

Diogo Luiz Demarchi

Convolutional and Recurrent Neural Networks in
Time-series applied to Injection Molding Processes

Final paper submitted in partial fulfillment of the requirements for
the degree of BEng. in Automation and Control Engineering of the
Universidade Federal de Santa Catarina.
Advisor: Prof. Dr. Mauri Ferrandin

Universidade Federal de Santa Catarina

Centro de Blumenau

Departamento de Engenharia de

Controle e Automação e Computação

Blumenau
2019

Diogo LuizMLKJIHGFEDCBAD em a rc h i

Convolutional and Recurrent Neural

Networks in 'I 'im o - s e r ie s applied to Injection

M o ld in g Processes

F in a l p a p e r s u b m it te d in p a r t ia l f u l f i l lm e n t o f th e r c q u ir e -

m e n ts fo r th e d e g re e o f B ~ g . in A u to m a t io n a n d C o n tro l

E n g in e e r in g o f th e U n iv e r s id a d e F e d e ra l d e S a n ta C a ta r in a .

Examination Committee

'- - - - 'r o . D I '. M a u r i F e r r a

U n iv e r s id a d e F e d e ra l d e S a n ta C a ta r in a

A d v is o r

I P ro f . D r . M a iq u e l d e B r i to

U n iv e r s id a d e F e d e ra l d e S a n ta C a ta r in a

P ro . D r . J a n a in a o .a lv c s G u im a rã e s

U n iv e r s id a d e F e d e ra l d e S a n ta C a ta r in a

B lu m c n a u , J a n u a ry 3 0 , 2 0 1 9

Dedico este trabalho aos meus pais, que lutaram

ao meu lado para que esse sonho fosse realizado.

Acknowledgements

I would like to thank above all my parents Elfi Klug Demarchi and Tarcisio Demarchi

for always supporting my dreams. Without their help, it would be impossible for me to

be doing this work and mostly be doing this abroad. I also want to thank my girlfriend

for always pushing me to become a better person and for wanting us to do our internships

in Germany.

I am also grateful for the wonderful people I had the opportunity to meet during my

internship at Fraunhofer IPA, who besides from colleagues have become great advisors.

Without their support, this would not be possible. I would like to specially thank Mr.

Felix Müller for giving me the opportunity to work with him.

My research would not have been possible without the knowledge that my professors

at Federal University of Santa Catarina gave me, specially Dr. Mauri Ferrandin for being

my advisor during my thesis.

Finally, I would like to thank my friends for all the help and support either with input

about the thesis itself, for going to travels together or just for being there for me.

"Nothing in life is to be feared, it is only to be understood. Now is the time to

understand more, so that we may fear less."

(Marie Curie)

Resumo

A Fraunhofer-Gesellschaft é a maior organização de pesquisa aplicada da Europa, fun-

dada em 1949. Seus campos de estudo variam de automação até novos materiais, energia,

meio-ambiente, saúde, física e muitos outros campos. O instituto específico deste projeto

é o Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA, ou Instituto de

Engenharia da Manufatura e Automação, fundado em 1959. O Fraunhofer IPA tem cerca

de 1200 empregados e é um dos maiores institutos dentro da Fraunhofer-Gesellschaft.

Dentro do instituto, existem vários laboratórios onde diversos experimentos são realiza-

dos. Em um destes laboratórios, há uma máquina injetora que não possui métodos para

o fornecimento de informação sobre o estado atual da máquina e suas ferramentas. Em

vista da criação de uma solução para este problema, o projeto consiste em analisar o

processo desta máquina injetora a partir de câmeras e sensores de vibração. Para isto,

técnicas de machine learning são utilizadas para obter a classificação do estado de fun-

cionamento atual da máquina a partir destes tipos de dados. Comparações e análises

entre as duas abordagens são realizadas ao decorrer do projeto, bem como explicação de

resultados positivos e negativos. As câmeras e seus modelos de redes neurais apresentam,

em sua maioria, resultados de precisão excelentes na classificação desta máquina enquanto

os resultados dos sensores de vibração são apenas satisfatórios, sendo este esperado pre-

viamente pela natureza dos dados. Apesar disto, a informação de vibração ainda é útil e

pode ser usada para classificar o estado da máquina.

Palavras-Chave: 1. Máquina Injetora. 2. Redes Neurais Recorrentes. 3. Redes Neu-

rais Convolucionais. 4. Câmera. 5. Acelerômetro.

Abstract

The Fraunhofer-Gesellschaft is the biggest application-oriented research organization

in Europe, founded in 1949. Its fields of study vary from automation to new materi-

als, energy, environment, health, physics and many other fields. The specific institute

of this project is the Fraunhofer-Institut für Produktionstechnik und Automatisierung

IPA, or Institute for Manufacturing Engineering and Automation, founded in 1959. The

Fraunhofer IPA has around 1200 employees and it’s one of the largest institutes inside

Fraunhofer-Gesellschaft. Within the institute, there are several laboratories where many

experiments are performed. In one of these laboratories, there is one injection molding

machine that do not have methods to provide information about the current state of the

machine and its tools. In order to create a solution to this problem, the project consists

of analyzing the process of this injection molding machine with cameras and vibration

sensors. For this, machine learning techniques are used to obtain the classification of the

current operating state of the machine based on these data sources. Comparisons and

analyzes between the two approaches are carried out throughout the project, as well as

explanation of both positive and negative results. The cameras and their neural network

models present, for the most part, excellent precision results in the classification of this

machine while the results of the vibration sensors are only satisfactory, which is previously

expected by the nature of the data. Despite this, the vibration information is still useful

and can be used to predict the state of the machine.

Keywords: 1. Injection Molding Machine. 2. Recurrent Neural Networks. 3. Convolu-

tional Neural Networks. 4. Camera. 5. Accelerometer.

Zusammenfassung

Die Fraunhofer-Gesellschaft ist die größte anwendungsorientierte Forschungsorganisa-

tion in Europa, die 1949 gegründet wurde. Die Studienbereiche variieren von der Automa-

tisierung bis hin zu neuen Materialien, Energie, Umwelt, Gesundheit, Physik und vielen

anderen Bereichen. Das spezifische Institut für dieses Projekt ist das 1959 gegründete

Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA. Das Fraunhofer

IPA beschäftigt rund 1200 Mitarbeiter und ist eines der größten Institute der Fraunhofer-

Gesellschaft. Innerhalb des Instituts gibt es mehrere Laboratorien, in denen viele Experi-

mente durchgeführt werden. In einem dieser Laboratorien gibt es eine Spritzgießmaschi-

ne, für die kein Mechanismus existiert, um Informationen über den aktuellen Zustand

der Maschine und ihrer Werkzeuge bereitzustellen. Um dieses Problem zu lösen, besteht

das Projekt darin, den Prozess diese Spritzgießmaschine mit Kameras und Schwingungs-

sensoren zu analysieren. Dazu werden methoden des maschinellen Lernens eingesetzt,

um anhand dieser Datenquellen die Klassifizierung des aktuellen Betriebszustands der

Maschine zu erhalten. Während des gesamten Projekts werden Vergleiche und Analysen

zwischen den beiden Ansätzen durchgeführt und sowohl positive als auch negative Ergeb-

nisse erläutert. Die Kameras und ihre neuronalen Netzwerkmodelle weisen größtenteils

hervorragende Ergebnisse bei der Klassifizierung dieser Maschine auf, während die Er-

gebnisse der Schwingungssensoren nur zufriedenstellend sind, was bisher von der Art der

Daten erwartet wurde. Trotzdem ist die Vibrationsinformation immer noch nützlich und

kann verwendet werden, um den Zustand der Maschine vorherzusagen.

Schlüsselwörter: 1. Spritzgießmaschine. 2. Rekurrentes Neuronales Netz. 3. Faltendes

Neuronales Netzwerk. 4. Kamera. 5. Beschleunigungssensor.

List of figures

Figure 1 – Drawing of a simple Injection Molding Machine 18

Figure 2 – Linear and Logistic Regression [1] . 23

Figure 3 – Example of a decision tree . 24

Figure 4 – Neural networks accuracy evolution of published papers for the CI-

FAR100 dataset [2] . 26

Figure 5 – Comparison of performance per watt of deep learning in CPU and GPU

[3] . 26

Figure 6 – Black and white UFSC Logo . 28

Figure 7 – Matrix of pixel values for the black and white UFSC Logo 28

Figure 8 – Colored UFSC logo. 28

Figure 9 – Decomposition of the colored UFSC logo. 29

Figure 10 – Matrix of pixel values for the red portion of the image. 30

Figure 11 – Matrix of pixel values for the green portion of the image. 30

Figure 12 – Matrix of pixel values for the blue portion of the image. 31

Figure 13 – Example of image convolution [4] . 32

Figure 14 – Example of Max Pooling . 34

Figure 15 – Example of convolutional neural network [5] 34

Figure 16 – Standard neural network on the left and after dropout on the right [6] . 36

Figure 17 – Difference in the usage of a dropout layer [6] 37

Figure 18 – Different sampling rates for wave signals 37

Figure 19 – Frequency response of digital filters . 42

Figure 20 – Output of a low-pass filter . 43

Figure 21 – Output of a high-pass filter . 44

Figure 22 – Arburg 220S Injection Molding Machine 46

Figure 23 – Cognex Insight Micro 1403 C . 47

Figure 24 – Software In-Sight Explorer 5.7.0 . 49

Figure 25 – Positioning of the two vibration sensors 51

Figure 26 – Feature selection for a frame . 53

Figure 27 – Software to select feature and crop images 54

Figure 28 – Log of the feature selection . 55

Figure 29 – Position and feature selection for the inside camera with high resolution 59

Figure 30 – Position and feature selection for the inside camera with low resolution 59

Figure 31 – Positioning of the camera outside the IMM chamber 60

Figure 32 – Field of view from the camera outside the machine 60

Figure 33 – Feature selection for the camera outside the machine 61

Figure 34 – Training accuracy for the cognex_1 models 68

Figure 35 – Training loss for the cognex_1 models 69

Figure 36 – Validation accuracy for the cognex_1 models 70

Figure 37 – Validation loss for the cognex_1 models 71

Figure 38 – Training accuracy for the cognex_3 models 72

Figure 39 – Training loss for the cognex_3 models 72

Figure 40 – Validation accuracy for the cognex_3 models 73

Figure 41 – Validation loss for the cognex_3 models 74

Figure 42 – Training accuracy for the cognex_2 models 75

Figure 43 – Training loss for the cognex_2 models 76

Figure 44 – Validation accuracy for the cognex_2 models 76

Figure 45 – Validation loss for the cognex_2 models 77

Figure 46 – Training accuracy for the vibration models 80

Figure 47 – Training loss for the vibration models 81

Figure 48 – Validation accuracy for the vibration models 82

Figure 49 – Validation loss for the vibration models 83

Figure 50 – Test result with unseen data for the vibration data models 85

List of tables

Table 1 – Comparison of Smart Cameras . 47

Table 2 – Parameters for data augmentation . 56

Table 3 – Vibration Dataset . 61

Table 4 – Parameters used during CNN training 63

Table 5 – Parameters used during RNN training 64

Table 6 – Vibration datasets structure . 65

Table 7 – Reference table for model names . 67

Table 8 – Best results for cognex_1 training loss 69

Table 9 – Best results for cognex_1 validation loss 70

Table 10 – Best results for cognex_3 validation loss 73

Table 11 – Best results for cognex_3 validation loss 74

Table 12 – Best results for cognex_2 loss . 75

Table 13 – Best results for cognex_2 validation loss 77

Table 14 – Reference table for naming models acquired with vibration data 79

Table 15 – Best results for vibration training accuracy 80

Table 16 – Best results for vibration training loss 81

Table 17 – Best results for vibration validation accuracy 83

Table 18 – Best results for vibration validation loss 83

Acronyms

UFSC Universidade Federal de Santa Catarina

UART Universal Asynchronous Receiver Transmitter

CNN Convolutional Neural Network

RNN Recurrent Neural Network

IM Injection Molding

GUI Graphical User Interface

USB Universal Serial Bus

IoT Internet Of Things

RGB Red Green and Blue

GPU Graphics Processing Unit

CPU Central Processing Unit

kNN k-Nearest Neighbors

LSTM Long Short-Term Memory

NaN Not a Number

FPS Frames Per Second

MNIST Modified National Institute of Standards and Technology

CIFAR Canadian Institute For Advanced Research

RAM Random Access Memory

MB Megabyte

GB Gigabyte

PoE Power over Ethernet

IP Ingress Protection

DC Direct Current

VGA Video Graphics Array

SXGA Super Extended Graphics Adapter

IPA Institut für Produktionstechnik und Automatisierung

Table of contents

1 INTRODUCTION . 17

1.1 Injection Molding Process . 17

1.1.1 Problems . 18

1.2 Objective . 19

2 CONTEXTUALIZATION . 20

2.1 Machine Learning . 20

2.1.1 Supervised Learning . 20

2.1.2 Unsupervised Learning . 20

2.1.3 Types of problems . 21

2.1.3.1 Classification . 21

2.1.3.2 Classification with missing inputs 21

2.1.3.3 Regression . 22

2.1.3.4 Transcription . 22

2.1.3.5 Machine Translation . 22

2.1.3.6 Anomaly Detection . 22

2.1.4 Machine Learning Methods . 23

2.1.4.1 Linear and Logistic Regression . 23

2.1.4.2 Decision Tree . 23

2.1.4.3 k-Nearest Neighbors . 24

2.1.4.4 Aritificial Neural Networks . 24

2.2 Deep Learning . 25

2.2.1 Digital Image . 27

2.2.2 Convolutional Neural Networks 29

2.2.2.1 Convolutional Layer . 32

2.2.2.2 Sub-sampling Layer . 33

2.2.2.3 Layout of basic CNN . 34

2.2.2.4 Dense Layer . 35

2.2.2.5 Dropout Layer . 35

2.2.3 Digital Audio . 36

2.2.4 Vibration Data Acquisition . 37

2.2.5 Recurrent Neural Networks . 39

2.2.5.1 Long Short-Term Memory . 40

2.3 Machine Learning Frameworks 40

2.3.1 TensorFlow . 40

2.3.2 PyTorch . 41

2.3.3 Keras . 41

2.4 Filtering . 42

2.4.1 Low-Pass Filter . 42

2.4.2 High-Pass Filter . 43

2.4.3 Other Frequency Filters . 44

3 METHODOLOGY . 45

3.1 Data Acquisition . 45

3.1.1 Camera . 46

3.1.1.1 Positioning . 47

3.1.1.2 Acquisition . 48

3.1.1.3 Labeling . 49

3.1.2 Accelerometer . 50

3.1.2.1 Positioning . 50

3.1.2.2 Acquisition . 51

3.1.2.3 Labeling . 52

3.2 Feature Selection . 52

3.3 Data Augmentation . 54

3.4 Model Structure . 55

3.4.1 Structure for the image classification 57

3.4.1.1 Frame with full resolution inside the IMM chamber 58

3.4.1.2 Frame with low resolution inside the IMM chamber 58

3.4.1.3 Frame outside the IMM chamber 60

3.4.2 Structure for the vibration data classification 61

3.5 Model Structure and Training . 62

3.5.1 Convolutional Neural Network Parameters 63

3.5.2 Recurrent Neural Network Parameters 64

4 RESULTS . 66

4.1 Camera Results . 66

4.1.1 Frame with full resolution inside the IMM chamber 68

4.1.2 Frame with low resolution inside the IMM chamber 71

4.1.3 Frame outside the IMM chamber 74

4.1.4 Final output . 78

4.2 Vibration Results . 78

4.2.1 Training . 79

4.2.2 Validation . 82

4.2.3 Testing . 84

4.2.4 Output of vibration prediction . 86

4.2.5 Post-filtering . 86

4.3 Link of camera and vibration result sources 86

5 CONCLUSIONS . 88

REFERENCES . 90

17

1 Introduction

A problem in the industry is the inefficiency of some tools, machines or even whole

plants. Problems from this mean can come from many ways, like bad positioning of tools

or bad synchronization of machines, for example. This kind of problem can cause, aside

from the inefficiency, harm to the hardware and reduce its useful life due to friction,

heating or vibration.

In order to try to minimize or solve this kind of problem, machine learning can be a

powerful tool to detect anomalies or even classify the state of any system purely by taking

some relevant information of the process while in operation and feeding to an algorithm

that can study the behavior of the system based on these parameters and their respective

output. To do this accurately, this algorithm must first be very optimized and the data

should also have good quality. This allows to recognize the actual state of the machine

and with this knowledge, make adjustments on parameters to increase its efficiency.

Besides from pure inefficiency, there are also major problems, such as failure in some

motor, pump or other kind of hardware that is essential to certain productive process.

If this hardware doesn’t have some kind of detector, the problem could easily be noticed

long after the failure happened. To give a generic solution to almost any kind of process

in the industry, cameras and vibration sensors as data sources sound like a good solution.

They just need a good positioning and then can acquire data for almost every process.

The exceptions are when the process is not visible or inaccessible.

In machine learning, there are two main approaches to train a model in order to

minimize the error of a given dataset to be trained. The first and simpler way is to do

the offline learning, that is taking a big batch of the whole dataset and train the model

once. Despite being a very fast process, it needs a powerful hardware to store all of the

data in memory. In some cases, the data is so big that it wouldn’t be possible to do this

kind of training. For the sake of this problem comes the online learning in action, which

trains a small model and constantly keeps adding new parameters to it as data flows in.

This second method is commonly applied on the spam filtering of emails and applications

such as social medias. To add new data to offline training, it would be necessary to train

the whole model all over again or at least retrain a model already trained.

1.1 Injection Molding Process

It is fundamental to understand the injection molding process in order to follow with

this work. The basic principle of operation of this kind of machine is to take some raw

material and change it into a desired shape. To do so, an injection molding machine has

Chapter 1. Introduction 18

some essential parts, and the most important are explained following. The schematic of

a simple injection molding machine is displayed in Figure 1.

Figure 1 – Drawing of a simple Injection Molding Machine

One important part is the feed hopper, where the raw material is disposed and then

transported to a barrel with a reciprocating screw, which transports the material while

being heated by the heaters. Then, the melted material passes through a nozzle to get to

the mold, in order to get the desired shape. When the melted material already has the

form of the mold, it needs to cool to solidify, and then finally the mold can be released to

finish the new product. This product is then removed from the mold usually by gravity,

falling into a conveyor system or by a pick and place robot if the piece is too big or difficult

to remove.

1.1.1 Problems

Some problems that can occur with injection molding machines are simple and easy

to solve. One common problem is with burned parts in the output, which can be solved

simply by lowering the temperature of the heaters or speeding the process. In fact, most of

the solutions for the problems with the output of injection molding machines stay around

changing the cycle time or the temperature. It is not important to focus on these kind of

problems for this work, but on problems surrounding the machine itself.

One relevant problem is overpressure on the mold. This makes the machine waste a

lot of energy and produce a lot of noise and vibration. This problem is specially relevant

to this study for being easily reproducible and measured with vibration loggers. When

this problem happens, sometimes the product comes with some kind of defect, but this

is not taken into account in this work. What is taken into account is the difference in

vibration measured by the vibration sensors, which could be confused by the vibration

anomaly.

Chapter 1. Introduction 19

Some injection molding machines do not have the information about their actual state

of operation. Sometimes for reasons such as security, optimization or even synchronization

with other simultaneous processes, it could be useful to have the knowledge about the mold

state and its exact time of opening and closure. This is the case of one specific injection

molding machine used for this work, which is in a laboratory available for experiments.

1.2 Objective

The objective of this work is to take a real injection molding machine process, acquire

data and analyse this data through machine learning algorithms. To do so, two approaches

are used in order to collect data.

It is proposed the use of vibration sensors to acquire information about the vibration

of the machine. The main objective with this approach is try to map the behavior of the

machine while in a certain state of operation with the vibration data acquired, in order

to be able to classify the actual machine state based purely on its vibration.

The other approach is to use cameras to identify what task the machine is doing in

the moment. The objective is test the positioning of the camera together with differ-

ent algorithms and compare the results both from other camera settings and vibration

predictions.

As the final output desired, both data sources should provide reliable information to

one machine learning model each, in order for them to get the same result for the machine

state while it is operating.

But more importantly than the specific objective of creating good and reliable ways of

classifying the state of an injection molding machine, is the objective of learning different

types of algorithms and their behavior. The injection molding process acts as a tool for

testing and validating theories that are proposed with machine learning. This way it

is possible to compare with a real process the performance difference between different

approaches to the same problem and check their effectiveness.

20

2 Contextualization

This chapter tries to explain the terms and concepts used in this document and how

they affect the project. It is presented from the initial approaches to machine learning all

the way to methods that are being used nowadays. It also gives a high-level understanding

of complex concepts related to the topic. The objective is to give a basic overview of the

theory behind the practice, not going deep into details.

2.1 Machine Learning

The basic concept of machine learning is trying somehow to teach a device, given an

unknown data, how to identify that data as belonging to some class or output a value

according to the set of inputs. The way to do this is by giving a relatively large dataset

with already classified information, and then applying some algorithm to identify in which

class the new data belongs or the correct output value. It’s not possible to write a program

that helps a camera to distinguish between a lake or a sea, but it’s possible to feed some

data in order to make the computer see the similarities and then infer if the given image

is indeed a lake or a sea [7].

Machine learning algorithms let us, human beings, be able to solve problems that we

could not solve with simple static algorithms. The main point of interest of machine

learning, speaking from a more philosophical and scientific point of view, is that it is not

just programming a simple algorithm, but it is in fact, trying to understand the basic

principles of intelligence [8].

2.1.1 Supervised Learning

In machine learning, the term supervised learning is the method or approach to use

pairs of inputs and labeled outputs in order to train the algorithm for predicting a new

unknown input, based on previously mapped pairs.

Generally, supervised learning problems consist basically in Classification (2.1.3.1)

and Regression (2.1.3.3) situations. In both cases, it is necessary to have a set of training

values consisting of an input with an output value to it [9].

2.1.2 Unsupervised Learning

Unsupervised learning allows to learn with little or no information about the expected

output. This approach is less used in practice, but it is still an important and powerful

tool in some cases. It could be used to detect different group of individuals with similar

Chapter 2. Contextualization 21

patterns, detect tendencies or even just to lower the number of dimensions of a specific

problem, focusing only on a more general overview of the attributes in a certain dataset

[10].

2.1.3 Types of problems

There are many tasks that we might want to automate. If we want a machine to talk,

then talking is the task. There are two approaches in order to make a machine able to

talk: the first is simply program the machine to say some defined phrases, and the other

one is making the machine learn how to talk and interact with a human being.

These tasks are what we want the machine to be able to learn, or how they should

output a result based on previously known values, given new data. If we give a set of

features of a certain process to a machine, we have to specify what we want as output.

There are several possible kinds of tasks or approaches to this matter, and some of them

are described below.

2.1.3.1 Classification

As the name states, the main purpose of this algorithm is to classify something as

belonging to some category. To solve this problem, the algorithm makes a model or

function f : Rn → {1, ..., k} that represents the k possible classes of the problem. Making

y = f(x), when an input vector x is passed through the model f , it returns a category y,

a numeric value binded to one class [11].

Another way to solve classification problems is instead of giving a pure class as the

output, make it give the probability of being each class. This is useful to see how well-

tuned the model is and how certain it is of the given prediction.

A simple example of a classification problem is the classic MNIST [12] dataset, which

consists of handwritten numbers between 0 and 9, and the task of the model is, given

just an image of the number, identify which number it is. Another common example is

sentiment analysis, which small phrases are taken from user review of some product or

service, and the objective of the model is tell whether or not the reaction of the consumer

was positive.

2.1.3.2 Classification with missing inputs

It is a very similar problem to the simple classification, with the exception that it may

miss one or more value of the input vector x. In order to solve this problem, the algorithm

must take into account every possibility of input numbers, being necessary to learn a set

of functions, one for each input vector length [11].

Chapter 2. Contextualization 22

This is a rather common problem in medical diagnosis, where the patient not always

have all of the symptoms of a certain disease, so in order to save money with expensive

and unnecessary exams for certain people, it is better just to leave the value missing.

2.1.3.3 Regression

This kind of problem does not generate a classification output, but generates a numeric

value as output. So, in order to solve this particular task, the function takes the form f :

R → R. Despite the output being completely different from the classification algorithm,

the input could be the same, so it is in fact similar to the classification problems. [11]

A simple example of regression problem is, given certain characteristics of an 3D

printer, like temperature, position of the piece in the chamber, and type of filament,

determine the exact final length or weight of a piece.

2.1.3.4 Transcription

As the name suggests, in this kind of problem the output is a transcription of an

unstructured kind of data. For example, reading houses’ numbers just with a picture in

front of the house. Similarly, another common kind of transcription is made with audio

as input for speech recognition, where the input is the speaking voice of someone and the

output is a transcription of what the person said [13].

2.1.3.5 Machine Translation

Machine translation task is the translation of some kind of language to another. The

input is a sequence of symbols in some known language and the output is another sequence

of symbols in another language [13]. This is used in online translators, such as Google

Translator, in order to translate Portuguese to German, for example [14].

2.1.3.6 Anomaly Detection

There are times when it is not necessary to know what kind of problem or failure

occurred in a given process, but it is crucial to know if an anomaly has indeed happened.

The output of this kind of algorithm is simply a boolean flag, but there are cases where

this kind of detection is very important. A clear example is a manufacturing line oper-

ating uninterruptedly a well-known process. If there is something outside the pattern of

operation, a flag would be triggered automatically, removing the necessity of having a

human to monitor the process all day. Another common example is to detect credit card

fraud. If the credit card companies make a model of each person’s style of shopping, it is

not hard to identify if a very strange purchase is made. This way, it is not necessary to

map all of the possible failures that can occur, but simply teach the model very well how

Chapter 2. Contextualization 23

the process should be operating and anything outside that pattern, is in fact an anomaly

[15].

2.1.4 Machine Learning Methods

These algorithms for machine learning can be the most simple or the most complex

ones, depending on the variety of the dataset and how accurate they need to be. Although

there are several machine learning algorithms, for the sake of this text it will be presented

just a few relevant algorithms are presented in this text.

2.1.4.1 Linear and Logistic Regression

One of the simplest and well-known algorithms is the Linear Regression, which draws

a line in a 2D graph and values above that line belong to class X and values below

belong to class Y. The goal with this algorithm is drawing a line in which all values from

one class are on one side and values from the other class are on the other side, being

the inclination and the offset of the line the only two coefficients, also called weights,

to adjust. Alternatively, it’s possible to use a non-linear function in order to get better

accuracy, with the increase of weights to be adjusted [16]. The difference can be seen in

the Figure 2.

Figure 2 – Linear and Logistic Regression [1]

To more complex problems there is also polynomial regression, where the curve can

have any polynomial shape. [17]

2.1.4.2 Decision Tree

Another important method of machine learning is the decision tree. Its basic operation

principle is "asking questions" to itself about the data, and then move to another question,

until it reaches a result. It’s a completely iterative process, so the best is to have the

smallest possible decision tree without losing accuracy in order to save computational

Chapter 2. Contextualization 25

A normal artificial neural network analyses data with neurons, that is some kind of

connected units or nodes. These nodes can communicate between themselves to connect

information and therefore make assumptions about the data in analysis. Each neuron

that receives information from previous neurons or even the initial input makes some

processing to that information before feeding to the next neuron. This processing is done

mostly by weights given to each neuron. That means that the every time data comes to

a new neuron, it suffers some operation by the neuron weights. If these weights have very

small or very large values problems could be triggered, but further discussion about this

topic will be held in next chapters.

Normally, an artificial neural network consists in a set of layers. These layers consist

basically in aggregated neurons and these layers perform different operations to the data

according to its purpose. Data comes firstly to the input layer all the way to the output

layer, possibly having multiple layers in between. When this happens, the normal artificial

neural network becomes a deep neural network.

2.2 Deep Learning

Deep learning is a subset of machine learning. It consists basically in multiple layers

of nonlinear processing in order to extract valuable features at each layer. The output

from a layer is always the input for the next layer.

This branch of machine learning is specially good to analyze bigger and more complex

datasets, such as speech recognition, computer vision, language processing, time-series

data and many other kinds of data. Its success has shown improvement over the years

and it is considered state of the art to many artificial intelligence tasks [20]. This evolution

is shown on Figure 4, where the best result for classifying a specific public dataset that

consist of 100 classes of images (CIFAR100) so far was obtained on May 2018, with an

accuracy of 89.33%.

The evolution of algorithms in just 6 years shows that the accuracy went from 54.23%

to 89.33%, or an absolute increase of 35.1%, thanks to advances obtained in the deep

learning field.

A downside of deep learning algorithms is the fact that it requires much higher com-

putational power as the complexity of the algorithms and the number of layers increase.

In order to provide this computational power to algorithms, it is possible to use Graphics

Processing Unit (GPU) instead of ordinary Central Processing Unit (CPU). This makes

the learning rate much faster. According to benchmarks [3], the use of GPUs instead

of CPUs means an increase up to 16 times in the efficiency considering performance per

watt. The results can be seen in Figure 5

The main reason that GPUs are in general more efficient than CPUs in deep learning

is that GPUs have many simple cores instead of just a few very complex cores as seen

Chapter 2. Contextualization 26

Figure 4 – Neural networks accuracy evolution of published papers for the CIFAR100
dataset [2]

Figure 5 – Comparison of performance per watt of deep learning in CPU and GPU [3]

in CPUs. This allows GPUs to make many operations at the same time resulting in a

significant speed increase even if the single processing itself is slower. Also, the CPU is

Chapter 2. Contextualization 27

optimized to do a variety of operations such as managing peripherals, that is, these are

tasks that a GPU does not have to do, so it is not optimized for that. Instead, GPUs are

optimized exclusively for data computations, and this is what makes GPUs much more

efficient in deep learning, where the amount of data computations required to train a

model is huge.

2.2.1 Digital Image

While talking about deep learning, it is often seen cases where it has been used in

the fields of computer vision. The human vision has evolved deeply during the history,

allowing to differentiate many objects, recognize a person almost instantly and we tend to

rely in it, although the world is at constant change. If we stare long enough at something,

it will most certainly change at some point, due to shadow, sunlight or any other factor.

Despite that, humans know that it is still the same scene in a different setting, while

computers do not know that if we do not tell them. To solve this problem there is the

tool of image processing, in which it is possible to change the appearance of an image,

like rotating, darkening, filtering the edges and many more.

But differently than humans that are predominantly visual creatures, computers see

all data as numbers and with images is no different. In order to understand Convolutional

Neural Networks (2.2.2) applied to visual data, it is necessary at first know how exactly

this works.

A computer see each pixel of an image as a number, or a sequence of numbers. In

the case of an image being grayscale, the computer only sees one value varying most

commonly from 0 to 255 or 8 bits. If the image is colored, the most common way of

a computer processing an image is the RGB color model. In this color model there are

three layers of numbers also from 0 to 255 for each layer for each pixel, being one for red,

one for green, and the last for blue. There are other models used mainly in the printing

process that will not be discussed in this text.

To illustrate this, it is possible to decompose the UFSC logo into matrices of values,

and see exactly how the computer processes the image. In Figure 6 it is possible to see

how the human eye sees it, and in Figure 7 how the computer sees it.

Note that the value 255 from the matrix is the whitest pixel and 0 is the darkest pixel,

comparing with the original image. Figure 6 was resized to only 40x54 pixels, in order

to be easier to visualize the Figure 7 matrix, which has exactly one value for each pixel,

meaning it has 40 columns and 54 rows..

If we take a look now at a colored image, this single matrix becomes three, one for

each color of the model (RGB). To observe this, take as example the Figure 8. Note that

it has many colors, but the image can be decomposed to just three single-color images,

exemplified by the Figure 9. If we sum the three new pictures to one another, the result

Chapter 2. Contextualization 29

single colored image. Now, it is possible to extract how the computer sees each channel,

with the Figure 10 for the red portion, Figure 11 for the green portion and Figure 12 for

the blue portion. In order to recover the original file, the only thing that the computer

needs to do is concatenate each single pixel with the other two in the correct order. The

order may depend on the software used, since there are softwares that use RGB and others

that use BGR.

Figure 9 – Decomposition of the colored UFSC logo.

The representation of these single color images is not a single 1-dimensional matrix as

the figures 10, 11 and 12 show. The actual representation is a matrix with the same size

filled full with zeroes in the excluded channels. If the computer takes these matrices as

they are, it would interpreter as a grayscale image, as seen in the Figure 7. In order to a

computer interpret an image as a colored in the RGB color model, it must have the three

channels. Despite that, the only relevant channel to be considered for each single color

image is the respective to that color.

Note that where a color is more present in a given area of the Figure 8, the respective

decomposed image and its matrix for that color will have higher values in the respective

area. Areas where a color is not present have value zero, that is the color black. Areas

where a color is very present, there will be high values (close to 255), that is full color.

It is also important to take notice of the borders. For all of the three decomposed

images, the borders have values of 255 in most of its extension. This is due to the fact that

the junction of the three colors result in white, which is mostly the color of the original

border, except the bottom. Speaking in terms of how a computer interprets it, an array

with value [255, 255, 255] will be a white pixel, [255, 0, 0] will be a red pixel, [0, 255, 0] will

be a green pixel, [0, 0, 255] will be a blue pixel and finally [0, 0, 0] will be a black pixel.

2.2.2 Convolutional Neural Networks

Convolutional neural networks are just a special kind of a normal neural network. They

have layers and neurons with trainable weights and biases, just as any neural network, but

they are specially designed to be able to detect patterns, being able to identify resembles

Chapter 2. Contextualization 32

2.2.2.1 Convolutional Layer

The convolutional layer in Convolutional Neural Networks is the core concept to be

understood. Basically, a filter (or kernel) is created and convoluted to each set of values

with the same size as the kernel size in the previous layer’s matrix, in order to produce a

convoluted layer. The matrix convolution formula is given by (2.1).

V =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q
∑

i=1

(

q
∑

j=1

fijdij

)

F

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.1)

Where:

fij = coefficient of a convolution kernel at position i,j in the kernel

dij = data value of the pixel at position i,j in the image

q = dimension of the kernel, assuming it is square (q x q)

F = sum of the coefficients of the kernel (1 if the sum is 0)

V = output pixel value

Figure 13 – Example of image convolution [4]

The kernel slides through the whole image matrix, in order to produce a new matrix.

Usually, the stride used is 1, that is at every step, the kernel matrix moves one pixel to

the side in order to perform a new convolution.

Chapter 2. Contextualization 33

Note that the kernel size in the Figure 13 is 3 x 3, and when the convolution of the

first 3 x 3 elements of the image matrix happens, there is a blank row and a blank column

in the output matrix. This is due to the fact that the filter (or kernel) of size 3 x 3

slides through the whole N x N matrix and performs the convolution, and can not place

its matrix center at the edge of the matrix. For a kernel of 3 x 3 the number of blank

columns and rows at the edge is always 1 at each side of the output matrix. For a kernel

with size 5 x 5 these blank spaces would be increased to 2. In a more general view, the

number of deleted pixel rows and columns is going to be (q − 1)/2 at each side, being q

the size of the q x q filter.

There are ways of letting the size of the matrix stay the same by filling the borders

of the original matrix with zeroes, but this approach will not be discussed in this text.

The kernel size can be stipulated by the developer or directly by a software. In the case

of this work, all of the kernels are provided directly by the softwares used.

Alongside with the convolutional layer, it is common the usage of activation functions,

like the rectified linear unit. The main purpose of this is to increase the non-linearity of

the images, in an effort to make it easier for the computer to recognize certain patterns.

There are already much non-linearity in normal images (e.g. borders, difference of colors,

etc.), but for the computer would be better if those non-linearities were more expressive

after a convolutional operation, that breaks non-linearity.

2.2.2.2 Sub-sampling Layer

Sub-sampling is the method used after a convolutional layer (or filtering). It has a

window of a given N x N size (usually 2 x 2) that slides through the entire image matrix,

taking just the N x N correspondent values for the current step in the image matrix and

making some kind of operation based on these values. The operations can be:

• Max Pooling: Compares all the values in the window and saves just the maximum

value for the current step.

• Min Pooling: Compares all the values in the window and saves just the minimum

value for the current step.

• Sum Pooling: Sums all the values in the window and saves it.

• Average Pooling: Takes the average of the values in the window and saves it.

Alongside with the window size, another common parameter is the stride. The stride

is nothing more than the step that the window takes each time. For example, if a pooling

layer has a window size of 2 x 2, with a stride of 2, it will jump 2 pixels and therefore

not repeat any numbers already evaluated. If the stride was 1, it would repeat the last

column or row at each step. The Figure 14 shows the max pooling sub-sampling process,

Chapter 2. Contextualization 35

1. The first hidden layer performs the convolution. The output is four feature maps

of size 24x24 produced by a filter of 5x5 size. The decrease of the input size is

explained in the section 2.2.2.1.

2. The second hidden layer performs sub-sampling, taking the local maximum value of

a window of size 2, reducing by half the rows and the columns. The overall concept

is explained in the section 2.2.2.2

3. The third hidden layer performs again a convolution, decreasing again the size of

the feature map.

4. The fourth hidden layer is again a sub-sampling of a 2x2 filter and stride 2.

5. The fifth and last hidden layer is again a convolution, resulting in the output layer.

This layer consists of exactly 26 neurons assigned to each possible character, giving

the final value for each.

As the processing occurs there is an interesting phenomenon, where the system starts

taking the shape of a dual pyramid. That is, after each layer, the feature map size

decreases while the the number of feature maps increases, compared with the previous

layer.

However, CNNs in the practical use are much more complex than the one presented.

They will have more convolution and sub-sampling layers, along with other kinds of layers,

like dropout and dense layers.

2.2.2.4 Dense Layer

A dense layer is a special kind of a fully-connected layer. In a fully-connected layer,

as the name suggests, every neuron from the output of a dense layer is connected to

every neuron on the previous layer, with each connection having a specific weight. This

kind of layer comes after all of the convolution and pooling layers. The purpose of this

layer is to do the final classification of the data. The last layer will be a fully-connected

layer with the number of neurons correspondent to the number of classes the network

is supposed to distinguish. Usually, the last dense layer is connected to a probabilistic

distribution activation function, like the Softmax [24] function. This is a translation

invariant normalization across all neurons in the last layer.

2.2.2.5 Dropout Layer

The dropout layer acts as an improvement in order to not over-fit the training of the

neural network. It works by deactivating a given portion of the neurons on a particular

layer, improving generalization. The Figure 16 shows this in a visual and easy way to

understand. The circles (neurons) with an X are deactivated just in part of the training

Chapter 2. Contextualization 36

and then activated again, giving space to other neurons be deactivated. This is efficient

because it forces the network to learn different paths of reaching the same result, making

it much more robust.

Figure 16 – Standard neural network on the left and after dropout on the right [6]

This way, the error of the algorithm decreases as the network is being trained. With-

out it, the phenomenon of overfitting comes in to place, where the network focuses on

insignificant aspects of data in the training dataset, making it harder to predict correctly

unseen data. This phenomenon makes the network worse as it is being trained after a

certain point, thus there is a limit for each network to be trained. Even with dropout,

the network can be overfitted, but it is less likely. Figure 16 shows in a real example the

difference of using it properly in a network.

2.2.3 Digital Audio

Similarly as seen in 2.2.1, the computer does not process audio the same way as humans

do. They treat this kind of data also as arrays of numbers. Each audio file is read by the

computer as one big array of numbers representing each sample of a waveform.

In order to understand this, it is necessary the previous knowledge of how the sound

is propagated through waves. These waves, when captured by a recording device, are

taken in samples with a given frequency. This is called the sampling rate. The bigger the

sample rate, the lower is the loss of data from the original audio file, and the better is

the sound quality. But this comes at the price of higher file size and thus require more

computational effort in order to make further analysis, like machine learning. Figure 18

shows the different cases that can occur when sampling an audio file.

Nyquist-Shannon sampling theorem states that in order for a signal to be rebuilt, the

sampling frequency fN must be at least double of the maximum frequency fm of the

Chapter 2. Contextualization 38

microphones is that they are immune to noise coming from undesirable places, such as

other machines and even the environment as long as these outside vibrations are not

extremely strong to the point it can interfere the desired measurements.

There are several ways of measuring the vibration of a machine, and the most common

types are listed below [26][27][28].

• Accelerometer

An accelerometer is a device that measures the acceleration usually in 3 axis, but

can also measure in less. It is the most popular solution for vibration measuring,

with low cost and acceptable accuracy for most applications. On the downside it

needs to be placed directly on a flat and preferably metallic surface of the device in

order to get accurate vibration data.

• Strain Gauge

A strain gauge is simply a device that measures the strain in a material. It consists in

a foil with an electrically conductive grid and, as the material moves, the electricity

inside the device chances and therefore produces a value that is proportional to the

displacement of the material. It is a very accurate low-cost device that can be used

in almost any surface because it has flexible properties. The downside is that it

requires additional equipment in order to amplify the signal.

• Microphone

There is no mystery in a microphone for industrial vibration measuring. They are

the same as common microphones, except that they might have better performance

in industrial environments. Microphones are great in the aspect of generalization,

being able to be set up in almost any environment, but with the difficulty of cap-

turing sounds that might not be interesting to measure. Microphones might not be

good if the interest information is vibration itself, but they do a great job if the

information needed is the change of sound behavior with time.

• Laser Displacement

A laser displacement sensor is a device that emits a laser beam to the object of

interest to be reflected towards a light sensor inside the device. As the position of

the reflection changes over the light sensor, it interprets as a change of displacement

of the object. This kind of sensor is highly expensive and also needs to meet a lot

of requirements, such as a fixed mount point and distance between the sensor and

the object, making it difficult to practically implement.

Chapter 2. Contextualization 39

• Vibration Meter

Vibration meters are devices that already have batteries and an interface. They

are used to measure data instantaneously by just pressing it against the object of

interest. Although they are easy to use and to start acquiring data, they are not

a permanent solution. They often include a traditional accelerometer inside and

require a technician to periodically check the machines with this device.

• Vibration Data Loggers

Vibration data loggers are ready solutions to easily install in machines. They have

accelerometers, batteries and storage with them. They are also quick to install and

do not need much knowledge to start logging data, unlike traditional accelerometers

that need some work to get proper data. Besides that, they are hard to synchronize

and normally have worse accuracy.

2.2.5 Recurrent Neural Networks

Some systems or problems can not be transformed in simple and fixed inputs with

simple and fixed outputs, like the prediction of a single image. In general, problems

involving time-series data, such as speech recognition, need to be stored and accessed in

order to get the full context for the data. To do so, Recurrent Neural Networks (RNNs)

take as input the output of previous layers. So in fact, when a RNN is being trained, it

is still using information from the past to make assumptions to the present. [29]

There are several examples in which RNNs are applied. Besides the already mentioned

speech recognition problem, there is also sentiment analysis, prediction of stock market,

caption of images and many other applications. In the case of sentiment analysis, the

input is a classification sentence with multiple words, and the output is a classification

for whether the current sentence is positive or negative.

There is a lot of speculation around RNNs. Some authors suggest that RNNs are not as

efficient as thought for many years and it might be good to change to other types of neural

networks [30][31], while many other authors are still using recurrent neural networks and

its features to produce good results [32]. It is not the objective of this work to compare

the effectiveness of RNNs with other structures for the same datasets, but just to analyze

its results.

But this kind of neural network has a special problem when used by itself. They are

designed to use values from the past to predict values from the present, but when the

gap between past and present grows this kind of network can not connect the information

precisely anymore. This is because of the vanishing gradient problem, discovered by

Hochreiter[33] in 1991. The problem is due to the fact that in order to get past values

or weights, the network uses a gradient to multiply the actual weight and the lower the

Chapter 2. Contextualization 40

gradient is, it becomes harder for it to update its values and also takes longer to reach

a solution. As a result, the network is able to train properly just for the part very close

to present and ignore past values, which is the main objective of using recurrent neural

networks.

Many alternatives were proposed to solve the problem of the vanishing gradient. The

most important of them is Long Short-Term Memory (LSTM) units, which is explained

in section 2.2.5.1.

2.2.5.1 Long Short-Term Memory

Long short-term memory is a technique for improvement of neural networks that has

shown great results. It has the implementation of a memory cell that is able to keep

information for longer time without causing the vanishing gradient problem. This is done

by the addition of new units and a re-designed workflow in each layer. [34]

This re-designed workflow is just the addition of a set of gates where the information

passes through the memory cell. These gates determine which information to keep and

which information to delete, based on the importance given for the current data. This

allows the network to learn which information is important over time.

LSTM networks were first published by Hochreiter and Schmidhuber[35] in 1997 with

great results for some applications. In the beginning of the 21st century, LSTM based

networks made a revolution in technology with the popularization of voice assistants.

2.3 Machine Learning Frameworks

Machine learning (or deep learning) frameworks provide the capacity of programming,

training and testing neural networks with high level interface. The most used frameworks

for this purpose are TensorFlow [36], PyTorch [37], Keras [38] and many others widely

available. These frameworks provide different ways of programming with the goal of giving

a better level of abstraction together with the simplification of challenging programming

problems.

2.3.1 TensorFlow

TensorFlow is an open-source framework that supports Python, C++, Java and Go,

with the first being the best supported language. It is developed by Google Brain and its

first stable release was in 2017, despite the initial release being dated from 2015. This is

the most used deep learning framework for a series of reasons.

This framework is capable of computing many types of machine learning such as

classifications, regressions until the most complex neural networks. It also has support

to GPU computation, which helps a lot on the processing time of the algorithms. For

Chapter 2. Contextualization 41

better visualization, TensorFlow has the visualization feature TensorBoard which is as

a powerful tool to display live graphs and plots for some given metrics. Another great

feature of TensorFlow is that it also has the capability of running on mobile, so the

possibilities are many while using this framework.

For the extension of this work, this will be the main framework used because of its

great performance and flexibility. With it, there is the possibility of running the models

in a completely different system without many problems, making it easier to run the same

algorithms in multiple devices.

2.3.2 PyTorch

This is considered one of the biggest competitors of TensorFlow, achieving impressive

numbers of adoption by developers. It is also an open-source library but it is exclusively

developed for Python. This framework is developed by the artificial intelligence resource

group from Facebook with the initial release in 2016 and the first stable release in late

2018.

Comparing to TensorFlow, it is a more straight forward framework for creating deep

learning algorithms, although it does not provide a good scalability or really complex and

optimized solutions. This tool might be better in some cases, for example when there is

need to change some parameters during training, but in overall the performance is worse

than TensorFlow, without taking into account the fact that it does not provide natively

a solution for visualization like TensorBoard. Despite its qualities, PyTorch is not used

in this work.

2.3.3 Keras

Keras is an extremely minimalist and high-level solution for neural networks. It is not

a full solution like TensorFlow or PyTorch, but more like an extension of a framework,

being able to run on top of TensorFlow, CNTK or Theano. This integration enables

fast experimentation, being easy to change parameters and try new and different neural

network settings without much difficulty.

It also have four main principles, which are user friendliness, modularity, easy exten-

sibility and working with Python. These four principles are the core for the development

of Keras, where the main points are developing simple and understandable code for hu-

man beings and being able to change a set of parameters or adding new modules without

changing the whole code.

It was developed by ONEIROS and the first released was in 2015, with the first stable

release in 2016, long before the first stable release of TensorFlow. Being also open-source,

it connects very well with TensorFlow and all of its features work fine. The main features

45

3 Methodology

This chapter is about the methodology used during the construction of the project,

from the most generic and high-level aspects until the deepest details necessary for the

completion of the work.

The work is developed with an extensive research, followed by prototyping and testing.

To accomplish good results, it follows a system of knowledge acquisition and development,

consisting of literature research and study followed by replication of published results and

finally development to practical implementation. By following this methodically, it is easy

to make proposals for improvement or approach changes to already published works, even

if those proposals are proven not to act as expected.

This methodology allows to create projects that are less likely to failure because of the

background study. To develop new ideas from scratch after acquiring the base knowledge,

it is necessary first to have a hypothesis that have to be done, then tested and finally

improved. The documentation of everything in the whole process is very essential in

order to give credibility and solidify the results.

3.1 Data Acquisition

Before entering the topic of data acquisition, it is important first to take a look into

the process itself and how the acquisition could be done. The process consists basically

in a horizontal injection molding machine and the goal is to observe if the mold is open

or closed in real-time with the help of a single camera, two accelerometers and machine

learning algorithms. Figure 22 shows the model of the injection molding machine used in

all of the experiments.

The Arburg 220 S is a fully hydraulic horizontal injection molding machine with 250kN

of clamping force weighting 2100kg, being considered very small for the standards. It is

possible to find injection molding machines going up to 5000kN of clamping force. The

machine was manufactured in 2001 but makes no more part of the company’s catalogue.

It is manufactured in Germany [44].

This machine is also fully covered with metal, being suitable for vibration acquisition.

It also possesses a mobile chamber made of metal with a transparent window, making

possible the visualization of the mold. This also makes the image acquisition from outside

the machine possible. On its interior, it is possible to wire cables under the machine since

it has an open space for wires, making the acquisition from inside the chamber also

possible. The actual output of this machine is small plastic pen holders, being produced

manually for educational purposes.

Chapter 3. Methodology 48

some aspects of the process into consideration like temperature, visibility and vibration.

According to the Cognex Micro 1403 C datasheet, the maximum operation temperature

supported by this camera is only 45◦C and the operation temperature of the injection

molding machine inside the chamber is around 60◦C, so it is not possible to position this

camera inside the chamber for a permanent solution in an industrial environment. There

is also the problem that the camera has to be fixed in a way that it vibrates the minimum

possible, in order to maintain its current position and keep a certain fixed pattern along

the frames. Another possibility is to place the camera outside of the injection molding

machine, losing visibility of the process but with a much lower temperature and vibration.

For this work, the camera was positioned in both situations, inside and outside of the

chamber. The reason why it was possible to fix this specific camera inside the chamber

of the injection molding machine is because it is a controlled environment, without real

production. The main objective of testing the camera inside the chamber was to verify if

it has some improvements compared to placing the camera outside of the machine. Case

positive, it is possible to exchange the camera for a more robust similar camera without

losing fidelity to the results.

The positioning inside of the chamber is made by screwing a magnet mounting plate

under the camera making the setup cleaner, embedding all cables inside the machine. The

position outside of the machine had to have its own cable management, making it a little

inconvenient and taking more space.

3.1.1.2 Acquisition

The connection to this camera is done by using the software In-Sight Explorer 5.7.0

and connecting to the camera via Ethernet connection. After that, it is possible to choose

many options of resolution, shutter speed, triggering method, pattern selection and also

the option to save classified images in a specified folder with timestamps on them.

The resolution of this camera is 1600 x 1200 pixels with a shutter speed in range of

16µs to 1000ms. The lower the shutter speed, the faster the image acquisition gets and

the framerate increase, but with a low shutter speed, there might be some darkness in

the picture. But as long as the shutter speed is not too low, it should not be a problem

if the process has some ambient light, which is in fact the case in this work.

The camera also acquires images with 24 bit color (three layers of 8 bits each), with a

maximum capacity of 7 frames per second at full resolution. Better results of framerate

can be achieved if the resolution is lowered. The framerate can also change depending on

the complexity of the patterns recognition tasks or the shutter speed.

Chapter 3. Methodology 50

would be possible to automate the labeling process. The manual labeling is only possible

because the dataset is small, otherwise manual checking would be impossible and other

solutions would have to be taken. The result is a dataset of classified images between

classes, which each measurement have its respective timestamp. In this case, the images

are labeled by the mold status (open or closed) and the separation is done by placing the

images in different folders.

3.1.2 Accelerometer

It is necessary a device or sensor to measure the vibration of a machine. After con-

sidering many different vibration sensors, the best approach seemed to be to use an

accelerometer and the chosen for this role was the Bosch XDK, which is a development

kit produced by Bosch. It comes with many different kinds of IoT (Internet of Things)

related sensors, such as accelerometer, thermometer, gyroscope and others. The only

required sensor for this task is the accelerometer. It could be considered as a waste of

resource, but this sensor was already available for use and it has some good features, such

as access to Wi-Fi, connection to NTP Servers for time source and most important the

ability to communicate over serial port.

3.1.2.1 Positioning

It was used two Bosch XDKs to fully read the status of the machine. One of them was

positioned right on the mould, so it was not effectively measuring just vibration, but also

the acceleration of the mould. It gives much more readable data, as there is a good change

in acceleration when the mold is opening or closing and is also fixed to the actual part of

interest in the machine. To fix this device, it was used the default plastic mounting plate

of the gadget in addition to a strong magnet. This way, there is no need of a permanent

installation on the mold, as the magnet is easily removable. The setup for this XDK can

be seen in Figure 25.a.

The other XDK, on the other hand, is used purely to measure the vibration of the

machine, so it has to be static in order to get accurate data. Considering this, it was

placed outside of the machine with a custom made metal mounting plate with dimensions

that match pre-existing holes in the machine’s exterior. This way it is possible to fix the

device on the mounting plate and then screw the mounting plate on the machine. Doing

this, everything is connected by metal, transferring the maximum possible amount of

vibration from the machine to the accelerometer. The setup for the XDK placed outside

of the machine with the custom mounting plate can be seen in the Figure 25.b.

Chapter 3. Methodology 51

(a) XDK positioning on the moving mold (b) XDK positioning outside the machine

Figure 25 – Positioning of the two vibration sensors

3.1.2.2 Acquisition

The programming of the Bosch XDK is done via a proprietary software called XDK

Workbench, which uses C as programming language. The company does not provide

ready solutions for data logging at the maximum possible frequency, and as this is one of

the project’s requirement, it was necessary to build a data logging program from scratch.

After frustrated tries of making the gadget communicate wirelessly, it was finally possible

to make it work sending data over USB at an acceptable rate. The output frequency of

the logger for just the accelerometer in three axis (x, y, z) is around 2.5kHz, more than

enough for good vibration measure [47].

On the other hand, sending data at this rate over USB brings some kinds of prob-

lems, such as wrong values due to bad connection and also it is an UART (Universal

Asynchronous Receiver Transmitter) communication, so the data comes in small batches

being more susceptible to errors. To solve this problem, the solution was to use a post-

processing software to filter the data, so values that are outliers are not passed to the final

output or at least are corrected. This is done by an algorithm that compares the actual

value with the last measurements. If the new value is more than double of the previous

value, the new value is divided by a factor and tested once again recurrently until the

value is in an acceptable range.

It is also proposed to delete some values that are not very important from the training

datasets in order to get a more even dataset and enhance the dataset quality. Originally,

the datasets have more values from one status than the other. This makes the algorithm

be more susceptible to predict values from the class with the majority of values in training

if the data is not evened beforehand. This could help if the data is well-known for having

more one value than the other, but most of the times it leads to wrong predictions.

Therefore, it is important to select proper data that has few or no importance to the

Chapter 3. Methodology 52

dataset. This means if at the beginning or at the end of the dataset it belongs to one

class or another for a long time without any change and that class is in fact part of the

majority class, then it is suitable to strip this data out of the dataset. This process makes

the dataset smaller, but more even, which could be beneficial for the accuracy.

Another pre-processing method used is the Butterworth filter for low and high pass.

More details about filtering can be seen in section 2.4. The results for using this filter can

be found in chapter 4, as well as comparisons between different types of filters.

3.1.2.3 Labeling

The labeling of the vibration data is a little more difficult than labeling the images

from the camera. The main reason is the frequency difference. While the camera records

video at a maximum capacity of 10 frames per second, the accelerometer has a frequency

of 2500Hz, so for every frame of video there are at least around 250 vibration measures.

As already mentioned in 3.1.1.3, it is difficult to label data without a reliable source

of information about the real machine status. Because of this, some considerations were

made for labeling the vibration data. The main consideration is that the real machine

status changes at the exact same time as the camera data is labeled, so it is possible to

have a synchronous time between the vibration and camera datasets.

As done for the camera images, the vibration data is also labeled with the same two

status. But differently than the images, where they are placed in different folders, the

vibration data is just a table with a timestamp and read values. The assignment for

the real status of the machine is done by adding a new column to the table for each

measurement.

3.2 Feature Selection

One crucial step for a good machine learning algorithm is a good feature selection.

For example, if the actual problem is to find if there is a car or not in a specific parking

spot and the only source of data is a camera of the whole parking lot. It makes no sense

to analyze the full frame of the camera, because the point of interest is just a specific

parking spot.

This helps not only in better prediction, but also in faster training process and less

hardware requirements. But the same way that it can help predicting the correct value, it

also could hurt the accuracy of the algorithm if the feature selection is not done properly.

The Figure 26 shows two features in a single frame with the same purpose: find if the

mold of the injection molding machine is open or closed.

Note in Figure 26 that it shows the clamping unit, or the part where the mold is.

It is a frame with the mold of the machine open taken from a video that recorded the

Chapter 3. Methodology 53

Figure 26 – Feature selection for a frame

movement of the mold of the injection molding machine used for this work.

Considering that the task is tell if the mold is open or closed, the red box does not

provide good data about the process, while the green box does. This is because there is

a lot of useless data in the red box, which should not be considered by the algorithm to

make a decision about the machine status. In the meantime, the green box gives just the

essential information about the mold, or only the mobile parts of the machine, without

any interference from static parts. This way, the algorithm has a much more clear view

of the process and can not make mistakes due to insignificant data.

An important thing to mention is that all of the frames must have the exact same

feature taken from the full frame in order to make a good model. In order to facilitate

the feature selection from the images, the author also developed a software with a GUI

(Graphical User Interface) to help making the selection of multiple features in a series of

frames. Figure 27 shows the main window from the software.

The software’s functionality is really simple. The first step is to select a folder with

a series of images that need to be labeled according to features and classes. When the

folder is selected, the first image of the folder appears on the main window and the user

has to draw a box for the first feature of interest in the image. From that point on, it is

just a matter of naming the features and classes needed and assigning the frames to their

respective class.

There is also a log of the operations, helping the user to find the exact location and

size of the drawn features and the actual indexes of images inside the folder that were

assigned to each class or feature. The information about the size and location of the

features is very important later when building the machine learning model or trying to

predict. A sample log for a session can be seen in the Figure 28.

The output of the software itself is really simple. The images are cropped according

to the feature and saved in different folders for each feature and each class inside each

feature. The log is also saved in the main directory selected.

No feature selection is made for the vibration data, as there is only one value by axis

by measurement. The processing done before feeding the data to the algorithm is filtering

the values during acquisition and more details are provided in section 3.1.2.2.

Chapter 3. Methodology 56

Table 2 – Parameters for data augmentation

PARAMETER DESCRIPTION

featurewise_center=False
Boolean. Set input mean to 0 over the

dataset, feature-wise.
samplewise_center=False Boolean. Set each sample mean to 0.

featurewise_std_normalization=False
Boolean. Divide inputs by std of the dataset,

feature-wise.
samplewise_std_normalization=False Boolean. Divide each input by its std.

zca_whitening=False Boolean. Apply ZCA whitening.
zca_epsilon=0 Epsilon for ZCA whitening. Default is 1e-6.

rotation_range=1. Int. Degree range for random rotations.

width_shift_range=0.02
Float (fraction of total width). Range for

random horizontal shifts.

height_shift_range=0.02
Float (fraction of total height). Range for

random vertical shifts.

shear_range=0.01
Float. Shear Intensity (Shear angle in
counter-clockwise direction as radians)

zoom_range=0.02
Float or [lower, upper]. Range for random

zoom. If a float, [lower, upper] =
[1-zoom_range, 1+zoom_range]

channel_shift_range=10 Float. Range for random channel shifts.

fill_mode=’nearest’
One of {"constant", "nearest", "reflect" or

"wrap"}. Points outside the boundaries of the
input are filled according to the given mode

cval=0.
Float or Int. When fill_mode = "constant":

Value used for points outside the boundaries.
horizontal_flip=False Boolean. Randomly flip inputs horizontally.
vertical_flip=False Boolean. Randomly flip inputs vertically.

rescale=1./255

Rescaling factor. Defaults to None. If None
or 0, no rescaling is applied, otherwise data
is multiplied by the value provided (before

applying any other transformation).

preprocessing_function=None

Function that will be implied on each input.
The function will run before any other

modification on it. The function should take
one argument: one image (Numpy tensor
with rank 3), and should output a Numpy

tensor with the same shape.

with some specific kinds of data, but it will not always be the best.

Through mathematical methods it is possible to have a better understanding of which

model structure works best for each kind of data, but this is not the focus of this work.

The methods for defining the best model structure for this project are based on recent

researches and iterative methods.

Chapter 3. Methodology 57

3.4.1 Structure for the image classification

The structure used to create a model for trying to predict the correct result from the

data of the camera is a CNN. But there are infinite ways of building a CNN, from the

most basic to the most complex structures. For this work, it is proposed to use not just

one, but several structures for convolutional neural networks, and compare their results

and performances.

But first, it is important to take a close look at the steps before feeding the data

to the network. As previously discussed, the first step is Data Acquisition [3.1], then

Feature Selection [3.2] and finally Data Augmentation [3.3]. But still after these steps,

it is important to do some final processing on the data before really start training the

model.

The first step is to read the images inside a script. They must be read as arrays instead

of images, as shown in 2.2.1. To do so, there are a lot of possibilities. For this work, it

was used the Python programming language with the OpenCV [49] library. It is a library

with many tools for image processing with great performance.

With this library, it is possible to change the shape of the dataset to reduce the com-

plexity of the algorithm. The first and most important thing for reducing the complexity

of the computations is reading the images in grayscale. This helps reduce the number of

channels from three to just one, as explained in section 2.2.1. It is only helpful because

the images do not rely on color for good differentiation in this dataset.

After reading the images in grayscale, another important step is to normalize them

to a square image with low resolution. This helps the algorithm to focus just on main

aspects of the images and waste no time observing singularities of individual images, also

helping the model to be more robust. For the human eye it may not be the best approach

to increase the accuracy on the image classification, but for a computer it is easier to

make assumptions and relations if the complexity of the data is low.

Another step for making the data more suitable for a computer to read is normalizing

the array of data to 1. In this case, the data is an array of a given dimension with values

from 0 to 255. For computational reasons, it is best to set these values in a range from

0 to 1. Then it is possible to finally shuffle the data, if needed. In the case of this work,

the image data is shuffled before being fed to the network. This way, the algorithm does

not consider periodicity for the prediction. Sometimes it is better not to shuffle the data,

but in this case it is shuffled. After this step, the data is ready for the model to train on.

It is also important to state that by doing this, it is extremely important that the

images for actual classification also go through this process afterwards, otherwise they

will have different shapes and the model will most likely make bad classifications. By

doing all those steps, the algorithm is trained to classify normalized grayscale images

with a specific square size and will make bad decisions if other type of data is fed to it.

Chapter 3. Methodology 58

There is also the possibility to train the algorithm with pure and raw images, but the

accuracy might change.

To have a better reliability and a wider variety of results, the camera was positioned

both inside and outside of the chamber, as mentioned. But not only that, different

resolutions and regions of interest were also used in order to improve acquisition quality.

3.4.1.1 Frame with full resolution inside the IMM chamber

This position used for acquiring images is inside the machine’s chamber, ideal scenario

for best image quality. Positioning the camera this way leaves less susceptible to exterior

interference like shadows or something blocking the direct view of the machine. Another

important aspect of positioning the camera is the better management of cables, being

possible to integrate everything inside the machine.

It is important to notice that suitable lens should be used in this case, otherwise it will

be very difficult to focus and get a good image due to the proximity of the camera to the

mold. Unfortunately in an industry scenario this setting would not be possible because of

the temperature specifications of the camera (See Table 1). For research purposes, there

is no problem in installing this camera inside the chamber as long as the temperature

does not exceed the maximum specified by the vendor.

For this camera setting it is used full resolution (1600x1200) to capture and analysis

of the images inside the software. Despite this fact, the images are saved to the hard

disk with half of the maximum resolution, that is 800x600, making the process faster and

therefore gaining a more reliable framerate. The final framerate obtained for this camera

setting is around 2.45 FPS, value very low but with very high quality for being a smart

camera.

After analysis on the images, it is possible to narrow even more the size of the region

of interest by doing the feature selection [Section 3.2]. Figure 29 shows the original frame

and the selected area actually used for classifying the images marked by a red box.

It is possible to see that the selected area inside the frame is very relevant to the

process because it shows exactly the position where the moving part of the mold fits the

static part of the mold. This makes a frame with the mold closed totally different from a

frame with the mold open and therefore easier for the algorithm to classify.

3.4.1.2 Frame with low resolution inside the IMM chamber

Similarly to the frame with full resolution inside the IMM chamber, this frame is

located at that exact same position with the only difference being its size. It uses a lower

resolution by excluding rows from bottom and top of the frame, resulting in a capture

resolution of 1600x600 with 600 rows excluded in total. The images are saved afterwards

Chapter 3. Methodology 59

(a) Camera inside chamber with full resolution (b) Feature selection for camera inside cham-
ber with full resolution

Figure 29 – Position and feature selection for the inside camera with high resolution

with a a quarter of that resolution (400x150), providing a much better framerate of 9.07

FPS.

Despite the camera has the option to lower the resolution, it does not provide binning

or any method to reduce the image resolution with the same field of view, being possible

just to delete only a specified number of rows, without the possibility of ignoring also a

given number of columns. This way the field of view becomes limited, but for this project

it is not a problem since the region of interest is very small, thus can be selected from a

small area on the image.

(a) Camera inside chamber with lower resolu-
tion

(b) Feature selection for camera inside cham-
ber with lower resolution

Figure 30 – Position and feature selection for the inside camera with low resolution

Note that if the camera supported the exclusion of columns of pixels, it would be

possible to make the region of interest for image acquisition even smaller, being possible

to achieve a better framerate. Note also that the region of interest got smaller from

Figure 29.b to Figure 30.b. This is intentional, showing that it is possible to choose a

smaller area and get the same or better results with less computational power.

For these two camera settings, there are vibration data available for later comparison.

The vibration data covers almost the whole period of time as the cameras are recording

and is linked by a timestamp of the same source.

Chapter 3. Methodology 60

3.4.1.3 Frame outside the IMM chamber

If this camera were to be installed in an actual factory environment, it would have to

be placed outside of the machine’s chamber. To try to replicate such environment, the

camera was placed right outside the machine. It was obtained a value of 9.65 FPS with

a final capture resolution of 400x75. The Figure 31 shows the actual positioning of the

camera while operating outside of the machine.

Figure 31 – Positioning of the camera outside the IMM chamber

It is possible to see the Cognex and the Sensopart installed on the setup. The Sensopart

camera has proven to be worse for this specific task for some reasons that are not relevant

for the topic of this work and was discarded.

The field of view of the Cognex camera in this position can be seen in Figure 32.

Figure 32 – Field of view from the camera outside the machine

The image is cropped so that the mold is barely inside the frame. This is not a problem

as long as all of the moving parts stay inside the frame. In this case, this condition is

satisfied, so it is possible to define a good feature. The feature selected for this frame can

be seen in Figure 33.

The final resolution used in this camera setting is very slower if compared to

Chapter 3. Methodology 61

Figure 33 – Feature selection for the camera outside the machine

This runs into the same problem as mentioned in section 3.4.1.2, where there is no

possibility of excluding columns of the frame, resulting in a great part of the image being

filled with useless data.

For this camera setting, the vibration data logger was not put in use. The main

objective of this setting is to check if it is possible to detect the status of the machine

with the camera being positioned outside of the machine.

3.4.2 Structure for the vibration data classification

Before explaining the structure of the model, it is necessary to understand the dataset

itself. After the data is acquired, it must be stored in a dataset. The dataset is really

simple and straight forward, with just one table filled with data for each measurement and

an output value equivalent to the status of the mold. Table 3 shows part of the dataset

and its structure.

Table 3 – Vibration Dataset

real_time execution_time x y z Status
19:06:59.019 9398.205332 973 25 -12 1
19:06:59.019 9398.374675 987 36 1 1
19:06:59.019 9398.540719 1002 48 15 1
19:06:59.019 9398.704564 1002 48 15 1
19:06:59.019 9398.881238 1017 55 27 1
19:06:59.019 9399.05278 1028 55 46 1
19:06:59.020 9399.229087 1040 52 35 1
19:06:59.020 9399.394398 1053 52 35 1
19:06:59.020 9399.557876 1053 52 35 1
19:06:59.020 9399.749944 1038 38 18 1
19:06:59.020 9399.990763 1027 24 5 1
19:06:59.020 9400.182099 1007 31 -10 1

As seen in Table 3 there are two columns for timestamps, three columns for actual

data and a final column for the status of the machine. The status is defined by 0 if the

mold is open or 1 if the mold is closed. With the data in this structure, it is possible to

move forward with building the model for classifying the status of the injection molding

machine.

Chapter 3. Methodology 62

The basic structure used for classification of the vibration data is a RNN using LSTM.

This type of algorithm is well suited for time-series data, as explained in section 2.2.5 and

might be a good approach to be used on this dataset.

But for being a time-series, it is not straight forward to input this data into the

network. It must first be separated in blocks, because the data is not evaluated by single

measures, but in a context. After defining the size of the block, it must also able to slide

through all of the data by a given step. If the step size is bigger or the same as the size

of the block, none of the data of one block will belong to another block and if the step

is very small, there will be very few variation and a lot of repeated data between each

neighbor block. So, choosing the correct block size and step is a difficult and important

decision. Both parameters depend mostly on the frequency and shape of the data and is

optimized by trial.

This procedure reduces drastically the number of outputs by a factor of the step size.

Now instead of analyzing each row of the table, the algorithm has to analyze the number

of rows equivalent to the block size at each iteration. The next iteration has to be the

same block size but with an offset equivalent of the step size. Usually the step size should

be approximately 10% to 20% of the block size, so it is not too small nor too big. After

analysis on the data, the defined block size for this dataset is 100 samples with a step of

15 samples per iteration.

3.5 Model Structure and Training

As already explained in section 2.2, the training process requires a lot of computational

power and to make this easier GPUs are often used, reducing the time of processing. For

the efforts of this work it is used a Tesla V100-PCIE-16GB located in a server. This is a

powerful hardware for machine learning and reduces drastically the time of processing if

compared to the use of an ordinary CPU. For some experiments it is also used a NVIDIA

Quadro K4100M, a smaller GPU embedded in a laptop that also has compatibility to

TensorFlow [36]. All of the hardware is provided by Fraunhofer IPA.

In order to create neural network model, the first step is to define its parameters. The

most essential parameters are the number of epochs, the validation split, the batch size,

the size or number of nodes for each layer, the type of layers required and finally how

many layers of each kind.

The number of epochs is the amount of times for the network to be trained repeatedly,

that is repeating the training several times with different starting weights and in some

cases with different parameters. Validation split is literally taking part of the data out of

the training dataset just to confirm the accuracy of the model after each epoch. This way,

it is sometimes possible to detect if the model is overfitting or just remembering the exact

values from the training dataset and not being able to identify unseen data. The batch

Chapter 3. Methodology 63

size is just dividing the dataset so there is no need for the network to train the entire

dataset at once. This makes it easier for the network to read and improve the accuracy.

The type of layers is what makes the type of the algorithm be a convolutional, recurrent,

or any other kind of neural network. Finally, the size of each layer and how many layers

of each kind implies on the size and complexity of the network. A network with just one

fully-connected layer is called a neural network while a network that has more than one

layer is called a deep neural network. In this work, only deep neural networks are used.

All of the algorithm was built using Python and its supported libraries with Tensor-

Flow and Keras frameworks for building neural networks [Section 2.3]. The main reasons

for using TensorFlow and Keras are for being open-source with a lot of official documen-

tation, well developed frameworks, user friendly and easy to use, integration between the

two and also support of GPUs and most importantly, having good results.

3.5.1 Convolutional Neural Network Parameters

After all of the procedure taken into account in section 3.4.1 it is possible to move

forward and actually start building the model and training the network.

The output of the algorithm used in this project gives 18 different models to each

single dataset. This way, it is possible to compare between different configurations and

select the best suited for each dataset. During training, the network sends information

to TensorBoard [Section 2.3.1] which displays the current status of the network with

real-time graphs and plots. After each model is completely trained, the parameters are

changed and the process starts again with TensorBoard logging in a different file. This

way, it is possible to compare the different models and their performances and finally

export the information to a table.

All of the different parameters used while training the convolutional neural network

used for classifying the images are displayed in Table 4.

Table 4 – Parameters used during CNN training

Parameter Value

Epochs 20
Validation Split 50%
Batch Size 8
Layer Size 128, 256, 512
Layer Types Convolutional, Max Pooling, Dense, Dropout
Dropout 20%
Number of Layers 2, 3, 4, 5, 6

A fixed number of epochs, validation split, batch size and dropout was set prior to

training and the variables are the number of convolutional and dense layers with their

respective variable sizes.

Chapter 3. Methodology 64

The number of dense layers varies between zero and two, the number of convolutional

layers varies between two and three and the layer sizes can assume the values of 128, 256

and 512. In total, there are three different settings for dense layers, two for convolutional

layers and three for the layer sizes. Multiplying all of them, the result is eighteen models

for each filmstrip, as mentioned. If taken into account that there are three different film-

strips, the total number of trained models is 54 and all of them are logged in TensorBoard

with full statistics.

The validation split is set to 50% to give robustness to the model, since there is no

separate testing data to validate the results. That means that the model will train with

only half of the images and the other half is used for measuring the quality of the model.

This helps to detect overfitting and to avoid it when it happens. The images are also not

related with each other, so the model does not care about the result of the previous image

to make a prediction.

Cross-validation is a good technique where the dataset is divided by smaller subsets

and the model is trained every time with all datasets except one. This gives much more

information about the quality of the model trained, but is very computational expensive,

so it was not used for measuring the accuracy of the models in this work. Instead, it was

used a much higher split of randomized data to give good credibility to the models.

3.5.2 Recurrent Neural Network Parameters

The algorithm used for training the recurrent neural network is similar to the one used

for the convolutional neural network. The major changes are how the data is extracted

and the shape of the model itself.

Differently than what occurs during CNN training, the shape of the model during

the training of the recurrent neural networks is fixed in this project, changing only how

the data is fed to the algorithm. This is done because the model was already optimized

to a point where there is no need to compare and the final objective is to compare the

efficiency of using different filters with this particular data. The fixed parameters can be

seen in Table 5 and these values are obtained by experimentation.

Table 5 – Parameters used during RNN training

Parameter Value

Epochs 10
Validation Split 40%
Batch Size 64
Layer Size 64
Layer Types LSTM, Dropout, Dense
Dropout 30%
Number of Layers 2

Chapter 3. Methodology 65

The variation of the models comes from delivering the dataset in different shapes into

the network. As explained in section 3.1.2.1, it was used one accelerometer inside of the

IMM and one outside of the IMM. Therefore, for each filmstrip there are two vibration

measurements with each one having five other variations. Summing all of the datasets,

considering there are two vibration sensors and the data was acquired in two different

periods of time, there are exactly 24 datasets to be trained and analyzed. To better

understand this concept, Table 6 shows how the data is divided between each category.

Table 6 – Vibration datasets structure

Location Filter Dataset

Inside of the IMM

Filterless
Reduced
Entire

High-Pass
Reduced
Entire

Low-Pass
Reduced
Entire

Outside of the IMM

Filterless
Reduced
Entire

High-Pass
Reduced
Entire

Low-Pass
Reduced
Entire

On each of the original datasets from both sensors, two filters were used, being one

low-pass [Section 2.4.1] and one high-pass filter [Section 2.4.2]. The low-pass is meant

mostly to extract good data from the accelerometer from inside the machine, filtering out

the high frequency vibration and keeping just the acceleration of the mold. On the other

hand, the function of the high-pass filter is to filter out any low frequency acceleration

that might happen on the outside and mostly on the inside of the machine, leaving just

the high frequency vibration data. Results can be found in the chapter 4.

66

4 Results

In this chapter all of the results from the experiments held during the paper are

displayed and explained. The analysis with TensorBoard is made using four different

metrics: accuracy, loss, validation accuracy and validation loss. For each model trained,

all four metrics are being measured after each epoch. This results in learning curves

of the algorithm through time, making possible the evaluation of the system behavior

throughout the training process.

Training accuracy is the accuracy of the model through each batch of data. It updates

constantly after each batch by predicting the trained values with the actual model and

getting a percentage of correct values. Loss is calculated by a function inside Keras.

There are many loss functions and the one used for this work is categorical cross entropy.

This loss function penalizes more predictions that are very different from the expected

value than values that are close to the expected result. The formula for categorical cross

entropy is given by:

LCC(ŷ, y) = −
∑

yi log(ŷi) (4.1)

Where:

LCC = categorical cross entropy loss

ŷ = classifier output

y = distribution over labels

i = iteration

The validation accuracy is given after every epoch, using the actual state of the model

to predict the validation dataset. The percentage of correct classifications results in the

validation accuracy. The validation loss is exactly the same thing as the training loss,

with the exception that is calculated by validation data.

4.1 Camera Results

The results of training the images with different models are displayed in this section.

As already mentioned in 3.5.1, the output of training the data of each single camera

setting is 18 different models. To better visualization of the results, they are displayed

in three plots of six curves for each metric of each camera setting. The three different

plots are sorted by their final value. That means that the first plot will have the six

Chapter 4. Results 67

worst final values, the second will have the six intermediary final values and the third will

have the best final values. Note that sometimes the scale of the graphs changes for better

visualization.

The analysis of each camera is made separately and major points will be discussed as

the results are shown. For better understanding of the results, Table 7 makes a relation

between the indexes used on the names of the models and the actual description of each

camera.

Table 7 – Reference table for model names

Camera Label Camera Description

cognex_1 Camera placed inside the chamber with high resolution
cognex_2 Camera placed outside the chamber
cognex_3 Camera placed inside the chamber with high resolution

The model names follow a strict pattern. For each one, there is always the following

structure:

Camera Label_NUMCONVconv − NUMNODESnodes − NUMDENSEdense −

shuffleSHUFFLEOPTION − val_splitNUMSPLIT − TIMESTAMP

Where:

• Camera Label is given accordingly to Table 7

• NUMCONV is the number of convolutional layers of the model

• NUMNODES is the size of each layer in the network

• NUMDENSE is the number of dense layers excluding the last one

• SHUFFLEOPTION is a boolean which enables or disables data shuffle

• NUMSPLIT is the percentage of the dataset that is used for testing

Therefore, if a model name is:

cognex_1_3conv-256nodes-1dense-shuffleTrue-val_split0.3-1546948531

then it is a model trained with data from the camera placed inside the chamber with high

resolution, with three convolutional layers, one dense layer and 256 nodes for each layer,

where the data is shuffled before going to the algorithm, with a 30% validation split of the

data for testing and the time that the model was created is represented by the Posix [50]

timestamp 1546948531 that could be converted to Tuesday, 8. January 2019 11:55:31.

Chapter 4. Results 78

4.1.4 Final output

After the model is trained completely, it is possible to use it to predict arbitrary data,

in this case frames took from a video. All of the data was for this work was acquired

directly from the injection molding machine in use and all of the models were put to test

with the same process. The output of the classification is a number between 0 and 1,

that is a value that corresponds the confidence the algorithm has for the data belonging

to one class or another. If the number is closer to 1, the final output is then rounded up

to 1 and rounded to 0 if the output is closer to 0.

If there is a necessity to predict a whole video, this video should first be separated into

images and the data from these images stored in an array, so the algorithm can iterate

over the values from the array. After each array of data that is equivalent to one frame,

the algorithm sends the output value and this value must be linked to its respective frame.

With the linked data it is then possible to annotate the frames according to the belonging

class.

To do this, it is used the same OpenCV library for Python that is used for pre-

processing the images. The library allows also to draw boxes and write on images. This

way it is possible to make a procedure that draws a box in the selected feature position

with a given color correspondent to its classification together with predicted class name

near the box. The final output becomes then a whole new video with a box drawn on the

selected feature that changes its color and the name every time a different prediction is

made.

4.2 Vibration Results

The vibration data was collected during the acquisitions from the two camera settings

inside the machine’s chamber. As mentioned in section 3.4.1.3, the vibration sensor was

not active during the shot from the camera outside of the machine.

The model names also follow the pattern

Filter_Camera Label_vibrationdata_Location

for better identification, where:

• Filter is given accordingly to Table 14

• Camera Label is given accordingly to Table 7

• Location refers to the location of the vibration sensor being either inside or outside

the machine’s chamber

The display of results is similar to Camera Results, with the difference that these

results are achieved by changing the shape of the dataset instead of changing the model

Chapter 4. Results 79

Table 14 – Reference table for naming models acquired with vibration data

Filter Description

LABELED No filter applied
CHOPPEDLABELED Exclusion of beginning and ending values

HIGHPASS_2order_150cutoff
Butterworth High-Pass filter with 150Hz of

cutoff

CHOPPEDHIGHPASS_2order_150cutoff
High-Pass filter with exclusion of beginning

and ending values

LOWPASS_1order_15cutoff
Butterworth Low-Pass filter with 15Hz of

cutoff

CHOPPEDLOWPASS_1order_15cutoff
Low-Pass filter with exclusion of beginning

and ending values

setting. The model was previously optimized by empirical methods and therefore all

datasets will be trained by it.

The results in this case are also divided in three different plots with the same approach

for dividing them. There is a total of 24 models for all vibration data, so there are eight

different curves for each plot. It may be a little difficult to extract the exact values from

the plots, but the important thing is to notice the general shape of each curve, as relevant

results are going to be further approached.

The testing is made the same way as in the Camera Results section, with the addition

of one step to the process. The first part is exactly the same method used in the camera

datasets, but the second is made by taking the models trained by one dataset and applying

on another dataset. For example, the model resulted from training with the cognex_1

camera data filtered by a high-pass filter, placed inside the machine will be tested by

feeding the cognex_3 data with the same filtering and location to have a more reliable

result.

4.2.1 Training

The first metric measured is the training accuracy. This metric is obtained after each

epoch, although being updated after every batch of data, from training the dataset and

trying to predict values from the same dataset it has trained on. Figure 46 displays three

plots with 8 curves respective to one model each.

There are four major characteristics to observe. The first thing to notice is that there

are no models that could not complete the training process. This is because the layer

used is LSTM [Section 2.2.5.1], which does not have the problem of the vanishing gradient

[Section 2.2.5]. Using this kind of layer, the gradient does not get small to the point where

mathematical operations result in NaN values, so the result is smoother.

The second point is the smoothness itself. Note that the accuracy does not have

sudden changes on its shape. This is not entirely true because the scale of the graph is

Chapter 4. Results 84

According to training and validation results, the best models come from data acquired

outside of the injection molding machine. The reason for this result is the higher stability

of the location. On the data acquired with the accelerometer placed directly on the

moving mold there is the interference of the actual mold opening and closing, which in

this case is harmful for the quality of predictions.

The high-pass filter is also a good addition to optimize some results. The improvement

from a model trained with the original dataset to one model trained with the same dataset

after a high-pass filter is a consistent increase of around 0.6% for the data taken from

outside the machine’s chamber. As for the data taken in the mold of the machine, there

was no improvement by using filtered data.

Chopping the beginning and ending of dataset also did not improve the results for

both training and validation results. This is not necessarily as bad as it might appear.

This dataset consists more of one class than the other so if the data is not cut, the model

will pend to predict more one class than the other, making the model more accurate for

a dataset where the data is divided by the same proportion. But if the data is divided by

an inverse proportion, the model will have difficult to correctly predict this new dataset

because it knows for training that most of the values belong to one class, that will no

more be true for the inverted dataset.

4.2.3 Testing

For better analysis of the system accuracy, the models are tested using a different

dataset. For the models trained with data from the period when the camera inside of

the injection molding machine chamber with low resolution was recording, the data from

when the camera in the same position with high resolution was recording is fed to analyse

its output, and the same goes for the opposite. This makes all models predict unseen

data from different times, being totally independent one from another, thus having some

variation between them. Figure 50 demonstrates the different accuracy values obtained

by feeding crossed data to the models.

To read this plot, the naming of datasets follows the pattern:

Camera Label_Data Mode_Filter_Location

Where:

• Camera Label is given accordingly to Table 7 1

• Data Mode is stripped for cropped data or normal for unaltered data

• Filter is the filtering used by each model and dataset

• Location is the location of the accelerometer, inside or outside the IMM chamber

1 cognex_1 means the same as cognex1

Chapter 4. Results 85

The name given to each bar in the graph is respective to one model that was trained

using data from its respective name. This model was then used to predict unseen data from

the dataset when the opposite camera was recording. The results shown are respective

to the accuracy got using the model represented by the name of each bar to predict the

opposite dataset, which is marked by the "Dataset" label, filtered according to the model

settings. The parameters from the model settings are respective to filtering applied to the

training dataset and therefore also during testing, with the exception of chopping that

was not used for testing. Models trained with low-pass filters are not displayed due to

poor results, being unreasonable doing test result analysis. Results from training process

and validation data can be found in sections 4.2.1 and 4.2.2.

Figure 50 – Test result with unseen data for the vibration data models

It is possible to see a big difference between the two datasets. The models acquired

by training with the cognex3 vibration dataset can predict very accurately vibration

data from cognex1, but the opposite is not entirely true. This is because variations on

the original datasets. The cognex3 vibration dataset has more variation, covering both

datasets behaviors.

With this information, it is now possible to safely use the model trained with cognex3

vibration data to generally predict vibration data from both inside and outside of the

injection molding machine. On the other hand, models trained with cognex1 vibration

data are not reliable enough to predict with precision unseen data.

Chapter 4. Results 86

4.2.4 Output of vibration prediction

The model analyses and makes a prediction every block of 15 values of data taking

100 values into account [Section 4.2.1], so every step of 15 measurements or around 6ms

of data, there is a new prediction. This data is then put to a table alongside with the

parameters and expected values without any filtering.

Classification of vibration data is separated between two classes that are represented

by the numbers 0 and 1. Therefore this data can be compared, analysed and if necessary,

filtered afterwards.

4.2.5 Post-filtering

After predicting the whole dataset in blocks of 15, it is possible to match the time

of this data with the time from the camera data. The camera acquisition for the frame

with high resolution inside the machine has a frame rate of around 2.45 FPS [Section

3.4.1.1], meaning there is a frame every 410ms. To match the vibration with the camera

predictions, the most common value of vibration prediction between the space of time

between each frame was assigned for the prediction value to that frame. This is done only

because the data from vibration have a much higher frequency than the camera, that is

only acquired 2.45 times every second.

But this still brings some problems with oscillating values of vibration predictions. To

solve this, it is possible to add some delay in order to only allow a change in value if there

is a sequence of the same prediction in a row. This is only possible due to the nature

of the process and must be used carefully, otherwise it can extend periods of time with

wrong prediction. As the process is relatively slow, there is also no problem in delaying

the output by one frame.

4.3 Link of camera and vibration result sources

It is possible to join the two result sources and compare them. To make it more visual,

a good way of displaying both results is annotating each frame of a video taken from the

machine while in operation with the prediction from a model trained with camera data

and also annotate with a model trained with vibration data, then creating a video with

all the predicted information of the process.

This way, it is possible to visually compare the effectiveness of each approach for solv-

ing the same problem. The method to display the results while the machine in operation

for this work is the annotation of frames with information regarding the predictions for

both accelerometers and the camera data. This way, the output is a customized video

with this information, making it easy for any person to read the actual predicted state of

the machine.

Chapter 4. Results 87

After the acquisition of results, filtering and analysis, it is possible to make a real

comparison between the two types of models and their performances. The CNN models

obtained from camera data are superior in every aspect. They are robust and have reliable

predictions, achieving amazing values if correctly optimized. At the same time, the RNN

models created from vibration data are less reliable with the available data. They struggle

to make good predictions and may not be the best option for the process in study.

Nevertheless, recurrent neural network models have shown some effectiveness for get-

ting results by analysis of vibration data. To do this accurately, the training dataset

needs to be large enough and also have great variation. Without these two requisites

being satisfied, the model will perform poorly in this process. Another disadvantage of

using RNNs in this particular process is the long training time due to the fact that RNNs

have to be processed sequentially, while CNNs computations can be done in parallel [51].

In the meantime, convolutional neural network models are by design faster to train

and therefore can learn to recognize patterns in much less time. Since they are time

independent, there is no need of making computations over the same data more than

once. Every image from the dataset counts as how the model will be, but there is no

direct relation between them. The prediction is also done by just taking one single image

and giving a single result without the relation of anything else. This is a good approach

for the process in study because the difference between a closed and open mold is very

significant.

88

5 Conclusions

As target of the thesis, it was defined to deduct the state of an injection molding

machine by live images and vibration measurements. To do so, it was proposed to use

convolutional neural networks to train a model based on camera images and recurrent

neural networks to train a model based on vibration data. The expected result is creating

an algorithm that is able to classify accurately the information about the machine’s mold

state and output if it is open or closed by visual and vibration data.

From the results obtained and analysis done, it is possible to state that the models

worked as intended and satisfied the expectations. The two types of datasets are very

different and therefore have to be treated differently. One is straight forward and easily

readable by humans, while the other is impossible for a human being read accurately.

The objective from studying the behavior of an injection molding machine by a video

of it and creating a complex neural network model is purely educational. Simpler methods

could have been applied to get similar results. The main objective of using these complex

algorithms is to try to understand the result behavior for different settings of models and

check the line where the model gets too complex for making good predictions. This does

not mean that models like these could not be applied in real industries. They work very

good and are very reliable if the quality and complete accuracy of results are requirements.

Despite being worse than the CNNs with the camera data, the RNNs with the vibration

data were proven to work properly under some circumstances. It is not an easy task for

an algorithm to tell whether the machine has its mold open or closed just by vibration

data because there is not much change in the dataset between each state. There is a

clear difference in vibration when the mold is in movement, which was not the objective

to predict. In order to make a model learn the vibration behavior for each state and be

capable of reading the correct state after some variation or after a reboot of the machine

it must be very good designed and trained. The training dataset must have variation that

it can map all the machine’s possibilities of vibration. Just after doing this the model is

going to reliably predict the state of the machine.

The RNNs does not have perfect accuracy, but after filtering the data after the pre-

diction with the addition of a small delay and pairing the results camera images to get a

slower update frequency, the results become very close to perfection. The best models are

able to predict the exact same values of the camera and rarely get confused by anomalies

in the dataset. This kind of sensor can be very useful in some situations where direct

source of information or cameras are not an option.

Despite having a better result, it does not mean that CNNs are superior to RNNs in

any way. They have two different purposes and the best one depends on the system to be

Chapter 5. Conclusions 89

studied. Convolutional neural networks do not have any relation with time while recurrent

neural networks’ most basic principle is to solve time-series problems. Nonetheless, the

two result sources work in their own way and are beneficial for acquiring information

about the state of the process.

Overfit is not completely discarded for the CNNs because the best scenario would be

to have more machines with different behaviors to test the system. It can be prevented

by leaving more data outside of the training dataset, but if there is not good variation

between the training dataset and validation or testing dataset, it is not possible to detect

if the model is indeed overfitted.

From the results obtained it is also possible to state that the camera does not neces-

sarily needs to be placed inside of the injection molding machine’s chamber, despite being

more effective. Placing the camera outside of the machine brings problems but also solves

the temperature problem, which can be very crucial depending on the camera used. It

does not get much affected by the poorer image detail, but there is the requirement of

nothing passing in front of it or also accidentally changing the camera positioning.

To improve the results from this work, it is firstly change both sensors. The camera,

despite being very good for working on its own, is not very effective for the efforts of

this work because it does not provide a good framerate and also does not provide a

good solution to lower the video resolution, together with the fact it does not support

high temperatures. This could be changed for a camera that does not have algorithms

embedded because, despite useful to pre-filter data, it is not essential to the acquisition

and labeling.

The vibration sensor must also be changed by a more reliable data source. It does

not provide data with excellent quality due to its communication protocol. For being

asynchronous, it ends up not getting data any data in a short period of time, but this short

period of time when the data frequency is around 2.5kHz becomes a relative long time,

losing valuable data information. To enhance the performance of this sensor, the perfect

solution would be to use an industrial accelerometer with high frequency synchronous

data. Another approach for the vibration sensor and its data would also be an option.

Changing the focus from classifying the state of the machine to detecting anomalies while

in operation could be a better match for vibration data analysis.

90

References

1 NAVLANI, A. Understanding Logistic Regression in Python (article) - Data-
Camp. 2019. Available at: <https://www.datacamp.com/community/tutorials/
understanding-logistic-regression-python>.

2 CIFAR-100 on Benchmarks.AI. 2018. Available at: <https://benchmarks.ai/
cifar-100>.

3 PRODUCTION Deep Learning with NVIDIA GPU Infer-
ence Engine. 2018. Available at: <https://devblogs.nvidia.com/
production-deep-learning-nvidia-gpu-inference-engine/>.

4 2D Convolution – Abdulsamet İLERİ – Medium. 2019. Available at: <https:
//medium.com/@abdulsamet.ileri/2d-convolution-ced5d339aa5>.

5 HAYKIN, S. S. Neural networks and learning machines. Third. Upper Saddle River,
NJ: Pearson Education, 2009.

6 SANTOS, L. A. dos. Dropout Layer · Artificial Inteligence. 2019. Available at: <https:
//leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/dropout_layer.html>.

7 MURPHY, K. P. Machine Learning: A Probabilistic Perspective. [S.l.]: The MIT
Press, 2012. ISBN 0262018020, 9780262018029.

8 ALPAYDIN, E. Introduction to Machine Learning. 2nd. ed. [S.l.]: The MIT Press,
2010. ISBN 026201243X, 9780262012430.

9 KOTSIANTIS, S. B. Supervised machine learning: A review of classification
techniques. In: Proceedings of the 2007 Conference on Emerging Artificial Intelligence
Applications in Computer Engineering: Real Word AI Systems with Applications in
eHealth, HCI, Information Retrieval and Pervasive Technologies. Amsterdam, The
Netherlands, The Netherlands: IOS Press, 2007. p. 3–24. ISBN 978-1-58603-780-2.
Available at: <http://dl.acm.org/citation.cfm?id=1566770.1566773>.

10 CELEBI, M. E.; AYDIN, K. Unsupervised Learning Algorithms. 1st. ed. [S.l.]:
Springer Publishing Company, Incorporated, 2016. ISBN 3319242091, 9783319242095.

11 LECUN, Y.; BENGIO, Y.; HINTON, G. E. Deep learning. Nature, v. 521, n. 7553,
p. 436–444, 2015. Available at: <https://doi.org/10.1038/nature14539>.

12 LECUN, Y.; CORTES, C. MNIST handwritten digit database. 2010. Available at:
<http://yann.lecun.com/exdb/mnist/>.

13 MITCHELL, T. M. Machine Learning. 1. ed. New York, NY, USA: McGraw-Hill,
Inc., 1997. ISBN 0070428077, 9780070428072.

14 WU, Y. et al. Google’s neural machine translation system: Bridging the gap
between human and machine translation. CoRR, abs/1609.08144, 2016. Available at:
<http://arxiv.org/abs/1609.08144>.

References 91

15 OMAR, S. et al. Machine learning techniques for anomaly detection: An overview.
International Journal of Computer Applications, v. 79, 10 2013.

16 CHATTERJEE, S.; HADI, A. Regression analysis by example, fourth edition. p.
i–xvi, 04 2006.

17 FAN, J.; GIJBELS, I. Local Polynomial Modelling and Its Applications: Monographs
on Statistics and Applied Probability 66. Taylor & Francis, 1996. (Chapman & Hall/CRC
Monographs on Statistics & Applied Probability). ISBN 9780412983214. Available at:
<https://books.google.de/books?id=BM1ckQKCXP8C>.

18 QUINLAN, J. R. Induction of decision trees. Mach. Learn., Kluwer Academic
Publishers, Hingham, MA, USA, v. 1, n. 1, p. 81–106, mar. 1986. ISSN 0885-6125.
Available at: <http://dx.doi.org/10.1023/A:1022643204877>.

19 GERVEN, M. van; BOHTE, S. Artificial Neural Networks as Models of Neural
Information Processing. [s.n.], 2018. (Frontiers Research Topics). ISBN 9782889454013.
Available at: <https://books.google.com.br/books?id=M-1JDwAAQBAJ>.

20 JACKSON, A. S. et al. Deep machine learning provides state-of-the-art performance
in image-based plant phenotyping. GigaScience, v. 6, n. 10, 08 2017. ISSN 2047-217X.
Available at: <https://dx.doi.org/10.1093/gigascience/gix083>.

21 HUBEL, D.; WIESEL, T. Receptive fields, binocular interaction, and functional
architecture in the cat’s visual cortex. Journal of Physiology, v. 160, p. 106–154, 1962.

22 HUBEL, D. H.; WIESEL, T. N.; LEVAY, S. Plasticity of ocular dominance columns
in monkey striate cortex. Philosophical Transactions of the Royal Society of London
Series B, v. 278, p. 377–409, 1977.

23 CS231N Convolutional Neural Networks for Visual Recognition. 2019. Available at:
<http://cs231n.github.io/convolutional-networks/>.

24 SUTTON, R. S.; BARTO, A. G. Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

25 , F. ; , P. . Universal minimum-rate sampling and spectrum-blind reconstruction for
multiband signals /. p. 99, 1997.

26 RAO, S. S.; FAH, Y. F. Mechanical vibrations; 5th ed. in SI units. Singapore:
Prentice Hall, 2011. Available at: <https://cds.cern.ch/record/1398617>.

27 SONG, H. X. et al. Design and performance analysis of laser displacement
sensor based on position sensitive detector (PSD). Journal of Physics: Conference
Series, IOP Publishing, v. 48, p. 217–222, oct 2006. Available at: <https:
//doi.org/10.1088%2F1742-6596%2F48%2F1%2F040>.

28 MIDé TECHNOLOGY CORPORATION. Slam Stick Shock & Vibration Data
Loggers. [S.l.], 2017. Rev. 11.

29 JAIN, L. C.; MEDSKER, L. R. Recurrent Neural Networks: Design and Applications.
1st. ed. Boca Raton, FL, USA: CRC Press, Inc., 1999. ISBN 0849371813.

References 92

30 BAI, S.; KOLTER, J. Z.; KOLTUN, V. An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling. CoRR, abs/1803.01271,
2018. Available at: <http://arxiv.org/abs/1803.01271>.

31 ELBAYAD, M.; BESACIER, L.; VERBEEK, J. Pervasive attention: 2d convolutional
neural networks for sequence-to-sequence prediction. CoRR, abs/1808.03867, 2018.
Available at: <http://arxiv.org/abs/1808.03867>.

32 ZHANG, X. et al. Drawing and recognizing chinese characters with recurrent neural
network. IEEE Transactions on Pattern Analysis and Machine Intelligence, v. 40, n. 4,
p. 849–862, April 2018. ISSN 0162-8828.

33 HOCHREITER, S. Untersuchungen zu dynamischen neuronalen Netzen. Diploma
thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München.
1991.

34 CHUNG, J. et al. Empirical evaluation of gated recurrent neural networks on sequence
modeling. CoRR, abs/1412.3555, 2014. Available at: <http://arxiv.org/abs/1412.3555>.

35 HOCHREITER, S.; SCHMIDHUBER, J. Long short-term memory. Neural
computation, v. 9, p. 1735–80, 12 1997.

36 ABADI, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. 2015. Software available from tensorflow.org. Available at: <https:
//www.tensorflow.org/>.

37 PASZKE, A. et al. Automatic differentiation in pytorch. 2017.

38 CHOLLET, F. et al. Keras. 2015. <https://keras.io>.

39 SMITH, J. Introduction to Digital Filters: with Audio Applications. [S.l.]: Booksurge
Llc, 2006. v. 2.

40 BUTTERWORTH, S. On the Theory of Filter Amplifiers. Wireless Engineer, 7,
1930.

41 MATTHAEI, G. L.; YOUNG, L.; JONES, E. M. T. Microwave Filters, Impedance-
matching Networks, and Coupling Structures. [S.l.]: New York : McGraw-Hill,
1964.

42 CHAVAN, M. S.; AGARWALA, R.; UPLANE, M. D. Digital elliptic filter
application for noise reduction in ecg signal. In: Proceedings of the 4th WSEAS
International Conference on Electronics, Control and Signal Processing. Stevens
Point, Wisconsin, USA: World Scientific and Engineering Academy and Society
(WSEAS), 2005. (ICECS’05), p. 58–63. ISBN 960-8457-38-6. Available at: <http:
//dl.acm.org/citation.cfm?id=1974895.1974908>.

43 SEDRA, A.; SMITH, K. Microelectronic Circuits. Sauders College Publishing,
1991. ISBN 9780030526138. Available at: <https://books.google.it/books?id=
y28dBAAACAAJ>.

44 ARBURG GMBH + CO KG. ALLROUNDER 220/270 S Datenblatt. [S.l.], 2004.

45 SENSOPART. V10 / V20 Smart Cameras. [S.l.], 2014.

References 93

46 SENSOPART. In-Sight Micro Series Vision System Installation Manual. [S.l.], 2014.
Rev. B.

47 BOSCH CONNECTED DEVICES AND SOLUTIONS GMBH. XDK 110 Cross
Domain Development Kit. [S.l.], 2015.

48 IMAGE Preprocessing - Keras Documentation. 2019. Available at: <https:
//keras.io/preprocessing/image/>.

49 OPENCV library. 2019. Available at: <https://opencv.org/>.

50 HARBOUR, M. G. Real-time posix: An overview. 1993.

51 BRADBURY, J. et al. Quasi-recurrent neural networks. CoRR, abs/1611.01576,
2016. Available at: <http://arxiv.org/abs/1611.01576>.

	TCC_20182_DiogoLuizDemarchi
	digitalizar0003
	TCC_20182_DiogoLuizDemarchi

