model urban traffic networks [1, 13]
with the state of a subsystem (intersection) being the incoming ve-
hicles queues, which evolve depending on green-time signals at the
downstream and upstream subsystems.

Given the state of subsystem i at time t and the future control
signals in the input neighborhood, the state of subsystem i over the
time horizon is given by:

x̂i = Âixi(t) +
∑

j∈I(i)

B̂i,jûj (3.2)

where x̂i = (xi(t + 1), . . . ,xi(t + T )), ûi = (ui(t), . . . ,ui(t + T −

1)) are vectors, and Âi and B̂i,j are matrices obtained from the

41
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dynamics (3.1) in a straightforward manner [14]. Observe that the
state of subsystem i at instant k is a function of control and state
signals from before k.

xi(k) = Ak
i xi(0) +

k∑

l=1

∑

i∈I{i}

Al−1
i Bi,jui(k − l). (3.3)

Using the previous equation, Âi and B̂i,j are given by:

Âi =




Ai

A2
i

...
AT

i




,

B̂i,j =




Bi,j 0 0
... 0

AiBi,j Bi,j 0
... 0

...
...

...
...

...
AT−1

i Bi,j AT−2
i Bi,j AT−3

i Bi,j . . . Bi,j




.

3.2 MODEL PREDICTIVE CONTROL OF LDN

Given the network state x(t) = (x1, . . . ,xn)(t) at time t, we
consider the MPC regulation of an LDN which solves the following
quadratic program at each sample time:

P : min
u

n∑

i=1

t+T−1∑

k=t

1

2
(xi(k + 1)′Qixi(k + 1))

+
1

2
(ui(k)

′Riui(k)) (3.4a)

and subject to:

for all i ∈ V, k = t, . . . , t+ T − 1 :

xi(k + 1) = Aixi(k) +
∑

j∈I(i)

Bi,juj(k) (3.4b)

Xixi(k + 1) ≤ xmax
i (3.4c)

∑

j∈I(i)

Ui,juj(k) ≤ umax
i (3.4d)
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2 3 61 5 4

Figure 3.1: Linear dynamic network..

where T is the length of the prediction horizon, matrices Qi =
Q′

i � 0, Ri = R′
i ≻ 0, matrix Xi and vector xmax

i define state con-
straints, and matrix Ui,j and vector umax

i define input constraints.
P is solved at each sample time t, but only ui(t) is implemented for
the time interval [t, t + 1)τ , with τ being the sample interval. At the
next sample time, P is solved from time t + 1 to t + T + 1 and the
process is repeated. Problem P can be recast as:

P : min f(û) =
1

2

∑

i∈V

∑

j∈I(i)

∑

l∈I(i)

û′
jĤi,j,lûl

+
∑

i∈V

∑

j∈I(i)

ĝ′
i,jûj +

∑

i∈V

ĉi (3.5a)

while being subject to:

∑

j∈I(i)

X̂i,jx̂j ≤ x̂bd
i , ∀i ∈ V (3.5b)

∑

j∈I(i)

Ûi,jûj ≤ ûbd
i , ∀i ∈ V (3.5c)

where: û = (ûi : i ∈ V ) collects the predictions of all control signals;
Ĥi,j,l is a matrix given by B̂′

i,jQ̂iB̂i,j + R̂i, ĝi,j is a vector given by

B̂′
i,jQ̂iÂixi(0), and ĉi is a constant, all obtained from the structure

of P as detailed in [14, 7]; X̂i,j = X̂iB̂i,j and X̂i is block-diagonal
with T blocks of matrix Xi; x̂bd

i = x̂max
i − X̂iÂixi(t) and x̂max

i is
a vector with T stacked copies of xmax

i ; Ûi,j is block-diagonal con-
taining T blocks of matrix Ui,j; and ûbd

i is a vector with T stacked
copies of umax

i .
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Problem P is expressed in a compact and equivalent form:

P : min f(û) =
1

2

∑

i∈V

∑

j∈I(i)

∑

l∈I(i)

û′
jĤi,j,lûl

+
∑

i∈V

∑

j∈I(i)

ĝ′
i,jûj +

∑

i∈V

ĉi (3.6a)

while being subject to:

∑

j∈I(i)

Ẑi,jûj + ŝi = ẑbd
i , ∀i ∈ V (3.6b)

ŝi ≥ 0, ∀i ∈ V (3.6c)

where Ẑi,j =
[
X̂′

i,j Û
′
i,j

]′
, ẑbd

i =
[
x̂bd
i

′ ûbd
i

′
]
′, and ŝi is the vector of

slack variables. Notice that P given by (3.4) is DCCC, whereas the
forms given by (3.5) and (3.6) are CCCC [5].

Remark. f(û) is strictly convex.

Remark. P is convex.

3.3 PROBLEM DECOMPOSITION

This work is about decomposing P into a set {Pi : i ∈ V } =
{Pi} of subproblems which are then solved by a network of dis-
tributed agents, one for each subsystem. For any agent i, let:

• O(i) = {j : i ∈ I(j)} be the output neighborhood, the subsys-
tems affected by subsystem i;

• C(i) = {j : ∃ l 6= i, j such that i, j ∈ I(l)} \ (I(i) ∪ O(i)) be
the indirect neighborhood, the subsystems j not coupled with
subsystem i which affect a subsystem l affected by i;

• N(i) = (I(i) ∪O(i) ∪ C(i)) \ {i} be the neighborhood;

• N+(i) = N(i) ∪ {i} be the extended neighborhood.

For the LDN of Figure 3.1, subsystem 2 has I(2) = {1, 2}, O(2) =
{2, 3}, C(2) = {6}, N(2) = {1, 3, 6}, and N+(2) = {1, 2, 3, 6}. From
the view of agent i, the network variables are split in:
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• local variables: the vector ûi of variables exclusively defined
by agent i;

• neighborhood variables: the vector ŷi = (ûj : j ∈ N(i)) of
variables set exclusively by the agents in the neighborhood;

• shared variables: the vector ẑi = (ŝj : j ∈ O(i)) with the slack
variables of the constraints in the output neighborhood that
are affected by agent i’s decisions;

• remote variables: r̂i = (ûj : j 6∈ N+(i), ŝj : j 6∈ O(i)) with all
of the other variables.

Let v̂ = (û, ŝ) collect all of the decision variables over the
prediction horizon. This agent view induces a perfect problem de-
composition, whereby v̂ = (ûi, ŷi, ẑi, r̂i) and Pi is:

Pi(ŷi) : min
ûi, ẑi

fi(v̂i, ẑi; ŷi) =
1

2
û′
iĤiûi + ĝ′

iûi + ĉi (3.7a)

s.t. :
∑

l∈I(j)

Ẑj,lûl − ẑbd
j + ŝj = 0, j ∈ O(i) (3.7b)

ŝj ≥ 0, j ∈ O(i) (3.7c)

where ĝi =
∑

j∈O(i) ĝj,i +
1
2

∑
j∈O(i)

∑
l∈I(j)\{i}(Ĥ

′
j,l,i + Ĥj,i,l)ûl

and Ĥi =
∑

j∈O(i) Ĥj,i,i. The direct optimization of the problem
set {Pi} will not be effective: any agent i attempting to solve Pi(ŷi)
may not be able to reduce the objective value due to the coupling
constraints (3.7b)-(3.7c). Instead, a series of sign-constrained prob-
lems approximating {Pi} will be solved with the Lagrangian dual
method [8, 15]. The decomposition is convenient to establish the
relationship between the centralized problem P and a consistent
set of subproblems {Pi}. However, the problems Pi can be defined
directly whereby P is the result of the composition of {Pi}.

3.4 SUMMARY

This chapter presented the development of a Linear Dynamic
Network, how it can be used to represent linear systems with a net-
work structure, so that it can better show how the system works
and how the subsystems interact with eachother. With the knowl-
edge previously acquired it is shown how to apply the same control
methods for linear systems, the MPC seen in the previous chapter
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in specific, which can be accomplished with the developments and
tools presentend in Section 3.2. To end the chapter it is presented
one of the great advantages of LDN, the decomposition of the prob-
lem, in Section 3.3 that feature is explored, introducing key con-
cepts, such as neighborhood, and the tools needed for it.



4 DISTRIBUTED DUAL OPTIMIZATION ALGORITHM

The distributed algorithm for solving {Pi} follows the aug-
mented Lagrangian method. Lagrange multipliers and penalty fac-
tors for the constraints define a signed-constrained approximation
which is solved by the subsystem agents with a distributed gradient-
projection algorithm.

4.1 AUGMENTED LAGRANGIAN

The augmented Lagrangian is not the same as the method
of Lagrange multipliers. Viewed differently, the unconstrained ob-
jective is the Lagrangian of the constrained problem, with an addi-
tional penalty term (the augmentation). These methods were used
in structural optimization. The method was also studied by Dim-
itri Bertsekas, notably in his book [16], together with extensions
involving nonquadratic regularization functions, such as entropic
regularization, which gives rise to the "exponential method of mul-
tipliers," a method that handles inequality constraints with a twice
differentiable augmented Lagrangian function. Since the 1970s, se-
quential quadratic programming (SQP) and interior point methods
(IPM) have had increasing attention, in part because they more
easily use sparse matrix subroutines from numerical software li-
braries, and in part because IPMs have proven complexity results via
the theory of self-concordant functions. The augmented Lagrangian
method was rejuvenated by the optimization systems LANCELOT
and AMPL, which allowed sparse matrix techniques to be used on
seemingly dense but "partially separable" problems. The augmented
Lagrangian method is generally preferred to the quadratic penalty
method since there is little extra computational cost and the param-
eter µ need not go to infinity, thus avoiding ill-conditioning.

The Lagrange multiplier vector λ̂i and penalty factor µ > 0
are associated with the constraint (3.6b), for each i ∈ V , to obtain

47
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the augmented Lagrangian of P :

L(v̂; λ̂, µ) =
1

2

∑

i∈V

∑

j∈I(i)

∑

l∈I(i)

û′
jĤi,j,lûl +

∑

i∈V

∑

j∈I(i)

ĝ′
i,jûj

+
∑

i∈V

λ̂′
i


 ∑

j∈I(i)

Ẑi,jûj − ẑbd
i + ŝi




+
1

2µ

∑

i∈V

‖
∑

j∈I(i)

Ẑi,jûj − ẑbd
i + ŝi‖

2 +
∑

i∈V

ĉi (4.1)

where λ̂ = (λ̂i : i ∈ V ).

Remark. L(v̂; λ̂, µ) is a convex function on v̂.

The algorithm yields a series (v̂, λ̂, µ)(k) converging to the
optimal solution v̂⋆ of P and the corresponding optimal Lagrange
vector λ̂⋆. Let λ̂(k) be the Lagrange vector, µ(k) be the penalty fac-
tor, and v̂(k) be the minimizer of L at iteration k. From [15, pp.
513-515], an analysis of the equation ∇v̂L = 0 leads to an approxi-
mation of the optimal Lagrange multipliers:

λ̂⋆
i ≈ λ̂

(k)
i +


 ∑

j∈I(i)

Ẑi,jûj − ẑbd
i


 /µ(k).

By rearranging this equation, an approximation is obtained for the
penalty factor:

µ(k)(λ̂⋆
i − λ̂

(k)
i ) ≈


 ∑

j∈I(i)

Ẑi,jûj − ẑbd
i


 .

When λ̂(k) is close to λ̂⋆, this equation shows that the infeasibility
of the current iterate v̂(k) is much smaller than µ(k), not just pro-
portional to µ(k) as in penalty algorithms.

These ideas lead to a dual method for solving problem P : giv-
en (λ̂(k), µ(k)), find the minimizer v̂(k) of L; update the Lagrange
multipliers using the approximations above and reduce the penalty
factor to obtain (λ̂(k+1), µ(k+1)); repeat these steps until conver-
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gence. Algorithm 4 formalizes the dual method, whose most de-
manding step is the Lagrangian subproblem:

LM : min
v̂

L(v̂; λ̂, µ) (4.2a)

s.t. : ŝ ≥ 0. (4.2b)

Algorithm 4: Augmented Lagrangian Algorithm

input: starting parameters µ(0) > 0, λ̂(0), and v̂s;
for k := 0, 1, 2, . . . do

find an approximate solution v̂(k) = (û, ŝ)(k) to the
problem starting at v̂s:

min
v̂ : ŝ≥0

L(v̂; λ̂(k), µ(k)).

if convergence is attained then

stop with an approximate solution v̂(k);
update the Lagrange multipliers for all i ∈ V :

λ̂
(k+1)
i := λ̂

(k)
i +


 ∑

j∈I(i)

Ẑi,jûj − ẑbd
i


 /µ(k);

choose the next penalty factor: µ(k+1) ∈ (0, µ(k));
update the starting point: v̂s := v̂(k);

output: v̂(k)

4.2 GRADIENT PROJECTION METHOD (GPM)

The gradient projection method (GPM) can solve LM as fol-
lows. Given a feasible v̂(r) for LM at iteration r, GPM generates the
next point with the iteration:

v̂(r+1) = v̂(r) + α(r)d̂(r) (4.3)

where α(r) ∈ (0, 1] is the step length in the direction d̂(r) defined
as:

d̂(r) =
[
v̂(r) − s∇L(v̂(r))

]+
− v̂(r) (4.4)
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where s > 0 and [v̂]+ denotes the projection of v̂ onto the feasible
space V = {v̂ : ŝ ≥ 0}. Actually, the iteration counter for GPM
should be (k, r) since a sequence {v̂(k,r)}∞r=0 is produced for each
iteration k, which is omitted to keep notation simple. Thus, k is the
outer whereas r is the inner iteration counter. Although the parame-
ter s can change from one inner iteration to the next, it is assumed
constant and typically equal to 1 to simplify the convergence proof.
The projection of a vector v̂ onto a convex set V is defined as:

[v̂]+ = argmin
ṽ∈V

‖ṽ− v̂‖2. (4.5)

The direction d̂(r) defined in Eq. (4.4) is a feasible descent direc-
tion for a nonstationary1 point v̂(r) because ∇L(v̂(r))′d̂(r) < 0 and
(v̂(r) + αd̂(r)) ∈ V for all sufficiently small α > 0. Notice that v̂⋆ is
optimal for LM if and only if v̂⋆ = [v̂⋆ − s∇L(v̂⋆)]

+ ([8, pp. 203-
204]).

At each iteration r, GPM projects the gradient onto the feasi-
ble space to define d̂(r) and then finds a suitable step α(r). Notice
that GPM is solved very efficiently for the problem at hand: [v̂]+ is
easily computed by setting to 0 all of the negative entries of v̂ as-
sociated with the slack variables ŝ. A popular strategy for choosing
the step length is the Armijo rule which defines α(r) = γl(r) where
γ ∈ (0, 1), σ ∈ (0, 1), and l(r) ∈ {0, 1, . . .} is the least nonnegative
integer for which

L(v̂(r) + γl(r)d̂(r)) ≤ L(v̂(r)) + σγl(r)∇L(v̂(r))′d̂(r).

The iterative GPM of Eq. (4.3) yields a series {v̂(r)} converg-
ing to the optimum v̂⋆, if d̂(r) is given by gradient projection and
α(r) is defined by the Armijo rule [8, Prop. 2.3.1].

4.3 DISTRIBUTED MODEL FOR LAGRANGIAN MINIMIZATION

Here, LM is decomposed into a set {LMi} of subproblems,
one for each subsystem, following Pi in the form (3.7a)-(3.7c). For
some i and j ∈ O(i), constraint (3.7b) is recast as:

Ẑj,iûi +
∑

l∈I(j)\{i}

Ẑj,lûl − ẑbd
j + ŝj = Ẑj,iûi + ẑbd

j,i + ŝj = 0

1Point v̂ is stationary if it satisfies first-order optimality condi-
tions for LM .
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where ẑbd
j,i =

∑
l∈I(j)\{i} Ẑj,lûl − ẑbd

j . From this equation and the
structure of Pi, LMi becomes:

LMi(ŷi, Λ̂i, µ) : min
ûi, ẑi

Li =
1

2
û′
iĤiûi + ĝ′

iûi + ĉi

+
∑

j∈O(i)

λ̂′
j(Ẑj,iûi + ẑbd

j,i + ŝj)

+
1

2µ

∑

j∈O(i)

‖Ẑj,iûi + ẑbd
j,i + ŝj‖

2 (4.6a)

s.t. : ŝj ≥ 0, j ∈ O(i) (4.6b)

where Λ̂i = (λ̂j : j ∈ O(i)) has the Lagrange multipliers of the
constraints of all subsystems with which subsystem i is coupled. For
a subsystem i, define the following:

H̃i = Ĥi +
1

µ

∑

j∈O(i)

Ẑ′
j,iẐj,i,

c̃i = ĉi +
∑

j∈O(i)

(
λ̂′
j ẑ

bd
j,i +

1

2µ
‖ẑbd

j,i‖
2

)
,

g̃i = ĝi +
∑

j∈O(i)

(
1

µ
Ẑ′
j,iz

bd
j,i + Ẑ′

j,iλ̂j

)
,

b̃i,j = λ̂j +
1

µ
ẑbd
i,j.

Then, LMi is put in a compact form in terms of the local control
signals and shared variables:

min
θ̂i

Li =
1

2
û′
iH̃iûi + g̃′

iûi +
1

µ

∑

j∈O(i)

û′
iZ

′
j,iŝj

+
∑

j∈O(i)

(
b̃′
i,j ŝj +

1

2µ
‖ŝj‖

2

)
+ c̃i (4.7)

while being subject to ẑi = (ŝj : j ∈ O(i)) ≥ 0 and where θ̂i =
(ûi, ẑi). Notice that LMi is obtained from LM by dropping from the
objective all of the terms that do not depend on θ̂i and removing all
of the constraints not affected by θ̂i.

Remark. LMi is a convex problem on θ̂i.
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4.4 DISTRIBUTED GPM

Here, a distributed gradient projection algorithm is demon-
strated to solve {LMi : i ∈ V } with a network of agents, whereby
only the nonneighboring agents revise their decisions in each iter-
ation r. The algorithm behaves like centralized GPM with the pro-
jected gradient being split into subvectors that are not coupled in
LM , each one for the local and shared variables of a particular
agent.

Definition 1. Given an iterate v̂(r) and tolerance τ ≥ 0, V (r) ⊆ V is
a set of nonconflicting and nonoptimal agents if:

• for all i, j ∈ V (r), i 6∈ N(j) and j 6∈ N(i), meaning that the
agents belonging to V (r) are decoupled with respect to the objec-
tive and constraints of LM ;

• ‖[θ̂
(r)
i − s∇

θ̂i

Li(θ̂
(r)
i )]+ − θ̂

(r)
i ‖2 > τ/|V |, ∀i ∈ V (r), i.e., the

current iterate does not solve LMi approximately.

Given a feasible point θ̂(r)
i for LMi at iteration r, agent i gen-

erates its next point as:

θ̂
(r+1)
i = θ̂

(r)
i + α

(r)
i d̂

(r)
i (4.8)

where α
(r)
i ∈ (0, 1] is the step length in the direction d̂

(r)
i defined by

gradient projection as:

d̂
(r)
i =

[
θ̂
(r)
i − s∇Li(θ̂

(r)
i )

]+
− θ̂

(r)
i (4.9)

where s > 0 and [θ̂i]
+ is θ̂i’s projection onto the feasible space

Vi := {θ̂i : ẑi ≥ 0} of agent i.
The distributed gradient-projection method for solving prob-

lems {LMi} appears in Algorithm 5. In each iteration r, the al-
gorithm selects a group of nonconflicting and nonoptimal agents
which apply the gradient-projection method to their subproblems.
Algorithm 5 can be shown to converge to the optimal solution v̂⋆

of LM with tolerance τ = 0. The proof is based on an analysis of
the feasible directions {d̂(r)} obtained by stacking the feasible direc-
tions {d̂(r)

i : i ∈ V (r)} of the agents that iterate, while the entries of
the remaining variables are all zero, i.e., the variables not appearing
in θ̂i, ∀i ∈ V (r).
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Algorithm 5: Distributed Gradient Projection Method

input: Lagrange vector λ̂, penalty µ, initial solution v̂s,
tolerance τ , and line search parameters s, σ, and γ

set v̂(0) := v̂s;
for r := 0, 1, 2, . . . do

if ‖[v̂(r) − s∇L(v̂(r), λ̂, µ)]+ − v̂(r)‖2 ≤ τ then

return v̂(r)

initialize the next iterate: v̂(r+1) := v̂(r);
let V (r) ⊆ V be a subset of nonconflicting and
nonoptimal agents at v̂(r)

for each agent i ∈ V (r) in parallel do

obtain ŷ
(r)
i and ẑ

(r)
i from neighbors Ni;

compute feasible direction d̂
(r)
i for LMi at θ̂(r)

i ;
set li(r) := 0;

while [Li(θ̂
(r)
i + γli(r)d̂

(r)
i ) >

Li(θ̂
(r)
i ) + σγli(r)∇Li(θ̂

(r))′d̂
(r)
i ] do

set li(r) := li(r) + 1;

update v̂(r+1) by setting θ̂
(r+1)
i := θ̂

(r)
i + γli(r)d̂

(r)
i ;

Suppose that {v̂(r)}r∈R converges to a nonstationary point
ṽ where R is a subsequence of {r}∞r=0. Since {v̂(r)}r∈R converges
to ṽ, so does {θ̂

(r)
i }r∈R to θ̃i for any agent i. By continuity of the

projection operator [·]+, for any i we have:

lim
r→∞,r∈R

d̂
(r)
i = lim

r→∞,r∈R

(
[θ̂

(r)
i − s∇Li(θ̂

(r)
i )]+ − θ̂

(r)
i

)

= [θ̃i − s∇Li(θ̃i)]
+ − θ̃i = [θ̃i − s∇

θ̂i

L(ṽ)]+ − θ̃i

with the last equality from perfect decomposition. Thus,

lim
r→∞,r∈R

(d̂
(r)
i : i ∈ V ) =

(
[θ̃i − s∇

θ̂i

L(ṽ)]+ − θ̃i : i ∈ V
)

which implies the first condition for convergence (see condition
(2.10) of [8, pp.194]):

lim sup
r→∞,r∈R

‖d̂(r)‖ = ‖[ṽ− s∇L(ṽ)]+ − ṽ‖ = ‖d̃‖ < ∞ (4.10)
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because i) the decomposition is perfect, ii) θ̂i = (ûi, ẑi), and iii)
the projection with respect to the shared variables ẑi is identical
on the nonnegative orthant, regardless of which agent i calculates
the projection. From the characteristics of the projection operator
established by Proposition 2.1.3 from [8, pp. 183], for any iterate
v̂(r) and agent i we have that:

(θ̂
(r)
i − s∇Li(θ̂

(r)
i )− φ̂

(r)
i )′(θ̂i − φ̂

(r)
i ) ≤ 0, ∀θ̂i ∈ Vi

where φ̂
(r)
i = [θ̂

(r)
i − s∇Li(θ̂

(r)
i )]+ denotes the projection on Vi. By

manipulating this inequality with θ̂i = θ̂
(r)
i , we obtain:

∇Li(θ̂
(r)
i )′(φ̂

(r)
i − θ̂

(r)
i ) = ∇Li(θ̂

(r)
i )′d̂

(r)
i ≤ −

1

s
‖θ̂

(r)
i − φ̂

(r)
i ‖2

= −
1

s
‖d̂

(r)
i ‖2. (4.11)

At any iteration r, the global direction d̂(r) is given by stacking the
vectors d̂(r)

i and associating them with θ̂i for all i ∈ V (r), while the
remaining entries are set to zero, which are neither local nor shared
variables of the agents i ∈ V (r). Therefore,

∇L(v̂(r))′d̂(r) =
∑

i∈V (r)

∇Li(θ̂
(r)
i )′d̂

(r)
i ≤ −

1

s

∑

i∈V (r)

‖d̂
(r)
i ‖2

= −
1

s
‖d̂(r)‖2.

Taking the limit of this relation, the second condition for conver-
gence is obtained:

lim sup
r→∞,r∈R

∇L(v̂(r))′d̂(r) ≤ −
1

s
‖d̃‖2 = −

1

s

∑

i∈Ṽ

‖d̃i‖
2 < 0 (4.12)

where d̃i = [θ̃i− s∇Li(θ̃i)]
+− θ̃i and Ṽ is any nonoptimal and non-

conflicting subset of agents that iterate at the nonstationary point
ṽ, to which the subseries {v̂(r)}r∈R converges.

Lemma 1. The sequence of feasible directions {d̂(r)} produced by the
gradient projection of the agents that work in each iteration r is gra-
dient related.
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Proof. Because the conditions (2.10) of [8, pp. 194] are ensured
from inequalities (4.10) and (4.12), the sequence of feasible direc-
tions {d̂(r)} is gradient related.

The step length α
(r)
i implemented by each agent i ∈ V (r)

satisfies the Armijo rule:

Li(θ̂
(r)
i + α

(r)
i d̂

(r)
i ) ≤ Li(θ̂

(r)
i ) + σα

(r)
i ∇Li(θ̂

(r)
i )′d̂

(r)
i (4.13)

where α
(r)
i = γli(r) for some li(r) ∈ {0, 1, 2, . . .} computed by Algo-

rithm 5. Let α(r) = min{α
(r)
i : i ∈ V (r)}. Because Li(θ̂

(r)
i + αid̂

(r)
i )

is convex on αi and ∇Li(θ̂
(r)
i )′d̂

(r)
i < 0 , the Armijo rule (4.13) is

satisfied for any αi ∈ (0, α
(r)
i ]. Adding up inequalities (4.13) over

all i ∈ V (r) results in

∑

i∈V (r)

Li(θ̂
(r)
i + α

(r)
i d̂

(r)
i )

≤
∑

i∈V (r)

(
Li(θ̂

(r)
i ) + σα

(r)
i ∇Li(θ̂

(r))′d̂
(r)
i

)

≤
∑

i∈V (r)

(
Li(θ̂

(r)
i ) + σα(r)∇Li(θ̂

(r))′d̂
(r)
i

)

=
∑

i∈V (r)

Li(θ̂
(r)
i ) + σα(r)∇L(v̂(r))′d̂(r).

Let c(r) be the constant corresponding to the part of L(v̂) that does
not depend on (θ̂i : i ∈ V (r)) and evaluated at v̂(r). By adding c(r)

to both sides of this inequality, we obtain:

L(v̂(r) + α(r)d̂(r)) ≤ L(v̂(r)) + σα(r)∇L(v̂(r))′d̂(r). (4.14)

Lemma 2. The step α(r) = min{α
(r)
i : i ∈ V (r)} satisfies the Armijo

rule (4.14) at v̂(r) for the feasible direction d̂(r).

Theorem 1. The sequence {v̂(r)}∞r=0 generated by distributed GPM
converges to an optimal solution v̂⋆ of LM .

Proof. At each iteration r, distributed GPM yields no less decrease
on the augmented Lagrangian L than the centralized descent ap-
proach induced by the aggregated direction d̂(r) with step length
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α(r). Since {d̂(r)}∞r=0 is gradient related by Lemma 1 and α(r) satis-
fies the Armijo rule by Lemma 2, Prop. 2.2.1 of [8] ensures conver-
gence of {v̂(r)}∞r=0 to v̂⋆.

The strategy of inequality (4.13) for finding an acceptable
step length α

(r)
i , meaning one that satisfies the Armijo rule, is also

known as backtracking line search. Other line search strategies can
be used such as the optimal step length α

(r)⋆
i which minimizes

Li(v̂
(r) + αid̂

(r)
i ). The optimal step length α

(r)⋆
i obviously satisfies

the Armijo rule since it induces the maximum decrease along the
search direction. Since Li is convex, the optimal step length can be
found using exact line search methods with and without derivatives
(e.g., Dichotomous search and Golden section) [17].

4.5 STRUCTURE OF DISTRIBUTED GPM

The distributed dual algorithm has an outer loop, which up-
dates the Lagrange multipliers and penalty factor, and an inner loop,
which solves the Lagrangian subproblem:

• the outer loop consists of Algorithm 4, which yields a sequence
{v̂(k)}Kk=1 converging to a solution to P . The sequence {v̂(k)}
is obtained by solving the Lagrange subproblem LMk, which is
equivalent to LMk(λ

(k), µ(k)) for the current multipliers and
penalty factor. In this process, the algorithm produces a de-
creasing sequence {µ(k)} of penalty factors and a sequence
{λ(k)} of Lagrange multipliers, whereby λ(k+1) is calculated
from λ(k) and v̂(k).

• the inner loop consists of Algorithm 5, which solves the La-
grange subproblem LMk(λ

(k), µ(k)). To this end, this paper
proposed the distributed gradient-projection algorithm, which
produces a sequence {v̂(k,r)}Rr=1 of iterates arriving at the so-
lution v̂(k) to LMk(λ

(k), µ(k)).

The structure and information flow of the algorithm is de-
picted in Figure 4.1. Synchronization, information exchange and
condition detection, such as convergence, can be carried out in a
distributed manner with asynchronous protocols based on massage
passing. This work does not address such an implementation, but
an overview of how this can be achieved is found in [18, 19].
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Figure 4.1: Structure of the distributed dual algorithm.

4.6 BRIEF LITERATURE REVIEW

In [20] a model-based generalized predictive control is re-
ported, where a two-level decentralized Kalman filter is used to lo-
cally estimate the states of each subprocess, the output predictor is
designed using the state estimates from a set of Kalman filters. A
decentralized Kalman filter is formulated using maximum a poste-
riori approach and a quadratic performance index similar to a LQ
index is selected for each subprocess. [21] does a review on predic-
tive control and discusses the behavior and the performance of the
system under the decentralized receding horizon control for known
and unknown initial condition cases as well as a time varying case.
[22] present a detailed study of the inclusion concept in dynamic
systems, which is a suitable mathematical framework for compar-
ing systems with different dimensions. The framework offers im-
mediate results in reduced-order modeling and the overlapping de-
centralized control of complex systems. It is limited to linear con-
stant systems, but the formulation of the principle is given in terms
of the motions of the dynamical systems rather than in algebraic
terms. This way, the principle can be applied to stability and control
problems of time-varying and nonlinear systems as well as models
involving hereditary elements and stochastic effects.

Two methods are presented in [23] for grouping actuators
while minimizing performance degradation in distributed control
systems with saturation constraints. The first of these formulates the
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problem into an open-loop Max k-Cut optimization problem, while
the second, using a closed-loop dynamic performance objective, is a
recursive algorithm based on the Linear Quadratic Regulator. [24]
proposes a DMPC design approach for open-loop asymptotically sta-
ble processes whose dynamics are not necessarily decoupled. A set
of partially decoupled approximate prediction models are defined
and used by different MPC controllers. The less coupled are the sub-
models, the lighter the computational burden and the load for trans-
mission of information among the decentralized MPC controllers,
but the worse is the performance of the control system and the less
likely the proposed stability test succeeds. [25] presents a differen-
tial game approach to formation control of mobile robots. The for-
mation control is formulated as a linear-quadratic Nash differential
game through the use of graph theory. An open-loop Nash equilib-
rium solution is investigated by establishing existence and stability
conditions of the solutions of coupled Riccati differential equations.

4.7 DISCUSSION AND ILUSTRATIVE PROBLEM

In the literature, one will find distributed optimization meth-
ods based on the augmented Lagrangian that are related to this
work. Of particular interest are Lagrangian decomposition [17, Sec.
6.4] and the Alternating Direction Method of Multipliers (ADMM)
[26], both of which rely on consensus variables and constraints. To
illustrate their difference with respect to our method, consider a
simple problem:

min
x1,x2

f1(x1) + f12(x1, x2) + f2(x2) (4.15a)

s.t. : g1(x1) ≤ 0, (4.15b)

g12(x1, x2) ≤ 0, (4.15c)

g2(x2) ≤ 0. (4.15d)

associated to a LDN with V = {1, 2} and E = {(1, 2)}. By introduc-
ing a consensus variable for x̃2, a reformulation is obtained:

min
x1,x2,x̃2

f1(x1) + f12(x1, x̃2) + f2(x2) (4.16a)

s.t. g1(x1) ≤ 0, (4.16b)

g12(x1, x̃2) ≤ 0, (4.16c)

g2(x2) ≤ 0, (4.16d)

x̃2 = x2. (4.16e)
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which, upon dualization of the consensus constraint (4.16e), leads
to an augmented Lagrangian subproblem with a structure which is
exploited by ADMM:

1. For subsystem 1, the iterative process becomes:

(xk+1
1 , x̃k+1

2 ) = arg
x1,x̃2

min f1(x1) + f12(x1, x̃2)

+ λk(xk
2 − x̃2) + (xk

2 − x̃2)
2/(2µk)

s.t. : g1(x1) ≤ 0,

g12(x1, x̃2) ≤ 0.

2. For subsystem 2:

xk+1
2 = arg

x2

min f2(x2) + λk(x2 − x̃k+1
2 )

+ (x2 − x̃k+1
2 )2/(2µk)

s.t. : g2(x2) ≤ 0.

3. Completing the iterative process, the Lagrange multiplier and
penalty factor are updated as follows:

λk+1 = λk + (xk+1
2 − x̃k+1

2 )/µk,

µk+1 = γµk,

with γ ∈ (0, 1) being a decreasing rate.

Notice that ADMM does not have an inner loop, whereby decision
variables and multipliers are updated at the same rate.

On the other hand, the proposed distributed algorithm con-
verts inequalities into equalities by introducing slack variables. Sub-
problem LMk, at outer iteration k, is projected onto the decision
space of each subsystem i, which includes its local variables ûi

and the slack variables ẑi of the coupled constraints that may be
shared with other subsystems. Let gpm denote an operator that per-
forms gradient projection followed by a line-search that satisfies the
Armijo rule, namely the operator that computes:

θ̂
(k,r+1)
i = θ̂

(k,r)
i + γli(k,r)d̂

(k,r)
i .

Then resulting iterative processes for inner iterations are:
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1. For an even numbered iteration r, an improved solution to
LMk,1 is obtained as follows:

(xk,r+1
1 , sk,r+1

1 , sk,r+1
12 ) = gpm

x1,s1,s12

f1(x1)

+ f12(x1, x
k,r
2 ) + λk

1(g1(x1) + s1)

+ λk
12(g12(x1, x

k,r
2 ) + s12)

+ (g1(x1) + s1)
2/(2µk) + (x1, x

k,r
2 ) + s12)

2/(2µk)

s.t. : s1, s12 ≥ 0,

while subsystems 2’s decision variables are kept fixed:

(xk,r+1
2 , sk,r+1

2 ) = (xk,r
2 , sk,r2 ).

2. For an odd numbered iteration r, an improved solution to
LMk,2 is obtained:

(xk,r+1
2 , sk,r+1

2 , sk,r+1
12 ) = gpm

x2,s2,s12

f2(x2)

+ f12(x
k,r+1
1 , x2) + λk

2(g2(x2) + s2)

+ λk
12(g12(x

k,r
1 , x2) + s12)

+ (g2(x2) + s2)
2/(2µk) + (xk,r

1 , x2) + s12)
2/(2µk)

s.t. : s2, s12 ≥ 0.

while subsystem 1’s decision variables are not affected:

(xk,r+1
1 , sk,r+1

1 ) = (xk,r
1 , sk,r1 ).

Upon convergence of the iterates in steps 1 and 2, an approx-
imate solution v̂k = (xk

1 , x
k
2 , s

k
1 , s

k
2 , s

k
12) to LMk is obtained. Then,

the Lagrange multipliers and penalty factor are updated

λk+1
1 = λk

1 + g1(x
k
1)/µ

k,

λk+1
2 = λk

2 + g2(x
k
2)/µ

k,

λk+1
12 = λk

12 + g12(x
k
1 , x

k
2)/µ

k,

µk+1 = γµk,
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Figure 4.2: Iterations generated by ADMM and distributed GPM for
the sample problem..

and the next outer iteration k + 1 is started.
Aiming to illustrate the behavior of ADMM and distributed

GPM, their iterative processes given above were applied to problem
(4.15) defined by the functions:

f1(x1) = x2
1/2, f2(x2) = x2

2 − 4x2,

f12(x1, x2) = −x1x2,

g1(x1) = x1 − 7, g2(x2) = −x2 + 0.5,

g12(x1, x2) = −x1 + 2x2 − 2.

The starting solution for ADMM was x0
1 = 1, x0

2 = 5, λ0 = 10, and
µ0 = 30. For GPM, the starting solution was the same, except that
s01 = s02 = s012 = 30 and λ0

1 = λ0
2 = λ0

12 = 10. The decreasing rate
was γ = 0.7. The trajectories traced by the algorithms in the (x1, x2)
space appear in Figure 4.2. It can be noticed that the trajectories of
both algorithms converge to the optimum (x⋆

1, x
⋆
2) = (4, 3).

4.8 SUMMARY

This chapter presented the augmented lagragian algorithm,
picked up from the model seen in the previous chapter, the algo-
rithm is formalized and the formulae for choosing the lagragian
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multiplier is expressed. To solve the inner problems of the previous
algorithm, the gradient projection method is presented as an option.
The augmented lagragian algorithm is then decomposed, to repre-
sent a distributed model, one subproblem for each subsystem and
thus so is the gradient projection method. The structure of the al-
gorithm is reinforced, to show its two phases, the outter and inner
loops. A example is demonstraded to facilitate the reader’s under-
standing of the chapter, to present the advantages and to compare
the presented algorithm with others existed in the literature.



5 APPLICATION TO URBAN TRAFFIC CONTROL

The dual augmented Lagragian algorithm for distributed mo-
del predictive control is applied to the control of an urban-traffic
network. This method is compared with other methods to validate
the proposed algorithm.

5.1 TRAFFIC FLOW MODEL

The urban road network is represented as a directed graph
G = (V, E) with junctions j ∈ V, where V = {1, . . . , n}, and links
e ∈ E , where E ⊆ V × V. For each junction j we define a set of up-
stream I(j) and downstream O(j) junctions, thus E(j) = {(i, j) ∈
E : i ∈ I(j)} is the set of links reaching junction j. We also assume
that the cycle time Cj is fixed or calculated in real-time by another
algorithm. In addition, to enable network coordination, we can as-
sume that the cycle time is the same for every junction. This model
comes from [1].

The constraint
∑

(i,j)∈E(j)

ui,j = Cj (5.1)

ensures that the green times add up to cycle time, where ui,j is the
green time of link (i, j) at junction j, with no lost time.

Considering a link z = (i, j) connecting two junctions i and j,
the dynamics of link z is given by the equation:

xz(k + 1) = xz(k) + τ [qz(k)− sz(k) + dz(k)− pz(k)] (5.2)

where xz(k) is the number of vehicles in link z at time kτ (queues),
qz and pz are respectively the inflow and outflow of link z during
the period [kτ, (k + 1)τ ], τ is the discrete-time step and k is the
discrete-time index, dz and sz are the demand and outflow within
the link, respectively [27]. Figure 5.1 shows how this happens in
the link z.

The mathematical model based in Equation (5.2), which is
chosen to describe the dynamics of the vehicle queues, is known as
store-and-forward. There, the evolution of the queues in a link de-
pends on its initial queues, the physical characteristics of the traffic
network, and the green time of its traffic lights and of those that
feed it.

Queues are subject to the constraints

0 ≤ xz(k) ≤ xmax
z , ∀z ∈ E (5.3)

63
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i j

Figure 5.1: Link z in a traffic network.

where xmax
z is the maximum queue length in vehicles of link z.

Green times are subject to the constraints

umin
z ≤ uz(k) ≤ umax

z , ∀z ∈ E (5.4)

where umax
z and umin

z are the maximum and minimum green times
giving right of way to link z.

The inflow to link z is given by:

qz(k) =
∑

w∈E(j)

tw,zpw(k) (5.5)

where tw,z ∈ [0, 1] with w ∈ E(j) is the turning rate towards link
z from link w reaching junction j and pw is the outflow of link w.
This means that the arrival of vehicles in link z depends of the rate
of conversion of links upstream of z into the link z and the outflow
of vehicles of such links. Notice that

∑
l∈O(j) tw,(j,l) = 1.

Assuming that pz is equal to the saturation flow Sz if the link
z = (i, j) has right-of-way, and equal to zero otherwise, simplifica-
tions can be made for the outflow pz. If the discrete-time step τ
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is equal to the cycle time C, an average value for the outflow is
obtained

pz(k) = uz(k)Sz/C (5.6)

in which uz(k) is the green time allocated to link z.
In order to simplify computational analysis and notation, this

work assumes that each link z will have a dedicated phase, during
which the green time is exclusively assigned to the discharge of its
vehicles.

Figure 5.2 represents a traffic network with 8 junctions, where
the links are characterized by two junctions involved, the one that
discharges vehicles and the other which is affected by this discharg-
ing.

1 2

3

45678
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xs2,1

xs3,1

x1,6
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x3,2
x1,3

x1,5

x5,6x6,7x7,8

xs1,8 xs1,7
xs1,4

xs2,4x4,5

x4,3

Figure 5.2: Traffic network. Variable xi,j models the queue of ve-
hicles in link z = (i, j) that leaves junction i and reaches junction
j, with the exception of the external links (s, j) which represent ar-
rivals at junction j.

Because the network G only represents internal links of the
network, the external links that model the arrival of vehicles must
be represented. Let s(j) be the number of external links reaching
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junction j. In Figure 5.2, three external links reach junction j = 1,
with queues given by x1

s,j, x
2
s,j, and x3

s,j.
Figure 5.3 represents the traffic network system from Figure

5.2 as a graph. Each node represents a junction whose state xz(k)
is the number of vehicles in the links z that reach the junction, and
uz(k) is the green time assigned to these links during the k-th cy-
cle. For instance, the state of junction 5 is x5 = (x1,5, x4,5) and its
control vector is u5 = (u1,5, u4,5).
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Figure 5.3: Graph model of the proposed traffic network.

Replacing (5.6) and (5.5) in (5.2) and rearranging all result-
ing equations in one single vector-based equation, leads to a linear
state-space model

x(k + 1) = x(k) +Bu(k) + Td(k) (5.7)

where:

• x = (xi,j : (i, j) ∈ E) ∪ (xl
s,j : l = 1, . . . , s(j), j ∈ V) is the

state vector, consisting of the queues of each link,
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• u = (ui,j : (i, j) ∈ E) ∪ (ul
s,j : l = 1, . . . , s(j), j ∈ V) is the

control vector, consisting of all the green times,

• d is the disturbance vector, consisting of the dz and sz of each
link, and

• B is obtained from the substitution of (5.6) and (5.5) in (5.2).

As a consequence of the simplification (5.6), the model is
not aware of short-term oscillations for taking sample time equal
to cycle time. Further, offsets and cycle times have no impact in the
model, which are assumed fixed or updated in real-time indepen-
dently.

5.2 URBAN TRAFFIC CONTROL

Traffic-responsive Urban Control (TUC) has been developed
to tackle the problem of traffic-responsive network-wide signal con-
trol under saturated traffic conditions. In contrast to other proposed
methods for urban signal control, the feedback approach that is
pursued by TUC involves the application of systematic and pow-
erful control design methods. The basic philosophy and the impor-
tance of these methods are related to their general applicability to
any process that can be described by certain types of mathematical
models, regardless of the physical process nature [28]. Moreover,
in contrast to other proposed methodologies, the specific store-and-
forward modeling approach employed in the design of TUC, per-
mits the use of highly efficient optimization and control methods
with polynomial complexity leading to a straightforward network-
wide applicability, easy installation and maintenance, as well as low
requirements regarding real-time traffic measurements.

In traffic control terminology, stage is a particular set of green
indications that give simultaneous right of way to non-conflicting
movements of an intersection; cycle is the time needed to complete
a full round of traffic light stages; and split is the portion of the cycle
allocated to a certain stage. The control objective is to minimize and
balance the number of vehicles within the urban links approaching
urban signalized junctions by varying, in a co-ordinated manner, the
green split of the signal cycles under some assumptions [29].

The LDN with dynamic equation (3.1) can model urban traf-
fic networks [1, 13] with the state of a subsystem (intersection) be-
ing the incoming vehicles queues, which evolve depending on green-
time signals at the downstream and upstream subsystems. In order
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for the application of the LQ-methodology to lead to a feedback con-
trol law without feedforward terms, disturbance is assumed null.
In [30] the application is solved using an algorithm embedded in
a rolling horizon (model-predictive) scheme. The optimal control
problem is solved once per cycle using the current state of the sys-
tem as well predicted demand flows over the finite horizon Th. The
optimization yields an optimal control sequence for Th cycles, but
only the first control in this sequence is actually applied to the junc-
tions of the traffic network.

Given the state of subsystem i at time t and the future control
signals from the input neighborhood, the state x̂i of subsystem i
over the time horizon is given by

x̂i = Âixi(t) +
∑

j∈I(i)

B̂i,jûj (5.8)

where x̂i = (xi(t+1), . . . ,xi(t+T )), ûi = (ui(t), . . . ,ui(t+T − 1)),
and Âi and B̂i,j are matrices obtained from the dynamics (3.1) in
a straightforward manner [14].

A quadratic criterion that considers this control objective has
the general form

J =
1

2

∞∑

t=0

(x̂(t)′Qx̂(t) + û(t)′Rû(t)) (5.9)

where Q and R are non-negative definite, diagonal weighting matri-
ces. The infinite time horizon in (5.9) is taken in order to obtain a
time-invariant feedback law according to the LQ optimization the-
ory. The first term in (5.9) is responsible for minimization and bal-
ancing of the relative queues of the network links. To this end, the
diagonal elements of Q are set equal to the inverses of the stor-
age capacities of the corresponding links. Furthermore, the magni-
tude of the control reactions can be influenced by the choice of the
weighting matrix R.

In practice Equation (5.9) is not used, because it can vary the
green-time abruptly, instead the control variable is a penalization of
the nominal control ũ. Then the objective would take the form:

J =
1

2

∞∑

t=0

[x̂(t)′Qx̂(t) + (û(t)− ũ)′R(û(t)− ũ)] (5.10)
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5.3 DISTRIBUTED MODEL PREDICTIVE CONTROL

As seen in the sections above, it is possible to represent a traf-
fic network with a state-space representation which makes possible
to utilize the techniques seen in previous chapters to solve the opti-
mization problem described by Equation (5.10).

For the network modeled by Figure 5.3 there are 8 subsys-
tems, therefore 8 subproblems to solve. The network is constrained
by its road storage, a maximum and a minimum green time, and
the cycle time of each subsystem. For the model to better represent
the reality the constraint that the queues should be non negative
is added in each link of the network. To ensure that this constraint
will be always feasible, the model was modified by introducing the
effective green-time, which changes the cycle restriction from an
equality to an inequality.

As seen in Chapter 3, the constraints for subsystem 8, for ex-
emple, become:

ûmin
8 ≤û8 ≤ ûmax

8 (5.11a)

M̂8û8 ≤ C (5.11b)

−(Â8x̂8 + B̂87û7) ≤B̂8û8 ≤ x̂max
8 − Â8x̂8 − B̂87û7 (5.11c)

where M̂8 is a matrix that considers all the controls signals of sub-
sytem 8 in each period of prediction, C is the cycle time of the
system, and matrix B̂87 models the influence of subsystem 7 on sub-
system 8.

With that the subproblem 8 becomes:

P8 : min
1

2
û′
8Ĥ8û8 + ĝ′

8û8 + ĉ8 (5.12a)

s.t. :ûmin
8 ≤ û8 ≤ ûmax

8 (5.12b)

M̂8û8 ≤ C (5.12c)

−(Â8x̂8 + B̂87û7) ≤B̂8û8 ≤ x̂max
8 − Â8x̂8 − B̂87û7 (5.12d)

Subproblem 7 has a subproblem downstrem and upstream,
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its equations becomes:

P7 : min
1

2
û′
7Ĥ7û7 + ĝ′

7û7 + ĉ7 (5.13a)

s.t. :ûmin
7 ≤ û7 ≤ ûmax

7 (5.13b)

M̂7û7 ≤ C (5.13c)

−(Â7x̂7 + B̂76û7) ≤B̂7û7 ≤ x̂max
7 − Â7x̂7 − B̂76û7 (5.13d)

−(Â8x̂8 + B̂8û8) ≤B̂7û7 ≤ x̂max
8 − Â8x̂8 − B̂8û8 (5.13e)

For the purpose of simpiflication only subproblem 8 displays
the relaxation, since the process is analog for all subproblems. Equa-
tion (5.13e) can be relaxed with slack variables, shown in Equations
(3.6), making the use of the dual algorithm possible, allowing that
the coupled variables, B̂87u7, to be handled.

P8 : min
1

2
û′
8Ĥ8û8 + ĝ′

8û8 + ĉ8 (5.14a)

s.t. :ûmin
8 ≤ û8 ≤ ûmax

8 (5.14b)

M̂8û8 ≤ C (5.14c)

−(B̂8û8+Â8x̂8 + B̂87û7) + ŝ8 ≤ 0 (5.14d)

B̂8û8 − x̂max
8 +Â8x̂8 + B̂87û7 + ŝ8 ≤ 0 (5.14e)

Equations (5.14d) and (5.14e) can be dualized by the Algo-
rithm 4 seen in Chapter 4.

This process is similar for every other subsystem in the cen-
tralized problem.

5.4 COMPUTATIONAL ANALYSIS

The problem presented in the above section is chosen as a rep-
resentative system for the analysis, its objective is simply empty the
already saturated queues of vehicles. The problem is implemented
on the Matlab environment due to its tools and the fact that Matlab
allows matrix manipulations, plotting of functions and data and im-
plementation of algorithms, facilitating not only the model but the
algorithm implementations.

The network links have capacity bounds, meaning that the
states are subject to bound constraints 0 ≤ xi,j ≤ xmax

i,j = 200 ve-
hicles for all (i, j) ∈ E . Control signals are also bounded, whereby
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the sum of the green times at a crossing i must not exceed cycle
time,

∑
j∈I(i)\{i} ui,j ≤ C = 120, with ui,j being the green time as-

signed to link (j, i) and ui = (ui,j : j ∈ I(i) \ {i}). Thus the control
signals are effective green times, meaning that green times will be
assigned to a queue provided that the corresponding state variable
remains feasible, i.e. nonnegative and within road capacity. Upper
and lower bounds are also imposed on control signals, so that one
of the roads in a crossing cannot be allocated all of the cycle time
for itself, 0 ≤ ui,j ≤ 80.

The matrices Âi and B̂i,j result from the application of the
Webster’s procedure presented in [13]. The cost matrices were de-
fined similarly but ensuring Qi � 0 and Ri ≻ 0. The prediction
horizon was Th = 3.

Three cases were considered for computational analysis:

1. the standard QP algorithm available in Matlab.

2. the centralized Augmented Lagrangian (CAL) given by Algo-
rithm 4 in which the subproblems LMk are solved with an
embedded solver in Matlab called quadprog.

3. the distributed Augmented Lagrangian (DAL) given by Algo-
rithm 4, however the subproblems {LMk,i} are solved as con-
strained versions of the centralized problem.

These cases are also considered in [31].
The analyses consisted in solving problem P for 10 different

initial conditions, obtained by varying the queue states from 110 to
200 vehicles randomly.

The initial Lagrange multipliers were set at 1, the initial pe-
nalty factor was µ(0) = 1 and updated with the chosen rule µ(k+1) =
0.8µ(k), and the initial solution v̂s was set to 0 with the slack vari-
ables calculated accordingly. The distributed Augmented Lagrangian
was emulated using a single processor, with agent synchronization
and communication performed through shared memory. Although
the agents in each of the sets {1, 7}, {2, 4, 6}, and {3, 5, 8} can iter-
ate in parallel, our implementation ran one agent at a time for the
sake of simplification. The distributed solution of {LMi} was cho-
sen to be limited to 100 inner iterations, counting once every time
all agents solved their local problems. The convergence condition
was established on the mean squared error of the 2 latest control
iterations with τ = 10−3, while the outer iterations use the mean
squared error on the latest 2 iterations of v̂k with τ = 10−3 and also
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have a maximum of 100 iterations. The parameters of distributed
algorithm were as in the centralized Algorithm 4, with the same
initial conditions, and updating rules for Lagrange multipliers and
penalty factor. All 3 cases solve the problem for only the first cycle
iteration.

Table 5.1: Comparative analysis of the Centralized Augmented La-
gragian.

QP CAL
Instance Time(s) Obj(105) Time(s) Obj(105) Dist(%)
1 0.0781 -2.3950 0.3125 -2.3950 0.0
2 0.0625 -2.7507 0.0938 -2.7507 0.0
3 0.1094 -3.1137 0.1094 -3.1137 0.0
4 0.0938 -3.4829 0.1719 -3.4829 0.0
5 0.1094 -3.8563 0.2188 -3.8563 0.0
6 0.0625 -4.2331 0.1250 -4.2331 0.0
7 0.1406 -4.6133 0.0938 -4.6133 0.0
8 0.3281 -4.9968 0.1094 -4.9968 0.0
9 0.1406 -5.3834 0.1094 -5.3834 0.0
10 0.5313 -5.7729 0.1250 -5.7729 0.0
Mean 0.1437 -4.0598 0.1516 -4.0598 0.0

Table 5.2: Comparative analysis of the Distributed Augmente Lagra-
gian.

QP DAL
Instance Time(s) Obj(105) Time(s) Obj(105) Dist(%)
1 0.0781 -2.3950 4.2500 -2.3038 3.8103
2 0.0625 -2.7507 3.7813 -2.7065 1.6095
3 0.1094 -3.1137 4.2813 -3.0881 0.8210
4 0.0938 -3.4829 3.3594 -3.4785 0.1272
5 0.1094 -3.8563 3.0625 -3.8563 0.0
6 0.0625 -4.2331 3.6406 -4.2331 0.0
7 0.1406 -4.6133 3.3906 -4.6133 0.0
8 0.3281 -4.9968 3.2500 -4.9968 0.0
9 0.1406 -5.3834 3.0000 -5.3834 0.0
10 0.5313 -5.7729 3.0625 -5.7729 0.0
Mean 0.1437 -4.0598 3.3969 -3.9988 0.6368

Tables 5.1 and 5.2 present the results where each column
gives the objective, CPU time (seconds) and distance of the ob-
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jective, in percentage, of each 10 independent runs of LDNs and
their mean. The results show that the iterates produced by the dis-
tributed Augmented Lagrangian method induced an objective GAP
of approximately 0.6%, which can be attributed to the algorithm for
LMk,i, which is a restricted version of the centralized algorithm ob-
tained by fixing the variables of the neighboring and remote agents.
The time of convergence is well inbound the maximum feasible,
which is the cycle time. If the time taken to complete 1 the prob-
lem for the next period of time is greater than the cycle time, the
algorithm becomes impractical, since it is necessary to know the
green times in the next cycle before applying it. The gap is inside
the expectations, this difference is not significant for the result.

The next analyses consisted in solving problem P for an sim-
ulation horizon bigger than the prediction horizon, thus fully im-
plementing the sliding horizon according with MPC: the MPC prob-
lem is solved for the prediction horizon in every cycle, but only the
controls for the current cycle are input to the network; at the next
cycle, the network state is measured, the prediction horizon moved
forward, and the process is repeated.

The cost along the simulation horizon is computed for the
three cases, calculating the stage cost x′

iQxi + u′
iRui at each cycle.

The simulation horizon has length of 6, 5 instances, varying the
initial conditions from 160 to 200 and all the other settings are the
same as the previous experiments.

Table 5.3: Comparative analysis over a simulation period.

QP CAL DAL
Inst. Cost(105) Cost(105) Dist(%) Cost(105) Dist(%)
1 4.8717 4.8717 0.0 5.5535 13.99
2 5.9477 5.9477 0.0 6.6148 11.21
3 7.1661 7.1661 0.0 7.7754 8.50
4 8.5427 8.5427 0.0 9.0506 5.94
5 10.0848 10.0848 0.0 10.5062 4.17
Mean 7.3226 7.3226 0.0 7.9001 7.89

Figure 5.4 presents the results of the three simulations for a
network that begins with full queues (200 vehicles) and without
vehicle arrivals during simulation. The results show that the three
algorithms induce nearly the same cost for the network, a more
demanding stopping criterion would be needed for the distributed
algorithm to yield better solutions.
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Figure 5.4: Cost along simulation horizon.

5.5 SIMULATION ANALYSIS

Aimsun is an integrated transport modeling software, devel-
oped and marketed by TSS - Transport Simulation Systems based in
Barcelona, Spain.

Aimsun is a traffic modeling software that allows you to mo-
del anything from a single bus lane to an entire region with thou-
sands of licensed users in government agencies, consultancies and
universities all over the world. Aimsun stands out for the excep-
tionally high speed of its simulations and for fusing travel demand
models, static and dynamic traffic assignment with mesoscopic, mi-
croscopic and hybrid simulation, all within a single software applica-
tion. It allows the user to carry out traffic operations assessments of
any scale and complexity. It is used to improve road infrastructure,
reduce emissions, cut congestion and design urban environments
for vehicles and pedestrians.

Figure 5.5 shows the screen of the software. On the left there
are tools that aid the modeling of the network while on the right
is the input of data, such as traffic demand, control plan, type of
vehicles, etc.

The model is the same as the previous section, but it starts
with no vehicles in queue, instead the arrival of vehicles are given
by the sources outside of the model. Two different controls strate-
gies are applied to the model, a centralized QP MPC and a fixed
control strategy. The MPC is programmed in Python and is added to
the Aimsun environment by its own API. The fixed control strategy
can be implemmented on Aimsun, by fixing the green-time to the
desired value, which in this case is proportional to the income of
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Figure 5.5: Aimsun screenshot.

vehciles in the first hour for the border agents and equally divide
for the inner agents.

The model is simulated for a period of two hours, for the first
hour of simulation the number of vehicles per hour in each agent is:
for Agent 1, [900, 1300, 800], for Agent 4, [900, 700], for Agent
7 and 8, [800]. In the second hour, the arrivals are increased to
highlight the difference between the fixed control strategy and the
MPC, the arrival of vehicles per hour in each agent is: for Agent 1,
[3000, 2500, 2000], for Agent 4, [1000, 2000], for Agent 7, [1600]
and for Agent 8, [1500].

Tables 5.4 and 5.5 show the results of the 10 runs. Flow shows
how many vehicles have passed through the network per hour. Avg.
Queue denotes the avarege queue of the network. Delay Time rep-
resents the avarege delayed time a car suffers, in seconds by every
kilometer. Downtime represents the avarege time, in seconds, a car
is stopped by every kilometer. It is notable that the fixed control
has an inferior performance, since it can not adapt to the sudden in-
crease of arrivals of vehicles in the system, whereas the MPC control
has that ability and achieves the better performance.
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Table 5.4: Aimsun traffic statistics induced by the MPC strategy.

MPC
Instance Flow Avg. Queue Delay Time Downtime
1 8532.50 209.15 218.16 194.59
2 8585.50 211.58 220.05 195.99
3 8479 210.86 219.61 195.94
4 8466 213.64 221.04 197.11
5 8500 211.73 220.12 196.19
6 8435.50 207.44 217.83 194.22
7 8430 213.02 221.63 198.02
8 8505.50 220.57 226.61 202.50
9 8497 218.19 224.29 200.11
10 8449 215.48 224.73 200.71
Mean 8488 213.17 221.41 197.54

Table 5.5: Aimsun traffic statistics induced by the Fixed Control
strategy.

Fixed Control
Instance Flow Avg. Queue Delay Time Downtime
1 8197.50 254.27 245.60 221.30
2 8157.50 263.20 252.04 227.56
3 8100 254.58 247.03 223.08
4 8110 260.30 251.74 227.34
5 8124 254.99 246.05 221.72
6 8153.50 240.42 234.91 210.86
7 8078 250.39 244.94 220.99
8 8157 260.85 251.89 227.46
9 8149.50 254.75 246.33 222.27
10 8063 260.18 252.32 228.02
Mean 8129 255.39 247.29 223.06

5.6 SUMMARY

This chapter presented the application of this dissertation, the
urban traffic control. A traffic flow model is presented before, so
it becomes clear to the reader the phisical representation of every
variable. The problem is explicitly decomposed to reiterate on the
advantages of the decentralized algorithm, the possibility to han-
dle coupled state constraints. The problem is solved, in the Mat-
lab environment, by three algorithms, their results are shown and
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compared. Aimsun is presented and utilized as a form to validate
the experiments, by comparing a MPC strategy and a Fixed Control
strategy.





6 CONCLUSION

This dissertation has presented a dual algorithm based on the
augmented Lagragian, showcasing its equations and mathematical
proporties. A gradient projection method is introduced as a means
to solve the inner problem of the dual algorithm and a simple exam-
ple is demonstrated to better the reader’s understanding.

A useful tool is presented in this dissertation, linear dynamic
networks, which made possible the formulation of the problem in
an easy way, and an even easier task to decompose the problem
in a number of subproblems, which is applied to this dissertation’s
application, the urban traffic control. The algorithm is used to solve
an urban traffic control problem, with the objective to minimize the
queues of the network. The model is explained and three different
strategies are utilized to solve it, a centralized quadratic programing
algorithm, a centralized augmented Lagragian algorithm and the
distributed augmented Lagragian algorithm. All three strategies are
compared within one cycle of optimization. The results show that
the distributed algorithm has an acceptable time of computation
and the objective is sufficiently close to what was obtained with
the others algorithms. The model is then simulated along a sliding
horizon and compared amongst the strategies. The costs along the
simulation horizon are nearly the same.

The model is implemented in the traffic modeling software
Aimsun where it is simulated through two hours of two different
traffic demands. In this environment the model is submitted to two
strategies, a fixed control and a MPC. The results are as expected,
the MPC has a better performance, since the fixed control is unable
to adapt to a new rate of incoming vehicles.

Future work will be geared towards the implementation of
the distributed optimization algorithm following the gradient pro-
jection method, and using multiagent communication platform [32]
for a true distributed implementation. The further understanding of
the Aimsun enviroment, will allow for more complex cenaries simu-
lations and full implementation of the distributed algorithm.
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