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Resumo

Neste trabalho, propomos e estudamos a complexidade computaci-
onal (em número de iterações) de uma versão inexata do método das
inversas parciais de Spingarn. Os principais resultados de complexidade
são obtidos através de uma análise do método proposto no contexto do
hybrid proximal extragradient (HPE) method de Solodov e Svaiter, para
o qual resultados de complexidade pontual e ergódica foram obtidos re-
centemente por Monteiro e Svaiter. Como aplicações, propomos e ana-
lisamos a complexidade computacional de um algoritmo inexato de de-
composição – que generaliza o algoritmo de decomposição de Spingarn
– e de um algoritmo paralelo do tipo forward-backward para otimização
convexa com múltiplos termos na função objetivo. Além disso, mostra-
mos que o algoritmo scaled proximal decomposition on the graph of a
maximal monotone operator (SPDG), originalmente introduzido e estu-
dado por Mahey, Oualibouch e Tao (1995), pode ser analisado através
do formalismo das inversas parciais de Spingarn. Mais precisamente,
mostramos que sob as hipóteses consideradas por Mahey, Oualibouch
and Tao, a inversa parcial de Spingarn (do operador monótono maxi-
mal que define o problema em consideração) é um operador fortemente
monótono, o que permite empregar resultados recentes sobre conver-
gência e complexidade computational de métodos proximais para ope-
radores fortemente monótonos. Ao fazer isso, obtemos adicionalmente
uma convergência potencialmente mais rápida para o algorítmo SPDG
e um limite superior mais preciso sobre o número de iterações necessá-
rias para alcançar tolerâncias prescritas, especialmente para problemas
mal-condicionados.

Palavras-Chave: Métodos de ponto proximal inexatos. Método
das inversas parciais de Spingarn. Algoritmos de decomposição. Oti-
mização convexa. Algorítmos do tipo forward-backward. Otimização
paralela. Complexidade computacional. Algoritmo SPDG. Operadores
fortemente monótonos. Taxas de convergência.





Resumo expandido

Introdução
Seja H um espaço de Hilbert com produto interno 〈·, ·〉 e induzido pela
norma ‖ · ‖ =

√
〈·, ·〉.

Um problema de inclusão monótona (MIP) consiste em encontrar
z ∈ H tal que

0 ∈ T (z) (1)

onde T : H ⇒ H é um operador ponto-conjunto monótono maximal.
O problema (1) inclui diversos problemas em matemática aplicada e
otimização. Um método clássico para resolução do problema (1) é o
método de ponto proximal desenvolvido inicialmente por Martinet, no
contexto de otimização, e posteriormente por Rockafellar neste contexto
mais geral. Novas variantes inexatas deste método foram desenvolvi-
das por Solodov e Svaiter, e a complexidade computacional de uma
destas variantes, os métodos híbridos proximais extragradiente (HPE),
foi estabelecida em 2010 por Monteiro e Svaiter.

Em 1983, J. E. Spingarn propôs o problema de encontrar x, u ∈ H
tal que

x ∈ V, u ∈ V ⊥ and u ∈ T (x) (2)

onde V é um subespaço vetorial fechado de H, denotamos por V ⊥ o
complemento ortogonal de V , e T : H ⇒ H é monótono maximal.
Note que (2) se reduz a (1) quando V = H. Além disso, (2) engloba
problemas importantes na matemática aplicada, incluindo minimização
de funções convexas sobre subespaço vetorial fechado e problemas de
inclusão dado por soma finita de vários operadores monónotos maximais
(ver, por exemplo, [1, 8, 9, 15]). Em [44], Spingarn também propôs
um algoritmo para resolver (2), chamado método das inversas parciais,



Spingarn provou que a análise de convergência desse método consiste
em ver esse método como um caso especial do método de ponto proximal
para resolver o problema de inclusão monótono (1), com T trocado por
TV , i.e.,

0 ∈ TV (z) (3)

onde TV é a inversa parcial de T com respeito a V definida por Spingarn
em [44].

O método das inversas parciais de Spingarn tem sido usado por di-
versos autores para análise de diferentes algoritmos práticos em otimi-
zação e aplicações relacionadas (veja, por exemplo, [1, 8, 9, 10, 25, 35]).

Objetivos
Os objetivos deste trabalho são propor e estudar a complexidade com-
putacional (em número de iterações) de uma versão inexata do método
das inversas parciais de Spingarn. Como aplicações, queremos propor e
analisar a complexidade computacional de um algoritmo inexato de de-
composição e de um algoritmo paralelo do tipo forward-backward para
otimização convexa com múltiplos termos na função objetivo. Além
disso, queremos mostrar que o algoritmo scaled proximal decomposition
on the graph of a maximal monotone operator (SPDG), originalmente
introduzido e estudado por Mahey, Oualibouch e Tao (1995), pode ser
analisado através do formalismo das inversas parciais de Spingarn.

Metodologia
Os principais resultados de complexidade da versão inexata do método
das inversas parciais de Spingarn são obtidos através de uma análise do
método proposto no contexto do hybrid proximal extragradient (HPE)
method de Solodov e Svaiter, para o qual resultados de complexidade
pontual e ergódica foram obtidos recentemente por Monteiro e Svaiter.
Mostramos ainda que sob as hipóteses consideradas por Mahey, Ouali-
bouch and Tao, a inversa parcial de Spingarn (do operador monótono
maximal que define o problema em consideração) é um operador for-
temente monótono, o que permite empregar resultados recentes sobre
convergência e complexidade computational de métodos proximais para
operadores fortemente monótonos.

Resultados, discussão e Considerações finais
Propomos e estudamos a complexidade de uma versão inexata do mé-
todo das inversas parciais de Spingarn. Como aplicações, propomos e
analisamos a complexidade de um algoritmo inexato de decomposição
e de um algoritmo paralelo do tipo forward-backward para otimização



convexa com múltiplos termos na função objetivo. Mostramos que o
algoritmo SPDG pode ser analisado dentro do metodo das inversas
parciais de Spingarn. Adicionalmente, obtemos uma convergência po-
tencialmente mais rapida para o algoritmo SPDG e um limite superior
mais preciso sobre o número de iterações necessárias para alcançar to-
lerâncias prescritas, especialmente para problemas mal-condicionados.

Palavras-Chave: Métodos de ponto proximal inexatos. Método
das inversas parciais de Spingarn. Algoritmos de decomposição. Oti-
mização convexa. Algorítmos do tipo forward-backward. Otimização
paralela. Complexidade computacional. Algoritmo SPDG. Operadores
fortemente monótonos. Taxas de convergência.





Abstract

In this work, we propose and study the iteration-complexity of an
inexact version of the Spingarn’s partial inverse method. Its complex-
ity analysis is performed by viewing it in the framework of the hybrid
proximal extragradient (HPE) method, for which pointwise and er-
godic iteration-complexity has been established recently by Monteiro
and Svaiter. As applications, we propose and analyze the iteration-
complexity of an inexact operator splitting algorithm – which generali-
zes the original Spingarn’s splitting method – and of a parallel forward-
backward algorithm for multi-term composite convex optimization. We
also show that the scaled proximal decomposition on the graph of a
maximal monotone operator (SPDG) algorithm introduced and ana-
lyzed by Mahey, Oualibouch and Tao (1955) can be analyzed within
the original Spingarn’s partial inverse framework. We show that under
the assumptions considered by Mahey, Oualibouch and Tao, the Spin-
garn’s partial inverse of the underlying maximal monotone operator is
strongly monotone, which allows one to employ recent results on the
convergence and iteration-complexity of proximal point type methods
for strongly monotone operators. By doing this, we additionally obtain
a potentially faster convergence for the SPDG algorithm and a more
accurate upper bound on the number of iterations needed to achieve
prescribed tolerances, specially for ill-conditioned problems.

Keywords: Inexact proximal point methods. Spingarn’s partial
inverse method. Splitting algorithms. Convex optimization. Forward-
backward type algorithms. Parallel methods. Iteration-complexity.
SPDG algorithm. Strongly monotone operators. Rates of convergence.
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Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced
norm ‖ · ‖ =

√
〈·, ·〉. A set-valued map T : H ⇒ H is a monotone

operator if

〈z − z′, v − v′〉 ≥ 0 ∀v ∈ T (z), v′ ∈ T (z′). (4)

It is maximal monotone if it is monotone and its graph G(T ) :=
{(z, v) ∈ H × H : v ∈ T (z)} is not properly contained in the graph
of any other monotone operator on H. Maximal monotone operators
are (set-valued) nonlinear versions of (not necessarily symmetric) se-
mipositive linear operators and they appear in different situations in
nonlinear analysis and optimization [6, 39].

A monotone inclusion problem (MIP) consists of finding z ∈ H such
that

0 ∈ T (z) (5)

where T : H ⇒ H is maximal monotone. Problem (5) includes many
problems in applied mathematics and optimization as its special cases.
For instance, if T is the subdifferential of a convex function f on H,
then (5) reduces to the problem of minimizing f over H. Other im-
portant instances of (5) include saddle-point problems and variational
inequalities for monotone operators (see, e.g., [14, 19, 21, 37, 40] and
references therein).

One of the most popular algorithms for finding approximate soluti-
ons of (5) is the proximal point (PP) method. It consists of an iterative
scheme, which can be described by the following iteration (which is well
defined due to the Minty theorem [27])

zk = (λkT + I)−1zk−1 ∀k ≥ 1, (6)

where zk−1 and zk are the current and new iterate, respectively, and
λk > 0 is a stepsize parameter. Tracing back to the work of Martinet
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[26], the PP method was popularized by the work of Rockafellar [36]
and is widely used in nowadays research as a framework for the design
and analysis of many practical algorithms (see, e.g., [4, 16, 20, 21, 24,
33, 40]).

In this thesis, we propose and analyze the iteration-complexity of an
inexact version of a proximal point type method, proposed by Spingarn
in [44], for solving a more general version of (5), which we discuss next.

In [44], J. E. Spingarn posed the problem of finding x, u ∈ H such
that

x ∈ V, u ∈ V ⊥ and u ∈ T (x) (7)

where V is a closed vector subspace of H, we denote by V ⊥ the ortho-
gonal complement of V , and T : H ⇒ H is maximal monotone. Note
that (7) reduces to (5) when V = H. Moreover, (7) encompasses impor-
tant problems in applied mathematics, including minimization of con-
vex functions over closed subspaces and inclusion problems given by the
sum of finitely many maximal monotone operators (see, e.g., [1, 8, 9, 15]
and references therein, and Chapter 2). In [44], Spingarn also proposed
an algorithm for solving (7), called the partial inverse method (PIM),
which can be described as follows, for all k ≥ 1:

x̃k = (T + I)−1(xk−1),

uk = xk−1 − x̃k,
xk = PV (x̃k) + PV ⊥(uk),

(8)

where PV and PV ⊥ stand for the orthogonal projection onto V and
V ⊥, respectively. Note that when V = H, we obtain PV = I and
PV ⊥ = 0, which, in particular, gives that the Spingarn’s partial inverse
method (8) reduces to the PP method (6) (with λk ≡ 1). The original
Spingarn’s approach for analyzing the convergence of (8) consists of
viewing it as a special instance of (6) (with λk ≡ 1) for solving the
MIP induced by the partial inverse of T . The partial inverse of T with
respect to V is the (maximal monotone) operator TV : H ⇒ H whose
graph is

G(TV ) := {(z, v) ∈ H ×H : PV (v) + PV ⊥(z) ∈ T (PV (z) + PV ⊥(v))}.
(9)

It follows from (9) that 0 ∈ TV (z), if and only if PV ⊥(z) ∈ T (PV (z)), in
which case (x, u) := (PV (z), PV ⊥(z)) is a solution of (7). Moreover, it
follows directly from the above definition that T{0} = T−1 and TH = T ,
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where T−1 is the usual (set-valued) inverse of T , i.e., v ∈ T−1(z) if and
only if z ∈ T (v).

As we mentioned earlier, Spingarn proved in [44] that (8) is a par-
ticular instance of (6) (with λk ≡ 1) for solving (5) with T replaced by
TV , i.e.,

0 ∈ TV (z) (10)

which, in turn, as we pointed out before, is equivalent to (7). This
gives, in particular, that the partial inverse method (8) converges either
under the assumption of exact computation of the resolvent (T+I)−1 or
under summable error criterion [36]. Since then, the Spingarn’s partial
inverse method has been used by many authors as a framework for the
design and analysis of different practical algorithms in optimization and
related applications (see, e.g., [1, 8, 9, 10, 25, 35]).

Since, in practical situations, the computation of the (exact) re-
solvent (λT + I)−1 may be numerically expensive, it follows that any
attempt to implement either (6) or (8) depends on strategies to com-
pute (λT + I)−1 only inexactly. This motivated Rockafellar [36] to
propose and analyze an inexact version of the PP method (6) based on
a summable error criterion. More precisely, at every iteration k ≥ 1, if
zk is computed such that

+∞∑
k=1

‖zk − (λkT + I)−1(zk−1)‖ < +∞ (11)

and the sequence {λk} is bounded away from zero, then {zk} converges
(weakly) to a solution of (5) (if there exists at least one of them).

In the last two decades, as an alternative to (11), inexact versi-
ons of the Rockafellar’s PP method (6) based on relative error cri-
terion have deserved the attention of several researchers (see, e.g.,
[4, 7, 14, 20, 21, 23, 31, 40, 41, 42, 43]). This type of inexact PP met-
hod, which started with the pioneering work of Solodov and Svaiter
[40], is widely used both in the theory and practice of numerical convex
analysis and optimization (see, e.g., [7, 14, 20, 21, 23, 31, 33, 42, 43]).
Among the above mentioned inexact versions of the PP method, which
are based on relative error tolerance criterion, the hybrid proximal ex-
tragradient (HPE) method of Solodov and Svaiter [40] became very
popular in recent years (see, e.g., [4, 7, 14, 20, 21, 31]), specially due to
its robustness as a framework for the design and analysis of several al-
gorithms for monotone inclusion, variational inequalities, saddle-point
and convex optimization problems. The HPE method can be described
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according to the following iteration, for all k ≥ 1,
vk ∈ T εk(z̃k),

‖λkvk + z̃k − zk−1‖2 + 2λkεk ≤ σ2‖z̃k − zk−1‖2,
zk = zk−1 − λkvk,

(12)

where εk ≥ 0, T εk denotes the εk-enlargement of T (see (1.7) and
Proposition 1.1.1), λk > 0 is a stepsize parameter and σ ∈ [0, 1). The
HPE method (12), which will be formally discussed in Section 1.2, is
an inexact version of the Rockafellar’s PP method (6) in which, at
every iteration k ≥ 1, errors – in the solution of the corresponding
subproblems – are allowed within a relative error tolerance σ ∈ [0, 1)
(see the remarks after Algorithm 1).

In this thesis, we propose and analyze the iteration-complexity of an
inexact version of the Spingarn’s partial inverse method (8) in the light
of recent developments in the iteration-complexity of the HPE method
(12), which have been recently established by Monteiro and Svaiter [31].
We obtain O(1/

√
k) pointwise and O(1/k) ergodic (global) convergence

rates for finding approximate solutions of (7) by viewing the proposed
method as a special instance of the HPE method for solving (10).

As we mentioned earlier, one of the most important special cases of
(7) is the problem of solving MIPs given by the sum of finitely many
maximal monotone operators:

0 ∈
m∑
i=1

Ti(x) (13)

where Ti is maximal monotone on H, for each i = 1, . . . ,m. The most
efficient algorithms for solving (13) belong to the family of so called
splitting methods (see, e.g., [5, 10, 12, 17, 18, 44]). The attractive fea-
ture of this family of methods is that, at every iteration, each resolvent
(λTi + I)−1 can be computed individually, instead of the resolvent of
the (sum) operator given in (13), which can be numerically expensive
to evaluate. Motivated by this, Spingarn proposed in [44] a fully split-
ting algorithm for solving (13) for which, at each iteration, the solution
of corresponding subproblems can be performed in parallel. This con-
trasts to other well-known splitting methods for solving (13), like, e.g.,
the Douglas-Rachford splitting method (in which case, m = 2), which
demand a serial computation of the resolvents.

In this work, we apply the results obtained for the proposed inexact
version of the Spingarn’s partial inverse method to study and analyze
the iteration-complexity of an inexact version of the Spingarn’s operator
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splitting algorithm for solving (13). Moreover, applying these results for
Ti = ∇fi+∂ϕi, for all i = 1, . . . ,m, we obtain the iteration-complexity
of a parallel forward-backward splitting method for solving the problem:

min
x∈H

m∑
i=1

(fi + ϕi) (x), (14)

where m ≥ 2, for each i = 1, . . . ,m, fi differentiable with Lipschitz
continuous gradient, ϕi proper, convex and closed with an easily com-
putable resolvent, and the solution set of (14) is nonempty.

As mentioned in [22], the performance of (8) is very sensitive to
scaling factor variations. Motivated by this, Mahey, Oualibouch and
Tao proposed in [25] the scaled proximal decomposition on the graph of
a maximal monotone operator (SPDG) algorithm for solving (7), which
can be described as follows, for all k ≥ 1:

x̃k = (γT + I)−1(x′k−1),

uk = γ−1(x′k−1 − x̃k),

x′k = PV (x̃k) + γPV ⊥(uk).

(15)

Note that, if γ = 1, then it follows that the sequence {x′k} coincides
with the sequence {xk} generated in (8), i.e., (15) is a scaled version
of the Spingarn’s partial inverse method. The convergence rate of the
SPDG algorithm was previously analyzed in [25, Theorem 4.2] under
the assumptions that the operator T in (7) is η-strongly monotone
and L-Lipschitz continuous. Note that these assumptions imply, in
particular, that the operator T is at most single-valued and L ≥ η. The
number L/η ≥ 1 is known in the literature as the condition number
of the problem (7). The influence of L/η as well as of scaling factors
in the convergence speed of the SPDG algorithm, specially for solving
ill-conditioned problems, was discussed in [25, Section 4] for the special
case of quadratic programming.

Analogously to the latter reference, in this thesis, we analyze the
convergence rate of the SPDG algorithm under the assumptions that
the operator T in (7) is strongly monotone and Lipschitz continuous.
We show that the algorithm falls in the framework of the PP method
(6) for the (scaled) partial inverse of T , which, under the assump-
tions that the operator T in (7) is strongly monotone and Lipschitz
continuous, is shown to be strongly monotone. This contrasts to the
approach adopted in [25], which relies on fixed point techniques. By
showing that the (scaled) partial inverse of T – with respect to V – is
strongly monotone, we obtain a potentially faster convergence to the
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SPDG algorithm when compared to the one proved in [25] by means
of fixed point techniques. Moreover, the convergence rates obtained in
this thesis allows one to measure the convergence speed of the SPDG
algorithm on three different measures of approximate solution to the
problem (7) (see Theorem 3.0.2 and the remarks right below it).

Summarizing, the contributions of this thesis are as follows:

• We propose and study the iteration-complexity of an inexact ver-
sion of the Spingarn’s partial inverse method. As applications,
we propose and analyze the iteration-complexity of an inexact
Spingarn’s operator splitting algorithm and of a parallel forward-
backward algorithm for multi-term composite convex optimiza-
tion.

• We show that the SPDG algorithm can be analyzed within the
Spingarn’s partial inverse framework. In doing this, we obtain
a potentially faster convergence for the SPDG algorithm and a
more accurate upper bound on the number of iterations needed
to achieve prescribed tolerances, specially for ill-conditioned pro-
blems.

This thesis resulted in the paper [2], which covers Chapter 2 and some
results of the Chapter 1 , and in the preprint [3], which covers Chapter
3. The organization of this work is as follows:

Chapter 1 contains three sections. Section 1.1 reviews some im-
portant facts and definitions on convex analysis, maximal monotone
operators, ε–enlargements and partial inverses of monotone operators,
which are used throughout this thesis. Section 1.2 presents the HPE
method and its iteration-complexity, and we also discuss a variant of
HPE method from [12]. Section 1.3 presents the proximal point method
for strongly monotone operators which will be useful in Chapter 3.

Chapter 2 contains three sections as follows. In Section 2.1, we
propose an inexact Spingarn’s partial inverse method for solving (7)
and we analyze its iteration-complexity. In Section 2.2, we propose
and analyze the iteration-complexity of an inexact Spingarn’s opera-
tor splitting algorithm for solving (13). In Section 2.3, we show how
the inexact operator splitting algorithm and its iteration-complexity
can be used to derive a parallel forward-backward splitting method for
multi-term composite convex optimization and to study its iteration-
complexity.

In Chapter 3, we show that the SPDG algorithm can be analyzed
by means of the original Spingarn’s partial inverse framework.
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Chapter 1

Preliminaries and basic
results

In this chapter, we first review some important facts and definitions
on convex analysis, maximal monotone operators, ε–enlargements and
partial inverses of monotone operators, which will be used throughout
this thesis. After, we present some results on the iteration-complexity
and on a variant of the hybrid proximal extragradient (HPE) method.
Lastly, we present the convergence rate of the proximal point (PP) algo-
rithm for finding zeroes of strongly monotone inclusions. Appropriate
literature on these topics can be found, e.g., in [2, 4, 6, 11, 12, 13, 15,
26, 27, 31, 34, 36, 38, 39, 40, 44] and the references therein.

1.1 Notation and basic results

This section collects the most important notations, definitions and
some basic results that will be useful in this thesis.

In the following, we denote by H a real Hilbert space with inner
product 〈·, ·〉 and induced norm ‖ · ‖ :=

√
〈·, ·〉. For m ≥ 2, the Hilbert

space Hm := H×H× · · · ×H will be endowed with the inner product

〈(z1, . . . , zm), (z′1, . . . , z
′
m)〉 :=

m∑
i=1

〈zi, z′i〉

and norm ‖ · ‖ :=
√
〈·, ·〉.
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Let S : H ⇒ H be a set-valued map. Its graph and domain are
taken, respectively, as

G(S) := {(z, v) ∈ H ×H : v ∈ S(z)} (1.1)

and

D(S) := {z ∈ H : S(z) 6= ∅}. (1.2)

The inverse of S is S−1 : H ⇒ H such that v ∈ S(z) if and only if
z ∈ S−1(v). Given S, S′ : H⇒ H and λ > 0 we define S + S′ : H⇒ H
and λS : H ⇒ H by (S + S′)(z) = S(z) + S′(z) and (λS)(z) = λS(z)
for all z ∈ H, respectively. Given set-valued maps Si : H ⇒ H, for
i = 1, . . . ,m, we define its product by S1 × S2 × · · · × Sm : Hm ⇒ Hm,

(z1, z2, . . . , zm) 7→ S1(z1)× S2(z2)× · · · × Sm(zm). (1.3)

We denote by I the identity operator z 7→ z.
Given an extended-real valued function f : H → R ∪ {+∞}, we

define its domain (or effective domain) and its epigraph, respectively,
by

domf := {z ∈ H : f(z) < +∞} (1.4)

and

epif := {(z, µ) ∈ H × R : µ ≥ f(z)}. (1.5)

We say that f is:

(a) proper, if domf 6= ∅;

(b) convex, if for all x, y ∈ H and λ ∈ [0, 1], one has

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y);

(c) closed, if its epigraph is a closed subset of H× R.

The subdifferential of f is the set-valued map ∂f : H ⇒ H defined
at every z ∈ H as

∂f(z) := {v ∈ H : f(z′) ≥ f(z) + 〈v, z′ − z〉 ∀z′ ∈ H}.

Given ε ≥ 0, the ε-subdifferential of f : H → R ∪ {+∞} is defined at
every z ∈ H by

∂εf(z) := {v ∈ H : f(z′) ≥ f(z) + 〈v, z′ − z〉 − ε ∀z′ ∈ H}.

28



Note that ∂0f = ∂f .

The next two results, about ε-subdifferentials, will be needed in this
thesis.

Lemma 1.1.1 ([33, Lemma 3.2]) If z, z̃, v ∈ H are such that v ∈ ∂f(z)
and f(z̃) < +∞, then v ∈ ∂εf(z̃) for every ε ≥ f(z̃)−f(z)−〈v, z̃ − z〉 ≥
0.

Lemma 1.1.2 The following hold for every λ, ε > 0:

(a) ∂(λf) = λ∂f .

(b) ∂ε(λf) = λ∂ε/λf .

The following result is well-known in the literature, its proof can be
found in [34].

Lemma 1.1.3 Let f : H → R be convex and continuously differentia-
ble such that there exists a nonnegative constant L satisfying

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ ∀x, y ∈ H .

Then,

0 ≤ f(x)− f(y)− 〈∇f(y), x− y〉 ≤ L

2
‖x− y‖2 (1.6)

for all x, y ∈ H.

As we mentioned in the Introduction, the theory of (set-valued)
maximal monotone operators plays a central role in many areas of non-
linear analysis, optimization and applications.

Definition 1.1.1 A set-valued map T : H⇒ H is monotone if

〈z − z′, v − v′〉 ≥ 0 whenever (z, v), (z′, v′) ∈ G(T ).

It is maximal monotone if it is monotone and maximal in the following
sense: if S : H⇒ H is monotone and G(T ) ⊂ G(S), then T = S.

For λ > 0, T is (maximal) monotone if and only if λT is (maximal)
monotone. It is easy to prove that the subdifferential of any convex
function is a monotone operator. In the case when f is proper, closed
and convex, then ∂f is maximal monotone [38].

The resolvent of a monotone operator T : H ⇒ H is (T + I)−1.
When T is maximal monotone, its resolvent is single-valued operator
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being defined everywhere on H, which is a result due to Minty (see,
e.g., [27]).

The concept of ε-enlargement of maximal monotone operators was
introduced and studied in [13] (see also [11, 31]).

Definition 1.1.2 Let T : H⇒ H be maximal monotone and ε ≥ 0, the
ε-enlargement of T is the operator T ε : H ⇒ H defined at any z ∈ H
by

T ε(z) := {v ∈ H : 〈z − z′, v − v′〉 ≥ −ε ∀(z′, v′) ∈ G(T )}. (1.7)

The ε-enlargement is a generalization of the ε-subdifferential of a
extended-real function.

The following summarizes some properties of T ε which will be useful
in this thesis.

Proposition 1.1.1 ([31, Proposition 2.1]) Let T, S : H ⇒ H be set-
valued maps. Then,

(a) if ε ≤ ε′, then T ε(z) ⊆ T ε′(z) for every z ∈ H;

(b) T ε(z) + S ε
′
(z) ⊆ (T + S)ε+ε

′
(z) for every z ∈ H and ε, ε′ ≥ 0;

(c) T is monotone if, and only if, T ⊆ T 0;

(d) T is maximal monotone if, and only if, T = T 0;

(e) if f : H → R∪{+∞} is proper, convex and closed, then ∂εf(z) ⊆
(∂f)ε(z) for any ε ≥ 0 and z ∈ H.

Note that items (a) and (d) above imply that if T : H⇒ H is maximal
monotone, then T (z) ⊆ T ε(z) for all z ∈ H and ε ≥ 0, i.e., T ε(z) is
indeed an enlargement of T (z).

Next, we present the transportation formula for ε-enlargements.
This formula will be used in the complexity analysis of ergodic iterates
generated by the algorithms studied in this thesis.

Theorem 1.1.1 ([13, Theorem 2.3]) Suppose T : H ⇒ H is maximal
monotone and let x`, u` ∈ H, ε`, α` ∈ R+, for ` = 1, . . . , k, be such that

u` ∈ T ε`(x`), ` = 1, . . . , k,

k∑
`=1

α` = 1,

and define

xa :=

k∑
`=1

α` x` , ua :=

k∑
`=1

α` u` ,
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εa :=

k∑
`=1

α` [ε` + 〈x` − xa, u` − ua〉] .

Then, the following statements hold:

(a) εa ≥ 0 and ua ∈ T εa(xa).

(b) If, in addition, T = ∂f for some proper, convex and closed
function f and u` ∈ ∂ε`f(x`) for ` = 1, . . . , k, then ua ∈ ∂εaf(xa).

The Spingarn’s partial inverse [44] of a set-valued map S : H ⇒ H
with respect to a closed subspace V of H is the set-valued operator
SV : H⇒ H whose graph is

G(SV ) := {(z, v) ∈ H ×H : PV (v) + PV ⊥(z) ∈ S(PV (z) + PV ⊥(v))}.
(1.8)

We denote by V ⊥ the orthogonal complement of V and by PV and PV ⊥

the orthogonal projectors onto V and V ⊥, respectively. Note that,
as observed in the Introduction, S{0} = S−1 and SH = S. As was
pointed out by Spingarn [44], if V is a proper subspace of H, then
SV is “something in between” S−1 and S. This motivated Spingarn to
choose the term “partial inverse”. Moreover, the operator SV is maximal
monotone if and only if S is maximal monotone [44, Proposition 2.1].

The following characterization of the partial inverse of the ε–
enlargement of a maximal monotone operator will be important for
us.

Lemma 1.1.4 ([12, Lemma 3.1]) Let T : H⇒ H be a maximal mono-
tone operator, V ⊂ H a closed subspace and ε > 0. Then,

(TV )ε = (T ε)V .

1.2 On the hybrid proximal extragradient
method

Consider the monotone inclusion problem (5), i.e.,

0 ∈ T (z) (1.9)

where T : H ⇒ H is a maximal monotone operator for which the
solution set T−1(0) of (1.9) is nonempty.
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In this section, we formally state the hybrid proximal extragradient
(HPE) method of Solodov and Svaiter [40] for solving (1.9), briefly
discussed in (12), present its iteration-complexity, and also discuss a
variant of it from [12] (see (1.15), Proposition 1.2.1 and Remarks 1.2.3
and 1.2.4).

In the last few years, starting with the paper [31], a lot of research
has been done to study and analyze the iteration-complexity of the HPE
method and its special instances, including Tseng’s forward-backward
splitting method, Korpelevich extragradient method, ADMM (see, e.g.,
[30, 31, 32]). To this end, the following notion of approximate solution
to (1.9) was introduced in [31]: for given tolerances ρ, ε > 0, find z̄, v̄ ∈
H and ε̄ > 0 such that (z, v) := (z̄, v̄) and ε := ε̄ satisfy

v ∈ T ε(z), ‖v‖ ≤ ρ, ε ≤ ε. (1.10)

Using Proposition 1.1.1(d), we find that if ρ = ε = 0 in (1.10) then
0 ∈ T (z̄), i.e., z̄ is a solution of (1.9).

Next, we formally state the HPE method.

Algorithm 1 Hybrid proximal extragradient (HPE) method
for (1.9)

(0) Let z0 ∈ H and σ ∈ [0, 1) be given and set k = 1.

(1) Compute (z̃k, vk, εk) ∈ H ×H× R+ and λk > 0 such that

vk ∈ T εk(z̃k), ‖λkvk + z̃k − zk−1‖2 + 2λkεk ≤ σ2‖z̃k − zk−1‖2.
(1.11)

(2) Define

zk = zk−1 − λkvk, (1.12)

set k ← k + 1 and go to step 1.

Remarks.

(i) First, note that condition (1.11) relaxes both the inclusion and
the equation in

vk ∈ T (zk), λkvk + zk − zk−1 = 0, (1.13)
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which is clearly equivalent to the exact PP method (6), i.e., zk =
(λkT + I)−1zk−1. Here, T ε(·) is the ε-enlargement of T ; it has
the properties that T 0 = T and T ε(z) ⊃ T (z) (see Section 1.1 for
details).

(ii) Instead of z̃k, the next iterate zk is defined in (1.12) as an extra-
gradient step from zk−1.

(iii) Letting σ = 0 and using Proposition 1.1.1(d), we conclude from
(1.11) and (1.12) that (zk, vk) and λk > 0 satisfy (1.13), i.e.,
Algorithm 1 is an inexact version of the exact Rockafellar’s PPM.

(iv) Algorithm 1 serves also as a framework for the analysis and deve-
lopment of several numerical schemes for solving concrete instan-
ces of (1.9) (see, e.g., [16, 28, 29, 30, 31, 32]); specific strategies
for computing (z̃k, vk, εk) and λk > 0 satisfying (1.11) depend on
the particular instance of (1.9) under consideration.

Next, we summarize the main results from [31] about pointwise
and ergodic iteration-complexity of the HPE method that we will need
in this thesis. The aggregate stepsize sequence {Λk} and the ergodic
sequences {z̃ak}, {ṽak}, {εak} associated to {λk} and {z̃k}, {vk}, and
{εk} are, respectively, for k ≥ 1,

Λk :=

k∑
`=1

λ` ,

z̃ ak :=
1

Λk

k∑
`=1

λ` z̃`, v ak :=
1

Λk

k∑
`=1

λ` v`,

ε ak :=
1

Λk

k∑
`=1

λ`(ε` + 〈z̃` − z̃ ak , v` − v ak 〉).

(1.14)

Theorem 1.2.1 ([31, Theorem 4.4(a) and 4.7]) Let {z̃k}, {vk},
{εk} and {λk} be generated by Algorithm 1 and let {z̃ak}, {vak} and {ε ak }
be given in (1.14). Let also d0 denote the distance of z0 to T−1(0) 6= ∅
and assume that λ := inf λk > 0. The following statements hold.

(a) For any k ≥ 1, there exists i ∈ {1, . . . , k} such that

vi ∈ T εi(z̃i), ‖vi‖ ≤
d0

λ
√
k

√
1 + σ

1− σ
, εi ≤

σ2d2
0

2(1− σ2)λk
;

33



(b) for any k ≥ 1,

vak ∈ T ε
a
k(z̃ak), ‖vak‖ ≤

2d0

λk
, εak ≤

2(1 + σ/
√

1− σ2)d2
0

λk
.

Remark 1.2.1 The bounds given in (a) and (b) of Theorem 1.2.1 are
called pointwise and ergodic bounds, respectively. Items (a) and (b)
can be used, respectively, to prove that, for given tolerances ρ, ε > 0,
the termination criterion (1.10) is satisfied in at most

O
(

max

{⌈
d2

0

λ2ρ2

⌉
,

⌈
d2

0

λε

⌉})
and O

(
max

{⌈
d0

λρ

⌉
,

⌈
d2

0

λε

⌉})
iterations.

The following variant of Algorithm 1 was studied in [12]: Let z0 ∈ H
and σ̂ ∈ [0, 1) be given and iterate for k ≥ 1,

vk ∈ T εk(z̃k),

‖λkvk + z̃k − zk−1‖2 + 2λkεk ≤ σ̂2
(
‖z̃k − zk−1‖2 + ‖λkvk‖2

)
,

zk = zk−1 − λkvk.
(1.15)

Remark 1.2.2 The inequality in (1.15) is a relative error tolerance
proposed in [43] (for a different method); the identity in (1.15) is the
same extragradient step of Algorithm 1. Hence, the method described
in (1.15) can be interpreted as a HPE variant in which a different
relative error tolerance is considered in the solution of each subproblem.

The following result is similar to that in (23) in [43, Lemma 2].

Lemma 1.2.1 ([2, Lemma 2.5]) Suppose {zk}, {z̃k}, {vk} and {λk}
satisfy the inequality in (1.15). Then, for every k ≥ 1,

1− θ
1− σ̂2

‖z̃k − zk−1‖ ≤ ‖λkvk‖ ≤
1 + θ

1− σ̂2
‖z̃k − zk−1‖

where

θ :=
√

1− (1− σ̂2)2. (1.16)

34



Proof: From the inequality in (1.15) and the Cauchy-Schwarz inequa-
lity we obtain, for every k ≥ 1,(

1− σ̂2
)
‖λkvk‖2 − 2‖z̃k − zk−1‖‖λkvk‖+

(
1− σ̂2

)
‖z̃k − zk−1‖2 ≤ 0.

Defining

a := 1− σ̂2, b := ‖z̃k − zk−1‖, c := ab2, t := ‖λkvk‖,

and using the above inequality we find at2 − 2bt + c ≤ 0 and, conse-
quently,

2b−
√

4(b2 − ac)
2a

≤ t ≤
2b+

√
4(b2 − ac)
2a

,

which, in turn, combined with the latter definitions and (1.16) gives
the desired result.

In what follows, we show that (1.15) is a special instance of Algo-
rithm 1 whenever σ̂ ∈ [0, 1/

√
5 ) and that it may fail to converge if we

take σ̂ > 1/
√

5.

Proposition 1.2.1 ([2, Proposition 2.2]) Let {zk}, {z̃k}, {vk}, {εk}
and {λk} be given in (1.15) and assume that σ̂ ∈ [0, 1/

√
5 ). Define,

for all k ≥ 1,

σ := σ̂

√
1 +

(
1 + θ

1− σ̂2

)2

, (1.17)

where 0 ≤ θ < 1 is given in (1.16). Then, σ ≥ 0 belongs to [0, 1) and
zk, z̃k, vk, εk and λk > 0 satisfy (1.11) and (1.12) for all k ≥ 1. As a
consequence, the method of [12] defined in (1.15) is a special instance
of Algorithm 1 whenever σ̂ ∈ [0, 1/

√
5 ).

Proof: The assumption σ̂ ∈ [0, 1/
√

5 ), definition (1.17) and some sim-
ple calculations show that σ ∈ [0, 1). It follows from (1.15), (1.11) and
(1.12) that to finish the proof of the proposition it suffices to prove the
inequality in (1.11). To this end, note that from the second inequality
in Lemma 1.2.1 and (1.17) we have

σ̂2
(
‖z̃k − zk−1‖2 + ‖λkvk‖2

)
≤ σ̂2

(
1 +

(
1 + θ

1− σ̂2

)2
)
‖z̃k − zk−1‖2

= σ2‖z̃k − zk−1‖2 ∀k ≥ 1,

which in turn gives that the inequality in (1.11) follows from the one
in (1.15).
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Remark 1.2.3 ([2, Remark 2.4]) Algorithm 1 is obviously a special
instance of (1.15) whenever σ ∈ [0, 1/

√
5 ) by setting σ̂ := σ. Next we

will show it is not true in general. Let T : R → R be the maximal
monotone operator defined by

T (z) := z ∀z ∈ R. (1.18)

Assume that σ ∈ (
√

2/5, 1), take z0 = 1 and define, for all k ≥ 1,

z̃k := zk :=
(
1− σ2

)
zk−1, vk := zk−1,

εk :=
σ4

2
|zk−1|2, λk := σ2.

(1.19)

We will show that (z̃k, vk, εk) and λk > 0 in (1.19) satisfy (1.11) but
not (1.15) for any choice of σ̂ ∈ [0, 1/

√
5 ). To this end, we first claim

that vk ∈ T εk(z̃k) for all k ≥ 1. Indeed, using (1.18) and (1.19) we
obtain, for all y ∈ R and k ≥ 1,

(Ty − vk)(y − z̃k) = (y − zk−1)(y − zk−1 + σ2zk−1)

≥ |y − zk−1|2 − |σ2zk−1||y − zk−1|

≥ −|σ
2zk−1|2

4
> −εk,

which combined with (1.7) proves our claim. Moreover, it follows from
(1.19) that

|λkvk + z̃k − zk−1|2 + 2λkεk = |z̃k − (1− σ2)zk−1|2 + 2λkεk

= 2λkεk

= σ2|z̃k − zk−1|2, (1.20)

which proves that (z̃k, vk, εk) and λk > 0 satisfy the inequality in (1.11).
The first and second identities in (1.19) give that they also satisfy
(1.12). Altogether, we have that the iteration defined in (1.19) is gene-
rated by Algorithm 1 for solving (1.9) with T given in (1.18). On the
other hand, it follows from (1.19) and the assumption σ >

√
2/5 that

σ2|z̃k − zk−1|2 =
σ2

2

(
|z̃k − zk−1|2 + |λkvk|2

)
>

1

5

(
|z̃k − zk−1|2 + |λkvk|2

)
. (1.21)

Hence, it follows from (1.20) and (1.21) that the inequality in (1.15)
can not be satisfied for any choice of σ̂ ∈ [0, 1/

√
5 ) and so the sequence

given is (1.19) is generated by Algorithm 1 but it is not generated by
the algorithm described in (1.15).
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Remark 1.2.4 ([2, Remark 2.5]) Next we present an example of a
monotone inclusion problem for which an instance of (1.15) may fail to
converge if we take σ̂ ∈ (1/

√
5, 1). To this end, consider problem (1.9)

where the maximal monotone operator T : R→ R is defined by

T (z) := αz ∀z ∈ R, (1.22)

where

α :=
2γ

γ − 2
+ 1, γ :=

1 + θ

1− σ̂2
. (1.23)

(θ > 0 is defined in (1.16).) Assuming σ̂ ∈ (1/
√

5, 1) we obtain 5σ̂4 −
6σ̂2 + 1 < 0, which is clearly equivalent to θ > |1− 2σ̂2|. Using (1.23)
and the latter inequality we conclude that

γ > 2,
αγ

α+ γ
> 2. (1.24)

Now take z0 = 1 and define, for all k ≥ 1,

(z̃k, vk, εk) :=

(
γ

α+ γ
zk−1, T (z̃k), 0

)
,

λk := 1, zk := zk−1 − λkvk.
(1.25)

Direct calculation yields, for all k ≥ 1,

|vk + z̃k − zk−1|2 = σ̂2
(
|z̃k − zk−1|2 + |vk|2

)
, (1.26)

which, in turn, together with (1.25) imply (1.15). Using (1.22) and
(1.25) we find

zk =

(
1− αγ

α+ γ

)k
, ∀k ≥ 1. (1.27)

Using the second inequality in (1.24) and the latter identity we easily
conclude that |zk| → +∞ as k → +∞ and so {zk} does not converge
to the unique solution z̄ = 0 of (1.9). This example contrasts with [12,
Theorem 4.1(i)], which claims that (1.15) converges for every σ̂ ∈ [0, 1).

1.3 On the proximal point method for
strongly monotone operators

In this section, we present the convergence rate of the proximal point
(PP) algorithm for finding zeroes of strongly monotone inclusions. To
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this end, we consider the problem

0 ∈ A(z) (1.28)

where A : H⇒ H is a µ-strongly maximal monotone operator, for some
µ > 0, i.e., A is maximal monotone and there exists µ > 0 such that

〈z − z′, v − v′〉 ≥ µ‖z − z′‖2 ∀v ∈ A(z), v′ ∈ A(z′). (1.29)

Motivated by the main results on the pointwise and ergodic iteration-
complexity which have been obtained in [31], nonasymptotic conver-
gence rates of the HPE method for solving strongly monotone inclusions
were analyzed in [4].

In this section, we specialize the main result in latter reference, re-
garding the iteration-complexity of the HPEmethod for solving strongly
monotone inclusions, to the exact PP method for solving (1.28). This
is motivated by the fact that under certain conditions, the partial in-
verse operator TV – of a maximal monotone operator T – is strongly
monotone (see Proposition 3.0.1).

Next, we formally state the PP algorithm (6) with constant stepsize
λ > 0 for solving the (strongly monotone) inclusion (1.28).

Algorithm 2 PPM for solving (1.28)

(0) Let z0 ∈ H and λ > 0 be given and set k = 1.

(1) Compute
zk = (λA+ I)−1zk−1. (1.30)

(2) Let k ← k + 1 and go to step 1.

The following result establishes the linear convergence of the PP
method under the strong monotonicity assumption on the operator
A. Although it is a direct consequence of the more general result [4,
Proposition 2.2], here we present a short proof for the convenience of
the reader.

Proposition 1.3.1 Assume that the operator A is µ-strongly maximal
monotone, for some µ > 0. Let {zk} be generated by Algorithm 2 and
let z∗ ∈ H is the (unique) solution of (1.28), i.e., z∗ = A−1(0). Then,
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for all k ≥ 1,

‖zk−1 − zk‖2 ≤
(

1− 2λµ

1 + 2λµ

)k−1

‖z∗ − z0‖2, (1.31)

‖z∗ − zk‖2 ≤
(

1− 2λµ

1 + 2λµ

)k
‖z∗ − z0‖2. (1.32)

Proof: The desired results follow from the following

‖z∗ − zk−1‖2 − ‖z∗ − zk‖2 =

=‖zk−1 − zk‖2 + 2λ〈λ−1(zk−1 − zk), zk − z∗〉
≥‖zk−1 − zk‖2 + 2λµ‖zk − z∗‖2

≥ 2λµ

1 + 2λµ
‖z∗ − zk−1‖2,

where we have used that λ−1(zk−1 − zk) ∈ A(zk), from (1.30), 0 ∈
A(z∗), A is µ-strongly monotone and min{r2 + as2 | r, s ≥ 0, r + s ≥
b ≥ 0} = a(a+ 1)−1b2.
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Chapter 2

An inexact Spingarn’s
partial inverse method and
its applications

In this chapter, we propose and analyze the iteration-complexity
of an inexact version of the Spingarn’s partial inverse method and its
applications to operator splitting and composite convex optimization.
As we mentioned in the Introduction, the main results are obtained
by viewing the proposed methods within the framework of the HPE
method of Solodov and Svaiter [31, 40]. We also introduce a notion
of approximate solution to the Spingarn’s problem (7) and, as a by-
product, we obtain the iteration-complexity of the (exact) Spingarn’s
partial inverse method (which, up to our knowledge, was not known so
far). As applications, we obtain an inexact operator splitting algorithm
for solving (13), which generalizes the Spingarn’s operator splitting
algorithm [44, Chapter 5], and a parallel forward-backward method for
solving multi-term composite convex optimization problems.

This chapter is organized as follows. Section 2.1 presents our inexact
Spingarn’s partial inverse method and its iteration-complexity analysis.
In Section 2.2, we present and study an inexact version of the Spingar’s
operator splitting algorithm. In Section 2.3, we present our parallel
forward-backward algorithm for solving multi-term composite convex
optimization problems.
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2.1 An inexact Spingarn’s partial inverse
method

In this section, we consider problem (7), i.e., the problem of finding
x, u ∈ H such that

x ∈ V, u ∈ V ⊥ and u ∈ T (x) (2.1)

where T : H ⇒ H is maximal monotone and V is a closed subspace of
H. The solution set of (2.1) is defined by

S∗(V, T ) := {z ∈ H : ∃ x, u ∈ H satisfying (2.1) s.t. z = x+u}, (2.2)

which we assume to be nonempty.

One of the main goals of this section is to present and study the
iteration-complexity of an inexact version of the Spingarn’s partial in-
verse method (8). Regarding the results on iteration-complexity, we
consider the following notion of approximate solution for (2.1): given
tolerances ρ, ε > 0, find x̄, ū ∈ H and ε̄ ≥ 0 such that (x, u) := (x̄, ū)
and ε := ε̄ satisfy

u ∈ T ε(x), max {‖x− PV (x)‖, ‖u− PV ⊥(u)‖} ≤ ρ, ε ≤ ε, (2.3)

where PV and PV ⊥ stand for the orthogonal projection onto V and V ⊥,
respectively, and T ε(·) denotes the ε-enlargement of T (see Section 1.2
for more details on notation). For ρ = ε = 0, criterion (2.3) gives x̄ ∈ V ,
ū ∈ V ⊥ and ū ∈ T (x̄), i.e., in this case x̄, ū satisfy (2.1). Moreover, if
V = H in (2.1), in which case PV = I and PV ⊥ = 0, then the criterion
(2.3) coincides with one discussed in Section 1.2 for problem (1.9) (see
(1.10)).

We next present our inexact version of the Spingarn’s partial inverse
method.
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Algorithm 3 An inexact Spingarn’s partial inverse method
for (2.1) (I)

(0) Let x0 ∈ H and σ ∈ [0, 1) be given and set k = 1.

(1) Compute (x̃k, uk, εk) ∈ H ×H× R+ such that

uk ∈ T εk(x̃k),

‖uk + x̃k − xk−1‖2 + 2εk ≤ σ2‖PV (x̃k) + PV ⊥(uk)− xk−1‖2.
(2.4)

(2) Define

xk = xk−1 − [PV (uk) + PV ⊥(x̃k)] , (2.5)

set k ← k + 1 and go to step 1.

Remarks.

(i) Letting V = H in (2.1), in which case PV = I and PV ⊥ = 0, we
obtain that Algorithm 3 coincides with Algorithm 1 with λk = 1
for all k ≥ 1 for solving (1.9) (or, equivalently, (2.1) with V = H).

(ii) An inexact partial inverse method called sPIM(ε) was proposed
in [12], Section 4.2, for solving (2.1). The latter method, with a
different notation and scaling factor η = 1, is given according to
the iteration:

uk ∈ T εk(x̃k),

‖uk + x̃k − xk−1‖2 + 2εk ≤
σ̂2
(
‖x̃k − PV (xk−1)‖2 + ‖uk − PV ⊥(xk−1)‖2

)
,

xk = xk−1 − [PV (uk) + PV ⊥(x̃k)] ,

(2.6)

where σ̂ ∈ [0, 1). The convergence analysis given in [12] for the
iteration (2.6) relies on the fact (proved in the latter reference)
that (2.6) is a special instance of (1.15) (which we observed in
Remark 1.2.4 may fail to converge if we consider σ̂ ∈ (1/

√
5, 1) ).

Using the fact just mentioned, the last statement in Proposition
1.2.1 and Proposition 2.1.1 we conclude that (2.6) is a special in-
stance of Algorithm 3 whenever σ̂ ∈ [0, 1/

√
5) and it may fail to

converge if σ̂ > 1/
√

5. On the other hand, since, due to Propo-
sition 2.1.1, Algorithm 3 is a special instance of Algorithm 1, it
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converges for all σ ∈ [0, 1) (see, e.g., [40, Theorem 3.1]). Note that
the difference between sPIM(ε) and Algorithm 3 is the inequality
in (2.4) and (2.6).

(iii) An inexact version of the Spingarn’s partial inverse method for
solving (2.1) was also proposed and analyzed in [1]. With a diffe-
rent notation, the latter method (see Theorem 2.4 in [1]) can be
given according the iteration:{

pk = (T + I)−1(xk + uk) + ek, rk = xk + uk − pk,
xk+1 = xk − λkPV (rk), uk+1 = uk − λkPV ⊥(pk),

(2.7)

where λk ∈ (0, 2), for all k ≥ 1,
∑+∞
k=1 λk(2 − λk) = +∞ and∑+∞

k=1 λk‖ek‖ < +∞. Weak convergence of the iteration (2.7)
was obtained in [1] by viewing it in the framework of a variant of
a proximal point method previously studied in [15]. We mention
that, in part, the methods and results in [1] differ from the corre-
sponding ones obtained in this thesis in that their analysis relies
on asymptotic convergence and on a different error criterion.

In what follows, we will prove iteration-complexity results for Algo-
rithm 3 to obtain approximate solutions of (2.1), according to (2.3), as
a consequence of the iteration-complexity results from Theorem 1.2.1.
To this end, first let {x̃k}, {uk} and {εk} be generated by Algorithm 3
and define the ergodic sequences associated to them:

x̃ak :=
1

k

k∑
`=1

x̃` , uak :=
1

k

k∑
`=1

u` ,

ε ak :=
1

k

k∑
`=1

[
ε` + 〈x̃` − x̃ak, u` − uak〉

]
.

(2.8)

The approach adopted in the current section for solving (2.1) follows
the Spingarn’s approach [44], which consists of solving the monotone
inclusion

0 ∈ TV (z) (2.9)

where the maximal monotone operator TV : H ⇒ H is the partial
inverse of T with respect to the subspace V . In view of (1.8), we have

(TV )−1(0) = S∗(V, T ), (2.10)
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where the latter set is defined in (2.2). Hence, problem (2.1) is equiva-
lent to the monotone inclusion problem (2.9).

Next proposition shows that Algorithm 3 can be regarded as a spe-
cial instance of Algorithm 1 for solving (2.9).

Proposition 2.1.1 ([2, Proposition 3.3]) Let the sequences {x̃k}k≥1,
{uk}k≥1, {εk}k≥1 and {xk}k≥0 be generated by Algorithm 3. Define
z0 = x0 and, for all k ≥ 1,

zk = xk, z̃k = PV (x̃k) + PV ⊥(uk), vk = PV (uk) + PV ⊥(x̃k).
(2.11)

Then, for all k ≥ 1,

vk ∈ (TV )
εk (z̃k),

‖vk + z̃k − zk−1‖2 + 2εk ≤ σ2‖z̃k − zk−1‖2,
zk = zk−1 − vk,

(2.12)

i.e., (z̃k, vk, εk) and λk ≡ 1 satisfy (1.11) and (1.12) for all k ≥ 1. As
a consequence, the sequences {zk}k≥0, {z̃k}k≥1, {vk}k≥1 and {εk}k≥1

are generated by Algorithm 1 (with λk ≡ 1) for solving (2.9).

Proof: From the inclusion in (2.4), (1.8) with S = T εk and Lemma
1.1.4 we have PV (uk) + PV ⊥(x̃k) ∈ (TV )

εk (PV (x̃k) + PV ⊥(uk)) for all
k ≥ 1, which combined with the definitions of z̃k and vk in (2.11) gives
the inclusion in (2.12). Direct use of (2.11) and the definition of {zk}
yield

vk + z̃k + zk−1 = uk + x̃k − xk−1,

z̃k − zk−1 = PV (x̃k) + PV ⊥(uk)− xk−1,

zk−1 − vk = xk−1 − [PV (uk)− PV ⊥(x̃k)],

(2.13)

which combined with (2.4), (2.5) and the definition of {zk} gives the
remaining statements in (2.12). The last statement of the proposition
follows from (2.12) and Algorithm 1’s definition.

The following theorem establishes global pointwise and ergodic con-
vergence rates for Algorithm 3, which will be used to prove the iteration-
complexity of the latter algorithm, as well as of its special instances.

Theorem 2.1.1 ([2, Theorem 3.1]) Let {x̃k}, {uk} and {εk} be gene-
rated by Algorithm 3 and let {x̃ak}, {uak} and {ε ak } be defined in (2.8).
Let also d0,V denote the distance of x0 to the solution set (2.2). The
following statements hold:

45



(a) For any k ≥ 1, there exists j ∈ {1, . . . , k} such that

uj ∈ T εj (x̃j),√
‖x̃j − PV (x̃j)‖2 + ‖uj − PV ⊥(uj)‖2 ≤

d0,V√
k

√
1 + σ

1− σ
,

εj ≤
σ2d 2

0,V

2(1− σ2)k
;

(2.14)

(b) for any k ≥ 1,

uak ∈ T ε
a
k (x̃ak),√

‖x̃ak − PV (x̃ak)‖2 + ‖uak − PV ⊥(uak)‖2 ≤ 2d0,V

k
,

0 ≤ ε ak ≤
2(1 + σ/

√
1− σ2)d 2

0,V

k
.

(2.15)

Proof: From (2.11), we obtain

x̃k = PV (z̃k) + PV ⊥(vk), uk = PV (vk) + PV ⊥(z̃k) ∀k ≥ 1. (2.16)

Direct substitution of the latter identities in x̃ak and uak in (2.8) yields

x̃ak = PV (z̃ak) + PV ⊥(vak), uak = PV (vak) + PV ⊥(z̃ak) ∀k ≥ 1. (2.17)

Using (2.16) and (2.17) in the definition of εak in (2.8) and the fact that
the operators PV and PV ⊥ are self-adjoint and idempotent we find

ε ak =
1

Λk

k∑
`=1

λ`(ε` + 〈z̃` − z̃ ak , v` − v ak 〉) ∀k ≥ 1, (2.18)

where {εak} is defined in (2.8). Now consider the ergodic sequences
{Λk}, {z̃ak} and {vak} defined in (1.14) with λk := 1 for all k ≥ 1.
Let d0 denote the distance of z0 = x0 to the solution set (TV )−1(0) of
(2.9) and note that d0 = d0,V in view of (2.10). Based on the above
considerations one can use the last statement in Proposition 2.1.1 and
Theorem 1.2.1 with λ := 1 to conclude that for any k ≥ 1 there exists
j ∈ {1, . . . , k} such that

vj ∈ (TV )εj (z̃j),

‖vj‖ ≤
d0,V√
k

√
1 + σ

1− σ
,

εj ≤
σ2d 2

0,V

2(1− σ2)k
,

(2.19)
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and

vak ∈ (TV )ε
a
k(z̃ak),

‖vak‖ ≤
2d0,V

k
,

εak ≤
2(1 + σ/

√
1− σ2)d 2

0,V

k
,

(2.20)

where {εak} is given in (2.8). Using Lemma 1.1.4, the definition in
(1.8) (for S = T εk), (2.16) and (2.17) we conclude that the equivalence
v ∈ (TV )ε(z̃) ⇐⇒ v ∈ (T ε)V (z̃) ⇐⇒ u ∈ T ε(x̃) holds for (z̃, v, ε) =
(z̃k, vk, εk) and (x̃, u, ε) = (x̃k, uk, εk), and (z̃, v, ε) = (z̃ak , v

a
k , ε

a
k) and

(x̃, u, ε) = (x̃ak, u
a
k, ε

a
k), for all k ≥ 1. As a consequence, the inclusions in

(2.14) and (2.15) follow from the ones in (2.19) and (2.20), respectively.
Since (2.17) gives vak = PV (uak) + PV ⊥(x̃ak) for all k ≥ 1, it follows
from the definition of {vk} in (2.11) that (v, u, x̃) = (vk, uk, x̃k) and
(v, u, x̃) = (vak , u

a
k, x̃

a
k) satisfy

‖v‖2 = ‖PV (u)‖2 + ‖PV ⊥(x̃)‖2 = ‖u− PV ⊥(u)‖2 + ‖x̃− PV (x̃)‖2

for all k ≥ 1, which, in turn, gives that the inequalities in (2.14) and
(2.15) follow from the ones in (2.19) and (2.20), respectively. This
concludes the proof.

Next result, which is a direct consequence of Theorem 2.1.1(b), gives
the iteration-complexity of Algorithm 3 to find x, u ∈ H and ε ≥ 0
satisfying the termination criterion (2.3).

Theorem 2.1.2 [2, Theorem 3.2](Iteration-complexity) Let d0,V de-
note the distance of x0 to the solution set (2.2) and let ρ, ε > 0 be given
tolerances. Then, Algorithm 3 finds x, u ∈ H and ε ≥ 0 satisfying the
termination criterion (2.3) in at most

O

(
max

{⌈
d0,V

ρ

⌉
,

⌈
d 2

0,V

ε

⌉})
(2.21)

iterations.

We now consider a special instance of Algorithm 3 which will be
used in Section 2.2 to derive operator splitting methods for solving the
problem of finding zeroes of a sum of finitely many maximal monotone
operators.
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Algorithm 4 An inexact Spingarn’s partial inverse method
for (2.1) (II)

(0) Let x0 ∈ H and σ ∈ [0, 1) be given and set k = 1.

(1) Compute x̃k ∈ H and εk ≥ 0 such that

uk := xk−1 − x̃k ∈ T εk(x̃k), εk ≤
σ2

2
‖x̃k − PV (xk−1)‖2.

(2.22)

(2) Define

xk = PV (x̃k) + PV ⊥(uk), (2.23)

set k ← k + 1 and go to step 1.

Remarks.

(i) Letting σ = 0 in Algorithm 4 and using Proposition 1.1.1(d) we
obtain from (2.22) that x = x̃k solves the inclusion 0 ∈ T (x) +
x−xk−1, i.e., x̃k = (T +I)−1xk−1 for all k ≥ 1. In other words, if
σ = 0, then Algorithm 4 is the Spingarn’s partial inverse method
originally presented in [44].

(ii) It follows from Proposition 1.1.1(e) that Algorithm 4 is a ge-
neralization to the general setting of inclusions with monotone
operators of the Epsilon-proximal decomposition method scheme
(EPDMS) proposed and studied in [35] for solving convex opti-
mization problems. Indeed, using the identity in (2.22) and some
direct computations we find

‖x̃k − PV (xk−1)‖2 = ‖PV ⊥(x̃k)− PV (uk)‖2

= ‖PV ⊥(x̃k)‖2 + ‖PV (uk)‖2,

which gives that the right hand side of the inequality in (2.22) is
equal to σ2/2

(
‖PV ⊥(x̃k)‖2 + ‖PV (uk)‖2

)
(cf. EPDMS method in

[35], with a different notation). We also mention that no iteration-
complexity analysis was performed in [35].

(iii) Likewise, letting V = H in Algorithm 4 and using Proposition
1.1.1(e) we obtain that Algorithm 4 generalizes the IPP-CO fra-
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mework of [33] (with λk := 1 for all k ≥ 1), for which iteration-
complexity analysis was presented in the latter reference, to the
more general setting of inclusions problems with monotone ope-
rators.

Proposition 2.1.2 ([2, Proposition 3.1]) The following statements hold
true.

(a) Algorithm 4 is a special instance of Algorithm 3.

(b) The conclusions of Theorem 2.1.1 and Theorem 2.1.2 are still
valid with Algorithm 3 replaced by Algorithm 4.

Proof: (a) Let {xk}, {x̃k}, {εk} and {uk} be generated by Algorithm
4. Firstly, note that the identity in (2.22) yields uk + x̃k − xk−1 = 0
and, consequently,

‖x̃k − PV (xk−1)‖2 = ‖PV (x̃k − xk−1)‖2 + ‖PV ⊥(x̃k)‖2

= ‖PV (x̃k − xk−1)‖2 + ‖PV ⊥(uk − xk−1)‖2

= ‖PV (x̃k) + PV ⊥(uk)− xk−1‖2,

and

PV (x̃k) + PV ⊥(uk) = (x̃k − PV ⊥(x̃k)) + PV ⊥(uk)

= (xk−1 − uk)− PV ⊥(x̃k) + PV ⊥(uk)

= xk−1 − [PV (uk) + PV ⊥(x̃k)] .

Altogether we obtain (a).
(b) This Item is a direct consequence of (a), Theorem 2.1.1 and

Theorem 2.1.2.
Next, we observe that Proposition 2.1.2(b) and the first remark

after Algorithm 4 allow us to obtain the iteration-complexity for the
Spingarn’s partial inverse method.

Proposition 2.1.3 ([2, Proposition 3.2]) Let d0,V denote the distance
of x0 to the solution set (2.2) and consider Algorithm 4 with σ = 0 or,
equivalently, the Spingarn’s partial inverse method of [44]. For given
tolerances ρ, ε > 0, the latter method finds

(a) x, u ∈ H such that u ∈ T (x), max {‖x− PV (x)‖, ‖u− PV ⊥(u)‖} ≤
ρ in at most

O

(⌈
d 2

0,V

ρ2

⌉)
(2.24)

iterations.
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(b) x, u ∈ H and ε ≥ 0 satisfying the termination criterion (2.3) in
at most a number of iterations given in (2.21).

Proof: (a) The statement in this item is a direct consequence of Propo-
sition 2.1.2(b), Theorem 2.1.1(a) and the fact that εk = 0 for all k ≥ 1
(because σ = 0 in (2.22)). (b) Here, the result follows from Proposition
2.1.2(b) and Theorem 2.1.2.

2.2 An inexact Spingarn’s operator split-
ting algorithm

In this section, we consider the problem (13), i.e., the problem of
finding x ∈ H such that

0 ∈
m∑
i=1

Ti(x) (2.25)

where m ≥ 2 and Ti : H ⇒ H is maximal monotone for i = 1, . . . ,m.
As observed in [44], x ∈ H satisfies the inclusion (2.25) if and only if
there exist u1, . . . , um ∈ H such that

ui ∈ Ti(x) and
m∑
i=1

ui = 0. (2.26)

That said, we consider the (extended) solution set of (2.25) – which we
assume nonempty – to be defined by

S∗(Σ) :={(zi)mi=1 ∈ Hm : ∃ x, u1, u2, ..., um ∈ H satisfying (2.26) s.t.
zi = x+ ui ∀i = 1, . . . ,m}.

(2.27)

In this section, we apply the results of Section 2.1 to present and
study the iteration-complexity of an inexact version of the Spingarn’s
operator splitting method [44, Chapter 5] for solving (2.25) and, as a
by-product, we obtain the iteration-complexity of the latter method.

To this end, we consider the following notion of approximate solu-
tion for (2.25): given tolerances ρ, δ, ε > 0, find x̄1, x̄2, . . . , x̄m ∈ H,
ū1, ū2, . . . , ūm ∈ H and ε̄1, ε̄2, . . . , ε̄m ≥ 0 such that (xi)

m
i=1 := (x̄i)

m
i=1,
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(ui)
m
i=1 := (ūi)

m
i=1 and (εi)

m
i=1 := (ε̄i)

m
i=1 satisfy

ui ∈ T εii (xi) ∀i = 1, . . . ,m,∥∥∥∥∥
m∑
i=1

ui

∥∥∥∥∥ ≤ ρ,
‖xi − x`‖ ≤ δ ∀i, ` = 1, . . . ,m,
m∑
i=1

εi ≤ ε.

(2.28)

For ρ = δ = ε = 0, criterion (2.28) gives x̄1 = x̄2 = · · · = x̄m =: x̄,∑m
i=1 ūi = 0 and ūi ∈ Ti(x̄) for all i = 1, . . . ,m, i.e., in this case

x̄, ū1, ū2, . . . , ūm satisfy (2.26).

We next present our inexact version of the Spingarn’s operator split-
ting method [44] for solving (2.25).

Algorithm 5 An inexact Spingarn’s operator splitting met-
hod for (2.25)

(0) Let (x0, y1,0, . . . , ym,0) ∈ Hm+1 such that y1,0 + · · · + ym,0 = 0
and σ ∈ [0, 1) be given and set k = 1.

(1) For each i = 1, . . . ,m, compute x̃i, k ∈ H and εi, k ≥ 0 such that

ui, k := xk−1 + yi, k−1 − x̃i, k ∈ T
εi, k
i (x̃i, k),

εi, k ≤
σ2

2
‖x̃i, k − xk−1‖2.

(2.29)

(2) Define

xk =
1

m

m∑
i=1

x̃i, k, yi, k = ui, k −
1

m

m∑
`=1

u`, k for i = 1, . . . ,m,

(2.30)

set k ← k + 1 and go to step 1.

Remarks.

(i) Letting σ = 0 in Algorithm 5 we obtain the Spingarn’s operator
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splitting method of [44].

(ii) In [12], Section 5, an inexact version of the Spingarn’s operator
splitting method – called split-sPIM(ε) – was proposed for solving
(2.25). With a different notation, for i = 1, . . . ,m, each iteration
of the latter method can be written as:



ui, k ∈ T
εi, k
i (x̃i, k),

‖ui, k + x̃i, k − xk−1 − yi, k−1‖2 + 2εi, k ≤
σ̂2
(
‖x̃i, k − xk−1‖2 + ‖ui, k − yi, k−1‖2

)
,

xk = xk−1 −
1

m

∑m
i=1 ui, k,

yi, k = yi, k−1 − x̃i, k +
1

m

∑m
`=1 x̃`, k,

(2.31)

where σ̂ ∈ [0, 1). The convergence analysis of [12] consists in ana-
lyzing each iteration (2.31) in the framework of the method descri-
bed in (1.15), whose convergence may fail if we take σ̂ > 1/

√
5, as

we observed in Remark 1.2.4. On the other hand, we will prove in
Proposition 2.2.1 that Algorithm 5 can be regarded as a special
instance of Algorithm 4, which converges for all σ ∈ [0, 1) (see
Proposition 2.1.1, Proposition 2.1.2(b) and [40, Theorem 3.1]).
Moreover, we mention that contrary to this work no iteration-
complexity analysis is performed in [12].

(iii) An inexact primal-dual composite method of partial inverses was
proposed and analyzed in [1] for solving a more general version of
(2.25) (in which compositions with linear operators are included
in the problem’s formulation) together with its dual problem (see
Problems 3.5 and 4.2 in [1]). Its (asymptotic) convergence is
obtained by viewing it as a special instance of an inexact method
of partial inverses, also presented and studied in [1] (see also the
third remark after Algorithm 2 for a related discussion).

(iv) In [15, Corollary 2.6], the weak convergence of the (exact) Spin-
garn’s operator splitting method for solving (2.25) with a weig-
hted sum of maximal monotone operators is obtained by exploi-
ting the connections between the latter method and the Douglas-
Rachford splitting scheme (see also Remark 2.4 in [15]). We men-
tion that [15] also proposed and studied parallel splitting algo-
rithms for computing the resolvent of a weighted sum of maximal
monotone operators as well as applications in convex program-
ming.
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For each i = 1, . . . ,m, let {x̃i, k}, {ui, k} and {εi, k} be generated by
Algorithm 5 and define the ergodic sequences associated to them:

x̃ai, k :=
1

k

k∑
`=1

x̃i,` , uai, k :=
1

k

k∑
`=1

ui,` ,

ε ai, k :=
1

k

k∑
`=1

[
εi,` + 〈x̃i,` − x̃ai, k, ui,` − uai, k〉

]
.

(2.32)

Analogously to Section 2.1, in the current section we follow the
Spingarn’s approach in [44] for solving problem (2.25), which consists
of solving the following inclusion in the product space Hm:

0 ∈ TV(z), (2.33)

where T : Hm ⇒ Hm is the maximal monotone operator defined by:
For all (x1, x2, . . . , xm) ∈ Hm,

T(x1, x2, . . . , xm) := T1(x1)× T2(x2)× · · · × Tm(xm) (2.34)

and

V := {(x1, x2, . . . , xm) ∈ Hm : x1 = x2 = · · · = xm} (2.35)

is a closed subspace of Hm whose orthogonal complement is

V⊥ = {(x1, x2, . . . , xm) ∈ Hm : x1 + x2 + · · ·+ xm = 0} . (2.36)

Based on the above observations, we have that problem (2.25) is equi-
valent to (2.1) with T and V given in (2.34) and (2.35), respectively.
Moreover, in this case, the orthogonal projections onto V and V⊥ have
the explicit formulae:

PV(x1, x2, . . . , xm) =

(
1

m

m∑
i=1

xi, . . . ,
1

m

m∑
i=1

xi

)
,

PV⊥(x1, x2, . . . , xm) =

(
x1 −

1

m

m∑
i=1

xi, . . . , xm −
1

m

m∑
i=1

xi

)
.

(2.37)

Next, we show that Algorithm 5 can be regarded as a special in-
stance of Algorithm 4 and, as a consequence, we will obtain that The-
orem 2.2.1 follows from results of Section 2.1 for Algorithm 4.
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Proposition 2.2.1 ([2, Proposition 4.1]) Let {xk}k≥0 and, for each
i = 1, . . . ,m, {yi, k}k≥0, {x̃i, k}k≥1, {ui, k}k≥1 and {εi, k}k≥1 be gene-
rated by Algorithm 5. Consider the sequences {xk}k≥0, {x̃k}k≥1 and
{uk}k≥1 in Hm and {εk}k≥1 in R+ where

xk := (xk + y1, k, . . . , xk + ym, k), x̃k := (x̃1, k, . . . , x̃m, k),

εk :=

m∑
i=1

εi, k, uk := (u1, k, . . . , um, k).
(2.38)

Then, for all k ≥ 1,

uk ∈
(
T
ε1,k

1 × · · · × T εm,k
m

)
(x̃k), uk + x̃k − xk−1 = 0,

εk ≤
σ2

2
‖x̃k − PV(xk−1)‖2,

xk = PV(x̃k) + PV⊥(uk).

(2.39)

As a consequence of (2.39), the sequences {xk}k≥0, {x̃k}k≥1, {uk}k≥1

and {εk}k≥1 are generated by Algorithm 4 for solving (2.9) with T and
V given in (2.34) and (2.35), respectively.

Proof: Note that (2.39) follows directly from (2.29), (2.30), (2.38) and
definition (1.3) (with Si = T εi,k for i = 1, . . . ,m). The last statement
of the Proposition is a direct consequence of (2.39) and Algorithm 4’s
definition.

Theorem 2.2.1 ([2, Theorem 4.1]) For each i = 1, . . . ,m, let {x̃i, k},
{ui, k} and {εi, k} be generated by Algorithm 5 and let {x̃ai, k}, {uai, k}
and {ε ai, k} be defined in (2.32) . Let also d0,Σ denote the distance
of (x0 + y1,0, . . . , x0 + ym,0) to the solution set (2.27). The following
statements hold:

(a) For any k ≥ 1, there exists j ∈ {1, . . . , k} such that

ui,j ∈ T
εi,j
i (x̃i,j) ∀i = 1, . . . ,m,∥∥∥∥∥

m∑
i=1

ui,j

∥∥∥∥∥ ≤
√
md0,Σ√
k

√
1 + σ

1− σ
,

‖x̃i,j − x̃`,j‖ ≤
2 d0,Σ√

k

√
1 + σ

1− σ
∀i, ` = 1, . . . ,m,

m∑
i=1

εi,j ≤
σ2d 2

0,Σ

2(1− σ2)k
;

(2.40)
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(b) for any k ≥ 1,

uai, k ∈ T
ε a
i, k

i (x̃ai, k) ∀i = 1, . . . ,m,∥∥∥∥∥
m∑
i=1

uai, k

∥∥∥∥∥ ≤ 2
√
md0,Σ

k
,

‖x̃ai,k − x̃a`,k‖ ≤
4 d0,Σ

k
∀i, ` = 1, . . . ,m,

m∑
i=1

ε ai, k ≤
2(1 + σ/

√
1− σ2)d 2

0,Σ

k
.

(2.41)

Proof: We start by defining the ergodic sequences associated to the
sequences {x̃k}, {uk} and {εk} in (2.38):

x̃ak :=
1

k

k∑
`=1

x̃` , uak :=
1

k

k∑
`=1

u` ,

ε ak :=
1

k

k∑
`=1

[
ε` + 〈x̃` − x̃ak,u` − uak〉

]
.

(2.42)

Observe that from (2.2), (2.27), (2.34), (2.35) and (2.36) we obtain
S∗(V,T) = S∗(Σ) and, consequently, d0,V = d0,Σ. That said, it follows
from the last statement in Proposition 2.2.1, Proposition 2.1.2(a) and
Theorem 2.1.1 that for any k ≥ 1, there exists j ∈ {1, . . . , k} such that

uj ∈
(
T
ε1, j
1 × T ε2, j2 × · · · × T εm, j

m

)
(x̃j),√

‖x̃j − PV(x̃j)‖2 + ‖uj − PV⊥(uj)‖2 ≤
d0,Σ√
k

√
1 + σ

1− σ
,

εj ≤
σ2d 2

0,Σ

2(1− σ2)k
,

(2.43)

and √
‖x̃ak − PV(x̃ak)‖2 + ‖uak − PV⊥(uak)‖2 ≤ 2d0,Σ

k
,

0 ≤ ε ak ≤
2(1 + σ/

√
1− σ2)d 2

0,Σ

k
.

(2.44)

In particular, we see that Item (a) of Theorem 2.2.1 follows from (2.43),
(2.38) and (2.37). Note now that from (2.42), (2.38) and (2.32) we
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obtain, for all k ≥ 1,

x̃ak = (x̃a1, k, x̃
a
2, k, . . . , x̃

a
m, k),

uak = (ua1, k, u
a
2, k, . . . , u

a
m, k),

εak =

m∑
i=1

εai, k.

(2.45)

Hence, the inequalities in (2.41) follow from (2.44), (2.45) and (2.37).
To finish the proof of the theorem it suffices to show the inclusions in
(2.41) for each i = 1, . . . ,m and all k ≥ 1. To this end, note that for
each i = 1, . . . ,m the desired inclusion is a direct consequence of the
inclusions in (2.29), the definitions in (2.32) and Theorem 1.1.1 (with
T = Ti for each i = 1, . . . ,m).

As a consequence of Theorem 2.2.1(b), we obtain the iteration-
complexity of Algorithm 5 to find x1, x2, . . . , xm ∈ H, u1, u2, . . . , um ∈
H and ε1, ε2, . . . , εm ≥ 0 satisfying the termination criterion (2.28):

Theorem 2.2.2 [2, Theorem 4.2](Iteration-complexity) Let d0,Σ de-
note the distance of (x0 + y1,0, . . . , x0 + ym,0) to the solution set (2.27)
and let ρ, δ, ε > 0 be given tolerances.

Then, Algorithm 5 finds x1, x2, . . . , xm ∈ H, u1, u2, . . . , um ∈ H
and ε1, ε2, . . . , εm ≥ 0 satisfying the termination criterion (2.28) in at
most

O

(
max

{⌈√
md0,Σ

ρ

⌉
,

⌈
d0,Σ

δ

⌉
,

⌈
d 2

0,Σ

ε

⌉})
(2.46)

iterations.

Using the first remark after Algorithm 5 and Theorem 2.2.1, we also
obtain the pointwise and ergodic iteration-complexities of Spingarn’s
operator splitting method [44, Chapter 5].

Theorem 2.2.3 [2, Theorem 4.3](Iteration-complexity) Let d0,Σ de-
note the distance of (x0 + y1,0, . . . , x0 + ym,0) to the solution set (2.27)
and consider Algorithm 5 with σ = 0 or, equivalently, the Spingarn’s
operator splitting method of [44]. For given tolerances ρ, δ, ε > 0, the
latter method finds
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(a) x1, x2, . . . , xm ∈ H and u1, u2, . . . , um ∈ H such that

ui ∈ Ti(xi) ∀i = 1, . . . ,m,∥∥∥∥∥
m∑
i=1

ui

∥∥∥∥∥ ≤ ρ,
‖xi − x`‖ ≤ δ , ∀i, ` = 1, . . . ,m,

(2.47)

in at most

O

(
max

{⌈
md 2

0,Σ

ρ2

⌉
,

⌈
d 2

0,Σ

δ2

⌉})
(2.48)

iterations.

(b) x1, x2, . . . , xm ∈ H, u1, u2, . . . , um ∈ H and ε1, ε2, . . . , εm ≥ 0
satisfying the termination criterion (2.28) in at most the number
of iterations given in (2.46).

Proof: (a) This item follows from Theorem 2.2.1(a) and the fact that
εi, k = 0 for each i = 1, . . . ,m and for all k ≥ 1 (because σ = 0 in
(2.29)). (b) This item follows directly from Theorem 2.2.2.

2.3 Applications to multi-term composite
convex optimization

In this section, we show how Algorithm 5 and its iteration-complexity
results can be used to derive a parallel forward-backward splitting met-
hod for multi-term composite convex optimization and to study its
iteration-complexity. More precisely, consider the minimization pro-
blem

min
x∈H

m∑
i=1

(fi + ϕi) (x) (2.49)

where m ≥ 2 and the following conditions are assumed to hold for all
i = 1, . . . ,m:

(A.1) fi : H → R is convex, and differentiable with a Li-Lipschitz
continuous gradient, i.e., there exists Li > 0 such that

‖∇fi(x)−∇fi(y)‖ ≤ Li‖x− y‖ ∀x, y ∈ H; (2.50)
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(A.2) ϕi : H → R is proper, convex and closed with an easily computa-
ble resolvent (λ∂ϕi + I)−1, for any λ > 0;

(A.3) the solution set of (2.49) is nonempty.

We also assume standard regularity conditions 1 on the functions ϕi
which make (2.49) equivalent to the monotone inclusion problem (2.25)
with Ti := ∇fi+∂ϕi, for all i = 1, . . . ,m, i.e., which make it equivalent
to the problem of finding x ∈ H such that

0 ∈
m∑
i=1

(∇fi + ∂ϕi) (x). (2.51)

Analogously to (2.28), we consider the following notion of approxi-
mate solution for (2.49): given tolerances ρ, δ, ε > 0, find x̄1, . . . , x̄m ∈
H, ū1, . . . , ūm ∈ H and ε̄1, . . . , ε̄m ≥ 0 such that (xi)

m
i=1 := (x̄i)

m
i=1,

(ui)
m
i=1 := (ūi)

m
i=1 and (εi)

m
i=1 := (ε̄i)

m
i=1 satisfy (2.28) with T εii replaced

by ∂εi fi + ∂ϕi, for each i = 1, . . . ,m. For ρ = δ = ε = 0, this criterion
gives x̄1 = x̄2 = · · · = x̄m =: x̄,

∑m
i=1 ūi = 0 and ūi ∈ (∇fi + ∂ϕi) (x̄)

for all i = 1, . . . ,m, i.e., in this case x̄ solves (2.51).

We will present a parallel forward-backward method for solving
(2.49) whose iteration-complexity is obtained by viewing it as a special
instance of Algorithm 5. Since problem (2.49) appears in various ap-
plications of convex optimization, it turns out that the development of
efficient numerical schemes for solving it – specially with m ≥ 2 very
large – is of great importance.

Next is our method for solving (2.49).

1see, e.g., [6, Corollary 16.39]
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Algorithm 6 A parallel forward-backward splitting method
for (2.49)

(0) Let (x0, y1,0, . . . , ym,0) ∈ Hm+1 such that y1,0 + · · · + ym,0 = 0
and σ ∈ (0, 1) be given and set λ = σ2/max{Li}mi=1 and k = 1.

(1) For each i = 1, . . . ,m, compute

x̃i, k = (λ∂ϕi + I)−1 (xk−1 + yi, k−1 − λ∇fi(xk−1)) . (2.52)

(2) Define

xk =
1

m

m∑
i=1

x̃i, k, yi, k = yi, k−1 + xk − x̃i, k for i = 1, . . . ,m,

(2.53)

set k ← k + 1 and go to step 1.

Remarks.

(i) Since in (2.52) we have a forward step in the direction−∇fi(xk−1)
and a backward step given by the resolvent of ∂ϕi, Algorithm 6
can be regarded as a parallel variant of the classical forward-
backward splitting algorithm [19].

(ii) Form = 1 the above method coincides with the forward-backward
method of [33], for which the iteration-complexity was studied in
the latter reference.

(iii) A forward-partial-inverse splitting method for solving (2.1) in
which T is assumed to be the sum of a point-to-set maximal
monotone operator and a cocoercive point-to-point (maximal mo-
notone) operator was proposed and analyzed in [8]. When app-
lied to solve (2.51), for a specific choice of parameters, the met-
hod presented in [8, Theorem 5.2] (with a different notation) can
be described according to the following iteration, for k ≥ 1 and
i = 1, . . . ,m:

x̃i,k = (λ∂ϕi + I)−1
(
xk−1 + λ

[
yi,k−1 − 1

m

∑m
`=1 ∇f`(xk−1)

] )
,

xk = 1
m

∑m
i=1 x̃i, k,

yi, k = yi, k−1 + λ−1(xk − x̃i, k) for i = 1, . . . ,m,

(2.54)
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which is similar to Algorithm 5. We mention that the (asympto-
tic) convergence of (2.54) as well as other algorithms related to
the algorithm of this section can be found in Theorem 5.2 and
Corollary 5.3, and Section 6.1 of [8], respectively. Moreover, in
contrast to this work, no iteration-complexity analysis is perfor-
med in [8].

For each i = 1, . . . ,m, let {xk}, {x̃i, k} be generated by Algorithm
6, {ui, k} and {εi, k} be defined in (2.56) and let {x̃ai, k}, {uai, k} and
{ε ai, k} be given in (2.32). Define, for all k ≥ 1,

u′i, k :=
1

λ
ui, k , ε′i, k :=

1

λ
εi, k ,

u′ ai, k :=
1

λ
uai, k , ε′ ai, k :=

1

λ
εai, k ,

ε′′ ai, k :=
1

k

k∑
`=1

[
ε′i,` + 〈x̃i,` − x̃ai, k,∇fi(x`−1)− 1

k

k∑
s=1

∇fi(xs−1)〉
]
.

(2.55)

Next proposition shows that Algorithm 6 is a special instance of
Algorithm 5 for solving (2.25) with Ti = ∇(λfi) + ∂(λϕi) for all i =
1, . . . ,m.

Proposition 2.3.1 ([2, Proposition 4.2]) Let {xk}k≥0 and, for i =
1, . . . ,m, {yi, k}k≥0 and {x̃i, k}k≥1 be generated by Algorithm 6. For
i = 1, . . . ,m, consider the sequences {ui, k}k≥1 and {εi, k}k≥1 where,
for all k ≥ 1,

ui, k := xk−1 + yi, k−1 − x̃i, k,
εi, k := λ [fi(x̃i, k)− fi(xk−1)− 〈∇fi(xk−1), x̃i, k − xk−1〉] .

(2.56)

Then, for all k ≥ 1,

∇(λfi)(xk−1) ∈ ∂εi, k(λfi)(x̃i, k), (2.57)
ui, k −∇(λfi)(xk−1) ∈ ∂(λϕi)(x̃i, k), (2.58)

ui, k ∈
(
∂εi, k(λfi) + ∂(λϕi)

)
(x̃i, k), (2.59)

0 ≤ εi, k ≤
σ2

2
‖x̃i, k − xk−1‖2, (2.60)

xk and yi, k satisfy (2.30). (2.61)
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As a consequence of (2.56)–(2.61), the sequences {xk}k≥0, {yi, k}k≥1,
{x̃i, k}k≥0, {εi,k}k≥1 and {ui, k}k≥1 are generated by Algorithm 5 for
solving (2.25) with

Ti = ∇(λfi) + ∂(λϕi) ∀i = 1, . . . ,m.

Proof: Inclusion (2.57) follows from Lemma 1.1.1 with (f, x, x̃, v, ε) =
(λfi, xk−1, x̃i, k,∇(λfi)(xk−1), εi, k), where εi, k is given in (2.56). Inclu-
sion (2.58) follows from (2.52), the first identity in (2.56) and Lemma
1.1.2(a). Inclusion (2.59) is a direct consequence of (2.57) and (2.58).
The inequalities in (2.60) follow from assumption (A.1), the second
identity in (2.56), Lemma 1.1.3 and the definition of λ > 0 in Algo-
rithm 6. The fact that xk satisfies (2.30) follows from the first identi-
ties in (2.30) and (2.53). Direct use of (2.53) and the assumption that
y1,0 + · · ·+ym,0 = 0 in step 0 of Algorithm 6 gives

∑m
`=1 y`, k = 0 for all

k ≥ 0, which, in turn, combined with the second identity in (2.53) and
the first identity in (2.56) proves that yi, k satisfies the second identity
in (2.30). Altogether, we obtain (2.61). The last statement of the pro-
position follows from (2.56)–(2.61) and Proposition 1.1.1(b; e).

Next, we prove (global) convergence rates for Algorithm 6.

Theorem 2.3.1 ([2, Theorem 4.4]) For each i = 1, . . . ,m, let {x̃i, k}
be generated by Algorithm 6 and {x̃ ai, k} be given in (2.32). Let {u′i, k},
{ε′i, k}, {u′ ai, k}, {ε′ ai, k} and {ε′′ ai, k} be given in (2.55). Let also d0,Σ

denote the distance of (x0 + y1,0, . . . , x0 + ym,0) to the solution set
(2.27) in which Ti := ∇(λfi) + ∂(λϕi) for i = 1, . . . ,m, and define
LΣ := max{Li}mi=1. The following hold:

(a) For any k ≥ 1, there exists j ∈ {1, . . . , k} such that

u′i,j ∈
(
∂ε′i,jfi + ∂ϕi

)
(x̃i,j) ∀i = 1, . . . ,m,∥∥∥∥∥

m∑
i=1

u′i,j

∥∥∥∥∥ ≤
√
mLΣ d0,Σ

σ2
√
k

√
1 + σ

1− σ
,

‖x̃i,j − x̃`,j‖ ≤
2 d0,Σ√

k

√
1 + σ

1− σ
∀i, ` = 1, . . . ,m,

m∑
i=1

ε′i,j ≤
LΣ d

2
0,Σ

2(1− σ2)k
;

(2.62)
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(b) for any k ≥ 1,

u′ ai, k ∈
(
∂ε′′ ai, k

fi + ∂(ε′ ai, k−ε′′ ai, k)ϕi

)
(x̃ai, k) ∀i = 1, . . . ,m,∥∥∥∥∥

m∑
i=1

u′ai,k

∥∥∥∥∥ ≤ 2
√
mLΣ d0,Σ

σ2k
,

‖x̃ai, k − x̃a`,k‖ ≤
4d0,Σ

k
∀i, ` = 1, . . . ,m,

m∑
i=1

ε′ ai, k ≤
2(1 + σ/

√
1− σ2)LΣ d

2
0,Σ

σ2k
.

(2.63)

Proof:
From the last statement of Proposition 2.3.1, the fact that(

m∑
i=1

[∇fi + ∂ϕi]

)−1

(0) =

(
m∑
i=1

[∇(λfi) + ∂(λϕi)]

)−1

(0)

and Theorem 2.2.1 we obtain that (2.40) and (2.41) hold. As a con-
sequence of the latter fact, (2.59), (2.55), Lemma 1.1.3(b), the fact
that λ = σ2/LΣ and some direct calculations we obtain (2.62) and the
inequalities in (2.63). To finish the proof, it suffices to prove the inclu-
sion in (2.63). To this end, note first that from (2.57), (2.32), the last
identity in (2.55), Lemma 1.1.2(b) and Theorem 1.1.1(b) we obtain, for
each i = 1, . . . ,m,

1

k

k∑
s=1

∇fi(xs−1) ∈ ∂ε′′ ai, k
fi(x̃

a
i, k) ∀k ≥ 1. (2.64)

On the other hand, it follows from (2.58), Lemma 1.1.2(a), (2.55), The-
orem 1.1.1(b) and some direct calculations that, for each i = 1, . . . ,m,

u′ ai, k −
1

k

k∑
s=1

∇fi(xs−1) ∈ ∂(ε′ ai, k−ε′′ ai, k)ϕi(x̃
a
i, k) ∀k ≥ 1, (2.65)

which, in turn, combined with (2.64) gives the inclusion in (2.63).

The following theorem is a direct consequence of Theorem 2.3.1.

Theorem 2.3.2 [2, Theorem 4.5](iteration-complexity) Let d0,Σ de-
note the distance of (x0 + y1,0, . . . , x0 + ym,0) to the solution set (2.27)
in which Ti := ∇(λfi) + ∂(λϕi), for i = 1, . . . ,m, and let ρ, δ, ε > 0 be
given tolerances. Let LΣ := max{Li}mi=1. Then, Algorithm 6 finds

62



(a) x1, x2, . . . , xm ∈ H, u1, u2, . . . , um ∈ H and ε1, ε2, . . . , εm ≥ 0
satisfying the termination criterion (2.28) with T εii replaced by
∂εifi + ∂ϕi in at most

O

(
max

{⌈
mL2

Σ d
2
0,Σ

ρ2

⌉
,

⌈
d2

0,Σ

δ2

⌉
,

⌈
LΣ d

2
0,Σ

ε

⌉})
(2.66)

iterations.

(b) x1, x2, . . . , xm ∈ H, u1, u2, . . . , um ∈ H, ε1, ε2, . . . , εm ≥ 0 and
ε̂1, ε̂2, . . . , ε̂m ≥ 0 such that

ui ∈ (∂εifi + ∂ε̂iϕi) (xi) ∀i = 1, . . . ,m,∥∥∥∥∥
m∑
i=1

ui

∥∥∥∥∥ ≤ ρ,
‖xi − x`‖ ≤ δ , ∀i, ` = 1, . . . ,m,
m∑
i=1

(εi + ε̂i) ≤ ε

(2.67)

in at most

O

(
max

{⌈√
mLΣ d0,Σ

ρ

⌉
,

⌈
d0,Σ

δ

⌉
,

⌈
LΣ d

2
0,Σ

ε

⌉})
(2.68)

iterations.
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Chapter 3

On the convergence rate of
the SPDG algorithm

In this chapter, we show that the scaled proximal decomposition
on the graph of a maximal monotone operator (SPDG) algorithm [25]
can be analyzed within the Spingarn’s partial inverse framework. We
analyze the global (nonasymptotic) convergence rate of the SPDG al-
gorithm under the assumptions that the operator T in (7) is strongly
monotone and Lipschitz continuous [25]. We will prove, in particular,
that under such conditions on T , the partial inverse TV is strongly
monotone as well, which allows one to employ recent results on the
convergence and iteration-complexity of proximal point type methods
for strongly monotone operators (see Proposition 1.3.1).

By showing that the (scaled) partial inverse of T – with respect to
V – is strongly monotone, we obtain a potentially faster convergence to
the SPDG algorithm when compared to the one proved in [25] by means
of fixed point techniques. Moreover, the convergence rates obtained in
this chapter allows one to measure the convergence speed of the SPDG
algorithm on three different measures of approximate solution to the
problem (7) (see Theorem 3.0.2 and the remarks right below it).

We consider (again) problem (7), i.e., the problem of finding x, u ∈
H such that

x ∈ V, u ∈ V ⊥ and u ∈ T (x) (3.1)

where now the following hold:

A1) V is a closed vector subspace of H.

65



A2) T : H⇒ H is (maximal) η-strongly monotone, i.e., T is maximal
monotone and there exists η > 0 such that

〈z − z′, v − v′〉 ≥ η‖z − z′‖2 ∀v ∈ T (z), v′ ∈ T (z′). (3.2)

A3) T : H⇒ H is L-Lipschitz continuous, i.e., there exists L > 0 such
that

‖v − v′‖ ≤ L‖z − z′‖ ∀v ∈ T (z), v′ ∈ T (z′). (3.3)

In order to study the iteration-complexity of the SPDG algorithm,
let us recall the following notion of approximate solution of (3.1), obtai-
ned in Chapter 2: for a given tolerance ρ > 0, find x, u ∈ H such that

u ∈ T (x), max {‖x− PV (x)‖, γ‖u− PV ⊥(u)‖} ≤ ρ, (3.4)

where γ > 0. For ρ = 0, criterion (3.4) gives x ∈ V , u ∈ V ⊥ and
u ∈ T (x), i.e., in this case the pair (x, u) is a solution of (3.1). We
mention that criterion (3.4) naturally appears in different settings and
has not been considered in [25].

Next, we formally present the scaled proximal decomposition on
the graph of a maximal monotone operator (SPDG) algorithm, already
briefly discussed (with a different notation) in (15).

Algorithm 7 SPDG algorithm for solving (3.1) [25, Algo-
rithm 3]

(0) Let x0 ∈ V , y0 ∈ V ⊥, γ > 0 be given and set k = 1.

(1) Compute

x̃k = (γT + I)−1 (xk−1 + γyk−1) ,

uk = γ−1 (xk−1 + γyk−1 − x̃k) .
(3.5)

(2) If x̃k ∈ V and uk ∈ V ⊥, then stop. Otherwise, define

xk = PV (x̃k), yk = PV ⊥(uk), (3.6)

set k ← k + 1 and go to step 1.

Remarks.
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(i) Algorithm 7 was originally proposed and studied in [25]. When
γ = 1, it reduces to the Spingarn’s partial inverse method for
solving (3.1). The authors of the latter reference emphasize the
importance of introducing the scaling γ > 0 in order to speed up
the convergence of the SPDG algorithm, specially when solving
ill-conditioned problems.

(ii) As we mentioned earlier, one of the contributions of this thesis
is to show that similar results (actually potentially better) to the
one obtained in [25] regarding the convergence rate of Algorithm
7 can be proved by means of the Spingarn’s partial inverse fra-
mework, instead of fixed point techniques.

The following result appears (with a different notation) inside the
proof of [25, Theorem 4.2].

Theorem 3.0.1 (inside the proof of [25, Theorem 4.2]) If T is η–
strongly monotone and Lipschitz continuous with constant L, then the
convergence of the sequence {(xk, γyk)} is linear, in the sense that

‖x∗ − xk‖2 + γ2‖u∗ − yk‖2 ≤
(

1− 2γη

(1 + γL)2

)k
d 2

0 ∀k ≥ 1,

(3.7)

where (x∗, u∗) is the (unique) solution of (3.1) and

d0 :=
√
‖x∗ − x0‖2 + γ2‖u∗ − y0‖2. (3.8)

Remarks.

(i) The optimal convergence speed is achieved by letting γ = 1/L in
(3.7), in which case (see p. 461 in [25])

‖x∗ − xk‖2 + γ2‖u∗ − yk‖2 ≤
(

1− η

2L

)k
d 2

0 ∀k ≥ 1. (3.9)

(ii) It follows from (3.9) that, for a given tolerance ρ > 0, Algorithm
7 finds x, y ∈ H such that ‖x∗ − x‖2 + γ2‖u∗ − y‖2 ≤ ρ after
performing at most

2 + log

(
2L

2L− η

)−1

log

(
d 2

0

ρ

)
(3.10)

iterations. In the third remark after Theorem 3.0.2, we show that
our approach provides a potentially better upper bound on the
number of iterations needed by the SPDG algorithm to achieve
prescribed tolerances, specially for ill-conditioned problems.
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A direct consequence of the next proposition is that, in contrast to
the reference [25], it is possible to analyze the SPDG algorithm within
the original Spingarn’s partial inverse framework. We show that under
assumptions A2) and A3), the partial inverse operator TV is strongly
monotone.

Proposition 3.0.1 ([3, Proposition 2.2]) Under the assumptions A2)
and A3) on the maximal monotone operator T , its partial inverse TV
with respect to V is µ-strongly (maximal) monotone with

µ =
η

1 + L2
> 0. (3.11)

Proof: Take v ∈ TV (z), v′ ∈ TV (z′) and note that, from (1.8), we have

PV (v) + PV ⊥(z) ∈ T (PV (z) + PV ⊥(v)),

PV (v′) + PV ⊥(z′) ∈ T (PV (z′) + PV ⊥(v′)), (3.12)

which, in turn, combined with the assumption A2) and after some direct
calculations yields

〈z − z′, v − v′〉 = 〈PV (z − z′) + PV ⊥(z − z′), PV (v − v′) + PV ⊥(v − v′)〉
= 〈PV (z − z′) + PV ⊥(v − v′), PV (v − v′) + PV ⊥(z − z′)〉
≥ η‖PV (z − z′) + PV ⊥(v − v′)‖2

= η
(
‖PV (z − z′)‖2 + ‖PV ⊥(v − v′)‖2

)
(3.13)

≥ η‖PV (z − z′)‖2. (3.14)

On the other hand, assumption A3) and (3.12) imply

‖[PV (v) + PV ⊥(z)]− [PV (v′) + PV ⊥(z′)]‖ ≤
L‖[PV (z) + PV ⊥(v)]− [PV (z′) + PV ⊥(v′)]‖,

which, in particular, gives

‖PV (z − z′)‖2 + ‖PV ⊥(v − v′)‖2 ≥

≥ 1

L2

(
‖PV (v − v′)‖2 + ‖PV ⊥(z − z′)‖2

)
≥ 1

L2
‖PV ⊥(z − z′)‖2. (3.15)

68



Using (3.14) and combining (3.13) and (3.15) we find, respectively,

〈z − z′, v − v′〉 ≥ η‖PV (z−z′)‖2, L2〈z − z′, v − v′〉 ≥ η‖PV ⊥(z−z′)‖2.

The desired result now follows by adding the above inequalities and
by using the definition of µ > 0 in (3.11).

Next, we show that Algorithm 7 is a special instance of Algorithm
2.

Proposition 3.0.2 ([3, Proposition 2.3]) Let {xk} and {yk} be gene-
rated by Algorithm 7 and define

zk = xk + γyk ∀k ≥ 0. (3.16)

Then, for all k ≥ 1,

zk−1 − zk = PV (γuk) + PV ⊥(x̃k), (3.17)

zk = ((γT )V + I)
−1
zk−1. (3.18)

As a consequence of (3.18), we have that Algorithm 7 is a special
instance of Algorithm 2 with λ = 1 for solving (1.28) with A = (γT )V .

Proof: Using (3.5), we obtain γuk ∈ (γT )(x̃k) and, as a consequence,
from (1.8), we have

PV (γuk) + PV ⊥(x̃k) ∈ (γT )V (PV (x̃k) + PV ⊥(γuk)). (3.19)

From the second identity in (3.5), we have γuk + x̃k = xk−1 + γyk−1,
which combined with (3.6) gives

PV (γuk) = xk−1 − xk, PV ⊥(x̃k) = γ(yk−1 − yk),

which, in turn, is equivalent to (3.17). Using (3.19), (3.17), (3.16)
and (3.6) we find zk−1 − zk ∈ (γT )V (zk), which is clearly equivalent
to (3.18). The last statement of the proposition follows directly from
(3.18) and Algorithm 2’s definition.

In the next theorem, we present one of the main contributions of
this thesis, namely, convergence rates for the SPDG algorithm, obtained
within the original Spingarn’s partial inverse framework.
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Theorem 3.0.2 ([3, Theorem 2.4]) Let {xk}, {yk}, {x̃k} and {uk} be
generated by Algorithm 7, let (x∗, u∗) be the (unique) solution of (3.1)
and let d0 be as in (3.8). Then, for all k ≥ 1,

‖xk−1 − xk‖2 + γ2‖yk−1 − yk‖2 ≤
(

1− 2γη

(1 + γL)2 − 2γ(L− η)

)k−1

d 2
0 ,

(3.20)

‖x̃k − PV (x̃k)‖2 + γ2‖uk − PV ⊥(uk)‖2 ≤(
1− 2γη

(1 + γL)2 − 2γ(L− η)

)k−1

d 2
0 ,

(3.21)

‖x∗ − xk‖2 + γ2‖u∗ − yk‖2 ≤
(

1− 2γη

(1 + γL)2 − 2γ(L− η)

)k
d 2

0 .

(3.22)

Proof: First, note that, from (1.8), (x∗, u∗) is a solution of (3.1) if
and only if x∗ + γu∗ =: z∗ ∈ (γT )−1

V (0). Using the last statement
in Proposition 3.0.2, Proposition 3.0.1 to the operator γT (which is
(γη)-strongly monotone and (γL)-Lipschitz continuous) and Proposi-
tion 1.3.1, we conclude that the inequalities (1.31) and (1.32) hold with
z∗ as above, λ = 1, zk as in (3.16) and

µ =
γη

1 + (γL)2
.

Direct calculations yield (recall that λ = 1)

2µ

1 + 2µ
=

2γη

(1 + γL)2 − 2γ(L− η)
.

Hence, (3.20) and (3.22) follow from (1.31) and (1.32), respectively. To
finish the proof, it remains to prove (3.21). To this end, note that it
follows from (3.16), (3.17), (3.20) and the facts that PV ⊥ = I−PV and
PV = I − PV ⊥ .

Remarks.

(i) Analogously to first remark after Theorem 3.0.1, one can easily
verify that γ = 1/L provides the best convergence speed in (3.20)–

70



(3.22), in which case we find, respectively,

‖xk−1 − xk‖2 + γ2‖yk−1 − yk‖2 ≤
(

1− η

η + L

)k−1

d 2
0 , (3.23)

‖x̃k − PV (x̃k)‖2 + γ2‖uk − PV ⊥(uk)‖2 ≤
(

1− η

η + L

)k−1

d 2
0 ,

(3.24)

‖x∗ − xk‖2 + γ2‖u∗ − yk‖2 ≤
(

1− η

η + L

)k
d 2

0 . (3.25)

(ii) Since L ≥ η, it follows that the above estimates are potentially
better (specially to ill-conditioned problems) than the optimal one
obtained to the SPDG algorithm in [25] via fixed point techniques,
namely (3.9). The same remark applies to the rates in (3.20)–
(3.22), when compared to the corresponding one in (3.7). See
Figure 3.1.

(iii) Note that (3.24) (resp. (3.25)) imply that, for a given tolerance
ρ > 0, the SPDG algorithm finds a pair (x, u) (resp. (x, γy)) sa-
tisfying the termination criterion (3.4) (resp. ‖x∗−x‖2 +γ2‖u∗−
y‖2 ≤ ρ) after performing no more than

2 + log

(
η + L

L

)−1

log

(
d 2

0

ρ

)
(3.26)

iterations.

(iv) By taking L = 57 and η = 9 (see p. 462 in [25]), we find

log

(
2L

2L− η

)−1

≈ 13 and log

(
η + L

L

)−1

≈ 7 in (3.10) and

(3.26), respectively. This shows that the upper bound (3.26),
obtained in this thesis, is more accurate than the corresponding
one (3.10), obtained in [25].
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Figure 3.1: Solid line: see the convergence rates (3.23)–(3.25); dotted
line: see (3.9).
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Chapter 4

Final remarks

In this thesis, we proposed and analyzed the iteration-complexity of
an inexact version of the Spingar’s partial inverse method and, as a con-
sequence, we obtained the iteration-complexity of an inexact version of
the Spingarn’s operator splitting method as well as of a parallel forward-
backward method for multi-term composite convex optimization. We
proved that our method falls in the framework of the hybrid proxi-
mal extragradient (HPE) method, for which the iteration-complexity
has been obtained recently by Monteiro and Svaiter. We introduced
a notion of approximate solution for the Spingarn’s problem (which
generalizes the one introduced by Monteiro and Svaiter for monotone
inclusions) and proved the iteration-complexity for the above mentio-
ned methods based on this notion of approximate solution. We also
proved that the SPDG algorithm can alternatively be analyzed within
the Spingarn’s partial inverse framework, instead of the fixed point ap-
proach proposed in [25]. We proved that under the assumptions of
[25], namely strong monotonicity and Lipschitz continuity, the Spin-
garn’s partial inverse of the underlying maximal monotone operator is
strongly monotone as well. This allowed us to employ recent develop-
ments in the convergence analysis and iteration-complexity of proximal
point type methods for strongly monotone operators. By doing this,
we additionally obtained a potentially better convergence speed for the
SPDG algorithm as well as a better upper bound on the number of
iterations needed to achieve prescribed tolerances.
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