

UNIVERSIDADE FEDERAL DE SANTA CATARINA CAMPUS ARARANGUÁ CENTRO DE CIÊNCIAS, TECNOLOGIAS E SAÚDE DEPARTAMENTO DE ENERGIA E SUSTENTABILIDADE PLANO DE ENSINO

SEMESTRE 2019.1

I. IDENTIFICAÇÃO DA DISCIPLINA:					
CÓDIGO	NOME DA DISCIPLINA	Nº DE HORAS-AU TEÓRICAS	JLA SEMANAIS PRÁTICAS	TOTAL DE HORAS-AULA SEMESTRAIS	
EES 7383	Instalações Elétricas	04	00	72	

HORÁRIO			
TURMAS TEÓRICAS	TURMAS PRÁTICAS	MODALIDADE	
08653 - 2.1830. 2	-	Presencial	
08653 - 4.1830. 2			

II. PROFESSOR(ES) MINISTRANTE(S)	
LETÍCIA TORETI SCARABELOT (leticia.scarabelot@posgr	nd.ufsc.br)

III. PRÉ-REQUISITO(S)		
CÓDIGO	NOME DA DISCIPLINA	
EES 7372	Transmissão e Distribuição de Energia	

IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA Graduação em Engenharia de Energia

V. JUSTIFICATIVA

As instalações elétricas constituem um importante campo de trabalho para o Engenheiro de Energia, que pode projetar, ampliar, adequar e melhorar sistemas novos ou existentes. Desta forma, esta disciplina apresenta conceitos de instalações elétricas prediais e industriais visando à máxima eficiência energética desses sistemas.

VI. EMENTA

Instalações elétricas prediais e industriais. Fornecimento de energia elétrica em tensão primária e secundária de distribuição. Materiais utilizados em instalações. Dimensionamento de condutores. Equipamentos de proteção. Iluminação predial e industrial. Correção de fator de potência. Harmônicas. Sistemas de aterramento e proteção contra descargas atmosféricas. Subestações abaixadoras de tensão. Eficiência energética em instalações elétricas.

VII. OBJETIVOS

Objetivo Geral:

Capacitar o aluno para a análise e projeto de instalações elétricas prediais e industriais.

Objetivos Específicos:

- Compreender os conceitos básicos de fornecimento de energia elétrica;
- Utilizar normas de projeto de instalações elétricas;
- Conhecer fundamentos de iluminação predial e industrial;
- Compreender os conceitos de eficiência energética em instalações elétricas;
- Aplicar métodos de correção de fator de potência e análise de harmônicas;
- Avaliar riscos e projetar sistemas de aterramento e proteção contra descargas atmosféricas;
- Conhecer e dimensionar equipamentos e materiais de instalações elétricas prediais e industriais.

VIII. CONTEÚDO PROGRAMÁTICO

- Instalações elétricas prediais e industriais.
- Fornecimento de energia elétrica em tensão primária e secundária de distribuição.
- Dimensionamento de condutores.
- Equipamentos de proteção.
- Iluminação predial e industrial.
- Correção de fator de potência.
- Harmônicas.
- Sistemas de aterramento e proteção contra descargas atmosféricas.
- Subestações abaixadoras de tensão.
- Materiais utilizados em instalações.
- Eficiência energética em instalações elétricas.

IX. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

Aula expositiva e dialogada com dinâmicas em grupos. Apresentação de exemplos e estudos de caso. Resolução de exercícios em sala de aula.

X. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

- A verificação do rendimento escolar compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, ficando nela reprovado o aluno que não comparecer, no mínimo a 75% das mesmas.
- A nota mínima para aprovação na disciplina será 6,0 (seis). (Art. 69 e 72 da Res. nº 17/CUn/1997).
- O aluno com frequência suficiente (FS) e média das notas de avaliações do semestre entre 3,0 e 5,5 terá direito
 a uma nova avaliação no final do semestre (REC), exceto as atividades constantes no art.70,§ 2º. A nota será
 calculada por meio da média aritmética entre a média das notas das avaliações parciais (MF) e a nota obtida na
 nova avaliação (REC). (Art. 70 e 71 da Res. nº 17/CUn/1997).

$$NF = \frac{MF + REC}{2}$$

 Ao aluno que não comparecer às avaliações ou não apresentar trabalhos no prazo estabelecido será atribuída nota 0 (zero). (Art. 70, § 4º da Res. nº 17/CUn/1997)

Avaliações Escritas

A avaliação da disciplina será feita através dos seguintes instrumentos:

Provas (P1, P2): serão realizadas duas provas regulares durante o semestre;

Projeto Elétrico (PE): será proposto um trabalho envolvendo os tópicos da disciplina.

As avaliações poderão conter questões objetivas, objetivas mistas e dissertativas.

Poderão ser designadas outras atividades para complementar os assuntos. Neste caso a nota dessas atividades será incluída nas provas.

O cálculo da média final será efetuado de acordo com a seguinte equação

$$MF = 0.3.P1 + 0.3.P2 + 0.4.PE$$

Pedido de Nova Avaliação - Art. 74 da Res. nº 17/CUn/97

 O aluno, que por motivo de força maior e plenamente justificado, deixar de realizar atividades avaliativas previstas no plano de ensino, deverá fazer o pedido à Chefia do Departamento de Energia e Sustentabilidade (EES), dentro do prazo de 3 (três) dias úteis, apresentando documentação comprobatória. O pedido de Nova Avaliação deve ser formalizado na Secretaria Integrada de Departamentos (SID).

XI. CRONOGRAMA PREVISTO				
AULA (semana)	DATA	ASSUNTO		
1 a	11/03/19 a 16/11/19	Apresentação da disciplina. Instalações elétricas prediais e industriais.		
2 a	18/03/19 a 23/03/19	Fornecimento de energia elétrica em tensão primária e secundária de distribuição.		
3 a	25/03/19 a 30/03/19	Dimensionamento de condutores.		
4 a	01/04/19 a 06/04/19	Equipamentos de proteção. Dia não letivo.		
5 a	08/04/19 a 13/04/19	Iluminação predial e industrial.		
6ª	15/04/19 a 20/04/19	Exercícios. Avaliação 1.		
7 a	22/04/19 a 27/04/19	Correção de fator de potência. Harmônicas.		
8 a	29/04/19 a 04/05/19	Sistemas de aterramento. Dia não letivo.		
9 a	06/05/19 a 11/05/19	Entrega da primeira parte do projeto elétrico. Sistema de proteção contra descargas atmosféricas.		
10 a	13/05/19 a 18/05/19	Subestações abaixadoras de tensão.		
11 a	20/05/19 a 25/05/19	Materiais utilizados em instalações.		
12 a	27/05/19 a 01/06/19	Desenvolvimento do projeto elétrico.		
13 a	03/06/19 a 08/06/19	Avaliação 2.		
14 a	10/06/19 a 15/06/19	Desenvolvimento do projeto elétrico.		
15 ª	17/06/19 a 22/06/19	Desenvolvimento do projeto elétrico.		
16 a	24/06/19 a 29/06/19	Avaliação Substitutiva		
17 a	01/07/19 a 06/07/19	Entrega final do projeto elétrico.		
18ª	08/07/19 a 13/07/19	Prova de Recuperação. Divulgação dos Resultados.		

XII. Feriados e dias não letivos previstos para o semestre 2019.1			
DATA			
03/04/19 (qua)	Aniversário de Araranguá		
19/04/19 (sex)	Sexta-feira Santa		
20/04/19 (sab)	Dia não letivo		
21/04/19 (dom)	Tiradentes/ Páscoa		
01/05/19 (qua)	Dia do Trabalhador		
04/05/19 (sab)	Dia da Padroeira de Araranguá		
20/06/19 (qui)	Corpus Christi		
21/06/19 (sex)	Dia não letivo		
22/06/19 (sab)	Dia não letivo		

XIII. BIBLIOGRAFIA BÁSICA

- 1. MAMEDE FILHO, João. Instalações elétricas industriais. 8. ed. Rio de Janeiro: LTC, 2010. xiv, 666 p.
- 2. CAVALIN, Geraldo; CERVELIN, Severino. Instalações elétricas prediais: conforme Norma NBR 5410:2004. 22. ed. São Paulo: Érica, 2014. 422 p.
- 3. NISKIER, Julio; MACINTYRE, A. J. Instalações elétricas. 6. ed. Rio de Janeiro: LTC, 2013. xx, 443 p.

XIV. BIBLIOGRAFIA COMPLEMENTAR

- 1 COTRIM, Ademaro A. M. B. Instalações elétricas. 5. ed. São Paulo: Pearson, c2009. viii, 496 p.
- 2 CREDER, Helio. Instalações elétricas. 15. ed. Rio de Janeiro: LTC, c2007. xiv, 428 p.
- 3 LAMBERTS, Roberto; DUTRA, Luciano; PEREIRA, Fernando Oscar Ruttkay. Eficiência energética na arquitetura. 3. ed. Rio de Janeiro: PROCEL, [201-]. 366 p. [Disponível online].
- 4 ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 5410: Instalações elétricas de baixa tensão. 2. ed. Rio de Janeiro: ABNT, 2004. VII,209p. [Disponível online].
- 5 NEGRISOLI, Manoel Eduardo Miranda. Instalações elétricas: projetos prediais em baixa tensão. 3. ed. rev. e ampl. São Paulo: Edgard Blucher, 1987. 178 p

Professor: Letícia Toreti Scarabelot

Assinado de forma digital por Leticia Toreti Toreti Scarabelot:0 Scarabelot:0794007597 7940075977 Dados: 2019.02.01 16:13:22 -02'00'

Rogério Games de Oliveira, Dr. Prof. Acjunto/SIAPE: 1724307 UFSC/Campus Araranguá

Aprovado pelo Colegiado do Curso em 2/1/3/2019

Presidente do Colegiado:

15