

Relação de Disciplinas

41010020 Programa de Pós-Graduação em Física ME

Diaginling	Nome de Dissipline	C	rédito)S P	Citucoão
		<u> </u>	<u> </u>	<u>۲</u>	Situação
FSC410120	TOPICOS ESPECIAIS EM FISICA B: Astroparticle Physics and Cosmology "The course aims to give students the basic knowledge on theoretical concepts of Particle Astrophysics and the Universe evolution with a focus on a deep interconnection between cosmology and particle physics, The course intends to cover the major aspects of the Hot Big Bang theory and	4	0	0	Ativo
	the Standard Cosmological Model at the forefront of theoretical and experimental high energy astroparticle physics.				
	Course contents 1. Elements of General Relativity and Particle Physics (1 lecture) 1.1. Geometry, Particles and Symmetries 1.2. Einstein equations and ?-term 1.3. Standard Model of Particle Physics and Beyond				
	 Homogeneous Isotropic Universe (1 lecture) Friedmann-Lemaitre-Robertson-Walker Metric Redshift. Hubble Law Gas of free particles in expanding Universe 				
	 Bynamics of Cosmological Expansion (2 lectures) Friedmann equation Sample cosmological solutions 				
	" Non-relativistic matter " Relativistic matter " Vacuum " General barotropic equation of state				
	3.3. Solutions with Recollapse				
	 4. The Standard Cosmological Model: ?CDM (3 lectures) 4.1. Composition of the present Universe. Dark Matter and Dark Energy 4.2. General properties of Cosmological evolution 4.3. Radiation Domination and Matter Domination Epochs 4.4. Present Age of the Universe and Horizon Size 4.5. Brightness-Redshift relation for distant standard candles 4.6. Theory versus cosmological observations 				
	5. Thermodynamics of Expanding Universe (1 lecture) 5.1. Densities of bosons and fermions in cosmological plasma 5.2. Entropy generation. Baryon-to-Photon ratio				
	6. Recombination (2 lectures)6.1. Recombination temperature.6.2. Photon last scattering6.3. Horizon at recombination.				
	 7. Relic Neutrinos (1 lecture) 7.1. Neutrino Freeze-Out in the Early Universe 7.2. Cosmological bound on neutrino mass 7.3. Sterile neutrino 				
	 8. Big Bang Nucleosynthesis (1 lecture) 8.1. Neutron Freeze-Out. Neutron-to-proton ratio 8.2. Kinetics of Nucleosythesis 8.3. Theory versus observations 				
	 Dark Matter: formation, evolution and consequences (2 lectures) 1. Cold, Hot and Warm Dark Matter S. Freeze-Out of heavy relic Weakly Interacting Massive Particles (WIMPs) 				
	9.4. Dark Matter candidates in Particle Physics: " Neutralino " Sneutrino				

Relação de Disciplinas

41010020 Programa de Pós-Graduação em Física ME

			C	Créditos			
ĺ	Disciplina	Nome da Disciplina	Т	ΤP	Ρ	Situação	
ĺ		" Gravitino					
		" Axions					
		" Other superheavy relic particles					
		9.5. Theory versus observations: direct and indirect detection measurements					
		10. Phase transitions in the Early Universe (1 lecture)					
		10.1. Order of phase transitions					
		10.2. Effective potential in one-loop approximation					
		10.3. Infrared problem					
		11. Generation of the Baryon and Lepton Asymmetries (1 lecture)					
		11.1. Necessary conditions for Baryogenesis					
		11.2. Baryon and Lepton number violation in particle interactions					
		11.3. Leptogenesis					
		12. Inflationary Epoch (1 lecture)					
		12.1. Chaotic Inflation					
		12.2. Large-Scale Structure of expanding Universe					
		12.3. Temperature and density fluctuations in the Cosmic Microwave Background					
		13. Particle Physics of Cosmic Rays and their sources (3 lectures)					
		13.1. The spectrum and composition of the cosmic rays					
		13.2. Ultra-High Energy Cosmic Rays and neutrino astrophysics					
		13.3. Point sources of gamma-rays. Gamma-ray bursts.					
		13.4. Atmospheric neutrinos: neutrino oscillations					
		13.5. Neutron stars and pulsars					
		13.6. Black Holes and Hawking radiation					
		13.7. Observational implications					
		14. *Topological defects and Solitons in the Universe					
		14.1. Production of topological defects in the Early Universe					
		14.2. The monopole problem					
		14.3. Variety of topological defects: Cosmic Strings, Domain Walls, Textures and					
		Q-balls					