

Astrofísica Geral Tema 05: Noções de Óptica

Alexandre Zabot

Índice

Reflexão e Refração

Espalhamento

Polarização

Espelhos

Lentes

Interferência e Difração

Bibliografia

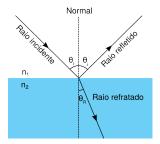
Índice

Reflexão e Refração

Espalhamento

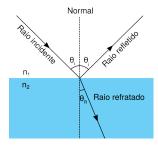
Polarização

Espelhos


Lente

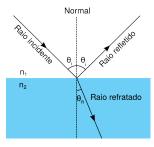
Interferência e Difração

Bibliografia



Definição

Reflexão e refração da luz por um meio.


Definição

Reflexão e refração da luz por um meio.

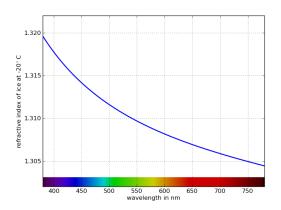
- Reflexão: ângulos iguais
- Refração: Lei de Snell

Definição

Reflexão e refração da luz por um meio.

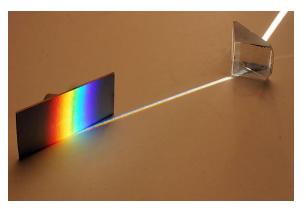
- Reflexão: ângulos iguais
- ▶ Refração: Lei de Snell

$$n_1 sen(\theta_i) = n_2 sen(\theta_R)$$


Índice de refração

$$n=\frac{c}{v}$$

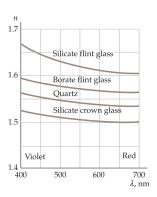
O índice de refração é uma medida da velocidade da luz no meio.


Material	n
Vácuo	1
Ar	1.0003
Água	1.33
Etanol	1.36
Gasolina (no Brasil)	Etanol
Azeite de Oliva	1.47
Gelo	1.31
Vidro comum	1.5
Diamante	2.42

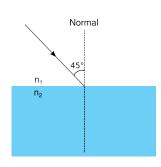
Dispersão

Índice de refração para o gelo à -20° C. O índice de refração depende do comprimento de onda. Esse fenômeno é crucial para a Astrofísica e chama-se dispersão.

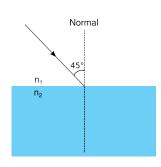
Dispersão



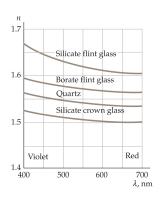
Decomposição da luz por um prisma. Este é o princípio físico usado no Espectrógrafo.

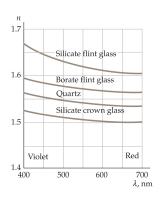

Exercício 5.1

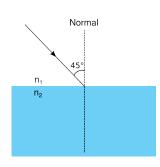
Você está planejando usar um prisma para dispersar a luz e construir um espectrógrafo. Se a luz branca incide à 45° , utilize o gráfico abaixo para determinar qual o ângulo de refração para a cor violeta e vermelha.

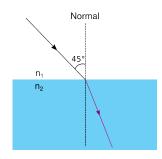


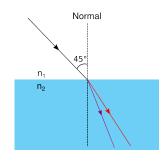
Índice de refração para vários tipos de vidros.

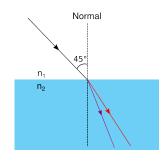

- ▶ Utilizamos a lei de Snell: $n_1 sen(\theta_i) = n_2 sen(\theta_R)$
- Sabemos que $n_1 = n_{ar} = 1$ e $\theta_i = 45^\circ$
- ▶ Do gráfico temos que $n_2 \approx 1.66$ para o violeta
- e que $n_2 \approx 1.60$ para o vermelho
- Então, $sen(\theta_R) = 1 \times sen(45^\circ)/n_2$
- ▶ Para o violeta: $sen(\theta_R) = 0.4260 \rightarrow \theta_R = 25.2^{\circ}$
- ▶ Para o vermelho: $sen(\theta_R) = 0.4419 \rightarrow \theta_R = 26.2^\circ$
- ▶ Portanto, 1° de diferença.


- ▶ Utilizamos a lei de Snell: $n_1 sen(\theta_i) = n_2 sen(\theta_R)$
- Sabemos que $n_1 = n_{ar} = 1$ e $\theta_i = 45^\circ$
- ▶ Do gráfico temos que $n_2 \approx 1.66$ para o violeta
- e que $n_2 \approx 1.60$ para o vermelho
- Então, $sen(\theta_R) = 1 \times sen(45^\circ)/n_2$
- ▶ Para o violeta: $sen(\theta_R) = 0.4260 \rightarrow \theta_R = 25.2^{\circ}$
- ▶ Para o vermelho: $sen(\theta_R) = 0.4419 \rightarrow \theta_R = 26.2^\circ$
- ▶ Portanto, 1° de diferença.


- ▶ Utilizamos a lei de Snell: $n_1 sen(\theta_i) = n_2 sen(\theta_R)$
- Sabemos que $n_1 = n_{ar} = 1$ e $\theta_i = 45^\circ$
- Do gráfico temos que $n_2 \approx 1.66$ para o violeta
- e que $n_2 \approx 1.60$ para o vermelho
- Então, $\mathit{sen}(\theta_{\mathit{R}}) = 1 \times \mathit{sen}(45^{\circ})/\mathit{n}_{2}$
- ▶ Para o violeta: $sen(\theta_R) = 0.4260 \rightarrow \theta_R = 25.2^\circ$
- ▶ Para o vermelho: $sen(\theta_R) = 0.4419 \rightarrow \theta_R = 26.2^\circ$
- ▶ Portanto, 1° de diferença.


- ▶ Utilizamos a lei de Snell: $n_1 sen(\theta_i) = n_2 sen(\theta_R)$
- Sabemos que $n_1 = n_{ar} = 1$ e $\theta_i = 45^\circ$
- Do gráfico temos que $n_2 \approx 1.66$ para o violeta
- e que $n_2 \approx 1.60$ para o vermelho
- Então, $\mathit{sen}(\theta_{\mathit{R}}) = 1 \times \mathit{sen}(45^{\circ})/\mathit{n}_{2}$
- ▶ Para o violeta: $sen(\theta_R) = 0.4260 \rightarrow \theta_R = 25.2^\circ$
- ▶ Para o vermelho: $sen(\theta_R) = 0.4419 \rightarrow \theta_R = 26.2^\circ$
- ▶ Portanto, 1° de diferença.


- ▶ Utilizamos a lei de Snell: $n_1 sen(\theta_i) = n_2 sen(\theta_R)$
- Sabemos que $n_1 = n_{ar} = 1$ e $\theta_i = 45^\circ$
- ▶ Do gráfico temos que $n_2 \approx 1.66$ para o violeta
- e que $n_2 \approx 1.60$ para o vermelho
- Então, $sen(\theta_R) = 1 \times sen(45^\circ)/n_2$
- ▶ Para o violeta: $sen(\theta_R) = 0.4260 \rightarrow \theta_R = 25.2^\circ$
- ▶ Para o vermelho: $sen(\theta_R) = 0.4419 \rightarrow \theta_R = 26.2^\circ$
- ▶ Portanto, 1° de diferença.


- ▶ Utilizamos a lei de Snell: $n_1 sen(\theta_i) = n_2 sen(\theta_R)$
- Sabemos que $n_1 = n_{ar} = 1$ e $\theta_i = 45^\circ$
- ▶ Do gráfico temos que $n_2 \approx 1.66$ para o violeta
- e que $n_2 \approx 1.60$ para o vermelho
- Então, $sen(\theta_R) = 1 \times sen(45^\circ)/n_2$
- ▶ Para o violeta: $sen(\theta_R) = 0.4260 \rightarrow \theta_R = 25.2^\circ$
- ▶ Para o vermelho: $sen(\theta_R) = 0.4419 \rightarrow \theta_R = 26.2^\circ$
- ▶ Portanto, 1° de diferença.

- ▶ Utilizamos a lei de Snell: $n_1 sen(\theta_i) = n_2 sen(\theta_R)$
- Sabemos que $n_1 = n_{ar} = 1$ e $\theta_i = 45^\circ$
- ▶ Do gráfico temos que $n_2 \approx 1.66$ para o violeta
- e que $n_2 \approx 1.60$ para o vermelho
- Então, $sen(\theta_R) = 1 \times sen(45^\circ)/n_2$
- ▶ Para o violeta: $sen(\theta_R) = 0.4260 \rightarrow \theta_R = 25.2^\circ$
- ▶ Para o vermelho: $sen(\theta_R) = 0.4419 \rightarrow \theta_R = 26.2^\circ$
- ▶ Portanto, 1° de diferença.

- ▶ Utilizamos a lei de Snell: $n_1 sen(\theta_i) = n_2 sen(\theta_R)$
- Sabemos que $n_1 = n_{ar} = 1$ e $\theta_i = 45^\circ$
- ▶ Do gráfico temos que $n_2 \approx 1.66$ para o violeta
- e que $n_2 \approx 1.60$ para o vermelho
- Então, $sen(\theta_R) = 1 \times sen(45^\circ)/n_2$
- ▶ Para o violeta: $sen(\theta_R) = 0.4260 \rightarrow \theta_R = 25.2^\circ$
- ▶ Para o vermelho: $sen(\theta_R) = 0.4419 \rightarrow \theta_R = 26.2^\circ$
- ▶ Portanto, 1° de diferença.

Índice

Reflexão e Refração

Espalhamento

Polarização

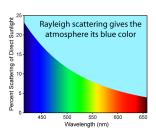
Espelhos

Lente

Interferência e Difração

Bibliografia

Espalhamento



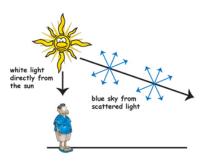
O espalhamento da luz nos permite enxergar os raios de luz nesta imagem.

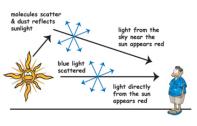
Espalhamento

Mecanismo do espalhamento.

Quanto menor o comprimento de onda, maior a taxa de espalhamento.

Céu


Cores do céu no pôr do Sol.


Por quê que o céu é azul? (Renato Russo)

12 | 37

Céu

Vemos o céu azul por que essa é a cor mais espalhada pelas moléculas.

Próximo ao Sol vemos o céu avermelhado porque a poeira reflete luz de outras direções e as moléculas espalham luz para outras direções.

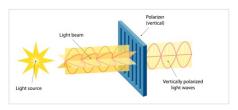
Índice

Reflexão e Refração

Espalhamento

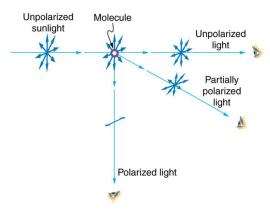
Polarização

Espelhos

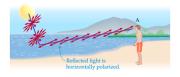

Lente

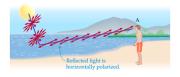
Interferência e Difração

Bibliografia

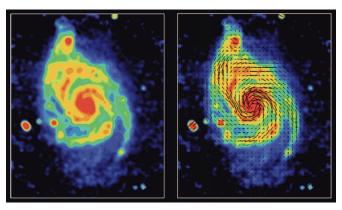


- Um feixe de luz possui vibrações em todas as direções
- Um filtro polaróide seleciona uma direção específica
- Vários fenômenos ópticos causam a polarização naturalmente


Polarização da luz.


A luz pode ser polarizada por espalhamento.

A luz pode ser polarizada por reflexão.



A luz pode ser polarizada por reflexão.

No quadro da direita, a luz polarizada espalhada foi bloqueada com um filtro.

A emissão sob um campo magnético polariza a luz. Isso nos permite estudar o campo magnético de objetos celestes. Imagem em rádio da galáxia M51 com vetores de campo magnético segundo dados da polarização da luz.

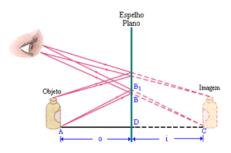
Índice

Reflexão e Refração

Espalhamento

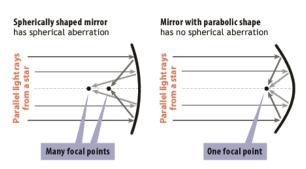
Polarização

Espelhos


Lente

Interferência e Difração

Bibliografia


Espelho Plano

Num espelho plano a imagem aparece à mesma distância e do mesmo tamanho.



Espelho Curvo

Na Astrofísica utiliza-se muito espelhos parabólicos, porque têm a propriedade de concentrar raios paralelos num ponto só, o ponto focal.

Espelho Parabólico

Técnico trabalhando no espelho de 8m do Telescópio Gemini.

Antenas do Very Large Array, um telescópio em ondas de rádio.

Índice

Reflexão e Refração

Espalhamento

Polarização

Espelhos

Lentes

Interferência e Difração

Bibliografia

Lente Convergente

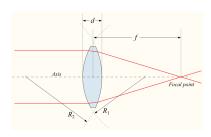
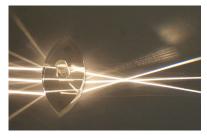



Diagrama de uma lente convergente.

Raios de luz em uma lente convergente

Lente Divergente

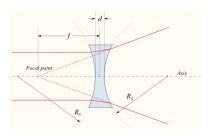


Diagrama de uma lente divergente.

Raios de luz em uma lente divergente

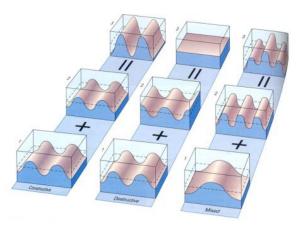
Índice

Reflexão e Refração

Espalhamento

Polarização

Espelhos

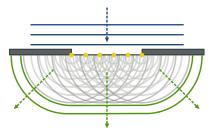

Lentes

Interferência e Difração

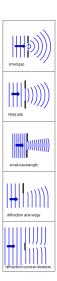
Bibliografia

Interferência

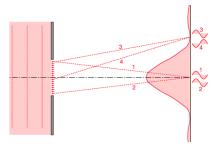
As ondas podem interferir entre si de vários modos.


Interferência

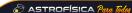
Vários padrões de interferência.


Princípio de Huygens

Princípio de Huygens: cada ponto de uma frente de onda é a fonte de uma nova onda.

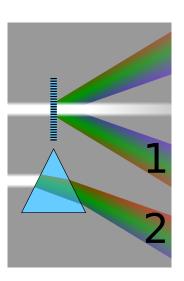

A curva da luz

Consequência: as ondas podem "fazer a curva" quando passam por uma fenda ou obstáculo.



30 | 37

Fenda simples



Padrão de interferência para uma fenda simples: máximo central seguido de outros máximos. A distância entre os pontos de mínimo depende do comprimento de onda, do tamanho da fenda e da distância do anteparo.

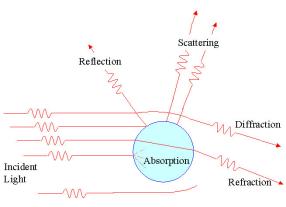
Rede de difração

Podemos usar as propriedades da fenda simpes para montar uma rede de difração e separar as cores do espectro luminoso, jogando o máximo segundário de cada cor para um ângulo diferente.

Rede de difração

A vida real é sempre mais complicada do que a teoria! Além dos máximos secundários, temos o máximo central e máximos de ordem menor.

Rede de difração


A rede de difração é mais vantajosa:

- Não é preciso um vidro de alta qualidade
- Pode-se controlar facilmente a dispersão
- Manutenção mais fácil
- Mais barata

Rede de difração.

Resumo

Vários fenômenos ópticos possíveis.

Índice

Reflexão e Refração

Espalhamento

Polarização

Espelhos

Lentes

Interferência e Difração

Bibliografia

Bibliografia

Fontes para estudo

Física, Paul Tipler & Gene Mosca, Volume 3, Capítulos 31 a 33

REALIZAÇÃO

