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RESUMO EXPANDIDO

Introdução
As emissões de dióxido de carbono (CO2) são os principais con-
tribuintes para a mudança climática. Essas emissões estão di-
retamente relacionadas ao aquecimento global. Portanto, ao re-
duzir emissões destes gases pode-se contribuir para a redução
nas mudanças climáticas. As reduções nas emissões de CO2 po-
dem começar localmente nas regiões e, posteriormente, contri-
buir para o efeito de redução global. Isso implica que a redução
do consumo de energia elétrica contribuirá diretamente para a
redução de CO2. O setor residencial foi responsável por cerca
de 40% do consumo total de energia primária na União Euro-
peia e é responsável por 36% das emissões totais de CO2 nos
últimos anos. Essa informação mostra que os estudos sobre o
consumo de aquecimento são importantes uma vez que podem
gerar impactos significativos na poupança de energia e, conse-
quentemente, na redução das emissões de CO2. No Brasil, o uso
de bombas de calor para o aquecimento residencial não compõe
um percentual tão significativo como ocorre em países europeus.
Isso se dá especialmente pelo fato de que o Brasil é um país que
possui uma situação climática em que períodos de inverno são
menos rigorosos do que os países europeus, por exemplo. Como
o escopo deste trabalho é estudar aquecimento em edifícios que
usam bombas de calor, a questão problematizadora é: como re-
duzir o consumo de energia elétrica da bomba de calor devido
ao aquecimento em ambientes multi-zona bem como a emissão
de CO2 para a atmosfera, considerando a garantia do conforto
térmico de seus usuários?

Objetivos
O objetivo desta tese é propor um modelo que seja capaz de ofe-
recer ao usuário final de um prédio inteligente um plano de tem-
peratura interna para minimizar o custo de consumo de energia
devido ao aquecimento de ambientes que usam bombas de calor,
buscando garantir o conforto térmico de seus ocupantes. Esta
pesquisa segue uma abordagem tecnológica e está organizada



nas seguintes etapas: (a) identificar na literatura os parâmetros
que afetam o conforto térmico em edifícios multi-zonas; (b) pro-
por um modelo capaz de reduzir o consumo de eletricidade e
os custos financeiros no aquecimento residencial, bem como as
emissões de CO2 e (c) aplicar, testar e avaliar o modelo proposto.

Metodologia
O presente trabalho se enquadra como uma “pesquisa cientí-
fica tecnológica” que busca propor um modelo. Esta pesquisa é
caracterizada como sendo experimental, aplicando perspectivas
tecnológicas. Trata-se de uma pesquisa multidisciplinar porque
leva em consideração conhecimento e experiência de dois cursos
de pós-graduação diferentes em duas universidades distintas: Ci-
ência da Computação na Universidade Sapienza de Roma (Itá-
lia) e Engenharia e Gestão do Conhecimento na Universidade Fe-
deral de Santa Catarina (Brasil). Neste documento é proposto
um modelo baseado em conhecimento para a identificação de
parâmetros térmicos e para gerar um plano de temperatura in-
terna em um contexto de prédios inteligentes (Smart Building).
Tal temática é motivo de pesquisas em ambas as instituições.
O modelo proposto utiliza-se de processos baseados em conhe-
cimento para determinar a troca de estados entre os elementos
nele constantes. No modelo a interação do usuário com o sistema
comptuacional proposto a aquisição do conhecimento ocorre por
meio de elicitação junto ao usuário de seu conhecimento e so-
bre sua residência. O conhecimento é representado e aplicado
utilizando-se de grafos e a analogia eletro-térmica. Uma ontolo-
gia é proposta para a implementação do modelo no formato de
repositório. Após processadas tais informações, os parâmetros
térmicos (resistência, capacitância térmicas e coeficiente de per-
formance) são calculados. Uma vez estimados, estes parâmetros
são utilizados em um algoritmo de otimização que visa apresen-
tar um plano de temperatura interna para as próximas 24h ao
usuário. Em tais processos dão-se a descoberta e a visualização
do conhecimento.



Resultados e Discussão
O modelo apresenta interação com o usuário em dois níveis:
aquisição e visualização do conhecimento. Os dados e infor-
mações adquiridos do usuário doméstico foram relacionados à
preferência de temperatura interna para o planejamento horário
e plano assistido. Os dados obtidos com os usuários domésticos,
dos sensores de temperatura (internos e externos), bem como o
consumo de energia da bomba de calor instalados nas casas e os
dados históricos foram utilizados para estimar os parâmetros tér-
micos. O estágio de identificação do parâmetro usa a analogia
elétrica térmica e é responsável por estimar os valores médios
de resistência térmica e capacitância. Nesta etapa, os valores
para o coeficiente de desempenho das bombas de calor também
foram calculados. Na segunda etapa, foi gerado um plano de
temperatura interna. O algoritmo usou os parâmetros térmicos
previamente identificados e um plano de temperatura interna
foi proposto ao usuário doméstico. Tal plano levou em consi-
deração as preferências de temperatura do usuário. Ao mesmo
tempo, o plano buscou minimizar o consumo de energia para
aquecer a casa, reduzindo o custo das emissões de CO2. Na fase
experimental, foi utilizado um conjunto de dados obtido de sete
casas habitadas em um período de inverno, em uma situação real
por um período de sete meses a partir do Projeto SmartHG. O
modelo matemático utilizado na analogia térmico-elétrica e ex-
perimentos foi avaliado comparando os parâmetros obtidos e os
dados reais da amostra, literatura de referência e informações do
fabricante da bomba de calor. Objetivou-se reduzir o consumo
de energia elétrica devido ao aquecimento de ambientes bem
como a redução da emissão de CO2. Neste contexto, buscou-se
manter o conforto térmico, ou seja a temperatura interna calcu-
lada em relação à temperatura interna histórica. Os resultados
experimentais mostraram que o algoritmo atingiu seus objetivos,
mantendo os valores com uma variação máxima da temperatura
interna em dois graus centígrados, estabelecida com o parâme-
tro no algoritmo de controle. No que diz respeito à economia
de energia devido ao aquecimento, uma média de 59,92% para



todas as simulações foi, onde os planos foram mais eficientes
do que dados históricos. Quanto ao Coeficiente de Desempenho
(COP), os resultados obtidos nas experiências de sete casas va-
riaram de 1,03 a 3,07. Os valores de CO2 mostraram um ganho
comparado aos dados históricos. Embora representem um valor
monetário aparentemente baixo, se tal cálculo puder ser esca-
lado para um bairro inteiro ou uma cidade, tais números devem
escalar proporcionalmente.

Considerações Finais
Esta tese apresenta um modelo que oferece uma interface gráfica
interativa e amigável, na qual os usuários finais podem definir
suas preferências e visualizar seu nível de consumo de energia,
bem como os relatórios de consumo de energia. A principal van-
tagem deste trabalho é fornecer, sob o ponto de vista do usuário
final, um modelo através do qual é possível identificar os parâ-
metros térmicos e propor um plano de temperatura interna para
as seguintes 24 horas sem a necessidade de se conhecer as carac-
terísticas físicas e materiais de composição da casa ou estrutura
do edifício. Este modelo oferece uma ferramenta computacional,
interativa e com uma interface amigável. O objetivo principal
estabelecido para este trabalho foi alcançado. Um modelo com-
putacional capaz de oferecer o usuário final de um Smart Buil-
ding foi apresentado um plano de temperatura interna para as
24 horas seguintes. Este plano levou em consideração o conforto
térmico, usando as preferências de temperatura interna do usuá-
rio doméstico. Experimentos foram realizados com base em da-
dos históricos de um projeto europeu conhecido como SmartHG.
Foram analisadas sete casas por um período de sete meses. O
modelo proposto baseado no conhecimento ofereceu interação
com o usuário final, o uso do conhecimento prévio por meio de
dados históricos e calculou o parâmetro térmico dos ambientes.
No modelo desta tese, um método para calcular os parâmetros
térmicos em uma situação em que a casa inteira possui a mesma
temperatura interna é proposto. Como um trabalho futuro, é
sugerida a implementação de um modelo em que cada zona única



possa ter sua medição de temperatura interna individual consi-
derada através de simulações. Uma proposta para futuro traba-
lho consiste na expansão da aplicação do repositório web usado
por usuários domésticos do mesmo bairro (vizinhos). Esses da-
dos podem ser aplicados em estudos comparativos nas áreas de
Smart Cities e Smart Grids.

Palavras-chave: Ambientes Inteligentes. Estudos Energéticos.
Modelo baseado em Conhecimento. Parâmetros Térmicos. Oti-
mização de Consumo de Energia Elétrica



RESUMO

Tem crescido nos últimos anos o número de estudos acerca de
ambientes inteligentes. Um dos fatores que mais geram gastos
em um ambiente inteligente está relacionado com o condiciona-
mento térmico destes espaços. Por esse motivo os estudos ener-
géticos nos ambientes inteligentes se fazem importantes. Nesta
tese é proposto um modelo baseado em conhecimento no con-
texto de ambientes inteligentes multi-zona. Esse modelo inte-
rage com o usuário final por meio de aquisição e visualização de
conhecimento. O objeto central do modelo apresenta um algo-
ritmo matemático que, por sua vez, busca identificar os parâ-
metros térmicos do ambiente para, posteriormente calcular um
plano de temperatura interna para as 24 horas subsequentes. A
identificação de parâmetros visa a, além de determinar a resis-
tência e capacitância térmica do ambiente, também calcular o
coeficiente de desempenho das bombas de calor. Já o plano de
temperatura interna prevê a minimização dos custos de energia
elétrica, a redução do valor gasto com a emissão de CO2 e a ma-
nutenção do conforto térmico do ambiente. Os dados utiizados
nos experimentos foram obtidos junto ao projeto SmartHG. Os
resultados experimentais demonstraram que o algoritmo atingiu
os objetivos, mantendo os valores com o máximo de variação
de dois graus centígrados, estabelecidos como parâmetros no al-
goritmo central de controle. Em relação à economia de energia
devido ao aquecimento, em média 59.92% dos planos foram mais
eficientes do que os dados históricos. Os resultados do Coefici-
ente de Desempenho para sete casas ficaram entre 1.03 e 3.07.
Os valores de CO2 mostraram ganho comparado com os dados
históricos.

Palavras-chave: Ambientes Inteligentes. Estudos Energéticos.
Modelo baseado em Conhecimento. Parâmetros Térmicos. Oti-
mização de Consumo de Energia Elétrica





ABSTRACT

The number of studies about intelligent environments has grown
in recent years. One of the factors that generate more expenses
on that is related to the thermal conditioning. For this rea-
son energy studies in intelligent environments are important.
This document presents a doctoral study that proposes a mo-
del based on knowledge in the context of multi-zone intelligent
environments. This model interacts with the end user through
acquisition and knowledge visualization. The central part of the
model is a computer-mathematical algorithm which in turn se-
eks to identify the thermal parameters of the environment and
then calculates a day-ahead internal temperature plan. The pa-
rameter identification aims to determine the thermal resistance
and thermal capacitance of the environment as well as to cal-
culate the coefficient of performance of heat pumps (heating).
The internal temperature plan provides the minimizing of energy
costs, the reduction in the amount spent on CO2 emissions and
maintenance of thermal comfort environment. The data used in
the experiments were obtained from the SmartHG project. The
experimental results showed that the algorithm met its restric-
tion, maintaining the values with a maximum variation of two
degrees centigrade, established with parameter in the control al-
gorithm. With regard to energy savings due to heating, in the
average, 59.92% of those plans have been more efficient than
historical data. The Coefficient of Performance results, obtai-
ned in the experiments from seven houses, ranged from 1.03 to
3.07. The values of CO2 showed a gain compared to historical
data. Although they represent a seemingly low monetary value,
if such a calculation can be scaled to an entire neighborhood or
a city, such numbers should scale proportionately.

Keywords: Smart Buildings. Energy Studies. Knowledge-
based Model. Thermal Parameters. Power Consumption Op-
timization
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RC Product o the Average of Overall Thermal Resistance
and Average of Overall Thermal Capacitance
S Dynamic System
τ Unit of Time Interval in seconds 1

3600

t Time
T1 Temperature 1 - outside
T2 Temperature 2 - inside
Tbpt Balance Point Temperature
TCo Total Cost of Producing Power - other expenses
TCp Total Cost of Producing Power
Tin Internal Temperature
T ′in Internal Temperature in time t + 1
ÛTin Internal Temperature Calculated
Tort Outdoor Reference Temperature
Tout Outdoor Temperature
Tinre f Calculated Reference Internal Temperature
Tre f Reference Internal Temperature
u(t) Dynamic System Input at time t
U or U − value Thermal Transmittance
V Voltage
Vin Input Voltage
VC Voltage across the Capacitor
VR Voltage across the Resistor
W Work - Watt
y(t) Dynamic System Output at time t
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1 INTRODUCTION

Emissions of Carbon Dioxide (CO2) are the main contri-
butors to climate change. These emissions are directly related
to the global warming (FRIEDLINGSTEIN et al., 2010). Despite
several initiatives held by international governments in order to
reduce CO2 emissions, researches, as Seneviratne et al. (2016)
show that their goals are still far from being achieved.

Reductions in CO2 emissions can start locally in regions
and subsequently contribute to the overall reduction effect (SE-
NEVIRATNE et al., 2016). This implies that reduction of power
energy consumption will directly contribute to the CO2 reduc-
tion.

Residential and services sectors are responsible for the
growth in electricity usage. The consumption of electricity by
sectors shows that electricity consumption in the service sector
almost doubled within 1990 and 2014 (+83%), while electricity
consumption in the residential sector increased by 29% during
the same period, as presented by European Union (2016).

The residential sector was responsible for around 40% of
the total consumption of primary energy in the EU and it is
responsible for 36% of the EU’s total CO2 emissions. Energy-
efficiency and low/zero-carbon energy technologies for heating
and cooling in buildings will play a crucial role in the global
and local strategies against the impacts of the greenhouse effect
(DORER; WEBER, 2009).

Secondly U.S. Energy Information (2016), 41.5% of the
energy consumption by end users in homes is used to space he-
ating, 34.6% for appliances, electronics and lightings, 17.7% for
water heating and 6.2% for air conditioning. This information
shows that the studies about heating consumption are impor-
tant once they can generate significant impact on saving energy
and, consequently, on the reduction of CO2 emissions.
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1.1 THE PROBLEM

The number of studies on themes as smart buildings,
smart grids and smart cities has grown significantly in recent
years. The key element in smart is its ability to gather data,
analyze it and provide intelligent feedback (BUDDE, 2014), es-
pecially making conscious/better use of existing resources.

An important point of convergence among these three
terms is the smart energy (PREISSLER, 2015) in which energy
resources are applied in an innovative and sustainable way. The-
refore, based on the relationships among those three areas and
knowing that energy consumption is mainly based on the de-
mand from the final consumers, it is necessary to lead the saving
energy studies in intelligent homes or buildings.

Several studies related to the reduction in power con-
sumption due to space heating have been published (BALAN
et al., 2011b), (BENGEA et al., 2014), (CHEL; JANSSENS; PAEPE,
2015). In some of these works it is possible to distinguish studies
of single-zone buildings (JAVED et al., 2015), (PARK et al., 2013)
or multi-zone buildings (WEN et al., 2013), (ASCIONE et al., 2016),
(BEKKOUCHE et al., 2013), (BENGEA et al., 2014), (BENHAMOU;
BENNOUNA, 2013), (CHEL; JANSSENS; PAEPE, 2015). Few stu-
dies on multi-zone building take into account the calculation of
heat flow between building zones (BUONOMANO et al., 2016).

The HVAC (Heating, Ventilating and Air Conditioning)
systems studies in building environments are related to the main-
tenance of the air quality and thermal comfort of their occu-
pants. By definition, thermal comfort is a situation in which a
person feels satisfied with the temperature in the surrounding
environment (ASHRAE, 2004). So, maintaining thermal comfort
in a building depends not only on the physical characteristics
of the environment and equipment but mainly on the desired
temperature offered by the end user.

The HVAC-type problems are related to the reduction in
the consumption of electric energy due to the thermal conditi-
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oning of environments, improvement of the thermal quality, re-
duction in the level of noise in the air conditioners, guarantee of
the thermal comfort for users and others. One commonly found
approach in the literature to solve HVAC-type related problems
is the use of the electro thermal analogy (BEKKOUCHE et al.,
2013), (THAVLOV; BINDNER, 2015), (BUONOMANO et al., 2016),
(PARNIS; SPROUL, 2010). Such an analogy allows one to unders-
tand the thermal behavior of an environment by means of an
RC (resistor-capacitor) circuit in a single or a multi-zone buil-
ding representation. However, this understanding alone is not
sufficient to reduce the power consumption that is necessary for
conditioning environments;

The multi-zone environments can be represented through
graph theory (GENC; SEHGAL, 2014). The association of methods
such as: electro-thermal analogy and graph theory to represent
multi-zone buildings is known in literature (GOYAL; LIAO; BA-
ROOAH, 2011), (HAO et al., 2015), (MUKHERJEE; MISHRA; WEN,
2012). None of them, however, are used with the specific scope
of air-to-air heat pumps. Such devices are responsible for using
the external temperature as a source of heat which in turn is
pumped into the internal environment. This heat comes from
the air from the external environment. This is the reason why
it is called air-to-air heat pumps.

As the scope of this work is to study heating in buil-
dings where heat pumps are used, an important factor to be
considered is the Coefficient of Performance (COP) (THAVLOV;
BINDNER, 2015). The heat pump is responsible to pumps heat
from the outside-temperature source to the indoor sink (KENT,
1997). The rest of energy that is necessary to produce the desi-
red internal temperature is collected from the energy network.
The COP represents the efficiency of a heat pump. So a higher
value of COP reflects a higher heating efficiency (MIX, 2006).

Some studies use the heat pumps performance coefficient
in their calculations (YOON; BALDICK; NOVOSELAC, 2014), (HU;
KARAVA, 2014), (HAMDY; HASAN; SIREN, 2010). Nevertheless,
they do so by obtaining values from the equipment manufactu-
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rers or even by assuming a fixed value for the whole calculation.

The heat pump HVAC studies use frequently forecasts
(KNUDSEN; ROTGER, 2015), (AGHEB; TAN; TSANG, 2015), (BEL-
TRAN; CERPA, 2014), (ROGERS et al., 2013) in order to predict
consumptions or generate scenarios. These forecasts are basi-
cally divided into three types: power consumption (NGUYEN;
NGUYEN; LE, 2013), (MUELLER et al., 2014), occupancy predic-
tion (BELTRAN; CERPA, 2014) and internal temperature (ELLIS;
HAZAS; SCOTT, 2013), (YANG et al., 2012). The majority of these
studies generate forecasts for power consumption. Some of these
studies act directly on heating devices (TSITSIMPELIS; TAYLOR,
2015), (SRIKANTHA; KESHAV; ROSENBERG, 2012), (ROGERS et
al., 2013). None of them, however, is dedicated to offer the final
user an internal temperature plan for the day after in the scope
of this thesis.

Some HVAC studies take into consideration the prefe-
rences or the user profile (SRIKANTHA; KESHAV; ROSENBERG,
2012), (YOON; BALDICK; NOVOSELAC, 2014), (LAM; YUAN; WANG,
2014), (ZHAO et al., 2015), (WINKLER et al., 2016). Whether using
direct, as in Lam, Yuan e Wang (2014) or indirect feedback. The
user profile can be understood simply as the occupant routine
in the environments of a house as well as the internal tempe-
rature preferences used for the calculation of thermal comfort
(LAM; YUAN; WANG, 2014), (NGUYEN; NGUYEN; LE, 2013). Few
of them, however offer a direct interaction tool with the end user
(LAM; YUAN; WANG, 2014), (WINKLER et al., 2016), (ROGERS et
al., 2013).

Some works propose design knowledge as presented by
Wastell, Sauer e Schmeink (2006) or even knowledge visualiza-
tion from Welge, Kujath e Opel (2010) in the HVAC-problem
area. However, it was not possible to find in any of the resear-
ched cases the knowledge visualization been used by means of
an user interface in which the household user could offer infor-
mation about their residence or even receive data about their
power consumption or savings, for example.

Having a prior knowledge (JAVED et al., 2015) of the struc-



39
ture of a building, the composition of the walls or even the beha-
vior of its occupants, it is possible, for instance, to make fore-
casts (BELTRAN; CERPA, 2014), (DU; LU, 2011), (HU; KARAVA,
2014). If there is no such information, however it is necessary
to collect or estimate it. This knowledge extraction process (VI-
EGAS et al., 2015) is known as thermal parameter identification
(RADECKI; HENCEY, 2013), (PARK et al., 2013), (BEKKOUCHE et
al., 2013), (GOETHALS; BREESCH; JANSSENS, 2011), (JASSAR;
LIAO; ZHAO, 2009), (PARK et al., 2013), (BUONOMANO et al.,
2016). The thermal parameter identification method offers an
important contribution in the sense of extracting a set of infor-
mation about the physical environment, but in itself does not
represent a method of reduction in the power consumption due
to the conditioning of environments.

Once the dynamics and composition of the thermal ele-
ments are known, it is possible to generate forecasts. The ge-
neration of forecasts for HVAC problems is commonly found in
the literature as optimization problems. These problems are
basically divided into three types, according to their objecti-
ves: guarantee of thermal comfort (ASCIONE et al., 2016), (BA-
LAN et al., 2011b), (BEKKOUCHE et al., 2013), (BENGEA et al.,
2014), (GOETHALS; BREESCH; JANSSENS, 2011), saving of elec-
tricity (GENC; SEHGAL, 2014), (WEN et al., 2013), (HAMDY; HA-
SAN; SIREN, 2010), (XU et al., 2013) or reduction of CO2 emissi-
ons (HAMDY; HASAN; SIREN, 2010), (SRIKANTHA; KESHAV; RO-
SENBERG, 2012), (PARISIO et al., 2013). Studies using the three
arguments in the same optimization plan and that were, there-
fore, aligned with the scope of this work were not found, howe-
ver.

Many works using the concept of HVAC optimization pro-
blems present the use of the external temperature and its vari-
ation for the thermal calculations (HU; KARAVA, 2013), (GOOD
et al., 2015), (CONTRERAS-OCANA; SARKER; ORTEGA-VAZQUEZ,
2016), (AGHEB; TAN; TSANG, 2015), (MA et al., 2015), (LIAO;
DEXTER, 2010). None of them, however, has identified the power
consumption calculation based on the outdoor temperature and
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the internal temperature variation at the same time.

In the optimization process, weather forecasting (XU et al.,
2013), (ZHUANG; LI; CHEN, 2007), (CONTRERAS-OCANA; SAR-
KER; ORTEGA-VAZQUEZ, 2016), (BECKEL et al., 2015), (AGHEB;
TAN; TSANG, 2015) and energy price forecasting (KNUDSEN; ROT-
GER, 2015) for the next hours or the next day are commonly
used. The use of the weather forecast for a given region helps
the optimizer to generate a more accurate future plan. This
is because the external temperature, coming from a known ex-
ternal agent, can be used in the calculation. As well as some
weather agencies offer their information on the Internet, some
energy studies companies offer data on the expected expenditure
on electricity for the next few hours or for the next few days.
Such information, likewise, is useful for the optimizer that starts
to make use of data offered by specialists. However, either, the
use of external temperature, electric energy price and estimated
value for the production of CO2 were not found applied at the
same time, in the optimization process aligned with the scope
of this thesis.

Based on the above identified research opportunities, the
following problematic question is proposed: how to reduce the
heat pump power energy consumption due to the heating in
multi-zone environments as well as CO2 emissions, in order to
guarantee the thermal comfort of their users?

1.2 GOALS

In this section both, the central objective of this thesis
as well as the steps to achieve it are presented. Each specific
objective has a deliverable which, in turn, refers to a specific
chapter of this document.
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1.2.1 Main Goal

This thesis’ final goal is to propose a model which would
be able to offer to the smart building’s end user a day-ahead
internal temperature plan in order to minimize the power con-
sumption cost environments using heat pumps as well as gua-
ranteeing the thermal comfort.

1.2.2 Specific Goals

This research follows a technological approach because
it consists of the use and acquisition of the knowledge gained
during the process for future practical application and it is or-
ganized along the following steps:

1. To analyze in the literature the parameters that affect
thermal comfort in multi-zone buildings.

2. To identify methods and techniques of knowledge enginee-
ring, which can be applied in the Smart Buildings context.

3. To propose a model able to reduce electricity consumption
and financial costs on residential heating as well as CO2

emissions.

4. To demonstrate the usefulness of applying the proposed
model.

1.2.3 Adherence to the Ph.D. Programs

This doctoral research was conducted in the form of a
Joint Research agreement established between the postgraduate
course in Knowledge Engineering and Management from the Fe-
deral University of Santa Catarina (Brazil) and the postgraduate
course in Computer Science at the Sapienza University of Rome
(Italy).
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At UFSC this research was developed under the area of

Knowledge Engineering, in line with research Theory and Prac-
tice in Knowledge Engineering, which focuses on studying the
methodologies and techniques of this area and its relationship
with Knowledge Management.

One of the first definitions for Knowledge Engineering was
established by Feigenbaum and McCorduck when they explai-
ned that knowledge engineering is inseparably connected with
solutions in the IT (Information Technology) area: “knowledge
engineering involves integrating knowledge into computer sys-
tems in order to solve complex problems (...)” (FEIGENBAUM;
MCCORDUCK, 1983), (JOOS et al., 2012). It was only in 1991,
however, that Knowledge Management (KM) was introduced as
a discipline that includes courses taught in the fields of business
administration, information systems, management, and others
(NONAKA, 2008).

It is possible, therefore, to state that from the early ’90s
the two disciplines: “Knowledge Engineering” and “Knowledge
Management” were able to merge and both formed a new branch
of knowledge: “Knowledge Engineering and Management”. This,
in turn, puts together the techniques of both its precursors and
then formed a new area which is able to understand and study
the problems related to business and business environment using
the IT as support or means for managing.

The Knowledge Engineering (KE) is an area that can as-
sist this process through a set of methods, techniques and tools
that support the Knowledge Management (KM) to formalize
and to make explicit the knowledge intensive tasks (SCHREI-
BER, 2000), (FEIGENBAUM; MCCORDUCK, 1983). Thus, the kno-
wledge engineering provides a set of tools that gives support for
knowledge management from the formalization and clarification
of knowledge intensive activities in organizations (SCHREIBER,
2000).

The Knowledge Engineering is an area that aims to pro-
vide systems which are capable of affecting the explicitness and
preservation of organizational knowledge. Initially treated as
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a subfield of artificial intelligence (AI) in building knowledge-
based system for solving specific problems, the KE has transcen-
ded this vision by considering the whole organizational systemic
context of knowledge intensive activities (LOPES; GONÇALVES;
TODESCO, 2012), (SCHREIBER, 2000).

Although KEM and CS are two different doctoral pro-
grams, there are several common areas of study between them.
Some of them are the studies of smart cities, smart homes and
smart grids as the scope of this work.

Another important point of convergence between these
two postgraduate programs is the Information Technology. The
KE, as a sub-area of KEM, is concerned to study IT as a tool
for the KM. On the other hand, the CS is entirely concerned
with IT studies. KE is an interdisciplinary studies area that
uses both knowledge and IT in order to provide technological
solutions (STUDER; BENJAMINS; FENSEL, 1998).

Assuming that the term “Smart” refers to the use of IT
and considering that IT is also an important area of KEM stu-
dies, this work deals with IT as the main point of convergence
between Smart Energy and KEM.

Both CS and KE are research areas capable of providing
solutions to these kinds of problems. KE can be defined as the
area of academic research to develop models, methods and basic
technologies to represent and process knowledge and to build
intelligent systems based on knowledge (KASABOV, 1996). The
KE, provides all instrumental for modeling and development of
knowledge-based systems that are able to explain, formalize and
represent knowledge.

Energy management, the management of emission of to-
xic gases to the environment and the management of smart cities
and smart grids are the KM objects of study. As it can be seen
in Fig. 1, the central region of intersection among the related
studied areas is objectively where this research fits. So, this is a
study that seeks to solve a problem from the Knowledge Mana-
gement area arising from the Energy Studies using techniques
and tools from Knowledge Engineering and Computer Science.
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Figure 1 – Intersection among the Studies Areas

Source: Author (2017)

This research still lays within the overall objectives of the
KEM program (PPGEGC, 2014) in UFSC, where it is found that
the KEM research goal refers to the macro processes of expli-
citness, management and dissemination of knowledge. These
include creation of processes, discovery, acquisition, formali-
zation/encoding, storage, use, sharing, transfer and evolution.
Thus, the objective of the KEM postgraduate program is to
investigate, design, develop and apply models, methods and te-
chniques related to both processes, goods, services as their te-
chnical and scientific content (PPGEGC, 2014).

From the point of view of the didactic of postgraduate
course in Computer Science department of Didattica Goals (2016),
the CS Ph.D. students should be able to perform autonomously
and coordinate activities of research within the academic or in-
ternational research institutions worldwide, both, depending on
their training, to design and manage systems development pro-
jects innovative information technology to address complex pro-
blems as well as using interdisciplinary.

Since this is a work that takes into account both the tech-
nological aspects and the interaction with the final user, which



45
considers prior knowledge, usage profile and parameters obtai-
ned from the user, the multi and interdisciplinary bias research
play a crucial role to obtain reliable results.

In both doctoral programs themes as smart cities and big
data have been studied, as examples: in Klein (2015) and in (DE-
PINÉ, 2016) where the authors work with big data and open data
for smart cities as well as creative class and intelligent human
city, from UFSC and by Mancini et al. (2015) from Sapienza in
a digital system design context.

Furthermore, in these programs a vast range of material
has been produced on the theme of energy and power consump-
tion like in Strategic Guidelines for the Development of Com-
munities of Practice in the Commercial Area of a Distribution
Company or Electric Power Company by Nunes (2012), Ma-
nagement of Knowledge in the Electric Sector: Proposal for the
Maintenance Sector of Transmission Lines of Eletrosul-Centrais
Electricas SA. by Lehmkuhl et al. (2008), Perception of Materi-
als by Users: Evaluation Model by Dias et al. (2009), Strategies
in Knowledge Management for the Development of Wind Farms
by Silveira et al. (2010), Mechanisms of Coordination and Prac-
tices of Knowledge Management in the Network of Outsourced
Value: Study in the Electrical Sector by Souza et al. (2011),
A Knowledge-oriented Reference Model for the Process of Plan-
ning Medium-voltage Distribution Systems by Guembarovski et
al. (2014), The Psychological Profile and the Negotiation Style
of the Electric Energy Negotiators in Brazil by Teixeira et al.
(2011), SmartHG: Energy Demand Aware Open Services for
Smart Grid Intelligent Automation by Tronci et al. (2014) and
Residential Demand Management using Individualized Demand
Aware Price Policies by Hayes et al. (2015).

1.2.4 Originality

One of the main differences presented by this work is a
model capable of identify the thermal parameters of the building
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without the need of knowledge on the structure physical envi-
ronment. The central part of the model includes an algorithm
to calculate these parameters based on the building’s historical
data as well as the end user preferences.

Another important contribution of this work relates to
the fact that, in the step of thermal parameter identification,
both, values for thermal resistance and thermal capacitance are
calculated. These values are estimated based on the thermo-
electrical analogy as it is presented in Sect. 4.4.1.

The calculus of the heat pump coefficient of performance
presented in Sect. 5.4.5 is proposed in a different way from those
found in the literature. In this study, the COP calculation is per-
formed using intervals (ranges) based on the different outdoor
temperatures.

As the heat pump coefficient of performance calculation
part, inside of the optimization plan phase, a new method to
estimate the heat pump power consumption as a function of
outdoor temperature was used. In this case, for each range of
outdoor temperature a different linear function that was used
into the optimization files was calculated.

Another important contribution of this work concerns to
the fact that the optimizer, at same time, seeks to minimize not
only the difference between the calculated internal temperature
and the one obtained from the household user, but also aims to
calculate the amount spent on the purchase of electricity and
the value of the emissions of CO2 for the same period.

It is still an original proposal because it puts together in
the same application: a graphical interface used for the acquisi-
tion and visualization of knowledge representation and applica-
tion of knowledge into the database and automatic calculation
of thermal parameters and internal temperature plan for the
following 24 hours.
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1.2.5 Contributions

The main research contributions can be cited as follows:

• mathematical-computer model able to identify thermal pa-
rameters of a smart building

• computational model optimization responsible for genera-
ting day-ahead internal temperature plans;

• calculation of the coefficient of performance of heat pumps
depending on the outside temperature;

• weather forecasting, kWh price forecast and forecast the
cost of CO2 emissions for the next 24 hours used for gene-
ration of the internal temperature plans;

• knowledge representation using graph theory and thermo-
electrical analogy;

• a graphical interface to be used for both knowledge acqui-
sition and visualization.

Unlike other works found in the state-of-the-art section
(Sect. 2.5), this thesis aims to contribute not only to the reso-
lution of this problem and within the defined scope, but aims
to present a contribution to the area with a model composed by
knowledge-based processes. These knowledge-based processes
are used to compose the proposal for a complete computational
solution in which the Smart Building user can interact directly.

Despite its scope in the context of Smart Buildings, this
study may have future application in the Smart Grids and/or
Smart Cities contexts. This happens because the proposed mo-
del which will be operationalized by means of a web-based com-
puter system, despite its private character to each household
user, enables shared access. Such shared access concerns to offer
visualization of their own reports as well as from their neighbors.
There is therefore all the data organized in the same database,
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and the use of this information for Smart Grids and Smart Cities
applications is made possible.

1.3 SCOPE

This study has established as a scope to study the heating
of Smart Buildings, especially in winter periods. The study
reviews take into account buildings which are heated by means
of air-to-air electrical heat pumps.

The specific study on the materials involved in building
the environment to be heated as well as the particular operati-
onal dynamics of each residence as opening doors and windows,
use of other electric heaters, turn on and off lights are not part
of this research scope. It will also not be considered in the scope
of this study the industrial environments or buildings with con-
tinuous flow of equipment and personnel.

The proposed model, as a deliverable, provides the home
user a table containing a schedule of internal temperature prefe-
rence per hour range. Therefore this model does not act directly
on heat pumps.

The model proposed in this thesis was developed based
on studies of heating environments using heat pumps. In this
way the proposed model does not apply to other cases.

Another limitation of this work is related to the absence of
historical data for the calculation of thermal parameters. That
is, if a Smart Building does not yet have historical data on tem-
perature and power consumption, the end result of the model
may not result in accurate values for using default values and
not necessarily the environmental data. This refers to the initial
period of execution of the newly implanted model.
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1.4 THESIS STRUCTURE

This thesis is organized in seven chapters as it is speci-
fied below: Chapter one provides the introduction, identifying
the problems and objectives of this work. In chapter two the
theoretical basis is presented for the development of work, espe-
cially with regard to thermal parameter identification and inter-
nal temperature plan optimization. Chapter three presents the
methodology used to perform each step of the present work. In
Chapter four and five the proposed model is presented and de-
tailed as well as its implementation process. Chapter six shows
the carried out experiments and evaluation results. Chapter se-
ven concludes the work presenting the final remarks, followed
by the references and appendix.
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2 LITERATURE REVIEW

This chapter presents the main concepts to be used th-
roughout this thesis work as well as the state of the art. The
definition of the main general terms is presented in Section 2.1.
The model proposed in this thesis is divided into two distinct
stages: thermal parameters identification and internal tempera-
ture plan generation. The definitions of the concepts used in
such steps are presented respectively in Sections 2.2 and 2.3.
The state of the art is presented in Section 2.5. This review
describes the related works to the studied topic as well as their
interrelationship.

2.1 SMART ENERGY STUDIES

Energy Studies are, frequently, related to the mitigation
of climate change by means of the use of renewable energy stra-
tegies (wind, solar, wave and biomass). Energy savings on the
demand side can causes significant impact on the sustainable
development, which is one of the goals of smart energy studies.

Smart technologies have been extensively studied in the
last years, especially those (PREISSLER, 2015) ones referring to
the Smart Energy. This is due to the possibility of using In-
formation Technology (IT) to support energy management pro-
cesses. In that case, the term “smart” refers to the use of In-
formation Technologies (IT) for automation processes as energy
thermal controllers.

Such systems have contributed to both the representa-
tion of residential and non-residential environments and to their
behavior in relation to the heating and/or cooling dynamics.
Smart Energy is a term that can be used in order to refer to
the intersection area between the major areas of study: Smart
Grids, Smart Cities and Smart Homes or Buildings (PREISSLER,
2015).
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2.1.1 Smart Grids

The term Smart Grid may be understood as the over-
laying of a unified communication and control system on the
existing power delivery infrastructure to provide the right in-
formation to the right entity (...) at the right time to take
the right action. It is a system that optimizes power sup-
ply and delivery, minimizes losses, is self-healing, and enables
next-generation energy efficiency and demand response applica-
tions (ALTO, 2008). Smart Grid is designed to integrate advan-
ced communication and networking technologies into electrical
power grids to make them “smarter” (GAO et al., 2012). Objec-
tively this term refers to the application of Information Techno-
logy to power systems.

Lund et al. (2012) aims to explain why Smart Grids should
not be seen apart from the other energy sectors and what the
integration of the other sectors means for the identification of
proper solutions to the integration problem. For this author the
converging point between the other areas of the power sector
and the Smart Grid is the “renewable energy power”.

2.1.2 Smart Cities

Notwithstanding the term “Smart Cities” (or Smarter City)
is largely used nowadays, there is still not a clear and consistent
understanding of its concept among practitioners and academia
(CHOURABI et al., 2012). Nevertheless, an important meaning
was given by the World Foundation for Smart Communities,
which combines digital cities to intelligent growth, a type of
development based on information and communication techno-
logies. “A Smart Community is a community that has made a
conscious effort to use information technology to transform the
lives and work within its territory significantly and fundamen-
tally, instead of following an incremental way” (NAM; PARDO,
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2011).

A SC can be defined as a community that has made a
conscious effort to use information technology to transform, sig-
nificantly and fundamentally, the live and work within its ter-
ritory, instead of following an incremental way (COMMUNITIES,
2001). Its concept can be categorized into several areas such as
planning and management, human and infrastructure and many
sub-areas as government and agency administration, public sa-
fety, social programs, health-care, education, transportation and
water energy, environmental and smarter buildings and urban
planning (ANTTIROIKO, 2006). For this study, though, the focus
lies on those related to the energy sector (BATTY et al., 2012),
(TOWNSEND et al., 2010).

2.1.3 Smart Buildings

The Smart Homes (SH) and Smart Building (SB) terms
share some functional and technical commonalities. The term
SH, however, is mainly used to describe residential homes while
SB refers to tertiary buildings (office buildings, industrial pre-
mises, hospitals, schools, etc.) (MARTINS et al., 2012).

One SB can be defined as a building equipped with com-
puting and information technology which anticipates and res-
ponds to the needs of the occupants, working to promote their
comfort, convenience, security and entertainment through the
management of technology within the home and connections to
the world beyond (ALDRICH, 2013). Smart Buildings has ap-
plications that allow homeowners to improved energy efficiency,
frequently based on HVAC and thermal comfort studies.

In this case the concept of smart applies to buildings that
have some sort of automation and where there is an interactive
technology with the final user. This intelligent automation prin-
ciple arises from the need for families to have a better control
over their lives. So it can provide better home life experience
to residents with intuitive user interfaces without overpowering
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them with complex technologies. For this study the home auto-
mation areas which are related to the consumption and produc-
tion of electricity will be taken into consideration.

Smart homes such as “habitat control” or “intelligent home”
type networks are equipped with devices that possess an amount
of integrated intelligence required to manage and exchange data.
Smart home functions include: entertainment, communicati-
ons, energy and climate control, security, alternative energy
and energy neutral applications, lighting and robotics (BUDDE,
2014). This work focuses on energy and climate control functi-
ons, specifically heating using heat pumps.

Several scientific works refer to the use of building repre-
sentation in order to understand the thermal dynamics (WET-
TER, 2006), (GOUDA; DANAHER; UNDERWOOD, 2000). Such pie-
ces of work are divided into studies in single-room or multi-zone
building representation. Both of them use thermal engineering
principles as part of their methods.

Thermal engineering is an important area of studies of
the process of heating or cooling spaces, equipments or enclosed
environments. Two of the subareas involved are the Thermody-
namics and Heat Transfer.

A thermal dynamic model for a multi-zone building is pre-
sented by Goyal, Liao e Barooah (2011). In that study authors
use graph theory to represent the entire house. They represent
nodes as the temperatures in zones and edges as models of dy-
namic interaction between the thermal variables connected by
the edges. Such approach is close to this work’s purpose. Howe-
ver, thermal parameter identification was solved by mathema-
tical equations starting from the electrical laws (ROBERTSON;
GROSS, 1958) derive from the thermodynamics laws.

Furthermore Mukherjee, Mishra e Wen (2012) propose a
passivity based control strategy in a multi-zone building using
thermal resistance and capacitance analogy. They used indirect
graph to represent a house focused on building thermal control.

A practical approach for parameter identification with li-
mited information is proposed by Zeni et al. (2014) using genetic
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algorithms and circuits. Instead, in Yang et al. (2012) is pro-
posed what the authors call an efficient evolutionary approach
to parameter identification in a building thermal model. In this
last work the authors also use also genetic algorithms to find the
thermal parameters.

Studies related to multi-zone buildings are more complex
when compared to single-zone buildings because they need to
consider aspects such as connection between zones, the interfe-
rence between them and a larger overall size of the buildings.
This work has as its scope the studies in multi-zone buildings.

2.2 THERMAL PARAMETERS AND COEFFICIENT OF PER-
FORMANCE IDENTIFICATION

Thermodynamics and Heat Transfer as subareas of Ther-
mal Engineering are concentrated in study problems related
with heat and temperature as well as their relation to work and
energy as the Heat Transfer regards to thermal energy, physical
systems depending on the temperature and pressure.

From the thermodynamics, the heat can be transferred
from one place to another in three different ways: conduction,
convection and radiation. The conduction takes place when heat
transfer occurs between substances that are in direct contact
with each other; convection happens when warmer areas of a li-
quid or gas rise to cooler areas in the liquid or gas; and radiation
happen when the heat transfer does not rely upon any contact
between the areas.

2.2.1 Thermal Parameters

For several decades, many researchers have been studying
the identification of building parameters such as thermal con-
ductivity, heat capacity and convective heat transfer coefficient.
These parameters can be determined by measurements (in la-
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boratory or on site) and computational estimations (PARK et
al., 2011). In thermodynamics and heat transfer areas, some
insulation parameters are often studied, such as:

• Thermal capacitance C is related to the ratio of the amount
of heat energy transferred (added to or removed from an
envelope) resulting in a temperature change. The C va-
lue can express, in thermodynamics the ration in which a
space is heated in a function of time.

• The thermal resistance is represented by R which is the
ratio of the temperature difference across an insulator and
heat flux. It is the heat property of an object or material
to resist to a heat flow. The R value is often used to
represent thermal resistances, that always exist between
two distinct temperatures.

• The U-value or thermal transmittance is the overall heat
transfer coefficient that describes how well an element con-
ducts heat. It quantifies the thermal conductance of a
structure along with heat transfer due to convection and
radiation process. U-value is the inverse of R.

There are also other parameters and concepts as the ther-
mal conductance that is the quantity of heat that passes in unit
time through a particular area and thickness when its opposite
faces differ in temperature by one kelvin.

Thermal-electrical analogy is a commonly used method to
identify thermal parameters. In that case, identifying thermal
parameters means that they are unknown and will be estima-
ted using the analogy between the electrical and thermal study
fields.

2.2.2 Thermal-Electrical Analogy

The use of the electrical analogy dates back to before
the 1950s when physical electric circuits were used to model
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thermal properties of phenomena such as walls, enclosures and
heat pump processes (PARK et al., 2011). This method use the
analogy between thermal and electrical study fields by means of
representation of a heat behavior in a room, for example, using
a RC circuit.

Several scientific studies have been published using Ther-
mal Electrical Analogy to solving problems related to space he-
ating. Parnis e Sproul (2010) cites Paschkis in 1942 as the first
publication describing how the electrical analogy could be used
to analyses and quantify thermal behavior in buildings (PARNIS;
SPROUL, 2010). In this direction, Robertson e Gross (1958) pu-
blished in 1958, suggest an electronic instrument which provides
a solution for transient heat-flow problems by the use of direct
analogy to electrical networks.

Moreover, parameter identification using Thermal Ana-
logy can be found in Balan et al. (2011b) that presents solu-
tions in modeling, parameter identification and control of the
thermal energy in a house. Moreover, Park et al. (2013) study
a model of a building system in order to predict thermal beha-
vior within a building and its energy consumption. It uses RC
thermal network based on the thermal-electrical analogy. The
parameters of the parametric models are obtained by the least
square approach.

Several studies use electrical-thermal analogy through RC
circuits simulations (PARNIS; SPROUL, 2010) as an important ap-
proach to solve the proposed problem. Some of the works that
make temperature control, use transient analysis with a SPICE-
like language (MUKHERJEE; MISHRA; WEN, 2012), (MITRANI et
al., 2009). This computational language and tool is able to repro-
duce electrical circuits behavior by means of simulations. Few
of them, use transient analysis (ROBERTSON; GROSS, 1958) in
order to understand the heat behavior or to collect thermal pa-
rameters.
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2.2.2.1 Thermal Resistance

The thermal resistance is the ability of a material to re-
sist the changes between two temperatures. It is also known as
thermal insulation (SCHAGRIN, 1963), (BS, 2014). Fig. 2 shows
an hypothetical case of a wall having two layers, with two tem-
peratures T1 and T2, where ÛQ is the heat flow. Each of the
layers constructed of different material, has a distinct resistance
value to the wall R1 and R2. The sum of the two resistances can
be represented by a single resistor, using the thermal-electrical
analogy as RT .

Figure 2 – Thermal Resistance in a Double-Wall case
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Source: Author (2017)

The heat flow through the resistance is proportional to
the temperature difference and it is inversely proportional to the
value of the resistance. A thermal resistance exists between two
separate temperatures, one on each side (CHEEVER, 2013). In
Fig. 3 this relational concept between temperature and thermal
resistance can be seen.

Therefore the sum of all thermal resistances of a room or
house can be designed as overall resistance, which is used in this
present study. Once the thermal resistance is directly related to
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Figure 3 – Relationship between Thermal Resistance and Tem-
perature
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the changes in temperatures and the behavior of the inhabitants
of a house, such as opening doors and windows, in this study
the overall average resistance R is used.

2.2.2.2 Thermal Capacitance

The thermal capacitance of an object is a measure of how
much heat it can store. The rate of change of temperature of a
thermal capacitance is proportional to the heat flow into it and
it is inversely proportional to the its value (CHEEVER, 2013).

Fig. 4 presents on the same graph the two possible wa-
veforms in a capacitor or in this case the thermal capacitance:
charging and discharging.

Both, the capacitor charge and capacitor discharge varies
with respect to time. The charging equation of a capacitor can
be expressed as V(1− e

−t
RC ) and discharge as V(e

−t
RC ) (CHEEVER,

2013). Where V is Voltage and t time.
As thermal resistance, the thermal capacitance calculated

in this thesis is the average of overall thermal capacitance C.
Which is obtained from the calculated overall average resistance
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Figure 4 – Capacitor Charging and Discharging Waveforms
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R and the overall average relation between thermal resistance
and capacitance RC.

2.2.2.3 Computing the Thermal Transmittance - U-value

The U-value or U-factor is the inverse of the total ther-
mal resistance (ANDERSON, 2002) of the envelope and it repre-
sents the coefficient of overall heat lost in watts through 1m2

[W/m2 ◦C]. The heat pump power is represented by ΦP = ηP
and it is considered as the coefficient of overall lost heat.

The U-value describes how well a building element con-
ducts heat. For instance, a well-insulated building has a low
thermal transmittance whereas poorly insulated parts of a buil-
ding have a high thermal transmittance (BS, 2014).

Considering U-value as the coefficient [W/m2-◦C] overall
heat loss and is been the reciprocal of R, the Eq. 2.1 can be
presented as:

U =
1

R
(2.1)

The U-value has been widely used by the construction
industry and the building standards from the materials industry
(BS, 2014).
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2.2.2.4 Unit of Measures Equivalence Table

The analogy between thermal and electrical systems is
used to represent thermal systems dynamics by means of elec-
tronic circuits (lumped parameter circuit), as can be seen in
Tab. 1. In this sense, it is also possible to use thermodyna-
mics and electricity laws such as Newton and Ohm’s laws in an
analogous way.

Scientific papers related to the use of representation of
envelopes or buildings through electrical circuits (PREISSLER,
2016) have been published (MUKHERJEE; MISHRA; WEN, 2012),
(PARK et al., 2013). The majority of these works, however, starts
directly from the electrical circuit representation (ROBERTSON;
GROSS, 1958).

To develop a mathematical model of a thermal system
the concept of an energy balance is used. The energy balance
equation states that at any given location, or node, in a system,
the heat into that node is equal to the heat out of the node plus
any heat that is stored (heat is stored as increased temperature
in thermal capacitances) (CHEEVER, 2013).

Heat in = Heat out + Heat stored

The heat balance equation which is applied to the ther-
mal electrical analogy, presented by Park et al. (2011) can be
seen on Eq.2.2. It is described from the first principle of ther-
modynamics for a well-insulated single room with a heater.

C
dTin(t)

dt
= P(t) −

1

R
(Tin(t) − Tout (t)) (2.2)
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Table 1 – Analog Elements Between Thermal and Electrical Systems
Thermal Electrical

Property Symbol Unit Property Symbol Unit

Temperature θ ◦C Voltage v volt
Time tt second Time te second
Heat-flow rate ∂Q

∂tt
watt Current i micro-ampere

Heat capacity C joule/cm3/◦C Capacitance C micro-farad/cm3

Resistance R ◦C/watt Resistance R Ohm’s[Ω]
Conductivity k watt/cm3/◦C Conductivity 1/r 1/mega-ohm cm
Length xt cm Length xe cm
Temperature gradient ∂θ

∂xt
◦C/cm Voltage gradient ∂v

∂xe
volt/cm

Rate of temperature rise ∂θ
∂tt

◦C/second Rate of voltage rise ∂θ
∂te

volt/second
Source: Robertson e Gross (1958)
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This equation which is obtained from the electrical-thermal

analogy and which is represented by a zone as an RC circuit
determines that: the thermal capacitance C of the internal en-
vironment is derived from the change of internal temperature
Tin over the time t, and it directly depends on the energy gene-
rated by heater P and the difference between external Tout and
internal temperature as well as the thermal resistance R between
these two temperatures.

This heat balance equation is an alternative to be used in
order to identify the thermal parameters. In addition to iden-
tifying these thermal parameters the heating coefficient of per-
formance - in this particular case heat pumps - was also calcu-
lated.

2.2.2.5 η-max and Balance Point Temperature

In order to calculate the maximum value of the coefficient
of performance it is possible to use the outdoor reference tempe-
rature Tort which calculates the balance point temperature Tbpt .
The building balance point temperature is the outdoor air tem-
perature required for the indoor temperature to be comfortable
without the use of any mechanical heating or cooling (KEELER;
BURKE, 2013). Tbpt can be found using Eq. 2.3

Tbpt = max(Tout (t) | s.t . P(t) , 0) (2.3)

In order to obtain Tort it is possible to use Eq. 2.4. It is
assumed that when the Tout is greater or equal to Tort then η is
at maximum value ηmax .

Tort = bTbptc − 1 (2.4)

In order to check the consistence of the found values for
this procedure, it is possible to obtain ηmax values from the tech-
nical specifications for each heat pump equipment manufacturer
and make evaluations can be made.
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2.2.3 Heat Pumps

Heat pump is a device which receives low-grade heat from
a low-temperature source and it provides higher-grade energy
to a high-temperature sink (NAVE, 2016). It seemingly “pumps”
heat from the low-temperature source (at or near ambient tem-
perature) to the high-temperature sink (KENT, 1997). The rest
of the energy needed to produce heat inside the building is then
obtained from the electrical network and it is shown in Fig. 5.

Figure 5 – A Heat Pump Schema
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Source: Author (2017)

Current heat pumps can reduce the electricity use for he-
ating by approximately 50% compared to electric resistance he-
ating such as furnaces and baseboard heaters (ENERGY, 2016).

There are basically three types of heat pumps: those that
absorb external temperature from the underground (geother-
mal), from the water (water source) and from the external air
(air-to-air). In this study the most commonly (ENERGY, 2016)
heat pumps that use air from the external environment to heat
the envelope, that is air-to-air, are used.
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2.2.3.1 Heat Pump Coefficient of Performance

The Coefficient of Performance (COP), here represented
by η, is a dimensionless value defined as the energy produced
by a heat pump. The energy produced by a heat pump (in
watts) divided by the energy consumed by the heat pump (in
watts). COP represents the efficiency of a heat pump while
in the heating mode. A higher value of COP reflects a higher
heating efficiency (MIX, 2006).

By Carnot’s theorem and from the second law of ther-
modynamics any heat engine efficiency can be measured by heat
introduced to the system divided by the work (URIELI, 2010).
Eq. 2.5 shows this theorem where Qh is the heat energy entering
the system and W represents the work [Watt].

COP =
Qh

W
(2.5)

A heat pump Coefficient of Performance (COP) is a ratio
of heating provided to the envelope. When the COP is high it
implies low operating costs and higher heating efficiency (HEP-
BASLI; KALINCI, 2009). A heat pump COP can starts in one (in-
dicating 100% efficiency) and it can be greater than one because
these devices pump heat from external sources. So it is depen-
dent on the outdoor temperature (BERTSCH; GROLL, 2008).

Second the Natural Resources Canada Office of Energy
Efficiency (ENERGUIDE, 2004), at 100 ◦C, the coefficient of per-
formance of air-source heat pumps is typically about 3.3, at
−8.3◦C the COP is typically 2.3 and even when the tempera-
ture falls to −15◦C the COP is 1.0 as it is presented by Fig. 6.

Applying the same concept to study heat pumps dyna-
mics (KENT, 1997) investigates the performance of a compact
air-to-air heat pump for residential heating. The author shows
a real case using data from an office room at Istanbul Technical
University. The coefficient of performance and heating capa-
city of the system are measured and presented as a function of
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Figure 6 – Typical COP values per Outdoor Temperature

Source: EnerGuide (2004)

outdoor-air temperature but in a way which is different from
what is proposed in this study.

In Tahersima (2012) it is investigated how the heat pumps
work focused on optimization of the system performance in terms
of energy efficiency. In the section of future discussions and con-
clusions the results were presented. In the discussion, the author
states that controlling a heat pump is not a trivial task, and he
also mentions that another factor to be concerned about is the
electricity supply instability by the power companies.

Heading to Tahersima (2012) conclusions, the present study
proposes the generation of future scenarios in order to reduce
the consumption of electricity, due to space heating. This out-
put concerns in the generation of an internal temperature plan
for the following 24 hours.
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2.3 INTERNAL TEMPERATURE PLAN

This section present some elements found in the litera-
ture. These elements are used to forecast electricity consump-
tion in the generation of future scenarios as well as other cha-
racteristics taken into account in these studies.

The generation of future scenarios for reducing energy
consumption usually acts directly on the devices and it is called
controllers. These control algorithms often are called forecasts,
as they aim at making predictions of future consumption based
on future situations.

In Suganthi e Samuel (2012), while doing a review about
energy models for demand forecasting, the authors present the
results of more than 360 scientific papers. According to the
authors, genetic algorithms, fuzzy logic, support vector regres-
sion and operational research (VANDERBEI, 2001) are emerging
techniques in forecasting commercial and renewable energy sour-
ces.

Lara et al. (2013) presents a predictive controller based
on the thermal model of a hotel, and in his Thesis, Kämpf e
Robinson (2007), focused on how to use a computational imple-
mentation of one model. Both of them present problems related
to technological models applied to the the energy consumption.

One of the internal temperature plan goals is to reduce
the over and undershoots. The cycling between heat pump tur-
ned On and Off limits occur due to the thermal inertia of buil-
dings. An hypothetical example of Internal Temperature Res-
ponse Curve is presented in Fig. 7.

The term Model Predictive Control (MPC) is frequently
used as a control methodology that can use predictions to im-
prove building thermal comfort, decreasing peak demand, and
reducing the total energy costs (MA et al., 2012). Building con-
trols design, however, can become challenging as they move
beyond standard heuristic controls approaches and seek to in-
corporate predictions of weather, occupancy, renewable energy
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Figure 7 – Internal Temperature Response Curve
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availability, and energy price signals (MA et al., 2012).

2.3.1 Thermal Comfort

The reduction in energy consumption in residential and
non-residential places is also directly related the amount of mo-
ney that is saved by their owners. The reduction in energy con-
sumption for heating these environments, however, should take
into account the degree of thermal comfort (ASHRAE, 2004) to
its households users.

The forecasts of occupancy profiles represent an input of
the optimization problem (ASCIONE et al., 2016). Other stu-
dies working on multi-zone building, with lumped heat transfer
model based on thermal resistance and capacitance for system
analysis based on the occupant feedback (WEN et al., 2013), has
shown that the calculation of the internal temperature based on
the participation of domestic users has significant importance
not only for the accuracy of the models but also for the use of
support systems for these same users.

A building is in its entirety a complex network of hete-
rogeneous and inter-connected subsystems. The occupants of a
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building constitute an important subsystem, whose comfort level
must be accounted for, in optimizing energy usage in a building
(GUPTA et al., 2014). Using a lumped heat transfer model based
on thermal resistance and capacitance for system analysis can
be a complete tool applied to thermal models.

The main goals of HVAC systems studies in building envi-
ronments are based on providing indoor thermal comfort for its
occupants. Furthermore, they expect to provide acceptable air
quality and understanding thermal comfort as a situation where
a person feels satisfied with the temperature of the surrounding
environment (ASHRAE, 2004).

One solution for thermal modeling of a house includes ex-
perimental identification of the model’s parameters. Identifying
the parameters of a thermal model of the house can help to
reduce the energy consumption (BALAN et al., 2011a).

Thermal models of buildings are often used to identify
energy savings within a building. This requires an understan-
ding of the thermal dynamics of the building, which is often
obtained from physical thermal models (YANG et al., 2012). Pre-
dictive models of building thermal dynamics and energy costs
of control actuators allow computation of the optimal inputs to
each actuator in order to deliver the desired energy profile (MA
et al., 2012).

2.3.1.1 Heat Balance Representation

The principal terms of heat gain/losses of one envelope
to be conditioned, according to the American Society of Hea-
ting (ASHRAE, 2004) is represented in Fig 8. In this heat balance
representation is possible to understand a building as a dynamic
system.

It is understood that the heat exchange in an environ-
ment is due to several factors. Considering that the percentage
of heat load components in one envelope are distributed as fol-
low (ASHRAE, 2004): 77− 85% due to outdoor temperature and
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Figure 8 – Heat Balance Envelope System

Load

Space 

to be

conditioned

(envelope)

Conduction (roof, walls, glazing)

Conduction (ground)

Solar radiation

People

Equipment

Lights

Air exchange

Heat Capacity

Source: Ashrae (2004)

electrical equipment, 5− 8% infiltration, 4− 8% lighting, 3− 7%
solar transmission and 3% from people corporal heating.

In order to understand the dynamics of an environment
heat exchange, it is firstly necessary to estimate the thermal
parameters of each environment. Once knowing these parame-
ters it is possible to set plans for the heating process or for the
cooling zones..

2.3.2 Weather Forecast

The control strategy of heating systems using the fore-
casts of occupancy profiles and weather conditions have demons-
trated important results related to save power consumption (AS-
CIONE et al., 2016).

Energy studies of predictive controls using the weather fo-
recast to estimate the outdoor temperature have shown results
in energy savings of 70% on average during the heating sea-
son (BENGEA et al., 2014). Other studies show that despite the
use of the data source in hourly weather (FRANCES; ESCRIVA;
OJER, 2014) may cause slowdowns in the general calculations
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consumption forecast, it improves the accuracy of the results.

Therefore the use of weather forecast for the energy con-
sumption estimate or the generation of future scenarios is an im-
portant tool that provides great accuracy to algorithms (GENC;
SEHGAL, 2014). Such statements make it possible to perform
more accurate calculations on the forecasts and this accuracy is
directly related to the quality of the source of weather informa-
tion.

One method that is used for calculations related to the
effect of outdoor temperature on smart buildings energy con-
sumption is called the degree days. In the heating period it is
called HDD (Heating Degree Days) (ALLEN, 1976). HDD is
a measure of how many degrees and how many days the out-
door temperature was lower than a specific base temperature,
(BENGEA et al., 2014).

2.3.3 Energy Price

Another important component used in predicting energy
consumption is the price of electricity. Specifically price forecast
this value for the next days or hours. Pricing forecast (GENC;
SEHGAL, 2014) is an important tool and the prediction algo-
rithms are based to estimate the total amount that will be spent
in a house or in a building in the next few hours or the next day.

For household electricity demands forecasting, there is
a benchmarking state-of-the-art methods by Veit et al. (2014).
They applied a number of forecasting methods including Autore-
gressive Integrated Moving Average (ARIMA), neural networks,
and exponential smoothening using several strategies for trai-
ning data selection, in particular day type and sliding window
based strategies. The results indicate that forecasting accu-
racy varies significantly depending on the choice of forecasting
methods/strategy and the parameter configuration.

Sevlian e Rajagopal (2014) presents experimental simu-
lations on forecasting for the energy consumption, and Veit et
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al. (2014) presents the state-of-the-art methods for forecasting
electricity demand on the household level. Both articles report
that when the forecasting models are applied to real cases the
results may change. Furthermore, it is necessary to take into
account the absence of some data when in real cases.

In Ziekow et al. (2013) it is possible to find discussions
on the potential of smart home sensors in forecasting household
electricity demand. This work studied three houses. For this re-
ason at the end of their article, the authors state that an interes-
ting way to extend that research would be to analyze the requi-
red computational resources to make forecasts for large numbers
of households in detail, because the complexity increases.

2.3.3.1 The Energy Prices Policies

Nowadays, many power companies have a schedule of pri-
ces that depends on the quantity taken during a given time pe-
riod. The electricity demand for final users can changes day to
day, hour to hour, minute to minute. This kind of pricing is
called time-of-use(TOU) (CHEN; LEIWU; FU, 2012).

To better understand the prices policies, the follow mo-
del (MOORE, 1970) can be used. This model considers a firm
that sells only to residential customers: j is the time period
(hour) j = 1, 2, ...L Pi is the price charged in the ith step of the
rate schedule i = 1, 2, ...n. TCp and MCp are the total cost and
marginal cost of producing power. TCo and MCo are the total
cost and marginal cost of other expenses. TC = TCp + TCo and
MC = MCp + MCo and MCj = MCpj + MCoj ; qj is the total
amount taken at the jth time. Q =

∑
jqj is the total quantity

taken. qpj = qj+ql j where qpj is the amount produced at the jth
time and ql j is the amount lost in transmission and distribution,
so Qp =

∑
jqpj .

π =
∑
j

Pqj −
∑
j

TCj (2.6)
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The total revenue that is generated during the jth hour

is equal to the price, P, times qj and so total revenue for the
year is

∑
jPqj . Profit, π, can be expressed as Eq.2.6:

2.3.3.2 Levelized Energy Cost

The Levelized Energy Cost (LEC) is the price at which
electricity must be generated from a specific source to break
even over the lifetime of a project (AGENCY, 2005 Update). It
is an economic assessment of the cost of the energy-generating
system including all the costs over its lifetime: initial invest-
ment, operations and maintenance, cost of fuel, cost of capital,
and it is very useful in calculating the costs of generation from
different sources. It can be defined in a single formula as Agency
(2005 Update):

LEC =

∑n
t=1

It+Mt+Ft

(1+r)t∑n
t=1

Et

(1+r)t

(2.7)

Where
LEC = Average lifetime levelized electricity generation cost
It = Investment expenditures in the year t
Mt = Operations and maintenance expenditures in the year t
Ft = Fuel expenditures in the year t
Et = Electricity generation in the year t
r = Discount rate
n = Life of the system

These models and methods are widely used by companies
which are providers of electricity. Such calculations are applied
both for actual consumption situations (this) and to forecast
(future scenarios) prices.
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2.3.4 CO2 Emissions

Energy for heating and cooling is the main reasons for the
associated CO2 emissions. In order to reduce such emissions,
investment has to be made, in terms of better features of the
building envelope and heating, ventilation and air conditioning
system type and components (HAMDY; HASAN; SIREN, 2010).

Petersdorff et al. (2005) presents European Union Cli-
mate Policy, CO2 emissions, energy costs and others. Herein
may be perceived the environmental impacts in reducing energy
consumption and also trends for European policies in order to
reduce CO2 emissions.

Several scientific papers in the area of planning future
spending on energy and other forecasting this area mainly take
into account the user thermal comfort and seek to reduce the
amount of consumption of electric power. Few of them, thought,
consider the reduction of CO2 emissions in the optimization pro-
cess.

Maintaining low CO2 levels in the atmosphere (ASHRAE,
2004) is the duty and obligation of every citizen. In this work
the reduction of CO2 gases is taken into account.

2.4 KNOWLEDGE-BASED PROCESS

As presented in Sect. 1.2.3, the KE is part of the KEM
and and it has origins from the Artificial Intelligence area. The
KE, since its inception, focused on the use of methodologies and
formal techniques to develop knowledge-based systems in a sys-
tematic and controlled manner (STUDER; BENJAMINS; FENSEL,
1998). It is a discipline that aims to build knowledge systems,
supporting in methodologies, techniques, languages and tools
for extracting, encoding, representing and using of knowledge
(RAUTENBERG et al., 2010), (SCHREIBER, 2000), with special
emphasis on intensive-knowledge tasks.
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In this thesis, five important knowledge processes (NO-

NAKA, 2008) are used to describe and apply the proposed model.
They are Knowledge Acquisition presented in Sect. 2.4.1, Kno-
wledge Representation in Sect. 2.4.2, Knowledge Application in
Sect. 2.4.3, Knowledge Discovery in Sect. 2.4.4 and Knowledge
Visualization in Sect. 2.4.5.

2.4.1 Knowledge Acquisition

The first studies on the acquisition of knowledge date
from 1980, when Edward Feigenbaum (FEIGENBAUM; MCCOR-
DUCK, 1983), developing the first expert systems have his tech-
nology adopted by the US business community. Those expert
systems were first developed in artificial intelligence laboratories
as an attempt to understand complex human decision making.

The knowledge elicitation (STUDER; BENJAMINS; FENSEL,
1998) can be part of the of the acquisition process. Commonly
used in software engineering to define the requirements of an
information system or application, this technique aims to pro-
mote the interaction between user and system. The purpose of
this interaction with the actors is to obtain information about
a process or a procedure that one wishes to know. Once all the
necessary information to build the desired knowledge in an in-
formation system is acquired, it becomes necessary to perform
the representation of this knowledge.

2.4.2 Knowledge Representation

Knowledge representation is a branch from Artificial In-
telligence (AI) and that goes beyond the mathematical repre-
sentation of knowledge, seeking automated reasoning. The lan-
guage of classical logic that is most widely used in the theory
of knowledge representation is the language of first-order (pre-
dicate) formulas (VANHARMELEN; LIFSCHITZ; PORTER, 2008).
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The use of methodologies, methods and techniques aimed

at modeling systems has significant importance in the knowledge
representation (STUDER; BENJAMINS; FENSEL, 1998), especially
when applied to the knowledge-based systems (LOPES; GONÇAL-
VES; TODESCO, 2012), (YANG, 2007).

The knowledge representation is a way to turn data and
information into a new or existing explicit format (BRACHMAN;
LEVESQUE; REITER, 1992). In this thesis, the knowledge re-
presentation makes use of two techniques: graph theory and
thermo-electric analogy.

2.4.2.1 Knowledge Representation using Graph Theory

The theory of graphs is a branch of mathematics that
studies the relations among the objects of a given set. The
structures called graphs are used, where V is a non-empty set
of objects called vertices and A is a set of unordered pairs of V ,
called edges (LAI; LEINWAND, 1988).

Several studies have been carried out on representing en-
vironments through graph theory (KIM; KIM, 2003). These re-
presentations were, at the same time, used to understand the
thermal dynamics environment (WETTER, 2006), (GOUDA; DA-
NAHER; UNDERWOOD, 2000).

Roth e Hashimshony (1988) depicts some work on deve-
loping models based on graph theory to solve problems in ar-
chitectural design. Authors show how the graph decomposition
can be used in order to simplify complex problems by removing
edges as well as applying algorithms to transform graphs into
rectangular dimensions plan.

A study using graphs in order to draw floor plans is pre-
sented by reference Alvarez et al. (2004). In this work, algo-
rithms are used to place exterior and interior rooms on a tech-
nique consisting of a heuristic search with respect to depth.

An algorithm for designing floor plans using planar tri-
angulated graphs was proposed by reference Gogoi e Kalita
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(2012). This algorithm consists of several steps as finding out
the exterior face, placing these nodes as a floor plan room repre-
sentation, finding out the interior rooms, finding the connection
among the exterior and interior environments and representing
all the building connections and rooms in a floor plan draw re-
presentation.

2.4.2.2 Knowledge Representation using Thermal Analogy

The analogy between thermal and electrical systems is
used to represent thermal dynamics by means of electronic cir-
cuits. In this sense, it is also possible to use these two systems
in an analogous way, replacing the electricity laws by the ther-
modynamics laws.

Building representation using both electrical circuits and
thermal analogy are presented by several scientific works (MUKHER-
JEE; MISHRA; WEN, 2012), (PARK et al., 2013), (RAMIREZ; SA-
GUES; LLORENTE, 2014). They are also used in order to help in
the understanding of their thermal dynamics (WETTER, 2006),
(GOUDA; DANAHER; UNDERWOOD, 2000).

2.4.3 Knowledge Application

Knowledge application, or utilization is used in different
ways as an instrumental use of knowledge and it involves acting
on research results in specific and direct ways. Conceptual use
involves using research results for general enlightenment and
symbolic use that involves using research results to legitimate
and sustain predetermined positions (BEYER; TRICE, 1982). The
application of knowledge in this thesis is understood as an inter-
mediary process between the knowledge representation and the
knowledge discovery.
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2.4.4 Knowledge Discovery

The concept of knowledge discovery and its processes
emerged, in the 90’s from the need for a more detailed analysis
of the information generated. The knowledge discovery can be
divided into two parts: KDD (Knowledge-Discovery in Databa-
ses) and KDT (Knowledge-Discovery in Text). This division is
based on the content that will be analyzed, that if content was
previously organized and structured discovery process will be
used in the KDD. If the content found was dispersed in textual
documents the process to be used will be the KDT (GONÇALVES
et al., 2000).

In the present thesis, the identification of thermal para-
meters and the generation of internal temperature plans for the
day ahead is part of the process of discovery of knowledge. In
this process a computational algorithm and a data repository
are used.

2.4.5 Knowledge Visualization

The field of knowledge visualization examines the use of
visual representations to improve the creation, use and transfer
of knowledge (EPPLER; BURKHARD, 2004). Inside the knowledge
visualization field there is another important definition that is
aligned with this thesis. It is the information visualization. In-
formation visualization can be defined as the use of computer-
supported, interactive, visual representation of abstract data to
amplify cognition (EPPLER; BURKHARD, 2004).

Studies have shown that smart energy system users tend
to use and enjoy the user support system when they can view
and compare their performance with the neighbors (AMATO et
al., 2014). Other approaches such as gamification (LUCA; CAS-
TRI, 2014) and social interaction are excellent alternatives to
stimulate energy consumption reduction and CO2 emission from
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a collaborative point of view.

2.5 STATE OF THE ART

This section presents the result of a systematic review
made on the studied subject. It is also possible to identify the
positioning of this work in relation to related works as well as
its contributions (first row).

In order to identify research gaps in related works, four
systematic reviews were performed. The first of them, Preissler
(2015) presented on the “III International Congress on Energy
Efficiency - Climate Innovation and Sustainable Development
Systems” with the title How has does the Knowledge Engineering
contributed for Smart Energy Technologies?.

Two other reviews were published. They are: Knowledge
Engineering and Management Contributions for Scientific Re-
search in the Thermal Smart Energy Context in “International
Journal of Recent Scientific Researchl” and Knowledge Enginee-
ring and Management in Thermal Multi-zone Building Studies:
a Systematic Review published by the “IJKEM International
Journal of Knowledge Engineering and Management”.

The last systematic review will be presented within the
paperHouse Thermal Parameters Identification from Heat Pumps
Consumption. When this thesis was written, the paper was un-
der review to be submitted.

Regarding to the choice of the model, the first paper had a
generalist character, once at that stage the goals of this research
were still being defined. In the second and third reviews, the
focus was on locating intersections between Energy Studies and
Knowledge Engineering and Management as well as including
elements aligned to the current scope of this work.

In the sequence a table that composes the main studies
that have been identified as being in line with the scope of this
research is presented. Such a table is derived from the last sys-
tematic review based on previous research.



Scope Parameter Identification
Optimization

Features Constraints

Id References H
ea

ti
ng

H
ea

t 
P

um
ps

 A
ir

-t
o-

A
ir

M
ul

ti
-z

on
e 

B
ui

ld
in

gs

E
le

ct
ri

ca
l-T

he
rm

al
 A

n.

C
al

cu
la

te
 P

ar
am

s

U
se

s 
P

ri
or

 K
no

w
le

dg
e

T
_

ou
t 

as
 I

np
ut

C
al

cu
la

te
s 

C
O

P

O
cc

up
an

cy
 P

ro
fil

es

M
ak

es
 P

re
di

ct
io

ns

W
ea

th
er

 F
or

ec
as

t

C
O

_
2 

E
m

is
si

on
s

T
he

rm
al

 C
om

fo
rt

E
ne

rg
y 

P
ri

ce

This work              

01 Agheb, Tan and Tsang (2015)       

02 Anvari-Moghaddam, Monsef and Rahimi-Kian (2015)     

03 Ascionand et al. (2016)       

04 Balan et al. (2011b)   

05 Beckel et al. (2015)    

06 Bekkouchand et al. (2013)    

07 Beltran and Cerpa (2014)        

08 Bengea et al. (2014)      

09 Benhamou and Bennouna (2013)  

10 Buonomano et al. (2016)    

11 Chel, Janssens and Dand Paepand (2015)  

12 Contreras-Ocana, Sarker and Ortega-Vazquez (2016)      

13 Du and Lu (2011)       

14 Ellis, Hazas and Scott (2013)     

15 Ferdyn-Grygierek (2014)   

16 Frances, Escriva and Ojer (2014)    

17 Genc and Sehgal (2014)       

18 Goethals, Breesch and Janssens (2011)    

19 Good et al. (2015)      

20 Goyal, Liao and Barooah (2011)       

21 Gupta et al. (2014)        

22 Hamdy, Hasan and Siren (2010)     

23 Hao et al. (2015)     

24 Hu and Karava (2013)        

25 Hu and Karava (2014)      

26 Huang et al. (2013)     

27 Huang, Chen and Hu (2015)     

28 Jassar, Liao and Zhao (2009)    

29 Kent (1997)    

30 Knudsen and Rotger-Griful (2015)   

31 Lam, Yuan and Wang (2014)     

32 Lee, Horesh and Liberti (2015)     

33 Liao and Dexter (2010)      

34 Ma et al. (2012)    

35 Ma et al. (2015)   

36 Morosan et al. (2011a)     

37 Morosan et al. (2011b)    

38 Mueller et al. (2014)   

39 Mukherjee, Mishra and Wen (2012)      

40 Nassif and Moujaes (2008)    

41 Nguyen, Nguyen and Land (2013)   

42 Nguyen and Land (2014)     

43 Nguyen, Nguyen and Land (2015)   

44 Okuyama and Onishi (2012)     

45 Parisio et al. (2013)       

46 Park et al. (2013)     

47 Parnis and Sproul ("2010")   

48 Radecki and Hencey (2013)     

49 Ramirez-Laboreo, Sagues and Llorentand (2014)  

50 Rogers et al. (2013)      

51 Sobhy, Brakez and Benhamou (2014)     

52 Srikantha, Keshav and Rosenberg (2012)    

53 Thavlov and Bindner (2015)     

54 Tsitsimpelis and Taylor (2015)   

55 Wen et al. (2013)      

56 Winkler et al. (2016)      

57 Xu et al. (2013)      

58 Yang et al. (2012)    

59 Yoon, Baldick and Novoselac (2014)      

60 Zeng, Zhang and Kusiak (2015)    

61 Zhang et al. (2013)   

62 Zhao et al. (2015)    

63 Zhuang, Li and Chen (2007)     

Quantity 45 1 42 16 29 13 16 1 20 31 16 3 48 23
Percent of Total 71,4% 1,6% 66,7% 25,4% 46,0% 20,6% 25,4% 1,6% 31,7% 49,2% 25,4% 4,8% 76,2% 36,5%



81
The bibliographic research was divided into three major

classification groups: in relation to the scope, in relation to the
techniques for the calculation of the thermal parameters and on
the optimization, its features and its constraints.

The classes are: about the scope, if it fits as a heating
study, if it is applied to the heat pump air-to-air devices and if
the environment is related to multizone buildings.

About the parameter identification, the studies were clas-
sified if they use electrical thermal analogy, if they calculate or
estimate parameters, if use prior knowledge (historical data) to
estimate thermal parameters, use external temperature (Tout)
as input and if they calculate/estimate COP.

In the optimization processes the specific paper was clas-
sified if it takes into account the occupancy profiles as their
preferences for example. If it makes some kind of predictions or
forecasts as well as if it uses weather forecast for it. In relation
to the constraint into the optimization processes the paper was
classified if it uses CO2 as a parameter, if it uses thermal comfort
as a constraint and/or uses energy price into the optimization
phase.

Several scientific studies have been published using thermal-
electrical analogy to solving problems related to space heating.
Paschkis in 1942 was the first publication describing how the
electrical analogy could be used to analyses and quantify ther-
mal behavior in buildings (PARNIS; SPROUL, 2010).

In this direction, reference Robertson e Gross (1958), sug-
gests an electronic instrument which permits solution of tran-
sient heat-flow problems by use of direct analogy to electrical
networks. In that work it was used an analogy between elec-
trical and thermal circuits directly in order to allow building
control using equivalent measurements.

Moreover, parameter identification using Thermal Ana-
logy could be found in Balan et al. (2011b) that presents solu-
tions in modeling, parameter identification and control of the
thermal energy in a house. As well Park et al. (2013) study a
model of a building system in order to predict thermal behavior
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within a building and its energy consumption. It uses an RC
thermal network based on the thermal-electrical analogy. The
parameters of the parametric models are obtained by the least
square approach.

One method to build grey-box thermal models based on
electrical equivalent circuits is presented in Ramirez, Sagues e
Llorente (2014). The unknown parameters are identified using
temperature measurements and applying nonlinear optimization
techniques. Other approach to parameter identification in a
building thermal model is proposed by Yang et al. (2012). In
that model they use fitness function which quantifies the diffe-
rence between the energy-consumption.

Furthermore, Mukherjee, Mishra e Wen (2012) propose a
passivity based control strategy in a multi-zone building using
thermal resistance and capacitance analogy. They use an in-
direct graph to represent a house focused on building thermal
control.

The main goal of HVAC (Heating, Ventilating and Air
Conditioning) systems studies, in building environments, is to
provide indoor thermal comfort for its occupants. Furthermore,
it aims to provide acceptable air quality and understanding ther-
mal comfort as a situation where a person feels satisfied with the
temperature of the surrounding environment (ASHRAE, 2004) is
not a trivial task.

Smart homes or buildings are equipped with devices that
possess an amount of integrated intelligence required to manage
and exchange data. These functions include: entertainment,
communications, energy and climate control, security, alterna-
tive energy and energy neutral applications, lighting and robo-
tics (BUDDE, 2014). This paper focuses on energy and climate
control functions, specifically heating using heat pumps.

However, such studies do not present an approach in
which the preferences of the home user are applied in the al-
gorithms not even calculating the coefficient of performance of
heat pumps based on the outside temperature changes. Studies
in which the thermal parameters identification was used to ge-
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nerate an internal temperature plan for the next 24 hours were
not located, either.

Only one work, Kent (1997) in which the COP is calcula-
ted and it is based on the external temperature was identified.
However, this is a technical proposal for the calculation of the
COP and does not result in plans for saving electric energy or
maintaining thermal comfort.

From these works, 76,2% use thermal comfort as the main
constraint into the optimization process. Only 13 works from
63 use some kind of prior knowledge in order to estimate the
thermal parameters and 31,7% use occupancy profile as internal
temperature preference as a reference.
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3 METODOLOGY

The present work fits as being a technological research
that aims to suggest a model. A model is a logic representa-
tion, a set of physical or virtual mechanisms which allows the
knowledge or product representation as presented by Creswell
(2013). This model was used to represent the real physics sys-
tem, enabling the simulation, analysis and the optimization in
laboratory.

This research is characterized as been experimental by ap-
plying technological perspectives (CRESWELL, 2013). It is amul-
tidisciplinary research because it takes into account knowledge
and expertise from two different postgraduate courses in two
different universities: Computer Science at Sapienza University
of Rome (Italy) and Knowledge Engineering and Management
at Federal University of Santa Catarina (Brazil).

3.1 THE METHODOLOGICAL PROCESS

Fig. 9 presents the sequence of stages that were imple-
mented for the development of this research. In the first and
second stages the research object was defined between both uni-
versities, seeking to find convergences areas of study between
courses. Moreover, it was expected to apply the study into a
current research project.

Step three took into account the previous steps as well as
the expertise of both postgraduate programs and the academic.
The systematic reviews accounted for result in the choice of the
thermo-electrical analogy in the parameters identification stage
as well as the choice to propose an optimizer responsible for:
ensuring the thermal comfort by reducing energy consumption
and CO2 emissions.

In step five scripts and algorithms based on thermal-
electrical analogy to identify the thermal parameters of the stu-
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Figure 9 – Methodological Process
1. Research Macro-area Definition 

Stage responsible for determining the scope of the research and delimitation 

in relation to the areas studied by both postgraduate courses (Sapienza and UFSC)

4. Systematic Review of the Literature

2. Problem Identification

3. Goals Definition

Once raised the key problem to be investigated, 

the general and specific goals of this research were defined.

5. Framework and Model Proposition

The proposition of the framework took into account the 

researched methodologies as well as the proposal of the calculation model.

Thermal Parameter Identification:

Thermal-electrical Analogy

Optimization Plan:

Ensure Thermal Comfort, 

Reducing CO2 Emissions and Energy Cost

6. Experiments

Several experiments were carried out on a sample obtained from SmartHG project 

in two steps: thermal parameters identification and internal temperature plan.

Thermal Parameter Identification Internal Temperature Plan

7. Evaluations

Each experiments' stage were analyzed individually and subsequently combined. 

Were compared the results with historical data as well as literature benchmarks.

At this stage was sought to delimit a problem arising from the SmartHG project

 which is related to the subject areas of both postgraduate courses.

The systematic literature review was used for identification of models 

already used as well as potential opportunities in research.

Source: Author (2017)
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died houses were developed. For the analysis of the mathemati-
cal model a mathematical software was used.

In steps six and seven several tests were performed as well
as experiments using the the proposed model. The experiments
were performed based on real historical data.

The stages one to five were of paramount importance
for determining and for proposing the model. Fig. 10 shows
a graphical representation of a funnel using key words.

Figure 10 – Funnel of the Methodological Process 1-5

1. Innovation, Knowledge Engineering,  

Model Checking, Smart Cities and Smart Grids 

2 .Smart Energy and Knowledge Process

3. Heating on Smart Buildings

4. Thermal Parameter Identification 

and Optmization Plan

5. Knowledge-based Model 

Source: Author (2017)

In this funnel it is possible to identify the steps that the
ideation of the proposal passed, reducing the search area and
result into the model proposed in this document. Sect. 3.2 pre-
sents the approach used to develop the mathematical model as
well as the algorithm.

3.2 PROBLEM CLASSIFICATION AND METHODS

The present studied problem is classified as a physical
dynamic system. The type of dynamic system problem studied
in this thesis is characterized as system identification and it can
be solved by the gray-box method. In this section such concepts
are discussed.
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The heating of a room can be considered as a dynamic

system because it has varying with respect to time having inputs
and outputs (GHOSH et al., 2015). A dynamical system can be
described as a system in which the current output value depends
not only on the current external stimuli but also on their earlier
values (LJUNG, 1987).

Figure 11 – Representation of a Dynamic System

S
u(t) y(t)

Source: Author (2017)

Fig. 11 represents an arbitrary system S that has inputs
u(t) and outputs y(t). There are three general problems of dy-
namics and control systems (SONTAG, 2013):

1. Simulation Problem - given u(t) and S - find y(t):
if the inputs and the system dynamics are known so it is
possible to figure out the system outputs trough simula-
tions and it can predict how the system will behave by
playing the input through the system.

2. Control Problems - given y(t) and S - find u(t): if the
system is known and depending on how one wants to the
outputs to behave then it can determine the appropriate
inputs through the various control methods. This is the
typical method where it is possible to change the inputs
in order to determine how the outputs behave.

3. System Identification - given u(t) and y(t) - find
S: knowing the inputs and the outputs then it is possible
to determine how the system looks like through a process
called system identification.

Since the mathematical model, for this thesis, that ex-
presses the heating behavior of a given room in a house is unk-
nown and it is classified with a dynamic system, the technique of
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system identification is applied. This is a technique for finding a
mathematical model by analysis of input-output characteristic
of an unknown system (AZMI et al., 2015).

It can be described as a science of building mathematical
models of dynamic systems from observed input-output data. It
can be seen as the interface between the real world of applica-
tions and the mathematical world of control theory and model
abstractions (LJUNG, 2010).

System identification is used by Holland et al. (2014) with
an experimental methodology that was developed for a thermal
system or heated space. It uses mathematical models and collec-
ted temperature data to estimate the network thermal resistance
and capacitance. Other scientific study in this way conducted
by Parnis e Sproul (2010) who present an approach to building
thermal modeling using electric circuits. It uses an electric cir-
cuit simulator program where results are interpreted in terms of
thermal quantities and energy.

The four main steps of the system identification process
are generally described as Azmi et al. (2015): (a) collection of
experimental data, (b) selection and structuring of the model,
(c) approximation of parameters of the model and (d) validation
of the mathematical model.

Fig. 12 shows the system identification flow that was used.
The idea is to apply the Prior Knowledge from the systematic
reviews and related works and then design (a) a model that will
be used on the historical data, then the model is calculated.
If the found thermal parameters are compatible with the litera-
ture then a model is validated and it can be used into the model.
Otherwise another Model Set (other parameters within the mo-
del) can be selected or even adjusted to the Criterion Fit (actual
parameters within the model). The loop insists until the model
can be validated. In this model’s case the new knowledge is the
mathematical model used to identify the thermal parameters.

Such method of system identification applied to this par-
ticular problem aims to act as a lifecycle for implementation and
validation of the mathematical model. This model is presented
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Figure 12 – System Identification Lifecycle

(a) Experiment
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(c) Choose

Criterion

of Fit

Calculate

Model
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Knowledge

Prior

Knowledge

(d) Validate

Model

Not OK

OK

Source: Author (2017) based on Azmi et al. (2015)
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in Fig. 12. In step (b) the model used is proposed (according to
Sect. 4.4) and not simply chosen.

The system identification goal is to identify the unknown
parameters of the system and to provide a new knowledge ba-
sed on the thermal parameters estimated by the model. This
new knowledge is related to the environment heating behavior.
That process can be understood as a Problem-Solving Methods
which is a branch of the Knowledge Engineering discipline (VA-
NHARMELEN; LIFSCHITZ; PORTER, 2008). This discipline pro-
vides knowledge-presentation techniques for solving particular
problems (STUDER; BENJAMINS; FENSEL, 1998).

To step (a), the experiment design, a data from a specific
house is gathered. This data will be used on the next steps.

Step (b), choose model set proposes a mathematical mo-
del which is based on the thermal-electrical analogy. This model
is presented in Sect. 4.4.

For step (c), choose criterion of fit, a parameter iden-
tification method (PARK et al., 2013) was used. This method
allowed the adjustment of the mathematical model based on the
thermal-electrical analogy and the prior knowledge.

Finally, in step (d), validate model, the gray-box approach
(ARPACI-DUSSEAU; ARPACI-DUSSEAU, 2001) was used. There-
fore, even without full knowledge of the system behavior or all
parameters, simulations results can be compared with the col-
lected data.

The gray-box is one of these three methods that can be
used to solve System Identification Problems. There are some
differences among them as follows:

1. Black-box method: it can be applied in a situation in
which there is a hypothetical box that is so dark that its
inside cannot be observed, that is the system S. According
to this method, if the inputs u(t) and outputs y(t) are
known, it can be inferred that the system is using the
data from the inputs and outputs as well as it is aware of
the relationship between them.
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2. White-box method: in this case, the box is so transpa-

rent that it is possible to see inside it. The components
of system S can also be seen and it is possible to directly
write the differential equations about this system.

3. Gray-box method: that is the middle term between
black and white-box in which not all components of the
system S are known. Thus, these components may be si-
mulated.

The models are usually obtained based on a full descrip-
tion of the building features (white-box), based on an identi-
fication process (black-box) or combination of the two (gray-
box) (BALAN et al., 2011b). For more advanced applications, it
may be necessary to use models that describe the relationships
among the system variables in terms of mathematical expressi-
ons like difference or differential equations (LJUNG, 1987).

Basically, a model has to be constructed from observed
data. A model sets with adjustable parameters with physical
interpretation may be called gray boxes (PARK et al., 2013).

It is possible to identify the thermal parameters using
the thermal-electrical analogy to build gray-box thermal models
based on electrical equivalent circuits (RAMIREZ; SAGUES; LLO-
RENTE, 2014). The unknown parameters can be identified by
using temperature measurements and applying nonlinear opti-
mization techniques (YANG et al., 2012).
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4 THE PROPOSED MODEL

This chapter aims to present the model proposed in this
thesis. A graphical representation of this model is shown in
Fig. 13.

The central component of the model is the algorithm. It
is the implementation of the mathematical solution proposed
throughout this thesis.

The user represents the person of the residence or buil-
ding who is responsible for performing the interactions with the
proposed computer system. The interactions will be given by
an interface, here represented as the GUI (Graphical User In-
terface).

Each building has a data repository. The historical data
of the sensor readings, estimated thermal parameters and any
other necessary information for the complete operation of the
proposed model should be stored in this repository. That will
be presented throughout this document.

Figure 13 – The Proposed Model

User

Algorithm

GUI

Repository

(a) Acquisition (b) Representation

(c) Application

(d) Discovery

(e) Visualization

Source: Author (2017)

The interactions among the components of the model are
presented in the form of knowledge-based process. The processes
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are discussed in the following sections: (a) Knowledge Acquisi-
tion in Sect. 4.1, (b) Knowledge Representation in Sect. 4.2, (c)
Knowledge Application in Sect. 4.3, (d) Knowledge Discovery in
Sect. 4.4 and (e) Knowledge Visualization in Sect. 4.5.

4.1 KNOWLEDGE ACQUISITION

The knowledge acquisition is the first knowledge-based
process proposed in this model. This process intends to provide
end user the access to an interactive environment. This access
must be easy to use and able to ensure to the next processes the
necessary information and knowledge about the building.

In this process of elicitation the goal is to collect the resi-
dential user internal temperature preferences (Sec. 4.1.1), buil-
ding floor composition (Sec. 4.1.2), the sensors measurements
as well as the visualization of its reports. The knowledge visua-
lization process is presented in more details in Sect. 4.5.

4.1.1 Temperature Preferences

The internal temperature preferences are collected as part
of the knowledge acquisition process from the home users. This
is done only once, but it can be changed at any time and it is
stored in a repository.

In this first interaction, the user must inform to the sys-
tem, for each hourly slot, the desired internal temperature. These
data will then be used to calculate the thermal comfort. This is
the generation of the day-ahead internal temperature plan pro-
posed to the household user at the end of the whole model.
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4.1.2 Building Floor Plan

The building floor plan composes an essential information
to this model. This is what justifies the need for an user inte-
raction interface. This is essential because from the information
about the position of the rooms in a building, the walls between
them, the positioning of the sensors and the heat pumps as well
as the existence of solar gain in certain rooms, the thermal pa-
rameters of these environments will later be calculated. So, this
process assists the thermal parameter identification process by
providing all building features.

Having acquired the knowledge necessary to proceed with
the aim of this model it is necessary to represent this knowledge
as it is presented in Sect. 4.2.

4.2 KNOWLEDGE REPRESENTATION

The knowledge representation process is understood as
the explicitation of the knowledge collected from the home user.
It occurs by transforming the collected knowledge into a stan-
dard format to be used in the following steps of this model, that
is, the thermal parameter identification stage.

4.2.1 Representing Zone Features

The first stage of the representation is to differentiate
each zone of a building and its features. To this end, a method
using different colors is proposed in this work.

The colors help the process of identifying and checking
the features of each zone. This stage generates important in-
formation for the later stages as: the existence of heat pumps,
temperature sensors and solar influence in the rooms.
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4.2.2 Representing the Relationship Between Zones

Having the graphical representation of the rooms in the
building and its features, everything was duly verified by visual
means. After that, the stage of graph-knowledge-representation
was started. The purpose of it is to interpret the floor plan into
a graph.

In this proposed representation, each zone in the building
is being interpreted as a graph node that can be applied in a
programming language as an object. Each node can establish a
relationship with the others (internal walls).

After representing the building into a graph, it is sugges-
ted that such information must be stored into a repository. This
procedure is presented in Sect. 4.2.3.

4.2.3 Representing Nodes into a Repository

In the last step of the knowledge representation process, it
is proposed the representation by graphs that can be stored into
a database. The repository should contain information about
the features of the rooms informed by the users, the relationships
between the rooms of the house and the users preferences.

This repository should enable recording of sensor measu-
rements and results obtained in the thermal parameter estima-
tion steps. Such a repository can also be used for the expansion
of this model in collaborative networks, estimation of consump-
tion and user profile by district as well as reuse of data by the
same user in different buildings. These possibilities are dealt
with in Sec. 7.2.

4.3 KNOWLEDGE APPLICATION

At this stage, the knowledge application is proposed as
a symbolic use of data and information that is captured and
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represented in the earlier stages of the model in order to provide
subsidies for the next step of knowledge discovery.

In this thesis, the knowledge application is used to refer
to the electrical-thermal analogy where the knowledge is applied
in order to obtain the thermal parameters of a building. This
analogy allows representing a house heating behavior using elec-
trical circuits.

The output data is sent to the repository, and from this
process, the measurements from sensors must have the same
time interval among them. Once the thermal parameters were
identified, it is possible to move to the next step: knowledge
discovery (Sect. 4.4).

4.4 KNOWLEDGE DISCOVERY

The process of knowledge discovery blending KDD and
computational mathematical model as it is proposed in this work
is represented in the model as an algorithm.

The knowledge discovery process proposed in this model
is divided into two parts. The first Section 4.4.1 concerns to
estimate the thermal parameters in the house. These parameters
are stored into the repository and then will later be used, in
the second step, to generate the day-ahead internal temperature
plan as it is presented in Sect. 4.4.2).

4.4.1 Thermal Parameter Identification

Identification of thermal parameters is important for this
model because it provides significant elements for understanding
the heating behavior of each house individually. The parameters
identified in this model are thermal resistance R and thermal
capacitance C. Besides these parameters also the heat pumps
coefficient performance - COP (η) as well as the U-value are
calculated.
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4.4.2 Internal Temperature Plan Generation

The main purpose of the day-ahead temperature plan is
to offer to the end user a schedule table for the next day in-
ternal temperature. The purpose of this generation of internal
temperatures table is to provide to the end user a non-invasive
method. That is, the intent of the model is not acting direc-
tly on heat pumps, as controllers, but suggesting economic use
profiles.

The plan generation takes into account the weather fore-
cast for the day ahead, the estimated cost of CO2 emissions and
the estimated the electricity cost. All of those forecasts are ob-
tained by the same time slot and for the specific district where
the analyzed house is located.

The generated plan focuses on maintaining the thermal
comfort reducing the consumption of electricity. Thermal com-
fort is calculated based on the values of internal temperature
which were obtained from the household user in the knowledge
acquisition process.

4.5 KNOWLEDGE VISUALIZATION

This last phase of the model, known as the Knowledge
Visualization, aims to provide information to the end users in
order to give them greater knowledge about the dynamics of
their own house. The main objective of this process is to provide,
in the same interface used as knowledge acquisition process (a),
visualization of the results generated by the algorithms as well
as other graph analysis.

There will basically be three types of information: the
day-ahead internal temperature plan, performance analysis and
comparative graphs with the performance of the neighbors. They
are presented in the next sections.
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4.5.1 Internal Temperature Plan

The internal temperature plan consists in a schedule table
on which the user will find the exact value of internal tempera-
ture that must be programmed in the heating device for each
hour of the next day.

4.5.2 Individual Performance

In this set of graphics the household users can find rele-
vant information only from their personal consumption or sa-
vings, i.e. only their homes. Graphics and its features are des-
cribed below:

1. Individual Daily Power Consumption: it shows the typical
daily profile of the heat pump power consumption. In par-
ticular, it shows average (standard deviation), minimum
and maximum values on the whole period for each day of
the selected period.

2. Individual Hourly Power Consumption: it shows the ty-
pical hourly profile of the heat pump power consumption.
In particular, it shows average (standard deviation), mi-
nimum and maximum values on the whole period for each
time-slot of the day.

3. Individual Energy Cost: it shows the typical monthly pro-
file of the energy cost. In particular, it shows the values
on the whole period for each day in a selected month as
well as the average during the selected month.

4.5.3 Comparative Performance

In this another set of graphics, the household users can
check the data on their own consumption as well as from their



100
neighbors in a comparative way. The purpose of these graphs,
in a future work, is to provide an environment in which the users
are encouraged to use the internal temperature suggested plan
and to generate feedback performance or potential problems to
developers. The proposed graphs and reports are:

1. Comparative Daily Power Consumption: it shows the ty-
pical daily profile of the heat pump power consumption
for each user, highlighting the household user consump-
tion. In particular, it shows average (standard deviation),
minimum and maximum values on the whole period for
each day of the selected period.

2. Comparative Hourly Power Consumption: it shows the ty-
pical hourly profile of the heat pump power consumption
for each user, highlighting the household user data. In
particular, it shows average (standard deviation), mini-
mum and maximum values on the whole period for each
time-slot of the day.

3. Comparative Energy Savings by Period: it shows the typi-
cal monthly profile of the energy cost for each user, high-
lighting the household user data. In particular, it shows
the values on the whole period for each day and for each
user in a selected month as well as the average during the
selected month of all household users.

To be able to offer this graphics class, it will be required
that the model can be expanded. That is, it will would allow
an external connection between the private databases of users.
For this, the household users will have a configuration option
in their web environment where they can set whether or not to
share their information with the neighbors.

Once selected this option to share data with the neigh-
bors, the home users will be informed about the treatment of
political and security of their information. The other household
users, the neighbors, will not be identified as a matter of privacy
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of information. This process is presented by Preissler, Gonçalves
e Fernandes (2016).
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5 MODELING AND IMPLEMENTATION

In this thesis the proposed model is implemented as a
computational tool. In this chapter implementation and mode-
ling of GUI, algorithm and repository are detailed.

This chapter establishes, as a main goal, presenting pro-
positions for the implementation of the model and how it was
modeled. Still in this chapter the development of the mathe-
matical model proposed for the identification of the thermal pa-
rameters as well as the generation of the internal temperature
plane will be presented.

The model implementation overview is presented in Fig.
14. In the image it is possible to identify the knowledge-based
process in each stage of the model. Throughout this chapter
this figure will be explained in detail using as reference the
knowledge-based processes from (a) to (e).

Figure 14 – Implementation Overview
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The knowledge acquisition occurs with the first interac-
tion with the home users, which in turn informs the system the
composition of their home, through an interactive floor plan.
Later this knowledge is represented by means of graphs and it
is stored in the database of the user.

The knowledge representation also occurs when using the
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electro-thermal analogy for the identification of thermal para-
meters. The identification of the thermal parameters is based
on the historical data of each building coming from the sensors
installed in them.

Once the thermal parameters are identified, the knowledge
is applied to the subsequent process of knowledge discovery,
where the mathematical model, through a computational algo-
rithm generates the internal temperature plan for the building.

The data is sent to the same interface in which the home
users can view this generated information as well as they can
access the graphs related to their energy consumption profile.

5.1 KNOWLEDGE ACQUISITION

The objective of the implementation in this process is to
offer to the final users an intuitive and functional environment
as well as a reliable and personal web-based application system
that aims to collect their preferences and building features. The
process is assisted by means of a “step-by-step” system in which
a wizard helps the user with questions-to-action.

In this process two types of information are requested
from the household users: the internal temperature preferences
by hourly range and the composition of the floor plan of their
building containing its respective features. Other information
such as: internal temperature, external temperature and con-
sumption of heat pumps are collected through sensors previously
installed in the building.

5.1.1 Internal Temperature Plan

In this first interaction, the user must inform to the sys-
tem, for each hourly slot, the desired internal temperature. An
hypothetical example of the Internal Temperature Preferences
can be seen in Tab. 2.
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Table 2 – Example of an Internal Temperature Preferences
Hour Temperature
00:00 23.0
01:00 23.0
02:00 23.0
...

...

21:00 24.0
22:00 24.0
23:00 25.0
Source: Author (2017)

5.1.2 Building Floor Plan

This information is gathered, from the household user by
means of a system, to make the process of representing floor
plans intuitive and interactive using a responsive design. Both
the collection of information about internal temperature prefe-
rences as well as the composition of the floor plan can be repor-
ted not necessarily by the home user but by another agent, such
as an installation technician.

At this stage, the end user must inform, using a web-
based system, for instance, in which there is the possibility of
drawing the floor plan of the house through a drag and drop
web application. The drag and drop is a proposition in that
it makes designing the floor plan faster, intuitive and pleasing
to the end user. However, as a proposition within the model
one can choose to use another method. The important about
this knowledge-based process is to collect the data presented in
Fig. 15

In this hypothetical example of a multi-zone building, the
letters A, B, C, D and E represent the zones of a building.
Those rooms which have external solar influence, (sunlight) are
signed by a yellow circle (S). In this building representation,
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the heat pumps are represented by h1, h2 and h3 whereas the
temperature sensor is represented by t1.

Figure 15 – Multi-zone Building Example
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Source: Preissler, Gonçalves e Fernandes (2016)

In the step-by-step process of knowledge acquisition, the
household users are invited to draw their own house or building,
by means a web-based system. To draw the floor plan, an in-
terface in which the user can draw simple frames (squares) into
the screen, as exampled in Fig. 16 step (a) is proposed. In this
first process, the household user needs to inform the quantity of
rooms and their intersections will be labeled automatically by
the system.

Once the squares are drawn into the interface, the user
needs to inform which frames are included in the same space,
here referred to as open spaces, rooms in which there are no
walls between them. One example can be observed on Fig. 16
step (b). Through the image it is possible to identify when
comparing with (a), that the room A is, actually an open-space
room. It is proposed that the process of connection between
squares, which intends to generate open-spaces areas occurs by
a simple sequence of clicks on the squares.

After informing the floor plan composition and the open-
spaces areas, the user is invited to inform the features of each
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Figure 16 – Floor Plan Features - steps (a) and (b)
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Source: Preissler, Gonçalves e Fernandes (2016)

room. These features are related to the existence of heat pumps,
heaters and/or temperature sensors thermostats as well as the
rooms receive solar influence - sunlight.

At the end of this process, the household is asked to check
all the features and if all squares are well placed, especially the
walls (connections) between them.

5.2 KNOWLEDGE REPRESENTATION

In this thesis three types of knowledge representation are
proposed. The first of them is the visual representation of the
floor plan of the house using colors that aims to facilitate the
final check of the information offered by the home user. The
second uses the graph theory to establish relationships between
the rooms of the house. The latter aims to represent the infor-
mation collected in the format of an ontology which in turn can
be applied to a data repository. All these types are presented in
the following sections.
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5.2.1 Representing Zone Features

In order to offer an intuitive and friendly interface the use
of a set of colors is proposed in order to distinguish the different
features of each room. This is achieved by using different RGB
(Red, Green, Blue) color patterns, which were selected due to
their good visual contrast, as can be seen in Tab. 3.

In Fig. 17 step (c) it is possible to verify the application
of the proposed color pattern following the precedent example.
That is, depending on the features each room presets a different
color. The numbers are related to the Id. column from Table 3.

Figure 17 – Floor Plan Features - step (c)
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Source: Preissler, Gonçalves e Fernandes (2016)

Table 3 presents the proposed structure of colors for each
possible zone features. In column RGB an Red, Green, Blue
codes of system of colors (Co) is proposed for each possible com-
bination of Heater (He), Thermostat (Th) and Solar gain (SG).
The numbers 0 and 1, respectively, stand for “not having” and
“having”.
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Table 3 – Proposed Classification by Zone Features
Id. RGB Co He Th SG
1 (000,132,255) 0 0 0
2 (255,255,092) 0 0 1
3 (172,147,147) 0 1 0
4 (128,132,000) 0 1 1
5 (000,212,000) 1 0 0
6 (128,000,212) 1 0 1
7 (000,128,128) 1 1 0
8 (237,000,069) 1 1 1

Source: Preissler, Gonçalves e Fernandes (2016)

5.2.2 Representing the Relationship between Zones

An undirected graph G = (V, E) describes the thermal
relationship among building zones in terms of a node set V =
{1, ..., n} and edge set E ⊂ {V × V} (GOYAL; LIAO; BAROOAH,
2011).

In this representation each node in the set V corresponds
to a variable which must be represented by a zone. In a situation
where the nodes u and v have thermal connection between them
as, for instance, a wall, it can be assumed that there is an edge
between u and v: (u, v) ∈ E. The edges represent the heat
transfer through the walls, between the zones (nodes).

In Fig. 18 step (d) it is possible to verify the hypothetical
example of a building using graph representation. In step (e),
the graph is represented also using the set of color patterns
proposed. This method offers a different alternative for visual
checking the information provided by the user. The colors codes
are the same used in Fig. 17.
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Figure 18 – Floor Plan Features - steps (d) and (e)
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Source: Preissler, Gonçalves e Fernandes (2016)

5.2.3 Representing Nodes into a Repository

At this stage it is suggested to use a repository to perform
all information collected and generated. All the information and
data which are necessary for the operation of this model are
proposed in this section in the form of an ontology by means
of representational primitives. The classes are presented in Fig.
19.

The attributes, as object and data properties are presen-
ted in Fig. 21 and Fig.22 respectively. The relationships, that is,
the relations among class members are presented by Fig. 20. For
the ontology representation Web Ontology Language (OWL) in
Protégé software v.5.2.0 (MUSEN, 2015) was used .

The building class is contained in a district, which in turn
may have several buildings. This district information is impor-
tant so that the weather forecast (external temperature), clas-
sified by types (forecastType) can be obtained, for example by
regions as well as it can allow comparative analysis of perfor-
mance by neighborhood.

The userBuilding class refers to the home users who can
manage more than one building. In this case the buildings in-
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Figure 19 – Classes

Source: Author (2017):

Figure 20 – Classes Relationship

Source: Author (2017):
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Figure 21 – Object Properties

Source: Author (2017):
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Figure 22 – Data Properties

Source: Author (2017):
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ternal temperature preferences (tinRef ) are also related to it.

Each building may have one or more rooms. These, in
turn may be related to each other (walls). For each room the
thermal parameters are estimated as well as the relation between
the COP and the external temperature (toutRegression).

For each room one or more sensors (sensor class), classi-
fied by types (sensorType) may be installed and in turn gene-
rate measurements. For each room containing a heat pump it
is possible to have, for each day, an internal temperature plane
(tinRef ).

5.3 KNOWLEDGE APPLICATION

The following sections offer an explanation on how the
electro-thermal analogy is applied in this work as well as the use
of this analogy in a multi-zone building context. More details
on such analogy in multi-zone environments can be found in
Appendix 8.1 and Fig. 58.

5.3.1 Thermal Electrical Circuit

In order to understand the dynamics of heating a dwelling
is necessary, before identifying the heating parameters. In this
thesis it refers specifically to Thermal Resistance R and Ther-
mal Capacitance C. Such a step is called thermal parameter
identification.

The parameter identification uses thermal-electrical ana-
logy, according to which a room to be heated can be represen-
ted by a RC (resistor-capacitor) electronic circuit. By using this
analogy it is possible to estimate R and C.

In order to analyze the thermal behavior of a residence
and to analyze the mathematical functions used in the circuit,
it is first necessary to analyze a single zone. The proposed RC
electrical circuit is presented in Fig. 23 and it shows the equi-
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valent model of one specific room. It is assumed that the total
amount of necessary energy to heat this room is from Tout and
also from the power ΦP.

Figure 23 – Circuit House Thermal Model for One Room
R

i(t)

Tin

ΦPTout C

Source: Author (2017)

For this thesis the overall thermal resistance of the house
envelope is represented by R, the overall thermal capacitance
is represented by C, internal and outdoor temperatures are Tin
and Tout and the heat pump power is P. The terms, definitions,
symbols and units used in this thesis follow the standards from
ISO 9869-1:2014 (BS, 2014).

Fig. 24 shows a proposed RC representation for a situa-
tion in which is possible to identify two zones in a house. In
this case, the total heat generated inside the house comes from
two heat pumps (Φ1 and Φ2) and from the outdoor temperature
Tout .

Using the electrical-thermal analogy, an RC circuit repre-
sentation is proposed based on the graph representation. Each
zone i connected through a wall with another room j is associ-
ated with one Capacitor Ci j and one Resistor Ri j . A Current
Source Ii is included in each room i which has a heater. The
same way, a Voltage Source Vj is included in each room j which
has sunlight. Similarly, each room i with a thermostat is associ-
ated to a Voltage “point” Ti next to the corresponding capacitor
for that room Ci. The thermal behavior of the building can be
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Figure 24 – Circuit House Thermal Model for Two Rooms
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Source: Author (2017)

inferred from the behavior of the electrical circuit using the same
parameters. Fig. 25 shows an RC circuit based on the example
of Fig. 15.

Figure 25 – Thermal RC Circuit Example

Source: Preissler, Gonçalves e Fernandes (2016)

Once the thermal electrical analogy is modeled, it is ne-
cessary to obtain the data for the thermal parameter estimation.
The data obtained from the sensors often have different reading
ranges between measurements. This can occur because they are
from different manufacturers or, as is the case with the experi-
ments of this thesis, obtained from a pre-existing database, here
called historical data. For cases like this, Sect. 5.3.2 presents a
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proposition for the normalization of this data.

5.3.2 Data Normalization

It is important to note that the calculation of thermal
parameters is given primarily on the basis of historical data me-
asurements. That is, the building should have had sensors ins-
talled for internal and outdoor temperature as well as for heat
pump power consumption. The data should be stored in a repo-
sitory over time. Often, such readings generated by the sensors
do not have a single standard and even the interval between rea-
dings is not constant. For this reason there must be a process of
data normalization. The proposition is that the measurements
obtained from each sensor have the following format:

Timepoint,Value
DD/M M/YYYY HH : M M : SS, 0.00

The main objective of this normalization is that it could
apply an interpolation among the data points grouping in a re-
pository record all measurements taken at the same timepoint.
It is needed to maintain a constant interval timepoints in the
repository records. This interpolation occurs on the historical
data of measurements of each house.

The proposed Interpolation Algorithm 5.1 is responsible
for reading the repository file, interpolates timepoints T at time
t, internal and outdoor temperatures Tin(t) and Tout (t). The
Heat Pump Power P(t) is also used here.

Algorithm 5.1 calculates the time difference m between
(t+1) and (t). After that, the rate between the values P, Tin, Tout

and m is calculated and added to the values at time (t + i). The
interpolated output data format file is presented below:

Timepoint, Power,Tin,Tout
DD/M M/YYYY HH : M M : SS, 0.00, 0.00, 0.00
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Algorithm 5.1 Interpolation Algorithm
Require: repository_ f ile(P,Tin,Tout )

1: read T(t) and T(t + 1)
2: read P(t) and P(t + 1)
3: read Tin(t) and Tin(t + 1)
4: read Tout (t) and Tout (t + 1)
5: m (← T(t + 1) − T(t))
6: read rP ← (P(t + 1) − P(t)) /m
7: read rTi ← (Tin(t + 1) − Tin(t)) /m
8: read rTo ← (Tout (t + 1) − Tout (t)) /m
9: for i =1 to m do

10: T(i) += T(t + i)
11: Tin(i) += rTi
12: Tout (i) += rTo

13: P(i) += rP
14: return T(i), P(i),Tin(i),Tout (i)
15: end for

5.4 KNOWLEDGE DISCOVERY

Once the measurements of the sensors have been obtained
and normalized, having the data of the composition of the floor
plan of the building it is possible to begin the process of disco-
very of knowledge. In this thesis such process is related to the
identification of the thermal parameters and with the generation
of day-ahead internal temperature plan.

5.4.1 Computing Thermal Parameters

The parameter identification values are given based on
the thermal-electrical analogy. Therefore the obtained analog
electric circuit equations are applied to calculate the parameters.
In this section it is described how the equations obtained from
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the RC circuit Ordinary Differential Equations (ODEs) from the
thermal electrical analogy were applied.

Starting from the room model circuit (Fig. 23), applying
the thermal-electrical analogy and Kirchhoff’s Oldham (2008)
circuit laws it is possible to obtain the Eq. 5.1 where Vin repre-
sents the total voltage as result of the sum of voltage across the
resistor VR and the voltage across the capacitor VC .

Vin = VR + VC (5.1)

After that, the Ohm’s law (SCHAGRIN, 1963) was used.
That means the current through a conductor between two points
is directly proportional to the voltage across the two points (MIL-
LIKAN; BISHOP, 1917). Applying this law in Eq. 5.1, it was
obtained Eq. 5.2.

Vin = Ri + VC (5.2)

Understanding that the current through the capacitor is
equal to the derivative of the voltage which passes through itself
over time, Eq. 5.3 is obtained.

Vin = RC
dVC
dt
+ VC (5.3)

Where Vin, VR and VC are respectively voltages (analog)
from: outdoor temperature Tout , through resistor i(t) and th-
rough capacitor Tin. So Eq. 5.4 is presented.

Tout = Ri(t) + Tin(t) (5.4)

Starting from Eq. 5.4, and isolating the derivative of Tin
it is possible to obtain Eq. 5.5.

dTin
dt
= −

1

RC︸︷︷︸
α

Tin(t) +
Tout

RC
+
ηP
C︸       ︷︷       ︸

u(t)

(5.5)

Being this a differential equation containing one or more
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functions of one independent variable and its derivatives the
Ordinary Differential Equation (ODE) α and u(t), from Eq. 5.5
where used to solve it.

dTin
dt
= αTin(t) + u(t) (5.6)

To solve ODE it was assumed that Tin(t) has the following
form:

Tin(t) = Aeαt + B (5.7)

Thus,

dTin(t)
dt

= Aαeαt (5.8)

By substituting Eqs. 5.7 and 5.8 in Eq. 5.6 it is possible
to obtain:

Aαeαt = α
(
Aeαt + B

)
+ u(t) (5.9)

Therefore, from Eq. 5.9 it possible to B as Eq. 5.10:

B = −
u(t)
α

(5.10)

Once B is obtained, A could be found (substituting Eq. 5.10
in Eq. 5.7):

A = Tin(0) +
u(0)
α

(5.11)

Coming back to Eq. 5.7 and substituting A and B found
in Eqs. 5.11 and 5.10, Tin(t) can be presented as Eq. 5.12.

Tin(t) =
(
Tin(0) +

u(0)
α

)
eαt −

u(t)
α

(5.12)

By expanding back u(t) and α (defined in Eq. 5.5), Tin(t)
can be defined as Eq. 5.13.
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Tin(t) = Tout (t) + [Tin(0) − Tout (0)] e−
t

RC +

Rη
[
P(t) − P(0)e−

t
RC

] (5.13)

Moving the notation with present and next state varia-
bles, where next state variables are primed, the Eq. 5.14 is obtai-
ned. In one interval [0, t] that it is considered (of length τ), P(t)
and Tout (t) will be constant and equal to P(0) and Tout (0) res-
pectively. In that case the Eq. 5.14 expresses the final equation
to obtain Tin(t + 1).

T ′in = Tout + [Tin − Tout ] e−
t

RC + Rη
[
P − Pe−

t
RC

]
(5.14)

From Eq. 5.14 it is possible to find the unknown compo-
nents, here called thermal parameters such as: resistance (R),
capacitance (C) and Coefficient of Performance - COP (η).

In order to compute R and C separately, the model starts
estimating product of RC presented in Sect. 5.4.2. After that it
is possible to compute R (Sect. 5.4.3) and C (Sect. 5.4.4) sepa-
rately. Further η and U-value can be obtained as it is presented
in Sections 5.4.5 and 2.2.2.3.

The computation process starts taking into account that
τ is the time step fixed to one minute, i.e. τ = 60

3600 =
1
60 secs

as well as Tin, Tout , and P are obtained from historical measure-
ments.

5.4.2 Computing the Resistance and Capacitance Ave-
rage Product - RC

Assuming that the Heat Pump is turned off (P = 0), the
product RC is estimated in the whole one minute interval. So
Eq. 5.14 can be present as Eq. 5.15
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T ′in = Tout + [Tin − Tout ] e−
t

RC (5.15)

Starting from Eq. 5.15 and assuming Tin − Tout , 0, RC
can be obtained as Eq. 5.16.

RC =
τ

ln
(
Tin−Tout

T ′in−Tout

) (5.16)

The product RC is estimated for all N available intervals
and then their average is calculated. By denoting with Tin(i)
the internal temperature at i-th interval and with Tin(i + 1) the
internal temperature at i+1-th interval, that is T ′in, Eq. 5.17 can
be used:

RC = τ
1

N

N−1∑
i=1

1

ln
(

Tin(i)−Tout (i)
Tin(i+1)−Tout (i)

) (5.17)

Since the value of RC is known then it is possible to es-
timate the value of R. The calculation process for this step is
shown in Sect. 5.4.3.

5.4.3 Computing the Thermal Resistance - R

For this thesis, the average of overall thermal resistance
of the house envelope is represented by R. In this work, the
R value comprises the sum of all possible resistances existing
within the envelope (internal and external air resistance, layers
of the walls, objects, etc.).

To compute R it was necessary to establish Tin in steady-
state, simulating in this way a constant R value. It is presented
in condition (a) where β = 0.002[◦C] was used in this study.
Considering η as the coefficient of performance of a heat pump
and, beyond the amount of the electric power applied, it pumps
external heat to the envelope. It can be considered, in condition
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(b), that when the outside temperature is less than or equal
to zero then the heat from outer space is not being pumped.
Therefore the heat pump is working at 100% capacity, ie η = 1.

Conditions to calculate R:

a) {Tin ∈ Tin(0, ..., t − 1) |
(|Tin(t) − Tin(t + 1)| < β) ∧
(|Tin(t) − Tin(t − 1)| < β)}

b) {η = 1 | Tout ≤ 0}

Starting from Eq. (5.14) and using RC it is possible to
compute R as Eq. 5.18 when Tin is in a steady-state and η = 1
with Tout ≤ 0:

R =
T ′in − Tout + [Tout − Tin] e

− τ

RC

η
[
P − Pe−

τ

RC

] (5.18)

After that it is possible to compute R for all N available
intervals and then average on them thus obtaining Eq. 5.19.

R =
1

η

1

N

N−1∑
i=1

∗
©­­«

Tin(i + 1) − Tout (i) + [Tout (i) − Tin(i)] e
− τ

RC(
P(i) − P(i)e−

τ

RC

) ª®®¬
(5.19)

Since the value of RC and R is known then it is possible
to estimate the value of C. The process to obtain C is presented
in Sect. 5.4.4.

5.4.4 Computing the Thermal Capacitance - C

Thermal capacitance is related to the ratio of the amount
of heat energy transferred, that is added to or removed from
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an envelope, resulting in a temperature change. In the present
study, the average of overall thermal capacitance is represented
by C.

Since turning on a heat pump, the environment does not
reach the desired temperature immediately but rather in a func-
tion of time, the C value expresses this physical property.

The thermal average capacitance C can be obtained from
RC (Eq. 5.17) and from R (Eq. 5.19).

C =
RC

R
(5.20)

Once the values for RC, R and C are found, it is possible to
estimate the value of the heat pump coefficient of performance.
The process for calculating the COP is shown in Sect. 5.4.5.

5.4.5 Computing the Coefficient of Performance - η

The Heat Pump Coefficient of Performance η can be ob-
tained starting from Eq. 5.14:

η =
T ′in − Tout − (Tin − Tout ) e

− τ

RC

R
(
P − Pe−

τ

RC

) (5.21)

Having the general η equation (Eq. 5.21) it is proposed in
this thesis that η should be calculated through the use of ran-
ges. These twelve ranges are defined in relation to the outdoor
temperature Tout and they can be expressed by the following
cases:

1) Tout < 0

2–11) ∀ To ∈ {0, . . . , 9}: To ≤ Tout < To + 1

12) Tout ≥ 10

For each one of the twelve cases above the formula in
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Eq. (5.21) was applied only to those time points where the cor-
responding formula holds. Algorithm 5.2 shows the steps used
in the η calculation.

Algorithm 5.2 Compute η(Tout )

Require: P, Tin and Tout have N time-slots, from 0 to N − 1
{ranges are as described in 5.4.5}

1: for r ← 0 to 11 do
2: C(r) ← 0
3: η(r) ← 0
4: for t ← 1 to N − 2 do
5: if (P(t − 1) > 0 and P(t) > 0 and P(t + 1) > 0 and

|P(t) − P(t + 1)| ≤ γ and |P(t) − P(t − 1)| ≤ γ) then

6: x ← Tin(t+1)−Tout (t)−(Tin(t)−Tout (t))e
− τ
RC

R
(
P−Pe

− τ
RC

)
{let r be index of range where Tout falls}

7: C(r) + +
8: η(r) ← x

C(r) + η(r)
C(r)−1
C(r)

9: end if
10: end for
11: end for
12: return η;

Line 1 starts the loop that will calculate the η for the
twelve ranges. Subsequently, in line 4, the calculation of Î· is
started for each time-slot. It is possible to verify in line 5 the
conditions for the calculation that are: P positive and in state-
steady. Such conditions being met it is then possible to calculate
the partial η which is stored in x. At the end of the procedure,
the moving average of η for each range is calculated and retur-
ned.

{P ∈ P(0, ..., t − 1) | (|P(t) − P(t + 1)| < γ) ∧

(|P(t) − P(t − 1)| < γ)}
(5.22)



126
In that procedure, η represents the set of coefficient of

performance for each r-th range of outdoor temperature Tout .
The η value was calculated in a P steady-state as it is presented
in the constraint on Eq. 5.22 where γ = 0.1[W] was defined.

5.4.6 Internal Temperature Plan

Once the thermal parameters and the coefficient of per-
formance have been calculated, it is suggested in this thesis to
create a day-ahead internal temperature plan. This plan aims to
offer the end user, basically, a table of internal temperatures to
be configured in their heat pumps by hourly range. In this pro-
cess, reducing the amount of power consumption and ensuring
thermal comfort are the prime goals.

Thermal comfort is guaranteed based on user informed
internal temperature (Tre f ) preferences. In order to allow the
optimization algorithm to be more flexible in the search for re-
sults, a tolerance value apha was used. Doing that, it was pos-
sible to generates the upper and lower limits for the desired
internal temperature. This procedure is also intended to reduce
the upper and lower bounds between heat pump power on and
off as shown in Fig. 7.

So, assuming the reference temperature obtained from the
household user is Tre f (t) for each time slot of the day t ∈ {0..23},
than the internal temperature calculated ÛTin(t) should be inside
the tube between Tre f (t) −α and Tre f (t)+α, as it is presented in
Eq. 5.23:

Tre f (t) − α ≤ ÛTin(t) ≤ Tre f (t) + α (5.23)

The application of thermal comfort rule will be presented
in Sect. 5.4.6.2
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5.4.6.1 Power Consumption as a function of Tout

It is assumed that the heat generated by a heat pump
comes from the sum of electric power and power generated from
the external environment. It is also considered that the energy
generated from the external environment is directly related to
the outdoor temperature Tout . Finally, it is assumed that for
each unit of external temperature there is a specific function for
the internal temperature.

In order to figure this function out, it was necessary to
calculate the ∆Tin. The ∆Tin is obtained from historical data of
consumption from each house. This is the difference between
the average of the next and the current internal temperature
from the historical data grouped by Tout and the average energy
consumption.

After obtaining the ∆Tin and its average energy consump-
tion for each house as well as each external temperature, it is
finally possible to calculate the linear regression for each house
and each value of Tout . This calculation step is responsible for
returning the values of a and b as it is shown in Eq. 5.24. In the
equation it is possible to identify X as the ∆Tin.

y(Tout ) = aX + b (5.24)

The values of a and b are stored in the data repository and
they are subsequently used in the optimization process in order
to adjust the internal temperature behavior curves in relation
to the external temperature oscillation. The optimization plan
process is presented in Sect. 5.4.6.2

5.4.6.2 Optimization Plan

In the optimization process a preprocessing of data was
made. Its purpose is to group for each house the data necessary
to optimize the day-ahead internal temperature plan. In this
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preprocessing, information such as times of day, weather forecast
(Tout), price of kWh per time slot, cost of CO2 emissions for that
particular time of day, values of R, C, η, Tre f and values for a
and b is gathered.

With the information which was obtained in the prepro-
cessing it was then possible to generate the MILP (Mixed Integer
Linear Programming) files to be sent to the optimizer. For these
implementation it was decided to use IBM CPLEX optimization
software (CPLEX, 2009). Such decision is based on its wide use
by researchers as well as the existence of license of use for the Sa-
pienza University of Rome. In addition CPLEX is widely known
for its accuracy in solving quadratic problems.

The objective function given by Eq. 5.25 is proposed to
be used to optimize the internal temperature plan. Where ci
is the cost of electricity while oi is the cost of CO2 emissions.
These values are expressed in the same unit of currency (Euro)
per unit time i (hourly) i ∈ {0..23}.

Min Je = A
23∑
i=0

(ci + oi)Pi+

(1 − A)
23∑
i=0

(Tinre f (i) − Tin(i))2
(5.25)

Subject to

Tin(i + 1) = Tout (i + 1) + [Tin(i) − Tout (i + 1)] e−
τ

RC +

Rη
[
P(i) − P(i)e−

τ
RC

] (5.26)

(Tin(i + 1) − Tin(i)a + b) −

β ≤ P(i) ≤ (Tin(i + 1) − Tin(i)a + b) + β
(5.27)
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Bounds

Tre f (i) − α ≤ Tinre f (i) ≤ Tre f (i) + α (5.28)

As it is expressed by the Eq. 5.28, Tinre f was inserted,
one variable that represents a soft-constraint for the optimizer.
It has the goal of ensure the thermal comfort.

As it can be seen in Fig. 26, as an hypothetical example,
the soft-constraint seeks to reduce the difference between the
real internal temperature and the estimated internal tempera-
ture. It gives flexibility to the optimizer which in turn aims to
reduce the cost of the power consumption as a hard-constraint
(Eq. 5.27).

Figure 26 – Internal Reference Temperature Bounds
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In this graph Tin represents the real internal temperature
that can vary its amplitude and frequency throughout the hours
of a day in different unit of degrees Celsius. The Tre f represents
the temperature reported by the user that is contained within
a tube, defined by Tre f + α and Tre f − α. This area comprises
the possible values that Tinre f , calculated by the optimizer, may
contain.
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5.5 KNOWLEDGE VISUALIZATION

The knowledge visualization proposed by this model es-
sentially consists of the proposition to the end-user of the day-
ahead internal temperature plan as well as the access to reports
and graphs. This is proposed to be done in a simple and intuitive
understanding shape.

The visualization occurs through a designed system in-
terface. The interfaces are presented in Appendix 8.2.

5.5.1 Internal Temperature Plan

Based on the premise of non-invasiveness proposed in this
thesis, there will be no direct action in the heat pumps thus
guaranteeing the privacy of choice of the end users. This is
the reason why it is proposed to present the day-ahead internal
temperature plan by means of an interface.

Table 4 – Example of an Day-ahead Internal Temperature Plan
Hour Temperature
00:00 23.0
01:00 24.5
02:00 24.0
...

...

21:00 25.0
22:00 24.0
23:00 23.0
Source: Author (2017)

In this proposition, the plan is offered in the form of a
table containing the calculated temperatures for each hour of
the following day. One reduced example of this output can be
seen in Tab.4.
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5.5.2 Reports and Charts

As part of the system interfaces in which the home user
can monitor their individual performance as well as in compari-
son to consumers belonging to the same category of consumption
were designed. The charts and reports are thus divided into- In-
dividual Performance and Comparative Performance.

Once the knowledge-based processes and their respective
modeling for implementation are discussed, Sect. 5.6 presents
the modeling for the support system, the GUI component of the
proposed model. This section is intended to complement the
information in this chapter.

5.6 SYSTEM MODELING

The actors who must interact with the proposed computer
system are the administrator and the household user. There
is also the figure of actor as being the system itself because it
performs actions for itself. In Fig. 27 it is possible to identify the
actors and the actions (arrows) over the requirements (circles).

The functional requirements identified in the diagram can
be further detailed in Table 5. In the table can be seen the first
column as the identifier for each distinct functional requirement
(FR ID). The second column shows the dependency relation
between the requirements, ie if the FR01 requirement is not met,
it is not possible to execute the FR02 requirement, for example.
The descriptions of the requirements are related to the actions
that can be executed by the actor, the actors enabled to execute
each requirement are presented in the use case diagram.

The description of the requirements that are part of the
system environment, that is, its suggested functionalities, is re-
lated to Non-functional Requirements (NFR) as interface and
other requirements not necessarily essential for its execution are
presented in the Table 6. These are propositions presented only
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Figure 27 – Use Case Model
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Table 5 – Functional Requirements
FR ID. Dependent Description
FR01 Create District
FR02 FR01 Create Building
FR03 FR02 Create User
FR04 Draw Floor Plan
FR05 FR04 Obtain Measurements
FR06 FR05 Calculate Thermal Params
FR07 Set Temperature Preferences
FR08 Obtain Forecasts
FR09 FR06, FR07, FR08 Generate day-ahead Tin Plan
FR10 FR09 Generate Reports
FR11 FR10 Consult Reports

for the present implementation, and it can be changed when a
model of different form is implemented.

Table 6 – Non-functional Requirements
NFR ID. Description
NFR01 Have an interactive and easy to use interface
NFR02 Have a responsive design
NFR03 Must store the data in local repository for security
NFR04 Should send measurements data to a remote server
NFR05 The floor plan should use the drag-and-drop concept

Table 7 presents the business rules (BR) associated with
the functional requirements of the second column (FR). These
rules are used in the creation of the ontological model of the
application, later transposed to a case of relational database,
proposed for this application. The rules also define the behavior
of the computational system which in turn must be checked at
the end of the development of the proposed support tool.

The relational database presented by Fig. 28 is proposed
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Table 7 – Business Rules
BR ID. FR ID. Description
BR01 FR01 Each district may have one or more houses.
BR02 FR01 Each district should have a postal code

(used to temperature forecast).
BR03 FR02 Each building must be associated with

at least one district.
BR04 FR03 Each building must have a primary user.
BR05 FR04 The floor plan should allow the connection between

rooms of the house.
BR06 FR04 Each room of the floor plan may have one or more:

heaters, internal and external temperature sensors
as well as the solar influence.

BR07 FR04 The connection between the rooms and
the existence of elements inside or outside them must
be safe in a repository using the concept of graphs.

BR08 FR05 Every minute the system must store the data of:
internal and external temperature as well as the power
of energy used by the heat pumps.

BR09 FR06 On a daily basis, the system must recalculate
the thermal parameters: Thermal Resistance,
Capacitance and Heat Pump Coefficient
of Performance based on historical data.

BR10 FR07 The user can configure their internal temperature
preferences based on an easy-to-use interface
that will suggest the internal temperature of
24 degrees for the day’s slots.

BR11 FR08 For each hourly range of the following day,
the system should, through web services, search
for forecasts of: hourly electricity, CO2 emission
cost and external temperature.

BR12 FR09 The system should generate a time plan
(interval of one hour) of internal temperature
for the following day as well as suggest it to the user.

BR13 FR10 Daily, the system should generate reports of
user consumption (with the possibility of daily,
monthly or annual viewing) as well as
forecast of consumption for the next day.

BR14 FR11 Through a friendly interface the user can view
the reports as well as access the settings and approve
the consumption plan for the next day.
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for the present implementation and it was obtained based on
the ontological model previously presented in this thesis. Such
a database model was designed to enable the application deve-
loped in order to allow the storage of experimental data in a
centralized repository.

Figure 28 – Relational Database Model

Source: Author (2017)

Appendix 8.2 presents a set of screenshot available from
the web application developed in order to interact with the final
user. This process is assisted by the system through a step-by-
step wizard.
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6 EXPERIMENTS AND EVALUATIONS

In this chapter the experiments and evaluation results are
presented. The mathematical model was developed in the form
of computational algorithms with knowledge discovery bias. Such
algorithms aims to estimate the thermal parameters and calcu-
late the day-ahead internal temperature plan.

6.1 EVALUATION CRITERIA

Table 8 presents the Evaluation Criteria used in this the-
sis. The first column depicts to What is being evaluated. The
second column explains Where positioning the evaluation crite-
ria inside two classes: TPI as Thermal Parameters Identification
and ITP as Day-ahead Internal Temperature Preferences. The
third and fourth columns present the comparative object as well
as the applied methods and tools. The last column (Sect.) refe-
rences which section of this chapter the evaluation is presented.
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Table 8 – Evaluation Criteria
What Where Comparative Method and Tools Sect.
R and C values TPI Benchmarks NGSpice and OpenModelica 6.4.1
η values TPI Manufacturer and Literature Calc. Using Tout Intervals 6.4.1.1
Thermal Comfort ITP Preferences and Historical Data CPLEX, min. Tinre f and Tre f 6.4.2.1
Energy Cost ITP Historical Data CPLEX, min. Energy Costs 6.4.2.5
CO2 Emission Cost ITP Historical Data CPLEX, min. CO2 Emission Costs 6.4.2.6
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6.2 THE RESEARCH UNIVERSE

The experiments performed in this thesis are given ba-
sed on historical data of measurements from sensors installed
in seven homes in a period of seven months (March-October
2015) of SmartHG project. Such project is supported by the
European Union’s Seventh model Programme (FP7/2007-2013)
under grant agreement no 317761 (CORDIS, 2014).

The SmartHG project goal is to develop a suite of integra-
ted software services (the SmartHG Platform) aiming at steering
residential users energy demand in order to: keep operating con-
ditions of the electrical grid within the given healthy bounds,
minimizing energy costs and CO2 emissions. This is achie-
ved by exploiting knowledge (demand awareness) of electrical
energy consumption of residential users as gained from SmartHG
sensing and communication infrastructure (ALIMGUZHIN et al.,
2015).

The SmartHg project has three testbeds: Kalundborg
(Denmark), Central District (Israel) and Minsk (Belarus). The
Kalundborg testbed was selected to be used in this present work.
This test bed consists of 98 homes several of which equipped with
photovoltaic panels or a heat pump. In total there are 134 such
installations connected to the substation whose transformer has
a primary voltage of 10 kV, a secondary voltage of 400 V, and a
nominal power of 400 kVA (TRONCI et al., 2014). Sensors, smart
meters and communication devices have been deployed in 25
houses in Svebølle (Kalundborg test-bed). See Fig. 29 for an
example of installed sensors (ALIMGUZHIN et al., 2015).

All houses in the Svebølle test-bed have sensors measuring
instantaneous values for voltage and current at the main meter
as well as sensors measuring inside temperatures and energy
consumption for relevant appliances such as heat pump, elec-
tric oven, laundry machine, dishwasher, etc (ALIMGUZHIN et al.,
2015). Fig. 30 presents the description of the sensors and equip-
ments installed in 44 houses from the SmartHG project.
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Figure 29 – Installed Sensors in Svebølle

Source: Alimguzhin et al. (2015)

Figure 30 – SmartHG compliant sensors and equipment

Source: Alimguzhin et al. (2015)



141
In this project, the measurements from the sensors and

smart meters were sent to a repository. For the experiments, in
this thesis, the internal and external temperature measurements
and power consumption of the heat pumps are used.

All analyzed houses belong to the same district and have
the same type of devices installed comprising sensors and heat
pumps. These air-to-air heat pumps use external temperature
coupled with the power energy to generate heat inside the hou-
ses.

In this thesis, the measurement values used were Tin, Tout

and P. Such information was available in not-standardized fixed
intervals. Therefore, it was necessary to perform an interpola-
tion process of these data in order to obtain a constant time
interval. For all experiments τ is expressed in time step fixed to
one minute, i.e. τ = 60

3600 =
1
60 secs.

The SmartHG users’ typically daily average demand pro-
file is presented in Fig. 31. In this context, demand means con-
sumption (loads) minus production (photo-voltaic in the test-
beds), both at substation and at residential level. More on de-
finitions: aggregated means the sum at substation level of all
single demands or consumption, while average simply means
averaging on all householders connected to a substation at each
hour.

This plot shows the typical daily profile of the average
demand of users connected to the substation. In particular, it
shows average (+/− standard deviation), minimum and maxi-
mum user average demand on the whole period for each time-
slots of the day. For example, average(0) shows the average of
user average demand on the whole period within the time-slot
0 of the day.

Fig. 32 shows the average demand profile, on the subs-
tation level. The chart is related to the whole period of the
SmartHG project.
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Figure 31 – Typically Daily Average Demand Profile

Source: CORDIS (2014)

Figure 32 – Average Demand Profile

Source: CORDIS (2014)

The bar chart (Fig. 33) shows the distribution of users as
for the average daily demand on the whole period. In particular,
each bar represents the percentage of residential users whose
average daily demand falls within a certain range of kWh. It
represents the whole period.

Fig. 34 shows the distribution of users as for the annual
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Figure 33 – Distribution of Users for Average Daily Profile

Source: CORDIS (2014)

demand. In particular, each bar represents the percentage of
residential users whose annual demand falls within a certain
range of kWh. it is related to the year 2015. Negative values
can occur due to the production of energy by the residence (via
photovoltaic panels) and that in turn, stops consuming of the
substation.

Figure 34 – Distribution of Users for Annual Energy Demand

Source: CORDIS (2014)

In Fig. 35 it is possible to identify the distribution of
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the annual energy usage for the SmartHG Project. The energy
usage is distributed in categories like: heating and cooling (blue
and superior class bar), home applications (magenta and second
class bar), Miscellaneous (Misc) represented by color green and
the third class bar. It is related to other devices which were not
traced by the research. The last one is Refrigeration (color blue
and the last class bar).

Figure 35 – Annual Usage Analysis by Category

In this chart it is visually evident that within winter and
summer months the energy consumption for heating and cooling
is higher than the sum of the others. In certain months of the
year as from December to February and from May to September
this figure exceeds 50%.

6.3 GENERAL SETUP AND TOOLS

The experiments were performed using the following por-
table equipment: Intel(R) Celeron(R) CPU 1005M 1.90GHz,
operational system Ubuntu 14.04 64bits with 4GB of RAM.

For the mathematical model analysis, the Matlab soft-
ware and Mathematica 10 were used. For the development of
scripts and algorithms C++ and Python were chosen as deve-
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lopment and script languages.

The proposed ontology in this model was implemented
into a relational database system using PostgreSQL in the ex-
periments stage. For the development and generation of internal
temperature of plans the IBM CPLEX (CPLEX, 2009) optimizer
was used. At the experiments stage, the Open Modelica (TIL-
LER, 2014) software and NGSpice (NGSPICE, 2011) simulator
were also used.

The motivations for choosing such technologies relied on
the following criteria: volume of use by the scientific commu-
nity; Ease of use and learning; Availability of use license for
educational institutions and adherence to the thesis proposal.

It was decided to start implementations using NGSpice
and Open Modelica. Subsequently the proposed model was fully
developed in Phyton script language integrated with CPLEX. It
was only in the last step that the user interface was implemented
taking advantage of the functionalities already developed. The
experimental results were compared with historical data obtai-
ned from the SmartHG project as well as other benchmarks from
the literature.

A data set of seven houses in the same region (district)
of Denmark was gathered from the SmartHG Project. The data
collection period occurred within March and October 2015. The
collected data is outdoor temperature Tout , heat pump power P,
internal temperature Tin and Coefficient of Performance maxi-
mum value ηmax . The ηmax was obtained from the information
of the manufacturers of heat pumps. The data was normali-
zed using the same time-point as a reference and it was then
interpolated in order to obtain a one-minute step time-point.

6.3.1 Organization of Experiment Data

In order to organize all data obtained with SmartHG pro-
ject, a local database for the experiments was implemented.
This database contains all the information about the houses
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which were studied in the experiments and it was developed
based on the ontology proposed in this thesis.

6.3.2 Data Interpolation

Since the data stored did not have a fixed time interval, it
was necessary to perform a data interleaving in order to develop
the experiments. That is, keeping the values using the same
timepoint intervals. Algorithm 5.1 is responsible for the reading
of the database file. It interpolates in timepoints T at time t,
internal and outdoor temperatures Tin(t) and Tout (t). The Heat
Pump Power P(t) is also used at this stage.

The presented algorithm calculates the time difference m
between (t + 1) and (t). The rate between P, Tin, Tout and m is
calculated and added to the values at time (t+ i). Once the data
is interpolated, a CSV file is generated as it is presented below:

Timepoint, Power, Tin, Tout
DD/MM/YYYY HH:MM:SS, 0.00, 0.00, 0.00

This CSV file is then ready to be used as the main simu-
lation data source as well as it is saved into the database. These
data will be used by the main algorithm (Alg.6.2).

6.4 EVALUATIONS

The evaluation process occurred in two distinct stages:
thermal parameter identification (TPI) and internal tempera-
ture plan (ITP). In the first verification step the found parame-
ters were compared to the historical data, benchmarks in the
literature as well as values obtained from the heat pump ma-
nufacturer. In the second stage, to generate plans of internal
temperature for the following 24 hours, the results obtained for
the of generated plan, day by day, were compared with historical
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data.

For simulation purposes, the internal temperature of the
user preferences was obtained from historical data by the ave-
rage daily temperature by time slots. Therefore, for simulation
purposes the weather forecast for the outside temperature, the
forecast for energy prices and the cost of CO2 emissions were
obtained with historical data for the same period found in the
historical data.

6.4.1 Thermal Parameters Evaluation

The evaluations were made using machine processing time
as a measurement, comparatives with historical data values,
with pieces of informations obtained from heat pump devices
manufacturers, as well as from the literature (PARK et al., 2011) (RA-
MIREZ; SAGUES; LLORENTE, 2014) related to the used approach.

In this section the procedures used in the thermal pa-
rameters identification experiments as well as the final results
are presented. Methods and results for obtaining COP are also
presented in this section.

Once the equations based on electrical circuits were defi-
ned and developed, it was necessary to verify their correctness.
For this purpose, the Mathematica (WOLFRAM, 2003) software
was used.

After the mathematical equations were validated, the ther-
mal parameters discovery process was started. The first attempt
to discover thermal parameters was made using the electrical
circuit simulation system known as NGSpice.

Thermal Parameter Identification Using NGSpice

NGSspice is a mixed-level/mixed-signal circuit simula-
tor (NENZI; VOGT, 2011). Through this software it is possible
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to carry out transient analysis in circuits. Transient analysis
is an extension of DC analysis to the time domain. A transient
analysis begins by obtaining a DC solution to provide a point of
departure for simulating time-varying behavior (NENZI; VOGT,
2011).

The initial goal of the use of this simulator was to identify
the values for thermal resistance R and thermal capacitance C
using Transient Analysis. Since the values for heat pump power
consumption P, outdoor temperature Tout and internal tempera-
ture Tin were known, a set of algorithms were developed. These
algorithms are responsible to read the measurements from the
database and then created files to be interpreted by the NGS-
pice simulator. After the simulation, the algorithms read the
results and sought to compare if the simulated internal tempe-
rature was the same as the internal temperature obtained from
the measurements (historical data).

Once no value was known neither for R nor for C, the
algorithm was however engaged in performing a brute-force test.
That is, it has sent sequentially values for C, within a range
informed as a parameter, searching for answers of R. At the
end, the simulation in which the combination of values for R
and C and calculated internal temperature approximates the
real internal temperature, were chosen as ideal values. The next
subsections explain how the simulations occurred.

To better understand the proposed simulation process
with NGSpice, the state-space diagram is presented in Fig. 36.
In the picture, the rectangular blue blocks depict the process
steps while the circular green blocks portray the external files.
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Figure 36 – State-Space Diagram
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The process starts with a parameter file and a database
file. After reading these files, the algorithm checks, on each
loop, asking to the input file whether it is the end-of-file (EOF)
or not. Once it is affirmative, the process is terminated and
if the answer is negative, a circuit file(CIR), in a SPICE-like
format is created. This file is sent to the NGSpice simulator.
Then, NGSpice is started and it generates an output file with
the simulation results. All these steps are presented as it follows.

A parameter file was used in order to allow running a
sequence of simulations in NGSpice in an sequential way. Al-
gorithm 6.2 is responsible for providing reference values to the
main algorithm. This file assists the main algorithm, providing
the execution ranges and main values for the simulation varia-
bles. An hypothetical example of a parameter file is presented
below:

paramFixed[C = 1/R = 2/Both = 3] = 2
rValueFixed = 0.024334



150
cValueFixed = 0
rValueFrom = 0
rValueTo = 0
cValueFrom = 1000
cValueTo = 99999
loopStep = 10
marginError = 0.1

The paramFixed ∈ {1, 2, 3}, where, paramFixed ← 1 for
instance, means that the main algorithm needs to keep the capa-
citance value as C ← cValueFixed, 2 means that the algorithm
needs to keep values for R ← rValueFixed and 3 stands for
parameters C or R which are not steady. The loop range is ini-
tiated, in all cases in paramFrom and it will be finished when it
reaches paramTo value. A time interval loopStep Ls[sec] is used
as all over the PWL (Piecewise Linear Function) and finally
marginError Me is used to evaluate how big is the difference
between the measured Internal Temperature Tin and Internal
Temperature calculated ÛTin.

In addition to creating a parameter file, an algorithm
(Alg. 6.1) capable of reading the parameter file and calling the
main algorithm (Alg. 6.2, here called sweeper) based on para-
meter settings was created. This algorithm takes into account
the simulations to R and/or C, where Cf v and Rf v stands for
the capacitance and resistance fixed values, Rf and Cf are the
R and C reference numbers from, while Rt and Ct are R and C
reference values to. The parameters Ls and Me represent the
loop step and the margin of error values. Depending on the read
parameters, the main sweeper-algorithm is called dynamically.

Once the parameters for the simulation are obtained, it
is possible to generate the files to be sent to the simulator. The
CIR files have a standard layout as it is presented in Alg. 6.4.1.
In this example it can be seen that the Initial Condition (IC)
will have the Tin value. That is, in order to simulate a house
where the internal temperature starts with the first value for
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Algorithm 6.1 Parameter Algorithm
Require: paramFile
1: if paramFixed == 1 then
2: sweeper

(
Cf v, Rf , Rt, Ls, Me

)
3: else
4: if paramFixed == 2 then
5: sweeper(Rf v,Cf ,Ct, Ls, Me)
6: else
7: if paramFixed == 3 then
8: sweeper(Ls, Me)
9: else

10: return “paramFixed error"
11: end if
12: end if
13: end if

Tin, so that IC = Tin(0). In this CIR file, N stands for number
of timepoints T .

1: House X - CIR script
2: Vin 1 0 PWL(1s 0.00, 2s 0.00, 3s 0.00...)
3: R 1 2 0.00;
4: C 0 2 0.00 IC=0.00;
5: I 0 2 PWL(1s 0.00, 2s 0.00, 3s 0.00...)
6: .tran 1s Ns Lss uic;
7: .print tran v(b);

In order to do a Transient Analysis, the time of each ins-
tance is considered in seconds and it complies with the values
which are obtained in the parameter file for Ls. In this hypothe-
tical example, Vin represents Tout , R stands for the thermal re-
sistance, C the thermal capacitance, I depicts the heat pump
power and the result v(b) illustrates the calculated internal tem-
perature ÛTin.

Algorithm 6.2 presents the main algorithm used to per-
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form experiments using NGSpice as a solver. Each simulation S
is sent to the NGSpice. It uses the parameter file and the para-
meter algorithm, creates the CIR file, sends it to the NGSpice
simulator, reads the results and at the end writes the results
into an output file.

Algorithm 6.2 Sweeper Main Algorithm
Require: inputFile and paramFile
1: sweeperParamAlgorithm()
2: for EACH S ← paramFrom to paramTo do
3: create CIR file
4: send CIR file to NGSpice
5: read NGSpice outputFile
6: if |

(
Tin − ÛTin

)
|≤ Me then

7: return resultFile (T, R,C,Tin, ÛTin, ( ÛTin − Tin))
8: end if
9: end for

As it was presented before, the intention is to read and
compare each row from the NGSpice simulator results, in order
to find out if Tin value taken into account if it is equals/close
to ÛTin for ÛTin ← v(b), using (Me) a margin of error and, when
matches are found between them, the entire row is copied to a
output file and the process starts again.

Two assays were conducted in NGSpice, in order to esta-
blish a performance analysis from SPICE-like files. In the first
one, an input file with 10 records (Fig. 37) was used.

In Fig. 37 it is possible to observe the calculated red trend
line (dotted) and its function plus R2 value. In statistics, R2 is
related to the fraction of variance, that is, as closer it is to 1
the better fit between the calculated with the trend line is. In
this case, it is perceived that the adjustment is very close to
an exponential behavior. The processing of 5,000 variables took
about two and a half minute to be completed.
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Figure 37 – NGSpice Simulations Performance - Assay 1

Source: Preissler, Gonçalves e Fernandes (2016)

The second assay was conducted as a sample space of
24181 records (Fig. 38). This value is equivalent to measure-
ments of a house in 16 days interval of one minute. In both
tests, R as f ixedValue, Ls ← 10 and Me ← 0.01 were used. In
a visual analysis, it can be seen that the behavior of the graph
has a linear tendency.

Figure 38 – NGSpice Simulations Performance - Assay 2

Source: Preissler, Gonçalves e Fernandes (2016)

In the first experiment, records by timepoints in order of
tens and thousands were used (here called variables). As a con-



154
sequence, a single simulation occurred almost instantaneously.

A whole hour was necessary to simulate 25 variables in
the second experiment that took about two minutes for each
simulation. It was verified that within these two minutes, ap-
proximately 25 seconds were used by the algorithms while the
remaining time was used by the NGSpice simulator in a transi-
ent analysis mode.

These tests represent that with a large parameter combi-
nation applied to a small number of records, the response time
is very brief. However when the amount of measurements and
consequently of days increases, the processing response time,
even with a small or low combination of variables, may become
infeasible for an real (commercial) application.

Thermal Parameter Identification Using OpenModelica

In order to evaluate the results obtained with the simula-
tions in NGSpice, the same tests and simulations were performed
using the OpenModelica (TILLER, 2014) thermal library (PREIS-
SLER, 2016). The same RC circuit was applied as can be obser-
ved in Fig. 39. In the figure it is possible to observe the visual
elements that represent the outdoor temperature, the wall of the
house (resistance), the thermal capacitance of the environment
as well as the heat pump and the internal temperature.
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Figure 39 – Modelica Thermal Library for a Single-Room

Source: Preissler (2016)

Using OpenModelica the results for the two assays were
generated respectively in ten minutes for the first assay and
nine and a half minutes for each simulation in the second one.
Nevertheless, the algorithm kept on using 25 seconds for data
preparation (pre-processing).

The overall mean values for C and R were obtained th-
rough simple arithmetic average of all values of C and R found
in a given period of time t. Those values are presented in Tab. 9.
In this table values obtained by R calculation presented by the
Related Work∗ (CHEN; FU; XU, 2015) are also depicted. The
proposal presented by (CHEN; FU; XU, 2015) was implemented
as suggested by the mentioned literature. For these simulations
the same randomly fixed value for C was set for 6500.
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Table 9 – R values using different approaches
Experiment 1 Experiment 2

NGSpice 0.02472 0.02987

OpenModelica 0.02798 0.02966

Related Work∗ 0.02568 0.02605
Source: Preissler, Gonçalves e Fernandes (2016)

The percentage of error in the first experiment which was
taken with simulations using NGSpice and OpenModelica for
R calculation was 13.19%. When (CHEN; FU; XU, 2015) are
considered as a reference, this percentage is 3.88%. For the
second experiment, the error percentage was 0.7% when compa-
red to OpenModelica and 12.79% if compared to related work
by (CHEN; FU; XU, 2015).

The carried out experiments took into account the simu-
lation of the thermal resistance calculation of a house, using
real measurements of a period of 16 days. The results of the
two experiments demonstrated that the use of the NGSpice or
OpenModelica simulators, in relation to the related work (CHEN;
FU; XU, 2015), are close, even when the number of variables in
the experiments increases.

Even having found satisfactory the results, as it is pre-
sented in this section it was sought to reduce the computational
time spent in the simulations. This is the reason why it was cho-
sen to develop the equations, as presented in Sect. 4.4.1, imple-
ment an algorithm in order to solve it integrated with CPLEX
optimizer as well as perform experiments in order to evaluate
the results, presented as follow.
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Thermal Parameters Identification Using the Proposed
Model

This subsection provides the process of evaluation of ther-
mal parameters for each house, as it was presented in Sect. 4.4.1.
In this experiment, a computational algorithm was developed to
calculate the thermal parameters, following the steps of the pro-
posed model based on the historical data of each residence.

This algorithm takes into account the fact that assuming
that C comes from the relationship between R and C as Eq. 5.20
and having values for RC as shown in Sect. 5.4.2 it can therefore
evaluate either R or C to verify that the results comply. For that
case, it was decided to evaluate the values for R, understanding
that once found the value for R and having the values for RC
been already established, it is possible then to find the values
for C.

Table 10 shows the simulation results for all studied hou-
ses. It is possible to observe the averages for R and C which
were obtained from the thermal parameter identification. The
last column lists the calculated values for R

∗
according to the

method proposed by Park et al. (2013). These values were calcu-
lated each step, with a τ interval. Their average was performed
later.

Table 10 – Result Simulations for R and C
R C R

∗

House 1 0.034871 2144.962708 0.039455
House 2 0.027445 2145.083158 0.026414
House 3 0.011865 2554.082026 0.010117
House 4 0.018565 3857.414424 0.019849
House 5 0.027030 1074.227824 0.028974
House 6 0.031118 3096.822475 0.029878
House 7 0.024334 2847.673077 0.023145

Source: Author (2017)
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The experiments were performed using historical data for

Tin, Tout and P and developed using Python script language to
calculate R, C as well as R

∗
. The average time spent by the

algorithm to calculate the three thermal parameters was about
(average) 1.17543 seconds.

6.4.1.1 Heat Pump COP Analysis

Since the COP (η) calculation, proposed in this model,
must occur based on the variation of the outdoor temperature
and in time intervals (ranges), the Fig. 40 was generated. This
happens because, observing the graph one can perceive the re-
lationship between heat pump power and outdoor temperature.
The graph is shown only for house 1 because the objective is to
demonstrate the relationship between P and Tout . The behavior
that comes from this relationship is also found, in a similar way
in the other studied houses.

Figure 40 – Relation between P and Tout - house 1
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A trend line presents the cloud points behavior to the rise
in temperature. It is also possible to see the trend line equation
and its coefficient of determination (R2). Moreover it shows
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that a superficial analysis of the relationship between these two
variables is not enough to establish an expected liner positive
function (ENERGUIDE, 2004) between them.

In order to calculate the COP, based on the proposed
model the Algorithm 5.2 was developed. In the sequence, the
steps followed to calculate η are presented.

The η simulation results can be seen on Table 11. That
table shows the summary data obtained from all simulated hou-
ses. The means using the original η formula have considered P
in a steady-state.
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Table 11 – Average COP values Simulation Results per Ranges
Ranges House 1 House 2 House 3 House 4 House 5 House 6 House 7
[−∞ to 0) 1.23 2,88 1,90 1,03 1,05 1,99 2,25
[0 to 1) 1.16 2,07 1,96 2,20 1,21 2,02 2,41
[1 to 2) 1.18 1,99 2,33 2,53 2,09 2,83 2,43
[2 to 3) 1.17 2,03 2,58 2,33 2,99 2,79 2,38
[3 to 4) 1.11 2,51 2,52 2,67 3,05 2,73 2,07
[4 to 5) 1.18 2,49 2,64 2,29 2,08 2,80 2,58
[5 to 6) 1.26 2,84 2,75 2,24 2,40 2,67 2,04
[6 to 7) 1.21 2,45 2,70 2,28 2,06 2,79 2,97
[7 to 8) 1.29 2,38 2,75 2,70 2,14 2,58 2,27
[8 to 9) 2.11 2,77 2,44 2,87 2,18 2,41 2,36
[9 to 10) 2.09 2,75 2,02 2,47 2,37 2,38 2,21
[10 to +∞) 2.19 2,47 2,16 2,89 3,07 2,58 2,30
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Fig. 41 shows the relationship between the COP ranges

calculated (by Algorithm 5.2) and the Outdoor Temperature
Tout for each house and the average (the last one). It is also
possible to observe the trend exponential line among the found
points (dotted line).

Figure 41 – COP Results for All Houses

Source: Author (2017)

The main line represents the calculated COP by range.
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The dotted line shows the calculated trend between the points.
Even without having a value for R2 close to or equal to one, was
chosen that the exponential function would be used as the basis
for the studies, following the surveys of EnerGuide (2004).

The highest value of R2 relative to the linear regression of
all houses was found in house one, where the value corresponds
to 0.62. The lowest correction value R2 was detected in house
seven, represented by 0.0002.

The last chart (orange) represents the average COP calcu-
lated for all households. The overall mean of all households has
a value of R2 of 0.58 in relation to linear regression. This means
that the relation between the COP value of the houses studied
is not strongly related. This factor may be due to the behavior
of heat exchanges that each house presents individually.

Due to this factor of low correction between the regres-
sion of the points and the value R2, it was decided to first find
the values of COP for each external temperature and later to
calculate the exponential function between these points. Such a
function is in the future used in the algorithm to estimate the
value of COP in the phase of experiments. So, in the following
steps, the COP values are obtained first by the calculation in
ranges and then, based on these values, the exponential function
of the COPs is obtained.

6.4.2 Internal Temperature Plan Evaluation

This section describes the analysis performed on the gene-
ration of the day-ahead internal temperature plans. The average
time spent by the optimizer to generate the internal temperature
plans was 0.000116 seconds.

In the optimization stage, values for ci, the cost of elec-
tricity and oi, the cost of CO2 emissions were expressed in the
same unit of currency in this experiment in Euro(e).
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6.4.2.1 Thermal Comfort

In the experiments part, the thermal comfort was calcula-
ted based on the historical of internal temperatures by calcula-
ting the average for each time slot of the day and for each house
individually.

This internal temperature average is called Tre f . To this
value a tolerance alpha (α) was added for optimization purposes,
generating the upper (Tre f +α) and lower (Tre f −α) limits for the
desired internal temperature. The alpha (α) value is provided
as a parameter to the main model, thus offering flexibility to the
optimizer(CPLEX) in the search for solutions.

6.4.2.2 Adjusting the Convexity

Taking into account that the experiment was dealing with
a multiple objective function, i.e integrating by two arguments
in the same objective function such those have different dimen-
sions, it was necessary to insert a factor A to adjust the con-
vexity of these two arguments as it is presented in Eq. 5.25 in
Sect. 4.4.2. This adjustment factor is required in order to ob-
tain a balanced function in which these two arguments can be
comparable.

The adjustment process for A is given as follows. For each
house a consumption plan was generated. Each generated plan
used a different value for A; the results obtained for calculated
P and Tin were compared with real P and Tin from the historical
data. At the end of the simulations the average A value for the
entire period and for each house was obtained.

6.4.2.3 Cases of Internal Temperature Plan

In Figs. 42, 43, 44, 45, 46, 47 and 48 it is possible to
identify an aleatory sample of cases of daily internal temperature
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plan simulated for all houses. The results of the simulations are
compared with historical data.

On the left side, the red line (dots) indicates the calcula-
ted P while the blue line indicates the actual P obtained from
the historical database. On the right side, for the same simula-
tion, the red line indicates the calculated Tin while the blue line
(dots) indicates the actual Tin.

In all these cases, it can be seen that the algorithm ge-
nerated values close to the real data and that they are, on ave-
rage, below the real average values. Such accuracy is analyzed
in Sect.6.4.2.5.

6.4.2.4 Daily and Hourly Analysis

In order to graphically demonstrate the performance of
the algorithm against the historical data, a series of eight graphs,
which follows, are presented. Two houses (2 and 7) were chosen
in random periods. All these analyzes were performed with the
mean data grouped by hourly or daily slots.

Fig. 49 shows the relationship between the calculated Tin
and real/historical Tin taken from historical data for house 2 in
an hourly composition. The green line shows the calculated Tin
while the blue line shows the real Tin (from the database).

The relation between the estimated and historical tem-
perature for house 7 is shown in figure Fig. 50. In both cases,
especially for house 7, it can be seen that the calculated internal
temperature and the real temperature have a similar oscillatory
behavior. Few peaks are found, especially in house 2.

This difference between the estimated P and the histori-
cal P is mainly due to the fact that the main variable that has
the greatest freedom in the optimization process and into the
algorithm is P. This does not occur for Tin because it is con-
tained in a constraint within the optimizer and has freedom of
valuation controlled by parameters.

The relationship between the hourly calculated P and real
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Figure 42 – Samples of Tin Plans - Houses 01 and 02
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Figure 43 – Samples of Tin Plans - Houses 02 and 03
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Figure 44 – Samples of Tin Plans - Houses 03 and 04
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Figure 45 – Samples of Tin Plans - Houses 04 and 05
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Figure 46 – Samples of Tin Plans - Houses 05 and 06
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Figure 47 – Samples of Tin Plans - Houses 06 and 07
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Figure 48 – Samples of Tin Plans - House 07
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Figure 49 – Hourly Internal Temperature Averaging Deviation -
House 2

Source: Author (2017)

Figure 50 – Hourly Internal Temperature Averaging Deviation -
House 7

Source: Author (2017)

Figure 51 – Hourly Average Power Consumption Deviation-
House 2

Source: Author (2017)
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P from historical data for house 2 is presented (in a specific
range) by Fig. 51. The green line shows the calculated P while
the blue line shows the real P.

Figure 52 – Hourly Average Power Consumption Deviation-
House 7

Source: Author (2017)

Fig. 52 shows the relation between the calculated versus
the historical power. For house 2 one perceives a wave behavior
close to each other. However, for house 7 positive peaks are
identified, mainly from historical data, which suggests that the
algorithm is resulting in a reduction in energy consumption.

Figure 53 – Daily Internal Temperature Average Deviation -
House 2

Source: Author (2017)

The daily Internal Temperature average deviation for house
2 is presented in Fig. 53. It also shows the maximum (green
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line) and minimum values (blue line), the standard deviation
(hatched area) and the average error (brown line). It is related
to the calculated Tin analysis for this particular house.

Figure 54 – Daily Internal Temperature Average Deviation -
House 7

Source: Author (2017)

Fig. 54 shows a sample of estimated temperatures beha-
vior for house 7. For house 2, it is identified by the scale of
the graph, that the maximum positive peak for the analyzed
period reached two degrees Celsius and that the average kept
floating near one degree. For house 7 this maximum variation
was lower, of 1.5 degrees and the average between 0.5 and one
degree Celsius. In most of the analyzed time slots, the standard
deviation demonstrates that there was no great variation of the
estimated values in relation to the general mean.

Fig. 55 presents the maximum (green line) and minimum
values (blue line), the standard deviation (hatched area) and
the average error (brown line) for the house 2 in relation to the
calculated P . All these values are depicted in a daily composi-
tion.

A sample of calculated P for house 7 analysis is shown in
Fig. 56. For house 2 and for house 7 the minimum value obtai-
ned averaged fluctuated within the value zero. The maximum
mean obtained for house 2 varied between 0.6 and 1.2 kW and
in house 7 the maximum value did not exceed 1kW in average.
In both cases the overall mean fluctuated close to 0.4kW
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Figure 55 – Daily Average Power Consumption Deviation -
House 2

Source: Author (2017)

Figure 56 – Daily Average Power Consumption Deviation -
House 7

Source: Author (2017)
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6.4.2.5 Energy Cost

In order to measure the accuracy of the model the ab-
solute daily difference ed between the sum of the electricity
from the historical data used to heat the residence e(t), where
t ∈ 0, ..., 23 represents the 24 hours of the day, and the estimated
energy for the same period e∗(t) was estimated using Eq. 6.1.

ed = |
23∑
t=0

e(t) −
23∑
t=0

e∗(t)| (6.1)

Once having the ed values the following values were then
obtained: average value e of ed, bec min from ed, maximum dee
value of ed and the standard deviation σ(e) for ed. In these
estimates it was also calculated the percentage (% accur.) that
represents how small is the sum of the calculated daily amount
of energy e when compared to the sum of real daily energy e∗.
Such information is presented in Tab. 12.

Table 12 – Difference between Calculated and Real Energy
e bec dee σ(e) % accur.

House 1 1.4665 0.0001 5.2978 1.2600 52.58%
House 2 1.9742 0.0001 5.3524 1.3713 53.01%
House 3 2.3089 0.1487 6.4917 1.4834 64.35%
House 4 1.5012 0.0928 3.4998 0.9470 57.14%
House 5 1.2509 0.0000 4.3573 1.2001 58.33%
House 6 0.7167 0.0039 4.3103 0.5830 61.02%
House 7 0.2610 0.0351 1.1152 0.1120 73.04%
Avg() 1.5766 0.0369 5.2323 1.2025 59.92%

Source: Author (2017)

The results obtained from the generations of the plans,
which in turn make use of the thermal parameters obtained th-
rough this model, show that in 59.92% of the average of gene-
rated calculations, the projected energy consumption is lower
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than the real energy consumption. It also shows that the maxi-
mum error between the calculated energy and the actual energy
is 5.2323 kW, that the minimum error is 0.0369 kW in a day, the
error average is 1.5766 and, finally, that the standard deviation
average is 1.2025.

6.4.2.6 CO2 Emission Cost

Historical values for the price of electric energy and for
the value of the emission of CO2 into the atmosphere, both
in euro currency were obtained from the following companies:
NordPool, available on www.nordpoolspot.com and from Ener-
ginetDK, available on www.energinet.dk a non-profit enterprise
owned by the Danish Climate and Energy Ministry.

A period of 100 days was chosen by sampling to demons-
trate the efficiency of the optimization algorithm for those seven
houses. Since the cost of CO2 is included in the minimization
function of the optimization problem, the algorithm aims to re-
duce the CO2 value designed for the timeslice being calculated.

Fig. 57 shows the relation between the historical value
in orange (squares) and the value of CO2 calculated after the
experiments, in blue (circles). The average simulation for 100
days was a saving of 1.71% over historical data.

The y-axis represents the value in Euros of the cost of
CO2 emission into the atmosphere. This value is relative to the
sum of kWh saved daily for simulated houses. This means that
for the 12th day the cost of emission of CO2 into the atmosphere
was 10.15799217 and with the use of the proposed model this
value was reduced to 8.53084.

6.5 EXPERIMENTS DISCUSSION

The initial experiments generated to estimate the ther-
mal parameters R and C using NGSpice showed good results in
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Figure 57 – Sample of CO2 saved (average)

Source: Author (2017)

relation to the benchmarks, but the method used to search was
the association between brute force and circuit simulator. Such
a combination generated a high computational time in these ex-
periments.

In order to prove the circuit modeling, experiments were
performed with OpenModelica. In this software, the same cir-
cuit was implemented. The methodology proposed by the tool
in question and which positively resulted in equal values for the
same simulations was the used one, though. Thus verifying the
correctness of the model. It was also identified an improvement
in the computational time velocity used in the resolution of ex-
periments in OpenModelica in relation to NGSpice.

Based on the high computational times offered by the
simulators using NGSpice as well as OpenModelica, it was deci-
ded to develop the mathematical model of the simulated circuits
and to propose a calculation model for the thermal parameters,
for the performance co-efficient of the heat pumps in script lan-
guage.

As a second step, after the identification of the thermal
parameters, we opted to use the CPLEX optimization tool. This
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tool was chosen because it is widely used by the scientific com-
munity. Moreover, the fact that there is availability of license
of this software for the institution was also taken into account.
A third reason to be considered in this choice was the ability to
solve problems of quadratic order of this tool.

Once the optimization models were developed and sent
to the optimizer, the results were read and compared with the
historical data available for the simulated houses. Regarding the
maintenance of the thermal comfort, the algorithm was excellent
because as the internal reference temperature was treated as a
strong constraint, the standards of comfort established by the
user were respected.

In relation to the energy saving due to the heating, many
cases proved to remain within the average, but for the majority
59.92% the plans generated were more efficient than the histo-
rical data. The maximum error in the energy calculation was
6.4917 for house 3, but for house 7 this value was 1.1152.

The CO2 values also showed a gain in relation to historical
data. Although they represent a seemingly low monetary value,
if such a calculation would been scaled to a whole district or a
city, such numbers should scale proportionally.

Different values were found for all houses. Both the ther-
mal parameters and the calculated P and Tin values. Such diffe-
rences are due to the unique behavior of each residence and the
relation of use of its members. Internal and external factors can
directly contribute to the change in thermal parameters such as
lighting a set of lamps, opening a window, more people inside a
house, etc. Longer periods of absence of users, in which occu-
pants leave their homes for a short or long period of time, also
influence these thermal behaviors.
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7 FINAL CONSIDERATIONS

In this document a knowledge-based model for thermal
parameters identification and for generating a day-ahead inter-
nal temperature plan in a Smart Building context was presented.

The model presents user interaction on two levels: kno-
wledge acquisition and visualization. The data and information
acquired from the household user were related to the internal
temperature preference for hourly time slot and floor plan assis-
ted design.

Data obtained from the household users from the tempe-
rature sensors (internal and outdoor) as well as the heat pump
power consumption installed in the houses and the historical
data were used to estimate the thermal parameters. A large
amount of data was analyzed. About three months were spent
cleaning and organizing the database. This was primarily due
to the fact that different sensors were used in the experiments.
Each sensor performed readings in different time slots. Time
slots needed to be standardized, which was called data norma-
lization in this thesis.

The parameter identification stage uses the electrical ther-
mal analogy and it is responsible for estimating the average va-
lues for thermal resistance and capacitance. In this step the
values for the coefficient of performance of heat pumps were
also calculated.

In the second stage, an internal temperature plan was ge-
nerated. The algorithm used the thermal parameters previously
identified and a day-ahead internal temperature plan was pro-
posed to the household user. This plan took into account the
thermal comfort and the user temperature preferences. At the
same time, the plan sought to minimize the energy consumption
for heating the house, reducing the cost of CO2 emissions.

In the experimental stage a data set obtained from seven
inhabited houses in a winter period, in a real situation for a pe-
riod of seven months from the SmartHG Project was used. The
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mathematical model made use of the thermal-electrical analogy
and experiments were evaluated comparing the parameters ob-
tained and the actual sample data, benchmark literature and
information from the heat pump manufacturer.

This study is also important because it may help Smart
Building’s users to save energy and money. It also contributes
to the energy efficiency of these buildings, potentially to Smart
Grids and Cities. This work provides a model to calculate the
thermal parameters of an environment based only on the histo-
rical data without the need for knowledge of the physical cha-
racteristics.

Household Energy Consumption depends on the thermal
insulation and the individual characteristics of each residence.
For this reason, it is important to perform the thermal parame-
ters identification of a smart home or building before offering an
internal temperature plan.

The internal temperature plan for the following 24 hours
is generated through an optimizer that seeks to minimize spen-
ding on electricity as well as to minimize the amount spent on
CO2 emissions. This optimizer also takes into account the ther-
mal comfort, aiming to minimize the distance between the plan-
ned temperature and the desired temperature.

This study presents a knowledge-based model which aims
to offer to the household user a day-ahead plan of internal tem-
perature. The goal is to maintain thermal comfort while redu-
cing energy consumption as well as CO2 emissions. The scope
of this research is to study heating of multi-zone buildings that
use air-to-air heat pumps.

It was decided to carry out a study in multi-zone envi-
ronments because they are closer to the reality of a residence or
commercial building that in turn is composed of several spaces.
In the present study, it was chosen to use the electro-thermal
analogy as an effective and recurring method applied in the lite-
rature to identify the thermal parameters of environments such
as resistance and thermal capacitance. By means of this analogy
it is possible to represent the knowledge about the physical and
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thermal structure of a residence from the identified and calcu-
lated parameters. For this reason, in the proposed model the
term knowledge representation is adopted. This term, therefore,
is used, firstly to identify the thermal parameters and then, la-
ter used to represent each connection between the rooms in a
building.

It is proposed that specifically problems related to heating
of environments due to the use of air-to-air heat pumps should
also be studied in order to reduce the consumption of electric
energy and CO2 emission while maintaining thermal comfort.
The present study proposes an internal temperature plan for
the successive day (next 24 hours) without acting on the heating
devices. Thereby, the method becomes non-intrusive, as it does
not act direct on the devices as well as it offers to the end user
the possibility of choosing between setting up the suggested plan
in his equipment or not.

In this sense, the present study aims to contribute by offe-
ring a computational tool capable of acquiring knowledge about
the composition of the home from the household user as well as
to offer information about his power consumption and savings
as a knowledge visualization tool.

In order to generate forecasts of internal temperature or
power consumption it is understood that it is necessary to know
the building characteristics firstly. Calculating the dynamics of
heating or cooling a building can become an arduous task. This
is due to the fact that simply opening a door or window can
completely change the building’s thermal dynamic values, for
example.

This study aims to present a model in which no previous
knowledge about the composition of the building is necessary.
This gives to the model an applicability in which can be used
by any household user without the need of knowledge about the
walls structure and values for resistance or thermal capacitance
of the building, for example. This tends to impact positively in
the use of this model in real situations, since prior knowledge
about the thermal resistance and thermal capacitance values of
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the walls of a building, for example, are hardly known by the
home user. For this reason, it was decided to carry out the
thermal parameters identification.

Another novel contribution lays on the fact that the COP
is calculated in intervals of variation of the external temperature.
That is, a value for COP is generated for each interval of a degree
variation of the outdoor temperature in the calculation.

Once the thermal parameters of the building and the heat
pump COP are known, it is possible to generate future scenarios.

For this reason, the joint use of the three elements in the
same optimization plan: thermal comfort guarantee as well as
the reduction of costs of power consumption and CO2 emissions
is justified as an important contribution of the present study.

The present study makes use of weather forecast for the
generation of the internal temperature plan for the next 24 hours
as well as of the energy price forecast. Therefore, another im-
portant contribution of this work is to make use not only of the
predictions that have already been mentioned but also of the
forecast of the costs of CO2 emissions (LUCKOW et al., 2016),
offered by specialized agencies.

In this study, a function of power consumption based on
external temperature is proposed and it is used in the process of
plans optimization. So, as it was presented before, it is identified
the need to develop a knowledge-based model for thermal para-
meter identification and generating future scenarios for internal
temperature for the following 24 hours. Having as scope the he-
ating using air-to-air heat pumps in multi-zone smart buildings
and considering the user’s knowledge.

This work presents a model that offers an interactive and
user-friendly, graphical interface in which the end users are able
to set their preferences and view their energy consumption level
as well as the power consumption reports.

At the end, the main advantage of this work is to pro-
vide, under the end user’s point of view, a model through which
is possible to identify the thermal parameters and propose an
internal temperature plan for the following 24 hours without
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knowing the physical characteristics and composition materials
of the house or building’s structure. This model could offer a
computational tool, that should be interactive, easy to use and
with a friendly interface.

7.1 RESPONDING GOALS

The main goal established for this work was achieved.
That is, a computational model able to offer the Smart Buil-
ding’s end user a day-ahead internal temperature plan was pre-
sented. This plan took into account the thermal comfort, using
the internal temperature preferences from the household user.

The proposed knowledge-based model offered interaction
with the end user, the use of prior knowledge through historical
data and calculated the thermal parameter of the environments.
The specific goals were achieved, because:

1. An exploratory and descriptive systematic review on the
literature in order to identify the state-of-the- art on the
subject was made.

2. A technological knowledge-based model which is able to
estimate thermal parameters of a Smart Building was mo-
deled, projected and applied. It was also suggested the
development of an internal temperature plan in order to
reduce not only the electricity consumption but also the
financial costs on residential heating and the CO2 emissi-
ons.

3. The stage of model test and evaluation has been completed
comparing results with benchmarks and especially with
historical data from the SmartHG project.
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7.2 FUTURE WORKS

The electrical-thermal representation and the final object
of this thesis can be used not only to detect the parameters of an
envelope but also to understand heating or cooling behaviors of
an environment. This application contributes to related studies
at a higher level such as Smart Cities and Smart Grids, reducing
energy consumption, pricing policy studies Mancini et al. (2015)
and reducing CO2 emissions from electricity production.

In this model a method to calculate the thermal parame-
ters in a situation which the whole house has the same internal
temperature is proposed. As a future work it is suggested to im-
plement a model where each single zone can have its individual
internal temperature measurement considered through simula-
tions.

After the data normalization process, was chosen to use
the seven-month experiments for seven houses. Such choice was
mainly due to the fact that this was the period when the amount
of data for these houses was sufficient for the experiments. In
this sense, it is suggested that the present research can be ex-
panded to a larger number of houses in larger periods so that
there can be a comparison over the years.

Due to the large amount of data to be analyzed, it is
suggested that Advanced Analytics concepts be used to organize
and display such information. It is also suggested that future
research on this subject may deal with the proposal of a protocol
for communication and data acquisition by and between sensors.

It is suggested that the sensor readings occur in a grouped
manner by residence and with time slots fixed and previously
defined. The readings may also consider the absence of people
in the house, which would generate a new verifying element in
the experiments.

A proposition for future work concerns about expanding
the application of web database used by household users of the
same district (neighbors). Such data can be applied to studies
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in the areas of Smart Cities and Smart Grids.
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8 APPENDIX

8.1 SINGLE AND MULTI-ZONE BUILDING REPRESENTA-
TION

Figure 58 shows two representations where RC circuits
can be used as electro-thermal analogy. In the image it can be
seen that a single room (a) can be represented by a simple RC
(b) circuit.

On the other hand, a multi-zone environment (c) must be
represented by an electronic circuit (d) more complex than the
first, but using the same concept of an RC circuit.

The complexity of the representation of a multi-zone envi-
ronment lies in the fact that between the rooms there are walls
that separate them and this must be interpreted by means of
an electric resistance R in the circuit. Each room in the house
must still contain a capacitor C, which represents the thermal
capacitance of that room.

Another two factors that make up a thermal circuit for a
multi-zone environment is the influence of the external tempe-
rature Tout , in this case represented by an initial voltage V as
well as the existence of heat pumps in each room, represented
by the current generator I.

Finally the existence of temperature sensors in the rooms
is indicated by Tin, which is represented by the electric point
immediately above the capacitor of each room.
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Figure 58 – Single and Multi-zone Electrical Representation

Source: Author (2017)
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8.2 INTERFACES

This section is responsible for presenting some screen shots
available and in final phase of development for this model.

Fig. 59 presents the login interface through which the
household user can have access to the web-based system. It is
proposed to be used in a web-browsers, smartphones and tablets.

Figure 59 – Interface: login interface

Source: Author (2017)

If the user selects the option Forgot Password?, he/she is
directed to the interface presented by Fig. 60. With this process
it is possible to recover the password by using the instructions
received via email.

To create an account the user needs to inform only his
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Figure 60 – Interface: recovering password

Source: Author (2017)
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name, email address (used to recover password an as a login
name) and a password as it is presented in Fig. 61.

Figure 61 – Interface: creating account

Source: Author (2017)

Fig. 62 presents a screen to the floor plan wizard. In this
stage the user have already informed his floor plan composition
and a multi-zone picture of his house is showed in order to check
the informed features.

Fig. 63 presents an example of the implemented version
of the prototype. In this picture it is possible to identify the
floor plan composition and its features.

Fig. 64 presents a mobile interface in which the final users
can select their preferences about the Internal Temperature.
This interface was implemented based on the Tab. 2 but in
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Figure 62 – Interface: floor plan composition 1

Source: Author (2017)

Figure 63 – Interface: floor plan composition 2

Source: Author (2017)
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an intuitive way.

Figure 64 – Interface: desired temperature

Source: Author (2017)

8.3 SCIENTIFIC PRODUCTION OVER PH.D.

This section presents the scientific production carried out
during the PhD course. The subsections that follow show the
results achieved to date as well as papers in submission process.
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