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ABSTRACT

This master’s thesis proposes a vector autoregression with time-varying
coefficients and multivariate stochastic volatility which can be estimated
in one step by maximum likelihood. The coefficients are assumed to
follow random walks and the volatility of the system is modelled as a
Wishart process, increasing the flexibility in describing the behavior
of stochastic covariances. Exploiting the conjugacy between Normal,
Wishart and multivariate beta distributions, filtering formulas for track-
ing the latent states are derived in closed form. The method is then
applied to U.S. data and generates results that are similar to those
reported in the macroeconomic literature.

Keywords: Vector autoregressions. Time-varying coefficients. Wishart
stochastic volatility. Maximum likelihood.





RESUMO

Esta dissertação de mestrado propõe um modelo vetor autorregressivo
com coeficientes variantes e volatilidade estocástica multivariada que
pode ser estimado por máxima verossimilhança. Supõe-se que os coefici-
entes sigam passeios aleatórios e modela-se a volatilidade do sistema
através de um processo Wishart, que confere flexbilidade na descrição de
covariâncias estocásticas. Ao explorar a conjugação entre as distribuições
normal, Wishart e beta multivariada, são derivadas fórmulas de filtra-
gem em forma fechada que permitem rastrear os estados não-observáveis.
O modelo é, então, utilizado para analisar dados dos Estados Unidos e
gera resultados similares aos reportados na literatura macroeconômica.

Palavras-chave: Vetores autorregressivos. Coeficientes variantes. Vo-
latilidade estocástica tipo Wishart. Máxima verossimilhança.
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INTRODUCTION

In empirical macroeconomics, the coefficients of vector autoregressions
can be thought of as summarizing structural economic relationships. In
the context of the Phillips curve, for example, the coefficients of the
equation for interest rate can be interpreted as describing a monetary
policy rule (COGLEY; SARGENT, 2005). In this sense, traditional
vector autoregressions with constant coefficients rest on the assumption
that economic relationships are stable over time (KOOP; KOROBILIS,
2010; DEL NEGRO; SCHORFHEIDE, 2011). They are thus suited to
describing economic behavior that is approximately linear and does not
exhibit substantial variation (LUBIK; MATTHES, 2015).

However, given that most macroeconomic time series do exhibit
some form of nonlinearity, the assumption of constant coefficients might
be too restrictive in many applications. For example, it is a well-known
stylized fact about the U.S. economy that inflation was more volatile
and persistent in the 1970s (the Great Inflation) than in the 1980s
and subsequently (the Great Moderation) (KOOP; KOROBILIS, 2010;
LUBIK; MATTHES, 2015). The fact that, at different times, macroeco-
nomic variables seem to behave differently suggests that the structure
of the true stochastic process underlying the economy is of a dynamical
nature. In other words, economic relationships seem to change over
time and this is consistent with the fundamental notion that economies
experience fluctuations to which agents are not oblivious.

To capture such structural changes in economic relationships,
econometricians developed different types of vector autoregressions
with time-varying coefficients. Broadly speaking, such models can be
divided into two classes: one in which coefficients vary gradually over
time according to an autoregressive process and another in which they
change abruptly as in Markov-switching or structural-break models
(DEL NEGRO; SCHORFHEIDE, 2011). This master’s thesis focuses
on the former class and we shall refer to models belonging to it simply
as time-varying parameter VARs (TVP-VARs).

Cogley & Sargent (2001) were responsible for popularizing VARs
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with autoregressive coefficients in macroeconomics. In the debate on
U.S. monetary policy, these authors maintained that the Great Inflation
of the 1970s was the result of bad policy. Their argument ran along
the following lines. The way the FED reacted to inflation changed over
time because of its changing views about the existence of an exploitable
trade-off between inflation and unemployment. In other words, under
different chairmanships the FED would demonstrate different levels of
willingness to inflate the economy. As the monetary authority executes
its (changing) monetary policy, agents learn an imperfect version of the
Phillips curve and gradually adjust their expectations and decisions.
This gradual adjustment constitutes a structural change in economic
relationships. Consequently, the “bad policy” version of the story relies
on evidence that the VAR coefficients changed over time (KOOP; KO-
ROBILIS, 2010). This motivated Cogley & Sargent (2001) to propose a
homoscedastic VAR with drifting coefficients.

However, their model was immediately criticized for ignoring
another potential source of nonlinearity: time-variation in the variances
and covariances of the VAR innovations. In particular, Sims (2001)
and Stock (2001) argued that a more appropriate specification would
be a vector autoregression with constant coefficients and stochastic
volatility. This criticism is closely related to the “bad luck” version
of the story, according to which the worse inflation-unemployment
outcomes of the 1970s resulted from more volatile exogenous shocks.
More importantly, it led to the development of models that could account
for and distinguish both phenomena, i.e., models with autoregressive
coefficients and multivariate stochastic volatility (MSV).

The distinguishing features of these TVP-VARs are the structure
of multivariate stochastic volatility and the properties of the shocks
to the coefficients. The two most popular approaches are the ones
proposed by Cogley & Sargent (2005) and Primiceri (2005). They assume
homoscedastic shocks to the coefficients and specify the MSV as a set
of univariate stochastic volatilities based on the model of Jacquier et al.
(1994). These models can capture rich dynamics of multiple time series in
a flexible way, but statistical inference in a nonlinear state-space setting
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usually requires simulation techniques and can be quite challenging.
Cogley & Sargent (2005) use the single-move Gibbs sampling algorithm,
which is relatively simple. Nonetheless, their specification is restrictive
because the covariances of the shocks to the economy are not allowed
to change independently. The model of Primiceri (2005) is more flexible
and does not impose this restriction. For this reason, however, it requires
a more complicated multi-move Gibbs sampler.

The goal of this master’s thesis is to propose a TVP-VAR that
does not impose restrictions on the evolution of innovation covariances
and that, at the same time, can be estimated in a more straightforward
way. To do so, we build upon the work of Uhlig (1997) and propose a
TVP-VAR with Wishart stochastic volatility that has exact filtering
formulas. Then we borrow insights from Kim (2014) and derive an ana-
lytical expression for the likelihood function. As a result, the coefficients
and the stochastic volatility can be tracked by means of a recursive
algorithm and the unknown parameters can be estimated in one step
by maximum likelihood.

The text is organized as follows. Chapter 1 establishes a theoret-
ical background on state-space models and TVP-VARs. It offers just
enough content to enable the reader to proceed to chapter 2, where
Wishart TVP-VARs are discussed. In section 2.1 we present the original
model of Uhlig (1997) and analyze some of its properties. Section 2.2
discusses our extended version of Uhlig’s model with drifting coefficients.
Then section 2.3 establishes the results that constitute the most impor-
tant contribution of this work: exact filtering formulas and a likelihood
function. Finally, in chapter 3 we apply our method to a dataset for
the U.S. economy which is similar to the one used in Cogley & Sargent
(2005). As will be seen, our model captures time-variation in the VAR
coefficients and in the volatility of the shocks to the economy. In general,
the results resemble those already presented in the macroeconomic
literature.
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1 BACKGROUND

1.1 STATE-SPACE MODELS AND THE FILTERING PROBLEM

Many economic phenomena can be described as dynamical systems and
can thus be analyzed using state-space models. In this approach, it is
assumed that the development over time of the system under study
is determined by unobservable vectors of states. They are associated
with observable measurements which convey information about the
states with some degree of imperfection and the relation between them
is specified by the state-space model. The central purpose of state-
space analysis is to infer the important properties of the states from a
knowledge of the observations (DURBIN; KOOPMAN, 2012). There
are different ways of doing that. This section introduces the basic ideas
of one of them: filtering.

It is often the case that measurements of certain variables become
available periodically. This implies that the states of a system would
have to be reestimated every time a new observation was received.
However, storing data and reprocessing known information can be
computationally costly. The so-called recursive filters offer a solution to
this problem by processing new information and by reestimating the
states sequentially. They consist of basically two steps: prediction and
update. In the former, the researcher utilizes a model of the system and
all available information to make the best possible prediction about its
states. When a new piece of information becomes available, the latter
step uses Bayes’ theorem to modify the initial prediction and to update
the knowledge of the researcher about the states of the system (RISTIC
et al., 2004).

Let 𝑡 be a discrete time index. The vector of states, denoted by
𝛼𝑡, is not observable and evolves according to the following stochastic
model:

𝛼𝑡 = 𝑓𝑡−1(𝛼𝑡−1,𝜐𝑡−1), (1.1)

where 𝑓𝑡−1 is a known function and 𝜐𝑡−1 represents a sequence of
perturbations (noise) to the vector of states. Let 𝑦𝑡 be a vector of
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observable measurements. The vectors 𝑦𝑡 and 𝛼𝑡 are related through
the following measurement equation:

𝑦𝑡 = ℎ𝑡(𝛼𝑡,𝜀𝑡), (1.2)

where ℎ𝑡 is a known function and 𝜀𝑡 is a sequence of errors in the
measurements. 𝜀𝑡 and 𝜐𝑡−1 are assumed to be white noises, with known
probability density functions and mutually independent. In addition to
that, it is assumed that the PDF of the initial states vector, 𝑝(𝛼1), is
known and is independent of the errors for all periods of time.

In filtering problems, the goal is to estimate 𝛼𝑡 recursively using
the collected measurements 𝑦𝑡. Let 𝑌𝑡 denote the set of all measurements
up to period 𝑡, i.e., 𝑌𝑡 = {𝑦𝑖, 𝑖= 1, ..., 𝑡}. Likewise, let 𝑌𝑡−1 denote the set
of measurements available up to period 𝑡−1. From a Bayesian viewpoint,
the problem is to quantify the degree of confidence that one has about
the value taken by state 𝛼𝑡 given the information available up to period
𝑡. In other words, the researcher seeks to build the posterior distribution
𝑝(𝛼𝑡|𝑌𝑡) and this can be done recursively through the prediction and
the update steps (RISTIC et al., 2004).

Assuming that the PDF 𝑝(𝛼𝑡−1|𝑌𝑡−1) is known, the prediction
step uses model (1.1) to obtain the prior distribution (or the predic-
tion density) for the states vector in period 𝑡 through the Chapman-
Kolmogorov equation:

𝑝(𝛼𝑡|𝑌𝑡−1) =
∫︁
𝑝(𝛼𝑡|𝛼𝑡−1)𝑝(𝛼𝑡−1|𝑌𝑡−1)𝑑𝛼𝑡−1. (1.3)

Note that the term 𝑝(𝛼𝑡|𝛼𝑡−1) is the probabilistic model of the evolution
of the states vector and is determined by (1.1). In period 𝑡, when a
new measurement 𝑦𝑡 becomes available, the update step updates the
prediction PDF (1.3) via Bayes’ rule:

𝑝(𝛼𝑡|𝑌𝑡) = 𝑝(𝛼𝑡|𝑦𝑡,𝑌𝑡−1)

= 𝑝(𝑦𝑡|𝛼𝑡,𝑌𝑡−1)𝑝(𝛼𝑡|𝑌𝑡−1)
𝑝(𝑦𝑡|𝑌𝑡−1)

= 𝑝(𝑦𝑡|𝛼𝑡)𝑝(𝛼𝑡|𝑌𝑡−1)
𝑝(𝑦𝑡|𝑌𝑡−1) . (1.4)
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The expressions above use the fact that 𝑝(𝛼𝑡|𝛼𝑡−1,𝑌𝑡−1) = 𝑝(𝛼𝑡|𝛼𝑡−1)
and 𝑝(𝑦𝑡|𝛼𝑡,𝑌𝑡−1) = 𝑝(𝑦𝑡|𝛼𝑡) because, by definition, 𝛼𝑡 contains all
relevant information about the system. The term 𝑝(𝑦𝑡|𝛼𝑡) is determined
by the measurement model (1.2). It also appears in the normalizing
constant in the denominator of (1.4):

𝑝(𝑦𝑡|𝑌𝑡−1) =
∫︁
𝑝(𝑦𝑡|𝛼𝑡)𝑝(𝛼𝑡|𝑌𝑡−1)𝑑𝛼𝑡. (1.5)

To sum up, the update step uses newly available measurements to
modify the predictive distribution and obtain a posterior density which
summarizes the updated knowledge about the current states. These two
steps solve the problem of exact and complete characterization of the
updated distribution in a recursive manner. For this reason, they are
said to form the basis of the optimal solution to the filtering problem.
Then the updated distribution enables the researcher to obtain estimates
related to the vector of states. However, this is a conceptual solution
which, in general, cannot be determined analytically. Only in a few
particular cases it can be characterized exactly and completely by a
finite, fixed and sufficient statistic. In such cases, optimal algorithms are
employed to deduce this solution (RISTIC et al., 2004). For example,
in the context of a linear and Gaussian structure the prediction and
update steps produce the Kalman filter. The model of Uhlig (1997)
(and ours, for that matter) is another example: by choosing transition
equations and prior distributions appropriately, it is possible to use the
prediction and the update steps to derive an exact, recursive algorithm
that characterizes completely the posterior distribution of the states in
each period.

Here, and probably elsewhere in this text, we employ a Bayesian
terminology for the sake of convenience. It should be noted, however,
that filtering and state-space models are by no means confined to the
realm of Bayesian statistics. The method described above is sometimes
referred to as a Bayesian filter because of the Bayes’ rule employed in
the update step, but it is just as widely used in classical statistics [see,
for example, Harvey (1993) and Durbin & Koopman (2012)].
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As we shall see, vector autoregressions with time-varying param-
eters fit very conveniently into a state-space setting. The measurement
model (1.2) takes the form of a VAR equation, while the dynamic pa-
rameters are treated as unobservable states with given laws of motion
which play the role of the transition equation (1.1).

In practice, state-space models contain not only unobservable
states, but also unknown parameters that need to be estimated. For
example, the variances of the error terms above, 𝜎2

𝜀 and 𝜎2
𝜐, are hardly

ever known. Durbin & Koopman (2012) show that state estimates are
the same whether classical or Bayesian analysis is employed. Parameters,
on the other hand, require different treatments. In classical analysis,
they are assumed to be fixed but unknown, whereas in Bayesian analysis
observations are assumed to be fixed and parameters are interpreted as
random variables (DURBIN; KOOPMAN, 2012).

Estimating the unknown parameters by maximum likelihood is a
conceptually straightforward matter. When initial conditions are known,
as is the case above, the likelihood of the entire sample can be factored
as:

𝐿(𝑌𝑇 ) = 𝑝(𝑦1, ...,𝑦𝑇 ) = 𝑝(𝑦1)
𝑇∏︁

𝑡=2
𝑝(𝑦𝑡|𝑌𝑡−1), (1.6)

where 𝑇 denotes the last time period for which measurements are
available. Each term on the rightmost side of (1.6) is a normalizing
constant, given by (1.5), which depends on the parameters of the model.
Once the researcher has figured out the form of 𝑝(𝑦𝑡|𝑌𝑡−1), it is easy to
assemble (1.6) and to maximize it with respect to the parameters. This
is the approach that we will follow in this paper.

On the other hand, Bayesian estimation of the parameters is
based on posterior analysis and, in virtually all cases of interest, requires
simulation methods. This paper will not cover the theory behind that
for the sake of brevity. The interested reader is referred to chapter
13 of Durbin & Koopman (2012) or to West & Harrison (1997) for a
general Bayesian treatment of state-space models. In particular, Koop
& Korobilis (2010) and Del Negro & Schorfheide (2011) provide good
introductions to Bayesian TVP-VARs.
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1.2 TVP-VAR MODELS IN MACROECONOMICS

Vector autoregressions with time-varying coefficients were popularized
in macroeconomics by Cogley & Sargent (2001). Their goal was to
analyze the changing behavior of the inflation-unemployment-interest-
rate dynamics in the United States after World War II. To do so, they
proposed a trivariate VAR with coefficients that are random walks.
Written in state-space form, their model can be represented by the
following equations:

𝑦𝑡 = 𝐵𝑡𝑋𝑡 +𝒰(𝐻−1)′𝜀𝑡, 𝜀𝑡 ∼ 𝒩 (0, 𝐼𝑘), (1.7)

vec(𝐵′
𝑡+1) = vec(𝐵′

𝑡)+𝒰(𝒬−1)′𝜂𝑡, 𝜂𝑡 ∼ 𝒩 (0, 𝐼𝑘𝑙), (1.8)

where 𝑡 = 1, ...,𝑇 denotes time and 𝑦𝑡 is a 𝑘-dimensional vector of
endogenous variables observed at time 𝑡. 𝑋𝑡 := [𝐶′

𝑡 𝑦
′
𝑡−1 · · · 𝑦′

𝑡−𝑝]′,
where 𝐶𝑡 is a 𝑐-dimensional vector of deterministic regressors, such as
intercept and trend. 𝐵𝑡 := [𝐵0,𝑡 𝐵1,𝑡 · · · 𝐵𝑝,𝑡]. 𝐵0,𝑡, which is (𝑘× 𝑐),
and 𝐵𝑗,𝑡 for 𝑗 = 1, ...,𝑝, which is (𝑘×𝑘), are both coefficients matrices.
For 𝑙 := 𝑐+𝑘𝑝, 𝑋𝑡 is (𝑙×1) and 𝐵𝑡 is (𝑘× 𝑙). 𝐻 is a (𝑘×𝑘) symmetric,
positive definite precision matrix and 𝒰(.) stands for its upper Cholesky
factor. All 𝜀𝑡, 𝑡 = 1, ...,𝑇 , are 𝑘-dimensional vectors of independently
distributed exogenous shocks and 𝒩 (0, 𝐼𝑘) denotes the multivariate
normal distribution. As for the transition equation, vec(.) is the operator
that stacks the columns of a matrix, 𝒬 is a (𝑘𝑙×𝑘𝑙) positive definite,
symmetric precision matrix and the 𝜂𝑡 are also 𝑘𝑙-dimensional vectors
of independently distributed exogenous shocks.

As far as the parameters are concerned, the model of Cogley &
Sargent (2001) contains only one source of time-variation: the matrix of
coefficients, 𝐵𝑡. The rationale for drifting coefficients is that agents learn
about the economy as it changes and news arrive. As a result, they adapt
their decision rules to the new circumstances and this causes the coeffi-
cients in 𝐵𝑡 to change in unpredictable ways (COGLEY; SARGENT,
2001). Clearly, this interpretation is intimately related to the LUCAS’s
(1976) critique. And to the extent that agents have an imperfect view of
things, this learning process occurs gradually and can thus be captured
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by models in which the coefficients change from period to period (as
opposed to regime-switch models) (DEL NEGRO; SCHORFHEIDE,
2011). In the U.S. inflation-unemployment debate, “new circumstances”
can be read as changes in the transmission mechanism of monetary
policy due to changing beliefs of the monetary authority about the
existence of exploitable trade-offs between inflation and unemployment
(KOOP; KOROBILIS, 2010). Hence, finding empirical evidence that
the VAR coefficients drifted over time would translate into evidence
that inflation behavior changed because of changes in the monetary
authority’s view about the Phillips curve. This is the “bad policy” story
sustained by Cogley & Sargent (2001) and others.

Cogley & Sargent (2001) did find evidence of parameter drift
for the U.S. economy. However, their model was criticized by Sims
(2001) and Stock (2001) who questioned the assumption of a fixed,
non-stochastic covariance matrix 𝐻−1. These authors pointed to the
evidence presented by Bernanke & Mihov (1998a), Bernanke & Mihov
(1998b) and others that the innovation variances had changed over time,
whereas the VAR coefficients had remained stable. As a matter of fact,
if the world were characterized by constant 𝐵 and drifting 𝐻−1, fitting
a model with constant 𝐻−1 and drifting 𝐵 could cause the estimates of
𝐵 to drift simply to compensate for the misspecification of 𝐻−1, thus
exaggerating the time-variation in 𝐵 (COGLEY; SARGENT, 2005).
According to the “bad luck” version of the story, the distribution of the
exogenous shocks evolved, but agents’ responses to them did not.

To tackle these criticisms, Cogley & Sargent (2005) extended
their earlier model by allowing both 𝐵 and 𝐻 to vary and adopted a
multivariate version of the stochastic volatility model of Jacquier et al.
(1994):

𝐻−1
𝑡 =𝐴−1𝑅𝑡𝐴

−1′
, (1.9)

where

𝑅𝑡 =

⎡⎢⎣𝑟1𝑡 0 0
0 𝑟2𝑡 0
0 0 𝑟3𝑡

⎤⎥⎦ . (1.10)
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The diagonal elements of 𝑅𝑡 are independent, univariate stochastic
volatilities that evolve as driftless, geometric random walks:

ln𝑟𝑖𝑡 = ln𝑟𝑖𝑡−1 +𝜎𝑖𝜓𝑖𝑡, 𝜓𝑖𝑡 ∼ 𝒩 (0,1), (1.11)

where the 𝜓𝑖𝑡 represent volatility innovations and the 𝜎𝑖 are scaling
parameters that determine their magnitudes. Another key assumption
in this model is:

𝐴=

⎡⎢⎣ 1 0 0
𝛼21 1 0
𝛼31 𝛼32 1

⎤⎥⎦ . (1.12)

This matrix of fixed parameters is the one which, loosely speaking,
determines the covariances between innovations. Its unique elements,
the 𝛼𝑖𝑗 ’s, do not have time subscripts because they are assumed to be
constant over time. From (1.10) and (1.12), one can easily read off the
product in (1.9) and conclude that the covariances between the shocks to
the economy, the off-diagonal elements in 𝐻−1

𝑡 , are allowed to vary over
time, but only in a tightly restricted fashion: as fixed proportions of the
innovations’ variances (KOOP; KOROBILIS, 2010). This constitutes a
major drawback in the model of (COGLEY; SARGENT, 2005) since it
is too restrictive in important applications. In impulse-response analysis,
for instance, a constant 𝐴 matrix implies that an innovation to the 𝑖-th
variable has a time-invariant effect on the 𝑗-th variable (PRIMICERI,
2005).

At about the same time, Primiceri (2005) proposed a similar but
more flexible model which extends (1.12) to the time-varying case:

𝐴𝑡 =

⎡⎢⎣ 1 0 0
𝛼21𝑡 1 0
𝛼31𝑡 𝛼32𝑡 1

⎤⎥⎦ , (1.13)

where the unrestricted elements, 𝛼𝑡 := [𝛼21𝑡 𝛼31𝑡 𝛼32𝑡 ]′, evolve according
to

𝛼𝑡 = 𝛼𝑡−1 + 𝜁𝑡, 𝜁𝑡 ∼ 𝒩 (0,𝐷). (1.14)

In principle, (1.13) implies that the the evolution of innovations’ covari-
ances is not restricted in any way (KOOP; KOROBILIS, 2010). In his
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empirical analysis, however, Primiceri (2005) assumes that 𝐷 is block
diagonal, with blocks corresponding to parameters of separate equations.
This means that the shocks to the covariances (between the innovations
to the economy) are independent across equations, or equivalently, that
the coefficients of contemporaneous relations among variables evolve
independently in each VAR equation. (PRIMICERI, 2005) shows that
this assumption is not crucial in his model. Relaxing it, however, does
make estimation and inference more complicated (KOOP; KOROBILIS,
2010).

Later on, motivated by the results of Stock & Watson (2007),
Cogley et al. (2010) extended their previous models by allowing stochas-
tic volatility in the parameter innovations as well, i.e., by letting 𝒬𝑡 in
(1.8) change over time. The law of motion of 𝒬𝑡 in Cogley et al. (2010)
mimics that of 𝐻𝑡 in Cogley & Sargent (2005) described by (1.9)-(1.12),
which simplifies estimation, but implies that the evolution of covariances
is tied to that of variances.

A homoscedastic TVP-VAR such as that of Cogley & Sargent
(2001) constitutes a normal, linear state-space model. As such, Bayesian
inference about objects of interest is easy to deal with by means of
relatively simple MCMC methods (KOOP; KOROBILIS, 2010). In
particular, various efficient algorithms have been developed to allow
for posterior simulation of 𝐵𝑡, for 𝑡= 1, ...,𝑇 , conditional on the other
unknown parameters. Carter & Kohn (1994) and Frühwirth-Schnatter
(1994) are two prominent examples.

When multivariate stochastic volatility is introduced, statistical
inference becomes more involved. Univariate stochastic volatility models
treat dynamic variances as stochastic processes and are amenable to
forward filtering and backward sampling. This means that one can easily
take joint draws of the latent states conditional upon the data and the
parameters (WINDLE; CARVALHO, 2014). Replicating this property
in the multivariate case, though, can be challenging. In particular, it is
difficult to construct a reasonable matrix-valued stochastic process that
respects positive definiteness and at the same time couples nicely to the
observation distribution. Positive definiteness can be ensured by means of
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transformations which define the process in different coordinate systems.
However, these transformations tend to make state-space inference more
complicated because the product of the observation and the transition
densities does not usually yield a recognizable posterior distribution
which can be easily simulated (WINDLE; CARVALHO, 2014).

In the case of the TVP-VARs explained above, the introduction
of multivariate stochastic volatility implies that additional algorithms
within the MCMC routine are needed. Cogley & Sargent (2005) con-
struct a Metropolis-within-Gibbs sampler and, in particular, they use
the univariate algorithm of Jacquier et al. (1994) to sample stochas-
tic volatilities. This suffices for their specification, which restricts the
evolution of innovation covariances. The model of Primiceri (2005), on
the other hand, is more complex and thus requires a different approach.
He simulates the latent covariance matrices from their posterior distri-
butions with the Gibbs sampling method of Kim et al. (1998), which
consists in transforming a nonlinear and non-Gaussian state space form
into a linear and approximately Gaussian one (PRIMICERI, 2005).

The bottom line is that Bayesian estimation of TVP-VARs be-
comes more complicated as the flexibility of the model increases. Loosely
speaking, each time one allows a given parameter to be time-varying,
an extra layer of complexity is added to the estimation method. So
much so that the algorithm of Primiceri (2005) contained an error
which was later corrected by Del Negro & Primiceri (2015). Although
the results remained qualitatively similar, the fact that the model was
used in many applications and the flaw in the Gibbs implementation
remained undetected for almost a decade can be seen as an indication
of the complexity of the estimation procedure. These difficulties can
be overcome by adopting the MSV structure proposed by Uhlig (1997).
The next chapter explores it in detail, but the gist of Uhlig’s approach
is a clever choice for the volatility transition equation, one which allows
forward filtering (and backward sampling) to be done in closed form
and makes statistical inference easier even within a Bayesian framework.
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2 WISHART TVP-VAR

2.1 THE MODEL OF UHLIG (1997)

Uhlig (1997) proposes a multivariate version of the local scale model of
Shephard (1994):

𝑦𝑡 =𝐵𝑋𝑡 +𝒰(𝐻−1
𝑡 )′𝜀𝑡, 𝜀𝑡 ∼ 𝒩 (0, 𝐼𝑘), (2.1)

𝐻𝑡+1 = 1
𝜆

𝒰(𝐻𝑡)′Θ𝑡𝒰(𝐻𝑡), Θ𝑡 ∼ ℬ𝑘

(︂
𝑣+ 𝑙

2 ,
1
2

)︂
, (2.2)

where 𝐵 is a matrix of constant coefficients and Θ𝑡, 𝑡= 1, ...,𝑇 , are (𝑘×
𝑘), symmetric, positive definite and independently distributed matrices
of innovations to the precision. Equation (2.1) is identical to (1.7), except
that it assumes fixed, non-stochastic coefficients. 𝜆 > 0 and 𝑣 > 𝑘− 1
are parameters and ℬ𝑘 represents the multivariate beta distribution.

As 𝑣 → ∞, the multivariate beta distribution for Θ𝑡 concentrates
around the identity matrix and the model approaches a homoscedastic
TVP-VAR. As such, the parameter 𝑣 governs the degree of time-variation
in the precision through the multiplicative beta innovations: the smaller
𝑣 is, the more the process 𝐻𝑡 fluctuates (UHLIG, 1997). 𝜆 also controls
the speed at which the precision moves, but it does so directly. Given 𝑣,
the process 𝐻𝑡 can be asymptotically degenerate or explosive depending
on whether 𝜆 is too large or too small, respectively (KIM, 2014). In
practice, 𝜆 also controls how the model attributes weights to different
observations when forming estimates and one-step ahead predictions
for the measurements (WINDLE; CARVALHO, 2014).

This model has a few desirable properties. First of all, the Wishart
distribution guarantees that 𝐻𝑡 is always positive definite. Secondly,
Θ𝑡 is a complete matrix in which all elements vary stochastically. This
means that the variances and covariances of the shocks to the economy
change over time without restrictions, and there is no need to model
them separately. In particular, the evolution of covariances is not tied to
the evolution of variances, as is the case in Cogley & Sargent (2005), and
no assumptions are made about the covariances being hit by shocks that
are independent across variables, as is the case in the model implemented
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by Primiceri (2005). Finally, due to the conjugacy between the Wishart
and the multivariate singular beta distributions established in Uhlig
(1994), the model possesses closed form filtering formulas.

The uninitiated but careful reader might be wondering why
(2.2) is referred to as a Wishart process. Consider two independent,
Wishart-distributed matrices: 𝐴∼ 𝒲𝑘(𝑛1,Σ) and 𝐵 ∼ 𝒲𝑘(𝑛2,Σ), with
𝑛1 > 𝑘−1 and 𝑛2 > 𝑘−1. Define the following Choleski decomposition:
𝐴+𝐵 =𝐻 = 𝒰(𝐻)′𝒰(𝐻). Let Θ be a 𝑘×𝑘 symmetric matrix such that
𝐴= 𝒰(𝐻)′Θ𝒰(𝐻). Then Theorem 3.3.1 and Definition 3.3.2 of Muir-
head (1982) establish that 𝐻 ∼ 𝒲𝑘(𝑛1 +𝑛2,Σ) and Θ ∼ ℬ𝑘(𝑛1/2,𝑛2/2).
This defines de multivariate beta distribution. Once this is done, the
same results can be read backwards: assuming Θ ∼ ℬ𝑘(𝑛1/2,𝑛2/2)
and 𝐻 ∼ 𝒲𝑘(𝑛1 + 𝑛2,Σ), as we will in this paper, it follows that
𝐴= 𝒰(𝐻)′Θ𝒰(𝐻) ∼ 𝒲𝑘(𝑛1,Σ). Hence (2.2) defines a Wishart process.

As a matter of fact, when Uhlig mentions the “conjugacy between
the Wishart and the multivariate beta distributions”, he does not mean
it in the usual Bayesian sense of combining a prior with a likelihood and
obtaining a posterior which belongs to the same family of distributions
as the prior. Instead, what he has in mind is the result presented above:
interpret the Wishart-distributed matrix 𝐻 as a prior, allow it to be
hit by multiplicative beta innovations and what you get at the other
end is a Wishart posterior.

It is important to notice, however, that in (2.2) we have 𝑛2 = 1,
which does not satisfy the restriction 𝑛2 > 𝑘− 1. Theorem 1 of Uhlig
(1994) establishes exactly this backward-reading fact for the case in
which 𝑛2 is allowed to be any positive integer. Equivalently, this theorem
extends the previous definition of the multivariate beta distribution to
the general case. Then in Theorem 7 Uhlig (1994) derives the probability
density function of this newly defined random matrix for the singular
case, when 𝑛2 = 1. And because the Wishart distribution is fundamental
to the study of the multivariate beta distribution, Uhlig (1994) also
extends the former to the general case of 𝑛2 > 0. Later on, Diaz-Garcia
& Jaimez (1997) derived the PDF of the multivariate beta distribution
for the general case.
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Then the question becomes: why does Uhlig (1997) specify 𝑛2 = 1?
Let us do a non-rigorous imagination exercise with a simplified version
of the model (the skeptical reader will be satisfied in section 2.3 and
appendix C). Assume that the researcher starts with the following prior:
𝐻𝑡|𝑌𝑡−1 ∼ 𝒲𝑘(𝑣,𝑣−1𝑆−1

𝑡−1), so that E(𝑃𝑡−1)−1 =𝑆𝑡−1. Assume also that
he or she observes a single measurement vector such that 𝑦𝑡 ∼ 𝒩 (0,𝐻−1

𝑡 ).
Then the researcher can update his or her knowledge about 𝐻𝑡 through
Bayes’ rule, as explained in section 1.1. By doing so, the resulting
updated knowledge will be that 𝐻𝑡|𝑌𝑡 ∼ 𝒲𝑘(𝑣+ 1,(𝑣+ 1)−1𝑆−1

𝑡 ), for
𝑆𝑡 of a certain form. Thus the updating process added one degree of
freedom to the prior and altered its scale matrix. As a matter of fact,
this will happen in every update step of this problem.

Now it is time to evolve 𝐻𝑡 one step forward. 𝐻𝑡|𝑌𝑡 is interpreted
as the new prior and the goal is to find the predictive density 𝐻𝑡+1|𝑌𝑡.
Here comes the crucial fact: we, and Uhlig, are interested in an algorithm
which preserves recursiveness and conjugacy, so that we can obtain exact
solutions to the filtering problem. As such, in 𝑡+1 we want a predictive
density which is of the same form as the one in period 𝑡. So we know
that 𝐻𝑡+1|𝑌𝑡 will have to be Wishart-distributed. But we also know
that, eventually, we will be able to update our knowledge about 𝐻𝑡+1

and that the update step will add one degree of freedom to this Wishart
distribution. Therefore, the law of motion for the precision has to yield
a Wishart posterior and has to eat away one degree of freedom from
the prior, which is Wishart with 𝑣+ 1 d.f. (otherwise we would run
into trouble in the next update step). Precisely, the transition equation
for the precision has to yield 𝐻𝑡+1|𝑌𝑡 ∼ 𝒲𝑘(𝑣,𝑣−1𝑆−1

𝑡 ). By inspecting
Theorem 1 of Uhlig (1994), or by reading backwards Theorem 3.3.1 of
Muirhead (1982), we come to the conclusion that this can only happen
if we specify that Θ𝑡+1 ∼ ℬ𝑘(𝑣/2,1/2), i.e., if we set 𝑛2 = 1.

In the model of Uhlig (1997), the precision matrix evolves with
the same frequency with which observations are received: once in every
time step. For this reason, observations are said to have rank 1 and
the trick of setting 𝑛2 = 1 suffices to solve the problem described above.
However, there are cases in which this synchrony between observations
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and precision does not hold. For example, a common case in financial
econometrics is the one in which the researcher is interested in estimating
the variance of daily returns, assuming it changes only once a day, but
observes multiple intraday vectors of returns. I.e., the precision matrix
changes less often than the frequency with which measurements are
observed. In that case, the observation matrix would have rank 𝑟 > 1
and it would be necessary to set 𝑛2 = 𝑟. Windle & Carvalho (2014)
explore this set-up and extend the model of Uhlig (1997) to the general
case of rank 𝑟 ≥ 1.

To sum up, the choice of the distribution for Θ𝑡 is the one
that facilitates the filtering problem. If we assume that 𝐻𝑡|𝑌𝑡 has an
acceptable distribution, then we need a transition equation that yields
𝐻𝑡+1|𝑌𝑡 with an appropriate distribution to update, so that 𝐻𝑡|𝑌𝑡

will have a distribution that lets us repeat the process (WINDLE;
CARVALHO, 2014).

The model of Uhlig (1997) is constructed as a Bayesian vector
autoregression, which means that inference is based on posterior analysis
and requires the elicitation of a prior. Uhlig chooses a prior distribution
of a specific form so as to allow for a flexible treatment of unit roots. But
this choice has a consequence: the resulting posterior is proportional to
a Normal-Wishart distribution scaled with a function which depends
on the coefficients in 𝐵. Hence, even though the model produces exact
filtering formulas, inference about the states requires the posterior
distribution to be evaluated numerically. Uhlig (1997) then employs
importance-sampling.

For philosophical or practical reasons, though, one might be
willing to depart from Bayesian estimation. It turns out that Uhlig’s
model is flexible enough to accommodate that: Kim (2014) showed
that the analytical filtering formulas can be used to derive an exact
likelihood function so that the parameters can be estimated in one
step by maximum likelihood. We shall follow this approach in the next
sections.
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2.2 AN EXTENSION OF UHLIG’S MODEL

The previous section showed that Uhlig’s model has a few desirable
properties: it guarantees positive definiteness for the precision without
imposing restrictions on covariances, it possesses closed-form filtering
formulas and it is amenable to classical estimation. Nonetheless, it
relies on the critical assumption that the VAR coefficients are time-
invariant. In this section, we extend Uhlig’s MSV-VAR to allow for
drifting coefficients in the tradition of Cogley & Sargent (2001). Because
we emphasize maximum likelihood estimation, our model can also be
seen as an extension of Kim (2014). Ultimately, it is built in such a
way that the desirable properties of the original model carry over to a
full-fledged TVP-VAR.

We assume conditionally Gaussian observations, as in equation
(1.7), but model the precision according to equation (2.2), as described
above:

𝑦𝑡 =𝐵𝑡𝑋𝑡 +𝒰(𝐻−1
𝑡 )′𝜀𝑡, 𝜀𝑡 ∼ 𝒩 (0, 𝐼𝑘), (2.3)

𝐻𝑡+1 = 1
𝜆

𝒰(𝐻𝑡)′Θ𝑡𝒰(𝐻𝑡), Θ𝑡 ∼ ℬ𝑘

(︂
𝑣+ 𝑙

2 ,
1
2

)︂
.

To extend the constant-coefficient VAR of Uhlig (1997) to the time-
varying case, we assume that the coefficients follow an autoregressive
process similar to the one given by equation (1.8), but decompose 𝒬𝑡

into two terms connected by the Kronecker product:

vec(𝐵′
𝑡+1) = vec(𝐵′

𝑡)+ [𝒰(𝐻−1
𝑡 )⊗𝒰(𝑄−1)]′𝜂𝑡, 𝜂𝑡 ∼ 𝒩 (0, 𝐼𝑘𝑙), (2.4)

where 𝑄 is (𝑙× 𝑙), symmetric and positive definite and 𝜂𝑡, 𝑡= 1, ...,𝑇 ,
are 𝑘𝑙-dimensional vectors of independently distributed innovations. By
defining 𝛾𝑡 such that

vec(𝛾′
𝑡) = [𝒰(𝐻−1

𝑡 )⊗𝒰(𝑄−1)]′𝜂𝑡, (2.5)

the transition equation (2.4) can be equivalently represented in matrix
form as:

𝐵𝑡+1 =𝐵𝑡 +𝛾𝑡, 𝛾𝑡|𝐻𝑡 ∼ 𝒩𝑘,𝑙(0𝑘,𝑙,𝐻
−1
𝑡 ⊗𝑄−1), (2.6)
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where 𝒩𝑘,𝑙 denotes the (𝑘× 𝑙)-dimensional matrix variate normal distri-
bution and 0𝑘,𝑙 is a (𝑘× 𝑙) matrix of zeros [see Definition 2.2.1 of Gupta
& Nagar (2000)]. We shall stick to this representation because it relates
more easily to the model of Uhlig (1997). Such a structure implies that:

𝐵𝑡+1|𝐵𝑡,𝐻𝑡 ∼ 𝒩𝑘,𝑙(𝐵𝑡,𝐻
−1
𝑡 ⊗𝑄−1). (2.7)

As can be seen in (2.6)-(2.7), the covariance matrix of the innovations,
𝐻−1

𝑡 , is also a source of variation in the evolution of the VAR coefficients,
i.e., the shocks to the coefficients are themselves heteroscedastic.

The Kronecker product structure means that the covariances
between the shocks in 𝛾𝑡 have a column-specific component, 𝐻𝑡, as well
as a row-specific component, 𝑄. Then 𝐻−1

𝑡 represents the covariances
between the shocks to each VAR equation (or variable). Similarly, 𝑄−1

denotes the covariances between the 𝑙 shocks to any row of 𝐵𝑡 (or to
the coefficients of any VAR equation). Take any two elements of 𝐵𝑡,
e.g. the intercepts of the first and second VAR equations: 𝐵1

0,𝑡 and
𝐵2

0,𝑡. Each of them is hit by a different shock, say 𝛾1
0,𝑡 and 𝛾2

0,𝑡. Then
the Kronecker product implies that 𝑐𝑜𝑣(𝛾1

0,𝑡,𝛾
2
0,𝑡) = ℎ1,2

𝑡 𝑞0,0, where ℎ1,2
𝑡

represents the covariance between the shocks that hit variables 1 and 2,
and 𝑞0,0 denotes the covariance between the shocks to the intercept (or
in this case the variance) of any given row of 𝐵𝑡. One can think of 𝑄−1

and 𝐻−1
𝑡 as the coefficient-specific and the variable-specific components

of the covariance matrix of 𝛾𝑡, respectively.
Such an assumption has important implications. As is usual in

a TVP-VAR, the observations in 𝑦𝑡 can increase or decrease because
of changes in 𝐵𝑡 and because the shocks to the economy suddenly
become more or less volatile through 𝐻𝑡. Here, because the covariance
matrix of 𝛾𝑡 is tied to 𝐻𝑡, the coefficients in 𝐵𝑡 themselves will also
become more or less volatile. From an economic perspective, this is
equivalent to assuming that more abrupt changes in the economy due
to more volatile exogenous shocks will cause agents to re-optimize
their decision rules more aggressively. In this respect, we depart from
Cogley & Sargent (2005) and Primiceri (2005), whose models assume
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homoscedastic innovations to the VAR coefficients, and propose a more
general specification in line with Cogley et al. (2010) and with the
empirical findings of Stock & Watson (2007). As a matter of fact, if
the justification for drifting coefficients presented in Cogley & Sargent
(2001) is coherent enough, then the assumption of heteroscedastic shocks
to the coefficients is theoretically more plausible than its homoscedastic
counterpart.

2.3 EXACT FILTERING FORMULAS

This section presents the most important contribution of this thesis.
The following propositions and corollary establish the results needed
to track the unobservable states and to estimate the unknown param-
eters. Their proofs are presented in Appendix C. Notation-wise, let
𝑌𝑡 := {𝑦1−𝑝, · · · ,𝑦𝑡} denote the set of all available measurements up to
time 𝑡. Assume that 𝑦𝑡 obeys equation (2.3) for all 𝑡, that 𝐻𝑡 and 𝐵𝑡

evolve according to (2.2) and (2.6), respectively, and that at period 𝑡 all
past observations are known. Additionally, let 𝒩 𝒲𝑘,𝑙 and 𝒯𝑘,𝑙 denote
the matrix normal-Wishart and matrix variate t distributions, respec-
tively. Appendix B contains definitions of these distributions. Implicitly
condition on the parameters 𝑣, 𝜆 and 𝑄 and assume the following initial
condition: 𝐵1,𝐻1|𝑌0 ∼ 𝒩 𝒲𝑘,𝑙(𝐵1|0,𝑁1|0,𝑣,𝑆1|0), with 𝐵1|0, 𝑁1|0 and
𝑆1|0 known and 𝑁1|0 and 𝑆1|0 symmetric.

Proposition 1.
Suppose 𝐵𝑡,𝐻𝑡|𝑌𝑡−1 ∼ 𝒩 𝒲𝑘,𝑙(𝐵𝑡|𝑡−1,𝑁𝑡|𝑡−1,𝑣,𝑆𝑡|𝑡−1), where 𝑁𝑡|𝑡−1

and 𝑆𝑡|𝑡−1 are positive definite and symmetric. After observing 𝑦𝑡, the
filtered joint density of the states is given by

𝐵𝑡,𝐻𝑡|𝑌𝑡 ∼ 𝒩 𝒲𝑘,𝑙(𝐵𝑡|𝑡,𝑁𝑡|𝑡,𝑣+1,𝑆𝑡|𝑡), (2.8)

where:

𝐵𝑡|𝑡 = (𝐵𝑡|𝑡−1𝑁𝑡|𝑡−1 +𝑦𝑡𝑋
′
𝑡)𝑁−1

𝑡|𝑡 , (2.9)

𝑁𝑡|𝑡 =𝑁𝑡|𝑡−1 +𝑋𝑡𝑋
′
𝑡, (2.10)
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𝑆𝑡|𝑡 = 𝑣

𝑣+1𝑆𝑡|𝑡−1 + 1
𝑣+1𝑒𝑡(1−𝑋 ′

𝑡𝑁
−1
𝑡|𝑡 𝑋𝑡)𝑒′

𝑡, (2.11)

𝑒𝑡 = 𝑦𝑡 −𝐵𝑡|𝑡−1𝑋𝑡. (2.12)

Additionally, the filtered marginal densities are given by

𝐵𝑡|𝑌𝑡 ∼ 𝒯𝑘,𝑙[𝑣−𝑘+2,𝐵𝑡|𝑡,(𝑣+1)𝑆𝑡|𝑡,𝑁
−1
𝑡|𝑡 ], (2.13)

𝐻𝑡|𝑌𝑡 ∼ 𝒲𝑘[𝑣+1,(𝑣+1)−1𝑆−1
𝑡|𝑡 ]. (2.14)

Equations (2.9) and (2.11) are the ones we are most interested in. They
represent the conditional expected values of the marginal distributions
(see Appendix B). As such, (2.9) can be directly interpreted as filtered
estimates for the coefficients and (2.11) as the filtered estimates for the
volatility of the system.

The next thing we want to do is obtain the one-step-ahead
predictive density. We use the normal-Wishart PDF from the previous
theorem, together with the normal-Wishart density implied by the
transition equations, to integrate out the states of period 𝑡 analytically.
The resulting predictive density is also normal-Wishart.

Proposition 2.
Suppose 𝐵𝑡,𝐻𝑡|𝑌𝑡 ∼ 𝒩 𝒲𝑘,𝑙(𝐵𝑡|𝑡,𝑁𝑡|𝑡,𝑣+ 1,𝑆𝑡|𝑡), where 𝑁𝑡|𝑡 and 𝑆𝑡|𝑡

are positive definite and symmetric. Then the predictive joint density of
the states is given by

𝐵𝑡+1,𝐻𝑡+1|𝑌𝑡 ∼ 𝒩 𝒲𝑘,𝑙(𝐵𝑡+1|𝑡,𝑁𝑡+1|𝑡,𝑣,𝑆𝑡+1|𝑡), (2.15)

where:

𝐵𝑡+1|𝑡 =𝐵𝑡|𝑡, (2.16)

𝑁𝑡+1|𝑡 = [𝑄−1 +(𝜆𝑁𝑡|𝑡)−1]−1, (2.17)

𝑆𝑡+1|𝑡 = 𝜆
𝑣+1
𝑣

𝑆𝑡|𝑡. (2.18)

Additionally, the predictive marginal densities are

𝐵𝑡+1|𝑌𝑡 ∼ 𝒯𝑘,𝑙(𝑣−𝑘+1,𝐵𝑡+1|𝑡,𝑣𝑆𝑡+1|𝑡,𝑁
−1
𝑡+1|𝑡), (2.19)

𝐻𝑡+1|𝑌𝑡 ∼ 𝒲𝑘(𝑣,𝑣−1𝑆−1
𝑡+1|𝑡). (2.20)
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Note that (2.15) has the same form as the initial condition required by
Theorem 1. So, paraphrasing Uhlig (1994), the filtering game can begin
anew.

The intuition underlying the proofs of Theorems 1 and 2 is actu-
ally quite simple: we combine two normal-Wishart densities analytically
and as a result we get another normal-Wishart density. This process is
analogous to what is done with Gaussian distributions in the Kalman
filter.

So both the updated and the predictive densities are known
and have known properties. But in all these results we are implicitly
conditioning on the unknown parameters which still need to be estimated.
The next result establishes what is needed to estimate them by maximum
likelihood. It is actually a corollary of Theorem 1 because the likelihood
contribution of period 𝑡 is the integrating constant of the updated
density, which in this case is a normal-Wishart. It is stated here for the
sake of reference and because it is relevant on its own for estimation:

Corollary 1.
Suppose 𝐵𝑡,𝐻𝑡|𝑌𝑡−1 ∼ 𝒩 𝒲𝑘,𝑙(𝐵𝑡|𝑡−1,𝑁𝑡|𝑡−1,𝑣,𝑆𝑡|𝑡−1), where 𝑁𝑡|𝑡−1

and 𝑆𝑡|𝑡−1 are positive definite and symmetric. Then the period-t likeli-
hood contribution is

𝑦𝑡|𝑌𝑡−1 ∼ t𝑘[𝑣−𝑘+1,𝐵𝑡|𝑡−1𝑋𝑡,(𝑣−𝑘+1)−1Σ−1
𝑡 ], (2.21)

where:

Σ𝑡 = (1−𝑋 ′
𝑡𝑁

−1
𝑡|𝑡 𝑋𝑡)(𝑣𝑆𝑡|𝑡−1)−1, (2.22)

𝑁𝑡|𝑡 =𝑁𝑡|𝑡−1 +𝑋𝑡𝑋
′
𝑡. (2.23)

Note that 𝑡𝑘 denotes the usual multivariate t distribution. The likeli-
hood of the entire sample can be factored as: 𝑓(𝑌𝑇 ) =

∏︀𝑇
𝑡=1 𝑓(𝑦𝑡|𝑌𝑡−1)

(DURBIN; KOOPMAN, 2012). Then from Theorem 1 it follows that
the log-likelihood function is given by

log[𝑓(𝑌𝑇 )] = −𝑇𝑘

2 log[(𝑣+1−𝑘)𝜋]+𝑇 log
[︂
Γ

(︂
𝑣+1

2

)︂]︂
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−𝑇 log
[︂
Γ

(︂
𝑣+1−𝑘

2

)︂]︂
+ 1

2

𝑇∑︁
𝑡=1

log(|(𝑣+1−𝑘)Σ𝑡|)

− (𝑣+1)
2

𝑇∑︁
𝑡=1

log[1+(𝑦𝑡 −𝐵𝑡|𝑡−1𝑋𝑡)′Σ𝑡(𝑦𝑡 −𝐵𝑡|𝑡−1𝑋𝑡)], (2.24)

where |.| represents the determinant of a matrix and Γ(.) denotes the
gamma function.

To sum up, we have derived an algorithm with exact filtering
formulas that allow us to track the unobservable states as well as an
analytical expression for the likelihood function. This means that we
can estimate the parameters of the model by maximum likelihood in
one step without resorting to simulation techniques.



35

3 EMPIRICAL ANALYSIS

In order to visualize what our method is capable of, we apply it to a
dataset for the U.S. economy which mimics that of Cogley & Sargent
(2005) and contains the following time series:

∙ Short-term nominal interest rate: secondary market rate on 3-
month Treasury bills. The data are sampled monthly and then
converted to a quarterly series by selecting the first month of each
quarter.

∙ Unemployment rate: civilian unemployment rate. The original
series is seasonally adjusted and sampled monthly. It is converted
to a quarterly series by taking the average of monthly rates. Within
the VAR, we use the logit transformation of the unemployment
rate to ensure that its expectations lie between zero and one
(COGLEY et al., 2010).

∙ Inflation: Consumer Price Index for all urban consumers, all items.
The original series is seasonally adjusted and sampled monthly. It is
converted to a quarterly series by point-sampling the third month
of each quarter. Inflation is then measured as the log-differences
of these values.

The data are available from the Federal Reserve Economic Database
(FRED) and have codes TB3MS, UNRATE and CPIAUCSL, respec-
tively. The relevant sample spans the period 1948:Q2 to 2000:Q4 and
comprises 211 quarterly observations for each variable.

Both Uhlig (1997) and Kim (2014) work with pre-set values for
𝑣 and 𝜆. As noted by Kim (2014), these parameters bear no economic
meaning and, in the case of 𝑣, it is debatable whether estimating it yields
better results relative to when it is pre-set. Uhlig (1997) suggests using
𝑣 = 20 for quarterly data and 𝜆 = 𝑣/(𝑣+ 1) to allow for a reasonable
degree of time-variation in the precision. Notice from (2.18) that 𝜆=
𝑣/(𝑣+1) implies 𝐸[𝐻−1

𝑡+1|𝑌𝑡] = 𝑆𝑡|𝑡, which is analogous to the random
walk behavior of 𝐵𝑡. However, based on results reported in the literature,
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we have an a priori idea of what the volatility of the system should
look like in the analyzed period. After conducting sensitivity tests with
respect to these parameters, we concluded that 𝑣 = 20 and 𝜆= 𝑣/(𝑣+1)
do not introduce enough variability to capture the expected movements
in the volatility. It turns out that much better results can be achieved
by working with lower values. As such, we pre-set 𝑣 = 10 and 𝜆= 0.8. In
addition to that, we work with two lags, which is a common choice in
the TVP-VAR literature, and include only an intercept in each equation.
Thus for 𝑐= 1, 𝑝= 2 and 𝑘= 3, the parameters that need to be estimated
correspond to the 28 unique elements of the precision matrix 𝑄 in (2.6).

To start recursions, we must pick initial values for some elements
of the model. To construct 𝐵1|0, we follow Uhlig (1997) and use the
estimates of a constant-coefficient VAR with one lag. 𝑁1|0 represents,
loosely speaking, our degree of confidence in this choice for 𝐵1|0. We
want this to be a weak choice whose effect dies out quickly, so we
build 𝑁1|0 as a matrix with diagonal elements equal to 0.001 and zeros
elsewhere. For 𝑆1|0, we also follow Uhlig (1997) and estimate three
separate AR(1) models, one for each variable, and save the squared
residuals. 𝑆1|0 is then built as a diagonal matrix whose diagonal entries
are the averages of these squared residuals.

And to start optimization, we also need initial values for 𝑄. Recall
that 𝑄−1 is interpreted as the covariance matrix of the shocks to the
coefficients of any VAR equation (i.e., the coefficient-specific component
of the volatility). We fit several VAR(1) models with an expanding
window (ideally, if sample-size permits, one would use a rolling window).
Then we use the estimated matrices of coefficients, 𝐵̂𝑡, to compute 𝛾𝑡

from (2.6) for various periods. This gives us 3 rows of residuals (one for
the coefficients of each VAR equation) with 7 elements in each (because
we have 7 coefficients per equation):

𝛾𝑡 =

⎡⎢⎣𝛾1,𝑡

𝛾2,𝑡

𝛾3,𝑡

⎤⎥⎦ =

⎡⎢⎣𝛾
0
1,𝑡 𝛾1,1

1,𝑡 𝛾1,2
1,𝑡 𝛾1,3

1,𝑡 𝛾2,1
1,𝑡 𝛾2,2

1,𝑡 𝛾2,3
1,𝑡

𝛾0
2,𝑡 𝛾1,1

2,𝑡 𝛾1,2
2,𝑡 𝛾1,3

2,𝑡 𝛾2,1
2,𝑡 𝛾2,2

2,𝑡 𝛾2,3
2,𝑡

𝛾0
3,𝑡 𝛾1,1

3,𝑡 𝛾1,2
3,𝑡 𝛾1,3

3,𝑡 𝛾2,1
3,𝑡 𝛾2,2

3,𝑡 𝛾2,3
3,𝑡

⎤⎥⎦ .
The superscripts on the rightmost hand-side of the equality above are
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to be read as follows: 𝛾0
𝑖,𝑡 refers to the innovation to the intercept of

variable 𝑖 and 𝛾𝑙,𝑗
𝑖,𝑡 denotes the estimated shock to the coefficient of the

𝑙-th lag of variable 𝑗 in the equation of variable 𝑖. For each row, we
calculate the variances of the estimated residuals across the various sub-
samples. This gives us a measure of how the shocks to the coefficients
in each row change as we add more observations. Then for each of
the 7 coefficients, we take the averages of these variances across the
3 rows. This, in turn, gives us a measure of how the innovations to
the coefficients of any given row change. Finally, we build 𝑄0 with the
inverses of these averages in the diagonal entries (because they denote
precision, not variance) and with zeros elsewhere.

Figures 1 and 2 present the evolution of the filtered coefficients,
𝐸[𝐵𝑡|𝑌𝑡] = 𝐵𝑡|𝑡. Figure 2 is directly comparable to the lower portion
of figure 2 of Cogley & Sargent (2005). The dashed lines in figure 1
are 95% confidence intervals and each row in it represents one VAR
equation, with

𝑦𝑡 =

⎡⎢⎣ 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑡

𝑢𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑡

𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛𝑡

⎤⎥⎦ .
In constructing the confidence intervals, we used Theorem 4.3.1 of Gupta
& Nagar (2000) to compute the marginal filtered variances of 𝐵𝑡|𝑌𝑡.

Some coefficients change more pronouncedly than others and sev-
eral of them can be regarded as stable over time, especially considering
the confidence intervals. Qualitatively, these results are similar to those
of Cogley & Sargent (2005). However, our method seems to capture
more time-variation in the coefficients than theirs, probably due to the
heteroscedasticity specified in the law of motion of these states in our
model. In figure 2, we plot all filtered estimates together and it turns
out that it is quite difficult to follow one line and make sense of what is
happening. In contrast, the corresponding figure of Cogley & Sargent
(2005) is much cleaner, with only two or three coefficients changing
over time. This result reinforces the idea mentioned previously that
the homoscedastic law of motion used in Cogley & Sargent (2005) and
Primiceri (2005) might be too restrictive, as suggested by the results of
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Figure 1 – Filtered coefficients (A).
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Figure 2 – Filtered coefficients (B).
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Figure 3 presents the evolution of the filtered volatility of the
system, 𝐸[𝐻−1

𝑡 |𝑌𝑡] = 𝑆𝑡|𝑡. It is directly comparable to figure 3 of Cogley
& Sargent (2005). The first column portrays standard deviations of
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the shocks to each variable, with (i.a) and (i.c) being expressed in
basis points. The second column shows correlation coefficients between
pairs of innovations. Our model clearly captures time-variation in the
volatility of the shocks. As far as the standard deviations are concerned,
our results resemble those of Cogley & Sargent (2005). As for the
correlation coefficients, the results are not so similar: while in Cogley
& Sargent (2005) the correlations mimic the standard deviations, in
our model the correlations evolve independently. In general, our model
suggests a more smooth time-variation in the volatility of innovations.

Figure 3 – Filtered volatility.
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4 CONCLUDING REMARKS

This master’s thesis proposed a vector autoregression with drifting
coefficients and multivariate stochastic volatility which can be estimated
by maximum likelihood. It extended the model of Uhlig (1997) and
borrowed insights from Kim (2014) for the new approach to estimation.

The VAR coefficients are modelled as an autoregressive process
with heteroscedastic shocks. The covariance matrix of these innovations
is decomposed into two terms connected by the Kronecker product.
One of these terms, the coefficient-specific component, is fixed and
non-stochastic. The other term, the variable-specific component, is
stochastically time-varying and corresponds to the same covariance
matrix of the shocks to the observations. In other words, coefficients
and observations share a common source of volatility. An economic
interpretation of this structure is offered along the lines of the original
motivation for drifting coefficients.

The multivariate stochastic volatility is introduced in the form
of a Wishart process in which the precision is hit by multiplicative
beta innovations. The Wishart process respects positive definiteness
and does not impose restrictions on the evolution of covariances. Most
importantly, it couples analytically with the measurement equation and
with the chosen law of motion for the coefficients. In particular, we
benefit from the conjugacy results established in Uhlig (1994) and Uhlig
(1997). They enabled us to derive closed-form filtering formulas for
the latent states, as well as an analytical expression for the likelihood
function. This means that the coefficients and the volatility of the
system can be tracked by means of an exact algorithm and the unknown
parameters can be estimated in one step by maximum likelihood. There
is no need for simulation-based inference.

Therefore, the proposed method is flexible while retaining sim-
plicity of estimation. We applied it to U.S. macroeconomic data and it
was able to detect time-variation in the VAR coefficients as well as in
the volatility of the innovations. In general, the results resemble those
already presented in the macroeconomic literature.
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Nonetheless, a word of caution is needed. Strictly speaking, our
method in its current form does not constitute an alternative to the
usual approach to TVP-VARs for it does not do exactly the same
job. With Bayesian TVP-VARs, statistical inference is carried out via
posterior analysis. Hence the knowledge of the researcher about 𝐵𝑗 , for
𝑗 ∈ [1,𝑇 ], is based on the entire data set [see, for example, equation 18
of Cogley & Sargent (2005)]. The same is true about other objects of
interest. In contrast, the results presented above constitute a recursive
filter aimed at period-by-period learning. As such, filtered estimates
for 𝐵𝑗 and 𝐻𝑗 take into account the information available up to period
𝑗, but disregard all observations between periods 𝑗+1 and 𝑇 (notice
that estimates for the additional parameters do not suffer from this).
This is a limitation in the sense that future observations can convey
information about past and present states. For this reason, the next
hurdle in our research agenda is the derivation of a smoothing algorithm
also in closed form. We suspect this is possible by combining results
from Windle & Carvalho (2014) with those of the Kalman filter.
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APPENDIX A – RELEVANT DIMENSIONS

Table 1 – Dimensions of vectors and matrices.
𝑦𝑡 𝑘×1
𝐵0,𝑡 𝑘× 𝑐
𝐵𝑗,𝑡, 𝑗 = 1, ...,𝑝 𝑘×𝑘
𝐵𝑡,𝐵𝑡|𝑡,𝐵𝑡+1|𝑡 𝑘× 𝑙

𝑋𝑡 𝑙×1
𝐶𝑡 𝑐×1
𝜀𝑡 𝑘×1
𝜂𝑡 𝑘𝑙×1
𝛾𝑡 𝑘× 𝑙
Θ𝑡 𝑘×𝑘
𝑒𝑡 𝑘×1
𝐻𝑡,𝑆𝑡|𝑡,𝑆𝑡+1|𝑡,Σ𝑡 𝑘×𝑘

𝑄,𝑁𝑡|𝑡,𝑁𝑡+1|𝑡 𝑙× 𝑙

𝑙 := 𝑐+𝑘𝑝
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APPENDIX B – SOME IMPORTANT DISTRIBUTIONS

The propositions presented in section 2.3 rely extensively on the defini-
tions of two major distributions: the matrix normal-Wishart and the
matrix variate t. The purpose of this appendix is to fix notation so as to
avoid confusion. For a detailed account of matrix variate distributions,
see (GUPTA; NAGAR, 2000). For a more succinct description, refer to
Appendix A.2 of (BAUWENS et al., 1999).

Our definition of the matrix normal-Wishart distribution is based
on Appendix A of (UHLIG, 1997). Assume the following matrices: 𝐵
and 𝐵̄ are (𝑘× 𝑙), 𝐻 is (𝑘× 𝑘), symmetric and positive definite, 𝑆
is (𝑘×𝑘) and positive definite, 𝑁 is (𝑙× 𝑙) and positive definite. Let
𝑣 ≥ 𝑘 > 0. Then the probability density function of a matrix normal-
Wishart distribution for 𝐵 and 𝐻 with parameters 𝐵̄, 𝑁 , 𝑣 and 𝑆 is
given by:

𝑓𝑘,𝑙
𝒩 𝒲(𝐵,𝐻;𝐵̄,𝑁,𝑣,𝑆) =

= 𝜅𝒩 𝒲 |𝐻|0.5(𝑙+𝑣−𝑘−1)𝑒𝑥𝑝{−0.5tr[((𝐵− 𝐵̄)𝑁(𝐵− 𝐵̄)′ +𝑣𝑆)𝐻]},
(B.1)

where

𝜅𝑘,𝑙
𝒩 𝒲 =

|𝑁 |0.5𝑘
(︀

𝑣
2
)︀0.5𝑘𝑣|𝑆|0.5𝑣

(2𝜋)0.5𝑘𝑙 Γ𝑘

(︀
𝑣
2
)︀ . (B.2)

The normal-Wishart distribution results from the multiplication of the
densities of a conditional matrix normal variable and a Wishart variable.
Using some properties of the trace, it is easy to check that (B.1) implies:

𝐵|𝐻 ∼ 𝒩𝑘,𝑙(𝐵̄,𝐻−1 ⊗𝑁−1), (B.3)

𝐻 ∼ 𝒲𝑘[𝑣,(𝑣𝑆)−1]. (B.4)

For details on the 𝒩𝑘,𝑙 and 𝒲𝑘 distributions, see sections 2.2 and 3.2
of (GUPTA; NAGAR, 2000), respectively.

For the matrix variate t distribution, we adopt the definition of
(GUPTA; NAGAR, 2000). Consider the same matrices described above
and assume 𝑣 > 0. The random matrix 𝐵 (𝑘× 𝑙) follows a matrix variate
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t distribution with parameters 𝑣, 𝐵̄, 𝑆 and 𝑁 if its PDF is given by

𝑓𝑘,𝑙
𝒯 (𝐵;𝑣,𝐵̄,𝑆,𝑁) = 𝜋−0.5𝑘𝑙 Γ𝑘

(︀
𝑣+𝑙+𝑘−1

2
)︀

Γ𝑘

(︀
𝑣+𝑘−1

2
)︀

|𝑁 |−0.5𝑘|𝑆|−0.5𝑙|𝐼𝑘 +𝑆−1(𝐵− 𝐵̄)𝑁−1(𝐵− 𝐵̄)′|−0.5(𝑣+𝑙+𝑘−1). (B.5)

We denote this by 𝐵 ∼ 𝒯𝑘,𝑙(𝑣,𝐵̄,𝑆,𝑁).
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APPENDIX C – PROOFS OF PROPOSITIONS

First we establish an important result that will be used in the proofs
of the propositions presented in section 2.3. It is a slight variation of
Theorem A.19 of Bauwens et al. (1999).

Proposition 3.
Assume that 𝐵 and 𝐻 jointly follow a matrix normal-Wishart distribu-
tion with parameters 𝐵̄, 𝑁 , 𝑣 and 𝑆, such that:

𝐵|𝐻 ∼ 𝒩𝑘,𝑙(𝐵̄,𝐻−1 ⊗𝑁−1),

𝐻 ∼ 𝒲𝑘[𝑣,(𝑣𝑆)−1].

Then the marginal distribution of 𝐵 is given by

𝐵 ∼ 𝒯𝑘,𝑙(𝑣−𝑘+1, 𝐵̄,𝑣𝑆,𝑁−1). (C.1)

Proof of Proposition 3. From the definition of the matrix normal-
Wishart distribution given in Appendix B, we know that the joint
density of 𝐵 and 𝐻 is

𝑝(𝐵,𝐻) =
|𝑁 |0.5𝑘

(︀
𝑣
2
)︀0.5𝑘𝑣|𝑆|0.5𝑣

(2𝜋)0.5𝑘𝑙 Γ𝑘

(︀
𝑣
2
)︀ |𝐻|0.5(𝑣+𝑙−𝑘−1)

𝑒𝑥𝑝{−0.5tr[((𝐵− 𝐵̄)𝑁(𝐵− 𝐵̄)′ +𝑣𝑆)𝐻]}.

To ease visualization, define Ψ := [(𝐵 − 𝐵̄)𝑁(𝐵 − 𝐵̄)′ + 𝑣𝑆]−1. The
marginal distribution of 𝐵 is obtained by integrating out 𝐻:

𝑝(𝐵) =
∫︁
𝑝(𝐵,𝐻)𝑑𝐻 =

=
∫︁ |𝑁 |0.5𝑘

(︀
𝑣
2
)︀0.5𝑘𝑣|𝑆|0.5𝑣

(2𝜋)0.5𝑘𝑙 Γ𝑘

(︀
𝑣
2
)︀ |𝐻|0.5(𝑣+𝑙−𝑘−1)𝑒𝑥𝑝[−0.5tr(Ψ−1𝐻)]𝑑𝐻.

(C.2)

Now the trick is to multiply and divide this expression by

20.5𝑘(𝑣+𝑙)Γ𝑘

(︂
𝑣+ 𝑙

2

)︂
|Ψ|0.5(𝑣+𝑙).



54 APPENDIX C. Proofs of propositions

Then, by rearranging terms adequately, (C.2) becomes

𝑝(𝐵) =
|𝑁 |0.5𝑘

(︀
𝑣
2
)︀0.5𝑘𝑣|𝑆|0.5𝑣

(2𝜋)0.5𝑘𝑙 Γ𝑘

(︂
𝑣
2

)︂ 20.5𝑘(𝑣+𝑙)Γ𝑘

(︂
𝑣+ 𝑙

2

)︂
|Ψ|0.5(𝑣+𝑙)

∫︁ [︂
20.5𝑘(𝑣+𝑙)Γ𝑘

(︂
𝑣+ 𝑙

2

)︂
|Ψ|0.5(𝑣+𝑙)

]︂−1

|𝐻|0.5(𝑣+𝑙−𝑘−1)𝑒𝑥𝑝[−0.5tr(Ψ−1𝐻)]𝑑𝐻. (C.3)

Note that the integrand above is the PDF of a Wishart distribution for
𝐻 with parameters 𝑣+ 𝑙 and Ψ. Since it integrates to unity, we are left
with

𝑝(𝐵) =
|𝑁 |0.5𝑘

(︀
𝑣
2
)︀0.5𝑘𝑣|𝑆|0.5𝑣

(2𝜋)0.5𝑘𝑙 Γ𝑘

(︂
𝑣
2

)︂ 20.5𝑘(𝑣+𝑙)Γ𝑘

(︂
𝑣+ 𝑙

2

)︂
|Ψ|0.5(𝑣+𝑙).

Now substitute Ψ and factor out 𝑣𝑆 from the determinant. Rearranging
terms yields:

𝑝(𝐵) = 𝜋−0.5𝑘𝑙 Γ𝑘

(︀
𝑣+𝑙

2
)︀

Γ𝑘

(︀
𝑣
2
)︀ |𝑁−1|−0.5𝑘|𝑣𝑆|−0.5𝑙

|𝐼𝑘 +(𝑣𝑆)−1(𝐵− 𝐵̄)𝑁(𝐵− 𝐵̄)′|−0.5(𝑣+𝑙). (C.4)

Note that 𝑣+ 𝑙= (𝑣−𝑘+1)+𝑘+ 𝑙−1 and 𝑣= (𝑣−𝑘+1)+𝑘−1. Then it
is easy to see that (C.4) is the PDF of a matrix variate t distribution for
𝐵 with parameters 𝑣−𝑘+1, 𝐵̄, 𝑣𝑆 and 𝑁−1. Therefore, we conclude
that

𝐵 ∼ 𝒯𝑘,𝑙(𝑣−𝑘+1, 𝐵̄,𝑣𝑆,𝑁−1).

Additionally, we present an adapted version of Theorem 2 of
Uhlig (1997) (its proof can be found in appendix B of that paper).

Theorem 1 (Theorem 2 of Uhlig (1997)).
Given 𝑣 > 𝑘− 1 and 𝜆 > 0, let a prior for the 𝑘× 𝑙 coefficient matrix 𝐵
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and the 𝑘(𝑘+ 1)/2 distinct elements of the precision matrix 𝐻 be given
by a density proportional to

𝑓𝑘,𝑙
𝒩 𝒲(𝐵,𝐻;𝐵̄,𝑁,𝑣+1,𝑆).

Suppose additionally that there is an unobserved shock to the precision
matrix obeying

𝐻̃ = 𝒰(𝐻)′Θ𝒰(𝐻)/𝜆, Θ ∼ ℬ𝑘((𝑣+ 𝑙)/2,1/2).

Then the posterior density for 𝐵 and 𝐻̃ is proportional to

𝑓𝑘,𝑙
𝒩 𝒲(𝐵,𝐻̃;𝐵̄, 𝑁̃ ,𝑣,𝑆),

where:

𝑁̃ = 𝜆𝑁,

𝑆 = 𝜆
𝑣+1
𝑣

𝑆.

This result is used in the proof of our Proposition 2 below.

Proof of Proposition 1. In period 𝑡, the updated distribution is ob-
tained through Bayes’ rule (RISTIC et al., 2004):

𝑝(𝐵𝑡,𝐻𝑡|𝑌𝑡) = 𝑝(𝑦𝑡|𝐵𝑡,𝐻𝑡)𝑝(𝐵𝑡,𝐻𝑡|𝑌𝑡−1)
𝑝(𝑦𝑡|𝑌𝑡−1) ∝ 𝑝(𝑦𝑡|𝐵𝑡,𝐻𝑡)𝑝(𝐵𝑡,𝐻𝑡|𝑌𝑡−1).

From the measurement equation, (2.3), we have that

𝑦𝑡|𝐵𝑡,𝐻𝑡 ∼ 𝒩 (𝐵𝑡𝑋𝑡,𝐻
−1
𝑡 ).

And by assumption, we have the initial condition that

𝐵𝑡,𝐻𝑡|𝑌𝑡−1 ∼ 𝒩 𝒲𝑘,𝑙(𝐵𝑡|𝑡−1,𝑁𝑡|𝑡−1,𝑣,𝑆𝑡|𝑡−1),

with all parameters know and 𝑁𝑡|𝑡−1 symmetric. Multiplying the PDFs
of these two distributions yields:

𝑝(𝐵𝑡,𝐻𝑡|𝑌𝑡) ∝ 𝑝(𝑦𝑡|𝐵𝑡,𝐻𝑡)𝑝(𝐵𝑡,𝐻𝑡|𝑌𝑡−1) =
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= (2𝜋)−0.5𝑘|𝐻−1
𝑡 |−1|𝑁𝑡|𝑡−1|0.5𝑘(𝑣/2)0.5𝑘𝑣|𝑆𝑡|𝑡−1|0.5𝑣(2𝜋)−0.5𝑘𝑙

Γ𝑘(𝑣/2)−1|𝐻𝑡|0.5(𝑙+𝑣−𝑘−1)𝑒𝑥𝑝{−0.5tr[(𝑦𝑡 −𝐵𝑡𝑋𝑡)(𝑦𝑡 −𝐵𝑡𝑋𝑡)′ · · ·

+(𝐵𝑡 −𝐵𝑡|𝑡−1)𝑁𝑡|𝑡−1(𝐵𝑡 −𝐵𝑡|𝑡−1)′ +𝑣𝑆𝑡|𝑡−1]𝐻𝑡}.

Defining 𝑁𝑡|𝑡 :=𝑁𝑡|𝑡−1 +𝑋𝑡𝑋
′
𝑡, it is possible to write the terms within

square brackets as:

𝐵𝑡𝑁𝑡|𝑡𝐵
′
𝑡 −𝐵𝑡𝑁𝑡|𝑡(𝑁−1

𝑡|𝑡 )′(𝐵𝑡|𝑡−1𝑁𝑡|𝑡−1 +𝑦𝑡𝑋
′
𝑡)′

− (𝐵𝑡|𝑡−1𝑁𝑡|𝑡−1 +𝑦𝑡𝑋
′
𝑡)𝑁−1

𝑡|𝑡 𝑁𝑡|𝑡𝐵
′
𝑡

+𝑦𝑡𝑦
′
𝑡 +𝐵𝑡|𝑡−1𝑁𝑡|𝑡−1𝐵

′
𝑡|𝑡−1 +𝑣𝑆𝑡|𝑡−1.

Note that one can complete the square in this expression by adding and
subtracting

(𝐵𝑡|𝑡−1𝑁𝑡|𝑡−1 +𝑦𝑡𝑋
′
𝑡)𝑁−1

𝑡|𝑡 𝑁𝑡|𝑡(𝑁−1
𝑡|𝑡 )′(𝐵𝑡|𝑡−1𝑁𝑡|𝑡−1 +𝑦𝑡𝑋

′
𝑡)′.

This yields:

[𝐵𝑡 − (𝐵𝑡|𝑡−1𝑁𝑡|𝑡−1 +𝑦𝑡𝑋
′
𝑡)𝑁−1

𝑡|𝑡 ]𝑁𝑡|𝑡[𝐵𝑡 − (𝐵𝑡|𝑡−1𝑁𝑡|𝑡−1 +𝑦𝑡𝑋
′
𝑡)𝑁−1

𝑡|𝑡 ]′

+𝑦𝑡𝑦
′
𝑡 +𝐵𝑡|𝑡−1𝑁𝑡|𝑡−1𝐵

′
𝑡|𝑡−1 +𝑣𝑆𝑡|𝑡−1

− (𝐵𝑡|𝑡−1𝑁𝑡|𝑡−1 +𝑦𝑡𝑋
′
𝑡)𝑁−1

𝑡|𝑡 𝑁𝑡|𝑡(𝑁−1
𝑡|𝑡 )′(𝐵𝑡|𝑡−1𝑁𝑡|𝑡−1 +𝑦𝑡𝑋

′
𝑡)′.

Defining

𝐵𝑡|𝑡 = (𝐵𝑡|𝑡−1𝑁𝑡|𝑡−1 +𝑦𝑡𝑋
′
𝑡)𝑁−1

𝑡|𝑡 ,

𝑒𝑡 = 𝑦𝑡 −𝐵𝑡|𝑡−1𝑋𝑡, and

𝑆𝑡|𝑡 = 𝑣

𝑣+1𝑆𝑡|𝑡−1 + 1
𝑣+1𝑒𝑡(1−𝑋 ′

𝑡𝑁
−1
𝑡|𝑡 𝑋𝑡)𝑒′

𝑡,

it is possible to show that

𝑦𝑡𝑦
′
𝑡 +𝐵𝑡|𝑡−1𝑁𝑡|𝑡−1𝐵

′
𝑡|𝑡−1 +𝑣𝑆𝑡|𝑡−1

− (𝐵𝑡|𝑡−1𝑁𝑡|𝑡−1 +𝑦𝑡𝑋
′
𝑡)𝑁−1

𝑡|𝑡 𝑁𝑡|𝑡(𝑁−1
𝑡|𝑡 )′(𝐵𝑡|𝑡−1𝑁𝑡|𝑡−1 +𝑦𝑡𝑋

′
𝑡)′ =

= (𝑣+1)𝑆𝑡|𝑡.

So one can write the updated density above as

𝑝(𝐵𝑡,𝐻𝑡|𝑌𝑡) ∝ (2𝜋)−0.5𝑘(𝑙+1)|𝑁𝑡|𝑡−1|0.5𝑘(𝑣/2)0.5𝑘𝑣
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|𝑆𝑡|𝑡−1|0.5𝑣Γ𝑘(𝑣/2)−1|𝐻𝑡|0.5(𝑙+𝑣+1−𝑘−1)

𝑒𝑥𝑝{−0.5tr[((𝐵𝑡 −𝐵𝑡|𝑡)𝑁𝑡|𝑡(𝐵𝑡 −𝐵𝑡|𝑡)′ +(𝑣+1)𝑆𝑡|𝑡)𝐻𝑡]}.
(C.5)

The second line of this expression is the kernel of a normal-Wishart
density for 𝐵𝑡 and 𝐻𝑡 conditional on 𝑌𝑡, with parameters 𝐵𝑡|𝑡, 𝑁𝑡|𝑡,
𝑣+1 and 𝑆𝑡|𝑡. Therefore, we can conclude that

𝐵𝑡,𝐻𝑡|𝑌𝑡 ∼ 𝒩 𝒲𝑘,𝑙(𝐵𝑡|𝑡,𝑁𝑡|𝑡,𝑣+1,𝑆𝑡|𝑡),

where:

𝐵𝑡|𝑡 = (𝐵𝑡|𝑡−1𝑁𝑡|𝑡−1 +𝑦𝑡𝑋
′
𝑡)𝑁−1

𝑡|𝑡 ,

𝑁𝑡|𝑡 =𝑁𝑡|𝑡−1 +𝑋𝑡𝑋
′
𝑡,

𝑆𝑡|𝑡 = 𝑣

𝑣+1𝑆𝑡|𝑡−1 + 1
𝑣+1𝑒𝑡(1−𝑋 ′

𝑡𝑁
−1
𝑡|𝑡 𝑋𝑡)𝑒′

𝑡,

𝑒𝑡 = 𝑦𝑡 −𝐵𝑡|𝑡−1𝑋𝑡.

This proves the claim about the filtered joint density. From the definition
of the matrix normal-Wishart distribution, it follows directly that

𝐻𝑡|𝑌𝑡 ∼ 𝒲𝑘,𝑙[𝑣+1,(𝑣+1)−1𝑆−1
𝑡|𝑡 ],

and
𝐵𝑡|𝐻𝑡,𝑌𝑡 ∼ 𝒩𝑘,𝑙(𝐵𝑡|𝑡,𝐻

−1
𝑡 ⊗𝑁−1

𝑡|𝑡 ).

Then it follows from Proposition 3 above that the marginal filtered
density of the coefficients is

𝐵𝑡|𝑌𝑡 ∼ 𝒯𝑘,𝑙[𝑣−𝑘+2,𝐵𝑡|𝑡,(𝑣+1)𝑆𝑡|𝑡,𝑁
−1
𝑡|𝑡 ].

Proof of Proposition 2. In period 𝑡+1, the predictive density based
on information available up to period 𝑡 is obtained via the Chapman-
Kolmogorov equation (RISTIC et al., 2004):

𝑝(𝐵𝑡+1,𝐻𝑡+1|𝑌𝑡) =
∫︁ ∫︁

𝑝(𝐵𝑡+1,𝐻𝑡+1|𝐵𝑡,𝐻𝑡)𝑝(𝐵𝑡,𝐻𝑡|𝑌𝑡)𝑑𝐻𝑡𝑑𝐵𝑡
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=
∫︁ ∫︁

𝑝(𝐵𝑡+1|𝐵𝑡,𝐻𝑡,𝐻𝑡+1)𝑝(𝐻𝑡+1|𝐵𝑡,𝐻𝑡)𝑝(𝐵𝑡,𝐻𝑡|𝑌𝑡)𝑑𝐻𝑡𝑑𝐵𝑡.

But the transition equations, (2.2) and (2.6), imply that

𝑝(𝐵𝑡+1|𝐵𝑡,𝐻𝑡,𝐻𝑡+1) = 𝑝(𝐵𝑡+1|𝐵𝑡,𝐻𝑡+1) and

𝑝(𝐻𝑡+1|𝐵𝑡,𝐻𝑡) = 𝑝(𝐻𝑡+1|𝐻𝑡).

So one can write

𝑝(𝐵𝑡+1,𝐻𝑡+1|𝑌𝑡) =
∫︁
𝑝(𝐵𝑡+1|𝐵𝑡,𝐻𝑡+1)∫︁
𝑝(𝐻𝑡+1|𝐻𝑡)𝑝(𝐵𝑡,𝐻𝑡|𝑌𝑡)𝑑𝐻𝑡𝑑𝐵𝑡.

The integral with respect to 𝐻𝑡 can be solved using Theorem 2 of Uhlig
(1997) (Theorem 1 above). It yields:∫︁
𝑝(𝐻𝑡+1|𝐻𝑡)𝑝(𝐵𝑡,𝐻𝑡|𝑌𝑡)𝑑𝐻𝑡 = 𝑓𝑘,𝑙

𝒩 𝒲(𝐵𝑡,𝐻𝑡+1|𝑌𝑡;𝐵𝑡|𝑡,𝜆𝑁𝑡|𝑡,𝑣,𝑆𝑡+1|𝑡),
(C.6)

where 𝑆𝑡+1|𝑡 = 𝜆 (𝑣+1)
𝑣 𝑆𝑡|𝑡, while 𝐵𝑡|𝑡, 𝑁𝑡|𝑡, 𝑣 and 𝑆𝑡|𝑡 are assumed to

be known. So the predictive density above becomes

𝑝(𝐵𝑡+1,𝐻𝑡+1|𝑌𝑡) =
∫︁
𝑝(𝐵𝑡+1|𝐵𝑡,𝐻𝑡+1)𝑝(𝐵𝑡,𝐻𝑡+1|𝑌𝑡)𝑑𝐵𝑡

=
∫︁
𝑝(𝐵𝑡+1|𝐵𝑡,𝐻𝑡+1)𝑝(𝐵𝑡|𝐻𝑡+1,𝑌𝑡)𝑝(𝐻𝑡+1|𝑌𝑡)𝑑𝐵𝑡

= 𝑝(𝐻𝑡+1|𝑌𝑡)
∫︁
𝑝(𝐵𝑡+1|𝐵𝑡,𝐻𝑡+1)𝑝(𝐵𝑡|𝐻𝑡+1,𝑌𝑡)𝑑𝐵𝑡.

(C.7)

From (2.6), we know 𝑝(𝐵𝑡+1|𝐵𝑡,𝐻𝑡+1). And from (C.6) above plus
the definition of the matrix normal-Wishart distribution, we obtain
𝑝(𝐵𝑡|𝐻𝑡+1,𝑌𝑡). It is then straightforward to combine these two densities
to solve the integral with respect to 𝐵𝑡:∫︁

(2𝜋)−0.5𝑘𝑙|𝐻−1
𝑡+1|−0.5𝑙|𝑄−1|−0.5𝑘

𝑒𝑥𝑝{−0.5tr[𝐻𝑡+1(𝐵𝑡+1 −𝐵𝑡)𝑄(𝐵𝑡+1 −𝐵𝑡)′]}

(2𝜋)−0.5𝑘𝑙|𝐻−1
𝑡+1|−0.5𝑙|(𝜆𝑁𝑡|𝑡)−1|−0.5𝑘
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𝑒𝑥𝑝{−0.5tr[𝐻𝑡+1(𝐵𝑡 −𝐵𝑡|𝑡)𝜆𝑁𝑡|𝑡(𝐵𝑡 −𝐵𝑡|𝑡)′]}𝑑𝐵𝑡 =

= (2𝜋)−0.5𝑘𝑙|𝐻−1
𝑡+1|−0.5𝑙|𝑄−1|−0.5𝑘(2𝜋)−0.5𝑘𝑙|𝐻−1

𝑡+1|−0.5𝑙

|(𝜆𝑁𝑡|𝑡)−1|−0.5𝑘

∫︁
𝑒𝑥𝑝{−0.5tr[𝐻𝑡+1(𝐵𝑡 −𝐵𝑡+1)𝑄(𝐵𝑡 −𝐵𝑡+1)′ · · ·

+𝐻𝑡+1(𝐵𝑡 −𝐵𝑡|𝑡)𝜆𝑁𝑡|𝑡(𝐵𝑡 −𝐵𝑡|𝑡)′]}𝑑𝐵𝑡. (C.8)

The expression within square brackets can be rearranged as

𝐻𝑡+1[𝐵𝑡(𝑄+𝜆𝑁𝑡|𝑡)𝐵′
𝑡 −𝐵𝑡(𝑄𝐵𝑡+1 +𝜆𝑁𝑡|𝑡𝐵𝑡|𝑡)′

− (𝐵𝑡+1𝑄+𝐵𝑡|𝑡𝜆𝑁𝑡|𝑡)𝐵′
𝑡 +𝐵𝑡+1𝑄𝐵

′
𝑡+1 +𝐵𝑡|𝑡𝜆𝑁𝑡|𝑡𝐵

′
𝑡|𝑡].

Now to complete the square with respect to 𝐵𝑡, we add and subtract

(𝐵𝑡+1𝑄+𝐵𝑡|𝑡𝜆𝑁𝑡|𝑡)(𝑄+𝜆𝑁𝑡|𝑡)−1(𝐵𝑡+1𝑄+𝐵𝑡|𝑡𝜆𝑁𝑡|𝑡)′.

This yields:

𝐻𝑡+1(𝐵𝑡 −𝜇)Ω(𝐵𝑡 −𝜇)′ +𝐻𝑡+1(𝐵𝑡+1𝑄𝐵
′
𝑡+1 +𝐵𝑡|𝑡𝜆𝑁𝑡|𝑡𝐵

′
𝑡|𝑡 −𝜇Ω𝜇′),

where 𝜇 := (𝐵𝑡+1𝑄+𝐵𝑡|𝑡𝜆𝑁𝑡|𝑡)(𝑄+𝜆𝑁𝑡|𝑡)−1 and Ω :=𝑄+𝜆𝑁𝑡|𝑡. To
ease visualization, define 𝐶 :=𝐻𝑡+1(𝐵𝑡+1𝑄𝐵

′
𝑡+1 +𝐵𝑡|𝑡𝜆𝑁𝑡|𝑡𝐵

′
𝑡|𝑡 −𝜇Ω𝜇′).

Then (C.8) becomes:

(2𝜋)−0.5𝑘𝑙|𝐻−1
𝑡+1|−0.5𝑙|𝑄−1|−0.5𝑘(2𝜋)−0.5𝑘𝑙|𝐻−1

𝑡+1|−0.5𝑙|(𝜆𝑁𝑡|𝑡)−1|−
𝑘
2∫︁

𝑒𝑥𝑝{−0.5tr[𝐻𝑡+1(𝐵𝑡 −𝜇)Ω(𝐵𝑡 −𝜇)′ +𝐶]}𝑑𝐵𝑡 =

= (2𝜋)−0.5𝑘𝑙|𝐻−1
𝑡+1|−0.5𝑙|𝑄−1|−0.5𝑘(2𝜋)−0.5𝑘𝑙|𝐻−1

𝑡+1|−0.5𝑙|(𝜆𝑁𝑡|𝑡)−1|−
𝑘
2

𝑒𝑥𝑝{−0.5tr[𝐶]}
∫︁
𝑒𝑥𝑝{−0.5tr[𝐻𝑡+1(𝐵𝑡 −𝜇)Ω(𝐵𝑡 −𝜇)′]}𝑑𝐵𝑡. (C.9)

Note that the integrand above is the kernel of a matrix variate normal
distribution for 𝐵𝑡 with mean matrix 𝜇 and covariance matrix (𝐻𝑡+1 ⊗
Ω)−1. So we can solve the integral using the fact that∫︁

𝐾(𝐵𝑡)𝑑𝐵𝑡 = 𝐾(𝐵𝑡)
𝐷(𝐵𝑡)

= 𝜅(𝐵𝑡)−1,

where 𝐷(.) is the PDF, 𝐾(.) is the kernel and 𝜅(.) is the constant of
integration of the density for 𝐵𝑡 (BAUWENS et al., 1999). This yields:∫︁

𝑒𝑥𝑝{−0.5tr[𝐻𝑡+1(𝐵𝑡 −𝜇)Ω(𝐵𝑡 −𝜇)′]}𝑑𝐵𝑡 =
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= [(2𝜋)−0.5𝑘𝑙|𝐻−1
𝑡+1|−0.5𝑙|Ω−1|−0.5𝑘]−1.

Plugging this into (C.9) and the resulting expression back into (C.7)
yields:

𝑝(𝐵𝑡+1,𝐻𝑡+1|𝑌𝑡) = 𝑝(𝐻𝑡+1|𝑌𝑡)(2𝜋)−0.5𝑘𝑙|𝐻−1
𝑡+1|−0.5𝑙|𝑄−1|−0.5𝑘

|(𝜆𝑁𝑡|𝑡)−1|−0.5𝑘|Ω−1|−0.5𝑘𝑒𝑥𝑝{−0.5tr[𝐶]}. (C.10)

Now recall that 𝐶 := 𝐻𝑡+1(𝐵𝑡+1𝑄𝐵
′
𝑡+1 +𝐵𝑡|𝑡𝜆𝑁𝑡|𝑡𝐵

′
𝑡|𝑡 −𝜇Ω𝜇′). It is

possible to simplify this by plugging in 𝜇 and Ω and by using the
following matrix identities1:

(𝐴+𝐶𝐵𝐶′)−1 =𝐴−1 −𝐴−1𝐶(𝐵−1 +𝐶′𝐴−1𝐶)−1𝐶′𝐴−1,

(𝐴−1 +𝐵−1)−1 =𝐴(𝐴+𝐵)−1𝐵 =𝐵(𝐴+𝐵)−1𝐴.

Then 𝐶 can be written as:

𝐶 =𝐻𝑡+1(𝐵𝑡+1 −𝐵𝑡|𝑡)(𝑄−1 +𝜆−1𝑁−1
𝑡|𝑡 )−1(𝐵𝑡+1 −𝐵𝑡|𝑡)′.

Additionally, note that

|𝑄−1|−0.5𝑘|(𝜆𝑁𝑡|𝑡)−1|−0.5𝑘|Ω−1|−0.5𝑘 = [|𝑄||(𝑄+𝜆𝑁𝑡|𝑡)−1||𝜆𝑁𝑡|𝑡|]0.5𝑘

= [|𝑄(𝑄+𝜆𝑁𝑡|𝑡)−1𝜆𝑁𝑡|𝑡|]0.5𝑘

= [|𝑄𝑄−1(𝑄−1 +𝜆−1𝑁−1
𝑡|𝑡 )−1𝜆−1𝑁−1

𝑡|𝑡 𝜆𝑁𝑡|𝑡|]0.5𝑘

= [|𝑄−1 +𝜆−1𝑁−1
𝑡|𝑡 |]−0.5𝑘.

Then (C.10) becomes:

𝑝(𝐵𝑡+1,𝐻𝑡+1|𝑌𝑡) =

= 𝑝(𝐻𝑡+1|𝑌𝑡)(2𝜋)−0.5𝑘𝑙|𝐻−1
𝑡+1|−0.5𝑙|𝑄−1 +𝜆−1𝑁−1

𝑡|𝑡 |−0.5𝑘

𝑒𝑥𝑝{−0.5tr[𝐻𝑡+1(𝐵𝑡+1 −𝐵𝑡|𝑡)(𝑄−1 +𝜆−1𝑁−1
𝑡|𝑡 )−1(𝐵𝑡+1 −𝐵𝑡|𝑡)′]}.

(C.11)

It is clear that

(2𝜋)−0.5𝑘𝑙|𝐻−1
𝑡+1|−0.5𝑙|𝑄−1 +𝜆−1𝑁−1

𝑡|𝑡 |−0.5𝑘

1 See section 3.2 of Petersen & Pedersen (2012).
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𝑒𝑥𝑝{−0.5tr[𝐻𝑡+1(𝐵𝑡+1 −𝐵𝑡|𝑡)(𝑄−1 +𝜆−1𝑁−1
𝑡|𝑡 )−1(𝐵𝑡+1 −𝐵𝑡|𝑡)′]}

is the PDF of a matrix Normal distribution for 𝐵𝑡+1|𝐻𝑡+1,𝑌𝑡 with
mean matrix 𝐵𝑡|𝑡 and covariance matrix 𝐻−1

𝑡+1 ⊗ (𝑄−1 +𝜆−1𝑁−1
𝑡|𝑡 ). Ad-

ditionally, we know from (C.6) that

𝐻𝑡+1|𝑌𝑡 ∼ 𝒲𝑘,𝑙[𝑣,(𝑣𝑆𝑡+1|1)−1].

Then it follows from the definition of the Normal-Wishart distribution
that:

𝐵𝑡+1,𝐻𝑡+1|𝑌𝑡 ∼ 𝒩 𝒲𝑘,𝑙(𝐵𝑡|𝑡,𝑁𝑡+1|𝑡,𝑣,𝑆𝑡+1|𝑡), (C.12)

where:

𝐵𝑡+1|𝑡 =𝐵𝑡|𝑡,

𝑁𝑡+1|𝑡 = [𝑄−1 +(𝜆𝑁𝑡|𝑡)−1]−1,

𝑆𝑡+1|𝑡 = 𝜆
(𝑣+1)
𝑣

𝑆𝑡|𝑡.

This proves the first part of the theorem. From the definition of the
matrix Normal-Wishart distribution, it follows directly that

𝐻𝑡+1|𝑌𝑡 ∼ 𝒲𝑘,𝑙(𝑣,𝑣−1𝑆−1
𝑡+1|𝑡),

and
𝐵𝑡+1|𝐻𝑡+1,𝑌𝑡 ∼ 𝒩𝑘,𝑙(𝐵𝑡+1|𝑡,𝐻

−1
𝑡+1 ⊗𝑁−1

𝑡+1|𝑡).

Then once again from Proposition 3 above we have that the marginal
predictive density of the coefficients is

𝐵𝑡+1|𝑌𝑡 ∼ 𝒯𝑘,𝑙(𝑣−𝑘+1,𝐵𝑡+1|𝑡,𝑣𝑆𝑡+1|𝑡,𝑁
−1
𝑡+1|𝑡).

Proof of Corollary 1. As seen from (C.5) in the proof of Proposition
1, the updated joint density of the states can be written as:

𝑝(𝐵𝑡,𝐻𝑡|𝑌𝑡) ∝
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(2𝜋)−0.5𝑘(𝑙+1)|𝑁𝑡|𝑡−1|0.5𝑘(𝑣/2)0.5𝑘𝑣|𝑆𝑡|𝑡−1|0.5𝑣Γ𝑘(𝑣/2)−1|𝐻𝑡|0.5(𝑙+𝑣−𝑘)

𝑒𝑥𝑝{−0.5tr[((𝐵𝑡 −𝐵𝑡|𝑡)𝑁𝑡|𝑡(𝐵𝑡 −𝐵𝑡|𝑡)′ +(𝑣+1)𝑆𝑡|𝑡)𝐻𝑡]}.

We know that the second line of this expression is the kernel of a Normal-
Wishart density for 𝐵𝑡 and 𝐻𝑡 conditional on 𝑌𝑡, with parameters 𝐵𝑡|𝑡,
𝑁𝑡|𝑡, 𝑣+1 and 𝑆𝑡|𝑡. This implies that

𝐵𝑡,𝐻𝑡|𝑌𝑡 ∼ 𝒩 𝒲𝑘,𝑙(𝐵𝑡|𝑡,𝑁𝑡|𝑡,𝑣+1,𝑆𝑡|𝑡),

where:

𝐵𝑡|𝑡 = (𝐵𝑡|𝑡−1𝑁𝑡|𝑡−1 +𝑦𝑡𝑋
′
𝑡)𝑁−1

𝑡|𝑡 ,

𝑁𝑡|𝑡 =𝑁𝑡|𝑡−1 +𝑋𝑡𝑋
′
𝑡,

𝑆𝑡|𝑡 = 𝑣

𝑣+1𝑆𝑡|𝑡−1 + 1
𝑣+1𝑒𝑡(1−𝑋 ′

𝑡𝑁
−1
𝑡|𝑡 𝑋𝑡)𝑒′

𝑡,

𝑒𝑡 = 𝑦𝑡 −𝐵𝑡|𝑡−1𝑋𝑡.

The proportionality symbol in (C.5) is due to the fact that we are
omitting the normalizing constant in the denominator, 𝑝(𝑦𝑡|𝑌𝑡−1). The
terms

(2𝜋)−0.5𝑘(𝑙+1)|𝑁𝑡|𝑡−1|0.5𝑘(𝑣/2)0.5𝑘𝑣|𝑆𝑡|𝑡−1|0.5𝑣Γ𝑘(𝑣/2)−1

do not enter the kernel of the density and are regarded as constants.
We know that these terms divided by 𝑝(𝑦𝑡|𝑌𝑡−1) will equal the constant
of integration of 𝑓𝑘,𝑙

𝒩 𝒲(𝐵𝑡,𝐻𝑡|𝑌𝑡;𝐵𝑡|𝑡,𝑁𝑡|𝑡,𝑣+1,𝑆𝑡|𝑡). I.e.,

(2𝜋)−0.5𝑘(𝑙+1)|𝑁𝑡|𝑡−1|0.5𝑘(𝑣/2)0.5𝑘𝑣|𝑆𝑡|𝑡−1|0.5𝑣Γ𝑘(𝑣/2)−1

𝑝(𝑦𝑡|𝑌𝑡−1) =

=
|𝑁𝑡|𝑡|0.5𝑘((𝑣+1)/2)0.5𝑘(𝑣+1)|𝑆𝑡|𝑡|0.5(𝑣+1)

(2𝜋)0.5𝑙𝑘Γ𝑘((𝑣+1)/2)
.

See 𝜅𝑁𝑊 in Appendix B. Now plug 𝑆𝑡|𝑡 and 𝑒𝑡 into this and solve for
𝑝(𝑦𝑡|𝑌𝑡−1):

𝑝(𝑦𝑡|𝑌𝑡−1) =

𝜋−0.5𝑘 Γ𝑘[(𝑣+1)/2]
Γ𝑘(𝑣/2)

𝑣0.5𝑘𝑣

(𝑣+1)0.5𝑘(𝑣+1) |𝑁𝑡|𝑡−1|0.5𝑘|𝑁𝑡|𝑡|−0.5𝑘|𝑆𝑡|𝑡−1|0.5𝑣
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⃒⃒⃒⃒
𝑣

𝑣+1𝑆𝑡|𝑡−1 + 1
𝑣+1(𝑦𝑡 −𝐵𝑡|𝑡−1𝑋𝑡)(1−𝑋 ′

𝑡𝑁
−1
𝑡|𝑡 𝑋𝑡)(𝑦𝑡 −𝐵𝑡|𝑡−1𝑋𝑡)′

⃒⃒⃒⃒ 𝑣+1
−2

.

Using the property that |𝐴𝐵| = |𝐴||𝐵|, we can factor out 𝑣/(𝑣+1)𝑆𝑡|𝑡−1.
And noting that (1 −𝑋 ′

𝑡𝑁
−1
𝑡|𝑡 𝑋𝑡) is a scalar, we can rearrange the

expression above to obtain

𝑝(𝑦𝑡|𝑌𝑡−1) =

𝜋−0.5𝑘 Γ𝑘[(𝑣+1)/2]
Γ𝑘(𝑣/2)

𝑣0.5𝑘𝑣

(𝑣+1)0.5𝑘(𝑣+1) |𝑁𝑡|𝑡−1|
𝑘
2 |𝑁𝑡|𝑡|

−𝑘
2 |𝑆𝑡|𝑡−1|

−1
2 𝑣

−𝑘
2

|𝐼𝑘 +(1−𝑋 ′
𝑡𝑁

−1
𝑡|𝑡 𝑋𝑡)(𝑣𝑆𝑡|𝑡−1)−1(𝑦𝑡 −𝐵𝑡|𝑡−1𝑋𝑡)(𝑦𝑡 −𝐵𝑡|𝑡−1𝑋𝑡)′|−

𝑣+1
2 .

(C.13)

Now define
Σ𝑡 := (1−𝑋 ′

𝑡𝑁
−1
𝑡|𝑡 𝑋𝑡)(𝑣𝑆𝑡|𝑡−1)−1. (C.14)

It is possible to show that

|𝑁𝑡|𝑡−1|0.5𝑘|𝑁𝑡|𝑡|−0.5𝑘|𝑆𝑡|𝑡−1|−0.5𝑣−0.5𝑘 = |Σ𝑡|−0.5. (C.15)

From Theorem 1.4.1 of Gupta & Nagar (2000), it follows that

Γ𝑘[(𝑣+1)/2]
Γ𝑘(𝑣/2) = Γ[(𝑣+1)/2]

Γ(𝑣+1−𝑘/2) . (C.16)

Additionally, it is easy to use the Sylvester’s determinant identity to
verify that

|𝐼𝑘 +Σ𝑡(𝑦𝑡 −𝐵𝑡|𝑡−1𝑋𝑡)(𝑦𝑡 −𝐵𝑡|𝑡−1𝑋𝑡)′|−0.5(𝑣+1) =

= 1+(𝑦𝑡 −𝐵𝑡|𝑡−1𝑋𝑡)′Σ𝑡(𝑦𝑡 −𝐵𝑡|𝑡−1𝑋𝑡). (C.17)

Note that here we used the assumption that 𝑆𝑡|𝑡−1 is symmetric. Then
(C.13) becomes

𝑝(𝑦𝑡|𝑌𝑡−1) =

= 𝜋− 𝑘
2

Γ[(𝑣+1)/2]
Γ(𝑣+1−𝑘/2) |Σ𝑡|

1
2 [1+(𝑦𝑡 −𝐵𝑡|𝑡−1𝑋𝑡)′Σ𝑡(𝑦𝑡 −𝐵𝑡|𝑡−1𝑋𝑡)]−

𝑣+1
2

= 𝜋−0.5𝑘 Γ[(𝑣+1)/2]
Γ(𝑣+1−𝑘/2) |Σ𝑡|0.5(𝑣+1−𝑘)0.5𝑘(𝑣+1−𝑘)−0.5𝑘
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[1+(𝑦𝑡 −𝐵𝑡|𝑡−1𝑋𝑡)′(𝑣+1−𝑘)−1(𝑣+1−𝑘)Σ𝑡(𝑦𝑡 −𝐵𝑡|𝑡−1𝑋𝑡)]−
𝑣+1

2

= [(𝑣+1−𝑘)𝜋]−0.5𝑘 Γ[(𝑣+1−𝑘+𝑘)/2]
Γ(𝑣+1−𝑘/2) |(𝑣+1−𝑘)−1Σ−1

𝑡 |−0.5

{1+(𝑣+1−𝑘)−1(𝑦𝑡 −𝐵𝑡|𝑡−1𝑋𝑡)′[(𝑣+1−𝑘)−1Σ−1
𝑡 ]−1 · · ·

(𝑦𝑡 −𝐵𝑡|𝑡−1𝑋𝑡)}− 𝑣+1−𝑘+𝑘
2 . (C.18)

Note that this is the PDF of a multivariate t distribution with 𝑣+1−𝑘

degrees of freedom, location parameter 𝐵𝑡|𝑡−1𝑋𝑡 and scale matrix (𝑣+
1 −𝑘)−1Σ−1

𝑡 [see Appendix A.1.17 of Greenberg (2008)]. Therefore, we
conclude that

𝑦𝑡|𝑌𝑡−1 ∼ 𝑡𝑘[𝑣+1−𝑘,𝐵𝑡|𝑡−1𝑋𝑡,(𝑣+1−𝑘)−1Σ−1
𝑡 ], (C.19)

where

Σ𝑡 = (1−𝑋 ′
𝑡𝑁

−1
𝑡|𝑡 𝑋𝑡)(𝑣𝑆𝑡|𝑡−1)−1,

𝑁𝑡|𝑡 =𝑁𝑡|𝑡−1 +𝑋𝑡𝑋
′
𝑡.
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