Graciela Aparecida dos Santos Silva

ESTUDO DA INFLUÊNCIA DO TAMANHO DO ANEL QUELATO E DA SEGUNDA ESFERA DE COORDENAÇÃO NA HIDRÓLISE DO FOSFATO DE BIS(2,4-DINITROFENILA) E ÁCIDO DESOXIRRIBONUCLEICO CATALISADA POR COMPOSTOS DE Fe^{III}Zn^{II}

Tese submetida ao Programa de Pós-Graduação em Química da Universidade Federal de Santa Catarina para a obtenção do Grau de Doutor em Química. Orientadora: Prof^a. Dr^a. Rosely A. Peralta Coorientador: Prof. Dr. Ademir Neves

Florianópolis 2017 Ficha de identificação da obra elaborada pelo autor através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

> Silva, Graciela Aparecida dos Santos ESTUDO DA INFLUÊNCIA DO TAMANHO DO ANEL QUELATO E DA SEGUNDA ESFERA DE COORDENAÇÃO NA HIDRÓLISE DO FOSFATO DE BIS(2,4-DINITROFENILÃ) E ÁCIDO DESOXIRRIBONUCLEICO CATALISADA POR COMPOSTOS DE FEILIZNII / Graciela Aparecida dos Santos Silva ; orientadora, Rosely A. Peralta, coorientador, Ademir Neves, 2017. 179 p.
> Tese (doutorado) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas, Programa de Pós-Graduação em Química, Florianópolis, 2017. Inclui referências.
> Química. 2. Química. 3. Fosfatases ácidas púrpuras. 4. Hidrolase. 5. Compostos biomiméticos.
> I. Peralta, Rosely A. . II. Neves, Ademir. III. Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Química. IV. Título.

Graciela Aparecida dos Santos Silva

ESTUDO DA INFLUÊNCIA DO TAMANHO DO ANEL QUELATO E DA SEGUNDA ESFERA DE COORDENAÇÃO NA HIDRÓLISE DO FOSFATO DE BIS(2,4-DINITROFENILA) E ÁCIDO DESOXIRRIBONUCLEICO CATALISADA POR COMPOSTOS DE Fe^{III}Zn^{II}

Esta Tese foi julgada adequada para obtenção do Título de "Doutor em Química" e aprovada em sua forma final pelo Programa de Pós-Graduação em Química da Universidade Federal de Santa Catarina.

Florianópolis, 06 de outubro de 2017.

Prof. Dr. Vanderlei Gageiro Machado Coordenador do Curso

Banca Examinadora:

Prof.^a Dr^a. Rosely A. Peralta Orientadora – UFSC Prof. Dr. Ademir Neves Coorientador – UFSC

Prof. Dr. Fernando R. Xavier Relator – UDESC Prof. Dr. Sergio M. Tebcherani – UEPG

Prof^a. Dr^a. Maria da Graça Nascimento – UFSC

Este trabalho é dedicado aos meus amados pais Ivone e Lourival, que abdicaram seus sonhos para realizar os meus!

Agradeço a Deus pelo dom da vida, por me proporcionar tantos ensinamentos e amor.

Sou infinitamente grata a meus pais. Passamos por grandes dificuldades, recebemos muitas lições e muito aprendizado - nos momentos difíceis a única opção foi sermos fortes. Não foi fácil, toda vez que eu pensava em desistir vocês diziam um imenso "não" e me faziam ver o mundo além das minhas dificuldades. Agradeço imensamente pela permissão de ser filha de vocês, um casal que é exemplo de superação, dedicação e, principalmente, de amor. Perdoem minhas falhas e minha ausência quando vocês mais precisaram. Amo vocês!

Agradeço também meus familiares que foram essenciais em toda essa trajetória, meu irmão Cristiano por cuidar de meus pais quando eu não podia estar presente, à minha cunhada Paula que está com a Alice na barriga. Aos meus sobrinhos amados Gabriel e Guilherme por toda compreensão e pelo amor puro vocês foram fundamentais. Às minhas avós Maria (*in memoriam*) e Clara por toda oração e amor. Tia Jande, sempre tão prestativa, agradeço pelas inúmeras vezes em que me socorreu. À família de coração que tanto me ajudou, entendeu meus desabafos e sempre me incentivou, Celina minha "irmã" e amiga de infância e "Tia" Eliane.

Agradeço minha orientadora Prof^a. Dr^a. Rosely Peralta pela confiança e compreensão, pela inspiração e pelo belíssimo trabalho que faz como pesquisadora, professora e orientadora. Agradeço também ao meu coorientador Prof. Dr. Ademir Neves pelas valiosas contribuições e discussões sempre tão pertinentes. Aos Prof. Drs. Adailton Bortoluzzi, Bernardo de Souza e Hernán Terenzi pelo auxílio no desenvolvimento desse trabalho. Ao Prof. Dr. Daniel Borges e ao Juliano Ramos pelas medidas de absorção atômica. Ao André Amorim pela realização dos cálculos teóricos. À banca pelas considerações, aos professores Fernando Xavier, Maria da Graça Nascimento e Sergio Tebcherani.

Aos "labinquianos" e "ex-labinquianos", muitíssimo obrigada por todos os momentos que compartilhamos, pela colaboração, pelo companheirismo e amizade: Renata Osório, Claudinha, Thaisy, Pacheco, Filipy, Bruna, Rhannanda, Gili, Alana, Dudu, Gico, Giovanna, Tainá, Alfredo, Felipe, Alexandra, Sandro, Luiza, Elvis, Anderson, dentre outros. Em especial à Cacau, que possui um coração lindo e bom, por dividir suas Trakinas, por ser mais que uma irmã científica e por chorar comigo - me sinto muito abençoada por ter uma amiga tão generosa como você. Ao André, pelos abraços em momentos delicados, tapinhas no ombro em momentos tristes - acredito que esse mundo está ficando pequeno demais para o seu potencial. Obrigada por vocês dois me incentivarem a seguir em frente, não existem palavras para agradecer o que vocês fizeram por mim! À Sari, que deixou essa etapa mais leve com sua companhia e risadas soltas, por me proporcionar tantos momentos mágicos, por toda compreensão e por não medir esforços para me ajudar. A Carol, que me ensinou muito, por abrilhantar a B2 de maneira ímpar, agradeço pela sua amizade e companheirismo. Ao Valdeco, por todos os momentos engraçados e loucos, pela amizade, por me fazer rir sempre. À Sheila, por deixar meus dias mais doces. Ao Marcos, pelas brincadeiras, comidas da Tia Jô e parceria nos congressos. À Rê pela amizade e acolhida no Labinc. Ao "Bródi" Vitinho, pela parceria não só de bancada. Aos agregados dos "labinquianos", muito obrigada: Dudis, Sandra, Tia Jô, Iliany.

À Tai, que foi vizinha, família, amiga, terapeuta, médica, psicóloga, companheira, parceira, dentre tantas outras coisas. Só nós sabemos o que passamos e essa vitória não seria possível sem você, obrigada por estar comigo nessa caminhada.

Agradeço à Rafa pela acolhida em sua casa, pela amizade e por todos os momentos que passamos juntas, você foi primordial! Aos amigos do departamento de química que conquistei ao longo desses anos de doutorado, em especial à Ana, Ju Dreyer, Gui, Ale, Fer, Ju Ramos, Alex, Leandro, Elder e Janh. Ao pessoal que se tornou tão especial na minha vida através do Cebime (vocês foram incríveis): Philipe, Angela, Nathi, Elis, Cris e Luiz. Às técnicas Elis, Martina e Vane pelas análises. Aos amigos de longa data que mesmo distante sempre estiveram presentes em minha vida: Adri Depa, Cíntia, Gabi, Vivian, Lilian, Milene, Lia, Naya, Ju, Jaci, Talita e Adriano.

Ao Thiago (*in memoriam*) que, infelizmente, não estará fisicamente presente nesse acontecimento tão importante, agradeço por me proporcionar momentos extraordinários, transformando minha caminhada árdua com sua leveza, tranquilidade e sabedoria; por ser exemplo de amor. Agradeço sua mãe Anitinha, pelos momentos inesquecíveis que passamos juntas. Ao programa CAPES-STINT, pela oportunidade de fazer intercâmbio, e ao Prof. Dr. Ebbe Nordlander pela orientação enquanto estive em Lund - Suécia. Agradeço às pessoas que conheci nessa etapa, especialmente minha *twin* Leoni, Vinny e Anele, por todas as experiências inesquecíveis que compartilhamos.

Agradeço ao Departamento de Química, ao Programa de Pós-Graduação em Química da Universidade Federal de Santa Catarina e órgãos de fomento CAPES (pela bolsa de doutorado), INCT-Catálise e CNPq pela oportunidade para a realização desta pesquisa.

"Se vi mais longe foi por estar de pé sobre ombros de gigantes". (Isaac Newton, 1676)

"Quero conhecer os pensamentos de Deus, o resto são detalhes". (Albert Einstein, 1955)

RESUMO

Nos últimos anos, os efeitos de segunda esfera de coordenação ganharam uma importância notável na pesquisa е no desenvolvimento da química bioinorgânica. Esse estudo se refere a síntese e caracterização de três ligantes e seus respectivos complexos inéditos heterobinucleares Fe^{III}Zn^{II}, para mimetizar enzimas, tais como fosfatases ácidas púrpuras (PAPs). O ligante 2-hidroxi-3-(((2-hidroxi-5-metil-3-(((2-(piridin-2-il)etil)(piridin-2ilmethil)amino)metil)benzil)(piridin-2-ilmetil)amino)metil)-5metilbenzaldeído (H₂L²) foi sintetizado aumentando o número de átomos de carbono de um dos anéis quelato do lado macio (quando comparado ao ligante já descrito H₂L¹), bem como seu complexo, sendo usado como base para a comparação com complexos similares já publicados na literatura. Modificações posteriores foram feitas no grupo aldeído, em que 1,2etanodiamina e 1.4-diaminobutano foram utilizadas como cadejas laterais para efeitos de segunda esfera de coordenação. Todos os ligantes e seus novos complexos foram completamente caracterizados por meio de métodos espectroscópicos (Infravermelho, UV-Vis e titulação espectrofotométrica), bem como ressonância magnética, CHN, absorcão atômica, eletroquímica, condutimetria e espectrometria de massas. Cálculos teóricos foram realizados com o objetivo de se estabelecer a estrutura mais provável dos complexos heterobinucleares as quais mostraram semelhanças com outras estruturas já relatadas. Os compostos $Fe^{III}Zn^{II}L^{2}$ (1), $Fe^{III}Zn^{II}L^{2}$ -et (2) e $Fe^{III}Zn^{II}L^{2}$ -but (3) foram analisados com o substrato modelo 2,4-BDNPP, os guais mostraram que a espécie responsável pela atividade catalítica é [(HO)Fe^{III}(µ-OH)Zn^{II}(OH₂)(R)]²⁺ (R = L², L²-et e L²-but) e com a obtenção de parâmetros cinéticos foi possível verificar a influência da segunda esfera de coordenação em sua atividade catalítica. A hidrólise do substrato 2,4-BDNPP pelos complexos em H₂O/CH₃CN ajudou também a elucidar os mecanismos envolvidos. Estudos de interação com o DNA, indicam claramente que as modificações introduzidas no ligante influenciam a atividade dos complexos. Análise de como esses complexos interagem com o DNA, ajudaram a compreender o mecanismo de reconhecimento e a clivagem da ligação fosfodiéster desses complexos.

Palavras-chave: Fosfatases ácidas púrpuras. Hidrolase. Compostos biomiméticos. Segunda esfera de coordenação. Clivagem do DNA.

ABSTRACT

In recent years, second coordination sphere effects gained a remarkable importance in the research and development of bioinorganic chemistry. This study refers to the synthesis and characterization of three novel ligands and their respective heterobinuclear Fe^{III}Zn^{II} complexes, where the goal is to mimic enzymes such as purple acid phosphatases (PAPs). The ligand 2-hydroxy-3-(((2-hydroxy-5-methyl-3-(((2-(pyridine-2-

yl)ethyl)(pyridine-2-ylmethyl)amino)methyl)benzyl)(pyridine-2ylmethyl)amino)methyl)-5-methylbenzaldehyde was synthetized and its complex used as base for comparison with similar complexes already published in the literature. Subsequent derivatizations were done in the aldehyde group, where 1,2ethanediamine and 1,4-diaminobutane were used as side chains derivatives. The compounds were characterized by spectroscopic methods (Infrared, UV-Vis), as well as magnetic resonance, CHN, atomic absorption, electrochemistry, conductimetry and mass spectrometry. Theoretical calculations were performed to give insight into the complexes structures, which showed similarities with other heterobinuclear structures already reported. The hydrolysis reaction of model substrate 2,4-BDNPP catalyzed by $Fe^{III}Zn^{II}L^{2}$ (1), $Fe^{III}Zn^{II}L^{2}$ -et (2) e $Fe^{III}Zn^{II}L^{2}$ -but (3) was investigated. The results showed that the catalytic active species is [(HO)Fe^{III}(µ-OH)Zn^{II}(OH₂)(R)]²⁺ (R = L², L²-et e L²-but), moreoever, the kinetic parameters highlighted the influence of the second coordination sphere onto the catalytic mechanism. The hydrolysis of the model substrate 2,4-BDNPP by complexes synthetized in H₂O/CH₃CN also helped to elucidate the mechanisms involved. DNA interaction studies clearly indicate that the modifications introduced in the ligand influence in the activity of the complexes. Analysis of how these complexes interact with DNA helped understand the mechanism of recognition and cleavage of the phosphodiester bond of such complexes.

Keywords: Purple acid phosphatases. Hydrolase. Biomimetic compounds. Second coordination sphere. DNA cleavage.

ÍNDICE DE FIGURAS

Representação esquemática do complexo Figura 1. cis-Figura 2. Estrutura tridimensional do DNA. Adaptado de (Horton, 2006). Figura 5. Mecanismo proposto por Klabunde e colaboradores para a hidrólise de ésteres de fosfato promovida pelas PAPs (Adapatado de Figura 6. Propostas de ataque nucleofílico por Merkx e colaboradores para a hidrólise de ésteres de fosfato promovida pelas PAPs (Merkx e Figura 7. Propostas de ataque nucleofílico por Wang e colaboradores para a hidrólise de ésteres de fosfato promovida pelas PAPs (Wang et al., Figura 8. Propostas de ataque nucleofílico por Schenk e colaboradores para a hidrólise de ésteres de fosfato promovida pelas PAPs (Schenk, Figura 9. Proposta mecanística da PAP diesterase. (Cox, 2007)....... 35 Figura 11. ORTEP do cátion do complexo [Fe^{III}Zn^{II}(u-Figura 13. Ligantes não simétricos (a) H₂L¹ (Piovezan et al., 2010) (b) H₂L² Figura 14. Reação de hidrólise do substrato modelo 2,4-BDNPP. 48 Figura 15. Formas do DNA plasmidial. 51 Figura 16. Representação de um gel de poliacrilamida desnaturante contendo amostras de um ensaio de footprinting de DNA por Fe-EDTA. Adaptado de Urbach e Waring, (Urbach e Waring, 2005)......55 Figura 18. Espectro de ¹H NMR do cmff em CDCl₃. 57 Figura 20. Espectro de ¹H NMR do pmea em CDCl₃...... 59 Figura 21. Espectro de ESI-MS do ligante pmeamff e sua respectiva simulação da distribuição isotópica com m/z = 214,13 + H⁺...... 60 Figura 22. Espectro no IR do pmeamff em pastilha de KBr. 61 Figura 24. Espectro de ESI-MS do pmeamff e sua respectiva simulação da distribuição isotópica com m/z = 362,18 + H⁺......62 Figura 25. Espectro na região do infravermelho do pmeamffpy em pastilha Figura 26. Espectro de ¹H NMR do pmeamffpy em CDCl₃. 64

Figura 27. Espectro de ESI-MS do ligante pmeamffpy e sua respectiva simulação da distribuição isotópica com m/z = 454,26 + H⁺.65 Figura 30. Espectro de ESI-MS do ligante H_2L^2 e sua respectiva Figura 31. Espectro no IR do H₂L²-et (ATR)......69 Figura 32. Espectro de ¹H NMR do H₂L²-et em CDCl₃......69 Figura 33. Espectro de ¹³C NMR do H₂L²-et em CDCI₃......70 Figura 34. Espectro de ESI-QTOF do ligante H₂L²-et e sua respectiva simulação da distribuição isotópica com m/z = 646,38 + H⁺.70 Figura 35. Espectro no IR do H₂L²-but (ATR)......72 Figura 36. Espectro de ¹H NMR do H₂L²-but em CDCl₃......72 Figura 38. Espectro de ESI-QTOF do ligante H₂L²-but e sua respectiva simulação da distribuição isotópica com m/z = 674,41 + H⁺.73 Figura 39. Espectros no IR dos precursores pmea (azul claro), pmeamff (azul escuro) e pmeamffpy (preto) (KBr)......77 Figura 40. Espectros no IR dos ligantes finais H₂L² (azul claro), H₂L²-et Figura 41. Espectro de ¹H NMR do pmea em CDCl₃......83 Figura 45. Espectro de ¹H NMR do H₂L²-et em CDCl₃......87 Figura 46. Espectro de ¹H NMR do H₂L²-but em CDCI₃......88 Figura 47. Deslocamentos químicos (δ_c) dos espectros de ¹³C NMR para Figura 48. Espectro no IR do H_2L^2 (vermelho) e complexo 1 (preto) (ATR). Figura 49. Espectro no IR do H_2L^2 -et (vermelho) e complexo 2 (preto) Figura 50. Espectro no IR do H₂L²-but (vermelho) e complexo 3 (preto) Figura 51. Estruturas calculadas para complexos (a) 1a, (b) 2a e (c) 3a, respectivamente. Os átomos de hidrogênio ligados aos átomos de Figura 52. Espectro de IR do complexo 1 (preto) e calculado para o Figura 53. Espectro de IR do complexo 2 (preto) e calculado para o Figura 54. Espectro de IR do complexo 3 (preto) e calculado para o Figura 55. Estruturas dos complexos correspondentes as fórmulas moleculares encontradas nas análises de CHN, (a) 1, (b) 2 e (c) 3.... 101

Figura 56. Proposta de estrutura para o complexo 1...... 103 Figura 57. Proposta de estrutura para os complexos 2 e 3. 103 Figura 58. Espectros eletrônicos do complexo 1 com concentração de Figura 59. Espectros eletrônicos do complexo 2 com concentração de Figura 60. Espectros eletrônicos do complexo 3 com concentração de Figura 61. Espectro eletrônico do complexo 1 em CH₃CN/H₂O (1:1) com concentração de 3.0x10⁻⁵ mol L⁻¹...... 107 Figura 62. Espectro eletrônico do complexo 2 em CH₃CN/H₂O (1:1) com Figura 63. Espectro eletrônico do complexo 3 em CH₃CN/H₂O (1:1) com concentração de 3.0x10⁻⁵ mol L⁻¹...... 108 Figura 64. Espectro eletrônico do complexo 1 no estado sólido...... 109 Figura 65. Espectro eletrônico do complexo 2 no estado sólido...... 109 Figura 66. Espectros eletrônicos do complexo 3 no estado sólido. 110 Figura 67. Espectro de ESI-MS do complexo 1 em CH₃CN/H₂O (1:1) com a respectiva estrutura proposta. m/z = 809,21...... 111 Figura 68. Espectro de ESI-QTOF do complexo 2 em CH₃CN/H₂O (1:1) Figura 69. Espectro de ESI-QTOF do complexo 3 em CH₃CN/H₂O (1:1) Figura 70. Titulação espectrofotométrica para o complexo 1. Faixa de pH: 4 – 8. Adição de 1,0 mol L⁻¹ de NaOH em solução de CH₃CN/H₂O (50:50) Figura 71. Titulação espectrofotométrica para o complexo 2. Faixa de pH: 4 – 8. Adição de 1,0 mol L⁻¹ de NaOH em solução de CH₃CN/H₂O (50:50) Figura 72. Titulação espectrofotométrica para o complexo 3. Faixa de pH: 4 – 8. Adição de 1,0 mol L⁻¹ de NaOH em solução de CH₃CN/H₂O (50:50) $com I = 0,1 mol L^{-1} (KCI)$. 116 Figura 73. Voltamogramas de onda guadrada para os complexos 1 (azul), 2 (vermelho) e 3 (preto) em H₂O:CH₃CN (96:4 V/V%). Condições: I = NaCI 0,1 mol L⁻¹; Eletrodo de trabalho: carbono vítreo, eletrodo auxiliar: platina, referência: Ag/AgCl (Ag/AgCl vs NHE = +197 mV). [Complexo] = 1,0 x 10⁻ Figura 74. Reação de hidrólise do substrato modelo 2,4-BDNPP. 119 Figura 75. Dependência da velocidade inicial (V₀) nos valores de pH para a reação de hidrólise promovida pelos complexos (a) 1, (b) 2 e (c) 3. 120 Figura 76. Dependência da velocidade de reação do 2,4-BDNPP com a concentração do substrato para os complexos 1 - 3. Condições: pH = 7,

Figura 77. Representação dos mínimos de energia calculados para a interação entre conjugados 2b e 3b e o substrato (grande parte do ligante é omitida para maior clareza). 124 Figura 78. (1) Mudança espectral observada devido à adição consecutiva de 1, 2, 4, 6, 8 e 10 equivalentes do monoéster DNPP ao complexo 2, pH 7,0, concentração de complexo = 3x10⁻⁴ mol L⁻¹, em CH₃CN:H₂O (50:50%) tampão HEPES. (2) Adição de 4 equivalentes do diéster BDNPP após 7 h de tempo de reação com DNPP...... 125 Figura 79. Mecanismo proposto para a hidrólise do 2,4-BDNPP promovida pelo complexo 1......126 Figura 80. Mecanismo proposto para a hidrólise do 2,4-BDNPP promovida pelos complexos 2 e 3. 127 Figura 81. Clivagem do DNA plasmidial pBSK-II pelo complexo 1 em diferentes concentrações. Condições reacionais: [DNA] = 330 ng, ~ 25 μ M; [tampão] = HEPES (10 mM, pH 7,0); [complexo] = 1 a 10 μ M; Figura 82. Clivagem do DNA plasmidial pBSK-II pelo complexo 2 em diferentes concentrações. Condições reacionais: [DNA] = 330 ng, ~ 25 μ M; [tampão] = HEPES (10 mM, pH 7,0); [complexo] = 1 a 10 μ M; Figura 83. Clivagem do DNA plasmidial pBSK-II pelo complexo 3 em diferentes concentrações. Condições reacionais: [DNA] = 330 ng, ~ 25 μ M; [tampão] = HEPES (10 mM, pH 7,0); [complexo] = 1 a 10 μ M; Figura 84. Clivagem do DNA plasmidial pBSK-II pelo complexo 1 em função de diferentes concentrações de NaCl. Condições reacionais: $[DNA] = 330 \text{ ng}, \sim 25 \mu \text{mol } \text{L}^{-1}; [tampão] = \text{HEPES} (10 \text{ mmol } \text{L}^{-1}, \text{ pH } 7,0);$ [complexo] = 5,0 μ mol L⁻¹; [NaCl] = 5 – 50 mmol L⁻¹; temperatura = 50 °C; Figura 85. Clivagem do DNA plasmidial pBSK-II pelo complexo 2 em função de diferentes concentrações de NaCl. Condições reacionais: [DNA] = 330 ng, ~ 25 µmol L⁻¹; [tampão] = HEPES (10 mmol L⁻¹, pH 7,0); [complexo] = 5,0 μ mol L⁻¹; [NaCl] = 5 – 50 mmol L⁻¹; temperatura = 50 °C; Figura 86. Clivagem do DNA plasmidial pBSK-II pelo complexo 3 em função de diferentes concentrações de NaCl. Condições reacionais: [DNA] = 330 ng, ~ 25 µmol L⁻¹; [tampão] = HEPES (10 mmol L⁻¹, pH 7,0); $[\text{complexo}] = 5,0 \,\mu\text{mol L}^{-1}; [\text{NaCl}] = 5 - 50 \,\text{mmol L}^{-1}; \text{temperatura} = 50 \,^{\circ}\text{C};$ Figura 87. Clivagem do DNA plasmidial pBSK-II pelo complexo 1 em função de diferentes concentrações de LiClO₄. Condições reacionais: $[DNA] = 330 \text{ ng}, \sim 25 \mu \text{mol } \text{L}^{-1}; [tampão] = \text{HEPES} (10 \text{ mmol } \text{L}^{-1}, \text{ pH } 7,0);$ [complexo] = 5 μ mol L⁻¹; [LiClO₄] = 5 – 50 mmol L⁻¹; temperatura = 50 °C; tempo = 4 h ao abrigo de luz.....135

Figura 88. Clivagem do DNA plasmidial pBSK-II pelo complexo 2 em função de diferentes concentrações de LiClO₄. Condições reacionais: $[DNA] = 330 \text{ ng}, \sim 25 \mu \text{mol } \text{L}^{-1}; [tampão] = \text{HEPES} (10 \text{ mmol } \text{L}^{-1}, \text{ pH } 7,0);$ [complexo] = 5 μ mol L⁻¹; [LiClO₄] = 5 – 50 mmol L⁻¹; temperatura = 50 °C; Figura 89. Clivagem do DNA plasmidial pBSK-II pelo complexo 3 em função de diferentes concentrações de LiClO₄. Condições reacionais: $[DNA] = 330 \text{ ng}, \sim 25 \mu \text{mol } \text{L}^{-1}; [tampão] = \text{HEPES} (10 \text{ mmol } \text{L}^{-1}, \text{ pH } 7,0);$ [complexo] = 5 μ mol L⁻¹; [LiClO₄] = 5 – 50 mmol L⁻¹; temperatura = 50 °C; Figura 90. Clivagem do DNA plasmidial pBSK-II pelo complexo 1, na presenca dos diferentes ligantes de sulcos do DNA, netropsina (NET) ou verde de metila (VM). Condições reacionais: [DNA] = 330 ng, ~ 25 µmol L^{-1} ; [tampão] = HEPES (10 mmol L^{-1} , pH 7,0); [complexo] = 5 µmol L^{-1} ; [NET] ou [VM] = 50 μ mol L⁻¹; temperatura = 50 °C; tempo = 4 h ao abrigo Figura 91. Clivagem do DNA plasmidial pBSK-II pelo complexo 2, na presença dos diferentes ligantes de sulcos do DNA, netropsina (NET) ou verde de metila (VM). Condições reacionais: [DNA] = 330 ng, ~ 25 µmol L^{-1} ; [tampão] = HEPES (10 mmol L^{-1} , pH 7,0); [complexo] = 5 µmol L^{-1} ; [NET] ou [VM] = 50 μ mol L⁻¹; temperatura = 50 °C; tempo = 4 h ao abrigo Figura 92. Clivagem do DNA plasmidial pBSK-II pelo complexo 3, na presença dos diferentes ligantes de sulcos do DNA, netropsina (NET) ou verde de metila (VM). Condições reacionais: [DNA] = 330 ng, ~ 25 µmol L^{-1} ; [tampão] = HEPES (10 mmol L^{-1} , pH 7,0); [complexo] = 5 µmol L^{-1} ; [NET] ou [VM] = 50 µmol L⁻¹; temperatura = 50 °C; tempo = 4 h ao abrigo Figura 93. Representação estrutural da netropsina (esquerda) e estrutura cristalográfica de um DNA de dupla-hélice com uma molécula de ligada Figura 94. Espectro de dicroísmo circular de DNA na presença de concentrações crescentes do complexo 1. Condições reacionais: [CT-Figura 95. Espectro de dicroísmo circular de DNA na presenca de concentrações crescentes do complexo 2. Condições reacionais: [CT-DNA] = 200 μ mol L⁻¹; [tampão] = 10 mmol L⁻¹ de HEPES pH 7.0; [complexo] = 0 a 181 µmol L⁻¹; temperatura = 37 °C...... 141 Figura 96. Espectro de dicroísmo circular de DNA na presença de concentrações crescentes do complexo 3. Condições reacionais: [CT-DNA] = $200 \ \mu mol \ L^{-1}$; [tampão] = 10 mmol L^{-1} de HEPES pH 7,0; Figura 97. Clivagem do DNA plasmidial pBSK-II pelo complexo 1, na presenca dos diferentes seguestradores de ROS. Condições reacionais:

 $[DNA] = 330 \text{ ng}, \sim 25 \mu \text{mol } \text{L}^{-1}; [tampão] = \text{HEPES} (10 \text{ mmol } \text{L}^{-1}, \text{ pH } 7,0);$ $[complexo] = 5 \mu mol L^{-1}; [DMSO] = 0,4 mol L^{-1}; [KI] = 0,5 mol L^{-1}; [NaN_3] =$ Figura 98. Clivagem do DNA plasmidial pBSK-II pelo complexo 2, na presenca dos diferentes seguestradores de ROS. Condições reacionais: $[DNA] = 330 \text{ ng}, \sim 25 \mu \text{mol } \text{L}^{-1}; [tampão] = \text{HEPES} (10 \text{ mmol } \text{L}^{-1}, \text{ pH } 7,0);$ $[complexo] = 5 \mu mol L^{-1}; [DMSO] = 0,4 mol L^{-1}; [KI] = 0,5 mol L^{-1}; [NaN_3] =$ 0,5 mol L⁻¹; temperatura = 50 °C; tempo = 4 h ao abrigo de luz...... 144 Figura 99. Clivagem do DNA plasmidial pBSK-II pelo complexo 3, na presenca dos diferentes seguestradores de ROS. Condições reacionais: $[DNA] = 330 \text{ ng}, \sim 25 \mu \text{mol } L^{-1}; [tampão] = \text{HEPES} (10 \text{ mmol } L^{-1}, \text{ pH } 7,0);$ $[complexo] = 5 \mu mol L^{-1}; [DMSO] = 0,4 mol L^{-1}; [KI] = 0,5 mol L^{-1}; [NaN_3] =$ 0.5 mol L⁻¹; temperatura = 50 °C; tempo = 4 h ao abrigo de luz...... 144 Figura 100, Clivagem do DNA plasmidial pBSK-II pelos complexos 1 – 3 em aerobiose. Condições reacionais: [DNA] = 330 ng, ~ 25 μ mol L⁻¹; [tampão] = HEPES (10 mmol L⁻¹, pH 7,0); $[complexos] = 5 \mu mol L^{-1};$ [FeEDTA] = 50 μ mol L⁻¹; temperatura = 50 °C; tempo = 2 h ao abrigo de Figura 101. Clivagem do DNA plasmidial pBSK-II pelos complexos 1 – 3 em anaerobiose. Condições reacionais: [DNA] = 330 ng, ~ 25 µmol L-1; [Tampão] = HEPES (10 mmol L^{-1} , pH 7,0); [complexos] = 5 µmol L^{-1} ; [FeEDTA] = 50 μ mol L⁻¹; Temperatura = 50 °C; Tempo = 2 h ao abrigo de Figura 102. Gráfico de k_{obs} versus concentração dos complexos 1 – 3. Condições reacionais: [DNA] = 330 ng, ~ 25 µmol L⁻¹; [tampão] = HEPES (10 mmol L⁻¹, pH 7,0); [complexos] = $0,5 - 10 \mu mol L^{-1}$; temperatura = 50 Figura 103. Footprinting por Fe^{II}-EDTA do oligonucleotídeo ATCG titulado com diferentes concentrações dos complexos 1 - 3. Condições reacionais: $[DNA] = \sim 20 \text{ pmol}; [tampão] = HEPES (10 \text{ mmol } L^{-1}, \text{ pH } 7,0);$ $[\text{complexos}] = 0 - 150 \ \mu\text{mol} \ \text{L}^{-1}; \ \text{temperatura} = 25 \ ^{\circ}\text{C}; \ \text{tempo} = 90$

LISTA DE TABELAS

Tabela 1. Materiais, reagentes e solventes utilizados nas sínteses e Tabela 2. Valores de coeficiente de absorção (ε) do fenolato do substrato Tabela 5. Deslocamentos químicos (δ_{H}) dos espectros de ¹H NMR para Tabela 6. Deslocamentos químicos ($\delta_{\rm H}$) dos espectros de ¹H NMR para Tabela 8. Atribuições de bandas no IR para ligantes e complexos...... 93 Tabela 9. Comprimentos de ligação selecionados para os complexos calculados para comparação com alguns valores de dados cristalográficos (os números dos átomos foram renumerados para se Tabela 10. Valores de energia calculados para os complexos 2 e 3 e a Tabela 11. Atribuições de bandas no IR para complexos 1 - 3 Tabela 12. Porcentagens obtidas na análise elementar com seus respectivos valores experimentais e teóricos......102 Tabela 13. Valores de condutividade molar para os complexos 1 – 3.102 Tabela 14. Valores de absorção atômica em mg mL⁻¹ para os complexos Tabela 15. Dados de espectroscopia eletrônica para complexos 1 - 3. Tabela 16. Valores de pKas encontrados para os complexos 1 – 3 através da titulação espectrofotométrica......114 Tabela 17. Parâmetros de voltametria de onda guadrada para os complexos 1, 2 e 3 em H₂O/CH₃CN (96:4, % v/v), [Complexo] = 1x10⁻⁴ mol L⁻¹. Eletrólito de suporte KCl 0,1 mol L⁻¹, célula eletrolítica contendo três eletrodos; um eletrodo de trabalho de carbono vítreo, um eletrodo auxiliar de platina e eletrodo de referência comercial Ag/AgCI (Ag/AgCI vs. NHE = +197 mV (Inzelt et al., 2012) e complexos da literatura para Tabela 18. Valores de pKas cinéticos e espectrofotométricos para os Tabela 19. Parâmetros cinéticos para a reação de hidrólise do 2,4-BDNPP promovida pelos complexos 1 – 3 em pH 7,0, a 25°C. 123 Tabela 20. Parâmetros cinéticos para as reações de clivagem dos

LISTA DE ABREVIATURAS E SIGLAS

2,4-BDNPP – Fosfato de bis(2,4-dinitrofenila)

2,4-DNPP – Fosfato de 2,4-dinitrofenila

CD – Dicroísmo circular (do inglês, "circular dichroism")

CHES – Ácido 2-[N-cicloexilamino]etanossulfônico

cmff – 3-(clorometil)-2-hidroxi-5-metilbenzaldeído

CT-DNA – DNA de timo de bezerro (do inglês, "*Calf thymus DNA*") **DNA** – Ácido desoxirribonucléico (do inglês, "*Deoxyribonucleic acid*")

DTT – Ditiotreitol

E_c – Eficiência catalítica

E_a – Energia de ativação

EDTA – Ácido etilenodiamino tetracético

ESI-MS – Espectrometria de massas com ionização electrospray (do inglês, *"Electrospray Ionisation Mass Spectrometry"*)

NHE – Eletrodo normal de hidrogênio (do inglês, *"Normal hydrogen electrode"*)

Epa – Potencial de pico anódico

Epc – Potencial de pico catódico

EROs – Espécies reativas de oxigênio

E – Coeficiente de absorção

f - Fator catalítico

FI-Forma superenovelada do DNA

FII – Forma circular aberta do DNA

F III – Forma linear do DNA

ilmetil)amino)metil)-5-metilbenzaldeído

ilmetil)amino)metil)benzil)(piridin-2-ilmetil)amino)metil)-4metilfenol

HEPES – Ácido 2-[4-(2-Hidroxietil)-1-piperazino]-etanossulfônico **Hmb** – 2-hidróxi-5-metilbenzaldeído

I – Força iônica

IR – Espectroscopia vibracional na região do infravermelho

*K*_{ass} – Constante de associação

kbPAP – Fosfatase ácida púrpura de feijão vermelho (do inglês, *"Kidney bean purple acid phosphatase"*)

k_{cat} – Constante catalítica

k_{uncat} – Constante da reação não catalisada

K_M – Constante de Michaelis-Menten

MES – Ácido 2-[N-Morfolino]etanossulfônico

MM – Massa molar

NET – Netropsina

PAPs – Fosfatases ácidas púrpuras (do inglês, "Purple acid phosphatases")

pH – Potencial hidrogeniônico

pmea – 2-(piridin-2-il)-N-(piridin-2-ilmetil)etanamina

pmeamff – 2-hidroxi-5-metil-3-(((2-(piridin-2-il)etil)(piridin-2-ilmetil)amino)metil)benzaldeído

pmeamffpy – 4-metil-2-(((2-(piridin-2-il)etil)(piridin-2-ilmetil)amino)metil)-6-(((piridin-2-ilmetil)amino)metil)fenol

¹³C NMR – Ressonância magnética nuclear de carbono (do inglês, "carbon-13 nuclear magnetic resonance")

¹H NMR – Ressonância magnética nuclear de hidrogênio (do

inglês, "hydrogen-1 nuclear magnetic resonance")

RNA - Ácido ribonucleico (do inglês, "Ribonucleic acid")

TMS – Tetrametilsilano

TRIS – Tris(hidroximetil)aminometano

TRIS-HCI – Hidrocloreto de tris(hidroximetil)aminometano

UV-Vis - Espectroscopia na região do ultravioleta-visível

V₀ – Velocidade inicial

VM – Verde de Metila

V_{máx} – Velocidade máxima

 δ – Deformação angular (IR)

 δc – Deslocamento químico do carbono (¹³C NMR)

 $δ_{\rm H}$ – Deslocamento químico do hidrogênio (¹H NMR)

 $\lambda_{máx}$ – Comprimento de onda no máximo de absorção

v - Estiramento (IR)

SUMÁRIO

1.	INTRODUÇÃO25
	1.1. QUÍMICA BIOINORGÂNICA25
	1.2. ÁCIDO DESOXIRRIBONUCLEICO (DNA)27
	1.3. METALOENZIMAS
	1.4. FOSFATASES ÁCIDAS PÚRPURAS
	1.5. COMPLEXOS MODELOS PARA AS FOSFATASES ÁCIDAS
	PURPÚRAS
	1.6. SEGUNDA ESFERA DE COORDENAÇÃO
	1.7. JUSTIFICATIVA DO TRABALHO
2.	OBJETIVOS42
	2.1. OBJETIVOS GERAIS42
_	2.2. OBJETIVOS ESPECIFICOS
3.	PARTE EXPERIMENTAL43
	3.1. MATERIAIS
	3.2. METODOS E INSTRUMENTAÇÃO45
	3.2.1. ESPECTROFOTOMETRIA NA REGIAO DO
	INFRAVERMELHU (IR)
	NUCLEAR DE HIDRUGENIU 'H NMR E DE '°C NMR45
	3 2 7 ELETROOLÍMICA
	3 2 8 TITULI ACÃO ESPECTROFOTOMÉTRICA 48
	3.2.9 MEDIDAS DE REATIVIDADE NA HIDRÓLISE DO
	SUBSTRATO FOSEATO DE BIS-(24-DINITROFENILA)
	(2.4-BDNPP)
	3.2.10. CLIVAGEM DE DNA PLASMIDIAL – PROCEDIMENTO
	GERAL
	3.2.10.1. EFEITO DA CONCENTRAÇÃO DOS
	COMPLEXOS EM RELAÇÃO AO DNA
	3.2.10.2. EFEITO DO PH DOS COMPLEXOS EM
	RELAÇÃO AO DNA51
	3.2.11. ANÁLISE DO MODO DE INTERAÇÃO ENTRE OS
	COMPLEXOS COM O DNA
	3.2.11.1. EFEITO DA FORÇA IÔNICA52
	3.2.11.2. EFEITO DOS LIGANTES DE SULCO53
	3.2.11.3. DICROISMO CIRCULAR
	3.2.12. AVALIAÇÃO DO MECANISMO DE CLIVAGEM53
	3.2.12.1. EFEITO DOS SEQUESTRADORES DE
	ESPECIES REA FIVAS DE OXIGENIO
	3.2.12.2. EFEITO DA AUSENCIA DE OXIGENIO54

	3.2.13. CINÉTICA DE CLIVAGEM DO DNA PLASMIDIAL 54
	3.2.14. FOOTPRINTING DE DNA POR FE-EDTA 55
	3.3. SÍNTESE DOS LIGANTES 56
	3.3.1. SÍNTESE DO PRÓ-LIGANTE CMFF - 3-(CLOROMETIL)-
	2-HIDROXI-5-METILBENZALDEÍDO
	3.3.2. SÍNTESE DO PRÓ-LIGANTE PMEA – 2-(PIRIDIN-2-IL)-N-
	(PIRIDIN-2-ILMETIL)ETANAMINA 58
	3.3.3. SÍNTESE DO PRÓ-LIGANTE PMEAMFF – 2-HIDROXI-5-
	METIL-3-(((2-(PIRIDIN-2-IL)ETIL)(PIRIDIN-2-
	ILMETIL)AMINO)METIL)BENZALDEIDO
	3.3.4. SINTESE DO PRO-LIGANTE PMEAMFFPY –
	4-METIL-2-(((2-(PIRIDIN-2-IL)ETIL)(PIRIDINA-2-
	ILMETIL)AMINO)METIL)-6-(((PIRIDIN-2-
	ILMETIL)AMINO)METIL)FENOL
	3.3.5. SINTESE DO LIGANTE H ₂ PMEAMFF (H ₂ L ²) - 2-HIDROXI-
	3-(((2-HIDROXI-5-METIL-3-(((2- (PIRIDIN-2-
	ILMETHIL)AMINO)METIL)BENZIL)(PIRIDIN-2-
	ILMETIL)AMINO)METIL)-5-METILBENZALDEIDO 65
	3.3.6. SINTESE DU LIGANTE HZPMEAPYCET $(1,1,2,5,5)$
	$\frac{3.3.7.3}{12} = \frac{3.3.7.3}{12} = \frac{3.3.7}{12} = \frac{3.7}{12} = \frac{3.3.7}{12} = \frac{3.7}{12} = \frac{3.7}{12} = $
	3-((/2-(PIRIDINI-2-II)FTII)(PIRIDINI-2-
	3.4. SÍNTESE DOS COMPLEXOS
	3.4.1. SÍNTESE DO COMPLEXO 1
	3.4.2. SÍNTESE DO COMPLEXO 2
	3.4.3. SÍNTESE DO COMPLEXO 3 76
4.	RESULTADOS E DISCUSSÕES
	4.1. CARACTERIZAÇÃO DOS LIGANTES
	4.1.1. ESPECTRÓSCOPIA NO INFRAVERMELHO (IR) 77
	4.1.2. ESPECTROSCOPIA DE RESSONÂNCIA MAGNÉTICA
	NUCLEAR DE HIDROGÊNIO E CARBONO – NMR (1H E
	¹³ C)
	4.1.3. ESPECTROMETRIA DE MASSA COM IONIZAÇÃO POR
	ELETROSPRAY (ESI-MS E ESI-QTOF) 89
	4.2. CARACTERIZAÇÃO DOS COMPLEXOS
	4.2.1. ESPECTROSCOPIA NO INFRAVERMELHO (IR) 90
	4.2.2. CALCULOS DE ESTRUTURA ELETRÔNICA
	4.2.3. ANALISE ELEMENTAR DE CHN 100

6.	REFERÊNCIAS154
5.	CONCLUSÕES152
	4.2.16. FOOTPRINTING DE DNA POR FE-EDTA150
	4.2.15. ENSAIOS CINÉTICOS148
	4.2.14. ENSAIO SOB ATMOSFERA DE ARGÔNIO146
	4.2.13.1. EFEITO DOS INIBIDORES DE EROS143
	4.2.13. AVALIAÇÃO DO MECANISMO DE CLIVAGEM143
	4.2.12.3. DICROÍSMO CIRCULAR
	4.2.12.2. EFEITOS DOS LIGANTES DE SULCO.136
	4.2.12.1. EFEITO DA FORÇA IÔNICA
	4.2.12. A ANÁLISE DOS MODOS DE INTERAÇÃO131
	4.2.11.2. EFEITO DO PH
	COMPLEXOS
	4.2.11.1. EFEITO DA CONCENTRAÇÃO DOS
	4.2.11. CLIVAGEM DE DNA PLASMIDIAL
	HIDRÓLISE DO 2.4-BDNPP
	4.2.10.3. PROPOSTA MECANÍSTICA PARA A
	SUBSTRATO NA HIDRÓLISE DO 2.4-BDNPP122
	4 2 10 2 EFEITO DA CONCENTRAÇÃO DO
	RDNPP 119
	4.2.10. ESTODOS DE REATIVIDADE
	4.2.9. ELETROQUIVICA
	4.2.4. CONDUTIMETRIA

1. INTRODUÇÃO

1.1. Química Bioinorgânica

avanços da ciência moderna, Com os recentes а expectativa de vida população aumentado da tem е consequentemente a preocupação com o conforto e saúde do homem. O câncer, por exemplo, é responsável por muitos óbitos por todo mundo, em 2015 de acordo com a Organização Mundial de Saúde foram 8,8 milhões mortes pelo mundo (Saúde, 2017). Por isso, muitos cientistas buscam o entendimento de ação de novos fármacos antitumorais. Desde a descoberta por Rosenberg e colaboradores (Rosenberg e Vancamp, 1969; Rosenberg, 1971) sobre a utilização da cisplatina (cis-diaminodicloroplatina(II), como mostra a Figura 1, como agente antitumoral houve um aumento utilização de complexos significativo na metálicos com propriedades farmacológicas e como nucleases sintéticas.

Figura 1. Representação esquemática do complexo *cis*diaminodicloroplatina(II) (Graf e Lippard, 2012).

Os medicamentos baseados em platina, utilizados como quimioterapêuticos ganharam atenção significativa ao longo dos anos, na busca de medicamentos mais eficazes do que a *cis*diaminodicloroplatina(II), porém com menos efeitos adversos (Mitra, 2016; Musumeci *et al.*, 2016; Corinti *et al.*, 2017; Ypsilantis *et al.*, 2017).

Mesmo com toda a evolução quando se trata de fármacos, os mesmos não estão livres de uma série de efeitos colaterais. Dessa maneira, é desejável combinar diferentes características para diminuir a toxicidade dos fármacos e obter especificidade (Ronconi e Sadler, 2007). Essa barreira a ser superada, traz uma perspectiva para os cientistas de estudar compostos de coordenação com outros íons metálicos como por exemplo com Fe e Zn, pois espera-se encontrar compostos com menores toxicidades e com maior especificidade ao ligar-se ao DNA. Para o planejamento de novos fármacos é necessário identificar os fatores responsáveis pela estabilização e especificidade do fármaco-DNA. Existem algumas maneiras principais em que os compostos de coordenação podem interagir com dupla cadeia de DNA, sendo elas por interações eletrostáticas, intercalação e ligação pelos sulcos (Blackburn, 2006).

Já a importância de usar metais em sistemas biológicos é devido a capacidade dos mesmos em perder facilmente elétrons, formando íons carregados positivamente, e assim como os metais são deficientes em elétrons possuem atração por bioméculas como o DNA que são ricas em elétrons. Diversos fatores são importantes para a estabilidade termodinâmica do centro metálico em sistemas biológicos, entre eles: o estado de oxidação do metal, o tamanho do anel quelato, a geometria da coordenação com a biomécula, a estrutura tridimensional e a estequiometria. Além disso, outros fatores, tais como impedimento estérico, a natureza dos ligantes que interagem com o centro metálico e mesmo ligantes que não estão ligados diretamente ao centro metálico, e que podem ou não fazer parte do sítio ativo, também podem aumentar ou diminuir a estabilidade do sistema (Donia, 1998).

Muitas enzimas são conhecidas por estarem relacionadas com pelo menos um íon metálico (Waldron *et al.*, 2009), e compreender a função desses metais é de extrema importância.

Nesse contexto, a Química Bioinorgânica tem como propósito a investigação do comportamento desses íons metálicos em sistemas biológicos, bem como suas reatividades nesses sistemas, despertando dessa maneira novas perspectivas e atraindo muitos pesquisadores de diversos ramos do conhecimento para essa área (Shriver e Atkins, 2008). Este campo multidisciplinar da ciência compreende então o estudo dos íons metálicos e suas influências com ligantes de natureza biológica, bem como o seu comportamento frente a um organismo vivo (Kaim et al., 2013).

Desta forma, busca-se sintetizar compostos que tenham características semelhantes com o sítio ativo das enzimas para que seja possível obter um biomimético sintético e um possível fármaco. Dada a grande complexidade das estruturas das metaloenzimas, é comum a utilização de compostos de baixa massa molar que possuam um sítio catalítico análogo (modelos sintéticos). Faz-se então o uso de comparações com o sistema
biológico, a fim de se obter informações da função do metal nestes sistemas (Gichinga e Striegler, 2008).

1.2. Ácido desoxirribonucleico (DNA)

A busca por conhecimentos sobre a estrutura genética é alvo de muitos pesquisadores, principalmente depois do impacto que a caracterização da estrutura tridimensional do ácido desoxirribonucleico causou no mundo científico. Compreender e esclarecer essa estrutura incentivou pesquisadores na busca do entendimento dessas moléculas no ambiente biólogico (Patra, 2007).

O DNA é o material genético que contém informações extremamente importantes sobre a hereditariedade. Como proposto por Watson e Crick, o DNA é uma macromolécula, ou seja, um grande polímero linear com nucleotídeos (monômeros), sua estrutura apresenta duas cadeias polinucleotídicas em hélice, formando uma dupla-hélice. Além do pareamento específico, entre as bases, Watson e Crick propuseram a possível cópia do material genético. Através desse pareamento, é possível verificar os sulcos do DNA, maior e menor como mostra a Figura 2. (Watson e Crick, 1953).

Figura 2. Estrutura tridimensional do DNA. Adaptado de (Horton, 2006).

A molécula de DNA é composta por três unidades químicas, sendo elas:

- Bases nitrogenadas: purinas - guanina (G) e adenina (A) e a pirimidinas, citosina (C) e a timina (T) para o DNA e uracila (U) no caso do RNA (que é o responsável pela síntese de proteínas da célula).

- Pentose: esse açúcar formado por cinco átomos de carbono tem a missão de distinguir o RNA e DNA, se a pentose em questão é a D-ribose deverá ser o RNA e no caso DNA será a 2-desóxi-Dribose.

- Fosfato: um radical de ácido fosfórico. A ligação fosfodiéster é criada com o grupo 5'-fosfato de uma unidade nucleotídica é ligado ao grupo 3'-hidroxil do próximo nucleotídeo (Nelson e Cox, 2014).

Figura 3. Modelo de ligação fosfodiéster (Nelson e Cox, 2014).

Estudos com compostos que possuem íons metálicos como Fe^{III}, Zn^{II} e Cu^{II} demonstram clivar a ligação fosfodiéster de maneira eficaz (Sigman e Chen, 1990; Sigman *et al.*, 1993; Hegg e Burstyn, 1995; Krämer, 1999; Sreedhara *et al.*, 2000; Cowan, 2001; Liu *et al.*, 2004; Jiang *et al.*, 2007; Cowan, 2008; Liu e Wang,

2009; Souza, 2010; Souza *et al.*, 2013; Zastrow e Pecoraro, 2014; Camargo, Tiago P. *et al.*, 2015; Chennam, Kishan Prasad *et al.*, 2016; Li, Shuo *et al.*, 2016; Xiao, Ying *et al.*, 2016).

Enzimas podem alterar ou reconhecer uma conformação em lugar específico do DNA, é importante na mimetização dessas enzimas que os compostos de coordenação alterem a estrutura do DNA de maneira específica. A estrutura tridimensional do DNA mais encontrada em sistemas biológicos é a forma B, porém possui outras formações como a forma A e Z (Blackburn, 2006; Nelson e Cox, 2011; 2014; Pages *et al.*, 2015).

O DNA plasmidial é uma molécula circular, covalentemente fechada (forma superenovelada), porém dependendo das condições, ela pode se converter à forma circular relaxada (Nelson e Cox, 2014).

Dada toda a importância do papel do DNA, a busca de compostos biomiméticos que mimetizem enzimas e possam interagir com o DNA tem crescido e já está sendo relatado na literatura compostos que conseguem clivar o DNA e com possível ação antitumoral (González-Álvarez *et al.*, 2005; Peralta, *et al.*, 2010; Silva *et al.*, 2011; Shahabadi, 2014; Srishailam *et al.*, 2014; Wang, L. *et al.*, 2014; Wang, Q. *et al.*, 2014; Ragheb *et al.*, 2015).

1.3. Metaloenzimas

Enzimas são proteínas que aceleram reações químicas e são considerados catalisadores biológicos. São de extrema importância, pois a maioria das reações químicas nos sistemas biológicos são lentas e necessitam das enzimas, pois sem elas muitas reações dificilmente aconteceriam. Nesse sentido, têm-se as metaloenzimas que podem ser definidas como biopolímeros constituídos por aminoácidos, unidos através de ligações peptídicas, organizados de maneira que criam um ambiente tridimensional (sítio ativo) que possui um ou mais íons metálicos que favorecem algumas reações químicas (Wilcox, 1996). Dessa forma, complexos metálicos podem mimetizar metaloenzimas, pois são compostos projetados com pontes exógenas, ligantes que imitam os resíduos de aminoácidos e possuem metais.

Para a obtenção dos compostos de coordenação que possam atuar na catálise de substratos biológicos, são projetados ligantes com átomos N,O doadores com grupos funcionais que

mimetizem os resíduos de aminoácidos existentes na metaloenzima de interesse. A utilização de metais de transição para síntese de compostos metálicos com atividade de nuclease, tanto oxidativa como hidrolítica, tem obtido um grande sucesso, mas ainda existe muito a ser estudado para o melhoramento de suas atividades quando estas são comparadas com as reações mediadas por enzimas.

Dentre as várias metaloenzimas, têm-se as fosfatases ácidas púrpuras (PAPs) que são enzimas binucleares e serão foco desse estudo.

1.4. Fosfatases Ácidas Púrpuras

Fosfatases Ácidas Púrpuras (PAPs) são metaloenzimas que pertencem à classe das hidrolases, catalisando a hidrólise de uma série de substratos fosforilados em valores de pH ácidos. As PAPs contêm em seus sítios ativos um centro binuclear Fe^{III}-M^{II} (M = Fe, Mn ou Zn) (Mitić et al., 2006: Roberts et al., 2015a), conforme mostra a Figura 4. As PAPs foram isoladas de diversas fontes. desde leveduras, fluído uterino de suínos (ufPAP) (Chen et al., 1973), baço de bovinos (bsPAP) (Campbell e Zerner, 1973), macrófagos, lisossomos humanos (Lin et al., 1983), ossos de ratos (rbPAP) (Anderson e Toverud, 1986) e até bactérias (Schenk et al., 2000). Algumas PAPs foram isoladas de vegetais, como na batata doce (spPAP) (Hefler e Averill, 1987), arroz (Zhang et al., 2011), feijão vermelho (kbPAP) (Beck, Jennifer L. et al., 1986) e na soja (sbPAP) (Lebansky et al., 1992). As PAPs mais estudadas são as de origem animal de fluido uterino de suínos (ufPAP) e baço de bovinos (bsPAP), e de origem vegetal as derivadas do feijão vermelho (kbPAP) (Sträter, 1995; 1996; Klabunde e Krebs, 1997; Guddat, 1999; Lindqvist, 1999; Schenk, 1999; Than et al., 1999; Uppenberg, 1999).

Figura 4. Esquema do sítio ativo das PAPs (Klabunde, 1996).

Conforme mostrado na Figura 4, o íon de Fe^{III} está coordenado pelos resíduos de aminoácidos de cadeias laterais aspartato (Asp135), tirosina (Tyr167), histidina (His325) e um grupo carboxilato monodentado (Asp164) atuando como ponte entre os centros metálicos, conferindo uma geometria octaédrica distorcida. Já o íon M^{II} está coordenado por duas histidinas (His286 e His323) e pelo oxigênio da amida no caso da asparagina (Asn201). Completando a esfera do M^{II} foi modelada uma molécula de água e uma ponte hidroxo para a estrutura mostrada na Figura 2. Os centros metálicos de Fe^{III} e Zn^{II} na estrutura da kbPAP, por exemplo, possuem uma distância de 3,26 Å entre seus centros (Klabunde, 1996). Complexos Fe^{III}Zn^{II} sintetizados pelo nosso grupo mostram distância muito semelhante entre esses metais (Neves *et al.*, 2007; Peralta *et al.*, 2010).

As diferenças mais relevantes entre as PAPs das diversas fontes onde foram encontradas são originárias dos metais que compõem o sítio ativo da enzima, sendo que os resíduos de aminoácidos são conservados. Na kbPAP e sbPAP encontram-se centros heterobinucleares de Fe^{III}Zn^{II} e Fe^{III}Mn^{II}, respectivamente e na ufPAP encontra-se um sítio ativo homobinuclear de Fe^{III}Fe^{II} na forma ativa e um centro Fe^{III}Fe^{III} na forma inativa (Klabunde, 1996; Guddat, 1999; Lindqvist, 1999).

A primeira PAP que teve sua estrutura resolvida por difratometria de raios X do grupo das metaloenzimas foi a kbPAP (Klabunde, 1996). Com a resolução de estruturas das PAPs, detalhes acerca do mecanismo em que as metaloenzimas hidrolisam os ésteres de fosfato começaram a ser elucidados. Klabunde e colaboradores sugeriram um mecanismo de catálise assistida por metal (Figura 5).

Figura 5. Mecanismo proposto por Klabunde e colaboradores para a hidrólise de ésteres de fosfato promovida pelas PAPs (Adapatado de (Klabunde, 1996)).

Na primeira etapa **(1)** desse mecanismo, Lindqvist e colaboradores sugeriram um mecanismo baseado na estrutura rbPAP no qual o grupo fosfato liga-se ao centro de Zn^{II}, de forma monodentada, sendo uma molécula de água deslocada em um processo relativamente rápido (Lindqvist, 1999).

A coordenação ao centro metálico aumenta a eletrofilicidade do fósforo facilitando um ataque nucleofílico "em linha" do íon hidroxila que está na esfera de coordenação do íon Fe^{III} sobre o átomo de fósforo **(2).** Como esse ataque ocorre ao lado oposto ao do grupo alcóxido do substrato, ocorre uma inversão de configuração no átomo de fósforo. Próximas ao centro bimetálico existem três histidinas (His202, His295 e His296) em posições que propiciam à sua interação com o íon fosfato (efeitos de segunda esfera de coordenação) (Lindqvist, 1999).

Sugere-se que a His296 protone o grupo alcóxido abandonador (3). O ataque nucleofílico resulta em um estado de transição pentacoordenado, o qual é conservado no sítio ativo pelos resíduos de histidina, His202 e His295. Com a protonação do grupo álcool abandonador pelo resíduo de histidina, His296, a hidrólise começa a ocorrer, e em seguida, ocorre à clivagem da ligação P-OR (Lindqvist, 1999).

Outro mecanismo foi proposto por Merkx e colaboradores, que sugeriram que o hidroxo terminal que está coordenado ao centro metálico de Fe^{III}, desprotona outra molécula de água da segunda esfera de coordenação do íon Fe^{III}, e esta faria o ataque nucleofílico intramolecular (Merkx e Averill, 1999; Merkx *et al.*, 1999) (Figura 6).

Figura 6. Propostas de ataque nucleofílico por Merkx e colaboradores para a hidrólise de ésteres de fosfato promovida pelas PAPs (Merkx e Averill, 1999; Merkx *et al.*, 1999).

Para a uteroferrina ($Fe^{III}Fe^{II}$) foi proposto como mostra na Figura 7, que o éster de fosfato está coordenado ao centro metálico de maneira bidentada como ponte (Wang *et al.*, 1999). Dessa maneira, a proposta é que a ponte μ -OH faria o ataque ao fosfato, e assim atuaria como nucleófilo. Figura 7. Propostas de ataque nucleofílico por Wang e colaboradores para a hidrólise de ésteres de fosfato promovida pelas PAPs (Wang *et al.*, 1999).

Estudos feitos com a fosfatase extraída de batata doce (Fe^{III}Mn^{II}), mostraram na Figura 8 outro mecanismo através da presença de ponte oxo em pH 4,9 (Schenk, 1999).

Figura 8. Propostas de ataque nucleofílico por Schenk e colaboradores para a hidrólise de ésteres de fosfato promovida pelas PAPs (Schenk, 1999).

No entanto, ainda não se tem estabelecido de maneira inequívoca se o éster de fosfato se coordena aos dois íons metálicos de forma bidentada ou de forma monodentada no metal bivalente.

As PAPs foram reportadas como incapazes de hidrolisar diésteres de fosfato baseado na falta de atividade frente à reação de hidrólise do fosfato bis(p-nitrofenil) (BNPP). Porém, os complexos modelos concebidos para o sítio catalítico da PAP mostraram-se capazes de hidrolisar diésteres, sugerindo que a incapacidade da PAP hidrolisar o BNPP poderia ser resultante de efeitos estéreos (Cox, 2007).

Dessa forma, foram testadas as PAPs de porco (uteroferrinas) e as de feijão vermelho na reação de hidrólise dos diésteres fosfato metil-p-nitrofenil (MpNPP) e fosfato etil-pnitrofenil (EpNPP). Foi verificado que as PAPs são capazes de hidrolisar diésteres que apresentem um segundo grupo pequeno (Cox, 2007).

Além disso, a reação com o diéster MpNPP mostrou que um grupo hidroxo ligado em posição terminal é o nucleófilo da reação, seguido pelo ataque de um hidroxo ligado em ponte. Foi proposto que as reações da PAP diesterase ocorrerem por um através mecanismo do qual ocorre uma coordenação monodentada do substrato com subsequente hidrólise da primeira ligação éster pelo hidroxo ligado ao Fe³⁺, e o metilfosfato como ponte entre centros metálicos coordena-se os е prontamente sofreria o ataque pela ponte u-hidroxo como mostra a Figura 9 (Cox, 2007).

Quanto à função proposta para os íons metálicos propõese que estes atuem como ácido de Lewis (Lindqvist, 1999), embora na PAP Fe^{III}Fe^{II} haja o envolvimento de radicais e formação de espécies reativas de oxigênio (ROS), o que deve ser uma das causas de osteoporose (Kaija, 2002; Mitic *et al.*, 2006; Schenk *et al.*, 2013).

1.5. Complexos modelos para as fosfatases ácidas púrpuras

Um grande número de estudos envolvendo compostos miméticos que funcionam como modelo para as PAPs foram relatados na literatura (Mitic et al., 2006; Jarenmark et al., 2010; Peralta et al., 2010; Piovezan et al., 2010; Jarenmark et al., 2011; Comba, Gahan, Hanson, et al., 2012; Comba, Gahan, Mereacre, et al., 2012; Daumann et al., 2013; Das et al., 2014; Daumann et al., 2014; Mcgeary et al., 2014; Bernhardt et al., 2015; Roberts et al., 2015b). Porém mesmo com todas as informações e estudos cinéticos, espectroscópicos e cristalográficos das metaloenzimas e compostos com íons metálicos, é de extrema importância o compostos coordenação estudo de de modelos para metaloenzimas como as PAPs (Mcgeary et al., 2014), para estabelecer sua ação fisiológica.

Os químicos bioinorgânicos têm dado enfoque na síntese de ligantes que gerem complexos metálicos com características presentes nas PAPs, como distância dos centros metálicos próximas a 3,5 Å, presença de grupamentos ponte exógenas, assimetria dos centros metálicos devido por diferentes átomos N,O-doadores e presença de sítios lábeis - importantes no processo de catálise (Zhao, M. *et al.*, 2013).

Uma série de complexos com o ligante H₂BPBPMP (Figura 10) já foram sintetizados, os quais envolvem estudos de reatividade frente à hidrólise do substrato modelo 2,4-BDNPP, como por exemplo complexos de Fe^{III}Mn^{II} (Karsten, 2002), Fe^{III}Fe^{III} (Neves, 2010; Smith *et al.*, 2012) e Fe^{III}Zn^{II} (Neves *et al.*, 2007; Peralta *et al.*, 2010).

Figura 10. Estrutura do ligante H₂BPBPMP (Karsten, 2002).

Neves e colaboradores preparam o complexo $[Fe^{III}Zn^{II}(\mu - OH)(H_2O)(BPBPMP)](CIO_4)_2$ (Figura 11), o qual foi caracterizado como sendo o primeiro modelo estrutural para o sítio ativo da kbPAP com um grupo fenolato terminal, uma ponte hidroxo e uma molécula de água ligada ao sítio de Fe^{III}, apresentando um fator de aceleração de 4800 vezes no processo de hidrólise do diéster fosfato de bis(2,4-dinitrofenila) (BDNPP) em relação a reação não-catalisada (Neves *et al.*, 2007).

Figura 11. ORTEP do cátion do complexo [Fe^{III}Zn^{II}(μ-OH)(H₂O)(BPBPMP)](CIO₄)₂ (Neves *et al.*, 2007).

A capacidade de mimetizar a atividade de determinadas proteínas hidrolisando DNA ou RNA de maneira reversível e com seletividade de sequência ou estrutura tem se tornado cada vez mais importante para a química bioinorgânica e ganhou atenção considerável nos últimos anos (Wang *et al.*, 2011; Muxel *et al.*, 2014; Tirel *et al.*, 2014; Camargo, T. P. *et al.*, 2015; De Souza *et al.*, 2015; Chennam, K. P. *et al.*, 2016; Li, S. *et al.*, 2016; Luong *et al.*, 2016; Mukherjee *et al.*, 2016; Naik *et al.*, 2016). Uma vez que a hidrólise de ácidos nucléicos é inibida por grande carga negativa do esqueleto polianiônico dos ácidos nucléicos, a utilização de metais carregados positivamente como co-fatores é uma das estratégias que podem ser utilizadas para efetuar estas reações. O uso de um metal e/ou ligante pode tornar a atividade das nucleases mais eficiente e seletiva. Também pode influenciar o

mecanismo (hidrolítico ou oxidativo) da clivagem de DNA mediada por metal (Cowan, 2001).

Os complexos metálicos de transição foram utilizados com sucesso em estudos sobre os mecanismos hidrolíticos de substratos modelo e/ou DNA (Camargo, T. P. *et al.*, 2015; De Souza *et al.*, 2015). A utilização de metais de transição para síntese de compostos metálicos com atividade hidrolítica, tem tido um grande sucesso, mas ainda existe muito a ser estudado para o melhoramento de suas atividades quando estas são comparadas com as reações mediadas por enzimas (Zhao, M. *et al.*, 2013).

1.6. Segunda esfera de coordenação

Embora os resíduos de aminoácidos da primeira esfera de coordenação desempenhem um papel crucial na catálise enzimática, a compreensão da influência da segunda esfera na catálise não é tão direta.

Para superar essa desvantagem, o uso de complexos metálicos, com ligantes contendo grupos não coordenados e que devem ser capazes de interagir de maneira similar aos aminoácidos presentes na segunda esfera de coordenação das metaloenzimas são atulamente foco de estudo.

A segunda esfera de coordenação possui interações que são não-covalentes, como por exemplo, ligações de hidrogênio, interações eletrostáticas, efeitos hidrofóbicos e forças de van der Waals, entre outras. Estas interações podem ajudar não só na seletividade com relação ao substrato, mas também na estabilização do estado de transição enzima-substrato, trazendo melhores resultados para a catálise (Tang *et al.*, 2013; Zhao, Meng *et al.*, 2013).

Há muitas maneiras de recriar o ambiente enzimático, modulando o ambiente químico dos ligantes com a adição de cadeias laterais que sejam ativas cataliticamente, como foi o trabalho de Piovezan e colaboradores que sintetizaram um derivado do ligante H₂BPBPMP com um aldeído presente no fenol lateral. A presença deste grupo permite a reação deste com diversos outros compostos e suportes como a sílica 3-aminopropril funcionalizada. Esse sistema apresentou um fator catalítico em torno de 118.500 vezes mais rápido quando comparado à reação não catalisada (Piovezan *et al.*, 2012). Muxel e colaboradores sintetizaram um complexo mononuclear de La^{III} com o ligante H_2L^1 que possui modificação em sua cadeia lateral como mostra a Figura 12. Foi observado que a eficiência catalítica foi aumentada com o complexo imobilizado em sílica funcionalizada com 3-aminopropil (catálise heterogênea), quando comparado ao complexo livre (catálise homogênea). Este efeito foi atribuído à presença da segunda esfera de coordenação e uma associação mais forte do complexo com o substrato 2,4-BDNPP (Muxel *et al.*, 2014).

Figura 12. Estrutura do ligante H₂L¹.

Recentemente, o efeito da chamada segunda esfera de coordenação foi relatado para biomiméticos sintéticos das metalohidrolases (Nakamoto, 1977; Piovezan *et al.*, 2010; Shook e Borovik, 2010; De Souza *et al.*, 2013; Bosch *et al.*, 2015; De Souza *et al.*, 2015).

1.7. Justificativa do trabalho

Visto que vários estudos envolvendo a 1ª esfera de coordenação das PAPs têm sido reportados, com vários mecanismos de ação propostos, atualmente busca-se ampliar esses conhecimentos utilizando estratégias de síntese focadas no efeito da 2ª esfera de coordenação, tentando elucidar não somente o sítio ativo das metaloenzimas, mas também a função dos resíduos de aminoácidos presentes ao seu redor.

Uma das estratégias utilizadas no presente trabalho, foi a utilização de anéis quelatos com diferentes tamanhos (de cinco e seis membros) em ligante inéditos. Foi realizada uma modificação estrutural do ligante H_2L^1 (Figura 13a), no qual um grupo aminometilpiridina foi alterado para aminoetilpiridina, permitindo

assim a formação de anéis quelantes de 5 e 6 membros no lado macio do ligante quando comparado a H_2L^1 . A substituição de um grupo metila presente no ligante H_2L^1 por um grupo etila confere grau de liberdade na unidade central 2,6-diaminofenolato e efeitos na estabilidade dos complexos. Alterar o número de membros no anel quelante pode afetar a estabilidade dos complexos, devido a fatores entrópicos e entálpicos (Martell, 1993), e, portanto, a reação catalisada por esses complexos (Mckeown *et al.*, 2013).

Ainda visando os estudos de segunda esfera de coordenação foram realizadas derivatizações do grupo aldeído presente no ligante proposto com a inserção de diaminas alifáticas modificando o lado duro do ligante H_2L^2 com etilenodiamnia e butanodiamina gerando os ligantes H_2L^2 -et e H_2L^2 -but (Figura 13c), respectivamente. A amina terminal destas cadeias laterais pode gerar um grupo carregado positivamente a um pH específico, o qual, por sua vez, pode influenciar diretamente a hidrólise catalítica do substrato 2,4-BDNPP (Comba, Gahan, Hanson, *et al.*, 2012; Comba, Gahan, Mereacre, *et al.*, 2012) e na clivagem de DNA.

Figura 13. Ligantes não simétricos (a) H_2L^1 (Piovezan *et al.*, 2010) (b) H_2L^2 e (c) H_2L^2 -et e H_2L^2 -but.

Como já mencionado, existem muitos estudos elucidando a primeira esfera de coordenação. Porém, são necessários estudos da interferência da segunda esfera de coordenação, visando auxiliar no entendimento de suas propriedades para preencher as lacunas ainda existentes e assim avaliar a eficiência catalítica destes complexos. Dessa maneira, esse estudo apresenta a síntese de novos complexos como modelos para as fosfatases ácidas púrpuras, com derivatizações de diaminas, os quais serão tratados nos próximos capítulos.

A partir destas considerações teóricas, a seguir, serão apresentados os objetivos deste trabalho.

2. OBJETIVOS

2.1. Objetivos Gerais

O presente trabalho tem como objetivo a síntese e caracterização de complexos binucleares de Fe^{III}Zn^{II} com propriedades adequadas para o estudo de reatividade de compostos frente a ésteres de fosfato e ácidos nucléicos a partir de três novos ligantes não simétricos binucleantes contendo diferentes grupos funcionais na cadeia lateral para estudos dos efeitos de segunda esfera de coordenação.

2.2. Objetivos Específicos

- Síntese e caracterização de ligantes não simétricos H₂L², H₂L²-et e H₂L²-but por análises espectroscópicas (¹H NMR, ¹³C NMR e IR) e espectrometria de massas;
- Síntese de novos compostos de coordenação heterobinucleares Fe^{III}(µ-OH)Zn^{II}, empregando os ligantes não simétricos;
- Caracterização dos complexos por meio de análises elementares, espectroscópicas e cálculos;
- Estudo de reatividade destes complexos frente ao substrato 2,4-BDNPP, buscando auxiliar no entendimento do mecanismo de hidrólise;
- Análise da capacidade desses complexos na clivagem do DNA plasmidial.
- Estudar o efeito do aumento do anel quelato e da segunda esfera de coordenação.
- Comparação dos resultados com trabalhos da literatura.

3. PARTE EXPERIMENTAL

3.1. Materiais

Os seguintes reagentes empregados nas sínteses e análises, foram adquiridos de fontes comerciais e alguns utilizados com purificação prévia com mostra a Tabela 1 a seguir:

Tabela 1. Materiais, reagentes e solventes utilizados nas sínteses e análises.

Materiais	Pureza	Marca
Reagentes/Solventes		
2-(2-aminoetil)piridina	Destilado sob pressão reduzida (~12 mmHg – 92 º C)	Aldrich
2-(2-aminometil)piridina	Destilado sob pressão reduzida (~12 mmHg – 82 ºC)	Aldrich
2-piridilcarboxialdeído	Destilado sob pressão reduzida (~80 mmHg – 105,9 ºC)	Aldrich
2,6-lutidina	Destilado sob pressão reduzida (~80 mmHg – 73,4 ºC)	Aldrich
1,2-etanodiamina	Destilado sob pressão reduzida (~80 mmHg – 48,1 ºC)	Merck
1,4-butanodiamina	Destilado sob pressão reduzida (~80 mmHg – 87 ºC)	Aldrich

Acetato de sódio PA	99,8%	AppliChem
Acetona PA	99,5%	Vetec
Acetonitrila PA	99,8%	Vetec
Acetonitrila UV/HPLC	99,9%	Tedia
Ácido clorídrico	37,0%	Vetec
Ácido sulfúrico	98,0%	Vetec
Água deuterada	99,8%	Acros
Argônio	5.0 Analítico	White Martins
Bicarbonato de sódio	99,7%	Aldrich
Borohidreto de sódio	99,0%	Aldrich
Brometo de potássio	99,0%	Aldrich
Sulfato de sódio	99,0%	Vetec
Cloreto de potássio (IR)	99,0%	Aldrich
Clorofórmio deuterado	99,0%	Aldrich
Clorofórmio PA	99,8%	Vetec
Clorofórmio UV/HPLC	99,9%	Vetec
Diclorometano	99,5%	Vetec
Dimetilformamida PA	99,5%	Merck
Dimetilsulfóxido PA	99,9%	Vetec
Etanol PA	98,0%	Vetec
Éter etílico PA	99,0%	Vetec
Glicerina PA	99,5%	Vetec
Hexano PA	95,0%	Lafan
Hidróxido de sódio	99,5%	Vetec
Isopropanol PA	99,5%	Lafan
Metanol PA	99,8%	Neon
Metanol UV/HPLC	99,9%	J.T. Baker
Perclorato de ferro(III)	99,0%	Acros
nonahidratado		
Perclorato de sódio	99,0%	Acros
Perclorato de zinco(II)	98,0%	Aldrich
hexahidratado		
Sulfato de sódio anidro	99,0%	Lafan
Tampão biológico CHES	99,0%	Acros
Tampão biológico	99,5%	Aldrich
HEPES		
Tampão biológico MES	99,0%	Acros
Tetrahidrofurano PA	99,0%	Vetec
I olueno PA	99,5%	Vetec
I rietilamina	Destilado	Vetec

3.2. Métodos e Instrumentação

3.2.1. Espectrofotometria na região do Infravermelho (IR)

Os espectros das amostras foram adquiridos na região do IV em um espectrofotômetro de infravermelho com Transformada de Fourier e com acessório de Refletância Total Atenuada Horizontal (FTIR - ATR) da Perkin-Elmer Spectrophotometer Spectrum 100, com cristal de ZnSe (45°) e um detector TGS ("triglycine sulfate"). As amostras sólidas foram analisadas em pastilha de KBr ou colocadas diretamente no aparelho sobre o cristal guando por refletância total atenuada, com média de 18 varreduras no intervalo 4000 - 550 cm⁻¹ e resolução de 4 cm⁻¹. As medidas das amostras foram corrigidas pelo espectro do branco que foi registrado somente com a pastilha de KBr e no ATR o background foi feito com ar ambiente, ou seja, sem nada sobre o cristal e posteriormente subtraído do espectro da amostra para ambos os casos. A temperatura da sala encontrava-se em torno de 25 °C. As amostras oleosas foram analisadas na forma de filme sobre a pastilha de KBr (grau espectroscópico), solubilizando as amostras em diclorometano ou clorofórmio e deixadas em dessecador para secarem ou colocadas diretamente no aparelho para o caso da refletância total atenuada.

3.2.2. Espectroscopia de Ressonância Magnética Nuclear de Hidrogênio ¹H NMR e de Carbono ¹³C NMR

Os espectros de ressonância magnética nuclear (NMR) de ¹H e ¹³C foram obtidos em um espectrofotômetro Bruker Avance 200 MHz, que se encontra na Central de Análises do Departamento de Química – UFSC. As amostras foram dissolvidas em solventes como clorofórmio deuterado $(CDCl_3)$. dimetilsulfóxido deuterado (DMSO-d₆) e água deuterada (D₂O), utilizando como referência interna tetrametilsilano (TMS). Os deslocamentos químicos (δ) estão relacionados em parte por milhão (ppm) em relação ao TMS. Os gráficos de ¹H NMR apresentam número de átomos de hidrogênio deduzidos da integral relativa e na legenda mostra-se também a multiplicidade.

Os compostos sintetizados (ligantes e complexos) foram analisados via espectrometria de massas com ionização via electrospray (ESI-MS) e os espectros foram obtidos no equipamento Amazon - Ions Trap MS, ou espectrometria de massas de alta resolução e os espectros obtidos a partir de um aparelho micrOTOF Q-II (Bruker Daltonics), os dois equipamentos encontram-se no Centro de Biologia Molecular Estrutural – UFSC. As análises realizadas no ESI-MS foram feitas a partir das soluções dos ligantes em MeOH e dos complexos em H₂O e CH₃CN grau MS com concentração de aproximadamente 500 ppb e fluxo de 180 µL min⁻¹. A temperatura do capilar foi mantida entre 180 e 200 °C e a voltagem do capilar entre -400 e -500 V. Já as análises realizadas no ESI-QTOF equipado com seringa automática (KD Scientific) para injeção das amostras em um espectrômetro de massas ESI-QTOF MS (ElectroSpray Ionisation Time of Flight Mass Spectrometry), sendo que as amostras foram injetadas em um fluxo constante de 3 µL/min, utilizando como solvente uma mistura de acetonitrila grau LC/MS. Os dados foram processados em um software Bruker Data Analysis versão 4.0. Nos dois casos os equipamentos foram operados em modo de íon positivo e os dados são expressos na forma de relação m/z dos fragmentos e apresenta-se a intensidade relativa dos picos frente ao pico base (100%).

3.2.4. Análise Elementar de CHN

As medidas para a determinação dos percentuais de carbono, hidrogênio e nitrogênio para os complexos sintetizados foram realizadas em um analisador elementar CHNS/O Analyser PerkinElmer (Modelo – 2400 Series II) acoplado com balança PerkinElmer (Modelo – Autobalance AD 6000). Gás de arraste: hélio grau 5.0 e combustão: oxigênio grau 6.0, que se encontra na Central de Análises do Departamento de Química – UFSC.

3.2.5. Condutimetria

As medidas condutimétricas dos complexos foram realizadas no aparelho, do Laboratório de Bioinorgânica e Cristalografia – UFSC. Os compostos de coordenação foram dissolvidos em CH₃CN ou MeOH, com concentração de 1x10⁻³ mol L⁻¹, no Laboratório de Bioinorgânica e Cristalografia, Departamento de Química – UFSC. O aparelho foi calibrado com uma solução padrão de KCI 0,1 mol L⁻¹ cuja condutividade é de 100 μ S cm⁻¹ em água a 25 °C. As análises foram realizadas após a calibração do equipamento com solução padrão de KCI (0,01 mol L⁻¹) a temperatura de 25,00 ± 0,05 °C. Os valores para sistemas não aquosos foram ajustados segundo a literatura (Geary, 1970).

3.2.6. Absorção atômica

Para verificar a proporção dos íons de metais nos complexos foi utilizado um espectrômetro de absorção atômica de alta resolução com fonte contínua, modelo ContrAA 700 (Analytik Jena, Jena, Alemanha), equipado com atomizadores de forno de grafite e chama. Os comprimentos de onda selecionados foram de 231,857 nm para Zn e 248,327 nm para Fe. Os gases utilizados foram mistura de ar (oxidante) e acetileno (combustível) na vazão de 60 L/h. A altura do queimador foi de 16 mm. As soluções dos complexos foram preparadas com 5 mg de complexo em 50 mL acetona:água (10:90% - V/V), acetona grau UV/HPLC.

3.2.7. Eletroquímica

O comportamento redox dos complexos foi investigado por voltametria de onda quadrada em um potenciostato/galvanostato BASi, modelo Epsilon. Os experimentos foram feitos em H_2O/CH_3CN (96:4, % v/v), em valores de pH específicos sob atmosfera de argônio, utilizando com concentração do complexo com 1x10⁻⁴ mol L⁻¹. Foi utilizado como eletrólito de suporte KCI 0,1 mol L⁻¹ e uma célula eletrolítica contendo três eletrodos: um eletrodo de trabalho de carbono vítreo, um eletrodo auxiliar de platina e eletrodo de referência comercial Ag/AgCI (Ag/AgCI vs. NHE = +197 mV (Inzelt *et al.*, 2012)).

3.2.8. Titulação Espectrofotométrica

As constantes de protonação foram determinadas por titulação espectrofotométrica. Os solventes utilizados foram CH₃CN:H₂O (50:50, %V/V), em uma cela termoestabilizada a 25,00±0,01 °C, controlada por um banho da Visomes Plus. Foi utilizado um eletrodo combinado com referência de Ag/AgCl, calibrado com soluções diluídas de HCI de um titulador automatizado Metrohm modelo Titrino Plus 848. As medidas foram feitas em volume de solução final de 8 mL. A forca iônica foi ajustada com KCl para 0,1 mol L⁻¹ e o sistema foi titulado com NaOH 0,1 mol L⁻¹ manualmente. Alíquotas de aproximadamente 1 mL foram removidas a cada ponto e o espectro de UV-Vis obtido em um espectrofotômetro UV-Vis Varian Cary 50 BIO. Após cada medida a alíquota era devolvida para a solução que estava sendo titulada. As curvas foram ajustadas com uma curva sigmoidal e os valores de pKa obtidos do ponto de inflexão. Todas as soluções foram preparadas com água bidestilada e fervida sob atmosfera de argônio pré-purgado em solução de NaOH.

3.2.9. Medidas de reatividade na hidrólise do substrato fosfato de bis-(2,4-dinitrofenila) (2,4-BDNPP)

A atividade catalítica dos complexos foi avaliada através da reação de hidrólise do substrato fosfato de bis-(2,4-dinitrofenila) (2,4-BDNPP) (Figura 14), que foi sintetizado de acordo com o método descrito na literatura (Bunton e Farber, 1969).

Figura 14. Reação de hidrólise do substrato modelo 2,4-BDNPP.

Os experimentos cinéticos foram realizados em triplicata sob condições de excesso de substrato monitorando-se espectrofotometricamente, em um espectrofotômetro UV-Vis Varian Cary 50 BIO acoplado a um banho termostatizado, a variação de absorbância ocorrida em 400 nm (pH/ɛ), referente a liberação do ânion 2,4-dinitrofenolato, como produto da reação de hidrólise. As reações foram monitoradas até 5% de conversão de substrato a produto e os dados foram tratados pelo método das velocidades iniciais.

рН	3	
_	(L mol ⁻¹ cm ⁻¹)	
5,0	10078	
5,5	11405	
6,0	12004	
6,5 - 9,0	12100	

Tabela 2. Valores de coeficiente de absorção (ϵ) do fenolato do substrato 2,4-BDNPP em difer<u>entes valores de pH (Peralta *et al.*, 2010).</u>

A determinação das velocidades iniciais em função da concentração do substrato foi realizada no pH ótimo sob mesmas condições descritas para o estudo de influência do pH, resultando em cinéticas de saturação com comportamento de Michaelis-Menten. Por meio deste experimento determinou-se a velocidade máxima (V_{máx}) e a constante de Michaelis-Menten (*K*_M). Através de cálculos simples, determinou-se a constante catalítica ($k_{cat} = V_{máx}/[C]$, [C] = Concentração do complexo na cubeta), o fator catalítico, pré-definido somente para a reação de hidrólise, definido pela razão entre a constante catalítica e a constante da reação não catalisada ($k_{uncat} = 1,89x10^{-7} \text{ s}^{-1}$) (Bunton e Farber, 1969), além da eficiência catalítica (E = k_{cat}/K_M). Os estudos em função do pH para atividade de hidrólise foram realizados em uma faixa de pH entre 5 e 9 a 25 °C.

Utilizaram-se cubetas de vidro óptico com capacidade para 4,0 mL e caminho óptico de 1 cm, seladas com tampa de teflon, nas quais foram adicionados solução aquosa de tampão 0,1 mol L⁻¹ MES (pH 5 a 6,5), HEPES (pH 7,0 a 8,0) e CHES (9,0) com força iônica mantida constante (I = 0,1 mol L⁻¹, LiClO₄). A dependência do pH foi investigada usando concentrações fixas do substrato ([S] final = 2,66x10⁻⁵ mol L⁻¹) e complexos ([C] final = 4,8x10⁻⁵ mol L⁻¹) a 25,0 ± 0,5 °C. A dependência do substrato foi medida com o pH ideal de 7, para que a concentração de substrato variasse de [S] final = 1,10x10⁻³ a 5,33x10⁻³ mol L⁻¹. Correções da hidrólise espontânea do substrato 2,4-BDNPP foram realizadas sob condições idênticas, sem a adição do complexo.

A determinação do número de moléculas de substrato hidrolisadas por molécula de complexo foi realizada pelo acompanhamento espectrofotométrico em 445 nm (ϵ = 3600 L mol⁻¹ cm⁻¹) na condição de 50 vezes de excesso do substrato ([S]final = 2x10⁻³ mol L⁻¹) em relação ao complexo ([C]final = 4x10⁻⁵ mol L⁻¹). Realizou-se também o acompanhamento da reação estequiométrica em 400 nm entre os complexos e o substrato ([C]final = [S]final = 4x10⁻⁵ mol L⁻¹) foi realizada durante 55 horas a 50 °C. Em todos os experimentos cinéticos a correção da hidrólise espontânea do substrato.

O estudo do efeito isotópico de deutério na hidrólise do 2,4-BDNPP pelos complexos foi realizado pelo acompanhamento de duas reações paralelas onde as soluções tampões HEPES pH, pD = 7,0 (corrigido: pD = leitura do medidor de pH + $(4,29x10^{2/0}T) -$ 1,04) (Fife e Bruice, 1961; Beck, J. L. *et al.*, 1986) para os complexos foram previamente preparadas em H₂O e D₂O. As reações foram monitoradas sob condições de 100 vezes de excesso do substrato em 400 nm a 25 °C para os complexos.

3.2.10. Clivagem de DNA plasmidial – Procedimento Geral

O procedimento geral aplicado aos complexos binucleares de Fe^{III}Zn^{II} foi realizado como descrito por Peralta (Peralta, et al., 2010), com adaptações. O procedimento geral de análise da clivagem plasmidial aplicado aos complexos de Fe^{III}Zn^{II} consistiram em uma reação típica de clivagem, contendo 330ng de DNA pBSK-II, que foram tamponados com tampão adequado e tratados com os complexos (em diferentes concentrações). O tempo de reação inicial foi de 4 h a 50 °C. Durante a reação as amostras foram mantidas ao abrigo da luz. Para finalizar as reações de clivagem foram adicionados 5 µL de tampão de corrida 6x concentrado (EDTA 0,25 mol L⁻¹ em pH 8.0, glicerol 50% e azul de bromofenol 0,01%). Em seguida, as amostras foram mantidas em geladeira (4°C) até serem submetidas à eletroforese em gel de agarose (1%) contendo brometo de etídio (0,3 µg mL-1) por 100 min a 90 V em tampão TBE 0,5X (Tris 44,5 mmol L⁻¹, ácido bórico 44,5 mmol L⁻¹, EDTA 1 mmol L⁻¹ em pH 8,0). Os géis foram então fotografados utilizando o sistema de fotodocumentação DigiDoc-It (UVP, USA) e as frações de cada forma do DNA plasmidial foram quantificadas por densitometria, utilizando o software KODAK Molecular Imaging Software 5.0 (Carestream Health, USA). Uma vez que o brometo de etídio possui uma maior dificuldade de

intercalar-se com a forma superenovelada do DNA plasmidial, há uma menor emissão de fluorescência por esta forma de DNA em relação às demais. Para corrigir a real quantidade de DNA superenovelado da amostra, o valor encontrado foi multiplicado por 1,47 e corrigido por proporcionalidade os valores obtidos para as demais formas (Jin *et al.*, 2007). A quantidade de DNA clivado (%) foi considerada como a soma das frações de DNA na forma circular aberta (F II) e linear (F III) (Figura 15), enquanto a fração ou quantidade de DNA intacto (%) foi considerada como a fração de DNA na forma superenovelada.

Figura 15. Formas do DNA plasmidial.

3.2.10.1. Efeito da concentração dos complexos em relação ao DNA

Os ensaios de atividade iniciaram a partir da análise das melhores concentrações de complexos que fossem capazes de fornecer uma clivagem eficiente sem que houvesse uma grande degradação espontânea do DNA. Foram realizadas reações controles, na ausência dos complexos, nas mesmas condições reacionais para observar esta possível degradação espontânea. A partir destes resultados foram escolhidos os tempos reacionais e concentrações de complexos, adequados para observação da clivagem do DNA, utilizados nos próximos testes.

3.2.10.2. Efeito do pH dos complexos em relação ao DNA

Para analisar o efeito do pH na clivagem do DNA plasmidial mediada pelos complexos estudados neste trabalho, foram realizados testes de clivagem deste DNA em diferentes tampões (MES, HEPES, CHES), que correspondem a faixa de pH entre 5,5 a 9,0 na presença de 5 µmol L⁻¹ dos complexos. Os tampões foram selecionados por sua estabilidade e inércia em reação, citados como "*Good buffers*" (Mash *et al.*, 2003).

3.2.11. Análise do modo de interação entre os complexos com o DNA

3.2.11.1. Efeito da força iônica

Para confirmar se a interação destas moléculas com o DNA se dava através de interações eletrostáticas, por diferença de carga, foi adicionado na reação o sal NaCl nas concentrações de 5, 10, 25 e 50 mmol L⁻¹.

Foram realizados testes de força iônica substituindo o NaCl por LiClO₄, já que o íon ClO₄⁻ se associa mais fracamente ao centro metálico do que o íon Cl⁻, neste ensaio foram utilizadas as mesmas concentrações do teste com NaCl, bem como a mesma concentração dos complexos (5 µmol L⁻¹).

Além dessa coordenação comum do íon cloreto com os centros metálicos, sabe-se que complexos com centro metálico Fe^{III}Zn^{II} apontam uma capacidade de hidrolisar o DNA, logo sua atividade é dependente da formação de um nucleófilo ligado ao metal, sendo ainda mais necessário a exclusão da participação dos íons CI⁻/CIO₄⁻ na atividade destes complexos frente ao DNA. Todas as concentrações de NaCI e LiCIO₄ (5 – 50 µmol L⁻¹) foram testadas em reações com DNA na ausência dos complexos para descartar possível degradação da molécula causada por estes sais.

3.2.11.2. Efeito dos ligantes de sulco

Procurou-se determinar se a interação entre os complexos em estudo e o DNA se dava através do acesso de pelo menos um dos sulcos menor/maior do DNA. Para tal foram realizados ensaios na presença de ligantes conhecidos de ambos os sulcos, sendo estes a netropsina que se liga no sulco menor (Van Dyke *et al.*, 1982) e o verde de metila ligante do sulco maior (Kim e Nordén, 1993). Para isso os ligantes (50 µmol L⁻¹) foram pré-incubados com o DNA tamponado (10 mmol L⁻¹ HEPES, pH 7.0) por 30 min antes da adição dos complexos. Após a adição dos complexos (5 µmol L⁻¹) a reação foi incubada por 8 h a 50 °C. Ambos inibidores foram testados na ausência dos complexos e nenhuma clivagem de DNA superior ao controle (contendo somente DNA) foi observada.

3.2.11.3. Dicroísmo Circular

Os ensaios de CD foram realizados com o espectropolarímetro de CD modelo J-815 (Jasco, USA). Uma amostra de 200µM de CT-DNA em 10mM de tampão (HEPES pH 7,0) foi titulada com concentrações crescentes dos complexos na razão de [Complexo]/[DNA] de 0,05 a 1. As varreduras foram realizadas na faixa de 220 a 500 nm, a 37 °C. Espectros contendo somente os complexos foram determinados na ausência de DNA e nenhum sinal significativo foi encontrado.

3.2.12. Avaliação do mecanismo de clivagem

3.2.12.1. Efeito dos sequestradores de espécies reativas de oxigênio

Para compreensão do mecanismo de clivagem do DNA (se por via hidrolítica ou oxidativa) pelos complexos analisados neste trabalho, foram adicionados às reações uma série de sequestradores de radicais livres, sendo estes DMSO (dimetil-sulfóxido) (0,4 mol L⁻¹) que é inibidor do radical hidroxila (OH•); KI (iodeto de potássio) (0,5 mmol L⁻¹), que é inibidor da geração de peróxidos (R-O-OH); e NaN₃ (azida de sódio) (0,5 mmol L⁻¹), sequestrador de oxigênio singlete (¹O₂). A concentração dos complexos utilizada nestas reações foi de 5 µmol L⁻¹. Todos os sequestradores também foram testados na ausência dos complexos.

3.2.12.2. Efeito da ausência de oxigênio

As soluções e misturas reacionais foram realizadas em uma "GloveBag", onde estas foram desgaseificadas à vácuo e borbulhadas com argônio. Foi realizada também uma reação utilizando como agente de clivagem o complexo Fe-EDTA que tem a capacidade de oxidar a molécula do DNA apenas em aerobiose (Netto *et al.*, 1996; Jeff, 2016). Estas mesmas reações, incluindo o controle com Fe-EDTA, também foram realizadas na presença de oxigênio como um modo de comparar a clivagem do DNA pelos complexos nestas duas condições distintas. A concentração de complexo utilizada neste experimento foi de 5 µmol L⁻¹.

3.2.13. Cinética de clivagem do DNA plasmidial

De modo geral as reações de cinética de clivagem foram realizadas conforme descrito: num volume final de 120 µL (em um eppendorf) foram adicionados 2 µg de DNA plasmidial em 10 mmol L⁻¹ de HEPES pH 7.0, em seguida foram adicionados 30 µL dos complexos em diferentes concentrações (0 - 10 µmol L⁻¹) e alíquotas de 20 µL foram retiradas em diferentes tempos (0, 0,5, 1, 2, 3, e 4 h) e submetidas a eletroforese em gel de agarose. As reações foram realizadas a 50 °C ao abrigo da luz. Controles nas mesmas condições reacionais, mas na ausência dos complexos, foram utilizados para observar a degradação espontânea do DNA. As constantes cinéticas de clivagem (k_{obs}) foram calculadas para cada concentração do complexo, tomando estas reações como de pseudo primeira-ordem, onde há um excesso de catalisador (complexo) em relação do substrato (DNA). O valor de kobs foi obtido diretamente a partir do coeficiente angular das regressões lineares originadas do plote do logaritmo natural da quantidade da forma intacta de DNA em função do tempo de reação.

3.2.14. Footprinting de DNA por Fe-EDTA

Os procedimentos utilizados nestes ensaios seguem o preconizado pela literatura (Kikuta *et al.*, 2002) com modificações.

Figura 16. Representação de um gel de poliacrilamida desnaturante contendo amostras de um ensaio de *footprinting* de DNA por Fe-EDTA. Adaptado de Urbach e Waring, (Urbach e Waring, 2005).

Para este experimento uma amostra de oligonucleotídeo $(2,5 \text{ pmol }\mu\text{L}^{-1})$ foi tamponada com 10 mmol L⁻¹ de HEPES (pH 7,0) e submetida ao aquecimento a 95 °C por 5 minutos para a completa desnaturação de possíveis pareamentos inespecíficos de DNA. Em seguida a amostra foi transferida para os tubos de reação e mantida em temperatura ambiente por 1h para permitir o correto anelamento do DNA. Passado o resfriamento das amostras os complexos em diferentes concentrações foram adicionados e mantidos por 30 min a temperatura ambiente para formação do equilíbrio complexo-DNA. A reação de clivagem de DNA se inicia com a adição de 2 μ L de cada uma das seguintes

soluções: Fe-EDTA (40 mmol L⁻¹), ascorbato de sódio (40 mmol L⁻¹) e H₂O₂ (2%) e deixados reagir por 90 segundos. Com a intenção de parar as reações foram adicionados após os 90 segundos 5 μ L de Tiuréia (0,5 mol L⁻¹). Em seguida foi adicionado à reação 1 μ L de glicogênio (20 mg mL⁻¹), 2,10 μ L de acetato de sódio (3 mol L⁻¹, pH 5,2) e 3x o volume corrigido da amostra de etanol 100% com o objetivo de iniciar o processo de precipitação do oligonucleotídeo e finalizando assim a reação. Posteriormente foram realizados procedimentos para precipitação do oligonucleotídeo das amostras, ressuspensão, eletroforese e análise dos géis.

3.3. Síntese dos Ligantes

Os ligantes não-simétricos sintetizados foram caracterizados por espectroscopia no infravermelho (IR), ressonância magnética nuclear (NMR) (¹H e ¹³C) e por espectrometria de massa como está descrito nas rotas sintéticas a seguir.

3.3.1. Síntese do cmff - 3-(clorometil)-2-hidroxi-5metilbenzaldeído

O 3-(clorometil)-2-hidroxi-5-metilbenzaldeído (cmff) foi preparado em duas etapas. Na primeira etapa, o 2-hidróxi-5metilbenzaldeído (Hmb) foi obtido através de uma reação de formilação do *p*-cresol como descrito na literatura (Thoer *et al.*, 1988) e na segunda etapa, o cmff foi obtido pela reação de clorometilação do Hmb com formaldeído e ácido clorídrico. Nas figuras, encontram-se os espectros de IR (Figura 17) e ¹H NMR (Figura 18) e suas atribuições.

Figura 17. Espectro no IR do cmff (ATR).

IR (ATR) em cm⁻¹: v (C-H_{ar} e C-H_{alif}) 3018-2848; v (C-H_{ald}) 2748; v (C=O) 1657; v (C=C) 1599-1471; δ (O-H) 1378; v (C-O_{fenol}) 1255; δ (C-H_{ar}) 704; v (C-CI) 613.

Figura 18. Espectro de ¹H NMR do cmff em CDCl₃.

¹H NMR - δ_{H} (200 MHz; CDCI₃), em ppm: 2,35 (s, 3H, CH₃); 4,66 (s, 2H, CH₂); 7,33(s, 1H, CH_{ar}); 7,45 (s, 1H, CH_{ar}); 9,85 (s, 1H, CH_{ald}); 11,25 (s, 1H, OH_{fenol}).

3.3.2. Síntese do pmea – 2-(piridin-2-il)-N-(piridin-2ilmetil)etanamina

Preparou-se um solução contendo 1,20 mL de 2-(2g, 10 mmol. aminoetil)piridina (1,22 108,17 α mol⁻¹. 1,021 g mL⁻¹) em 15 mL de metanol e adicionou-se esta solução, sob agitação, em uma solução contendo 0,95 mL de 2piridilcarboxialdeído (1,07g, 10 mmol, 107,04 g mol-1) em 45 mL de metanol. A mistura ficou sob agitação por 2 horas em temperatura ambiente. Nesta solução foi adicionado 0.75 g borohidreto de sódio (20 mmol, 37,83 g mol-1) lentamente em intervalos de 10 minutos durante 1 hora. A reação ficou sob agitação "overnight" e em seguida refluxada por 1 hora. Após o resfriamento, a solução foi tratada com HCI até pН aproximadamente 5 e agitada vigorosamente por 30 min. Posteriormente o pH da mistura foi ajustado com solução 5 mol L-¹ de hidróxido de sódio para pH 8–9. O borato de sódio precipitado foi filtrado e o solvente rotaevaporado. Posteriormente, adicionouse 50 mL de diclorometano e lavado com água (6x25 mL de H₂O). A fase orgânica resultante foi seca com sulfato de sódio anidro. A evaporação do solvente resultou em um óleo castanho com rendimento de 87,7%. O pmea foi caracterizado por IR (Figura 19), ¹H NMR (Figura 20) e espectrometria de massas (Figura 21).

IR (KBr) em cm⁻¹: v (N-H) 3297; v (C-H_{ar} e C-H_{alif}) 3068-2832; v (C=N e C=C) 1595- 1427; v (C-N) 1111; δ (C-H_{ar}) 754.

Figura 20. Espectro de ¹H NMR do pmea em CDCl₃.

¹H NMR - δ_{H} (200 MHz; CDCl₃), em ppm: 2,33 (s, 1H, NH); 3,08-3,03 (m, 4H, CH₂); 3,95 (s, 2H, CH₂); 7,15-7,10 (m, 2H, CH_{ar}); 7,19-7,18 (d, 1H, CH_{ar}); 7,30-7,29 (d, 1H, CH_{ar}); 7,63-7,57 (m, 2H, CH_{ar}); 8,53 (d, 2H, CH_{py}).

Figura 21. Espectro de ESI-MS do ligante pmeamff e sua respectiva simulação da distribuição isotópica com $m/z = 214,13 + H^+$.

3.3.3. Síntese do pmeamff – 2-hidroxi-5-metil-3-(((2-(piridin-2-il)etil)(piridin-2ilmetil)amino)metil)benzaldeído

Essa reação é uma reação de substituição nucleofílica, do cloreto de cmff pela amina secundária do pmea formando pmeamff.

Em um balão de 100 mL, foram adicionados 1,86 g de cmff (10 mmol, 184,62 g mol⁻¹) dissolvidos em 50 mL de uma solução de diclorometano. Sob agitação e a 0°C foram adicionados lentamente 80 mL de uma solução de diclorometano contendo 2,13 g de pmea (10 mmol, 213,13 g mol⁻¹). Completada a adição, o banho de gelo foi removido e a mistura reacional foi deixada sob agitação por 3 dias em temperatura ambiente. Após esse período, a solução foi transferida para um funil de separação e lavada (30x40 mL) com uma solução aquosa de bicarbonato de sódio. A fase orgânica foi seca com sulfato de sódio anidro e o solvente evaporado até a secura sob vácuo a 40 °C, restando um óleo castanho, com rendimento de 70,2% em relação ao pmea. Nas figuras, encontram-se espectros de IR (Figura 22), ¹H NMR (Figura 23) e Massas (Figura 24).

Figura 22. Espectro no IR do pmeamff em pastilha de KBr.

IV (KBr) em cm⁻¹: v (C-H_{ar} e C-H_{alif}) 3060-2838; v (C=O) 1685; v (C=N e C=C) 1594-1434; δ (O-H_{fenol}) 1372; v (C-O_{fenol}) 1277; v (C-N) 1118; δ (C-H_{ar}) 753.

¹H NMR - δ_{H} (200 MHz; CDCl₃), em ppm: 2,25 (s, 3H, CH₃); 3,03 (s, 4H, CH₂); 3,81 (s, 2H, CH₂); 3,92 (s, 2H, CH₂); 7,04–7,24 (m, 4H, CH_{ar}); 7,67-7,50 (m, 4H, CH_{ar}); 8,57-8,44 (dd, 2H, CH_{py}); 10,23 (s, 1H, CH_{ald}).

Figura 24. Espectro de ESI-MS do pmeamff e sua respectiva simulação da distribuição isotópica com $m/z = 362,18 + H^+$.

Solubilizaram-se 2-aminometilpiridina (108,14 g mol⁻¹, 1,04 g mL⁻¹, 10 mmol), em 30 mL de metanol. Em seguida, foi solubilizado pmeamff (361,18 g mol-1, 10 mmol) em 20 mL de metanol, colocou-se essa solução em um funil de adição, adicionou-se na solução de 2-aminometilpiridina, gota-a-gota, lentamente. Deixou-se reagir por 5 horas (solução amarelada). Adicionou-se borahidreto de sódio (37,83 g mol-1) em banho de gelo, durante 1 hora, a solução ficou mais clara, deixou-se reagindo por um dia. Após, ajustou-se o pH da reação para 5 - 6 com ácido clorídrico 3,0 mol L⁻¹. Evaporou-se o solvente a pressão reduzida. Adicionou-se diclorometano e lavou-se exaustivamente (12x30 mL) com uma solução saturada de bicarbonato de sódio. A fase orgânica foi seca com sulfato de sódio anidro e o solvente rotaevaporado. O produto é um óleo amarelo escuro, com rendimento de 88,4% em relação ao pmeamff. Nas figuras, encontram-se espectros de IR (Figura 25), ¹H NMR (Figura 26) e Massas (Figura 27).

Figura 25. Espectro na região do infravermelho do pmeamffpy em pastilha de KBr.

IV (KBr) em cm⁻¹: v (C-H_{ar} e C-H_{aliph}) 3066-2835; v (C=N e C=C) 1597-1431; δ (O-H_{fenol}) 1370; v (C-O_{fenol}) 1235; v (C-N) 1146; δ (C-H_{ar}) 757.

¹H NMR - δ_{H} (200 MHz; CDCl₃), em ppm: 2,21 (s, 3H, CH₃); 3,01-3,02 (m, 4H, CH₂); 3,96-3,81 (m, 8H, CH₂); 6,79 (s, 1H, CH_{ar}); 6,91(s, 1H, CH_{ar}); 7,03-7,16 (m, 3H, CH_{ar}); 7,24-7,38 (m, 3H, CH_{ar}); 7,48-7,68 (m, 3H, CH_{ar}); 8,44-8,55 (m, 3H, CH_{ar}).

Figura 27. Espectro de ESI-MS do ligante pmeamffpy e sua respectiva simulação da distribuição isotópica com $m/z = 454,26 + H^+$.

 3.3.5. Síntese do ligante H₂pmeamff (H₂L²) - 2-hidroxi-3-(((2-hidroxi-5-metil-3-(((2-(piridin-2il)etil)(piridin-2-ilmetil)amino)metil)benzil)(piridin-2-ilmetil)amino)metil)-5-metilbenzaldeído

Foi adicionado o grupo cmff para a obtenção do ligante final H₂pmeamff. Em um balão de 100 mL foram adicionados 25 mL de diclorometano com Hbpamepy (453,25 g mol⁻¹, 5 mmol), juntamente com trietilamina (6 mmol, 0,726 g mL⁻¹). Com o auxílio de um funil de adição, foram adicionados 20 mL de diclorometano com cmff (184,62 g mol⁻¹, 5 mmol).

A mistura reacional permaneceu sob agitação e refluxo por 3 dias. Restando um óleo amarelo escuro. Realizou-se extração ácido-base, adicionando aproximadamente 50 mL de H₂O destilada e adicionou-se HCl 4 mol L⁻¹ até pH 2-3. Recolheu-se a fase aquosa, adicionou-se 30 mL de CH₂Cl₂ e adicionou-se NaOH 4 mol L⁻¹ até pH 10 (solução amarela esverdeada). A fase orgânica foi separada e com solução de NaHCO₃ realizou-se a extração (30x25mL). A fase orgânica foi seca com sulfato de sódio anidro e o solvente rotaevaporado. O produto é um óleo amarelo escuro, com rendimento de 62,3% em relação ao pmeamffpy. Nas figuras, encontram-se espectros de IV (Figura 28), ¹H NMR (Figura 29) e Massa (Figura 30).

Figura 28. Espectro no IR do H₂L² (ATR).

IR (ATR), em cm⁻¹: v (C-H_{ar} e C-H_{alif}) 3050-2843; v (C=O) 1682; v (C=N e C=C) 1588- 1469; v (C-O) 1278; δ (C-Har) 750.

¹H NMR - δ_{H} (200 MHz; CDCl₃), em ppm: 2,19 (s, 3H, CH₃); 2,23 (s, 3H, CH₃); 3,05- 2,96 (m, 4H, CH₂); 3,71 (s, 2H, CH₂); 3,80 (s, 4H, CH₂); 3,84 (s, 2H, CH₂); 3,86 (s, 2H, CH₂); 7,61-6,78 (m, 13H, CH_ar); 8,43-8,42 (m, 1H, CH_{py}); 8,54 (m, 2H, CH_{py}); 10,26 (s, 1H, CH_{ald}).

Figura 30. Espectro de ESI-MS do ligante H_2L^2 e sua respectiva simulação da distribuição isotópica com $m/z = 602,31 + H^+$.

Em um balão de 250 mL, adicionaram-se uma solução de 1,2-etanodiamina (5,1 mmol, 60,06 g mol⁻¹) em metanol (50 mL) e 3 gotas de ácido acético 99,7%. Com um funil de adição, acrescentaram-se lentamente 60 mL de uma solução metanólica de H₂pmeamff (0,60 g, 1 mmol, 601,31 g mol⁻¹). O sistema permaneceu sob agitação por 12 horas e então adicionou-se borohidreto de sódio (0,11 g, 3 mmol, 37,83 g mol⁻¹) em banho de gelo. A mistura reacional permaneceu por mais duas horas sob agitação e o solvente foi retirado sob vácuo a 40 °C.

O produto resultante foi dissolvido em 60 mL de diclorometano e permaneceu por agitação por 15 minutos na presença de uma solução aquosa saturada de bicarbonato de sódio. A fase orgânica foi lavada com a mesma solução aquosa (6x40 mL) em um funil de separação, foi então separada, seca com sulfato de sódio anidro e o solvente foi retirado a vácuo. Rendimento 74,6% em relação ao H₂pmeamff. Nas figuras abaixo, encontram-se espectros de IR (Figura 31), ¹H NMR (Figura 32), ¹³C NMR (Figura 33) e Massas (Figura 34).

Figura 31. Espectro no IR do H₂L²-et (ATR).

IR (ATR), em cm⁻¹: v (C-H_{ar} e C-H_{alif}) 3059-2834; v (C=N e C=C) 1644-1433; δ (O-H_{fenol}) 1369; v (C-O_{fenol}) 1231; v (C-N) 1150; δ (C-H_{ar}) 758.

Figura 32. Espectro de ¹H NMR do H₂L²-et em CDCl₃.

¹H NMR - δ_{H} (200 MHz; CDCl₃), em ppm: 2.20 (s, 6H, CH₃); 2.63 (t, 2H, CH₂); 2.78 (t, 2H, CH₂); 2.96-3.04 (m, 4H, CH₂); 3.69-3.85 (m, 12H, CH₂); 6.80-7.61 (m, 13H, CH_{ar}); 8.42-8.55 (m, 3H, CH_{py}).

 13 C NMR - $\delta_{\rm C}$ (200 MHz; CDCl₃), em ppm: 20,20; 20,25; 35,05; 41,28; 49,68; 51,28; 53,45; 53,69; 55,84; 55,92; 59,62; 59,62; 120,92; 121,80; 121,89; 122,19; 122,40; 122,61; 122,68; 123,05; 123,14; 125,12; 127,22; 127,31; 129,13; 129,23; 130,28; 136,07; 136,23; 136,27; 148,48; 148,66; 148,79; 148,79; 153,45; 153,58; 158,09; 158,09; 159,68.

Figura 34. Espectro de ESI-QTOF do ligante H_2L^2 -et e sua respectiva simulação da distribuição isotópica com $m/z = 646,38 + H^+$.

Em um balão de 250 mL, adicionaram-se uma solução de 1,4-butanodiamina (5,1 mmol, 88,10 g mol⁻¹) em metanol (50 mL) e 3 gotas de ácido acético 99,7%. Com um funil de adição, acrescentaram-se lentamente 60 mL de uma solução metanólica de H₂pmeamff (0,60 g, 1 mmol, 601,31 g mol⁻¹). O sistema permaneceu sob agitação por 12 horas e então adicionou-se borohidreto de sódio (0,11g, 3 mmol, 37,83 g mol⁻¹) em banho de gelo. A mistura reacional permaneceu por mais duas horas sob agitação e o solvente foi retirado sob vácuo a 40 °C.

O produto resultante foi dissolvido em 60 mL de diclorometano e permaneceu por agitação por 15 minutos na presença de uma solução aquosa saturada de bicarbonato de sódio. A fase orgânica foi lavada com a mesma solução aquosa (6x40 mL) em um funil de separação, foi então separada, seca com sulfato de sódio anidro e o solvente foi retirado a vácuo. Rendimento 71,7 % em relação ao H₂pmeamff. Nas figuras, encontram-se espectros de IR (Figura 35), ¹H NMR (Figura 36), ¹³C NMR (Figura 37) e Massas (Figura 38).

¹H NMR - δ_{H} (200 MHz; CDCl₃), em ppm: 2,20 (s, 6H, CH₃); 1,47 (m, 2H, CH₂); 2,59-2,69 (m, 4H, CH₂); 2,99-3,01 (m, 4H, CH₂); 3,69-3,85 (m, 12H, CH₂); 6,80-7,61 (m, 13H, CH_{ar}); 8,42-8,52 (m, 3H, CH_{py}).

¹³C NMR - δ_C (200 MHz; CDCl₃), em ppm: 19,97; 20,03; 26,06; 30,20; 34,78; 41,02; 48,02; 49,59; 53,18; 53,55; 55,34; 55,98; 58,64; 77,20; 120,65; 121,55; 121,61; 122,22; 122,45; 122,62; 122,75; 122,87; 124,37; 126,88; 126,96; 128,82; 128,99; 129,91; 135,79; 135,97; 135,99; 135,99; 148,21; 148,34; 148,47; 148,47; 153,25; 153,25; 157,81; 157,89; 159,42.

Figura 38. Espectro de ESI-QTOF do ligante H₂L²-but e sua respectiva simulação da distribuição isotópica com $m/z = 674,41 + H^+$.

3.4. Síntese dos Complexos

3.4.1. Síntese do complexo 1

Foram solubilizados 0,3006 g de H₂pmeamff (0,5 mmol; 601,3053 g mol⁻¹) em aproximadamente 100 mL de metanol, com agitação e leve aquecimento (45 °C), foram adicionados 0,1861 g (0,5 mmol; 372,36 g mol⁻¹) de Zn(ClO₄)₂.6H₂O. Em seguida adicionaram-se 100 mL com um funil de adição lentamente contendo 0,2581 g (0,5 mmol; 516,20 g mol⁻¹) de Fe(ClO₄)₃.9H₂O. Manteve-se a agitação e o aquecimento por aproximadamente 15 minutos. Após o término do gotejamento, foram adicionados 0,2448 g (2 mmol; 122,44 g mol⁻¹) de NaClO₄ e 1,5 mL de NaOH (1 mol L⁻¹).

Filtrou-se e deixou-se em repouso. Após 1 dia na estufa de cristalização em 25 °C, houve a formação de um precipitado roxo o qual foi filtrado e lavado com metanol. Rendimento: 65,2%. *m/z*: 809,21. CHN – Calculado para FeZnC₃₇H₄₂N₅Cl₂O₁₄: C: 45,68; H: 4,35; N: 7,20. Encontrado: C: 45,73; H: 4,78; N: 6,74%. Absorção atômica, em mg mL⁻¹: Fe = 2,59±0,08 (5,72%), Zn = 3,27±0,07 (6,73%); proporção Fe:Zn - 1:1.

Foram solubilizados 0,3229 g de H₂pmeapycet (0,50 mmol; 645,3791 g mol⁻¹) em aproximadamente 80 mL de metanol, com agitação e leve aquecimento (45 °C), foram adicionados 0,1861 g (0,5 mmol; 372,36 g mol⁻¹) de Zn(ClO₄)₂.6H₂O. Em seguida adicionou-se 80 mL com um funil de extração lentamente contendo 0,2581 g (0,5 mmol; 516,20 g mol⁻¹) de Fe(ClO₄)₃.9H₂O. Manteve-se a agitação e o aquecimento por aproximadamente 15 minutos. Após o término do gotejamento, foram adicionados 0,2448 g (2 mmol; 122,44 g mol⁻¹) de NaClO₄ e 1,5 mL de NaOH (1 mol L⁻¹).

Filtrou-se e deixou-se em repouso. Após 1 dia na estufa de cristalização em 25 °C, houve a formação de um precipitado roxo o qual foi filtrado e lavado com metanol. Rendimento: 63,8%. *m/z*: 879,18. CHN – Calculado para FeZnC₃₉H₅₀Cl₂N₇O₁₃: C, 46,11; H, 4,86; N, 9,65; Encontrado: C: 46,06; H: 4,96; N: 9,64%. Absorção atômica, em mg mL⁻¹: Fe = 4,91±0,03 (5,51%), Zn = 5,97±0,13 (6,44%), proporção Fe:Zn - 1:1.

Foram solubilizados 0,3367 g de H₂pmeapycbut (0,50 mmol; 673,4104 g mol⁻¹) em aproximadamente 80 mL de metanol, com agitação e leve aquecimento (45 °C), foram adicionados 0,1861 g (0,5 mmol; 372,36 g mol⁻¹) de $Zn(CIO_4)_2.6H_2O$. Em seguida adicionou-se 80 mL com um funil de extração lentamente contendo 0,2581 g (0,5 mmol; 516,20 g mol⁻¹) de Fe(CIO₄)₃.9H₂O. Manteve-se a agitação e o aquecimento por aproximadamente 15 minutos. Após o término do gotejamento, foram adicionados 0,2448 g (2 mmol; 122,44 g mol⁻¹) de NaCIO₄ e 1,5 mL de NaOH (1 mol L⁻¹).

Filtrou-se e deixou-se em repouso. Após 1 dia na estufa de cristalização em 25 °C, houve a formação de um precipitado roxo o qual foi filtrado e lavado com metanol. Rendimento: 56,6%. *m/z*: 815,28. CHN – Calculado para FeZnC₄₁H₅₄Cl₂N₇O₁₃: C, 47,17; H, 5,12; N, 9,39; Encontrado: C: 47,12; H: 5,21; N: 9,38. Absorção atômica, em mg mL⁻¹: Fe = 4,20±0,18 (5,30%), Zn = 4,89±0,05 (6,29%), proporção Fe:Zn - 1:1.

4. RESULTADOS E DISCUSSÕES

4.1. Caracterização dos Ligantes

4.1.1. Espectroscopia no Infravermelho (IR)

A espectroscopia no infravermelho é uma técnica utilizada para observar a formação de cada etapa das sínteses dos ligantes finais.

Em todos os precursores e ligantes finais pode-se observar bandas de estiramento $C-H_{Ar}$, $C-H_{Alif}$, C=C, C-N e C=N.

Para os precursores, como no pmeamff é possível observar a presença da banda de estiramento C=O (seta vermelha na Figura 35) e C-O_{Fenol}. No pmeamffpy, a banda de estiramento C=O não está presente, porém a banda de estiramento e deformações angulares do fenol central são observadas como mostra a comparação na Figura 39 e na Tabela 3 (Nakamoto, 1977; Silverstein *et al.*, 1994).

Figura 39. Espectros no IR dos precursores pmea (azul claro), pmeamff (azul escuro) e pmeamffpy (preto) (KBr).

Atribuição	pmea	pmeamff	pmeamffpy	
ν (O-H)	3386	-	-	
ν (C-H _{Ar} e	3066-	3066-	3060-	
C-H _{Alif})	2838	2845	2832	
v (C=O)	-	1678	-	
v (C=N e	v (C=N e 1590-		1590-	
C=C)	1436	1430	1433	
δ (O-H _{Fenol})	(O-H _{Fenol}) -		1367	
v (C-O _{Fenol})	-	1279	1233	
v (C-N)	1147	1118	1118	
δ (C-H _{Ar})	761	758	760	

Tabela 3. Atribuições das bandas do IR para os precursores.

Para os ligantes finais é possível observar que para o ligante H_2L^2 observa-se a banda de estiramento C=O em 1673 cm⁻¹ (seta vermelha na Figura 36), que está ausente no espectro quando são feitas derivatizações com diaminas formando os ligantes H_2L^2 -et e H_2L^2 -but, esses dados sugerem a formação dos compostos sintetizados, como mostra a Figura 40 e a Tabela 4 (Nakamoto, 1977; Silverstein *et al.*, 1994).

Figura 40. Espectros no IR dos ligantes finais H_2L^2 (azul claro), H_2L^2 -et (azul escuro) e H_2L^2 -but (preto) (ATR).

Atribuição	H_2L^2	H ₂ L ² -et	H ₂ L ² -but				
v (O-H)	-	-	3386				
ν (C-H _{Ar} e	3052-	3059-	3056-				
C-H _{Alif})	2852	2834	2852				
v (C=O)	1673	-	-				
ν (C=N e	1588-	1614-	1632-				
Č=C)	1431	1433	1435				
δ (O-H _{Fenol})	1373	1369	1382				
v (C-O _{Fenol})	1224	1231	1238				
v (C-N)	1114	1150	1152				
δ (C-H _{Ar})	752	758	761				

Tabela 4. Atribuições das bandas do IR para os ligantes finais.

4.1.2. Espectroscopia de Ressonância Magnética Nuclear de Hidrogênio e Carbono – NMR (¹H e ¹³C)

Para constatar a pureza adequada para os precursores e ligantes finais foi utilizada a espectroscopia de ¹H NMR. Com as integrações foi possível confirmar o número de hidrogênios presentes na molécula, bem como diferenciá-los em metílicos, metilênicos e aromáticos (Silverstein *et al.*, 1994). Dessa forma, constatou-se que todos os ligantes estavam com pureza adequada. Nas Tabelas 5 e 6 os valores de deslocamento químico (δ em ppm), número de átomos de hidrogênio correspondentes e as atribuições dos sinais.

Atribuição	cmff	pmea	pmeamff	pmeamffpy
CH₃	2,35	-	2,25	2,21
	(s, 3H)		(s, 3H)	(s, 3H)
CH ₂	4,66	3,95	3,92	3,96 – 3,81
	(s, 2H)	(s, 2H)	(s, 2H)	(m, 8H)
		3,08 – 3,03	3,81	3,02 – 3,01
		(m, 4H)	(s, 2H)	(m, 4H)
			3,03	
			(s, 4H)	
CH _{Ar}	7,45	8,53	8,57 – 8,44	8,55 – 8,44
	(s, 1H)	(d, 2H _{py})	(dd, 2H _{py})	(m, 3H)
	7,33	7,63 – 7,57	7,67-7,50	7,68 – 7,48
	(s, 1H)	(m, 2H)	(m, 4H)	(m, 3H)
		7,30 – 7,29	7,24–7,04	7,38 – 7,24
		(d, 1H)	(m, 4H)	(m, 3H)
		7,19 – 7,18		7,16 – 7,03
		(d, 1H)		(m, 3H)
		7,15 – 7,10		6,91
		(m, 2H)		(s, 1H)
				6,79
				(s, 1H)
CH _(Aldeído)	9,85	-	10,23	-
	(s, 1H)		(s, 1H)	
OH	11,25	-	-	-
	(s, 1H)			
NH	-	2,33	-	-
		(s, 1H)		

Tabela 5. Deslocamentos químicos (δ_H) dos espectros de ¹H NMR para os precursores.

Atribuição	H_2L^2	H ₂ L ² -et	H ₂ L ² -but
CH₃	2,23 (s, 3H) 2,19 (s, 3H)	2,20 (s, 6H)	2,20 (s, 6H)
CH ₂	3,86 (s, 2H) 3,84 (s, 2H) 3,80 (s, 4H) 3,71 (s, 2H) 3,05-2,96 (m, 4H)	3,85 - 3,69 (m, 12H) 3,04 - 2,96 (m, 4H) 2,78 (m, 2H) 2,63 (m, 2H)	3,85 - 3,69 (m, 12H) 3,01 - 2,99 (m, 4H) 2,69 - 2,59 (m, 4H) 1,47 (t, 2H)
CH _{Ar}	8,54 (s, 2H _{py}) 8,43 – 8,42 (s, 1H _{py}) 7,61 – 6,78 (m, 13H)	8,55 – 8,42 (m, 3H _{py}) 7,64 – 6,80 (m, 13H)	8,52 – 8,42 (m, 3H _{py}) 7,61 – 6,80 (m, 13H)
CH(Aldeído)	10,26 (s, 1H)	-	-

Tabela 6. Deslocamentos químicos (δ_H) dos espectros de ¹H NMR para os ligantes finais.

É possível observar nas ampliações os valores de deslocamentos de hidrogênio dos singletos, dupletos, tripletos e multipletos, como pode ser observado nos espectros (Figuras 41

Pró-ligante pmea

- 46) abaixo.

Para o pró-ligante pmea pode ser observado um singleto em 2,33 ppm referente ao átomo de hidrogênio ligado ao átomo de nitrogênio central da molécula (hidrogênio em azul). Entre 3,03 a 3,08 ppm (hidrogênios metilênicos em vermelho à esquerda do NH) pode ser observado o efeito do aumento de um átomo de carbono em relação ao pró-ligante bpma (já sintetizado pelo grupo), o qual aparecia com um singleto (Muxel et al., 2014) e para o prea é possível observar a presença de um sinal multipleto. A resolução do espectro não permite a atribuição dos valores de acoplamentos entre estes átomos de hidrogênio. Seria possível atribuí-los usando a análise de ressonância bidimensional. Os hidrogênios metilênicos aparecem como singleto em 3,95 ppm. Os hidrogênios ligados aos átomos de carbonos próximos aos átomos de nitrogênios da piridina aparecem como dupleto em 8,53 ppm. Os demais hidrogênios aromáticos aparecem no intervalo de 7,63 a 7,10 ppm. Considerando que a estrutura não é simétrica, os valores para os hidrogênios na região aromática devem ser ligeiramente diferentes e estes podem cair em regiões muito próximas dificultando a atribuição. Análise por correlação entre hidrogênios e/ou carbono seria uma ferramenta para essa atribuição mais precisa.

Figura 41. Espectro de ¹H NMR do pmea em CDCl₃.

¹H NMR - δ_{H} (200 MHz; CDCl₃), em ppm: 2,33 (s, 1H, NH); 3,08-3,03 (m, 4H, CH₂); 3,95 (s, 2H, CH₂); 7,15-7,10 (m, 2H, CH_{ar}); 7,19-7,18 (d, 1H, CH_{ar}); 7,30-7,29 (d, 1H, CH_{ar}); 7,63-7,57 (m, 2H, CH_{ar}); 8,53 (d, 2H, CH_{py}).

Pró-ligante pmeamff

Para o pró-ligante pmeamff em relação ao pmea, pode ser observado um singleto em 2,25 ppm referente aos hidrogênios metílicos (hidrogênios em roxo) e um singleto em 10,23 ppm referente ao hidrogênio do aldeído (hidrogênio em laranja).

Figura 42. Espectro de ¹H NMR do pmeamff em CDCl₃.

 1H NMR - δ_H (200 MHz; CDCl₃), em ppm: 2,25 (s, 3H, CH₃); 3,03 (s, 4H, CH₂); 3,81 (s, 2H, CH₂); 3,92 (s, 2H, CH₂); 7,04–7,24 (m, 4H, CH_{ar}); 7,67-7,50 (m, 4H, CH_{ar}); 8,57-8,44 (dd, 2H, CH_{py}); 10,23 (s, 1H, CH_{ald}).

Pró-ligante pmeamffpy

No caso do pró-ligante pmeamffpy em relação ao pmeamff, pode ser observado que não aparece mais o singleto referente ao hidrogênio do aldeído.

¹H NMR - δ_{H} (200 MHz; CDCl₃), em ppm: 2,21 (s, 3H, CH₃); 3,01-3,02 (m, 4H, CH₂); 3,96-3,81 (m, 8H, CH₂); 6,79 (s, 1H, CH_{ar}); 6,91(s, 1H, CH_{ar}); 7,03-7,16 (m, 3H, CH_{ar}); 7,24-7,38 (m, 3H, CH_{ar}); 7,48-7,68 (m, 3H, CH_{ar}); 8,44-8,55 (m, 3H, CH_{ar}).

Ligante final H₂L²

Para o ligante final H_2L^2 em relação ao pró-ligante pmeamffpy, pode ser observado dois singletos em 2,19 e 2,23 ppm referente aos hidrogênios metílicos (hidrogênios em roxo) e um singleto em 10,26 ppm referente ao hidrogênio do aldeído lateral (hidrogênio em laranja).

Figura 44. Espectro de ¹H NMR do H₂L² em CDCl₃.

¹H NMR - δ_{H} (200 MHz; CDCl₃), em ppm: 2,19 (s, 3H, CH₃); 2,23 (s, 3H, CH₃); 3,05- 2,96 (m, 4H, CH₂); 3,71 (s, 2H, CH₂); 3,80 (s, 4H, CH₂); 3,84 (s, 2H, CH₂); 3,86 (s, 2H, CH₂); 7,61-6,78 (m, 13H, CH_{ar}); 8,43-8,42 (m, 1H, CH_{py}); 8,54 (m, 2H, CH_{py}); 10,26 (s, 1H, CH_{ald}).

Ligante final H₂L²-et

O ligante final H_2L^2 -et em relação ao ligante final H_2L^2 , pode ser observado que não aparece mais o singleto referente ao hidrogênio do aldeído, ou seja, é possível observar que a derivatização com a diamina alifática 1,2-etilenodiamina.

 ^1H NMR - δ_H (200 MHz; CDCl₃), em ppm: 2.20 (s, 6H, CH₃); 2.63 (t, 2H, CH₂); 2.78 (t, 2H, CH₂); 2.96-3.04 (m, 4H, CH₂); 3.69-3.85 (m, 12H, CH₂); 6.80-7.61 (m, 13H, CH_{ar}); 8.42-8.55 (m, 3H, CH_{py}). Ligante final H₂L²-but

O ligante final H_2L^2 -et em relação ao ligante final H_2L^2 , pode ser observado que não aparece mais o singleto referente ao hidrogênio do aldeído, ou seja, é possível observar que a derivatização com a diamina alifática 1,2-etilenodiamina.

Figura 46. Espectro de ¹H NMR do H₂L²-but em CDCI₃.

¹H NMR - δ_{H} (200 MHz; CDCl₃), em ppm: 2,20 (s, 6H, CH₃); 1,47 (m, 2H, CH₂); 2,59-2,69 (m, 4H, CH₂); 2,99-3,01 (m, 4H, CH₂); 3,69-3,85 (m, 12H, CH₂); 6,80-7,61 (m, 13H, CH_{ar}); 8,42-8,52 (m, 3H, CH_{py}).

Através do ¹³C NMR é possível verificar a formação dos ligantes modificados com diaminas, ficando evidente a diferença de dois carbonos. No caso do ligante H_2L^2 -et que possui 39 carbonos e encontra-se na Figura 47a, observa-se a diferença de dois carbonos mostrada pelas setas vermelhas na Figura 47b já que o ligante H_2L^2 -but possui 41 carbonos.

Figura 47. Deslocamentos químicos (δ_c) dos espectros de ¹³C NMR para os ligantes finais H₂L²-et (a) e H₂L²-but (b) em CDCI₃.

4.1.3. Espectrometria de Massa com Ionização por Electrospray (ESI-MS e ESI-QTOF)

A espectrometria de massa com ionização por electrospray (ESI-MS e ESI-QTOF) permite identificar a presença dos íons moleculares e também de fragmentos dos ligantes. Os espectros de massa são sumarizados na Tabela 7 (Distribuição isotópicas encontram-se no procedimento experimental).

	Espécie	m/z	Representação
pmea	C ₁₃ H ₁₅ N ₃ (+1)	214,1339	pmea + H ⁺

Tabela 7. Espécies encontradas na espectrometria de massa.

pmeamff	C ₂₂ H ₂₃ N ₃ O ₂ (+1)	362,1863	pmeamff + H⁺
pmeamffpy	C ₂₈ H ₃₁ N ₅ O (+1)	454,2607	pmeamffpy + H+
H_2L^2	C ₃₇ H ₃₉ N ₅ O ₃ (+1)	602,3131	$H_2L^2 + H^+$
H ₂ L ² -et	C ₃₉ H ₄₇ N ₇ O ₂ (+1)	646,3869	H_2L^2 -et + H^+
H ₂ L ² -but	$C_{41}H_{51}N_7O_2(+1)$	674,4182	H ₂ L ² -but + H ⁺

4.2. Caracterização dos Complexos

4.2.1. Espectroscopia no Infravermelho (IR)

Utilizando a espectroscopia vibracional na região do infravermelho pode-se fazer comparação entre os espectros do complexo com o ligante livre. O surgimento de novas bandas no espectro do complexo, como a presença de bandas referentes ao contra-íon, ligantes ponte e moléculas de água coordenadas, sugerem a formação do complexo, o qual também pode ser avaliado pelos deslocamentos de energia quando comparados ao ligante (Nakamoto, 1977; Silverstein *et al.*, 1994).

Observa-se uma semelhança, comparando o espectro do complexo com o do ligante (1 – Figura 48, 2 – Figura 49 e 3 – Figura 50 e atribuições na Tabela 8), o que traz como indicação que o ligante se manteve no complexo.

Figura 48. Espectro no IR do H_2L^2 (vermelho) e complexo 1 (preto) (ATR).

Figura 49. Espectro no IR do H_2L^2 -et (vermelho) e complexo 2 (preto) (ATR).

Figura 50. Espectro no IR do H_2L^2 -but (vermelho) e complexo **3** (preto) (ATR).

Atribuição	H ₂ L ²	1	H ₂ L ² -et	2	H ₂ L ² -but	3
ν (O-H)	-	3438	-	3340	3386	-
v (C-H _{Ar} e	3052-	2918-	3059-	3020-	3056-	3017-
C-H _{Alif})	2852	2860	2834	2856	2852	2863
v (C=O)	1673	1661	-	-	-	-
ν (C=N e	1588-	1606-	1614-	1609-	1632-	1607-
C=C)	1431	1420	1433	1447	1435	1443
δ (O-H _{Fenol})	1373	-	1369	-	1382	-
v (C-O _{Fenol})	1224	1263	1231	-	1238	-
v (C-N)	1114	-	1150	1158	1152	1144
δ (C-H _{Ar})	752	768	758	765	761	764
v (CI-O)	-	1090	-	1095	-	1089

Tabela 8. Atribuições de bandas no IR para ligantes e complexos.

A coordenação do metal foi observada, uma vez que as principais bandas presentes nos ligantes foram deslocados em relação aos números de onda, para maior energia, após a formação dos complexos. Em todos os complexos, pode-se observar (Tabela 8) os valores referentes aos estiramentos e deformações angulares das ligações das piridinas e dos fenóis (C=C, C=N, C-H e C-O) presentes no ligante. Para o complexo 1, pode-se verificar uma banda intensa em 1673 cm⁻¹ referente ao aldeído, que também se encontra no complexo em 1661 cm⁻¹, mostrando que não houve coordenação do grupo carbonila. Porém houve um deslocamento para menor número de onda, pois o metal no complexo é um ácido de Lewis, recebe elétrons, vibrando em valores de menor energia.

A ausência da banda observada no ligante em aproximadamente 1373 cm⁻¹, atribuída ao δ (O-H_{fenol}), é indicativa da coordenação do grupo do fenolato no lado "duro" do ligante ao centro de Fe^{III} e também da formação de uma ponte de fenoxo entre Fe^{III} e Zn^{II}. Os mesmos padrões são observados ao comparar os pares H₂L²-et/2 (em 1369 cm⁻¹) e H₂L²-but/3 (em 1382 cm⁻¹). Estes resultados estão de acordo com os relatados para complexos semelhantes anteriormente sintetizados (Peralta *et al.*, 2010; Piovezan *et al.*, 2010; Piovezan *et al.*, 2012; De Souza *et al.*, 2013; Muxel *et al.*, 2014; Camargo, T. P. *et al.*, 2015; De Souza *et al.*, 2015; Osório *et al.*, 2015). Outras bandas que sugerem a formação do complexo é a presença da banda intensa em aproximadamente 1090 cm⁻¹, referente ao estiramento atribuído ao modo vibracional do contraíon perclorato. Na região de 3438 (1), 3340 (2) e 3347 (3) cm⁻¹ esse estiramento pode ser atribuído à molécula de água, que encobre os picos das aminas dos ligantes H_2L^2 -et e H_2L^2 -but.

4.2.2. Cálculos de Estrutura Eletrônica

Como não foi possível a obtenção de estruturas cristalinas binucleares dos complexos e, a fim de ajudar na elucidação das estruturas dos complexos formados, utilizando a Teoria do Funcional de Densidade (DFT) foram realizados cálculos de camada aberta.

As frequências vibracionais foram calculadas para todas as estruturas e são positivas para todas as estruturas dos complexos Fe^{III}Zn^{II}L² (**1a**), Fe^{III}Zn^{II}L²-et (**2a**) e Fe^{III}Zn^{II}L²-but (**3a**) e os conjugados de fosfato Fe^{III}Zn^{II}L²-PO₄ (**1b**), Fe^{III}Zn^{II}L²-et-PO₄ (**2b**) e Fe^{III}Zn^{II}L²-but-PO₄ (**3b**) mostram uma frequência negativa menor, que corresponde à rotação do anel aromático.

À estrutura mais provável para o íon Zn^{II} em solução mostra uma estrutura octaédrica com uma molécula de água coordenada. Embora já tenham sido publicados dados de estrutura cristalina de complexos semelhantes e os mesmos sejam um bom ponto de partida para cálculos geométricos do complexo 1, a assimetria do lado macio traz um novo desafio, uma vez que as piridinas ligadas ao centro do Zn^{II} podem ter diferentes isômeros estruturais. Por esta razão, diferentes estruturas do complexo 1 foram otimizadas num grau inferior de teoria (base SVP) na tentativa de comparar suas energias totais. Além disso, as estruturas calculadas dos complexos 1-3 estão de acordo com dados cristalográficos já publicados na literatura obtida por Piovezan (Piovezan *et al.*, 2010) e Peralta (Peralta *et al.*, 2010), como pode ser visto na Tabela 9.

Tabela 9. Comprimentos de ligação selecionados para os complexos calculados para comparação com alguns valores de dados cristalográficos (os números dos átomos foram renumerados para se adequarem aos dados teóricos apresentados neste estudo).

Teórico	1	2	3	Dados	Complexo	Complexo
				Crist.	[Fe [⊪] (µ-	[Fe [⊪] (µ-
					OH)Zn ⁱⁱ	OH)Zn ⁱⁱ
					(L-CH ₃)]	(L ¹)]
Fe-Zn	3,113	3,050	3,050	Fe-Zn	3,0862(18)	3,0550(16)
Fe-N₁	2,262	2,264	2,264	Fe-N₁	2,186(3)	2,127(3)
Fe-N ₂	2,232	2,288	2,288	Fe-N ₂	2,137(8)	2,185(6)
Fe-O₁	1,936	1,926	1,926	Fe-O ₁	1,892(3)	1,899(2)
Fe-O ₂	1,963	1,977	1,977	Fe-O ₂	2,112(3)	1,948(5)
Fe-O ₃	2,086	2,092	2,092	Fe-O ₃	2,053(3)	1,968(2)
Fe-O₄	2,028	1,984	1,984	Fe-O ₄	1,920(7)	1,986(5)
Zn-N₃	2,259	2,279	2,279	Zn-N₃	2,152(7)	2,273(6)
Zn-N₄	2,156	2,167	2,167	Zn-N₄	2,056(8)	2,120(7)
Zn-N₅	2,212	2,206	2,206	Zn-N₅	2,073(8)	2,120(7)
Zn-O ₃	2,180	2,207	2,207	Zn-O ₃	2,101(3)	2,081(7)
Zn-O ₄	2,057	2,027	2,027	Zn-O ₄	1,969(6)	2,039(6)
Zn-O ₅	2,207	2,172	2,172	Zn-O₅	-	2,067(6)

Como esperado, os resultados mostram os íons Fe^{III} são facialmente coordenados pelo braço tridentado duro dos ligantes, bem como um grupo hidroxo, a geometria octaédrica distorcida dos centros Fe^{III} são completadas por um grupo µ-fenolato central e um grupo µ-hidroxo que atuam como unidades ponte entre os dois centros metálicos. Além dos grupos pontes, os íons Zn^{II} mostra o braço tridentado macio dos ligantes são facialmente coordenado com uma molécula de água para completar a geometria octaédrica distorcida como pode ser visto e na Figura 51. Figura 51. Estruturas calculadas para complexos (a) **1a**, (b) **2a** e (c) **3a**, respectivamente. Os átomos de hidrogênio ligados aos átomos de carbono são omitidos para maior clareza.

Os resultados mostram que a parte do ligante contendo etilpiridina encontra-se no mesmo lado da parte do ligante contendo fenol, sendo 6,77 kcal mol⁻¹ mais estável do que a conformação que a etil piridina ocupa a posição *trans*.

Os complexos 2 e 3 contêm cadeias carbônicas laterais com diaminas adicionadas ao grupo carbonil, a influência da posição dessas cadeias laterais foram calculadas e seus valores de energias comparados. Ambos os compostos apresentam uma maior estabilização, com a aproximação das aminas terminais ao oxigênio da ponte µ-hidroxo, formando uma ligação de hidrogênio tal como pode ser visto pela Figura 45b e 45c, com distâncias de 1,816 e 1,756 Å para os complexos 2 e 3, respectivamente. Uma vez que ambas as estruturas, mostram uma diminuição da energia total ao fazer essas ligações de hidrogênio, a energia de estabilização decorrente da ligação de hidrogênio compensa na perda de entropia resultante da organização da cadeia lateral, que provavelmente é fixada em torno dessa geometria.

A protonação da amina terminal reduz a energia em ambos os casos. No entanto, existem vários efeitos sobrepostos, entre eles o da ligação formada. Por esta razão, e para avaliar a estabilização proporcionada pela formação de uma nova ligação, os cálculos foram realizados nas mesmas geometrias que as calculadas para os complexos com diaminas da cadeia lateral protonadas, mas com a remoção de um próton (H⁺) que foi considerado uma carga pontual. Existe uma forte estabilização da cadeia lateral da etanodiamina com a presenca de uma carga residual no sistema e com a nova conformação adotada, como evidenciado pela diferença de energia entre (2) e (3). A diferença de energia entre a amina protonada e o deslocamento da carga resulta em uma aproximação da energia de ligação. Os valores de energia de protonação são consistentes com os intervalos relatados na literatura. A diferença entre os valores de energia para a amina e a retirada da carga mostra que a energia muda devido às modificações conformacionais e à presença de carga na amina terminal, indicando um efeito eletrostático. No caso da cadeia lateral com butanodiamina (H₂L²-but e Fe^{III}Zn^{II}L²-but), a diferença é muito baixa, enquanto que para a cadeia lateral com etanodiamina (H2L2-et e FeIIIZnIIL2-et) esta diferenca é positiva (Tabela 10).

∆E (kJ mol⁻¹)	2	3	
$(-NH_{3}^{+}) - (-NH_{2}^{+})$	-1070,514	-1044,499	
(-NH ₃ +) – (-NH ₂)	-3022,578	-849,272	
(-NH ₂) – (-NH ₂ +)	1952,064	-195,227	

Tabela 10. Valores de energia calculados para os complexos 2 e 3 e a influência da amina terminal protonada.

Todos estes resultados indicam que as otimizações geométricas são verdadeiramente os mínimos de energia e são estruturas válidas para comparação das geometrias teóricas obtidas. A comparação das frequências vibracionais calculadas e obtidas por espectroscopia de IR correlacionam com a afirmação acima, uma vez que os dados mostram boa concordância tanto em energias como em intensidades. O cálculo teórico foi feito baseado na hipótese de uma única molécula em seu estado gasoso e no vácuo. Assim, nas Figuras 52 - 54 e na Tabela 11, a seguir, foi realizada a comparação entre os valores das frequências vibracionais experimentais dos complexos com aqueles que foram calculados.

rabela 11. Athbulções de bandas no ir para complexos $\mathbf{I} = 3$								
(experimental e calculado).								
Atribuição	1	1	2	2	3	3		
	Exp.	Calc.	Exp.	Calc.	Exp.	Calc.		
ν (O-H)	3438	-	3340	-	-	-		
ν (C-H _{Ar} e	2918-	2949-	3020-	2935-	3017-	3046-		
Ċ-H _{Alif})	2860	2847	2856	2840	2863	2860		
v (C=O)	1661	1687	-	-	-	-		
v (C=N e	1606-	1626-	1609-	1470	1607-	1621-		
Č=C)	1420	1462	1447		1443	1461		
δ (O-H _{Fenol})	-		-		-			
ν (C-O _{Fenol})	1263	-	-	-	-	-		
v (C-N)	-	-	1158	-	1144	1144		
δ (C-H _{Ar})	768	786	765	798	764	784		

1095

1089

v (CI-O)

1090

Figura 52. Espectro de IR do complexo 1 (preto) e calculado para o complexo 1 (vermelho).

Figura 53. Espectro de IR do complexo **2** (**preto**) e calculado para o complexo **2** (vermelho).

Figura 54. Espectro de IR do complexo **3** (preto) e calculado para o complexo **3** (vermelho).

4.2.3. Análise Elementar de CHN

A Análise Elementar é uma técnica usada para determinar as porcentagens de carbono, hidrogênio e nitrogênio em uma amostra e assim avaliar a composição do complexo sintetizado. Na Tabela 12 observa-se que os resultados obtidos nas análises quando comparados os estão em concordância valores experimentais com os teóricos, indicando que as propostas estruturais são apropriadas. Esses valores foram calculados como fórmulas base nas seauintes moleculares: (1) FeZnC₃₇H₄₂N₅Cl₂O₁₄ (Figura 55a), (2) FeZnC₃₉H₅₀Cl₂N₇O₁₃ (Figura 55b) e (3) FeZnC₄₁H₅₄Cl₂N₇O₁₃ (Figura 55c).

Figura 55. Estruturas dos complexos correspondentes as fórmulas moleculares encontradas nas análises de CHN, (a) 1, (b) 2 e (c) 3.

Tabela 12. Porcentagens obtidas na análise elementar com seus respectivos valores experimentais e teóricos.

Complexo	C%	C%	H%	H%	N%	N%
	Exp.	Teo.	Exp.	Teo.	Exp.	Teo.
1	45,73	45,68	4,78	4,35	6,74	7,20
2	46,06	46,11	4,96	4,86	9,64	9,65
3	47,12	47,17	5,21	5,12	9,38	9,39

4.2.4. Condutimetria

Realizou-se a condutimetria dos complexos em soluções com concentração de 1x10⁻³ mol L⁻¹. Esses dados estão sumarizados na Tabela 13.

Tabela 13. Valores de condutividade molar para os complexos 1 - 3.

	Condutividade	Proporção	Solvente	T (ºC)
	Molar	Complexo:		
	(µS cm⁻¹)	Contra-íon		
1	191,26	-	CH₃CN	21
1	184,23	-	CH₃CN	25
1	185,90	1:2	MeOH	25
2	230,68	1:2	CH ₃ CN	25
3	278,28	1:2	CH ₃ CN	25

Para todos os complexos foi possível observar que as estruturas encontradas na Análise Elementar de C, H e N se mantiveram em solução, pois em metanol para o complexo **1** mostrou uma condutividade molar de 185,90 μ S cm⁻¹, comparando com a literatura indica a presença de dois equivalentes de íons positivos por molécula de complexo, sendo 2 contra-íons percloratos, como pode ser observado na Figura 56.

Figura 56. Proposta de estrutura para o complexo 1.

Para o complexo **1** também foi realizado em acetonitrila, porém não foi possível obter uma resposta conclusiva, pois a faixa de valores em acetonitrila caracteriza eletrólitos do tipo 1:1 a qual encontra-se entre $120 - 160 \ \mu\text{S cm}^{-1}$ e do tipo 1:2 encontra-se na faixa de $220 - 300 \ \mu\text{S cm}^{-1}$, mas não foi conclusiva pelo fato de que pode ter mistura de espécies protonadas e desprotonadas (mesmo o meio não sendo prótico, isto pode ocorrer pela pequena quantidade de água que está no solvente acetonitrila).

Os complexos **2** e **3** apresentaram respectivamente, 230,68 e 278,28 μ S cm⁻¹, ou seja, a proporção é de 1:2, os quais são justificados conforme a Figura 57, estes dados encontram-se de acordo com a literatura e com os dados de CHN (Geary, 1970).

Figura 57. Proposta de estrutura para os complexos 2 e 3.

4.2.5. Absorção atômica

Para quantificar os dois metais presentes nos complexos, ferro e zinco, foram realizadas análise por espectrometria de absorção atômica. O uso dessa técnica de quantificação permite verificar a proporção desses metais em uma solução dos complexos, com concentração conhecida.

O procedimento foi aplicado satisfatoriamente para as soluções dos complexos em acetona/água (10:90% - V/V). Foram obtidos os valores das porcentagens de Fe e Zn nos complexos, como pode ser observado na Tabela 14.

Tabela 14. Valores de absorção atômica em mg mL⁻¹ para os complexos 1 - 3.

	Fe	%	%	Zn	%	%
	(mg mL ⁻¹)	Exp.	Teo.	(mg mL ⁻¹)	Exp.	Teo.
1	2,59±0,08	5,72	5,74	3,27±0,07	6,73	6,72
2	4,91±0,03	5,51	5,49	5,97±0,13	6,44	6,43
3	4,20±0,18	5,30	5,34	4,89±0,05	6,29	6,26

A partir desses resultados, foi possível observar que para as análises de ferro e zinco, o valor experimental é muito similar ao teórico, baseando na estrutura do CHN. Essa técnica se mostrou bastante útil para a determinação a proporção de Fe:Zn, sendo essa de 1:1 para todos os complexos, ou seja, resultado para um complexo binuclear Fe^{III}Zn^{II}.

4.2.6. Espectroscopia Eletrônica (UV-Vis)

Para os complexos formados pelos metais $Fe^{III} e Zn^{II}$ foram observadas bandas na região de aproximadamente 500 nm, as quais são atribuídas à transferência de carga do tipo ligante \rightarrow metal (TCLM) dos orbitais $p\pi$ do fenolato para os orbitais $d\pi$ do íon Fe^{III} (Lanznaster *et al.*, 2002; Peralta *et al.*, 2010). Para o complexo 1 é observada uma banda em 362 nm, atribuída a uma transição a partir do orbital $p\pi$ do fenolato para o orbital $d\sigma^*$ do Fe^{III} (Piovezan *et al.*, 2010). Todos os complexos apresentam bandas entre 250 e 300 nm atribuídas às transições intraligantes dos anéis da piridina e fenólicos. As bandas correspondentes de transição *dd* para esses complexos não podem ser observadas pois são encobertas pela banda de transferência de carga do tipo ligante \rightarrow metal (TCLM) entre 500 a 600 nm. Esses resultados estão de acordo com outros complexos da literatura (Peralta *et al.*, 2010; Piovezan *et al.*, 2010; Jarenmark *et al.*, 2011; De Souza *et al.*, 2013; Camargo, T. P. *et al.*, 2015). Em todos os casos obteve-se um deslocamento batocrômico, ou seja, houve um deslocamento da banda de absorção para mais baixa energia e comprimento de onda maior (deslocamento para a região do vermelho), seguindo a ordem dos solventes empregados: $\lambda_{máx}$ CH₃CN:H₂O(1:1) < CH₃CN < CH₂Cl₂.

Dados dos espectros eletrônicos para os complexos são apresentados na Tabela 15.

Complexo	λ _{máx} nm	λ _{máx} nm	λ _{máx} nm
	(8 mol L ⁻¹ cm ⁻¹)	(E mol L ⁻¹ cm ⁻¹)	(E mol L ⁻¹ cm ⁻¹)
	CH₃CN	CH ₃ CN:H ₂ O(1:1)	CH ₂ Cl ₂
1	513 (1552)	507 (1230)	522 (3078)
	362 (13903)	362 (9387)	
	294 (15117)	294 (11891)	
	256 (33905)	258 (24390)	
2	501 (1619)	490 (1304)	505 (2834)
	291 (25620)	291 (18715)	
	258 (35888)	258 (25539)	
3	526 (1927)	513 (1663)	536 (2428)
	287 (19773)	291 (16695)	
	258 (25598)	259 (21513)	

Tabela 15. Dados de espectroscopia eletrônica para complexos 1 – 3.

Figura 58. Espectros eletrônicos do complexo 1 com concentração de $3,0x10^{-4}$ mol L⁻¹.

Figura 59. Espectros eletrônicos do complexo ${\bf 2}$ com concentração de 3,0x10^-4 mol L^-1.

Figura 60. Espectros eletrônicos do complexo 3 com concentração de $3,0x10^{-4}$ mol L⁻¹.

Figura 61. Espectro eletrônico do complexo 1 em CH₃CN/H₂O (1:1) com concentração de $3,0x10^{-5}$ mol L⁻¹.

Figura 62. Espectro eletrônico do complexo 2 em CH₃CN/H₂O (1:1) com concentração de $3,0x10^{-5}$ mol L⁻¹.

Figura 63. Espectro eletrônico do complexo 3 em CH₃CN/H₂O (1:1) com concentração de $3,0x10^{-5}$ mol L⁻¹.

A fim de verificar a estabilidade dos complexos em solução e em estado sólido, foram realizadas análises de reflectância difusa para os complexos 1 (Figura 64), 2 (Figura 65) e 3 (Figura 66) e os espectros apresentam também a banda de transferência de carga em aproximadamente 500 nm, o que indica que os grupos fenolatos dos complexos estão coordenados independente do meio.

Figura 64. Espectro eletrônico do complexo 1 no estado sólido.

Figura 65. Espectro eletrônico do complexo 2 no estado sólido.

Figura 66. Espectros eletrônicos do complexo **3** no estado sólido.

4.2.7. Espectrometria de Massas com Ionização por Electrospray (ESI-MS e ESI-QTOF)

A espectrometria de massas via electrospray é uma técnica muito utilizada na caracterização de complexos, pois produz íons em estado gasoso direto da solução, trazendo informações qualitativas das espécies carregadas existentes da solução.

As análises de espectrometria de massas foram realizadas em acetonitrila/água – 1:1. Para os complexos **1**, **2** e **3**, os picos com *m/z* encontrados foram 809,21, 879,18 e 815,28, respectivamente. Esses valores podem ser atribuídos aos compostos [Fe^{II}(μ -OH)Zn^{II}(L²)]¹⁺ + CH₃CN + CH₃OH (**1**), [Fe^{II}(μ -OH)Zn^{II}(L²-et)]¹⁺ + Li⁺ + CIO₄⁻ (**2**) e [Fe^{II}(μ -OH)Zn^{II}(L²-but)]¹⁺ + Li⁺ + OH⁻ + H₂O (**3**). O pico para o complexo **1** indica que o complexo possui acetonitrila e metanol, sem contra-íon.

Para todos os complexos pode ser visto que o centro de Fe^{III} foi reduzido para Fe^{II}. Nos complexos **2** e **3** observa-se a presença de íons Li⁺ provindos do material de vidro utilizado na preparação da amostra ou da injeção da amostra (Hoffmann e Stroobant, 2007). Mesmo que os espectros de massas dos complexos mostram uma razão de massa-carga de uma unidade, as análises de condutividade indicam uma proporção molar de 2 para 1 de eletrólito, corroborando à formação de complexos e os valores estão de acordo com resultados anteriores.

Figura 67. Espectro de ESI-MS do complexo **1** em CH₃CN/H₂O (1:1) com a respectiva estrutura proposta. m/z = 809,21.

Figura 68. Espectro de ESI-QTOF do complexo **2** em CH₃CN/H₂O (1:1) com a respectiva estrutura proposta. m/z = 879,18.

Figura 69. Espectro de ESI-QTOF do complexo **3** em CH₃CN/H₂O (1:1) com a respectiva estrutura proposta. m/z = 815,28.

4.2.8. Titulação Espectrofotométrica

espectroscópicos que resultados Considerando os fornecem informações sobre os ligantes e os seus centros metálicos, o equilíbrio químico dos complexos foram investigados, a fim de determinar as espécies presentes na solução. Observouse que a banda de transferência de carga do fenolato para o Fe^{III}, tem seu λ_{max} fortemente dependente do pH da solução. Durante a análise, foram observados pontos isosbésticos, indicando a presença de duas espécies em equilíbrio em cada faixa de pH estudada. Como já foi proposto anteriormente por outros autores (Lanznaster et al., 2002; Neves et al., 2007; Xavier et al., 2009; Peralta et al., 2010; Piovezan et al., 2010), o primeiro pKa é atribuído à formação de uma espécie com uma ponte do tipo µ-OH entre os centros metálicos, porém não foi possível observá-la pela titulação espectrofotométrica. O pKa1 corresponde a constante de desprotonação para a molécula de água coordenada com o centro de metal Fe^{III} e o p*K*a₂ é atribuída à molécula de água coordenada com o centro de metal Zn^{II} (Tabela 16 e Figuras 70-72).

	p <i>K</i> a₁	p <i>K</i> a₂
	Zn ^{II} OH ₂ OH ₂ OH ₂ OH ₂	Pre ^{III} PKa ₂ Zn ^{II} O Fe ^{III} OH OH OH OH
1	4,79±0,01	7,66±0,01
2	4,15±0,03	7,31±0,06
3	3,98±0,08	7,16±0,01

Tabela 16. Valores de pKas encontrados para os complexos 1 – 3 através da titulação espectrofotométrica.

Figura 70. Titulação espectrofotométrica para o complexo **1**. Faixa de pH: 4 - 8. Adição de 1,0 mol L⁻¹ de NaOH em solução de CH₃CN/H₂O (50:50) com I = 0,1 mol L⁻¹ (KCI).

Figura 71. Titulação espectrofotométrica para o complexo 2. Faixa de pH: 4 - 8. Adição de 1,0 mol L⁻¹ de NaOH em solução de CH₃CN/H₂O (50:50) com I = 0,1 mol L⁻¹ (KCI).

Figura 72. Titulação espectrofotométrica para o complexo **3**. Faixa de pH: 4 - 8. Adição de 1,0 mol L⁻¹ de NaOH em solução de CH₃CN/H₂O (50:50) com I = 0,1 mol L⁻¹ (KCI).

Como esperado, os valores de p*K*a encontrados para 1 são semelhantes aos relatados para o complexo [Fe^{III}(μ -OH)Zn^{II}(L¹)], devido à similaridade estrutural dos dois complexos. Por outro lado, os pKa₁ e pKa₂ para os complexos **2** e **3** são significativamente menores comparados ao complexo **1**. De acordo com os cálculos de DFT sugere que as estruturas das aminas protonadas levem a uma redução da energia quando comparada ao complexo com as aminas desprotonadas, sugerindo, por sua vez, fortes interações de hidrogênio entre os grupos amino terminais e o átomo de oxigênio μ -hidroxo ligado ao íon Fe^{III} (efeito da segunda esfera de coordenação).

4.2.9. Eletroquímica

As medidas eletroquímicas foram realizadas a pH 4 e 8 para todos os complexos. Todos os voltamogramas cíclicos mostram uma onda, que pode ser atribuída ao processo redox *quasi*-reversível Fe^{III} + e⁻ \Rightarrow Fe^{II}. Esses processos são altamente dependentes dos valores de pH, como pode ser visto na Tabela 17. Como esperado nessa faixa de potencial, os íons Zn^{II} não apresentam processos eletroquímicos.

Para o pH 4, a espécie predominante é $[(H_2O)Fe^{III}(\mu-OH)Zn^{II}(OH_2)(R)]^{2+}$ (R = L², L²-et, L²-but) enquanto a pH 8 ambas as moléculas de água coordenadas com os centros de metal Fe^{III} e Zn^{II} estão desprotonadas, prevalecendo a espécie $[(HO)Fe^{III}(\mu-OH)Zn^{II}(OH)(R)]$ (R = L², L²-et, L²-but). Estes resultados estão de acordo com as espécies encontradas na titulação espectrofotométrica.

As variações na esfera de coordenação do centro Fe^{III} afetam o potencial redox devido a variações na densidade eletrônica. A protonação do grupo hidroxo ligado ao centro de Fe^{III} diminui a densidade de elétrons no átomo de ferro e, portanto, causa uma mudança anódica no potencial redox, com estabilização do estado de oxidação de Fe^{II}, em comparação com as espécies desprotonadas.

O voltamograma de onda quadrada do complexo [Fe^{III}(μ -OH)Zn^{II}(L²)] (**1**) a pH 4,0 mostra um processo a +166 mV versus NHE, que é deslocado catodicamente para -325 mV quando o pH é aumentado para 8,0, indicando que, nesses valores de pH, diferentes espécies estão presentes em solução, conforme observado anteriormente a partir dos dados de titulação espectrofotométrica. Esse deslocamento é resultado do aumento da densidade de elétrons no centro de Fe^{III}, tornando mais difícil a redução. Um deslocamento catódico semelhante foi observado para o complexo [Fe^{III}(μ -OH)Zn^{II}(L-H)] relatado por Peralta (Peralta *et al.*, 2010) e mostrado na Tabela 17.

Tabela 17. Parâmetros de voltametria de onda quadrada para os complexos **1**, **2** e **3** em H₂O/CH₃CN (96:4, % v/v), [Complexo] = $1x10^{-4}$ mol L⁻¹. Eletrólito de suporte KCI 0,1 mol L⁻¹, célula eletrolítica contendo três eletrodos: um eletrodo de trabalho de carbono vítreo, um eletrodo auxiliar de platina e eletrodo de referência comercial Ag/AgCI (Ag/AgCI vs. NHE = +197 mV (Inzelt *et al.*, 2012) e complexos da literatura para comparação. Potencial redox vs NHE.

Complexos	E _{1/2} vs NHE	рН	E _{1/2} vs NHE	рН
1	+166 mV	4.0	-325 mV	8.0
2	+146 mV	4.0	-170 mV	8.0
3	+173 mV	4.0	-170 mV	8.0
[Fe [⊪] (µ-OH)Zn [⊪] (L-CH₃)]	+57 mV	3.5	-197 mV	6.5
[Fe ^{lli} (µ-OH)Zn ^{li} (L-H)]	+60 mV	3.5	-180 mV	6.5

Os complexos **2** e **3** mostram comportamento eletroquímico semelhante ao complexo **1** a pH 4, com valores de $E_{1/2}$ +146 mV para o complexo **2** e +173 mV para o complexo **3**. Quando o pH é aumentado para 8,0, os complexos **2** e **3** têm o mesmo valor de $E_{1/2}$ (-170 mV), que difere do complexo **1** cerca de 150 mV, sugerindo que as aminas protonadas facilitam o processo de redução. A remoção da densidade de elétrons do centro de Fe^{III} é mais forte para os complexos **2** e **3** do que para **1**. Isso ocorre porque as derivatizações dos complexos **2** e **3** mostram uma redução da energia devido à protonação do grupo lateral, sugerindo alguns tipo de interação entre a amina protonada e a molécula de água/hidroxo ou fenoxo terminais ligadas ao centro de Fe^{III}. Esta interação é provavelmente eletrostática e o efeito causa a remoção da densidade eletrônica do centro metálico, o que facilita a redução do metal.

Se compararmos os voltamogramas de onda quadrada de **1**, **2** e **3** (Figura 73), observamos que os complexos **2** e **3** mostram uma facilidade maior para a redução do centro de Fe^{III} quando comparado ao complexo **1**. A mudança nos valores de potencial mostra que a inserção de derivados de diamina terminal no ligante resulta em uma diminuição da densidade de carga do centro de ferro e um deslocamento anódico do potencial redox, indicando a presença do efeto da segunda esfera de coordenação.

Figura 73. Voltamogramas de onda quadrada para os complexos 1 (azul), 2 (vermelho) e 3 (preto) em H₂O:CH₃CN (96:4 V/V%). Condições: I =NaCl 0,1 mol L⁻¹; Eletrodo de trabalho: carbono vítreo, eletrodo auxiliar: platina, referência: Ag/AgCl (Ag/AgCl vs NHE = +197 mV). [Complexo] = 1,0 x 10⁻⁴ mol L⁻¹.

4.2.10. Estudos de Reatividade

4.2.10.1. Efeito do pH na hidrólise do 2,4-BDNPP

Estudos foram realizados utilizando o substrato fosfato de bis- (2,4-dinitrofenila) (2,4-BDNPP) como substrato modelo que possui ligações fosfodiéster, que simulam o grupo funcional fosfato de ácidos nucléicos (Bunton e Farber, 1969). A reação de hidrólise do substrato modelo 2,4-BDNPP é mostrada na Figura 74.

Figura 74. Reação de hidrólise do substrato modelo 2,4-BDNPP.

A fim de analisar o efeito do pH, medidas foram realizadas utilizando o substrato 2,4-BDNPP. O efeito do pH na atividade catalítica dos complexos foi avaliado de pH 5 a 9. Como pode ser visto na Figura 65, para todos os compostos, a hidrólise do substrato 2,4-BDNPP mostrou uma forte dependência do pH, tendo um comportamento de sino e com atividade máxima em torno de pH 7,0 (Figura 75).

Figura 75. Dependência da velocidade inicial (V₀) nos valores de pH para a reação de hidrólise promovida pelos complexos (a) 1, (b) 2 e (c) 3.

Esse comportamento é semelhante aos resultados relatados anteriormente para outros complexos dinucleares de Fe^{III}Zn^{II} (Lanznaster *et al.*, 2002; Peralta *et al.*, 2010) e fosfatases ácidas púrpuras (PAP) isolada do feijão vermelho (kbPAP) (Beck, J. L. *et al.*, 1986).

Um bom ajuste para os perfis é conseguido aplicando uma aproximação gaussiana ($y = V_0/(1+((x-pH)/altura)^2)$ e os valores de pKas cinéticos obtidos a partir deste ajuste estão resumidos na Tabela 18. Os valores de pKa que foram determinados por espectroscopia UV-Vis e são inferiores aos valores de pKa cinéticos devido à ausência do substrato.

Complexos	p <i>K</i> a cinético		p <i>K</i> a espectrofotométrico		
	p <i>K</i> a₁ p <i>K</i> a₂		р <i>К</i> а₁	p <i>K</i> a₂	
1	5,92±0,05	7,75±0,09	4,79±0,01	7,66±0,01	
2	5,95±0,09	7,81±0,06	4,15±0,03	7,31±0,06	
3	5,89±0,05	7,93±0,06	3,98±0,08	7,16±0,01	

Tabela 18. Valores de p*K*as cinéticos e espectrofotométricos para os complexos.

Conforme descrito anteriormente (seção 4.2.8) na discussão sobre a titulação espectrofotométrica, o primeiro valor de p*K*a cinético é atribuído à desprotonação da molécula de água coordenada ao Fe^{III} , que gera um nucleófilo de hidroxila

responsável pelo ataque ao átomo de fósforo. O segundo valor de p*K*a cinético é atribuído à desprotonação da molécula de água ligada ao Zn^{II}.

Embora os valores de pH cinéticos sejam deslocados para valores maiores em relação aos p*K*as espectrofotométricos, porque o substrato 2,4-BDNPP impede a interação da amina protonada com H₂O/OH⁻ ligados, o comportamento mostrado na Figura 59 reforça a ideia de que [(HO)Fe^{III}(μ -OH)Zn^{II}(OH₂)(R)]²⁺ (R = L², L²-et, L²-but) é a espécie cataliticamente ativa. A velocidade inicial é dependente do pH e mostra um máximo, onde as espécies acima mencionadas estão em sua maior concentração e um comportamento semelhante para complexos relacionados tem sido relatado na literatura (Lanznaster *et al.*, 2002; Neves *et al.*, 2007; Peralta *et al.*, 2010; Piovezan *et al.*, 2010).

4.2.10.2. Efeito da Concentração do Substrato na hidrólise do 2,4-BDNPP

Foram realizados também testes do efeito da concentração do substrato na hidrólise do mesmo, para os complexos no pH 7 (atividade máxima). Observou-se que a dependência da velocidade de reação com a concentração de substrato apresentou um perfil de saturação e os dados foram tratados com a equação não linear de Michaelis-Menten, obtendo-se assim, os fatores cinéticos para cada complexo, encontram-se na Tabela 19 e na Figura 76.

Figura 76. Dependência da velocidade de reação do 2,4-BDNPP com a concentração do substrato para os complexos 1 - 3. Condições: pH = 7, [tampão HEPES] = 0,1 mol L⁻¹, *I* = 0,1 mol L⁻¹ (LiClO₄).

Tabela 19. Parâmetros cinéticos para a reação de hidrólise do 2,4-BDNPP promovida pelos complexos 1 - 3 em pH 7,0, a 25°C.

Complexos	<i>k</i> _{cat}	KM	Kassoc	$k_{\rm cat}/K_{\rm M}$	pН
	(S ⁻¹)	(M)	(M ⁻¹)	(M⁻¹ s⁻	•
	(x 10 ⁻⁵)	(x 10 ⁻⁴)	(x 10 ²)	1)	
1	32,1±3,31	34,0±5,70	2,94	0,09	7,0
2	112±5,56	16,1±1,91	6,21	0,69	7,0
3	111±1,14	20,5±4,36	4,87	0,54	7,0
(L ¹)	90,2	35,5	2,81	0,25	7,0
(Piovezan <i>et</i>					
<i>al.</i> , 2010)					
(L-CH₃)]	92,0	30,5	3,27	0,30	6,5
(Peralta <i>et</i>					
al., 2010)					
(L-H)]	91,3	42,0	2,38	0,20	7,0
(Peralta <i>et</i>					
<i>al.</i> , 2010)					

Como pode ser observados pelos dados na Tabela 19, a derivatização do ligante H_2L^2 através da adição de diaminas (complexos **2** e **3**) levou a um aumento no valor de k_{cat} e uma diminuição de K_M quando comparado com o complexo **1**. As mudanças no K_M mostram que o efeito das cadeias laterais derivatizadas que possuem uma amina livre como modelo de

segunda esfera de coordenação aumenta a afinidade do complexo (maior K_{assoc}) para o substrato. Ao comparar os modelos com os que têm apenas a primeira esfera de coordenação, esse comportamento é explicado levando em consideração as interações eletrostáticas decorrentes da protonação das aminas primárias na faixa de pH estudada, o que induz uma maior proximidade ao substrato (Smith *et al.*, 2012).

Os complexos **2** e **3** também têm melhor eficiência catalítica do que os complexos relatados por Peralta (Peralta *et al.*, 2010). Ao comparar os complexos **2** e **3**, os dados mostram um aumento no valor do K_{M} , mas os valores de k_{cat}/K_{M} diminuem com o aumento do comprimento da cadeia lateral. Esta tendência está de acordo com as distâncias calculadas dos conjugados **2b** e **3b**, que mostram maior proximidade da cadeia lateral e da subunidade de fosfato como mostra a Figura 77.

Figura 77. Representação dos mínimos de energia calculados para a interação entre conjugados **2b** e **3b** e o substrato (grande parte do ligante é omitida para maior clareza).

Para avaliar a atividade da monoesterase, se um ou dois grupos 2,4-dinitrofenolato do substrato foram hidrolisados, realizou-se uma reação estequiométrica entre os complexos 1 - 3e o substrato 2,4-BDNPP (complexo/substrato 1:1), durante um período de 24 h a 25 °C. Os complexos conseguiram hidrolisar apenas um grupo fenolato, atuando apenas como diasterease. Para confirmar esse resultado, a atividade na presença de um substrato monoéster, o fosfato de 2,4-dinitrofenila (2,4-DNPP), também foi avaliada (Figura 78) e nenhum dos complexos foi capaz de hidrolisar esse substrato, confirmando que os complexos atuam apenas como diesterases. Figura 78. (1) Mudança espectral observada devido à adição consecutiva de 1, 2, 4, 6, 8 e 10 equivalentes do monoéster DNPP ao complexo **2**, pH 7,0, concentração de complexo = $3x10^{-4}$ mol L⁻¹, em CH₃CN:H₂O (50:50%) tampão HEPES. (2) Adição de 4 equivalentes do diéster BDNPP após 7 h de tempo de reação com DNPP.

Analogamente, o número de ciclos catalíticos para a hidrólise do 2,4-BDNPP foi realizado e para todos os complexos (1 - 3) verificou-se que catalisam a hidrólise de aproximadamente 5 moléculas de substrato, após um período de 24 horas, a pH 7,0 e 25 °C.

Finalmente para avaliar se a etapa determinante da reação envolve transferência de próton ou não, realizou-se experimento de efeito isotópico de deutério sobre a velocidade de hidrólise do 2,4-BDNPP pelos complexos em pH = 7. A razão entre as constantes de velocidades de duas reações de hidrólise do 2,4-BDNPP, sob as mesmas condições foram realizadas em H₂O e D₂O ($k_{\rm H}/k_{\rm D}$), os valores encontrados para essa razão $k_{\rm H}/k_{\rm D}$ para os complexos **1**, **2** e **3** foram 1,48, 1,16 e 1,19 respectivamente. Isto sugere que não há transferência de prótons na etapa determinante da reação (0,80< $k_{\rm H}/k_{\rm D}$ <1,50) (Deal *et al.*, 1996). Considerando todos os resultados experimentais, propõe-se um ataque nucleofílico intramolecular na hidrólise do 2,4-BDNPP promovido pelos complexos **1** - **3**.

4.2.10.3. Proposta mecanística para a Hidrólise do 2,4-BDNPP

Com base nos resultados anteriores, o mecanismo para a hidrólise do substrato 2,4-BDNPP pelos complexos sintetizados pode ser descrito de forma análoga ao mecanismo proposto na literatura (Peralta *et al.*, 2010), onde a espécie catalítica [(HO)Fe^{III}(μ -OH)Zn^{II}(OH₂)] é responsável pela hidrólise do substrato. A Figura 79 mostra o mecanismo de três etapas. Na primeira etapa para o complexo **1**, o substrato desloca a molécula de água coordenada com o íon Zn^{II}.

Na segunda etapa, o íon hidróxido atua então como um nucleófilo atacando o átomo de fósforo do substrato, ocorrendo a clivagem da ligação fosfodiéster e liberando 2,4-dinitrofenolato. Após a clivagem, o substrato 2,4-DNPP permanece ligado ao Zn^{II} e a subsequente clivagem só pode ser vista com a adição de excesso de substrato, como mostra a etapa 3.

Figura 79. Mecanismo proposto para a hidrólise do 2,4-BDNPP promovida pelo complexo **1**.

O mecanismo proposto para os complexos 2 e 3 é mostrado na Figura 80. A primeira etapa consiste na ligação do

substrato em um modo de coordenação monodentado ao centro de metal Zn^{II}, deslocando a água, de forma semelhante ao complexo **1**. Para os complexos **2** e **3**, a pH 7,0, a derivatização com diaminas está protonada e a proximidade do nucleófilo com o fosfato aumenta a afinidade entre o substrato e os complexos, explicando a maior eficiência catalítica (k_{cat}/K_{M}).

Posteriormente na segunda etapa, o íon hidróxido gerado no centro de Fe^{III} atua como um nucleófilo, atacando o átomo de fósforo do substrato, levando à clivagem da ligação fosfodiéster e ao conseqüente deslocamento do 2,4-dinitrofenolato. 0 monoéster de fosfato de 2,4-dinitrofenila é coordenado em um modo bidentado para os dois centros de metal e é então deslocado pelo excesso de água e substrato na reação, regenerando o complexo biomimético, como mostra a etapa 3. A diferença entre o mecanismo proposto para 1 em comparação com 2 e 3 indica uma ligação mais forte do substrato aos últimos complexos, pois encontram-se protonados nesse pH, demonstrando os efeitos da segunda esfera de coordenação.

Figura 80. Mecanismo proposto para a hidrólise do 2,4-BDNPP promovida pelos complexos **2** e **3**.

4.2.11. Clivagem de DNA Plasmidial

4.2.11.1. Efeito da Concentração dos Complexos

A atividade dos complexos binucleares de Fe^{III}Zn^{II} frente à clivagem de DNA plasmidial foi inicialmente verificada em termos de concentração, de 0 a 250 µmol L⁻¹ dos complexos em diferentes períodos de reação e temperatura: 6 horas a 37 °C e 16 horas a 50 °C. Nestas condições todos os complexos mostraram-se capazes de completamente clivar o DNA plasmidial utilizado (dados não mostrados), porém nas concentrações mais altas houveram precipitações das amostras nos poços dos géis, o que pode contribuir diminuindo a atividade. Considerando uma boa atividade foi possível utilizar menores concentrações de complexo e o tempo reacional foi reduzido de 16 para 4 horas a fim de se observar mais detalhadamente o efeito dos complexos (e a variação de sua concentração) no DNA, sendo investigada de 0 a 10 µmol L⁻¹. Estes resultados são mostrados nas Figuras 81 - 83.

Figura 81. Clivagem do DNA plasmidial pBSK-II pelo complexo **1** em diferentes concentrações. Condições reacionais: [DNA] = 330 ng, ~ 25 μ M; [tampão] = HEPES (10 mM, pH 7,0); [complexo] = 1 a 10 μ M; temperatura = 50 °C; tempo = 4 horas ao abrigo de luz.

Figura 82. Clivagem do DNA plasmidial pBSK-II pelo complexo 2 em diferentes concentrações. Condições reacionais: [DNA] = 330 ng, ~ 25

 μ M; [tampão] = HEPES (10 mM, pH 7,0); [complexo] = 1 a 10 μ M; temperatura = 50 °C; tempo = 4 horas ao abrigo de luz.

Figura 83. Clivagem do DNA plasmidial pBSK-II pelo complexo 3 em diferentes concentrações. Condições reacionais: [DNA] = 330 ng, ~ 25 μ M; [tampão] = HEPES (10 mM, pH 7,0); [complexo] = 1 a 10 μ M; temperatura = 50 °C; tempo = 4 horas ao abrigo de luz.

130

Todos os complexos foram capazes de clivar o DNA de modo que o aumento da atividade depende da concentração do complexo, aumentando gradativamente de 0 a 10 μ M, ou seja, à medida que a concentração do complexo aumenta no meio reacional aumenta também sua capacidade de clivagem de DNA.

O complexo 1 mostrou a menor capacidade de clivagem de DNA (Figura 71), pois o DNA tratado com 1 μ M do complexo 1 mostrou aparecimento de ~14 % de F II, indicando que a forma superenovelada do DNA plasmidial (F I) foi clivada por quebrassimples para a forma circular aberta (F II). O aumento progressivo na concentração de complexo 1 aumentou a clivagem de DNA atingindo ~26 % de F II com 10 μ M. Esses dados foram corrigidos a partir dos controles que continham acetonitrila no lugar do complexo, os quais apresentaram auto-clivagem variando entre aproximadamente 5 a 10 % (referente ao 0 μ M nos gráficos).

Os outros dois complexos 2 e 3, em comparação com 1 foram mais ativos, em 10 µM, aproximadamente 63% (2) e 50% (3) de DNA apresentava-se em FII (Figuras 82 e 83), sugerindo que o complexo 2 possui maior clivagem frente ao DNA, seguindo essa série: 2>3>1. Em comparação com os complexos reportados por Peralta (Peralta et al., 2010), os valores mostraram-se melhores, e percebe-se que as modificações feitas no grupo carbonil lateral aumentam significativamente a clivagem frente ao DNA, devido ao efeito da segunda esfera de coordenação. A maior clivagem observada para os complexos 2 e 3 em comparação com 1 pode ser atribuída à presença do grupo amino na derivatização destes dois complexos, indicando que as modificações da segunda esfera nos complexos 2 e 3 levam a aproximadamente o dobro da clivagem de DNA em relação ao complexo 1. A protonação da amina terminal em solução dá um caráter mais catiônico ao complexo, levando a maior atração eletrostática entre o complexo e o DNA, o qual, em solução, é carregado negativamente.

Ao comparar os complexos 2 e 3, o complexo 2 tem uma atividade maior do que o complexo 3, o que pode ser explicado pelo grupo amino terminal sendo geometricamente e espacialmente mais próximo do DNA em comparação com o complexo 3. O mesmo efeito foi observado para o complexo 2 na clivagem do substrato de 4-BDNPP (ver Figura 77).

4.2.11.2. Efeito do pH

Para complexos em que o mecanismo hidrolítico é predominante, o pH do meio reacional se torna importante, pois podem influenciar na desprotonação das moléculas de água ligadas aos metais, dificultando a formação do nucleófilo (Mash *et al.*, 2003; Camargo *et al.*, 2010b; Camargo *et al.*, 2010d; Osorio *et al.*, 2012). Para os complexos 1 - 3 foi encontrado através de ensaios variando o pH de 5,5 a 9,0, como pH ótimo reacional em aproximadamente 7,0.

4.2.12. Análise dos modos de interação

4.2.12.1. Efeito da força iônica

As interações eletrostáticas entre o DNA e os catalisadores são uma das interações mais importantes nos sistemas de pequenas moléculas, uma vez que essas forças podem estabilizar o sistema e aumentar sua atividade (Domingos, 2003; Blackburn, 2006).

No DNA, os grupos fosfatos em pH 7,0 estão carregados negativamente e dessa maneira conferem à macromolécula uma carga negativa. Já os complexos metálicos podem agir como catiônicos em solução e dessa maneira através de forças eletrostáticas contribuem para a ligação e clivagem do DNA por esses complexos (Domingos, 2003). Deste modo, para confirmar se a interação destas moléculas com o DNA se dava através de interações eletrostáticas, por diferença de carga, foi adicionado na reação o NaCl.

Para verificar este efeito, realizaram-se ensaios com aumento da força iônica no meio reacional, visando neutralizar as cargas negativas do DNA e reduzir as interações eletrostáticas (Figuras 84 – 86). Os testes foram realizados em uma concentração fixa de complexo, na qual o complexo possui uma boa atividade de clivagem e evitando assim a possível precipitação. Figura 84. Clivagem do DNA plasmidial pBSK-II pelo complexo **1** em função de diferentes concentrações de NaCI. Condições reacionais: [DNA] = 330 ng, ~ 25 μ mol L⁻¹; [tampão] = HEPES (10 mmol L⁻¹, pH 7,0); [complexo] = 5,0 μ mol L⁻¹; [NaCI] = 5 – 50 mmol L⁻¹; temperatura = 50 °C; tempo = 4 h ao abrigo de luz.

Figura 85. Clivagem do DNA plasmidial pBSK-II pelo complexo **2** em função de diferentes concentrações de NaCl. Condições reacionais: $[DNA] = 330 \text{ ng}, \sim 25 \mu \text{mol L}^{-1}$; $[tampão] = \text{HEPES} (10 \text{ mmol L}^{-1}, \text{ pH 7,0})$; $[complexo] = 5,0 \mu \text{mol L}^{-1}$; $[NaCl] = 5 - 50 \text{ mmol L}^{-1}$; temperatura = 50 °C; tempo = 4 h ao abrigo de luz.

Figura 86. Clivagem do DNA plasmidial pBSK-II pelo complexo **3** em função de diferentes concentrações de NaCl. Condições reacionais: $[DNA] = 330 \text{ ng}, \sim 25 \mu \text{mol L}^{-1}; [tampão] = \text{HEPES} (10 \text{ mmol L}^{-1}, \text{pH 7,0}); [complexo] = 5,0 \mu \text{mol L}^{-1}; [NaCl] = 5 - 50 \text{ mmol L}^{-1}; temperatura = 50 °C; tempo = 4 h ao abrigo de luz.$

Observa-se que, ao aumentar a concentração de NaCI (de 5 a 50 mM), a atividade de clivagem do DNA para os três complexos diminuiu gradualmente. A atividade de clivagem do complexos **1** foi inibida em aproximadamente 19%. Para os complexos **2** e **3**, os valores de inibição foram de 35% e 30%, respectivamente. Isso sugere que é estabelecida, em maiores concentrações de Na⁺, a competição entre os complexos e os íons para interagir com o esqueleto aniônico do DNA. Também os íons de sódio tendem a estabilizar uma conformação de DNA, reduzindo a repulsão dos grupos com carga negativa (Hagerman, 1988).

Pode-se também considerar que os íons Cl⁻ podem se coordenar aos centros metálicos dos complexos, pois existe um excesso de sal, levando a mudanças em suas atividades. Por conseguinte, os ensaios foram conduzidos na presença de LiClO₄ (Figuras 87 – 89), uma vez que os íons ClO₄⁻ se associam mais fracamente ao centro metálico em comparação com o ânion cloreto. Os mesmos resultados foram obtidos na comparação dos resultados de inibição na presença destes dois sais (NaCl ou LiClO₄), sugerindo que a inibição da clivagem foi devida à carga de neutralização em vez da interação entre os íons Cl⁻ e o centro metálico, resultados semelhantes foram encontrados na literatura (Muxel *et al.*, 2014; Camargo, Tiago P. *et al.*, 2015; Auras *et al.*, 2016).
Figura 87. Clivagem do DNA plasmidial pBSK-II pelo complexo **1** em função de diferentes concentrações de LiClO₄. Condições reacionais: [DNA] = 330 ng, ~ 25 μ mol L⁻¹; [tampão] = HEPES (10 mmol L⁻¹, pH 7,0); [complexo] = 5 μ mol L⁻¹; [LiClO₄] = 5 – 50 mmol L⁻¹; temperatura = 50 °C; tempo = 4 h ao abrigo de luz.

Figura 88. Clivagem do DNA plasmidial pBSK-II pelo complexo **2** em função de diferentes concentrações de LiClO₄. Condições reacionais: [DNA] = 330 ng, ~ 25 μ mol L⁻¹; [tampão] = HEPES (10 mmol L⁻¹, pH 7,0); [complexo] = 5 μ mol L⁻¹; [LiClO₄] = 5 – 50 mmol L⁻¹; temperatura = 50 °C; tempo = 4 h ao abrigo de luz.

Figura 89. Clivagem do DNA plasmidial pBSK-II pelo complexo **3** em função de diferentes concentrações de LiClO₄. Condições reacionais: [DNA] = 330 ng, ~ 25 µmol L⁻¹; [tampão] = HEPES (10 mmol L⁻¹, pH 7,0); [complexo] = 5 µmol L⁻¹; [LiClO₄] = 5 – 50 mmol L⁻¹; temperatura = 50 °C; tempo = 4 h ao abrigo de luz.

4.2.12.2. Efeitos dos ligantes de sulco

O reconhecimento molecular de um biomimético pelo DNA dependente do arranjo espacial dos grupamentos funcionais e suas propriedades estruturais, que devem são fundamentais para a melhoria de fármacos (Morávek *et al.*, 2002; Terenzi *et al.*, 2016).

A ligação dessas pequenas moléculas por sulcos do DNA é um modo de associação intramolecular reversível caracterizado pela topografia e características químicas da molécula ligante (Kim e Nordén, 1993; Asatkar *et al.*, 2017). Os sulcos maiores e menores têm diferenças significativas de tamanho, forma, hidratação, potencial eletrostático e posição de sítios para pontes de hidrogênio (Oguey *et al.*, 2010). A associação por um sulco ou outro pode depender de diversas circunstâncias, por exemplo, a ligação ao sulco maior do DNA é um processo entálpico, enquanto a interação ao sulco menor é um processo favorecido por efeitos entrópicos (Breslauer *et al.*, 1987; Pages *et al.*, 2015).

Deste modo procurou-se determinar se a interação entre os complexos em estudo e o DNA se dava através do acesso de pelo menos um dos sulcos menor/maior do DNA. Para tal foram realizados ensaios na presença de ligantes conhecidos de ambos os sulcos, sendo estes a netropsina que se liga no sulco menor (Van Dyke *et al.*, 1982) e o verde de metila ligante do sulco maior (Kim e Nordén, 1993).

Para garantir que houve interação desses bloqueadores com os sulcos do DNA, deixou-se por 30 minutos em repouso ao abrigo da luz. Após esse tempo, os complexos foram adicionados e os dados são apresentados nas Figuras 90 - 92.

Figura 90. Clivagem do DNA plasmidial pBSK-II pelo complexo **1**, na presença dos diferentes ligantes de sulcos do DNA, netropsina (NET) ou verde de metila (VM). Condições reacionais: [DNA] = 330 ng, ~ 25 µmol L⁻¹; [tampão] = HEPES (10 mmol L⁻¹, pH 7,0); [complexo] = 5 µmol L⁻¹; [NET] ou [VM] = 50 µmol L⁻¹; temperatura = 50 °C; tempo = 4 h ao abrigo de luz.

Figura 91. Clivagem do DNA plasmidial pBSK-II pelo complexo **2**, na presença dos diferentes ligantes de sulcos do DNA, netropsina (NET) ou verde de metila (VM). Condições reacionais: [DNA] = 330 ng, ~ 25 µmol L⁻¹; [tampão] = HEPES (10 mmol L⁻¹, pH 7,0); [complexo] = 5 µmol L⁻¹; [NET] ou [VM] = 50 µmol L⁻¹; temperatura = 50 °C; tempo = 4 h ao abrigo de luz.

Figura 92. Clivagem do DNA plasmidial pBSK-II pelo complexo **3**, na presença dos diferentes ligantes de sulcos do DNA, netropsina (NET) ou verde de metila (VM). Condições reacionais: [DNA] = 330 ng, ~ 25 µmol L⁻¹; [tampão] = HEPES (10 mmol L⁻¹, pH 7,0); [complexo] = 5 µmol L⁻¹; [NET] ou [VM] = 50 µmol L⁻¹; temperatura = 50 °C; tempo = 4 h ao abrigo de luz.

O complexo **1** mostrou uma preferência pelo sulco menor do DNA (Figura 93), pois os resultados contendo netropsina como bloqueador de sulco não apresentou clivagem, porém a atividade frente ao bloqueador de sulco maior diminuiu de 15 para 9 % de F II, o que também pode ser um indício de que ele tem a capacidade de inibir parcialmente a clivagem do DNA pelo complexo **1** (Camargo *et al.*, 2010; Peralta, *et al.*, 2010).

Figura 93. Representação estrutural da netropsina (esquerda) e estrutura cristalográfica de um DNA de dupla-hélice com uma molécula de ligada ao sulco menor (direita) (Bortolotto, T., 2006).

Já para os complexos 2 e 3 os resultados mostram que os dois bloqueadores de sulcos têm a capacidade de diminuir a clivagem dos mesmos frente ao DNA e não apresentam necessariamente uma especificidade por um dos sulcos, porém necessitam da interação com um desses sulcos para que a clivagem ocorra.

Na forma B-DNA os sulcos diferem-se em maior e menor, dependendo da largura da molécula, o que pode impossibilitar seu acesso. No caso de pequenas moléculas, há um número maior de exemplos de ligantes ao sulco menor, a ligação de pequenas moléculas ao sulco maior é menos observada (Blackburn *et al.*, 2006). A diferença entre a preferência do complexo 1 em relação aos complexos 2 e 3, pode ser devido ao tamanho e o volume das estruturas dos complexos, pois a forma de interação da diamina com a cavidade onde encontram-se os centros metálicos é diferente do que para o complexo **1** que possui aldeído e isso afasta a metila do fenolato terminal.

4.2.12.3. Dicroísmo Circular

O dicroísmo circular (CD) é um fenômeno originado a partir da interação de moléculas quirais com raios eletromagnéticos circularmente polarizados (Nakanishi, 1999). O espectro de absorção do DNA é analisado comumente em luz ultravioleta em um intervalo entre 180-300 nm, faixa onde as bases de DNA absorvem luz, esta absorção da luz circularmente polarizada para direita e esquerda pelo DNA difere, e esta diferença é chamada de CD (Johnson, 1996).

O DNA em sua forma B (B-DNA) possui bandas características de CD, sendo uma banda positiva em 275 nm resultante da helicidade direita deste DNA, e uma banda negativa em 245 nm devido ao empilhamento de bases (Nakanishi, 1999). Portanto este método foi utilizado para verificar alterações na estrutura secundário do DNA.

Para entender as mudanças da estrutura secundária do DNA desses complexos, foi verificado o empilhamento de base e a helicidade direita da dupla-fita. A adição de concentrações crescentes do complexo ao CT-DNA (200 µM) foi realizada na razão [complexo]/[DNA] de 0,1 a 1,0.

Todos os complexos tiveram a estrutura secundária do DNA alterada, mostraram que as bandas típicas de DNA em 275 e 245 nm tiveram a intensidade fortemente reduzida e deslocada (Nakanishi, 1999).

O complexo **1** teve somente a diminuição da intensidade das bandas típicas do DNA, a ligação do complexo tende a diminuir helicidade direita do DNA, perdendo a torsão e consequentemente mudando empilhamento de bases (Nakanishi, 1999). Este comportamento foi o mesmo para outro complexo já relatado na literatura, em que mecanismo de interação tende a ser associada com os sulcos em vez de intercalação (Dehkordi, 2011; Derakhshankhah, 2012; Shahabadi, 2014).

Para os complexos **2** e **3**, que possuem derivatizações com 1,2-etilenodiamina e 1,4-butanodiamina e como estão protonadas em pH 7, o que sugere que o DNA assuma outra conformação, uma vez que há deficiência de elétrons que provoca um aumento da interação eletrostática. Referência e ensaios paralelos utilizando apenas solução do complexo não provocaram essa alteração, o que mostra que é um efeito de diluição simples.

Figura 94. Espectro de dicroísmo circular de DNA na presença de concentrações crescentes do complexo **1**. Condições reacionais: [CT-DNA] = 200 μ mol L⁻¹; [tampão] = 10 mmol L⁻¹ de HEPES pH 7,0; [complexo] = 0 a 181 μ mol L⁻¹; temperatura = 37 °C.

Figura 95. Espectro de dicroísmo circular de DNA na presença de concentrações crescentes do complexo **2**. Condições reacionais: [CT-DNA] = 200 μ mol L⁻¹; [tampão] = 10 mmol L⁻¹ de HEPES pH 7,0; [complexo] = 0 a 181 μ mol L⁻¹; temperatura = 37 °C

Figura 96. Espectro de dicroísmo circular de DNA na presença de concentrações crescentes do complexo **3**. Condições reacionais: [CT-DNA] = 200 μ mol L⁻¹; [tampão] = 10 mmol L⁻¹ de HEPES pH 7,0; [complexo] = 0 a 181 μ mol L⁻¹; temperatura = 37 °C.

4.2.13. Avaliação do mecanismo de clivagem

4.2.13.1. Efeito dos inibidores de espécies reativas de oxigênio (ROS)

Como já comentado anteriormente, complexos metálicos são capazes de clivar o DNA por dois mecanismos distintos: oxidativo e/ou hidrolítico e quando são realizadas sínteses de novas estruturas de complexos ou modificações naquelas estruturas já existentes, faz-se necessário compreender o tipo de mecanismo de clivagem. Sigman e colaboradores (Sigman *et al.*, 1979) propuseram que um complexo metálico pode clivar o DNA através da geração de espécies reativas de oxigênio, dessa maneira, torna-se importante investigar o mecanismo de clivagem para um novo complexo. As espécies reativas de oxigênio podem ser formadas a partir da redução do oxigênio molecular, que pode resultar em danos ao DNA por uma clivagem oxidativa (Jiang *et al.*, 2007; Butenko *et al.*, 2015; Raza *et al.*, 2016).

Para avaliar o comportamento dos complexos frente à clivagem do DNA utilizou-se sequestradores de radicais. Sendo eles:

- 1. DMSO sequestrador de radicais (OH*)
- 2. KI inibidor da geração de peróxidos (R-O-OH)
- 3. NaN₃ sequestrador de oxigênio singlete (¹O₂)

Os complexos 1, 2 e 3 foram submetidos em testes de clivagem do DNA plasmidial na presença de sequestradores de ROS, os quais mostram evidências de um comportamento hidrolítico, pois em nenhum dos casos o inibidor foi capaz de evitar a clivagem do DNA pelos complexos. Esses resultados (Figuras 97 - 99) sugerem que os complexos não mudam o mecanismo de hidrólise de DNA. Alguns complexos são capazes de clivar o DNA por meio da geração de radicais e outras moléculas reativas contendo oxigênio, o que não acontece para esses complexos.

Figura 97. Clivagem do DNA plasmidial pBSK-II pelo complexo **1**, na presença dos diferentes sequestradores de ROS. Condições reacionais: [DNA] = 330 ng, ~ 25 μ mol L⁻¹; [tampão] = HEPES (10 mmol L⁻¹, pH 7,0); [complexo] = 5 μ mol L⁻¹; [DMSO] = 0,4 mol L⁻¹; [KI] = 0,5 mol L⁻¹; [NaN₃] = 0,5 mol L⁻¹; temperatura = 50 °C; tempo = 4 h ao abrigo de luz.

Figura 98. Clivagem do DNA plasmidial pBSK-II pelo complexo **2**, na presença dos diferentes sequestradores de ROS. Condições reacionais: [DNA] = 330 ng, ~ 25 μ mol L⁻¹; [tampão] = HEPES (10 mmol L⁻¹, pH 7,0); [complexo] = 5 μ mol L⁻¹; [DMSO] = 0,4 mol L⁻¹; [KI] = 0,5 mol L⁻¹; [NaN₃] = 0,5 mol L⁻¹; temperatura = 50 °C; tempo = 4 h ao abrigo de luz.

Figura 99. Clivagem do DNA plasmidial pBSK-II pelo complexo **3**, na presença dos diferentes sequestradores de ROS. Condições reacionais: [DNA] = 330 ng, ~ 25 µmol L⁻¹; [tampão] = HEPES (10 mmol L⁻¹, pH 7,0); [complexo] = 5 µmol L⁻¹; [DMSO] = 0,4 mol L⁻¹; [KI] = 0,5 mol L⁻¹; [NaN₃] = 0,5 mol L⁻¹; temperatura = 50 °C; tempo = 4 h ao abrigo de luz.

Mesmo tendo fortes indícios através de outros complexos semelhantes que tais modificações na estrutura do complexo não alteram o mecanismo de hidrólise, não se pode afirmar somente com esse ensaio que o mecanismo é hidrolítico. Pois, pode ser um mecanismo oxidativo, o qual pode formar espécies reativas independentemente. Assim, como pode ocorrer a oxidação dessas moléculas antes mesmo que os sequestradores possam agir, por essa razão complementa-se esse ensaio com o sob atmosfera de argônio (Melvin *et al.*, 2001; Maheswari *et al.*, 2008; Tan *et al.*, 2009; Silva *et al.*, 2011).

4.2.13.2. Ensaio sob atmosfera de argônio

Com a finalidade de confirmar o mecanismo de clivagem apontado pelos ensaios de sequestradores de espécies reativas de oxigênio e verificar qual a influência do oxigênio molecular na clivagem do DNA pelos complexos, foram realizados testes de clivagem, nas condições padrão, porém na ausência de oxigênio, em atmosfera de argônio.

Esses ensaios foram realizados com concentração do complexo de 5 µmol L⁻¹, durante 2 horas a 50 °C sob atmosfera de argônio e foi realizado outro ensaio nas mesmas condições, com exceção da atmosfera de argônio, sendo agora na presença de oxigênio. O controle utilizado para essas reações de clivagem do DNA foi uma solução de FeEDTA/DTT, pois o complexo que é formado pode gerar radicais hidroxila na presença de oxigênio (Reações de Fenton) (Netto *et al.*, 1996).

Os resultados (Figuras 100 e 101) ajudam a confirmar os resultados dos inibidores de ROS, ou seja, eles praticamente não mudam sua atividade quando a reação é feita na ausência ou presença de oxigênio após 2 horas de reação. Esses complexos tiveram seu máximo de atividade em 4 horas, porém foi realizado esse teste em 2 horas, pois deve-se garantir por condições de segurança e assegurar que o dessecador utilizado em que as amostras ficaram sob atmosfera de argônio segura o vácuo, condição necessária para que as amostras não tenham contato com oxigênio.

Figura 100. Clivagem do DNA plasmidial pBSK-II pelos complexos **1** – **3** em aerobiose. Condições reacionais: [DNA] = 330 ng, ~ 25 μ mol L⁻¹; [tampão] = HEPES (10 mmol L⁻¹, pH 7,0); [complexos] = 5 μ mol L⁻¹; [FeEDTA] = 50 μ mol L⁻¹; temperatura = 50 °C; tempo = 2 h ao abrigo de luz.

Figura 101. Clivagem do DNA plasmidial pBSK-II pelos complexos **1** – **3** em anaerobiose. Condições reacionais: [DNA] = 330 ng, ~ 25 μ mol L⁻¹; [Tampão] = HEPES (10 mmol L⁻¹, pH 7,0); [complexos] = 5 μ mol L⁻¹; [FeEDTA] = 50 μ mol L⁻¹; Temperatura = 50 °C; Tempo = 2 h ao abrigo de luz.

Através desses gráficos, pode-se observar que na presença ou ausência de oxigênio, a atividade do complexo continua semelhante. A solução de FeEDTA/DTT mostra claramente que na presença de oxigênio sua atividade é maior e na ausência de oxigênio é extremamente menor, comprovando a ausência de oxigênio no meio reacional. Esses resultados indicam um potencial mecanismo hidrolítico e estão de acordo com os complexos reportados anteriormente (Liu *et al.*, 2002; Horn Jr *et al.*, 2005; Lanznaster *et al.*, 2005; Peralta *et al.*, 2006; Oliveira *et al.*, 2009; Neves *et al.*, 2010; Souza *et al.*, 2013).

4.2.14. Ensaios Cinéticos

O perfil cinético da clivagem de DNA desses complexos foi analisado pela ausência de forma superenovelada do DNA plasmidial (F I) em função do tempo, ou seja, durante 4 horas. Tratando os dados como uma cinética de pseudo-primeira-ordem, onde há um excesso de catalisador em relação ao substrato, a constante observada de clivagem de DNA (k_{obs}) e o tempo de meia-vida ($t_{1/2}$) de F I.

Foram utilizadas concentrações de 0 a 10 µmol L-1, tirando alíquotas nos seguintes pontos: 0, 30, 60, 120, 180 e 240 minutos. A partir desses ensaios foram feitos gráficos do logaritmo da porcentagem de DNA intacto (ln % Forma I) em função do tempo de reação (em horas), de forma que o coeficiente angular dos gráficos obtidos nos forneceu as constantes observadas de clivagem de DNA (k_{obs}) para diferentes concentrações de complexo. Após um gráfico com os valores de k_{obs} em função da sua respectiva concentração nos forneceu o perfil cinético característico de cada um dos complexos em estudo e são apresentados na Tabela 20 e na Figura 102.

Com os valores de k_{obs} , fez-se um gráfico versus a concentração dos complexos, foram tratados com a equação de Michaelis-Menten, na qual admitiu-se uma condição de pseudoprimeira ordem, pois tem excesso de complexo em relação ao DNA. Dessa forma foi possível obter valores k_{cat} (constantes de velocidade) e K_{M} (Michaelis-Menten) da atividade de cada complexo. Os valores obtidos serão somente comparados com complexos que tiveram os mesmos ensaios e tratamentos matemático. Isso porque o perfil obtido caracteriza pseudo-Michaelis-Menten, pois manteve-se a concentração do substrato (DNA) e variou-se a concentração do complexo (catalisador). O tempo de meia-vida foi calculado como de primeira ordem.

Figura 102. Gráfico de k_{obs} versus concentração dos complexos 1 – 3. Condições reacionais: [DNA] = 330 ng, ~ 25 µmol L⁻¹; [tampão] = HEPES (10 mmol L⁻¹, pH 7,0); [complexos] = 0,5 – 10 µmol L⁻¹; temperatura = 50 °C; tempo = 0 – 4 h ao abrigo de luz.

Tabela 20. Parâmetros cinéticos para as reações de clivagem dos complexos.

	1	2	3
$k_{\rm cat} ({\rm x10^{-1} h^{-1}})$	0,714	2,311	2,434
K _M (x10 ⁻⁶ mol L ⁻¹)	1,218	2,945	3,628
E _c (<i>k</i> _{cat} /K _M) (x10 ⁴ L mol ⁻¹ h ⁻¹)	5,8678	7,8471	6,7089
$k_{\rm cat}/k_{\rm unc} ({\rm x10^6 \ L \ mol^{-1}})$	1,987	6,419	6,761
K _{ass} (x10 ⁵ L mol ⁻¹)	8,914	3,395	2,756
$t_{1/2}$ (h)	9,7	3,0	2,8
$k_{\rm mo} = 3.6 \times 10^{-8} {\rm h}^{-1}$			

Como pode ser observado através dos dados cinéticos dos complexos, a eficiência catalítica é maior para o complexo 2, seguindo a mesma série do efeito da concentração, ou seja, 2>3>1. Esses resultados mostram que em comparação com complexos reportados por Peralta (Peralta *et al.*, 2010), pode-se observar que o anel de seis membros do lado piridínico do Zn^{II} (lado macio) melhoraram a atividade dos complexos frentes à

clivagem do DNA e comparando os complexos entre si, é possível perceber que as modificações na cadeia lateral com 1,2etanodiamina (2) e 1,4-butadiamina (3) tiveram resultados melhores em relação ao complexo 1, provando a interferência positiva dos efeitos de segunda esfera de coordenação.

Comparando apenas os complexos 2 e 3, a eficiência catalítica é um pouco maior para 2, mesmo sendo da mesma ordem que para 3. Estudos cinéticos anteriores com complexos de cobalto deram valores de k_{cat} = 16,8 e 6,02 h⁻¹ e K_{M} = 3,64x10⁻⁴ e 4,81x10⁻⁴ mol L⁻¹, a pH 9,0 e 7,0, respectivamente (Massoud et al., 2014). Outro exemplo a ser citado é um complexo de cobre(II) com fleroxacina e 1,10-fenantrolina que mostrou $k_{cat} = 12,64 \text{ h}^{-1} \text{ e}$ $K_{\rm M} = 3.10 \times 10^{-5}$ mol L⁻¹ (Xiao, Y. et al., 2016) em condições comparáveis, sendo que nesse estudo os valores são melhores. Considerando os três complexos, 2 e 3 são mais ativos em relação ao complexo 1. Souza e colaboradores também obtiveram melhores resultados para 0 complexo derivatizado em comparação com o complexo precursor, destacando o efeito da segunda esfera de coordenação (De Souza et al., 2013).

4.2.15. Footprinting de DNA por Fe-EDTA

Uma técnica que permite a identificar regiões específicas de interação de pequenas moléculas com DNA é a metodologia de DNA *footprinting* (Jeff, 2016). Nesta metodologia, um agente capaz de clivar o DNA com baixa especificidade de sequência nucleotídica é submetido a fragmentar uma molécula de sequência conhecida na presença de como complexos metálicos, na tentativa de encontrar sítios específicos, em que a clivagem pelo agente é diminuída. Esta metodologia fornece muitas informações acerca da especificidade de complexos metálicos com DNA, principalmente aqueles que não possuem a capacidade de clivar o oligonucleotídeo. (Bailly *et al.*, 2005; Jeff, 2016).

Nesse experimento, ο complexo liga-se ao oligonucleotídeo e posteriormente é adicionado uma solução de Fe-EDTA nessa reação, a qual é capaz de oxidar o DNA e até mesmo as ligações fosfodiéster. Nos locais em que a oxidação é dificultada resulta em algumas pegadas no perfil de fragmentação onde o complexo relativo ao local estaria ligado ao oligonucleotídeo, como é possível observar na Figura 103.

Figura 103. Footprinting por Fe^{II}-EDTA do oligonucleotídeo ATCG titulado com diferentes concentrações dos complexos **1** – **3**. Condições reacionais: [DNA] = ~ 20 pmol; [tampão] = HEPES (10 mmol L⁻¹, pH 7,0); [complexos] = 0 – 150 µmol L⁻¹; temperatura = 25 °C; tempo = 90 segundos ao abrigo de luz.

Como mostrou a Figura 103, o experimento de *footprinting* em gel de alta resolução mostrou que uma diminuição de clivagem devido ao agente oxidante em regiões que possui timina quando na presença de 20 e 50 µmol L⁻¹ dos complexos **2** e **3**, indicando que modificações na coordenação da segunda esfera dão um possível local de ligação para esses complexos.

5. CONCLUSÕES

- ✓ A síntese e caracterização de três novos ligantes não simétricos derivados de H₂L¹ e com derivatizações foram feitas por diaminas foram realizadas com sucesso e com pureza adequada, bem como a síntese de seus respectivos complexos heterobinucleares Fe^{III}(µ-OH)Zn^{II}, que imitam o sítio ativo de enzimas como as PAPs.
- Ós cálculos foram realizados e as semelhanças com outras estruturas de complexos binucleares previamente relatadas foram observadas, pois possuem distâncias de ligações e comparando os espectros de infravermelho experimentais e calculados observa-se similariedades.
- Através da condutividade molar, espectrometria de massa e absorção atômica pode-se observar que essas técnicas se completam e trazem informações importantes sobre a espécie em solução que concordam com dados de CHN e de reflectância mostrando a estabilidade também em estado sólido.
- Com base nas propriedades físicas e espectroscópicas foi possível concluir que a espécie ativa é (HO)Fe^{III}(μ-OH)Zn^{II}(OH₂) e pode-se supor que estes complexos tenham a mesma estrutura no estado sólido por meio de valores obtidos de reflectância, pois foi possível observar valores muito semelhantes de λ_{máximo}.
- A obtenção dos parâmetros cinéticos para esses \checkmark complexos permitiu verificar a influência positiva da segunda esfera de coordenação em sua atividade catalítica. A hidrólise do substrato 2,4-BDNPP pelos complexos 1 - 3 em CH₃CN/H₂O ajudou a elucidar os mecanismos envolvidos. Os complexos 2 e 3, que possuem diaminas nas derivatizações, apresentaram maior atividade na hidrólise do substrato 2,4-BDNPP. Entre os complexos 2 ($E_c = 0.69 \text{ mol } L^{-1} \text{ s}^{-1}$) e 3 ($E_c = 0.54$ mol L⁻¹ s⁻¹), observou-se maior atividade para o complexo 2, devido à proximidade do nucleófilo com a parte do fosfato e à presença dos grupos amino, o que aumenta significativamente a afinidade entre o substrato e os complexos. Isso também demonstra que os efeitos do anel de quelação de seis membros e da segunda esfera de coordenação são realmente significativos.

- ✓ Os complexos 2 e 3 são os mais ativos, com E_c de 7,8471x10⁴ e 6,7089x10⁴ L mol⁻¹ h⁻¹ em relação ao complexo 1 que foi 5,8678 x10⁴ L mol⁻¹ h⁻¹.
- ✓ também na clivagem do DNA, indicando novamente que as modificações introduzidas no ligante foram positivas.
- ✓ Análise cinética, dicroísmo circular, uso de sequestradores de espécies reativas de oxigênio, ensaios na ausência de oxigênio, bloqueadores de sulco do DNA e o *footprinting*, ajudam a compreender o mecanismo de reconhecimento e a clivagem da ligação fosfodiéster desses complexos.
- Estudos adicionais relacionados à modificação com outras derivatizações, métodos para a cristalização da estrutura binuclear e uma análise mais aprofundada para estabelecer claramente os mecanismos de ação abrem portas para serem foco de estudos futuros.

ANDERSON, T. R.; TOVERUD, S. U. Purification and characterization of purple acid phosphatase from developing rat bone. **Archives of Biochemistry and Biophysics**, v. 247, n. 1, p. 131-139, 1986.

ASATKAR, A. K. et al. Cu(I) complexes of bis(methyl)(thia/selena) salen ligands: Synthesis, characterization, redox behavior and DNA binding studies. **Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,** v. 171, p. 18-24, 2017.

AURAS, B. L. et al. meso-Mono-[4-(1,4,7-triazacyclononanyl)]tri(phenyl)]porphyrin and the respective zinc(II)-complex: complete characterization and biomolecules binding abilities. **Photochemical & Photobiological Sciences**, v. 15, n. 4, p. 564-579, 2016.

BAILLY, C. et al. DNase I footprinting of small molecule binding sites on DNA. **Methods Mol Biol**, v. 288, p. 319-42, 2005.

BATISTA, S. C. et al. Highly efficient phosphate diester hydrolysis and DNA interaction by a new unsymmetrical FellINiII model complex. **Inorganic Chemistry Communications,** v. 6, n. 8, p. 1161-1165, 2003.

BECK, J. L. et al. Properties of a purple phosphatase from red kidney bean: a zinc-iron metalloenzyme. **Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology,** v. 869, n. 1, p. 61-68, 1986.

BERNHARDT, P. V. et al. An Approach to More Accurate Model Systems for Purple Acid Phosphatases (PAPs). **Inorganic Chemistry**, v. 54, n. 15, p. 7249-63, 2015.

BLACKBURN, G. M. Nucleic Acids in Chemistry and Biology. RSC Pub., 2006.

BORTOLOTTO, T. Interação e clivagem de DNA por novos complexos mononucleares de Cu(II) e binucleares de Fe(III)Zn(II). 2015. Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis.

BOSCH, S. et al. Asymmetric mono- and dinuclear GallI and ZnII complexes as models for purple acid phosphatases. J **Inorg Biochem**, 2015.

BRESLAUER, K. J. et al. Enthalpy-entropy compensations in drug-DNA binding studies. **Proceedings of the National Academy of Sciences,** v. 84, n. 24, p. 8922-8926, 1987.

BUNTON, C. A.; FARBER, S. J. The hydrolysis of bis(2,4-dinitrophenyl)phosphate. **The Journal of Organic Chemistry**, v. 34, p. 767-772, 1969.

BUTENKO, N. et al. The effect of phosphate on the nuclease activity of vanadium compounds. **Journal of Inorganic Biochemistry**, v. 147, p. 165-176, 2015.

CAMARGO, M. A. et al. Efficient Phosphodiester Hydrolysis by Luminescent Terbium(III) and Europium(III) Complexes. **Inorganic Chemistry**, v. 49, n. 13, p. 6013-6025, 2010.

CAMARGO, M. A. et al. Synthesis, Structure, and Phosphatase-Like Activity of a New Trinuclear Gd Complex with the Unsymmetrical Ligand H3L As a Model for Nucleases. **Inorganic Chemistry**, v. 49, n. 6, p. 3057-3063, 2010.

CAMARGO, T. P. et al. Synthesis, characterization, hydrolase and catecholase activity of a dinuclear iron(III) complex: Catalytic promiscuity. **Journal of Inorganic Biochemistry**, v. 146, p. 77-88, 2015.

CAMPBELL, H. D.; ZERNER, B. A low-molecular-weight acid phosphatase which contains iron. **Biochemical and Biophysical Research Communications,** v. 54, n. 4, p. 1498-1503, 1973.

CHEN, T. T. et al. Purification and Properties of a Progesteroneinduced Basic Glycoprotein from the Uterine Fluids of Pigs. **Journal of Biological Chemistry,** v. 248, n. 24, p. 8560-8566, 1973.

CHENNAM, K. P. et al. Synthesis, characterization, DNA interactions, DNA cleavage, radical scavenging activity, antibacterial, anti-proliferative and docking studies of new

transition metal complexes. **Journal of Fluorescence**, v. 26, n. 1, p. 189-205, 2016.

COMBA, P. et al. Monoesterase activity of a purple acid phosphatase mimic with a cyclam platform. **Chemistry**, v. 18, n. 6, p. 1700-10, 2012.

COMBA, P. et al. Spectroscopic characterization of the active Fe(III)Fe(III) and Fe(III)Fe(II) forms of a purple acid phosphatase model system. **Inorganic Chemistry**, v. 51, n. 22, p. 12195-209, 2012.

CORINTI, D. et al. Hydrolysis of cis- and transplatin: structure and reactivity of the aqua complexes in a solvent free environment. **RSC Adv.,** v. 7, n. 26, p. 15877-15884, 2017.

COWAN, J. A. Chemical nucleases. **Current Opinion in Chemical Biology,** v. 5, n. 6, p. 634-642, 2001.

COWAN, J. A. Catalytic Metallodrugs. **Pure and Applied Chemistry**, v. 80, p. 1799–1810, 2008.

COX, R. S. E. A. Diesterase Activity and Substrate Binding in Purple Acid Phosphatases. **American Chemical Society**, v. 129, n. 31, p. 9550-9551, 2007.

DAS, B. et al. A Heterobimetallic FellIMnIIComplex of an Unsymmetrical Dinucleating Ligand: A Structural and Functional Model Complex for the Active Site of Purple Acid Phosphatase of Sweet Potato. **European Journal of Inorganic Chemistry**, v. 2014, n. 13, p. 2204-2212, 2014.

DAUMANN, L. J. et al. Asymmetric zinc(II) complexes as functional and structural models for phosphoesterases. **Dalton Transaction**, v. 42, n. 26, p. 9574-84, 2013.

DAUMANN, L. J. et al. Spectroscopic and mechanistic studies of dinuclear metallohydrolases and their biomimetic complexes. **Dalton Transaction**, v. 43, n. 3, p. 910-28, 2014.

DEAL, K. A.; HENGGE, A. C.; BURSTYN, J. N. Characterization of transition states in dichloro(1,4,7-triazacyclononane)copper(II)-

catalyzed activated phosphate diester hydrolysis. **Journal of the American Chemical Society,** v. 118, n. 7, p. 1713-1718, 1996.

DEHKORDI, M. E. A. Spectrophotometric Study on the Binding of Two Water Soluble Schiff Base Complexes of Mn (III) with ct-DNA. **Journal of Fluorescence**, v. 21, p. 1649-1658, 2011.

DERAKHSHANKHAH, H. E. A. Synthesis, cytotoxicity and spectroscopy studies of a new copper (II) complex: calf thymus DNA and T47D as targets. **Journal of the Iranian Chemical Society,** v. 9, p. 737-746, 2012.

DOMINGOS, J. B. E. A. A química dos ésteres de fosfato. 2003.

DONIA, A. M. Thermal stability of transition-metal complexes. **Thermochimica Acta**. v. 320, p. 187-199, 1998.

FIFE, T. H.; BRUICE, T. C. The temperature dependence of ΔpD correction for the use of the glass electrode em D₂O. **Journal of Physical Chemistry**, v. 65, n. 6, p. 1079-1080, 1961.

GEARY, W. J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. **Coordination Chemistry Reviews**, v. 7, n. 1, p. 81-122, 1970.

GICHINGA, M. G.; STRIEGLER, S. Effect of Water on the Catalytic Oxidation of Catechols. Journal American Chemical Society, v. 130, p. 5150–5156, 2008.

GONZÁLEZ-ÁLVAREZ, M. et al. Biological Activity of Flavonoids Copper Complexes. **Zeitschrift für anorganische und allgemeine Chemie,** v. 631, p. 2181-2187, 2005.

GRAF, N.; LIPPARD, S. J. Redox activation of metal-based prodrugs as a strategy for drug delivery. **Adv Drug Deliv Rev**, v. 64, n. 11, p. 993-1004, 2012.

GUDDAT, L. W. E. A. Crystal structure of mammalian purple acid phosphatase. **Structure with Folding and design,** v. 7, n. 7, p. 757-767, 1999.

HAGERMAN, P. J. Flexibility of DNA. Annual Review of Biophysics and Biophysical Chemistry, v. 17, n. 1, p. 265-286, 1988.

HEFLER, S. K.; AVERILL, B. A. The "manganese(III)-containing" purple acid phosphatase from sweet potatoes is an iron enzyme. **Biochemical and Biophysical Research Communications,** v. 146, n. 3, p. 1173-1177, 1987.

HEGG, E. L.; BURSTYN, J. N. Hydrolysis of Unactivated Peptide Bonds by a Macrocyclic Copper(II) Complex: Cu([9]aneN3)Cl2 Hydrolyzes Both Dipeptides and Proteins. **Journal of the American Chemical Society**, v. 117, n. 26, p. 7015-7016, 1995.

HOFFMANN, E.; STROOBANT, V. Mass Spectrometry. 3. 2007. 502.

HORN JR, A. et al. Synthesis, crystal structure and properties of dinuclear iron(III) complexes containing terminally coordinated phenolate/H2O/OH- groups as models for purple acid phosphatases: efficient hydrolytic DNA cleavage. **Inorganica Chimica Acta**, v. 358, p. 339-351, 2005.

INZELT, G.; LEWENSTAM, A.; SCHOL, F. Handbook of Reference Electrodes. 2012. 351.

JARENMARK, M. et al. Systematic synthesis of functional unsymmetric FeZn model complexes for plant purple acid phosphatases. **Inorganic Chemistry Communications**, v. 13, n. 3, p. 334-337, 2010.

JARENMARK, M. et al. Synthesis, characterization, and reactivity studies of heterodinuclear complexes modeling active sites in purple acid phospatases. **Inorganic Chemistry**, v. 50, n. 9, p. 3866-87, 2011.

JEFF, V. J., A, STAMATOYANNOPOULOS. Genomic footprinting. **Nature Methods**, v. 13, p. 213-221, 2016.

JIANG, Q. et al. Design of artificial metallonucleases with oxidative mechanism. **Coordination Chemistry Reviews**, v. 251, n. 15–16, p. 1951-1972, 2007.

JIN, Y. et al. Influence of Stereochemistry and Redox Potentials on the Single- and Double-Strand DNA Cleavage Efficiency of Cu(II)- and Ni(II)-Lys-Gly-His-Derived ATCUN Metallopeptides. **Journal of the American Chemical Society,** v. 129, n. 26, p. 8353-8361, 2007.

JOHNSON, W. C. Determination of the Conformation of Nucleic Acids by Electronic CD. 1996.

KAIJA, H. E. A. Phosphatase and oxygen radical-generating activities of mammalian purple acid phosphatase are functionally independent. **Biochemical and Biophysical Research Communications,** v. 292, p. 128-132, 2002.

KAIM, W.; SCHWEDERSKI, B.; KLEIN, A. **Bioinorganic Chemistry - Inorganic Elements in the Chemistry of Life: An Introduction and Guide**. 2^a edição. 2013.

KARSTEN, P. E. A. Synthesis, Structure, Properties, and Phosphatase-Like Activity of the First Heterodinuclear FellIMnII Complex with the Unsymmetric ligand H2BPBPMP as a model for the PAP in Sweet Potato. **Inorganic Chemistry Communications,** v. 41, p. 4624-4626, 2002.

KIKUTA, E.; AOKI, S.; KIMURA, E. New potent agents binding to a poly(dT) sequence in double-stranded DNA: bis(Zn2+-cyclen) and tris(Zn2+-cyclen) complexes. **JBIC Journal of Biological Inorganic Chemistry**, v. 7, n. 4, p. 473-482, 2002.

KIM, S. K.; NORDÉN, B. Methyl green: A DNA major-groove binding drug. **FEBS Letters**, v. 315, n. 1, p. 61-64, 1993.

KLABUNDE, T.; KREBS, B. The dimetal center in purple acid phosphatases. **Structure and Bonding,** v. 89, p. 177-198, 1997.

KLABUNDE, T. E. A. Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures. **Journal of Molecular Biology**, v. 259, p. 737-748, 1996.

KRÄMER, R. Bioinorganic models for the catalytic cooperation of metal ions and functional groups in nuclease and peptidase enzymes. **Coordination Chemistry Reviews**, v. 182, n. 1, p. 243-261, 1999.

LANZNASTER, M. et al. A new heterobinuclear FellICull complex with a single terminal FellI–O(phenolate) bond. Relevance to purple acid phosphatases and nucleases. **JBIC Journal of Biological Inorganic Chemistry**, v. 10, p. 319-332, 2005.

LANZNASTER, M. et al. New FeIIIZnII complex containing a single terminal Fe–Ophenolate bond as a structural and functional model for the active site of red kidney bean purple acid phosphatase. **Inorganic Chemistry** 2002.

LEBANSKY, B. R.; MCKNIGHT, T. D.; GRIFFING, L. R. Purification and Characterization of a Secreted Purple Phosphatase from Soybean Suspension Cultures. **Plant Physiology,** v. 99, n. 2, p. 391-395, 1992.

LI, S. et al. DNA Cleavage and Condensation Activities of Monoand Binuclear Hybrid Complexes and Regulation by Graphene Oxide. **Molecules**, v. 21, n. 7, p. 920, 2016.

LIN, M. F. et al. Purification and characterization of a new human prostatic acid phosphatase isoenzyme. **Biochemistry**, v. 22, n. 5, p. 1055-1062, 1983.

LINDQVIST, Y. E. A. Three-dimensional structure of a mammalian purple acid phosphatase at 2.2 Å resolution with a m-(hydr)oxo bridged di-iron center. **Journal Molecular Biology**, v. 291, p. 135-147, 1999.

LIU, C.; WANG, L. DNA hydrolytic cleavage catalyzed by synthetic multinuclear metallonucleases. **Dalton Transactions**, n. 2, p. 227-239, 2009.

LIU, C. et al. DNA hydrolysis promoted by di- and multi-nuclear metal complexes. **Coordination Chemistry Reviews**, v. 248, p. 147-168, 2004.

LIU, C. et al. DNA Hydrolytic Cleavage by the Diiron(III) Complex Fe2(DTPB)(μ -O)(μ -Ac)Cl(BF4)2: Comparison with Other Binuclear Transition Metal Complexes. **Inorganic Chemistry**, v. 41, p. 913-922, 2002.

LUONG, T. K.; SHESTAKOVA, P.; PARAC-VOGT, T. N. Kinetic studies of phosphoester hydrolysis promoted by a dimeric tetrazirconium(iv) Wells-Dawson polyoxometalate. **Dalton Trans**, v. 45, n. 30, p. 12174-80, 2016.

MAHESWARI, P. U. et al. Structure, Cytotoxicity, and DNA-Cleavage Properties of the Complex [Cull(pbt)Br2]. **Inorganic Chemistry**, v. 47, n. 9, p. 3719-3727, 2008.

MARTELL, A. E. The use of crystal structures to elucidate solution coordination chemistry. **Journal Materials Chemistry and Physics**, v. 35, p. 273-280, 1993.

MASH, H. E. et al. Complexation of Copper by Zwitterionic Aminosulfonic (Good) Buffers. **Analytical Chemistry**, v. 75, n. 3, p. 671-677, 2003.

MASSOUD, S. S. et al. Efficient hydrolytic cleavage of plasmid DNA by chloro-cobalt(II) complexes based on sterically hindered pyridyl tripod tetraamine ligands: synthesis, crystal structure and DNA cleavage. **Dalton Trans,** v. 43, n. 26, p. 10086-103, 2014.

MCGEARY, R. P.; SCHENK, G.; GUDDAT, L. W. The applications of binuclear metallohydrolases in medicine: recent advances in the design and development of novel drug leads for purple acid phosphatases, metallo-beta-lactamases and arginases. **Eur J Med Chem**, v. 76, p. 132-44, 2014.

MCKEOWN, B. A. et al. PtII-Catalyzed Ethylene Hydrophenylation: Influence of Dipyridyl Chelate Ring Size on Catalyst Activity and Longevity. **ACS Catalysis**, v. 3, n. 6, p. 1165-1171, 2013. ISSN 2155-5435

MELVIN, M. S. et al. Copper-nuclease efficiency correlates with cytotoxicity for the 4-methoxypyrrolic natural products. **Journal of Inorganic Biochemistry**, v. 87, n. 3, p. 129-135, 2001.

MERKX, M.; AVERILL, B. A. Probing the role of the trivalent metal in phosphate ester hydrolysis: preparation and characterization of Purple Acid Phosphatases containing AlIIIZnII and InIIIZnII active sites, including the first example of an active aluminum enzyme. **Journal of the American Chemical Society,** v. 121, p. 6683-6689, 1999.

MERKX, M.; PINKSE, M. W. H.; AVERILL, B. A. Evidence for nonbridged coordination of p-nitrophenyl phosphate to the dinuclearFe(III)–M(II) center in bovine spleen purple acid phosphatase during enzymatic turnover. **Biochemistry**, v. 38, p. 9914-9925, 1999.

MITIĆ, N. et al. The Catalytic Mechanisms of Binuclear Metallohydrolases. **Chemical Reviews**, v. 106, n. 8, p. 3338-3363, 2006.

MITRA, K. Platinum complexes as light promoted anticancer agents: a redefined strategy for controlled activation. **Dalton Trans,** v. 45, n. 48, p. 19157-19171, 2016.

MORÁVEK, Z.; NEIDLE, S.; SCHNEIDER, B. Protein and drug interactions in the minor groove of DNA. **Nucleic Acids Research**, Oxford, UK, v. 30, n. 5, p. 1182-1191, 2002.

MUKHERJEE, S. et al. Cytotoxic, DNA binding and drug reservoir property of Pt(II)–sulfur complexes: In-vitro kinetics, mechanism with bio-relevant molecules in aqueous medium and a theoretical approach. **Polyhedron**, v. 119, p. 84-97, 2016.

MUSUMECI, D. et al. A first-in-class and a fished out anticancer platinum compound: cis-[PtCl2(NH3)2] and cis-[Ptl2(NH3)2] compared for their reactivity towards DNA model systems. **Dalton Trans,** v. 45, n. 20, p. 8587-600, 2016.

MUXEL, A. A. et al. New La(III) complex immobilized on 3aminopropyl-functionalized silica as an efficient and reusable catalyst for hydrolysis of phosphate ester bonds. **Inorg Chem**, v. 53, n. 6, p. 2943-52, 2014. NAIK, K. et al. Pyrazole bridged dinuclear Cu(II) and Zn(II) complexes as phosphatase models: Synthesis and activity. **Journal of Molecular Structure**, v. 1125, p. 671-679, 2016.

NAKAMOTO, K. Infrared and Raman Spectra of Inorganic and coordination compounds. 3 edição. 1977.

NAKANISHI, K., BEROVA, N. AND WOODY, R.W. Circular Dichroism - Principles and Applications. 1999.

NELSON, D., L; COX, M., M. Princípios de bioquímica de Lehninger. 2014.

NETTO, L. E. S. et al. Removal of Hydrogen Peroxide by Thiolspecific Antioxidant Enzyme (TSA) Is Involved with Its Antioxidant Properties: TSA POSSESSES THIOL PEROXIDASE ACTIVITY. **Journal of Biological Chemistry**, v. 271, n. 26, p. 15315-15321, 1996.

NEVES, A. et al. Catalytic promiscuity: catecholase-like activity and hydrolytic DNA cleavage promoted by a mixed-valence FeIIIFeII complex. **Journal of the Brazilian Chemical Society**, v. 21, p. 1201-1212, 2010.

NEVES, A. et al. An Unprecedented FeIII(µ-OH)ZnII Complex that Mimics the Structural and Functional Properties of Purple Acid Phosphatases. **Journal of American Chemical Society**, v. 129, p. 7486-7487, 2007.

OGUEY, C.; FOLOPPE, N.; HARTMANN, B. Understanding the Sequence-Dependence of DNA Groove Dimensions: Implications for DNA Interactions. **PLoS ONE**, v. 5, n. 12, p. 15931, 2010.

OLIVEIRA, M. C. B. et al. Mononuclear Cull-phenolate bioinspired complex is catalytically promiscuous: phosphodiester and peptide amide bond cleavage. **Journal Inorganic Chemistry**, v. 48, n. 7, p. 2711-2713, 2009.

OSORIO, R. E. et al. Synthesis, magnetostructural correlation, and catalytic promiscuity of unsymmetric dinuclear copper(II) complexes: models for catechol oxidases and hydrolases. **Inorg Chem**, v. 51, n. 3, p. 1569-89, 2012.

OSÓRIO, R. E. H. M. B. et al. Synthesis, structure, magnetism, and hydrolase and catecholase activity of a new trinuclear copper(II) complex. **Inorganica Chimica Acta**, v. 435, p. 153-158, 2015.

PAGES, B. J. et al. Metal complex interactions with DNA. **Dalton Transactions**, v. 44, n. 8, p. 3505-3526, 2015.

PATRA, A. K. DNA cleavage in red light promoted by copper(II) complexes of *l*-amino acids and photoactive phenanthroline bases. **Dalton Transactions**, v. 48, p. 6966-6976, 2008 2007.

PERALTA, R. A. et al. Electronic Structure and Spectro-Structural Correlations of FeIIIZnII Biomimetics for Purple Acid Phosphatases: Relevance to DNA Cleavage and Cytotoxic Activity. **Inorganic Chemistry**, v. 49, n. 24, p. 11421-11438, 2010.

PERALTA, R. A. et al. New unsymmetric dinuclear Cu(II)Cu(II) complexes and their relevance to copper(II) containing metalloenzymes and DNA cleavage. **J Inorg Biochem**, v. 100, n. 5-6, p. 992-1004, 2006.

PIOVEZAN, C. et al. Heterodinuclear Fe(III)Zn(II)-bioinspired complex supported on 3-aminopropyl silica. Efficient hydrolysis of phosphate diester bonds. **Inorg Chem**, v. 49, n. 6, p. 2580-2, 2010.

PIOVEZAN, C. et al. Design of a dinuclear nickel(II) bioinspired hydrolase to bind covalently to silica surfaces: synthesis, magnetism, and reactivity studies. **Inorg Chem**, v. 51, n. 11, p. 6104-15, 2012.

RAGHEB, M. A.; ELDESOUKI, M. A.; MOHAMED, M. S. DNA binding, photo-induced DNA cleavage and cytotoxicity studies of lomefloxacin and its transition metal complexes. **Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy**, v. 138, p. 585-595, 2015.

RAZA, A. et al. Quercetin-Iron Complex: Synthesis, Characterization, Antioxidant, DNA Binding, DNA Cleavage, and Antibacterial Activity Studies. **Journal of Fluorescence**, p. 1-9, 2016. ROBERTS, A. E.; SCHENK, G.; GAHAN, L. R. A Heterodinuclear FeIIIZnII Complex as a Mimic for Purple Acid Phosphatase with Site-Specific ZnII Binding. **European Journal of Inorganic Chemistry**, v. 2015, n. 19, p. 3076-3086, 2015.

RONCONI, L.; SADLER, P. J. Using coordination chemistry to design new medicines. **Coordination Chemistry Reviews**, v. 251, n. 13-14, p. 1633-1648, 2007. ISSN 00108545.

ROSENBERG, B.; VANCAMP, L. Platinum Compounds: a new Class of Potent Antitumour Agents. . **Nature,** v. 222, n. 1591, p. 385, 1969.

ROSENBERG, B. V. Biological effects of platinum compounds. New agents for the control of tumors. **Platinum Metals Review**, v. 15, n. 2, p. 42, 1971.

Organização Mundial de Saúde (OMS), 2017. Disponível em: < <u>www.who.int/cancer/</u> >. Acesso em: 02/06/17.

SCHENK, G. et al. Purple acid phosphatases from bacteria: similarities to mammalian and plant enzymes. **Gene**, v. 255, p. 419-424, 2000.

SCHENK, G. et al. Purple acid phosphatase: A journey into the function and mechanism of a colorful enzyme. **Coordination Chemistry Reviews,** v. 257, n. 2, p. 473-482, 2013.

SCHENK, G. E. A. Binuclear metal centers in purple acid phosphatases: Fe-Mn in sweet potato and Fe-Zn in soybean. Archives of Biochemistry and Biophysics, v. 370, p. 183-189, 1999.

SHAHABADI, N. H., L. Synthesis, characterization and multispectroscopic DNA interaction studies of a new platinum complex containing the drug metformin. **. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,** v. 128, p. 377-385, 2014. SHOOK, R. L.; BOROVIK, A. S. Role of the secondary coordination sphere in metal-mediated dioxygen activation. **Inorg Chem,** v. 49, n. 8, p. 3646-60, 2010.

SHRIVER, D. F.; ATKINS, P. Química Inorgânica. 4ª edição. 2008.

SIGMAN, D., S; AND; CHEN, C., B. Chemical Nucleases: New Reagents in Molecular Biology. **Annual Review of Biochemistry**, v. 59, n. 1, p. 207-236, 1990.

SIGMAN, D. S. et al. Oxygen-dependent cleavage of DNA by the 1,10-phenanthroline . cuprous complex. Inhibition of Escherichia coli DNA polymerase I. **Journal of Biological Chemistry**, v. 254, n. 24, p. 12269-72, 1979.

SIGMAN, D. S.; MAZUMDER, A.; PERRIN, D. M. Chemical nucleases. **Chemical Reviews**, v. 93, n. 6, p. 2295-2316, 1993.

SILVA, P. P. et al. Two New Ternary Complexes of Copper(II) with Tetracycline or Doxycycline and 1,10-Phenanthroline and Their Potential as Antitumoral: Cytotoxicity and DNA Cleavage. **Inorganic Chemistry**, v. 50, n. 14, p. 6414-6424, 2011.

SILVERSTEIN, R. M.; BASSLER, G. C.; MORRILL, T. C. Identificação Espectrofotométrica de Compostos Orgânicos. 5^a edição. 1994.

SMITH, S. J. et al. Spectroscopic and catalytic characterization of a functional Fe(III)Fe(II) biomimetic for the active site of uteroferrin and protein cleavage. **Inorg Chem**, v. 51, n. 4, p. 2065-78, 2012.

SOUZA, B. et al. The effect of chain size on the modeling of second sphere effects in biomimetic complexes. **Journal of Molecular Catalysis A: Chemical**, v. 397, p. 76-84, 2015.

SOUZA, B. et al. Second-coordination-sphere effects increase the catalytic efficiency of an extended model for Fe(III)M(II) purple acid phosphatases. **Inorg Chem**, v. 52, n. 7, p. 3594-6, 2013.

SOUZA, B. B., A. J.; BORTOLOTTO, T.; FISCHER, F.L.; TERENZI, H.; FERREIRA, D. E. C.; ROCHA, W. R.; NEVES, A.

DNA photonuclease activity of four new copper(II) complexes under UV and red light: theoretical/experimental correlations with active species generation. **Dalton Transactions**, v. 39, p. 2027–2035, 2010.

SREEDHARA, A.; FREED, J. D.; COWAN, J. A. Efficient Inorganic Deoxyribonucleases. Greater than 50-Million-Fold Rate Enhancement in Enzyme-Like DNA Cleavage. **Journal of the American Chemical Society,** v. 122, p. 8814-8824, 2000.

SRISHAILAM, A. et al. Synthesis, characterization; DNA binding and antitumor activity of ruthenium(II) polypyridyl complexes. **Journal of Photochemistry and Photobiology B: Biology,** v. 141, p. 47-58, 2014.

STRÄTER, N. E. A. Crystal structure of a purple acid-phosphatase containing a dinuclear FeIII-ZnII active-site. Science. **Science**, v. 268, p. 1489-1492, 1995.

STRÄTER, N. et al. Two metal ion catalysis in enzymatic acyl- and phosphoril-transfer reactions. **Angewandte Chemie International Edition in English,** v. 35, p. 2024-2055, 1996.

TAN, J.; WANG, B.; ZHU, L. DNA binding and oxidative DNA damage induced by a quercetin copper(II) complex: potential mechanism of its antitumor properties. **JBIC Journal of Biological Inorganic Chemistry**, v. 14, n. 5, p. 727-739, 2009.

TANG, W. et al. Cooperative catalysis through noncovalent interactions. **Angewandte Chemie International Edition**, v. 52, n. 6, p. 1668-1672, 2013.

TERENZI, A. et al. Another step toward DNA selective targeting: Nill and Cull complexes of a Schiff base ligand able to bind gene promoter G-quadruplexes. **Dalton Transactions,** v. 45, n. 18, p. 7758-7767, 2016.

THAN, R.; FELDMANN, A.; KREBS, B. Structural and functional studies on model compounds of purple acid phosphatases and catechol oxidases. **Coordination Chemistry Reviews**, v. 182, p. 211-241, 1999.

THOER, A. et al. The Reimer-Tiemann reaction in slightly hydrated solid-liquid medium: a new method for the synthesis of formyl and diformyl phenols. **Synthetic Communications,** v. 18, p. 2095-2101, 1988.

TIREL, E. Y. et al. Catalytic zinc complexes for phosphate diester hydrolysis. **Angew Chem Int Ed Engl,** v. 53, n. 31, p. 8246-50, 2014.

UPPENBERG, J. E. A. Crystal structure of a mammalian purple acid phosphatase. **Journal of Molecular Biology**, v. 290, p. 201-211, 1999.

URBACH, A. R.; WARING, M. J. Visualising DNA: Footprinting and 1-2D Gels. **Molecular BioSystems**, v. 1, n. 4, p. 287-293, 2005.

VAN DYKE, M. W.; HERTZBERG, R. P.; DERVAN, P. B. Map of distamycin, netropsin, and actinomycin binding sites on heterogeneous DNA: DNA cleavage-inhibition patterns with methidiumpropyI-EDTA.Fe(II). **Proceedings of the National Academy of Sciences of the United States of America,** v. 79, p. 5470-5474, 1982.

WALDRON, K. J. et al. Metalloproteins and metal sensing. **Nature**, v. 460, n. 7257, p. 823-30, 2009.

WANG, L.; LI, W.-J.; SONG, Y.-M. Antitumor activity and DNA binding studies on rare earth metal complexes with all-trans retinoic acid and l-glutamic acid. **RSC Advances**, v. 4, n. 80, p. 42285-42292, 2014.

WANG, M. Q. et al. Site-selective DNA hydrolysis induced by a metal-free peptide nucleic acid-cyclen conjugate. **Chem Commun (Camb)**, v. 47, n. 39, p. 11059-61, 2011.

WANG, Q. et al. Synthesis, characterization, DNA interaction, and antitumor activities of mixed-ligand metal complexes of kaempferol and 1,10-phenanthroline/2,2'-bipyridine. **Medicinal Chemistry Research,** v. 23, n. 5, p. 2659-2666, 2014.

WANG, X. et al. Spectroscopic Characterization of a Ternary Phosphate-SubstrateFluoride Complex. Mechanistic Implications

for Dinuclear Hydrolases. **Journal of the American Chemical Society,** v. 121, p. 9235, 1999.

WATSON, J. D.; CRICK, F. H. C. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. **Nature**, v. 171, p. 737-738, 1953.

WILCOX, D. E. Binuclear Metallohydrolases. Chemical Reviews, v. 96, n. 7, p. 2435-2458, 1996.

XAVIER, F. R. et al. Unsymmetrical Fe(III)Co(II) and Ga(III)Co(II) complexes as chemical hydrolases: biomimetic models for purple acid phosphatases (PAPs). **Inorg Chem,** v. 48, n. 16, p. 7905-21, 2009.

XIAO, Y. et al. Synthesis, structure, and biological evaluation of a copper(II) complex with fleroxacin and 1,10-phenanthroline. **Dalton Transactions,** v. 45, n. 27, p. 10928-10935, 2016.

YPSILANTIS, K. et al. Synthesis, reactivity and characterization of Pt(II) complexes with N,N' chelating ligands; structure and dimethylsulfoxide reactivity relationship. **Dalton Trans,** v. 46, n. 5, p. 1467-1480, 2017.

ZASTROW, M. L.; PECORARO, V. L. Designing Hydrolytic Zinc Metalloenzymes. **Biochemistry**, v. 53, n. 6, p. 957-978, 2014.

ZHANG, Q. et al. Identification of rice purple acid phosphatases related to posphate starvation signalling. **Plant Biology,** v. 13, n. 1, p. 7-15, 2011.

ZHAO, M. et al. Insights into metalloenzyme microenvironments: biomimetic metal complexes with a functional second coordination sphere. **Chemical Society Reviews**, v. 42, n. 21, p. 8360-8375, 2013.