

## UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS. TECNOLOGIAS E SAÚDE COORDENADORIA ESPECIAL DE FÍSICA, QUÍMICA E MATEMÁTICA PLANO DE ENSINO

#### **SEMESTRE 2018.2**

| I. IDENTIFICAÇÃO DA DISCIPLINA: |                    |                                                   |   |                                   |  |
|---------------------------------|--------------------|---------------------------------------------------|---|-----------------------------------|--|
| CÓDIGO                          | NOME DA DISCIPLINA | Nº DE HORAS-AULA<br>SEMANAIS<br>TEÓRICAS PRÁTICAS |   | TOTAL DE HORAS-AULA<br>SEMESTRAIS |  |
| FQM7112                         | Física C           | 4                                                 | 0 | 72                                |  |

| HORÁRIO                       |                 | MODALIDADE |
|-------------------------------|-----------------|------------|
| TURMAS TEÓRICAS               | TURMAS PRÁTICAS | Presencial |
| 03655 - 2.1010(2) e 4.1010(2) |                 |            |

| II. PROFESSOR(ES) MINISTRANTE(S) |                                   |
|----------------------------------|-----------------------------------|
| Evy Augusto Salcedo Torres       | Email: evy.salcedo.torres@ufsc.br |

| III. PRÉ-REQUISITO(S) |                    |  |
|-----------------------|--------------------|--|
| CÓDIGO                | NOME DA DISCIPLINA |  |
|                       |                    |  |
|                       |                    |  |
|                       |                    |  |

# IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

Bacharelado em Engenharia de Computação e Bacharelado em Engenharia de Energia

# V. JUSTIFICATIVA

Esta disciplina justifica-se pela contribuição teórico-investigativa na formação básica de egressos da área de ciências naturais e tecnológicas. Ela é necessária para a complementação da formação do profissional em engenharia, fornecendo uma base para a compreensão de problemas relacionados à eletricidade, magnetismo e óptica.

#### VI. EMENTA

Carga elétrica. Lei de Coulomb. Campo elétrico. Lei de Gauss. Potencial. Capacitores. Corrente elétrica. Força eletromotriz e circuitos. Campo magnético. Lei de Ampére. Lei de Faraday. Indutância. Propriedades magnéticas da matéria.

# VII. OBJETIVOS

# Objetivo Geral:

Qualificar o graduando na compreensão de fenômenos físicos e solução de problemas em física básica relacionados aos temas de eletricidade, magnetismo e óptica física.

## **Objetivos Específicos:**

- Utilizar linguagem específica na expressão de conceitos físicos relativos a eletricidade, magnetismo e óptica física.
- Identificar, propor e resolver problemas dos temas citados.
- Reconhecer as relações de desenvolvimento da Física com outras áreas do saber, tecnologia e instâncias sociais.
- Transmitir conhecimento expressando-se de forma clara e consistente na divulgação dos resultados científicos.
- Compreender os conceitos de carga, campos elétrico e magnético e potencial.
- Representar matematicamente distribuições contínuas de carga.
- Interpretar as aplicar as leis de Gauss, Faraday, Ampere e de Gauss para o magnetismo.
- Estudar o funcionamento de resistores, capacitores e indutores bem como suas funções em circuitos simples de corrente contínua
- Estudar os fenômenos ópticos da interferência, difração e polarização e a relação entre óptica e eletromagnetismo.

## VIII. CONTEÚDO PROGRAMÁTICO

## 1. Carga Elétrica e Campo Elétrico

- 1.1. Carga elétrica;
- 1.2. Condutores e isolantes;
- 1.3. Lei de Coulomb;
- 1.4. Campo elétrico e linhas de campo elétrico;
- 1.5. Movimento de cargas em campos elétricos;
- 1.6. Dipolos elétricos em campos elétricos;
- 1.7. Cálculo do campo elétrico a partir da Lei de Coulomb;

#### 2. Lei de Gauss

- 2.1. Lei de Gauss;
- 2.2. Cargas e campos elétricos nas superfícies condutoras;

## 3. Potencial Elétrico

- 3.1. Diferença de potencial;
- 3.2. Potencial elétrico de um sistema de cargas;
- 3.3. Cálculo do campo elétrico a partir do potencial elétrico;
- 3.4. Cálculo do potencial para distribuições contínuas de carga;
- 3.5. Superfícies equipotenciais;
- 3.6. Energia eletrostática;

## 4. Capacitância e Dielétricos

- 4.1. Capacitância e capacitores;
- 4.2. Capacitores em série e em paralelo;
- 4.3. Dielétricos;

#### 5. Corrente elétrica, Resistência e Circuitos CC

- 5.1. Corrente elétrica;
- 5.2. Resistência;
- 5.3. Lei de Ohm;
- 5.4. Força eletromotriz;
- 5.5. Resistores:
- 5.6. Associação de resistores;
- 5.7. Leis de Kirchhoff:
- 5.8. Circuitos de corrente contínua;

# 6. Campo Magnético e Forças Magnéticas

- 6.1. Campo Magnético;
- 6.2. Movimento de partículas carregadas em um campo magnético;
- 6.3. Torques sobre espiras e imãs;
- 6.4. Efeito Hall;
- 6.5. Campo magnético de cargas em movimento;
- 6.6. Lei de Biot Savart;
- 6.7. Fontes de campo magnético;
- 6.8. Lei de Gauss para o magnetismo;
- 6.9. Lei de Ampere;
- 6.10. Magnetismo nos materiais;

#### 7. Indução Eletromagnética

- 7.1. Fluxo Magnético;
- 7.2. Força eletromotriz induzida e a Lei de Faraday;
- 7.3. Lei de Lenz;
- 7.4. Indutância;
- 7.5. Energia magnética;

# IX. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

1. Aulas expositivas intercaladas com discussões.

- 2. Desenvolvimento de exercícios manuscritos.
- 3. Material de apoio postado em ambiente virtual usando o plataforma Moodle.

# X. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

A verificação do rendimento escolar compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. Os critérios de aprovação ou não na disciplina são regidos pela Resolução 17/CUn/97, disponível em <a href="http://www.mtm.ufsc.br/ensino/Resolucao17.html">http://www.mtm.ufsc.br/ensino/Resolucao17.html</a>, a qual determina que:

- O aluno que não presenciar pelo menos 75% das aulas (neste caso 52 horas-aula) estará automaticamente reprovado na disciplina (parágrafo 2º do artigo 69).
- Será considerado aprovado o aluno que obtiver média final MF ≥ 6,0 ou nota final NF ≥ 6,0 (artigo 72).
- Todas as avaliações serão expressas através de notas graduadas de 0 a 10, não podendo ser fracionadas aquém ou além de 0,5. As frações intermediárias serão arredondadas para a graduação mais próxima, sendo as frações 0,25 e 0,75 respectivamente arredondadas para 0,5 e 1,0. Dessa forma, o aluno que obtiver MF = 5,75 terá esta média arredondada para 6,0 e estará automaticamente aprovado (artigo 71).
- O aluno com frequência suficiente e 3,0 ≤ MF ≤ 5,5 terá direito a uma nova avaliação ao final do semestre, chamada recuperação, REC (parágrafo 2º do artigo 70). Neste caso será atribuída ao aluno uma nota final NF, calculada pela média aritmética simples entre a MF e a REC.
- Ao aluno que não comparecer às avaliações ou não apresentar trabalhos no prazo estabelecido será atribuída nota 0 (zero).
- Será concedido o direito de segunda avaliação somente ao aluno que por motivo de força maior e plenamente justificado, deixar de realizar avaliações previstas no plano de ensino. Para tanto, o aluno deverá formalizar pedido à Chefia do Departamento de Ensino ao qual a disciplina pertence, dentro do prazo de 3 (três) dias úteis, apresentando documentação comprobatória.
  - o O pedido de nova avaliação deverá ser formalizado na Secretaria Integrada de Departamento.
  - A Nova Avaliação será realizada no final do semestre letivo, após a terceira avaliação e antes da prova de recuperação.
- deverá formalizar pedido de avaliação à Secretaria Integrada dos Departamentos do CTS em até 3 dias úteis após a avaliação, apresentando comprovação (artigo 74).
- Para maiores esclarecimentos, sugere-se a leitura dos artigos 69, 70, 71, 72, 73 e 74 da referida resolução.

### Instrumentos de Avaliação:

O aproveitamento nos estudos será avaliado mediante:

- A aplicação de 3 provas escritas de resolução individual, valendo notas de 0 a 10.
- Aplicação de uma prova substitutiva de alguma das provas parciais escolhida pelo aluno. A nota que da prova substitutiva substituirá a nota da prova parcial em qualquer situação (mesmo que essa nota seja menor do que a obtida na prova parcial), tornando-se dessa forma a nova nota parcial.
- A média das provas, MP, será calculada através da média aritmética simples das notas das provas:

$$MP = \frac{P1 + P2 + P3}{3}$$

Caso o aluno obtenha  $3.0 \le MF \le 5.5$  e tenha frequência suficiente, estará apto a fazer a recuperação (REC), valendo notas de 0 a 10, e que englobará todo o conteúdo programático. Conforme já descrito acima, a NF será calculada pela seguinte equação:

$$NF = \frac{MF + REC}{2}$$

#### Conteúdo de cada prova:

- Prova 1: (05/09/2018) Unidades 1, 2, e 3
- Prova 2: (10/10/2018) Unidade 4, 5
- Prova 3: (21/11/2018) Unidade 6, 7
- Prova de Reposição: (26/11/2018)
- Prova de Recuperação: (03/12/2018)

| AULA<br>(semana) | DATA                    | ASSUNTO                                                                                                                                                             |  |
|------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1ª               | 30/07/2018 a 03/08/2018 | Apresentação da disciplina e do plano de ensino. <b>Unidade 1</b> - Carga elétrica Condutores e isolantes; Lei de Coulomb;Campo elétrico; Linhas de campo elétrico; |  |
| 2ª               | 06/08/2018 a 10/08/2018 | Movimento de cargas em campos elétricos; Dipolos elétricos; Cálculo do campo elétrico a partir da lei de Coulomb;                                                   |  |
| 3 <sup>a</sup>   | 13/08/2018 a 17/08/2018 | Unidade 2 - Lei de Gauss; Campo elétrico a partir da Lei de Gauss; Campo elétrico a partir da Lei de Gauss;                                                         |  |
| 4 <sup>a</sup>   | 20/08/2018 a 24/08/2018 | <b>Unidade 2</b> -Cargas e campos elétricos nas superfícies condutoras; <b>Unidade 3</b> - Diferença de potencial; Potencial elétrico de um sistema de cargas;      |  |
| 5ª               | 27/08/2018 a 31/08/2018 | <b>Unidade 3</b> -Cálculo do potencial para distribuições contínuas de carga Superfícies equipotenciais;                                                            |  |
| 6 <sup>a</sup>   | 03/09/2018 a 07/09/2018 | Aula de dúvidas. Prova 1                                                                                                                                            |  |
| 7ª               | 10/09/2018 a 14/09/2018 | <b>Unidade</b> 4 - Capacitância; Combinação de capacitores; Energia eletrostática Dielétricos;                                                                      |  |
| 8 <sup>a</sup>   | 17/09/2018 a 21/09/2018 | Unidade 4 - Modelo Molecular da carga induzida. Lei de Gauss em Dielétricos Unidade 5 - Corrente; Resistividade; Resistência, Força eletromotriz;                   |  |
| 9ª               | 24/09/2018 a 28/09/2018 | <b>Unidade 5</b> - Energia Potencial em Circuitos Elétrico; Teoria da Condução em Metais. <b>Unidade 6</b> - Combinação de resistores; Leis de Kirchhoff;           |  |
| 10 <sup>a</sup>  | 01/10/2018 a 05/10/2018 | Unidade 6 - Circuitos CC; Circuitos RC                                                                                                                              |  |
| 11 <sup>a</sup>  | 08/10/2018 a 12/10/2018 | Aula de dúvidas. Prova 2                                                                                                                                            |  |
| 12ª              | 15/10/2018 a 19/10/2018 | Unidade 7 - Campos magnéticos; Movimentos de cargas em campos magnéticos; Efeito Hall; Campo magnético de cargas móveis;                                            |  |
| 13ª              | 22/10/2018 a 26/10/2018 | Unidade 7 - Lei de Biot-Savart; Fontes de campo magnético;                                                                                                          |  |
| 14 <sup>a</sup>  | 29/10/2018 a 02/11/2018 | Unidade 7 - Lei de Ampère; Magnetismo nos materiais;                                                                                                                |  |
| 15ª              | 05/11/2018 a 09/11/2018 | Unidade 8 - Fluxo magnético; Força eletromotriz induzida e Lei de Faraday; Le de Lenz;                                                                              |  |
| 16ª              | 12/11/2018 a 16/11/2018 | Unidade 8 -Indutância; Energia magnética;                                                                                                                           |  |
| 17ª              | 19/11/2018 a 23/11/2018 | Aula de dúvidas. Prova 3                                                                                                                                            |  |
| 18 <sup>a</sup>  | 26/11/2018 a 30/11/2018 | Prova de II chamada - Reposição.                                                                                                                                    |  |
| 19ª              | 03/12/2018 a 05/11/2018 | Prova Recuperação final.                                                                                                                                            |  |

XII. Feriados previstos para o semestre 2018.1:

| DATA                   |                          |
|------------------------|--------------------------|
| 07/09/2018             | Independência do Brasil  |
| 08/09/2018             | Dia não letivo           |
| 12/10/2018             | Nossa Senhora Aparecida  |
| 12/10/2018             | Dia não letivo           |
| 02/11/2018             | Finados                  |
| 03/11/2018             | Dia não letivo           |
| 15/11/2018             | Proclamação da República |
| 16/11/2018, 17/11/2018 | Dias não letivos         |
|                        |                          |

## XIII. BIBLIOGRAFIA BÁSICA

- 1) TIPLER, Paul Allen, MOSCA, G. Física: mecânica, oscilações e ondas, termodinâmica, v1, Edit. LTC, 2006.
- 2) YOUNG, Hugh D; FREEDMAN, Roger A.; FORD, A. Lewis. Física. v1, 12. ed. São Paulo (SP): Addison Wesley, 2008.
- 3) RESNICK R., HALLIDAY, D., KRANE, K. S., Física 1. 5ª Ed., Rio de Janeiro: LTC, 2003.
- 4) SERWAY, Raymond A.; JEWETT, Jonh W. Princípios de Física, v1, 1a ed., Editora Thomson, 2004

#### XIV. BIBLIOGRAFIA COMPLEMENTAR

 HALLIDAY, D; RESNICK R, R; WALKER, L. Fundamentos de Física – Vol. 1, 8a ed., LTC Editora, Rio de Janeiro, 2009.

Evy Augusto Salcedo Torres

- 2) NUSSENZVEIG, H. Moysés. Curso de Física Básica: Mecânica v1, Edgard Blucher, 2002.
- 3) LUIZ, Adir Moysés, Coleção Física 1: Mecânica, v1, 1a ed, Editora Livraria da Física, 2007.
- 4) CHAVES, A., SAMPAIO, J. F. Física Básica -Mecânica 1a Ed. Rio de Janeiro, LTC, 2007.

Os livros da bibliografia básica acima citados constam na Biblioteca setorial de Araranguá.

Aprovado na Reunião do Colegiado do Departamento \_\_/\_\_/\_\_ Chefia

Aprovado na Reunião do Colegiado do Curso \_\_/\_\_/\_\_ Coordenação