

UNIVERSIDADE FEDERAL DE SANTA CATARINA CAMPUS ARARANGUÁ CENTRO DE CIÊNCIAS, TECNOLOGIAS E SAÚDE DEPARTAMENTO DE ENERGIA E SUSTENTABILIDADE PLANO DE ENSINO

SEMESTRE 2018.1

I. IDENTIFIC	AÇÃO DA DISCIPLINA:			
CÓDIGO	NOME DA DISCIPLINA	Nº DE HORAS-AULA SEMANAIS TEÓRICAS PRÁTICAS		TOTAL DE HORAS-AULA SEMESTRAIS
EES7366	Termodinâmica II	02	00	36

	HORÁRIO	
TURMAS TEÓRICAS	TURMAS PRÁTICAS	MODALIDADE
05653 - 2.1620(2)	-	Presencial

II. PROFESSOR(ES) MINISTRANTE(S)

Rogério Gomes de Oliveira (rogerio.oliveira@ufsc.br)

III. PRÉ-REQI	UISITO(S)	
CÓDIGO	NOME DA DISCIPLINA	
EES7350	Termodinâmica I	

IV. CURSO PARA O QUAL A DISCIPLINA É OFERECIDA

Bacharelado em Engenharia de Energia

V. JUSTIFICATIVA

O estudo da termodinâmica causou importantes avanços tecnológicos e impulsionou a revolução industrial, através do desenvolvimento e uso das máquina térmicas, assim como, através do desenvolvimento e uso de refrigeradores e climatizadores, permitiu um melhor armazenamento e distribuição dos alimentos, além proporcionar maior conforto térmico em edificações e veículos. Para o engenheiro de energia, é importante compreender os fatores que influenciam a eficiência dos processos tanto de conversão de energia, que ocorrem nas máquinas térmicas, quanto de consumo de energia, que ocorrem nos refrigeradores e climatizadores. Além de compreender os ciclos termodinâmicos das máquinas térmicas, é importante o engenheiro de energia conhecer a termodinâmica das reações químicas para compreender os fatores que influencia a combustão. Também é importante o engenheiro de energia conhecer como utilizar as propriedades das misturas de gases, em particularmente, da mistura do ar seco com vapor de água, a qual está relacionada com a sensação de conforto térmico.

VI EMENTA

Ciclos de potência e refrigeração. Cogeração. Misturas de gases. Termodinâmica das reações químicas.

VII. OBJETIVOS

Objetivo Geral:

Fornecer os subsídios necessários para o aluno entender e analisar o funcionamento de ciclos para produção de potência de eixo e para bombeamento de calor, as mistura de gases nos processos termodinâmicos e as reações químicas de interesse na conversão de energia.

Objetivos Específicos:

- Apresentar diferentes ciclos de produção de potência de eixo e de bombeamento de calor.
- Demonstrar como calcular as propriedades termodinâmicas das misturas de gases e como utilizá-las em processos termodinâmicos.
- Apresentar o processo de combustão.
- Demonstrar como aplicar a primeira e segunda lei da termodinâmica em sistemas reagentes.

VIII. CONTEÚDO PROGRAMÁTICO

- Ciclos de potência e ciclos de bombeamento de calor.
- Cogeração.
- Misturas de gases e aplicações.
- Termodinâmica das reações químicas e aplicações.

IX. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

Aula expositiva e dialogada. Proposição de exercícios. Resolução de exercícios em sala. Utilização da plataforma Moodle para apoio às aulas.

X. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

- A verificação do rendimento escolar compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, ficando nela reprovado o aluno que não comparecer, no mínimo a 75% das mesmas.
- A nota mínima para aprovação na disciplina será 6,0 (seis). (Art. 69 e 72 da Res. nº 17/CUn/1997).
- O aluno com frequência suficiente (FS) e média das notas de avaliações do semestre entre 3,0 e 5,5 terá direito a uma nova avaliação no final do semestre (REC), exceto as atividades constantes no art.70,§ 2º. A nota será calculada por meio da média aritmética entre a média das notas das avaliações parciais (MF) e a nota obtida na nova avaliação (REC). (Art. 70 e 71 da Res. nº 17/CUn/1997).

$$NF = \frac{MF + REC}{2}$$

- Ao aluno que não comparecer às avaliações ou não apresentar trabalhos no prazo estabelecido será atribuída nota 0 (zero). (Art. 70, § 4º da Res. nº 17/CUn/1997)
 - Avaliações Escritas

Haverá 2 avaliações. A nota média final será calculada da seguinte maneira:

$$MF = (P1 \times 0.5 + P2 \times 0.5)$$

Pedido de Nova Avaliação - Art. 74 da Res. nº 17/CUn/97

 O aluno, que por motivo de força maior e plenamente justificado, deixar de realizar atividades avaliativas previstas no plano de ensino, deverá formalizar pedido à Chefia do Departamento de Ensino ao qual a disciplina pertence, dentro do prazo de 3 (três) dias úteis, apresentando documentação comprobatória. O pedido de nova avaliação deverá ser formalizado na Secretaria Integrada de Departamento.

XI. CRONOGE	RAMA PREVISTO	
SEMANA	DATA	ASSUNTO
1a	26/02/18 a 03/03/18	Ciclos de potência com mudança de fase (Cap. 11)
2ª	05/03/18 a 10/03/18	Ciclos de refrigeração com mudança de fase (Cap. 11)
3 ^a	12/03/18 a 17/03/18	Ciclos de potência e refrigeração com mudança de fase (Cap. 11)
4 ^a	19/03/18 a 24/03/18	Ciclos de potência a gás (Cap. 12).
5 ^a	26/03/18 a 31/03/18	Ciclos de refrigeração a gás (Cap. 12)
6ª	02/04/18 a 07/04/18	Ciclos de potência e refrigeração a gás (Cap. 12).Cogeração (Cap. 11 e 12.)
7a	09/04/18 a 14/04/18	1ª avaliação.
8ª	16/04/18 a 21/04/18	Misturas de gases (Cap. 13).
9a	23/04/18 a 28/04/18	Misturas de gases (Cap. 13).
10 ^a	30/04/18 a 05/05/18	Dia não letivo
11 ^a	07/05/18 a 12/05/18	Misturas de gases (Cap. 13).

12 ^a	14/05/18 a 19/05/18	Reações químicas (Cap. 15).
13 ^a	21/05/18 a 26/05/18	Reações químicas (Cap. 15).
14 ^a	28/05/18 a 02/06/18	Reações químicas (Cap. 15).
15 ^a	04/06/18 a 09/06/18	Reações químicas (Cap. 15).
16 ^a	11/06/18 a 16/06/18	2ª avaliação
17 ^a	18/06/18 a 23/06/18	Avaliação substituta.
18ª	25/06/18 a 30/06/18	Prova de Recuperação
19ª	02/07/18 a 04/07/18	Divulgação de notas.

DATA	lias não letivos previstos para o semestre 2018.1
30/03/18 (sex)	Sexta-feira Santa
31/03/18 (sab)	Dia não letivo
03/04/18 (ter)	Aniversário da Cidade
21/04/18 (sab)	Tiradentes
30/04/18 (seg)	Dia não letivo
01/05/18 (ter)	Dia do Trabalhador
04/05/18 (sex)	Dia da Padroeira da Cidade de Araranguá
31/05/18 (qui)	Corpus Christi
01/06/18 (sex)	Dia não letivo
02/06/18 (sab)	Dia não letivo

XIII. BIBLIOGRAFIA BÁSICA

- BORGNAKKE, Claus; SONNTAG, Richard Edwin. Fundamentos da termodinâmica. 7. ed. São Paulo: Edgard Blucher, 2009. 659p.
- 2. MORAN, Michael J.; SHAPIRO, Howard N. **Princípios de termodinâmica para engenharia.** 6. ed. Rio de Janeiro: Livros Técnicos e Científicos, 2009. 800p.
- 3. VAN WYLEN, Gordon John; SONNTAG, Richard Edwin; BORGNAKKE, Claus. Fundamentos da termodinâmica classica. 1. ed. São Paulo: Edgard Blucher, 1995. 608p.

XIV. BIBLIOGRAFIA COMPLEMENTAR

- 1. ÇENGEL, Y.A.; BOLES, M.A. Termodinâmica. 7. ed. Porto Alegre: AMGH, 2013. 1018 p.
- SCHMIDT, F.W.; HENDERSON, R.E.; WOLGEMUTH, C.H. Introdução às ciências térmicas: termodinâmica, mecânica dos fluidos e transferência de calor. São Paulo:Edgard Blucher, 1996. 466 p.
- 3. ATKINS, P.W. Fisico-química. 9. ed. Rio de Janeiro: LTC, 2012. 416 p.
- KONDEPUDI, D.K.; PRIGOGINE, I. Modern thermodynamics: from heat engines to dissipative structures. Chichester: J. Wiley, 1998. 486p.
- 5. BEJAN, A. Advanced engineering thermodynamics. 3rd ed. Hoboken: J. Wiley & Sons, 2006. 880 p.

Professor:	3			
Aprovado pelo	Departamento em	1	_/_	

Chefia de Departamento:

Aprovado pelo Colegiado do Curso em 29,3,2018

Presidente do Collegia domes de Uliveira, Dr. Prof. Adjunto/SIAPE: 1724307 UFSC/Campus Araranguá

