
Platform and Methodology for
Developing Modern Systems in

Restricted Enterprise Environments,
using Elixir/Erlang, Docker, CI/CD

and Microservices

Report submitted to the Universidade Federal de Santa Catarina

as a requirement to approval on the subject:

DAS 5511: Projeto de Fim de Curso

Rafael Jung

Berlin, June 2018

Examiner Committee:

Ricardo Grützmacher
Mentor at Rolls-Royce

Prof. Rômulo Silva de Oliveira
Mentor at UFSC

Prof. Hector Bessa Silveira
Responsible for the Course

Prof. Jomi Fred Hübner, Committee member

Luiz Alberto Serafim Guardini, Committee member

Roger Perin, Committee member

Abstract

Due to the many threats of the digital age, the need for security is every day higher. The
cost associated securing systems to protect strategic digital assets is very high. Then is in
countless enterprises a very common pattern to have very strict IT and data security rules,
thus causing loss of productivity especially in the engineering departments. The modern
software development environment often requires fast changes, which incur in having to
quickly change tools and deploy new versions.

To overcome this problem, a set of tools were used with the objective of creating a
development environment completely outside of the enterprise systems. Within these tools
are GitLab, with the integrated CI/CD pipelines; Docker, to "simulate" the destination
server and compile the project dependency free and Elixir/Erlang to be the layer between
data and views and serve as proxy and web server.

At the same time, a deployment process needed to be well defined and automated, in a
way that would follow the best agile software deployment practices. This made sure all
the out-of-network developed software would work just as specified in production, without
the developers needing to worry with production-only issues.

At the end, this platform allowed to achieve very high development speeds, compatible
with that of the best startup teams, by using latest technology. And at the same time,
keeping compatibility with all the legacy tools in existence.

Keywords: Web-development, agile, git, docker, elixir, react, modern web, ci/cd, spa.

List of Figures

Figure 1 – Rolls-Royce Dahlewitz - Main Entrance 19
Figure 2 – Rolls-Royce Financial Highlights . 20
Figure 3 – Webpack . 30
Figure 4 – LAMP Architecture just as in this case 34
Figure 5 – Engino Application . 35
Figure 6 – Scrum Methodology . 43
Figure 7 – GitLab Workflow . 44
Figure 8 – GitLab Issue Tracker . 45
Figure 9 – New Issue screen . 45
Figure 10 – GitLab Issue Board . 46
Figure 11 – Milestones . 46
Figure 12 – Sprint Planning . 47
Figure 13 – GitLab CI Pipeline . 48
Figure 14 – Pipelines with error are rejected . 48
Figure 15 – Complete CI/CD Pipeline . 49
Figure 16 – List of Milestones . 50
Figure 17 – Engino Admin . 60
Figure 18 – Engino Admin . 61
Figure 19 – GraphiQL . 62
Figure 20 – Engino Deployer . 64
Figure 21 – Burndown Milestone 1 . 66
Figure 22 – Burndown Milestone 2 . 66
Figure 23 – Productivity Comparison . 68

List of Tables

List of abbreviations and acronyms

API Application Programming Interface

BEAM Bogdan/Björn’s Erlang Abstract Machine

CD Continuous Deployment

CI Continuous Integration

CRUD Create, Read, Update and Delete

DAS Departamento de Automação e Sistemas

DB Database

DDD Domain-driven Design

DOM Document Object Model

ES ECMAScript

IDE Integrated Development Environment

IT Information Technology

JSON JavaScript Object Notation

LDAP Lightweight Directory Access Protocol

MV VM Model-view-viewmodel

NPM Node Package Manager

NVM Node Version Manager

OS Operating System

R&D Research and Development

REST Representational State Transfer

RHEL Red Hat Enterprise Linux

SPA Single Page Application

TDD Test Driven Development

UFSC Universidade Federal de Santa Catarina

UI User Interface

UX User Experience

V PS Virtual Private Server

Contents

1 INTRODUCTION . 15

1.1 Reasoning . 15

1.2 Objectives . 16

1.2.1 General objective . 16

1.2.2 Specific objectives . 16

1.3 Document structure . 17

2 ROLLS-ROYCE PLC . 19

2.1 Rolls-Royce Deutschland . 19

2.2 Engino . 20

3 TECHNOLOGIES AND TECHNICAL BASIS 21

3.1 Technologies and methodologies . 21

3.1.1 Agile development . 21

3.1.1.1 Continuous Integration . 22

3.1.1.2 Continuous Delivery . 22

3.1.1.3 Continuous Deployment . 23

3.1.1.4 Test Driven Development - TDD . 23

3.1.2 Domain-Driven Design - DDD . 23

3.1.3 Microservices . 24

3.1.4 Git . 24

3.1.4.1 GitLab . 24

3.2 Application technologies . 25

3.2.1 JSON . 25

3.2.2 SPA . 25

3.2.2.1 Angular JS . 26

3.2.2.2 React . 26

3.2.3 Functional programming . 27

3.2.4 Erlang . 27

3.2.4.1 Elixir . 28

3.2.4.2 Phoenix Framework . 28

3.2.5 GraphQL . 28

3.2.6 ECMAScript . 29

3.2.6.1 Webpack . 29

3.3 Engino architecture . 29

3.3.1 Frontend . 30

3.3.2 API . 30

3.3.3 Backend . 31

3.3.4 Server software . 31

4 THE PROBLEM . 33

4.1 Access of information . 33

4.2 Current web development environment 33

4.3 Engino . 34

5 PROJECT PLANNING . 37

5.1 Requirements and information compilation 37

5.1.1 Engino - soft requirements . 37

5.1.2 Server - hard requirements . 38

5.2 Technology stack . 39

5.2.1 Frontend . 39

5.2.1.1 AngularJS . 39

5.2.1.2 Vue.js . 40

5.2.1.3 Angular 4 . 40

5.2.1.4 React . 41

5.2.2 Backend . 41

5.3 Methodology . 43

5.3.1 GitLab development workflow . 43

5.3.1.1 GitLab Issue Tracker . 44

5.3.1.2 Milestones . 45

5.3.1.3 Sprint Planning . 46

5.3.1.4 CI/CD . 46

5.3.2 Development environment . 47

5.3.3 Issues and Milestones planning . 49

6 IMPLEMENTATION . 51

6.1 Workstation . 51

6.2 Repository . 52

6.2.1 Base project setup . 52

6.2.1.1 Phoenix application . 52

6.2.1.2 React Frontend (Webpack) . 54

6.2.2 CI/CD . 56

6.2.2.1 Testing pipeline . 56

6.2.2.2 Build pipeline . 57

6.3 Application development . 58

6.4 Production server . 59

6.4.1 Server setup . 60

6.4.1.1 PostgreSQL . 60

6.4.1.2 RSVG and ImageMagick . 61

6.4.1.3 Oracle Instant Client . 62

6.4.2 Deployment . 63

7 RESULTS . 65

7.1 Development workflow . 65

7.1.1 Milestones burndown charts . 65

7.1.2 Freedom for using tools . 65

7.1.3 Version Control . 67

7.2 Productivity comparison . 68

7.2.1 Case Study - new feature development speed 68

7.2.2 Case Study - new developer in the team 69

7.2.2.1 Old Engino . 69

8 FUTURE DEVELOPMENTS . 71

8.1 Conclusion . 71

8.2 Further development . 71

References . 73

APPENDIX A – WEBPACK CONFIGURATION FILE 75

APPENDIX B – GITLAB CI CONFIGURATION 79

APPENDIX C – PRODUCTION DOCKERFILE 81

15

1 Introduction

Rapid advances in digital technology are redefining our world. The Digital transfor-
mation provides industry with unparalleled opportunities for value creation. The advantages
of using automation in the industry has increased at a rate never to be imagined be-
fore. This includes being able to raise the worker’s productivity, improve overall quality,
reproducibility and much more.

Using software for automating workflows in companies is not something new.
Companies need to be always innovating to withstand the competition. With the advent
of the internet, personalized software of all kind has become much more accessible. For
this reason the demand keeps growing every day.

In the last years, the web has been under very heavy development and changed
a lot along the way. Until very recently, it only allowed for very simple interfaces with
limited resources. But this changed completely with the advent of Single Page Applications
(SPAs) with Javascript. As soon as browsers started getting more and more powerful, it
allowed for applications to start being more and more complex on the client side. This
created a booming increase in web application and related technologies, making them
number one in open source development and in demand for jobs.

With facilities of web based application, many "traditional" desktop applications
are migrating to the web or requiring web based features. Within the advantages are for
example:

• No installation required;

• Device independent (client);

• Server based, meaning single storage base allowing for easy content sharing and data
consistency;

• Similar look and feel as other web based applications, easing the learning curve;

• Fast applications, by combining well client side with server side.

1.1 Reasoning

All those advantages have been very well known by companies. Though, since
web applications require a server, where critical data are stored, this can lead to serious
security and data privacy issues. Therefore, it is much harder for big companies, such as
Rolls-Royce, with more restrictive IT policies to tackle these problems quickly.

16 Chapter 1. Introduction

Another big issue is with the development of the softwares itself. The biggest reason
why web development has been so upwards in the latest years is because of the open
source movement. It has never been so easy for people to contribute to software. This
lead to new technologies being constantly released, which allow the developers to focus
on the features instead of language boilerplate. These normally allow for very productive
software development and therefore lower costs in development, allowing for bigger projects.
Although with the IT restrictions big companies impose, it is nearly impossible to be able
to use these new technologies and libraries, thus lowering the productivity and effectiveness
of the developers.

1.2 Objectives

1.2.1 General objective

The project described in this document aims solve the problems listed above:

• Difficulty to access to information;

• Slow and inefficient development environment;

• Current slow and unreliable softwares, with outdated interfaces;

• Expensive development and addition of features;

• Not being able to compete with the outside market in web technologies.

1.2.2 Specific objectives

These problems should be solved through integrating the best practices in agile
web development, by:

• Using a Version Control System (VCS), allowing traceability of errors and easy
rollback ability;

• Implementing an Agile Methodology, for faster development cycles without previously
well defined specification and constraints;

• Implementing a Microservices based architecture, thus unleashing the best of each
language/framework/libraries in a hybrid ecosystem;

• Using the latest web technologies, allowing better practices, better structured code
and easier changes;

1.3. Document structure 17

• Implementing Continuous Integration: where all pieces of change in the software are
verified for backwards compatibility with automated testing;

• Implementing Continuous Deployment: every new feature generates a new version,
corresponding to a package which can be easily deployed to the server;

• Implementing Deployment automation: the deployment to the server is automated
via scripts for faster deploy times and to be less prone to human errors;

• And making sure the application runs in the internal production server.

1.3 Document structure

This document is divided in 8 chapters, following the rational order which was
used for the development of the project. The chapters are:

• Chapter 1: Mentions briefly the problem to be solved with it’s context;

• Chapter 2: Presents the company where the project was executed;

• Chapter 3: Contains all the theory behind this project with all relevant bibliographic
references;

• Chapter 4: Expands on the problem this project aims to solve, showing all the
difficulties and possible complications there might exist;

• Chapter 5: Planning which was made before the execution of the project;

• Chapter 6: Presents all the steps taken to implement the project as a whole. This
chapter should also serve as documentation to what has been developed;

• Chapter 7: Presents the results obtained, measured by the productivity gains, the
quality of the softwares generated and system metrics;

• Chapter 8: Discusses the final findings and future aspects, how the project could
be further improved, which possibilities are now open, etc.

19

2 Rolls-Royce plc

Rolls-Royce [18] grew from the engineering business of Sir Frederick Henry Royce,
first established in 1884. Charles Stewart Rolls established a separate business with Royce
in 1904 because Royce had developed a range of cars which Rolls wanted to sell, which
was incorporated in 1906 with the name Rolls-Royce Limited.

In 1971 the same company, Rolls-Royce Limited, entered voluntary liquidation
because it was unable to meet its financial obligations though it remains in existence today.
Its business and assets were bought by the government using a company created for the
purpose named Rolls-Royce (1971) limited. This (1971) company remains in existence
today and carries on Rolls-Royce business under the name Rolls-Royce plc, as a private
company.

Rolls-Royce has established a leading position in the corporate and regional airline
sector through the development of the Tay engine, the Allison acquisition and the consoli-
dation of the BMW Rolls-Royce joint venture. In 1999, BMW Rolls-Royce was renamed
Rolls-Royce Deutschland and became a 100% owned subsidiary of Rolls-Royce plc.

2.1 Rolls-Royce Deutschland

Figure 1 – Rolls-Royce Dahlewitz - Main Entrance

Rolls-Royce Deutschland employs around 3,600 people in Dahlewitz, near Berlin,
and Oberursel, near Frankfurt am Main.

20 Chapter 2. Rolls-Royce plc

Figure 2 – Rolls-Royce Financial Highlights

Source: Rolls-Royce Corporate Presentation 2017

At the Dahlewitz location is the development and final assembly of all BR700
engines. The success story of the engines of this series is reflected in more than 22 million
accumulated operating hours. As a competence center for twin-shaft engines, the Dahlewitz
site is also responsible for the engine series Tay, Spey and Dart. Overall, Rolls-Royce
Germany services around 9,000 engines in operation worldwide. [19]

Rolls-Royce took full control of the company in 2000, renaming it Rolls-Royce
Deutschland.

2.2 Engino

Engino is an internal software used by all the Rolls-Royce Deutschland - Dahlewitz,
which started to be developed in 2014. It aims to connect information scattered across
many different sources in a visual and intuitive interface.

21

3 Technologies and technical basis

This chapter presents all technologies and paradigms mentioned throughout this
document.

It is structured in 3 sections, where the first and the second list the technologies
and the third explains how the engino application architecture was planned.

3.1 Technologies and methodologies

Here are introduced all the technologies and methodologies from the planning phase
and/or that supported the development process as a whole.

3.1.1 Agile development

The Agile Software Development Manifesto [1] was created to overcome the big
overhead older methodologies caused on software development. The whole idea is to focus
on the development of the software itself instead of too much in its methodologies and
documentation.

The four most important principles are:

• Individuals and Interactions over processes and tools: Tools and processes
are important, but it is more important to have competent people working together
effectively;

• Working Software over comprehensive documentation: Good documentation
is useful in helping people to understand how the software is built and how to use it,
but the main point of development is to create software, not documentation;

• Customer Collaboration over contract negotiation: A contract is important
but is no substitute for working closely with customers to discover what they need;

• Responding to Change over following a plan: A project plan is important, but
it must not be too rigid to accommodate changes in technology or the environment,
stakeholders’ priorities, and people’s understanding of the problem and its solution.

Since the Agile Manifesto, there has been multiple Agile Development methods,
frameworks, etc. created and it has received the enormous support from the software
development community.

22 Chapter 3. Technologies and technical basis

Since it greatly reduces overhead and focuses on features, it works really well
with web development, with fast paced development processes, where sometimes the
requirements are constantly changing.

With the increase of usage in Agile methodologies and they becoming a standard in
software teams, many tools and practices were created to help support the implementation
and daily work.

Below are some examples of such tools and practices, as described from two main
Git based software providers: Atlassian [3] and GitLab [12]

3.1.1.1 Continuous Integration

When working in teams, many times more than one person is editing the source
code of the software at the same time. Continuous Integration is a software development
practice in which you build and test software every time a developer commits and pushes
code to the main repository. This normally happens several times a day, especially in bigger
teams. This works really well with tools like Git and GitLab, which make the process of
merging much simpler and intelligent.

Some of the best practices are listed below:

• Use a source control system: nowadays normally used together with Git;

• Make the build self-testing: the process that build the software should test before
building if it works as expected;

• Keep the build fast: the build process should be completed in minutes, not hours;

• Every commit (to baseline) should be built: the test process should be executed for
every commit to the source control system;

• Automate deployment: always deploy the merged software to a pre-production server,
for final testing and eventually, bug-fixes (3.1.1.3).

Workflow Continuous Integration: TEST -> BUILD

3.1.1.2 Continuous Delivery

Similarly to Continuous Integration [3.1.1.1], Continuous Delivery is a software
engineering approach in which continuous integration, automated testing, and automated
deployment capabilities allow software to be developed and deployed rapidly, reliably
and repeatedly with minimal human intervention. Still, the deployment to production is
defined strategically and triggered manually.

Workflow Continuous Delivery: TEST -> BUILD -> DEPLOY ¯(manual)

3.1. Technologies and methodologies 23

3.1.1.3 Continuous Deployment

In Continuous Deployment, the code is put into production automatically, resulting
in many production deployments every day. It does everything that Continuous Delivery
[3.1.1.2] does, but the process is fully automated, there’s no human intervention at all.

Workflow Continuous Deployment: TEST -> BUILD -> DEPLOY 3(automatic)

3.1.1.4 Test Driven Development - TDD

Test Driven Development is a practice where the tests are created before the actual
software. This practice works really well for very specific pieces of software, that must
fulfil some very well defined requirements. For example import scripts.

The development workflow follows:

• Add a test and check if tests start to fail;

• Develop feature:

– Write the new code;

– Run all tests;

– Repeat until tests pass.

• Repeat process until feature is completely implemented.

More information about Test Driven Development can be found in the url http:
//agiledata.org/essays/tdd.html.

3.1.2 Domain-Driven Design - DDD

Domain-Driven Design was initially introduced and made popular by Eric Evans
in 2004 [5]. It is an approach for software development by decomposing complex software
into understandable and manageable pieces. The modeling is done based on the reality of
business as relevant to our use cases. DDD describes independent steps/areas of problems
as bounded contexts, emphasizes a common language to talk about these problems.

The main concepts defined by DDD are:

• Context: The setting in which a word or statement appears that determines its
meaning. Statements about a model can only be understood in a context;

• Model: A system of abstractions that describes selected aspects of a domain and can
be used to solve problems related to that domain;

http://agiledata.org/essays/tdd.html
http://agiledata.org/essays/tdd.html

24 Chapter 3. Technologies and technical basis

• Ubiquitous Language: A language structured around the domain model and used by
all team members to connect all the activities of the team with the software;

• Bounded Context: A description of a boundary (typically a subsystem, or the work
of a specific team) within which a particular model is defined and applicable.

Tough this pattern makes the software much less complex, by dividing monoliths 1

into many smaller pieces, it has the disadvantage of requiring a lot of time for the domains
to be throughout understood and adding a lot of overhead because of its separation. It
should only be used when the Domain is really well defined and very complex.

3.1.3 Microservices

Software projects can get very big with time. Thus, very difficult to maintain. The
whole idea of Microservices comes all the way back from the unix architecture, where all
softwares are small, have a well defined objective/context and can really easily exchange
messages, through a well defined bridge.

Microservices are originally used in completely independent software, that connect
to each other over the network. But its ideas of bounded context separation can be applied
also inside one single software.

The ideas behind Microservices are many times shared with that of Domain-Driven
Design - DDD.

More information about Microservices can be found on the website http://

microservices.io/.

3.1.4 Git

Git was created by Linus Torvalds in 2005 for development of the Linux kernel. It’s
popularized to a level, where it’s considered the standard among software development.

As described in the Git website [10]:

“Git is a free and open source distributed version control system designed to
handle everything from small to very large projects with speed and efficiency.”

3.1.4.1 GitLab

GitLab is a web-based Git-repository manager with wiki and issue-tracking features,
using an open-source license, developed by Dmitriy Zaporozhets and Valery Sizov under
GitLab Inc. As stated on the website [11]:
1 A monolithic application describes a single-tiered software application in which the user interface and

data access code are combined into a single program from a single platform

http://microservices.io/
http://microservices.io/

3.2. Application technologies 25

“GitLab is the first single application built from the ground up for all
stages of the DevOps lifecycle for Product, Development, QA, Security, and
Operations teams to work concurrently on the same project. GitLab enables
teams to collaborate and work from a single conversation, instead of managing
multiple threads across disparate tools. GitLab provides teams a single data
store, one user interface, and one permission model across the DevOps lifecycle
allowing teams to collaborate, significantly reducing cycle time and focus
exclusively on building great software quickly.”

The code written in Ruby on Rails, with some parts later rewritten in Go. The
core is completely open source, with the MIT License, enabling users to have an instance
of the platform running on premises.

One of the biggest competitors from GitLab is GitHub 2.

3.2 Application technologies

This subsection list all paradigms and technologies related strictly to the application
development itself.

3.2.1 JSON

Javascript Object Notation (JSON) is a lightweight data-interchange format. The
idea was to make it easy for humans to read and write and easy for machines to parse and
generate at the same time as stated on the website [15]. JSON is a text format that is
completely language independent, making it an ideal for data-interchange language.

Due to its simplicity and since it is so integrated with javascript, JSON has become
the standard for web applications, specially when sending very small specific data.

JSON has less features than other formats like XML for example. But those feature
are most of the time not needed and may only add overhead.

3.2.2 SPA

SPAs, short term for Single Page Applications are web applications or web sites
that interacts with the user by dynamically changing the current page, via Javascript,
rather than loading entire new pages from a server.

Basically, there is only one initial request to the webserver, which includes the
whole layout and frontend features bundled. The subsequent requests are then only very

2 GitHub is a similar platform, but is better known because it was the first of its kind in the market

26 Chapter 3. Technologies and technical basis

fast and lightweight, with only exchange of specific information. These requests are then
read by the Javascript and the necessary DOM3 is altered. They are normally in the JSON
format.

This approach makes web applications really fast and responsive, since the whole
layout is managed only on the client side. As the requests are small, they are executed
very fast.

These kind of applications started to get common with the release of Angular JS
in 2010.

More information about Single Page Applications can be found on the website
http://singlepageappbook.com/goal.html

3.2.2.1 Angular JS

AngularJS is an open-source front-end web application framework, under the MIT
License, created by Google [2] to address many challenges developing SPAs [3.2.2].

The framework handles all of the DOM and AJAX glue code and puts it in a
well-defined structure. This makes the framework categorized as opinionated.

Some main characteristics are worth listing:

• Opinionated: it comes with all libraries included, so less decisions needs to be done
at the cost of flexibility;

• Two-way data binding: view updates automatically when data model changed. This
can cause some undesirable side-effects;

• Performance: since all changes in the state are propagated directly to the DOM,
AngularJS can be slow if too much data is updated.

3.2.2.2 React

React [17] is a view library (to build user interfaces) that facilitates the development
of Single Page Applications [3.2.2]. It was created by Jordan Walke, a software engineer at
Facebook and open sourced in 2013 and is today under the MIT License.

React became really popular because breaks through some of the features of Angular
JS with much better approaches. For example using one-way data binding, instead of two-
way 4. There is also the virtual DOM, where React creates an in-memory data structure
3 The Document Object Model is a cross-platform and language-independent application programming

interface that treats an HTML, XHTML, or XML document as a tree structure wherein each node is
an object representing a part of the document

4 In Two-way data binding, view (UI part) updates automatically when data model changed. In one way
data binding, this does not happen and we need to write custom code to make for updating the UI.

http://singlepageappbook.com/goal.html

3.2. Application technologies 27

cache, computes the resulting differences, and then updates the browser’s displayed DOM3

efficiently.

3.2.3 Functional programming

Functional programming is a programming paradigm, that avoids state-changing
and mutable data. These are also referred to as side effects. Eliminating side effects can
make it much easier to understand and predict the behavior of a program, which is one of
the key motivations for the development of functional programming.

Programming in a functional style can also be accomplished in languages that are
not specifically designed for functional programming. In the snipped below is an example
of Higher Order Functions written in Java 8 [9]. Since the language was not created
with these concepts in mind, the syntax is really bad. But that’s inherent from the Java
programming language.

@FunctionalInterface

interface DogAge {

Integer apply(Dog dog);

}

List<Integer> getAges(List<Dog> dogs, DogAge f) {

List<Integer> ages = new ArrayList<>();

for (Dog dog : dogs) {

ages.add(f.apply(dog));

}

return ages;

}

3.2.4 Erlang

Erlang [7] is a general-purpose, concurrent, functional programming language, as
with a garbage-collection runtime system. The Erlang Runtime System (OTP) consists
of a number of ready-to-use components mainly written in Erlang, and a set of design
principles for Erlang programs.

Two-way might be simpler to use on the beginning, but much harder to debug applications and can
account to many future problems as the applications grow

28 Chapter 3. Technologies and technical basis

It was originally a proprietary language within Ericsson, developed by Joe Arm-
strong, Robert Virding and Mike Williams in 1986, but released as open source in 1998.

The main features of the languages are:

• Distributed;

• Fault-tolerant;

• Soft real-time;

• Highly available, non-stop applications;

• Hot swapping, where code can be changed without stopping a system.

The Erlang BEAM Virtual Machine executes bytecode which is converted to
threaded code at load time. It also includes a native code compiler on most platforms,
developed by the High Performance Erlang Project (HiPE) at Uppsala University. It is
now fully integrated in Ericsson’s Open Source Erlang/OTP system.

3.2.4.1 Elixir

Elixir [6] is a functional, concurrent, general-purpose programming language that
runs on the Erlang (BEAM) virtual machine. It can be used to create distributed, fault-
tolerant, soft-real time, and permanently-running programs.

Elixir supports compile-time metaprogramming with macros and polymorphism
via protocols, enabling the language’s API to be easily extended.

3.2.4.2 Phoenix Framework

Productive. Reliable. Fast. A
productive web framework that
does not compromise speed and
maintainability. [16]

Phoenix Framework

Phoenix is a web development framework written in Elixir. It uses a server-side
model-view-controller (MVC) pattern and is strongly based in the Ruby on Rails approach
for building web application.

3.2.5 GraphQL

GraphQL [13] is a data query language developed internally by Facebook in 2012
and open sourced in 2015, under the MIT License.

3.3. Engino architecture 29

This query language was developed to solve some of the biggest problems from
REST APIs5 in bigger applications. The most common are:

• The need to do multiple round trips to fetch data required by a view;

• Clients dependency on servers;

• The bad front-end developer experience.

3.2.6 ECMAScript

ECMAScript is a trademarked scripting-language specification, created to stan-
dardize JavaScript, so as to foster multiple independent implementations. JavaScript has
remained the best-known implementation of ECMAScript since the standard was first
published in 1997 [14]. ECMAScript is commonly used for client-side scripting on the
World Wide Web, and it is increasingly being used for writing server applications and
services using Node.js 6.

The sixth edition, known as ECMAScript 6 (ES6) or ECMAScript 2015 (ES2015)
[8] adds significant new syntax for writing complex applications, including classes and
modules. Other new features include iterators and for/of loops, Python-style generators
and generator expressions, arrow functions, binary data, typed arrays, collections (maps,
sets and weak maps), promises, number and math enhancements, reflection, and proxies
(metaprogramming for virtual objects and wrappers). These new features revolutionized
Javascript development, enabling the creation of much more complex applications.

3.2.6.1 Webpack

Webpack [20] is an open-source JavaScript module bundler, under the MIT License.
It takes modules with dependencies and generates static assets representing those modules.
Since Webpack compiles all the code developed into a bundle, it is commonly used for
converting new technologies to be supported in older browsers, as well as some many speed
optimizations.

The Figure 3 gives an overview on the idea behind the creation of Webpack:

3.3 Engino architecture

Engino is the first application that will be developed using the platform described
in this project. An overview about the project was mentioned in Chapter 2 [2.2].
5 REST is an architectural style that defines a set of properties based on the HTTP protocol. It is used

for data exchange between systems.
6 Node.js is simply the Google V8 engine - a javascript interpreter used by Google Chrome® - bundled

with some libraries to do I/O and networking

30 Chapter 3. Technologies and technical basis

Figure 3 – Webpack

Source: Webpack Website [20]

Since the application was a rebuild from the old application and the requirements
are constantly changing, the biggest requirement was really being as flexible and modular
as possible.

An Agile approach was in this case fundamental. And by using the latest web
technologies, it helped to have the application very modular and easy to be changed in
the future.

3.3.1 Frontend

To make the software as flexible as possible, the interfaces should be built completely
modular and as reusable as possible.

For this reason, the frontend stack was based around the React library (more
information in 5.1.1), with the following libraries/technologies:

• React: Main view library;

• Redux: Handles state management;

• React Router: For generating and managing the routes;

• Material UI: React Components that Implement Google’s Material Design.;

• React Leaflet: For implementing the Mapping functionality;

• Superagent: A REST Client for Javascript.

3.3.2 API

Since there should be multiple applications being glued together, the connection
between backend and frontend should also be as flexible as possible. Knowing the problems

3.3. Engino architecture 31

with REST APIs, the newer GraphQL query format interface was chosen to integrate the
application with the server.

• The server uses the Elixir Library Absinthe, which makes a GraphQL API Endpoint;

• On the client side, the library used is Apollo, for connecting to the GraphQL API
Endpoint;

• To connect the backend and frontend together, the communication will be done
through websockets, for enabling real time updates on the applications.

3.3.3 Backend

The backend is composed basically by the platform Erlang/OTP, where code is
written in Elixir and compiled into it.

Multiple libraries are used for the backend applications:

• Elixir: The language of the server applications;

• Ecto: The database wrapper library;

• Phoenix: The Elixir web application framework, to help developing the web facing
applications;

• Postgrex: Elixir library to help connecting to the PostgreSQL database;

• Cowboy: The web server, that receives all the http requests;

• Exldap: Library to help making authentication through the internal LDAP servers
(Microsoft Active Directory);

• Tesla: HTTP Client, to connect to external services;

• Honeydew: Library to manage worker pools and queues, for concurrent batch
processing.

3.3.4 Server software

The server is defined by the internal IT from Rolls-Royce. The server available
is a Red Hat Enterprise Linux, running in a virtual machine. Since there is no root
access available, most software needed to be pre-compiled into binaries, that would run
dependency-free on user space on the system. These software required by the Engino
Backend application are:

• PostgreSQL: The internal database for the system;

32 Chapter 3. Technologies and technical basis

• ImageMagick: Image processing library used;

• Ghostscript: Utility to read and process PDF files;

• RSVG: Utility to interpret SVG files;

• Oracle Instant Client: Proprietary tool to connect to the Oracle Databases.

33

4 The problem

This chapter explains the problematic of current web software development inside
the company and the problems it aimed to solve.

4.1 Access of information

Rolls-Royce has a total of about 50000 employees worldwide, 3500 from them only
in Dahlewitz. This impressive amount of people are all working on a very few number
of projects, which sometimes take many years to complete. This leads to data about a
project being scattered across many departments and even across different countries.

Another very common pattern seen in bigger companies is the widespread use of
Excel. Many departments use it to store the masters of their data. The problem is with
the nature of Excel itself, where data is not necessarily structured and it was not made to
be distributed.

These conditions make it sometimes really hard to find consistent and dependable
information. Therefore there are many different tools being developed by different teams
with similar objectives: find and relate scattered information.

4.2 Current web development environment

The current development environment consists of a Windows Machine (required by
Rolls-Royce IT) with a Notepad++ installed. The current production server is a shared
RHEL1 machine, with the common LAMP server2.

The production server is inside the Rolls-Royce network, allowing it to be accessible
from any computer logged into the internal network. To access this server, for the purpose
of changing the application, a Samba share3 can be mounted and the code directly changed.

This method of development, although very fast to make changes in the server,
does not have any of the advantages that using Git or any other VCS tool brings and
presents multiple issues:

• There is no version control. New changes always overwrite the last version;
1 RHEL: Red Hat Enterprise Linux
2 LAMP = Linux + Apache + MySQL + PHP. This is a common web stack in older machines, since it

simplifies server installation. It is mostly used for landing pages (websites)
3 Samba is a free software that runs in Unix systems to provide the ability to mount Unix folders in

Windows computers

34 Chapter 4. The problem

Figure 4 – LAMP Architecture just as in this case

Source: https://en.wikipedia.org/wiki/LAMP_(software_bundle)

• Secrets 4 are not secret. Anyone with access to the code is able to see the database
connection strings for example;

• Testing is made in the same server and database as production is running. There is
no automated testing to make sure the changes does not break other parts of the
code;

• It is very difficult for 2 or more persons to develop at the same time;

• A programmer error can be directly propagated to the production system;

• It is very difficult to install/use new libraries or different settings;

• The development is only possible for someone with direct access to the shared folders
and permissions are dependent on the server administrator;

• No authentication, meaning no way to recognize users and define different permissions,
thus limiting the interaction possible ans trustworthiness of data.

4.3 Engino

This tool, which was shortly mentioned in chapter 2.2, has been through constant
changes, both in features and in conception. The development process was also very
primitive, to stay within the constraints that Rolls-Royce’s IT imposes. This led to a
unstructured source code, which is very difficult to maintain and further develop.

4 Secrets are credentials that are required for an application to run. Examples include database credentials,
session keys, passwords, etc

https://en.wikipedia.org/wiki/LAMP_(software_bundle)

4.3. Engino 35

The Engino project is the first software that will be developed under the platform
and methodology described in this document. Since it ends up being more difficult to add
features to the old version, it was intended that the Engino would be completely rewritten
under the new environment. This will give us deep insight in how effective this platform
will be and which changes are needed to enhance it.

Engino was developed using pure PHP and Javascript.

Below is a screenshot from the old engino application:

Figure 5 – Engino Application

The initial requirements that drove this project was to add new features to the
existing system, such as new data sources, and to solve some of the problems with its
interface. These problems included making it more visual to find data, slowness, missing
information about the sources of the data and date of last update, have a better UI, a
better UX and other similar features.

By the way the old application was developed, given it was only a proof-of-concept,
a complete rewrite of the whole application into a new platform, with new languages and
methodologies was seen as desireable. This was even more clear when the possibility was
given to create new similar applications within the same repository without needing to
rewrite existing code.

The main problems that needed to be solved, from a non technical point-of-view,
could be summarized with:

1. Fixing problems in the old application;

36 Chapter 4. The problem

2. Adding new features;

3. Enabling code reuse with other projects;

4. Having a history of changes done to the project, with easy rollback;

5. Upgrading stability and security;

6. Enabling developers to have high productivity;

7. Having productivity working in teams;

8. Having a dependency-free server software for easy migration between servers;

9. Allowing project managers to have better insights on the status about the develop-
ment of the software.

37

5 Project planning

Project planning defined here is related to how the “statement of work”1 was
created.

The planning was made mainly by the author, in conjunction with the project
manager, to define the priorities and check the list of requirements.

This planning was done in three main steps:

1. First all information about the requirements and constraints were collected, as listed
in section 4;

2. Then a deep throughout analysis was done, about the technology stack to be used
and how the parts were to be connected to each other;

3. Finally, the implementation methodology was planned: Issues and Milestones were
defined and the priorities and deadlines were set.

5.1 Requirements and information compilation

5.1.1 Engino - soft requirements

As seen in the last chapter 4.3, the current application is very difficult to maintain
and was created with a very inflexible codebase. The main problems with the application
are inherent to the current development environment and tools. Having a solid base to
develop the new application is fundamental to overcome these problems. These problems
4.2 could solved by:

• Using a Version Control System;

• Have a well defined and automated deployment system (use CD - Continuous
Deployment - principles), with a staging (testing) server;

• Store all secrets in environment variables, in a unique file in the server, with very
restricted permissions;

• Develop an automated testing system (CI - Continuous Integration), for checking all
the code for new errors, upon every new block of code developed (git commit);

1 statement of work in this case refers basically to the list of tasks necessary to be executed, to have the
problems described solved.

38 Chapter 5. Project planning

• Development inside a sandbox, with no access restrictions. This allows for much
bigger productivity and code testing;

• Complete control on the permissions for allowing access to the code;

• Develop an authentication service;

• Modularize application, where everything should be a reusable component, both in
Backend as in Frontend. This allows for much better code reuse.

Apart from these main problems in the application architecture and development
environment, all current features and data source should be also available in the next
version. This basically creates the requirements into which data sources should be imported
and which/how much data should be displayed to the users.

While taking advantage of the flexibility on the new platform, some features are
also wished to be available in the next version:

• Better layout and usability;

• A dedicated admin page, with full control to all data in the database;

• New data sources, or with different formats;

• Better and faster searching;

• Marker verification, allowing only predefined authenticated people to realize the
verification;

• Direct connection to the main Oracle database.

5.1.2 Server - hard requirements

The server to which the whole application will be deployed is predefined from
the IT department, with a bare metal Red Hat Enterprise Linux 7 (RHEL7) with only
standard packages. Also, there will be no root access available and no internet access. All
applications related to Engino should be in a single folder (sub-folders allowed) and be
easily movable.

This restriction makes the deployment process much harder to control and automate.
For this reason, some scripts are necessary to overcome this limitations:

• Pre-compilation of all libraries 3.3.4 in a container similar system (CentOS7);

• Package the compiled application into a single file;

5.2. Technology stack 39

• Deploy the single packaged file to an accessible location (not blocked by the Rolls-
Royce firewall);

• The only machines in the network that have both access to the server and to the
internet, are the common Windows® workstations. So a windows application is
needed, to download the packaged application, copy to the server and run the
necessary deployment scripts.

Details about the implementation of this deployment system will be given in the
section 6.4

5.2 Technology stack

This section explains which technologies are needed and on which criteria they
were selected.

5.2.1 Frontend

As seen above 5.1.1, the platform should be set up with a flexible system, that
allows the use of the newest technologies for Frontend development, but not require any
specific. With this in mind, we are free to chose any library and/or framework for the
Frontend (client) application, which could even be composed of multiple.

The analysis has taken into consideration the biggest four Frontend technologies to
date:

• AngularJS;

• Angular 4;

• React;

• Vue.js.

Each of these four libraries are listed below, with the factors that were considered
when connecting its features with the requirements from Rolls-Royce:

5.2.1.1 AngularJS

AngularJS, or Angular 1 is the first version of the framework released. This
framework has a very different approach than to the other technologies listed here, by
supplying with much more features out of the box. Whereas this could be a good feature

40 Chapter 5. Project planning

in some cases, it really limits flexibility, by being opinionated. Also, this makes it much
more difficult to learn and to start with.

Another undesirable features the framework are for example:

• Two-way data-binding: makes it really hard for debugging and managing state in
bigger applications

• No virtual DOM: all changes are made directly into the HTML, making it slow when
too many changes are happening

While this was the first option considered, since it is present in many other systems
at Rolls-Royce, due to its lack of flexibility and problems above, it was also the first one
to be discarded.

5.2.1.2 Vue.js

Vue is also a newer view library, with principles very similar to React, but a little
more opinionated, meaning it also packages some other libraries for state management,
routing and others.

But since the library is not backed by any big company and has seen less activity
as the other libraries, its use for such a project was considered too risky. For this reason,
it was the second to have the use discarded.

5.2.1.3 Angular 4

Angular 4 is actually the next version of Angular 2, which is a complete rewrite of
AngularJS (Angular 1). For this reason, the analysis between Angular 1 and 4 is made
here completely independent. Many of the problems existent in the first version of the
library were solved, many others are still there:

• Compatibility with TypeScript 2.1 and 2.2, increased security in type casting, as
well as increased speed of the ngc-Compiler. Strict typing, requires less attention on
arguments and variables, leading to a decreased chance for errors caused by lack of
attention;

• MVVM architecture. This template for building applications allows to associate
elements of the View with the properties and events of the Model;

• Two-way data binding. This is rather controversial, since it speeds up development
but at the same time, makes the debugging and production tests harder;

• Problematic to use with any languages other than TypeScript. Angular 4 coders can
only use the tools inherent to the ecosystem of this framework;

5.2. Technology stack 41

• Difficult to master. As already noted above, regardless of the version, Angular is
quite difficult. This is due to the need to use the relatively low-spread TypeScript
language, as well as the purely theoretical knowledge of many beginning developers
in the field of OOP practices. Because of this, mastering the advanced practices can
be hard.

Even tough this version has a much better approach than the Angular 1, it it a
complete rewrite, so its completely not backwards compatible. This means that its use
will not have any advantage with the many projects written with Angular 1 already in
development at Rolls-Royce.

5.2.1.4 React

• Virtual DOM. The main advantage of React, in comparison with other similar tools,
is virtual DOM - a lightweight copy of a complete DOM tree. This works really well
when the application does not have too many states changing but can be slow in the
contrary case2;

• Orientation to the creation of custom user interfaces. This library is claimed by its
creators as being one of the most versatile from all. It also offers developers a lot of
tools for UI element creation, such as Material-UI, React-Bootstrap, React Toolbox,
React Native, etc;

• Lack of a unified approach. The big flexibility this library provides, comes at the cost
of every project having its own stack of dependencies. This factor makes it harder to
follow the best practices and may not play in favor of React developers in situations
where the deadline is close, or where it is necessary to find the best ways to solve
current tasks in the shortest possible time.

React was considered the most flexible and convenient from all of the libraries
taken into consideration. Because of the need of customization required by the project
and the flexibility provided by React, this was considered the best option for this project.

5.2.2 Backend

Since the client application (Frontend) was completely decoupled from the backend
technologies (server), both sides of technologies were of independent choice. The backend
technologies could even be heterogeneous, using a microservices approach, where each
specific part of the application (context) would be developed using a specific language and
framework/technologies.
2 In AngularJS, every change is modified in the DOM, in React only the layout changes, not the whole

state

42 Chapter 5. Project planning

Taking into consideration the nature of the application, with requirement of good
modern web frameworks, for faster development speeds and greater capabilities, the
following web languages and frameworks were considered:

• Python/Django;

• PHP with Laravel;

• Ruby on Rails;

• Elixir/Phoenix;

• Node.js with Express.

All of these frameworks are based on very similar paradigms and therefore present a
similar programming interface. They are all based on MVC patterns, offer great community
support (for libraries and problem solving) and would have all the necessary features.

The most crucial aspects were based on these key facts:

• Django is already in use in other projects inside Rolls-Royce. This could make setup
easier and issues in production were already known (or should have been);

• PHP is already installed in many of the servers on the company and the language is
being also used in many projects;

• Ruby on Rails was the most mature framework from all in the list, with best
community support, best development patterns;

• Elixir projects can be compiled to a dependency-free in BEAM (Erlang Virtual
Machine) executable. This leads to a very simple deployment procedure. Elixir, since
it runs on the Erlang VM, also has its capabilities, like built-in support building
distributed, fault-tolerant applications;

• Node.js projects work really well with Single Page Applications, like with React.

Elixir was considered the best choice for this project because of all the new concepts
it has brought, which work really well with API only Backends and for flexible application
development. The language’s ecosystem allows for easy development of very flexible modules
to be used in a micro-services based architecture, which was very desireable. Another great
feature was the ability to easily compile the whole project into a single package that is
able to run dependency-free in the server. This was a very desireable feature to have in
the rather strict IT environment.

The other frameworks listed above were tough not discarded to be used alongside
the main Elixir application for more specific parts of the project. The project was made

5.3. Methodology 43

flexible to allow that. Along with Elixir, Ruby on Rails was planned to be used to make
the connection to the Oracle database, since it had a very good library for it, which would
make this much easier.

5.3 Methodology

Given that the project’s scope was not well defined and was continuously changing,
an Agile Methodology, such as Scrum, was very suitable.

In the Scrum Methodology, the project is cut in multiple pieces, which are developed
together in a period of 2-4 weeks and is called a Sprint.

The image below illustrates this process.

Figure 6 – Scrum Methodology

5.3.1 GitLab development workflow

GitLab is a Git-based repository manager and a powerful complete application for
software development.

With an "user-and-newbie-friendly" interface, GitLab enables to bring all parts
responsible for the project into the same platform. For example, project managers can
monitor the development of the software though GitLab’s interface in real time, testers
can report bugs by creating an “Issue”, maintainers can give code reviews and developers
can easily see their tasks and submit the code.

The natural course of the software development process passes through 10 major
steps:

1. IDEA: Every new proposal starts with an idea. This can be a completely new
feature, a change in an existing feature or a bug fix;

2. ISSUE: The most effective way to discuss an idea is creating an issue for it. This
issue is created inside the GitLab Issue Tracker;

44 Chapter 5. Project planning

Figure 7 – GitLab Workflow

3. PLAN: Once the discussion in the issue comes to an agreement, on how it should
be done, the coding starts. For prioritizing issues, there is the Issue Board;

4. CODE: The actual issue is fixed, by writing code;

5. COMMIT: Once we’re happy with our draft, we can commit our code to a feature-
branch with version control;

6. TEST: With automated testing, the GitLab CI, run the testing scripts to check for
errors introduced by the new code;

7. REVIEW: Once our script works and our tests and builds succeeds, we are ready
to get our code reviewed and approved;

8. STAGING: The new feature is deployed to a testing server, with exactly the same
features as the production server. There the software is checked if everything works
as expected or if it still need adjustments. This is also a place to test for usability
problems and issues that only happen in the production environment (because of
type of real data, browser versions, etc);

9. PRODUCTION: When we have everything working as it should, the code is
deployed to the live production environment;

10. FEEDBACK: Collect feedback about the deployed feature from real clients and
see if it needs further improvement.

5.3.1.1 GitLab Issue Tracker

The Issue Tracker enables creation and management of all issues in the project.
One issue can be a bug-fix, a new feature or a change in an existing feature. The issue
tracker enables creation, management and reports about the project’s development.

The Issue Board is a tool for planning and organizing the issues according to the
project’s workflow, setting priorities according to its context.

Issues will be used for planning each work package to be developed for the applica-
tions. For example, each importer of a new source of data is a different issue as well as
each part of the frontend development.

5.3. Methodology 45

Figure 8 – GitLab Issue Tracker

Figure 9 – New Issue screen

To follow the best Agile [3.1.1] patterns, the issue creation process should also be
dynamic. As soon as changes are seen to be necessary, an issue for this change should be
created.

For the bigger scope, Milestones [5.3.1.2] should be used.

5.3.1.2 Milestones

Milestones are are basically a tool to track the work based on a common target, in
a specific date. An issue is normally part of a Milestone.

The goal can be different for each situation, but the panorama is the same: you
have a collection of issues and merge requests being worked on to achieve that particular
objective. This goal can be basically anything that groups the team work and effort to do
something by a deadline.

Milestones should be used for each bigger feature to be produced, which is comprised

46 Chapter 5. Project planning

Figure 10 – GitLab Issue Board

Figure 11 – Milestones

of multiple issues. They can be dependent of each other or not. An example of a milestone
would be for example a “First version of the mapping frontend”

5.3.1.3 Sprint Planning

Using GitLab, each piece of software to be developed is called an Issue. To plan
a Sprint, all related Issues were grouped together and developed in the same period. As
illustrated in the image 12 GitLab provides a tool to make this process easier.

5.3.1.4 CI/CD

Throughout this project, when we talk about CD, we are actually talking about
Continuous Delivery.

5.3. Methodology 47

Figure 12 – Sprint Planning

Because of the the production servers do not have no access to the internet, the
repository server (GitLab.com) does not have any interaction to the production server
(internal at Rolls-Royce).

The approach used to deploy the application will be: TEST - BUILD -¯- DEPLOY,
with the HAND icon symbolizing the manual deployment. This will be done through the
help of a simple windows application, which has access to the compiled release packages
and also access to the production server. Its job will be to basically copy this file to the
server and run the necessary commands (move files, delete tmp directories, unpack the
release, run migrations, etc), thus enabling a semi-automatic deployment.

The images 13 and 14 are examples of a CI/CD pipeline in GitLab, showing
respectively a successful test and a commit with an error, detected by the automated
testing. Branches with errors are rejected and are not able to be merged into the master
branch, thus avoiding future problems in the code.

In image 15 the complete build process is shown, from testing to package building.

5.3.2 Development environment

To avoid all the restrictions imposed by the IT, because of security and data
protection, the whole project structure is planned to run outside of the main network
infrastructure.

The project repository will be hosted on the cloud, for ease of management and
even allow remote teams and external companies to give consultancy for future further
development. This gives a lot of flexibility, but also requires great care with the handling

48 Chapter 5. Project planning

Figure 13 – GitLab CI Pipeline

Figure 14 – Pipelines with error are rejected

of data, meaning that no controlled data should ever be put into the repository (no real
internal data, no server keys, etc). All the controlled files need to be avoided from git (by
using the “.gitignore” file), should they be required in the development of the project.

For this to be possible, there will be extra workstations connected to an external
WiFi network, that does not have access to the internal network and thus, no limitations.
This allows for full productivity on the development of the project, without necessity to

5.3. Methodology 49

Figure 15 – Complete CI/CD Pipeline

worry with IT policies and being able to use the best practices and tools.

5.3.3 Issues and Milestones planning

The main project was basically divided into 2 Milestones: the setup and initial
repository and the first release. There were created other milestones for other apps as well,
but are not shown here.

The list of milestones can be seen in the image below:

50 Chapter 5. Project planning

Figure 16 – List of Milestones

This image was taken on the second of July, therefore the project’s status is from his date.

51

6 Implementation

This chapter discusses about how the planning made on Project planning was
implemented and all the changes made during the process due to problems or simply
changes in the requirements.

All the items commented in this chapter were completely done by the author,
except when explicitly stated the opposite.

6.1 Workstation

To be able to start with the implementation of the project, the first necessity was
obtaining and configuring the workstations.

These consisted of a clean computer, without any operating system installed. This
allowed for a complete customization of the development environment tools, such as using
an operational system without any restrictions and installing the best suited IDEs and
other supporting software available.

There was one computer per developer available, which all the work was to be done
with.

The workstations were configured with the following software:

• Ubuntu Desktop is the GNU/Linux distribution installed. The choice of distri-
bution was made to be generic, with an OS that any new developer would either
already know or be able to get used to very quickly;

• Visual Studio Code as the main editor, since it works very good with the languages
that is was going to be used with, such as Javascript and Elixir. This IDE was chosen
for its ability of customization and extensions. Any developer could be able to install
a new IDE and use it, if better suited;

• Node + NPM: Node.js® is a JavaScript runtime built on Chrome’s V8 JavaScript
engine, which is required for running Javascript developed code, such as the web-
pack [3.2.6.1] dev server. NPM is used for easily adding packages on the Frontend
application;

• PostgreSQL is the database used in production. For replicating the production
environment, the same database was installed and used in the development machines;

52 Chapter 6. Implementation

• Erlang + kiex: The Erlang OTP and Elixir are required for compiling and running
the server in development. Kiex is an Elixir version manager, for easily changing the
Elixir version on the system;

• Docker is required for testing the CI pipeline and to simplify running an Oracle
database server. It would ease the development of tools to integrate with Rolls-Royce’s
Oracle databases.

By using similar setups in all workstations, the risk of coming to problems in the
development environment is lower, since the variability is reduced. Also, setting up a new
software is easier, since the process would be the same for all workstations.

6.2 Repository

To start the well spoken application development, first the repository needs to be
initialized. This consists of configuring all pieces of software to work together and setting
up the automated applications deployment pipelines.

6.2.1 Base project setup

The base project is basically all boilerplate code necessary with setting up all the
languages and build processes together. This defines the development workflow and the
technology stack for the application.

With the complete technology stack already defined in Technology stack, there
were basically 3 repositories which needed to be setup and configured to work together:

• Phoenix Application: Backend API server and Main Application;

• Rails API: Connected to the main application using a GenServer;

• React Frontend: Connected using webpack dev server in development and independent
from the main application in production, by producing the releases independently.

6.2.1.1 Phoenix application

As described in 3.2.4.2, the Phoenix Framework is built using Elixir and its libraries.
It is installed by running:

$ mix archive.install \

https://github.com/phoenixframework/archives/raw/master/phx_new.ez

6.2. Repository 53

After having elixir and phoenix installed, the project can be created. Phoenix by
default comes integrated with “brunch”, which is the frontend assets manager and bundler.
Since the frontend application needs to be independent from Phoenix, there is no need to
include brunch in the project. This backend project is then an API-only application. To
create such a project, we can use the command line helpers from Phoenix and with the
following command, create the project:

$ mix phx.new engino --no-brunch

This creates the following folder structure:

$ ls

README.md config lib mix.lock test

_build deps mix.exs priv

After the creating the initial repository, the GraphQL server library needs to be
installed. To install the Absinthe library (GraphQL server) from the elixir package manager
“mix”, we need to add it to the package managements file, specifying the library and the
version:

{:absinthe_plug, "~> 1.4.4"},

{:absinthe_ecto, "~> 0.1.3"},

Then with the following command, the packages are obtained:

$ mix deps.get

To finish installation, the Absinthe needs to be included in the Phoenix routing
file, by adding this to the “router.exs”:

forward "/graphql", Absinthe.Plug, schema: Engino.Schema

forward "/graphiql", Absinthe.Plug.GraphiQL, schema: Engino.Schema

To finish the configuration, the database connections were set up. This is done
by simply setting the variables in the config files in Phoenix. Due to its irrelevance, this
configuration will not be shown here.

54 Chapter 6. Implementation

6.2.1.2 React Frontend (Webpack)

A big requirement is that the React applications would be completely independent
on the Backend application. That being said, we should not rely on any backend tools
to create the initial files. The handy create-react-app command line helper was used
instead.

For frontend and backend separation, all frontend source files were put inside a
folder called frontend. Other relevant files are packages list package.json, the webpack
configuration file webpack.config.js and the folder node modules, where the installed
frontend libraries reside.

To simplify the configuration, these are going to be moved to the root of the
application.

With react-create-app, the main frontend application was generated, with some
files moved around to integrate better with Phoenix and make development easier:

$ npx create-react-app engino

$ mv engino/ frontend/

$ mv frontend/src frontend/app

$ mv frontend/node_modules .

$ mv frontend/package.json .

$ mv frontend/yarn.lock .

$ cat frontend/.gitignore >> .gitignore

$ rm frontend/.gitignore

$ rm frontend/README.md

After configuring the initial application, webpack needs to be configured to compile
the application both in production a single time and in development constantly after every
change.

Webpack can be started as a development server, which supplies all the files to
the frontend on-the-fly as they are available. It was also configured to enable React’s Hot
Module Reloading, which enables changes to be applied in the frontend without needing
to reload the application, thus making development more productive.

The final webpack configuration file is available in the attachments Webpack
Configuration File.

For the frontend to be included in the web server, a simple javascript file is generated
and the output is written to the phoenix’s assets folder priv/static. Phoenix then serves
this files normally as a web request.

6.2. Repository 55

To simplify the development, the phoenix application can be configured to auto-
matically start the webpack development server as soon as the phoenix server is startet,
by the command mix phx.server. For this, the phoenix endpoint needs to be configured
as follows:

config :engino, EnginoWeb.Endpoint,

url: [host: System.get_env("HOST") || "localhost"],

http: [port: 4000],

debug_errors: true,

code_reloader: true,

check_origin: false,

watchers: [

node: [

Path.expand("node_modules/webpack-dev-server/bin/

webpack-dev-server.js"), "--no-inline", "--stdin", "--config",

Path.expand("webpack.config.js"), "--host", "0.0.0.0"]

]

In the phoenix web server, the javascript is then read directly from the production
generated file, if in production or from the webpack development server, if in development.
This configuration is available in the frontend application’s main HTML file (non relevant
parts of the HTML were removed and others simplified):

<!DOCTYPE html>

<html lang="en">

<body id="body">

<div id="app-container">

</div> <!-- /container -->

<%= if Application.get_env(:engino, :environment) == :dev do %>

<script src="http://localhost:4001/js/app.js"></script>

<% else %>

<script src="<%= static_path(@conn, "/js/app.js")%> "></script>

<% end %>

</body>

</html>

In the code, we can see the differentiation between the production and development
environments. In development, the file is served through another server, which is constantly

56 Chapter 6. Implementation

being recompiled and updated. In production, the file is completely static.

6.2.2 CI/CD

Having the complete application setup, the next step is to create the Continuous
Integration and Continuous Delivery pipelines.

This was developed using GitLab’s integrated CI tool. It works by creating a file
called .gitlab-ci.yml in the root of the application, declaring all the steps of the CI script.

The complete file is available in GitLab CI Configuration.

Basically, the CI process is divided into multiple jobs and multiple pipelines.
Pipelines run sequentially and can pass files between each other and each pipeline can
run multiple jobs simultaneously. For simplicity, there were created two pipelines: one for
testing purposes and the other for building the release, called respectively test and build.

6.2.2.1 Testing pipeline

The purpose for the Testing pipeline, as the name says, is to really test the
application, by using automated testing. Each repository developed has its own testing
framework. For this reason, it makes sense to divide the testing pipeline into three different
jobs:

1. Elixir backend testing: Runs all the tests created in the Elixir backend application.
For this testing, Elixir’s own testing framework was used (ExUnit);

2. Rails API application testing: Runs tests on the rails application. For this, the library
RSpec was installed, to be used to facilitate developing the automated tests;

3. Frontend applications testing: Run all the tests in all frontend applications. The
library jest was installed and configured to be used on the frontend testing. This
library was chosen because of its very good integration with React and its ecosystem.

By checking the configuration in GitLab CI Configuration, we can see every job
defined in the root of the file, where the commands each job runs inside a docker container
based on the language of the test itself. For example, in Rails testing uses the Docker image
ruby:2.41, which already has everything installed and ready for testing the application.
This simplifies maintenance and updating the base images.

As the desired for integration testing it to have it testes after each code commit to
the repository, this pipeline is set to run every time there is a new commit. This makes
sure that problems are discovered during the development of features instead of only in
1 This Docker image is available publicly on Docker Hub - https://hub.docker.com/r/_/ruby/

https://hub.docker.com/r/_/ruby/

6.2. Repository 57

the end. It also allows for knowing in which commit a specific test stopped to work, thus
helping with finding the problem.

6.2.2.2 Build pipeline

In the opposite of the test pipeline, this should be run only when the code developed
for the issue is done. That means, when it is merged into the master branch. Also, it should
only be triggered if the tests pass. This makes sure there won’t ever be any release available
for deployment to the server which breaks some feature, detected by the automated testing
system.

The packing of the release is done by the help of the Elixir library Distillery. It
basically compiles the whole Elixir code and packs it into a single file engino.tar.gz. To
be able to have the React application and the Rails application bundled together into this
file, we need to make sure they are in the correct folders and ready for packaging. For the
rails application, this means installing all libraries (gems) into a specific folder and for
the frontend, installing all packages and generating the output javascripts into the phoenix
application.

Therefore, the build process follows the following order:

1. Install Elixir libraries, by using mix deps.get;

2. Install Frontend packages, by using yarn install –prod;

3. Install Ruby gems (libraries), by using bundle install –gemfile=engino-rails-
api/Gemfile –path=gems;

4. Build Frontend applications into priv/static and process them on phoenix with
mix phx.digest;

5. Create release file, with mix release;

6. Copy generated release to a path accessible by the deployment script. In this case,
Amazon S3.

Since the Erlang release binaries needs to run under the same environment and it
was generated, the environment where the package is generated though the scripts above
needs to be the same as where the application will later run. This means, the release needs
to be generated under the same environment as the production server, in this case a Red
Hat Enterprise Linux 7 (RHEL7).

Since both RHEL7 and CentOS 7 share the same architecture, and since Cent OS
7 is more publicly available, the application release can be generated under this system.

58 Chapter 6. Implementation

This is very simple to achieve by using a public Docker image, already with CentOS
7 installed. Though for the generation of the release, there are many requirements, such as
having Elixir, Node, Python, Ruby, Oracle Client, etc installed. This makes finding a base
Docker image very hard and thus the best option is to create our own image.

For the generation of this image, basically all the required applications needed to
be installed, on top of a Cent OS 7 machine. The requirements list follows:

• Oracle Client;

• Python + PIP;

• Node.js;

• Yarn;

• Erlang/OTP;

• Elixir;

• Ruby on Rails;

• Extra dependencies of the above applications, such as curl, gcc, openssl, zip, git,
postgresql-devel, wget, etc.

Taking all these requirements into consideration, the Docker image was create on
top of the official CentOS 7 image, the centos:7. The steps to create the image are inside
the Dockerfile, which in this case basically consisted of installing all these requirements
above. The complete file is in the appendix Production Dockerfile

After building this Dockerfile, the image can be pushed to GitLab’s Registry 2 and
used in the CI, by declaring the job’s image with

image: registry.gitlab.com/jungsoft/engino/build/production:centos7

With this, all the commands declared in the job will be run inside the environment
prepared in the Docker container.

6.3 Application development

Only at this point, the application could in fact start to be developed. Changes in
the initial repository setup were foreseen, but should only be incremental in making the
interfaces better, instead of completely changes how everything was set up.
2 A Registry is where Docker images can be stored

6.4. Production server 59

Having the initial repository setup, the development of the application could be split
into many different work fronts, which could be done simultaneously and interchangeably.
The two main work fronts were the Backend and the App Frontend, which could be done
completely simultaneously, due to the complete separation between them both.

The work fronts were defined as in the Milestones planning in Issues and Milestones
planning, which are:

• Frontend App;

• Frontend Admin;

• Backend Elixir API;

• Rails Oracle connector.

The work fronts were started as soon as the repository was initialized and done
simultaneously, by different team members. Since they were all very independent, there
were no issues synchronizing the work done.

All the work fronts cited above where developed by the author, except the Frontend
App.

The workflow done was basically to synchronize the frontend development with its
backend. So as soon as a new feature in the frontend was created, a query/mutation in
the GraphQL server (Absinthe) was also created and added to the frontend.

The Admin area was created as an additional app afterwards. Other applications
were also added as additional frontend apps afterwards with very little effort, proving the
flexibility of the platform to add new projects. There were no changes needed in the server
or in the deployment process. An example of app was a standalone gallery, built reutilizing
the same components from the Frontend App, developed by the same team member.

An image of the with React developed admin area can be seen in the figure 17 or
in the figure 18, in respectively white and dark themes.

On the Backend Elixir a tool called GraphiQL was installed, together with the
Absinthe library. This tool allows for executing queries in the backend, for testing purposes
and is a great tool for debugging. The Figure 19 is a screenshot from its interface.

6.4 Production server

As already mentioned before, the production server is a Red Hat Enterprise Linux
7 (RHEL7). Also, there is no root access to the server available and no internet. This
makes it much harder to install the application’s requirements.

60 Chapter 6. Implementation

Figure 17 – Engino Admin

Admin area showing the engine view upload drag-and-drop. The new views in the software
are added via this uploader.

6.4.1 Server setup

Installing the application’s dependencies into the server should follow the same
principles as installing the application itself: we install it inside a similar environment, in
an unrestricted Docker container and then copy the generated binary files to the server.
This is simplified by the fact that these requirements will change very little with time,
meaning a manual copy once should suffice.

Also, the list of requirements to run the application is different as the requirements
to generate it. For example, ImageMagick is only required in runtime, whereas Node
only during the build.

As listed in Server software, these requirements need to be available in the server.
The only software now already installed in the server is GhostScript, all the others need
to be built inside a similar environment and copied to the server. Luckily, the exact same
Docker image used in the build pipeline [6.2.2.2] can be used here as well.

The steps to generate the application binaries were taken from their respective
websites and then simply run inside the Docker container.

6.4.1.1 PostgreSQL

For building the PostgreSQL binaries, all the requirements were already met. Then
simply by running the following script the binaries were generated:

6.4. Production server 61

Figure 18 – Engino Admin

Admin Area in dark colors.

Generate PostgreSQL binaries -> Only for Binaries Generation

RUN curl \

https://ftp.postgresql.org/pub/source/v10.1/postgresql-10.1.tar.gz \

| tar xz && cd postgresql-10.1 \

&& ./configure --with-openssl --prefix=/opt/postgresql \

&& make -j $NUM_CPU && make install

Then, the only needed step is to package these files into a tar, send it somehow
inside the Rolls-Royce network (for example using Amazon S3) and unpack in the server.

6.4.1.2 RSVG and ImageMagick

Very similarly to PostgreSQL, the RSVG and ImageMagick also need to be compiled
and built. But in this case, some dependencies were missing, but could easily be installed in
this unrestricted Docker container. The following script was able to generate the binaries:

Generate binaries for librsvg2: dependency of ImageMagick

RUN yum-builddep -y librsvg2 \

&& wget https://download.gnome.org/sources/

librsvg/2.40/librsvg-2.40.16.tar.xz \

&& tar xvf librsvg-2.40.16.tar.xz && cd librsvg-* \

62 Chapter 6. Implementation

Figure 19 – GraphiQL

GraphiQL Tool. On the left side, is where the GraphQL query is written. On the middle,
is the results and floating on the right side is the schema definition, where the API can
quickly be checked by developers.

&& ./configure --prefix=/opt/librsvg \

&& make -j $NUM_CPU && make install

Generate ImageMagick binaries

RUN yum install -y ImageMagick-devel libpng-devel librsvg2-devel \

ghostscript \

&& wget https://www.imagemagick.org/download/ImageMagick.tar.gz \

&& tar xvzf ImageMagick.tar.gz && cd ImageMagick-7* \

&& ./configure --prefix=/opt/imagemagick --with-png=yes \

--with-rsvg=yes --with-gslib=yes --disable-installed \

--disable-shared --enable-delegate-build \

&& make -j $NUM_CPU && make install

Exactly the same steps were necessary to copy the built binaries into the Rolls-Royce
server.

6.4.1.3 Oracle Instant Client

As seen in the Production Dockerfile, the Oracle Client binaries are already included.
Then, we only need to package them and copy to the server, just as already done before.

6.4. Production server 63

6.4.2 Deployment

With the server completely setup, the deployment process can just assume that all
requirements are already there.

To simplify it even further, a file called .env was created on the root of the
application, with all the path to the software installed on Server setup. This file is read
during application boot and all its environment variables, such as server keys and paths,
are automatically set. This way, the deployment can be done without the need to worry
about the server configuration.

At this point, the deployment consists of performing the following steps:

1. Download release;

2. Copy release to server;

3. Stop running application;

4. Unpack release files into the corresponding folder;

5. Run database migrations3;

6. Start new application.

Since this application needs to run inside the internal Windows Active Directory
network, the easiest way is to create a simple Console Application developed in C# that
will perform exactly the steps above.

Since Amazon S3® is available inside the network, this seems like a very good
location to store the releases. Using C# libraries for the connection to Amazon S3, the app
is able to authenticate (via a AWS S3 C# library), find the latest release automatically
and download it.

The connection to the server can be done via SSH. There is also another C#
library called Tamir.SharpSSH that facilitates connecting and running commands via
SSH on the server. The path inside the server, where the application needs to be deployed
to is also predefined inside the application.

With a simple $ tar -xvzf file.tar.gz -C production, where file.tar.gz is
the release package and production is where the application will be stored, the application
is updated.

The BEAM binary release has the capability of running elixir commands via the
command line and executing specific functions. We can then create a module 4 responsible
3 A change in the database structure (change tables, columns, etc) is called a migration
4 A module in elixir is similar to a class in object oriented languages

64 Chapter 6. Implementation

for Deployment tasks. In this example, this module was called ReleaseTasks. This module
should include all release related tasks, for example, running migrations, or any other
scripts that needs to run on every deployment. To use this, one simple command is needed:

$./bin/engino command Elixir.Engino.ReleaseTasks migrate

By running this command, we ensure the application has its database tables
up-to-date with the code.

The BEAM binary also has a simple command to start the application as a daemon
5, restart and stop. Then, simply by wrapping both commands above with a stop and then
a start, we ensure the application is deployed without problems. We could also use the
restart command, to have a 100% uptime deployment. But considering the 4 commands
together take only about a second to be run, this one second downtime is not a problem.
There should also be noted, that when starting the application, the PATH should be set

$./bin/engino stop

$ PATH=$ENV_PATH ./bin/engino start

Figure 20 – Engino Deployer

5 Daemon is running the application in the background

65

7 Results

This chapter discusses how well this project helped to solve the problems in the
chapter 4. These problems were summarized by the items in 4.3. The solutions are described
in the sections below:

• Development workflow and productivity comparison: describing how the develop-
ment workflow has been improved, solving problems of developers not having high
productivity, project managers to have better insights;

• Freedom for using tools: which describes the results of having this freedom, which
solves most of the problems, related to stability, security, easier migrations between
servers, and being able to use state-of-the-art libraries. The latter are the most
impacting, since it, when well applied, solves the problems of code reuse, being able
to quickly add new features, fix bugs, etc;

• Version Control: which describes how using version control helped the project to
enable high productivity when working in teams and having a history of changes.

7.1 Development workflow

7.1.1 Milestones burndown charts

As seen in the Issues and Milestones planning, we can plan milestones as being
long term objectives and issues as short term.

By setting the dates in the milestones and associating issues with it, we are able to
generate very insightful “burndown” charts. They are used to follow the development of
the project and manage resources.

Since the issues in the project were create under the milestone, we can see the
burndown charts for both the first and the second Milestones below (both are to the status
of 2.):

This give a very good insight in how the project planning is going, if it is delayed
or on time and how many issues are still to be developed.

7.1.2 Freedom for using tools

It is well known that the more restrictions there are in a project, the less cost/benefit
it will turn out to be.

66 Chapter 7. Results

Figure 21 – Burndown Milestone 1

Figure 22 – Burndown Milestone 2

Through the freedom to use any libraries needed, many tasks were very fast to be
done and changes in the source code, which was able to be developed as multiple modules
could be done very quickly.

The freedom to use any tool can have a great impact on many areas of the
development workflow and the final software. It is though to note, that this power should
be used with responsibility.

7.1. Development workflow 67

This freedom is directly connected to the ability of developing high tech solutions,
since there is no restrictions imposed in the software development.

This freedom extends though all parts of the application:

• Through the dependency-free releases, there is no restrictions on to which server to
use and which server tools;

• Through an unrestricted development environment, there are no restrictions to which
tools to be used on the workstations;

• Through using online tools, there are no restrictions to where the development team
needs to physically be at.

This leads gives the possibility of using high end technologies in restricted environ-
ments, such as of big companies. Thus being able to keep up with the very competitive
engineering market.

Two examples that were made possible only by this freedom of using the tools
available is the authentication and the search. Because of the databases and libraries being
used before were restricted and very old, thus with bad performance, the search was very
slow and inefficient. The authentication method is made possible by connecting directly
to the LDAP server, which was not possible with the tools restricted by the previous
environment.

7.1.3 Version Control

The new development workflow not only enables using source control, but enforces
it, since is made intrinsically together with it.

The advantages of using source control are very well known, but some features
could be listed below:

• Rollback: When a non-working code is deployed to the server, by generating and
keeping track of releases, a rollback to any previous version is made possible with
only one command;

• Bug tracking: Through Git’s commit history it is possible to track where a bug
was added and to which feature this problem was associated;

• Software development history: We can easily track the software development
flow. Adding this to an online project management tool, the project management is
much simpler;

68 Chapter 7. Results

• Collaboration: Though using a Version Control System, collaborating to a common
repository is made very straightforward. This would cause many problems without
source control, such as loosing code in merges, etc.

7.2 Productivity comparison

The most important aspect in a software development team is productivity. This is
exactly the reason why new technologies are created every day: to raise productivity.

A very good way to compare the productivity is to compare the development of 2
very similar features in the old and in the new development environment. Image 23 shows
the productivity comparison between the old and the new system:

Figure 23 – Productivity Comparison

7.2.1 Case Study - new feature development speed

The feature was very simple: add a button in the frontend, load a table in the
database and show a table when this button was clicked. This was the first feature
developed still in the “Old Engino”.

Even though this sounds very simple, it took roughly a full week to be completely
developed. Most of the problems were related to the development environment, such as
the code being very difficult to read and many bugs were happening, which were very
difficult to track.

This same feature was also added lately to the “New Engino” and even though it
was much more complex, since it included an uploader interface to load the data, it took
less than a full working day to be completely done.

7.2. Productivity comparison 69

7.2.2 Case Study - new developer in the team

In every company, the team changes constantly. For this reason, another very
important aspect is how much time a new developer will take to understand the code and
be able to start producing value.

For this case study, the comparison will be made between the first month with the
“Old Engino” [4.3] and the first days of a new developer with the new Engino.

7.2.2.1 Old Engino

During the whole first couple of months many features were added, such as the VIR
button above [7.2.1]. All of them were very simple and requires more or less the following
steps:

• Create a new table in the database;

• Add a button in the frontend;

• Integrate this button to the database.

This was repeated about 5 times, for different data sources. All data was always
loaded directly into the database, though an Excel file. Even though the features were
very simple to be done, it took roughly one full month to make them.

A new developer entered the team a week ago. The first task was to create the
authentication to the Rolls-Royce LDAP server.

Even though this task was much more complex than all 5 tasks from the old engino
combined, it took only about 3 days to be completely done, since much of the code could
be reused and it was very easy to get started with it.

71

8 Future developments

8.1 Conclusion

Since 2000, more than half of the Fortune 500 companies have either gone bankrupt,
been acquired or gone out of business [4]. Digital disruption has a large share of responsi-
bility in this. The technology/software market is changing constantly, with new products,
technologies, libraries, languages, paradigms, etc. are being released every day. With this
amount of change, some companies simply can’t keep up.

The biggest reason companies have a hard time adapting to be competitive are not
technical, but cultural. That means processes, paradigms, methodologies, etc. that change
and companies do not know how to adapt, which are left to the old practices. This change
in the culture, especially in big companies, can be really hard and very expensive.

The main objective of this project was to implement modern software development
practices in a company that still have very old systems and paradigms, with regards to
software. This enabling high productivity and the ability to adapt faster, thus becoming
more competitive. Since this project is very general, as well as web development, it can be
applied in many other projects, to use the same base and practices, with very little effort.

Since the biggest problems are cultural, such a big swift in the teams culture
would be really difficult. Having a modular, general architecture, that could be applied, to
some extend, to all software projects, could facilitate its implementation. This allows for
gradually shifting the software development practices to a more modern era.

8.2 Further development

The complete software developed was made in a “plug-and-play” way, meaning
many of its individual parts could be applied easily to other softwares and other teams.
This includes database, the server software, backend technologies, frontend technologies,
the CI system, and even simply the practices. Also, it is very easy to keep adding features
and extending even more the software developed.

For example, some new features planned for Engino are:

• Add new data sources, which can connect information through relating to parts;

• Improvements in the image processing scripts;

72 Chapter 8. Future developments

• Add information about date and responsible person to every piece of data saved in
the software;

• Heatmaps of costs, failure rates, number of quality issues, etc. for parts;

• Create walkthrough, for visually teaching users how the system works.

There are also multiple separated projects already planned, or being developed,
that will use the same practices cited throughout this project and the server infrastructure.
These software are all from different teams:

• SAS: Uses the base of Engino to show, on the same views, information about Gas
Turbine Secondary Air System;

• Shopino: The same idea behind Engino, but adapted for the Shopfloor and with
new features;

• eBAM: Management of tasks related to BAMs (report of anomalies during produc-
tion), which is a Rolls-Royce process, to eliminate the necessity of using a paper
based workflow.

73

References

[1] Agile Manifesto. English. url: http://agilemanifesto.org/ (cit. on p. 21).

[2] AngularJS. English. url: https://angularjs.org/ (cit. on p. 26).

[3] Atlassian - CI vs CD vs CD. English. url: https : / / www . atlassian . com /

continuous-delivery/ci-vs-ci-vs-cd (cit. on p. 22).

[4] Digital Transformation Is Racing Ahead and No Industry Is Immune. English. url:
https://hbr.org/sponsored/2017/07/digital-transformation-is-racing-

ahead-and-no-industry-is-imune-2 (cit. on p. 71).

[5] Domain-Driven Design: Tackling Complexity in the Heart of Software. 2014 (cit. on
p. 23).

[6] Elixir. English. url: https://elixir-lang.org/ (cit. on p. 28).

[7] Erlang. English. url: https://www.erlang.org/ (cit. on p. 27).

[8] ES6 Specification. English. url: http://www.ecma-international.org/ecma-
262/6.0/index.html (cit. on p. 29).

[9] Functional Programming In Java. English. url: https : / / hackernoon . com /

finally-functional-programming-in-java-ad4d388fb92e (cit. on p. 27).

[10] Git SCM. English. url: https://git-scm.com (cit. on p. 24).

[11] GitLab. English. url: https://about.gitlab.com/ (cit. on p. 24).

[12] GitLab - CI vs CD vs CD. English. url: https://about.gitlab.com/2016/08/
05/continuous-integration-delivery-and-deployment-with-gitlab/ (cit. on
p. 22).

[13] GraphQL. English. url: https://graphql.org/ (cit. on p. 28).

[14] ECMA international. ECMAScript: A general purpose, cross-platform programming
language. 1997. url: https://www.ecma-international.org/publications/
files/ECMA- ST- ARCH/ECMA- 262, %201st%20edition, %20June%201997.pdf

(visited on) (cit. on p. 29).

[15] JavaScript Object Notation. English. url: https://www.json.org/json-en.html
(cit. on p. 25).

[16] Phoenix Framework. English. url: http://phoenixframework.org/ (cit. on p. 28).

[17] React. English. url: https://reactjs.org/ (cit. on p. 26).

[18] Rolls-Royce. English. url: https://www.rolls-royce.com/ (cit. on p. 19).

[19] Rolls-Royce Corporate Presentation. English. 2017 (cit. on p. 20).

http://agilemanifesto.org/
https://angularjs.org/
https://www.atlassian.com/continuous-delivery/ci-vs-ci-vs-cd
https://www.atlassian.com/continuous-delivery/ci-vs-ci-vs-cd
https://hbr.org/sponsored/2017/07/digital-transformation-is-racing-ahead-and-no-industry-is-imune-2
https://hbr.org/sponsored/2017/07/digital-transformation-is-racing-ahead-and-no-industry-is-imune-2
https://elixir-lang.org/
https://www.erlang.org/
http://www.ecma-international.org/ecma-262/6.0/index.html
http://www.ecma-international.org/ecma-262/6.0/index.html
https://hackernoon.com/finally-functional-programming-in-java-ad4d388fb92e
https://hackernoon.com/finally-functional-programming-in-java-ad4d388fb92e
https://git-scm.com
https://about.gitlab.com/
https://about.gitlab.com/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/
https://about.gitlab.com/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/
https://graphql.org/
https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
https://www.json.org/json-en.html
http://phoenixframework.org/
https://reactjs.org/
https://www.rolls-royce.com/

74 References

[20] Webpack. English. url: https://webpack.js.org/ (cit. on pp. 29, 30).

https://webpack.js.org/

75

APPENDIX A – Webpack Configuration

File

1 const env = process.env.NODE_ENV || 'development'
2 const isProduction = (env === 'production')
3

4 const webpack = require('webpack');
5

6 const path = require('path');
7 const ExtractTextPlugin = require('extract-text-webpack-plugin');
8 const ResolveEntryModulesPlugin = require('resolve-entry-modules-webpack-plugin');
9

10 function join(dest) { return path.resolve(__dirname, dest); }
11

12 function web(dest) { return join('frontend/' + dest); }
13

14 const publicPath = `http://${process.env.HOST || 'localhost'}:4001/`;
15

16 const devServerClient = isProduction ? ['babel-polyfill'] : [
17 'babel-polyfill',
18

19 'react-hot-loader/patch',
20 // activate HMR for React
21

22 'webpack-dev-server/client?' + publicPath,
23 // bundle the client for webpack-dev-server
24 // and connect to the provided endpoint
25

26 'webpack/hot/only-dev-server',
27 // bundle the client for hot reloading
28 // only- means to only hot reload for successful updates
29];
30

31 module.exports = {
32 devtool: isProduction ? 'source-map' : 'eval',
33

34 devServer: {
35 headers: {
36 "Access-Control-Allow-Origin": "*",
37 "Access-Control-Allow-Methods":
38 "GET, POST, PUT, DELETE, PATCH, OPTIONS",

76 APPENDIX A. Webpack Configuration File

39 "Access-Control-Allow-Headers":
40 "X-Requested-With, content-type, Authorization"
41 },
42 contentBase: join('priv/static'),
43 port: 4001,
44 hot: true,
45 publicPath,
46 stats: {
47 colors: true,
48 version: false,
49 chunkModules: false
50 }
51 },
52

53 entry: {
54 app: devServerClient.concat([
55 web("app/css/app.scss"),
56 web('app/main.jsx')
57]),
58 admin: devServerClient.concat([
59 web('admin/main.jsx')
60]),
61 },
62

63 output: {
64 path: join('priv/static'),
65 publicPath: isProduction ? "/" : publicPath,
66 filename: 'js/[name].js',
67 },
68

69 resolve: {
70 extensions: ['.js', '.jsx', '.json'],
71 modules: ['node_modules', 'frontend/assets/images', web('')]
72 },
73

74 module: {
75 rules: [
76 {
77 test: /\.(js|jsx)$/,
78 exclude: /node_modules/,
79 loaders: [
80 {
81 loader: 'babel-loader',
82 },
83 { loader: 'haml-jsx-loader' }

77

84]
85 },
86 {
87 test: /^.((?!cssmodule).)*\.(sass|scss)$/,
88 loaders: [
89 { loader: 'style-loader' },
90 { loader: 'css-loader' },
91 { loader: 'sass-loader' }
92]
93 },
94 {
95 test: /\.css$/,
96 loaders: [
97 { loader: 'style-loader' },
98 { loader: 'css-loader' }
99]

100 },
101 {
102 test: /\.(gif|png|jpe?g|svg)$/i,
103 loaders: [
104 {
105 loader: 'file-loader',
106 options: {
107 name: 'images/[name]-[hash].[ext]'
108 }
109 }
110]
111 },
112 {
113 test: /\.(ttf|woff2?|eot)$/,
114 loader: "file-loader",
115 options: {
116 name: 'fonts/[hash].[ext]'
117 }
118 }
119],
120 },
121

122 plugins: [
123 new webpack.NamedModulesPlugin(),
124 new webpack.NoEmitOnErrorsPlugin(),
125 new webpack.ProvidePlugin({
126 $: "jquery",
127 jQuery: "jquery",
128 "window.jQuery": "jquery",

78 APPENDIX A. Webpack Configuration File

129 Popper: ['popper.js', 'default']
130 }),
131 new ResolveEntryModulesPlugin(web(''))
132].concat(isProduction ? [
133 // Production only Plugins
134 new webpack.DefinePlugin({
135 'process.env.NODE_ENV': JSON.stringify('production')
136 }),
137 new webpack.optimize.OccurrenceOrderPlugin(),
138 new webpack.optimize.UglifyJsPlugin({
139 sourceMap: true,
140 minimize: true,
141 compress: {
142 warnings: false,
143 screw_ie8: true,
144 conditionals: true,
145 unused: true,
146 comparisons: true,
147 sequences: true,
148 dead_code: true,
149 evaluate: true,
150 if_return: true,
151 join_vars: true
152 },
153 output: {
154 comments: false, // remove all comments
155 },
156 }),
157 new webpack.optimize.ModuleConcatenationPlugin(),
158] : [
159 // Develpment only plugins
160 new webpack.HotModuleReplacementPlugin()
161]),
162 }

79

APPENDIX B – GitLab CI Configuration

1 variables:
2 MIX_ENV: "test"
3 POSTGRES_DB: engino_test
4 POSTGRES_USER: engino
5 POSTGRES_PASSWORD: 0g78g807F8G078GZ078ZG787ZGV8Z9
6

7 stages:
8 - test
9 - staging

10 - production
11

12 backend_elixir:
13 tags:
14 - docker
15 image: elixir:1.6.5
16 services:
17 - postgres:10.1
18 stage: test
19 before_script:
20 - mix local.rebar --force
21 - mix local.hex --force
22 - mix deps.get
23 script:
24 - mix test
25 - mix coveralls
26 coverage: /\[TOTAL\]\s+(\d+\.\d+)%/
27

28 backend_rails:
29 tags:
30 - docker
31 image: registry.gitlab.com/jungsoft/engino/build/test:rails
32 stage: test
33 variables:
34 RAILS_ENV: test
35 before_script:
36 - cd engino-rails-api
37 - bundle install
38 script:
39 - bundle exec rake test
40

41 frontend:

80 APPENDIX B. GitLab CI Configuration

42 tags:
43 - docker
44 image: node:8.7.0
45 stage: test
46 before_script:
47 - yarn install
48 script:
49 - npm test #-- -u --coverage
50

51 build_release:
52 tags:
53 - docker
54 image: registry.gitlab.com/jungsoft/engino/build/production:centos7
55 stage: production
56 variables:
57 REPLACE_OS_VARS: "true"
58 MIX_ENV: "prod"
59 NODE_ENV: "production"
60 before_script:
61 # Install project dependencies
62 - mix deps.get
63 - yarn install --prod
64 script:
65 # Install Ruby libraries
66 - bundle install --gemfile=engino-rails-api/Gemfile --path=gems
67

68 # Build elixir release
69 - mkdir -p priv/static
70 - ./node_modules/webpack/bin/webpack.js
71 - mix phx.digest
72 - mix release
73 - VERSION=`mix release.version show`
74 - mv _build/prod/rel/engino/releases/$VERSION/engino.tar.gz engino.tar.gz
75

76 # Copy release to AWS
77 - aws s3 cp engino.tar.gz s3://$PATH
78 environment:
79 name: production
80 only:
81 - master
82 artifacts:
83 paths:
84 - engino.tar.gz

81

APPENDIX C – Production Dockerfile

1 FROM centos:7
2

3 # Dockerfile author / maintainer
4 LABEL maintainer="Rafael Jung <jungrafael@jungsoft.com.br>"
5

6 ARG RUBY_INSTALLATION_PATH=/var2/data/engino/ruby
7

8 ENV HOME /root
9

10 # Prerequisites for `all`
11 ARG NUM_CPU=8
12 RUN yum -y update && yum -y upgrade
13 RUN yum install -y epel-release
14 RUN yum install -y curl gcc-c++ make m4 file pkgconfig perl expat-devel \
15 zlib-devel python-hashlib gettext ncurses-devel openssl-devel \
16 wget bzip2 bzip2-libs bzip2-devel zip unzip git which openssh-clients \
17 rsync readline-devel mesa-libGLU-devel readline-devel sqlite-devel \
18 tk-devel db4-devel gdbm-devel postgresql-devel libaio
19 ADD clean /root/
20 WORKDIR /tmp
21

22 RUN curl -L https://$GOON_PATH/goon_linux_amd64.tar.gz | tar xvz && mv goon /bin/
23

24 # Install Oracle Client
25 RUN mkdir -p /opt \
26 && mkdir /opt/oracle \
27 && cd /opt/oracle \
28 && wget https://$ENGINO_TOOLS_PATH/instantclient-basic-linux.x64-12.1.0.2.0 \
29 && unzip instantclient-basic-linux.x64-12.1.0.2.0 \
30 && rm instantclient-basic-linux.x64-12.1.0.2.0 \
31 && wget https://$ENGINO_TOOLS_PATH/instantclient-sdk-linux.x64-12.1.0.2.0 \
32 && unzip instantclient-sdk-linux.x64-12.1.0.2.0 \
33 && rm instantclient-sdk-linux.x64-12.1.0.2.0 \
34 && wget https://$ENGINO_TOOLS_PATH/instantclient-sqlplus-linux.x64-12.1.0.2.0 \
35 && unzip instantclient-sqlplus-linux.x64-12.1.0.2.0 \
36 && rm instantclient-sqlplus-linux.x64-12.1.0.2.0 \
37 && cd instantclient_12_1 \
38 && ln -s libclntsh.so.12.1 libclntsh.so
39

40 ENV LD_LIBRARY_PATH="/opt/oracle/instantclient_12_1"
41

82 APPENDIX C. Production Dockerfile

42 # Configure default locale to UTF-8 -> Elixir
43 RUN localedef -c -f UTF-8 -i en_US en_US.UTF-8 \
44 && export LC_ALL=en_US.UTF-8
45

46 # Install PIP
47 RUN curl https://bootstrap.pypa.io/get-pip.py >> get-pip.py \
48 && python get-pip.py \
49 && pip install awscli \
50 && /root/clean
51

52 # Install `node` and `yarn`
53 RUN curl --silent --location https://rpm.nodesource.com/setup_8.x | bash - \
54 && yum install -y nodejs
55

56 # Install `yarn` - https://yarnpkg.com/lang/en/docs/install/#linux-tab
57 RUN curl --silent --location \
58 https://dl.yarnpkg.com/rpm/yarn.repo | tee /etc/yum.repos.d/yarn.repo \
59 && yum install -y yarn
60

61 # Install `erlang`
62 RUN wget https://packages.erlang-solutions.com/erlang-solutions-1.0-1.noarch.rpm \
63 && rpm -Uvh erlang-solutions-1.0-1.noarch.rpm \
64 && yum install -y esl-erlang
65

66 # Install `elixir`
67 ENV LC_ALL=en_US.UTF-8
68 RUN wget https://github.com/elixir-lang/elixir/archive/v1.6.5.zip \
69 && unzip v1.6.5 \
70 && mv elixir-1.6.5 /opt/elixir \
71 && cd /opt/elixir && make clean test \
72 && /root/clean
73 ENV PATH="/opt/elixir/bin:${PATH}"
74

75 RUN mix local.hex --force && mix local.rebar --force
76

77 # Install Ruby
78 RUN wget http://cache.ruby-lang.org/pub/ruby/2.5/ruby-2.5.1.tar.gz \
79 && tar -xvzf ruby-2.5.1.tar.gz && rm ruby-2.5.1.tar.gz && cd ruby-2.5.1 \
80 && ./configure --disable-shared --prefix=$RUBY_INSTALLATION_PATH \
81 && make -j $NUM_CPU && make install \
82 && /root/clean
83

84 ENV PATH="$RUBY_INSTALLATION_PATH/bin:${PATH}"
85

86 CMD ["/bin/bash"]

	Approval
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Reasoning
	Objectives
	General objective
	Specific objectives

	Document structure

	Rolls-Royce plc
	Rolls-Royce Deutschland
	Engino

	Technologies and technical basis
	Technologies and methodologies
	Agile development
	Continuous Integration
	Continuous Delivery
	Continuous Deployment
	Test Driven Development - TDD

	Domain-Driven Design - DDD
	Microservices
	Git
	GitLab

	Application technologies
	JSON
	SPA
	Angular JS
	React

	Functional programming
	Erlang
	Elixir
	Phoenix Framework

	GraphQL
	ECMAScript
	Webpack

	Engino architecture
	Frontend
	API
	Backend
	Server software

	The problem
	Access of information
	Current web development environment
	Engino

	Project planning
	Requirements and information compilation
	Engino - soft requirements
	Server - hard requirements

	Technology stack
	Frontend
	AngularJS
	Vue.js
	Angular 4
	React

	Backend

	Methodology
	GitLab development workflow
	GitLab Issue Tracker
	Milestones
	Sprint Planning
	CI/CD

	Development environment
	Issues and Milestones planning

	Implementation
	Workstation
	Repository
	Base project setup
	Phoenix application
	React Frontend (Webpack)

	CI/CD
	Testing pipeline
	Build pipeline

	Application development
	Production server
	Server setup
	PostgreSQL
	RSVG and ImageMagick
	Oracle Instant Client

	Deployment

	Results
	Development workflow
	Milestones burndown charts
	Freedom for using tools
	Version Control

	Productivity comparison
	Case Study - new feature development speed
	Case Study - new developer in the team
	Old Engino

	Future developments
	Conclusion
	Further development

	References
	Webpack Configuration File
	GitLab CI Configuration
	Production Dockerfile

