
OptImatch: System with Knowledge
Base for Query Performance

Problem Determination of Query
Execution Plans

Relatório submetido à Universidade Federal de Santa Catarina
como requisito para a aprovação da disciplina:
DAS 5511: Projeto de Fim de Curso

Guilherme Fetter Damasio

Florianópolis, Março de 2017

OptImatch: System with Knowledge Base for Query
Performance Problem Determination of Query

Execution Plans

Guilherme Fetter Damasio

Esta monografia foi julgada no contexto da disciplina
DAS 5511: Projeto de Fim de Curso

e aprovada na sua forma final pelo
Curso de Engenharia de Controle e Automação

Prof. Leandro Buss Becker

Banca Examinadora:

Piotr Mierzejewski/IBM
Orientador na Empresa

Prof. Leandro Buss Becker
Orientador no Curso

Prof. Hector Bessa Silveira
Responsável pela disciplina

Prof. Jomi Fred Hübner, Avaliador

Mateus Sant’Ana, Debatedor

Vinicius Ghizoni da Silva, Debatedor

Acknowledgements

First, I would like to thank my parents for all the love they gave me, as well as
education, encouragement and support. Also, thank you for the countless times you have
helped me throughout my journey at the university.

Special thanks to the Universidade Federal de Santa Catarina (UFSC) and to the
entire faculty, who with their excellent structure and administration provided me with the
best conditions to achieve my goals.

To my advisor, Leandro Buss Becker, for his support and mentorship during the
development of this work.

To my UOIT Advisor, Jaroslaw Szlichta, for giving me the opportunity to develop
this project and for the guidance and support through the execution of it.

To my IBM collaborators, Piotr Mierzejewski, Calisto Zuzarte and Vincent Corvinelli,
for all the work and help in the development of this project.

I would like to thank members of the DB2 optimizer development and support
teams for their feedback and guidance through the development of the OptImatch system.

Finally, to all my colleagues and friends who, in a way, contributed to the accom-
plishment of this work, all were very important, so I leave here registered my thanks.

Resumo Extendido

A determinação de problemas de performance de queries de banco de dados é normalmente
feita analisando os planos de execução de queries, ou em inglês, query execution plan

(QEP), além de outras propriedades de performance. Algumas ferramentas de diagnose
de performance no mercado tem a capacidade de analisar queries problemáticas, porém
elas estão limitadas a comparar as queries com um número limitado de padrões pré-
definidos. Ainda mais, ferramentas como IBM R© Optim Query Tuner R© e IBM Optim
Workload Tuner R©1já fazem recomendações de aperfeiçoamento de queries para problemas
já conhecidos. Mesmo sendo efetivas, tais ferramentas não proporcionam a habilidade de
criar problemas padrões customizáveis devido ao fato delas não entenderem completamente
a complexa estrutura dos QEPs. Conforme os dados guardados para análise aumentam, para
poder analisá-los, a complexidade da query também aumenta. Fazer a análise manual de
QEPs tão complexas pode ser uma tarefa demorada e que requer um grande conhecimento
dos especialistas no assunto.

O presente trabalho foi desenvolvido em parceria com a IBM Centre for Advanced

Studies Toronto. IBM é uma multinacional americana, tendo como sua principal atuação
o mercado de hardware, middleware e software. A ferramenta proposta está relacionada
com o sistema de banco de dados DB2 da IBM. O DB2 é um sistema de banco de dados
relacionais utilizado principalmente por empresas. Devido ao grande volume de dados,
o DB2 provê funcionalidades como o aperfeiçoamento de queries através da reescrita da
mesma. Ao rodar uma query no DB2, o sistema produz um plano de acesso que especifica
como os dados são obtidos das tabelas. Para a escolha do plano de acesso, o otimizador
produz vários planos de acesso alternativos e seleciona aquele que tem o menor custo
estimado de plano de execução.

Quando o otimizador falha, devido à experiência e tempo necessário, os usuários procuram
as empresas para sanar o problema. Na IBM, os problemas reportados por clientes são
analisados por profissionais com experiência em linguagem SQL e análise de otimizador
de QEPs. Para analisar os problemas de otimização, esses profissionais utilizam de uma
ferramenta do DB2 que produz um arquivo QEP. Esses arquivos são escritos em formato
de texto legível para humanos, explicando o plano de acesso. Tais arquivos podem conter
milhares de linhas e a análise manual do mesmo pode consumir muito tempo.

Visando sanar tais problemas, foi desenvolvida neste trabalho uma ferramenta chamada
OptImatch, que tem a funcionalidade de procurar por diferentes problemas padrões
dentro de um QEP e prover recomendações criadas por especialistas e salvas na base de
1 IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business

Machines Corp., registered in many jurisdictions worldwide. Other product and service names might
be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web
at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml

conhecimento, abreviada por KB (knowledge base). Um grande problema das ferramentas
existentes no mercado é a falta de uma interface que provê ao usuário uma maneira de
criar seu problema padrão, pois as mesmas não conseguem impor uma estrutura para
os QEPs. OptImatch, através de um sistema web, provê uma interface fácil e intuitiva
para usuários criarem problemas padrões customizáveis e pesquisarem recomendações
automaticamente dentro de seus QEPs.

A solução proposta é dada pela transformação do QEP para um grafo RDF e pela pesquisa
dos problemas padrões utilizando o SPARQL como linguagem de query estruturada. Ao
fazer upload dos QEPs, a ferramenta analisa os arquivos procurando, através de expressões
regulares, as propriedades e conexões, salvando as mesmas em um arquivo RDF. Depois,
através da interface do sistema, o usuário monta seu problema padrão customizado, onde
o mesmo é enviado ao servidor e automaticamente transformado em uma query através da
linguagem SPARQL. Tal query posteriormente será utilizada para procurar o problema
customizado dentro dos arquivos RDF. Juntamente com essa pesquisa, o OptImatch
também procura pelos problemas padrões pré-definidos e guardados dentro do KB. Para
a criação das recomendações uma sintaxe própria foi criada. Através dessa sintaxe o
usuário pode utilizar tags para indicar uma porção da query, apontando para propriedades
específicas da mesma. Através dos manipuladores de tags, a ferramenta proposta substitui
as tags pelos resultados obtidos, criando assim uma recomendação mais específica para
cada usuário.

Mesmo que a ferramenta descrita nesse trabalho seja focada em determinação de problemas
de performance de queries, a mesma pode ser aplicada para qualquer tipo de software de
determinação de problemas genéricos. OptImatch necessita somente que tais softwares
produzam um arquivo de diagnóstico estruturado que necessita analise futura.

Por fim, cinco experimentos são apresentados neste trabalho. O principal foco desses experi-
mentos é analisar a efetividade da pesquisa da ferramenta em 1000 QEPs de usuários reais
da IBM, avaliando a performance e escalabilidade da ferramenta em termos de quantidade
de QEP, número de low level plan operators (LOLEPOPs) e número de recomendações.
Também foi feito uma analise do novo método de pesquisa da ferramenta, comparando a
mesma com o método anterior. Por último, foi realizado um estudo comparativo entre a
velocidade e precisão da ferramenta proposta e os métodos de pesquisa hoje utilizados na
IBM, mostrando os benefícios que o OptImatch poderá trazer a empresa.

Palavras-chave:Problema de Determinação de Performance de Queries, Web Semântica,
Base de Conhecimento e Inteligência de Negócios.

Abstract

Query performance problem determination in databases is often done by analyzing query
execution plans (QEPs) in addition to other properties. The majority of performance
diagnostic tools help identify problematic queries. Unfortunately, most query tuning tools
provide recommendations to only few known problems. Furthermore, manual analysis of
QEPs requires deep knowledge in both SQL and analyzing optimizers as the complexity
of the query workloads in companies increase. A tool called OptImatch was created to
provide a simple way to search different problem patterns created by users in QEPs.
Moreover, OptImatch matches and provides recommendations, created by experts and
users, stored in a knowledge base. The proposed tool transforms the QEP into a RDF
graph and automatically generate a SPARQL query from a user-based problem pattern
described in the GUI by the use of handlers. The SPARQL query is then run against the
RDF graph and any matching portion is returned to the user. OptImatch also searches
for predefined problem patterns by scanning the knowledge base against the RDF graph,
returning a recommendation for any match. In the running time, the system adapts the
recommendation to the user through the handler tagging interface. An analysis of the
performance and scalability of the system was performed using a real-world query workload.
Also, a comparative user study was performed to evaluate the advantages of this tool in
contrast to manual search as used inside IBM.

Keywords:Query Performance Problem Determination, Semantic Web, Knowledge Bases
and Business Intelligence.

List of Figures

Figure 1 – SQL and XQuery compiler . 8
Figure 2 – Low Level Plan Operator (LOLEPOP) 9
Figure 3 – Tree Diagram Portion of a QEP . 9
Figure 4 – Plan Detail of the LOLEPOP on Figure 2 10
Figure 5 – N-Triples format . 11
Figure 6 – SPARQL Query Example . 12
Figure 7 – JSONExample . 14
Figure 8 – System Architecture . 15
Figure 9 – Database Architecture . 18
Figure 10 – Data Integration . 19
Figure 11 – OptImatch Sequence Diagram . 21
Figure 12 – Main Screen Graphical User Interface 23
Figure 13 – LOLEPOP Properties (Left) and Global Properties (Right) 24
Figure 14 – Properties Differences . 24
Figure 15 – Immediate and Descendant Child . 25
Figure 16 – Problem Pattern 1 . 25
Figure 17 – Problem Pattern 1 in a QEP . 26
Figure 18 – Save Query Pop-up . 27
Figure 19 – Report Bug Pop-up . 28
Figure 20 – QEP in blocks . 30
Figure 21 – RDF Triple . 31
Figure 22 – Generated RDF from QEP . 31
Figure 23 – Generated JSON Object . 33
Figure 24 – JSON to SPARQL Mapping . 33
Figure 25 – Auto-generated SPARQL Query . 35
Figure 26 – SPARQL Query and related problem pattern 38
Figure 27 – SPARQL Query from Figure 26 with listColumns 39
Figure 28 – Portion of a QEP with problem pattern 42
Figure 29 – Result Panel for Problem Pattern Without Recommendation 43
Figure 30 – GUI With Problem Pattern . 45
Figure 31 – SPARQL Query from Figure 30 . 45
Figure 32 – Result Panel for Problem Pattern With Recommendation 46
Figure 33 – Size of Workload Experiment . 51
Figure 34 – Number of LOLEPOPs Experiment . 52
Figure 35 – Number of Recommendations Experiment 53
Figure 36 – Comparative Search Experiment . 54

Figure 37 – Number of Recommendations Experiment 55

List of Tables

Table 1 – Precision for Manual Search . 55

List of Algorithms

1 RDF algorithm . 32
2 Problem Pattern to SPARQL Query . 35
3 Save Recommendation in KB . 40
4 Search Problem Pattern . 44
5 Search Recommendations in the Knowledge Base 47
6 Search Problem Pattern And Recommendation 47

List of abbreviations and acronyms

BI Business Intelligence

DA Data Warehousing

DBA Database Administrator

DBMS Database Management System

GUI Graphical User Interface

HSJOIN Hash Join

JSON JavaScript Object Notation

LOJ Left Outer Join

LOLEPOP Low Level Plan Operators

MGJOIN Merge Join

NLJOIN Nested Loop Join

QEP Query Execution Plan

RDF Resource Script Framework

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

TBSCAN Table Scan

Contents

1 INTRODUCTION . 1

1.1 Contributions . 3

1.2 Manuscript Organization . 4

2 BACKGROUND . 7

2.1 IBM Company and Related Technologies 7

2.2 Other Adopted Technologies . 11

2.2.1 RDF . 11

2.2.2 SPARQL . 12

2.2.3 Jena . 12

2.2.4 Dojo toolkit . 13

2.2.5 D3.js . 13

2.2.6 JSON . 13

3 OPTIMATCH ARCHITECTURE . 15

3.1 Database . 17

3.2 Data Integration . 18

4 GRAPHICAL USER INTERFACE . 23

4.1 Creating a Problem Pattern . 23

4.2 Recommendation . 26

4.3 Extra Features . 28

5 TRANSFORMATION ENGINE . 29

5.1 Parser . 29

5.2 RDF Creation . 30

5.3 SPARQL Generator . 32

6 SYNTAX FOR RECOMMENDATIONS 37

7 MATCHING PATTERNS AND FINDING SOLUTIONS IN THE KNOWL-

EDGE BASE . 41

7.1 Matching Patterns against QEP workload 41

7.2 Finding Solutions in the Knowledge Base 44

7.3 Asynchronous Search . 48

8 EXPERIMENTAL STUDY . 49

8.1 Setup . 49

8.2 Performance and Scalability . 50

8.2.1 Size of Workload . 50

8.2.2 Number of LOLEPOPs . 51

8.2.3 Number of Recommendations . 52

8.3 Comparative Search . 53

8.4 Comparative User Study . 54

9 CONCLUSIONS . 57

BIBLIOGRAPHY . 59

1

1 Introduction

Data, on a daily basis, is becoming more and more essential to the global economy.
Industry keeps building more and more data warehousing and business intelligence to
store data. This data keeps increasing as the industry continually keeps populating
DAs. According to [Raph e Margy 2013], we have seen databases grow from megabytes
to gigabytes to terabytes to petabytes, yet the basic challenge of DW/BI systems has
remained remarkably constant. A company’s data is typically used by business users in
order to support decision making. The retrieval of this information is facilitated by the
use of a relational query language, such as structured query language (SQL).

Given the increase of data stored, queries are becoming more and more complex in
order to retrieve the needed information in a form suitable to analysis. As the complexity
of queries increase and data store grow large, they are run no longer run just during
work hours, but also during weekends. Moreover, analytic queries are no longer used
just for batch reports, but are now an imperative part of the business operation, so the
performance of these queries is that much more essential.

The creation of such complex queries is not something easily achieved, as it needs
expertise in both database and SQL like query languages. Database systems are becoming
more sophisticated as they can now adaptively tune the environment that they operate in.
Furthermore, database administrators can analyze performance issues in a database by
using general query performance problem determination tools [Zilio et al. 2004] [Alton et al.
2004]. Using these tools requires their own level of expertise to use, understand and interpret
findings, but does not require deep knowledge about query execution plans (QEPs), nor
expertise of an optimizer. However, they lack the customization and improvements often
needed in order to be used by general end-user for the problem determination and tuning
process. As a result, normally this process is done manually.

Manual search for performance issues is not just time consuming, but also requires
expertise in structured query languages when analyzing big and complex queries, which
are normally found in data warehouses. When facing a problem, DBAs reports it to their
vendor, so experts in both SQL and analyzing optimizer QEPs can give recommendations
to the user. This approach is not only difficult to scale, but also consumes a lot of effort
and requires experts with deep knowledge in the matter.

Tools such as IBM R© Optim Query Tuner R© and IBM Optim Workload Tuner R©
already provide tuning recommendation for problem determination. However, they are
restricted for only simple and already created problem patterns. They do not provide a way
for users to create their own custom problem pattern. Furthermore, while very effective,

2 Chapter 1. Introduction

problem determination tools do not completely understand the complex structure of QEPs,
limiting the characteristics that can be searched. Sometimes users, with no experience or
deep knowledge, want to search for simple questions inside the QEPs. Unfurtunately, there
are no tools in the market that propose a general problem pattern search by providing
both already created problem patterns and custom search of arbitrary patterns in order to
make diagnosis of performance and interactive analysis.

Even for database administrators, given the complexity of QEP files, it is sometimes
is difficult and time consuming to determine the solution to a problem. As there is no
existing tools that allow the creation of this custom problem pattern, the experts rely on
more generic searching tools such as grep to monitoring of files. It is easy to see that this
technique is not scalable and starts to get more difficult to monitor as the number of files
increase.

The tool proposed in this work, OptImatch, was developed in partnership with the
IBM Center for Advanced Studies Toronto. IBM is an American multinational, having as
its main activity the market for hardware, middleware and software. The proposed tool
is related to the IBM DB2 relational database system. At IBM, the analysis of problem
reported by DBAs is normally done over the QEP file outputted by the DB2. To analyze
optimization problems, experts use the db2exfmt command to produce a QEP file. These
files are written in human-readable text, explaining the access plan. Such files may contain
thousands of lines and manual analysis can be time consuming.

Because of these restrictions, we decided to create a tool (OptImatch) that provides
a way to automatically find solutions in QEPs workloads, decreasing time, complexity, skill
and expertise to search for problem patterns (list of operators and properties interconnected
that describes a problem).

In order to maintain the usability and scalability of databases, commercial relational
database systems such as IBM DB2 R©, Oracle R©, and Microsoft R© SQL Server R© need
to improve their queries. The proposed tool can make the process faster and easier to
find solutions in a workload. Furthermore, there are tools that already create user queries
by providing a user interface where the user is able to set some few properties. However,
there is no limit of the size of these queries, normally passing 1000 lines, making it hard
to analyze. Also, normally these queries consist of nesting subqueries which leads to
repetitiveness of properties. In these types of scenarios, if the optimizer fails, improving
performance is really time-consuming and needs deep expertise to do so manually.

With the aim to save time of experts, this kind of search was automated as much
as possible. OptImatch minimizes the effort to accomplish the analysis. The tool uses
abstracted artefact structure (RDF) to represent the information about the QEPs and
SPARQL [Harris e Seaborne 2013] to query the information needed by the user. SPARQL
is beneficial to OptImatch as it can retrieve the required and optional properties. Even

1.1. Contributions 3

more, this structured query language allows recursive search by using the property path
functionality. Recursive query can search for relationships that are not directly connected,
meaning that between the connections, there can exist a path with other operators.
Moreover, SPARQL can search for patterns that appears multiple times in the same file
and it has an efficient way to perform graph transversal analysis, decreasing time for
analysis.

Even though the purpose of this work is to use OptImatch to search for query
performance problem determination, it can applied for any general software problem
determination. To accomplish this, the proposed tool just requires that the software
outputs, automatically or dynamically, a diagnostic file that eventually requires further
analysis by experts.

1.1 Contributions

The main contribution of this work is to offer a web tool that can automatically
search for query performance problem determination by allowing user to create custom
problem patterns and allowing experts to populate our knowledge base with pre-defined
problem patterns.

This web tool was developed to transform QEP into a RDF graph format by
mapping features of the QEP into a set of entities with properties and relationships
between them. Even more, a web-based graphical user interface is provided for users to
create custom problem patterns. OptImatch transforms the problem pattern created by the
user into a SPARQL query by the use of handlers. These handlers automatically generate
variables used in the SPARQL queries. A matching system was developed in order to
execute the SPARQL query against the RDFs and retrieve the portions of the RDFs that
match the problem pattern. Moreover, a workload of real-world IBM customer query is
presented to illustrate the issues related to query problem performance.

Another contribution of this work is a knowledge base that can be populated by
users and experts with predefined problem patterns and recommendations explaining how
to fix a problem. OptImatch analyses the QEPs against the problem patterns stored in
the knowledge base and any match is returned for the user with the recommendation. The
proposed system can also find handlers in the recommendation in order to provide more
specific solutions. A syntax was created aiming to provide the system a handler tagging
interface. In the recommendation the expert can provide the specific problem with the
query execution plan (static semantics) and by the use of the syntax, provide where the
problem is and how to fix it (dynamic semantic).

Furthermore, an evaluation of the proposed tool over the real-world IBM customer
problem pattern is provided. First OptImatch was tested in terms of performance and

4 Chapter 1. Introduction

scalability in four different scenarios. Lastly, a user study was performed, showing the
benefits of the tool over the manual analysis in terms of time and precision.

1.2 Manuscript Organization

The following chapters are organized as follows.

• Chapter 2 provides a description of the IBM company, how a QEP is generated
as well as how the process of searching for problem patterns is done nowadays,
showing the problems faced by experts, expanding the problem where a solution will
be proposed. Lastly, an introduction of the other adopted technologies used in the
proposed work is provided in this chapter.

• Chapter 3 explains the main functionalities of the proposed framework, describing
the technologies used and how is the flow of the activities inside the tool. Also,
information about data integration and the system database, such as its structure,
tables and connections are presented in this chapter.

• Chapter 4 shows the developed graphical user interface, explaining how the user can
use it to create a problem pattern, setting all properties and relationships. Also, this
chapter introduces the concepts necessary to understand how the properties for each
node are connected. Even more, an explanation of how a recommendation can be
created and some extra functionalities that can be found inside OptImatch is also
provided.

• Chapter 5 describes the transformation engine. The transformation engine is respon-
sible for all transformations of data in the tool. This chapter will provide information
about how the parser is made inside OpImatch, as well as how the RDF is created
from the parser. Lastly, the automatically generation of the SPARQL is explained.

• Chapter 6 explains the recommendation syntax. In order to give a more specific
recommendation for the user, a recommendation syntax was created, so the expert
can surround the static piece with the dynamic piece in a recommendation. This
dynamic piece, at running time, is replaced by the result of each QEP file. Even
more, an explanation of how to use our syntax to accomplish the creation of a
recommendation will be provided.

• Chapter 7 shows how OptImatch matches the pattern against the QEP workload.
To achieve it, the tool run the SPARQL query auto-generated by our transformation
engine against the RDF file. Also, the information returned to the user as a result is
presented in this chapter. Moreover, this work shows how the proposed tool finds
solutions in the knowledge base and replaces the dynamic piece of the recommendation

1.2. Manuscript Organization 5

by the data of the query analyzed. Lastly, this chapter explains how OptImatch
attaches the solutions in the result returned to the user.

• Chapter 8 provides an experimental study divided in 5 tests. First an analysis of the
speed and scalability of the tool depending in the size of the workload (Number of
QEPs) is provided. The next experiment measures the performance of OptImatch
over the number of LOLEPOPs inside a QEP. The third one is related to the number
of recommendations, so a study of how the tool performs with different number of
recommendations is performed and explained. The next test is a comparative search
experiment, comparing asynchronous and synchronous search. Lastly, a comparative
user study was created, comparing the performance of OptImatch against experts
inside IBM searching for problem patterns in query workloads.

• Chapter 9 concludes the current work, summarizing what was done and the results
achieved, comparing them to the current process of search query performance
problems at IBM.

7

2 Background

In this chapter an introduction to the technologies used along the present work
(DB2, RDF, SPARQL, Jena, Dojo toolkit, D3.js and JSON) is given. Also, a background
about QEPs is provided. Those already familiar with these concepts may skip this chapter
and proceed to Chapter 3.

2.1 IBM Company and Related Technologies

The project described in this thesis is in a partnership with IBM. IBM is an Amer-
ican multinational company originated in 1911 as the Computing-Tabulating-Recording
Company (CRN) and was renamed International Business Machine (IBM) in 1924. The
main core of the company is the development and sales of hardware, middleware and
software. IBM is well known by its DB2 database and by its supercomputer Watson.

IBM DB2 is a database software mostly used in the enterprise’s world. It is flexible,
being possible to use it in the cloud, on-premises and hybrid. Moreover, it has massive
scalability as it supports massive volumes of data. To increase performance of queries IBM
DB2 provides capabilities such as tuning help and tuning queries by rewriting them. Tools
such IBM Cognos R© automatically generate customer queries. These queries essentially
have no limit on their length, some going up thousands lines.

Figure 1 represents the SQL and XQuery compiler process of DB2. It shows the
several steps required to reproduce an access plan that can be executed. According to [IBM],
first the user enters the query to be tuned. With the input the compiler parses the query
and analyzes it to validate the syntax. The second step is to check semantics by looking for
inconsistencies among parts of the statement (e.g., making sure all relations mentioned by
the query actually exist). If no inconsistencies are found, the compiler rewrites the query
into a form that can be optimized more easily, storing the result in the query graph model.
The next step is a pass through pushdown analysis and then a optimization access plan.
With the query graph model, the optimizer generates many alternative execution plans for
satisfying the query. The compiler estimates the cost of each of these plans and chooses
the plan with the smallest estimated execution plan. The output of the optimizer is an
access plan, and details about this access plan are captured in the explain tables. The
resulting query plan, or sequence of actions the DBMS will perform to answer the query,
is passed to the remote SQL generation and, lastly, goes to the execution engine, which
has the responsibility for executing each of the steps in the chosen query plan. In other
words, the execution engine generates an executable access plan, or section, for the query.

8 Chapter 2. Background

Sometimes, when optimizers fail, customers reach out to their vendors in order to
open a problem report given the expertise and time required to do the manual analysis of
the problem. At IBM, the problem reports are analyzed by experts that are well versed in
both SQL and analyzing optimizer QEPs. This analysis is normally done over the QEP file
outputted by the DB2. When an SQL query is executed, the DB2 optimizer tool defines
the access plan to access the data. The access plan is stored in the explain tables. By
using the db2exfmt command, the compiler reads the explain tables and outputs it in a
human readable text form format, creating the aforementioned file. The QEP file details
the access path, containing information about the query execution plan, like the estimate
cost for a specific query, allowing the expert to analyze how the data is accessed and how
the performance can be improved.

Figure 1 – SQL and XQuery compiler

Source: [IBM]

2.1. IBM Company and Related Technologies 9

QEP files are composed by the query execution plan diagnostic information. The
data in the file includes information about base objects (tables, indexes and views),
operators (join, group-by, fetch) as well as costs, estimated number of rows and other
characteristics about the operators. Also, it includes information about the explain instance,
such as the DB2 version, database context (CPU speed, buffer pool size) and package
context (SQL type, optimization level).

Some properties are identified in the QEP file as a tree diagram, while others are
represented in textual blocks identified by a operator number. Figure 3 depicts a piece
of the tree diagram. The three diagram is a graphical representation of the access plan,
showing the order of the operators utilized to retrieve the data. Each operator of this graph
is called LOLEPOP (LOw LEvel Plan OPerator). Attached to the LOLEPOP, in the tree,
there is information about the estimate number of rows (estimate cardinality), cumulative
total cost, cumulative I/O cost and its own ID. Figure 2 represents a LOLEPOP and its
characteristics.

Figure 2 – Low Level Plan Operator (LOLEPOP)

Figure 3 – Tree Diagram Portion of a QEP

10 Chapter 2. Background

The textual portion of the QEP file contains the plan details, with blocks repre-
senting each LOLEPOP. Each block is identified by the ID of the LOLEPOP as well as
its type. Further information detailed in the block is related to costs, arguments, inputs
and output of the operator. Moreover, some properties are common between different
operators (total cost, I/O cost, estimate number of rows), while others are related to a
specific operator. For example, a "JOIN" operator (NLJOIN, MGJOIN, HSJOIN) has a
property outer join and a "TEMP" operator has a property groups, but not vice-versa.
Figure 4 depicts a piece of the block of LOLEPOP represented on Figure 2.

In the current process of the company, the analysis of QEP files is done manually
with the use of search tools, such as grep. This task is very time consuming and it is
not well scalable, as the search cannot be saved and applied to new QEPs afterwards.
Depending on the complexity of the problem, manual task could take in order of hundreds
hours. Furthermore, it requires a lot of resources as sometimes IBM experts need to go to
the client’s company in order to find what could be causing the problem. Some of these
costs could be reduced by providing a way to automatically finding patterns that cause
these types of errors.

Figure 4 – Plan Detail of the LOLEPOP on Figure 2

2.2. Other Adopted Technologies 11

OptImatch was created with the intuit of providing a way to search for problem
patterns automatically. The tool allows experts to pre-define problem patterns and save
them in a knowledge base, so customers can search for recommendations before contacting
IBM and if even possibly, solve the problem themselves.

2.2 Other Adopted Technologies

2.2.1 RDF

RDF is an acronym for Resource Description Framework (RDF). RDF is a W3C
specification design originally as a metadata data model and is a standard model for data
interchange on the web. The language description model allows the creation of statements
about a resource either by defining its relationships with other resources or by defining its
attribute. The model is composed by triples, where each triple contains subject, predicate
and object. Subjects are the resources, predicates are the relationships and objects are
either resources or attributes.

Subjects, predicates and objects are normally composed by a URI and a node
identification. A resource can be identified by a URI or by blank nodes. According
to [Cyganiak, Wood e Lanthaler 2014], blank nodes are disjoint from IRIs and literals.
Otherwise, the set of possible blank nodes is arbitrary. RDF makes no reference to any
internal structure of blank nodes. Concrete values are literals with data-type specification.
Even a specific subject, predicate and object can be a URI or a blank node, but only the
object can be literal.

RDF can be stored in different formats. N-Triples, Turtle, RDF/XML and Notation-
3 are the most popular formats. Figure 5 represents an example of a N-Triples format.
This example shows a person called "John" that has a car "BMW", where this car has
maximum number of passengers equals to "5". The name of the person and the maximum
number of passengers in the car are represented as literal, while the object of the car type
is represented as a resource.

Figure 5 – N-Triples format

12 Chapter 2. Background

2.2.2 SPARQL

SPARQL is a recursive acronym for SPARQL Protocol and RDF Query Language.
SPARQL is an RDF query language able to retrieve data stored in RDF format. It is
supported by W3C and it is a semantic query language for databases.

SPARQL can be used to express queries across diverse data sources,
whether the data is stored natively as RDF or viewed as RDF via
middleware. SPARQL contains capabilities for querying required and
optional graph patterns along with their conjunctions and disjunctions.
[Harris e Seaborne 2013].

Normally SPARQL query contains a set of triple patterns that are like RDF triples.
However, in the query, each of the subject, predicate and object can be a variable. A query
consists of two parts: the SELECT clause that defines the variables to be retrieved as
result and the WHERE clause that defines the properties to be matched. For example,
a user could write a query to retrieve a list of people who have a BMW car with the
maximum number of passengers equaling to 5. Figure 6 depicts this example. All variables
that appear in the query are defined by the "?" symbol prefix and a variable, for example,
?variableName . The same variable can be referenced multiple times inside the WHERE

clause. In this example the variable ?name returns the object of the hasName predicate.
In other words, the SELECT statement returns the name of all people filtered in the
WHERE clause. The ?name results returned are those where the resource (variable ?x)
has a car of type ?car. Lastly, the ?car variable is filtered to be of type BMW and to have
maximum number of passengers as 5.

Figure 6 – SPARQL Query Example

2.2.3 Jena

Jena is a free and open source Java framework for building Semantic Web and
Linked Data applications. It provides an programmatically environment for RDF, SPARQL
and OWL.

The RDF API provided by Jena has the capability to parse RDF data from different
formats and write RDF graph in various supported formats. It provides a simple way to

2.2. Other Adopted Technologies 13

create properties and add them to a resource. Another capability provided by Jena is
the ARQ, which is a SPARQL 1.1 compliant engine. It has benefits such as manipulating
easily SPARQL queries and inserting properties in the query.

2.2.4 Dojo toolkit

Dojo is a JavaScript toolkit. It provides language utilities, UI components and
others functionalities to help to build a Web app. Dojo is trusted by big companies such
as IBM, Cisco and Philips.

This toolkit is modular and provides asynchronous load of the resources needed
by the application. By using dojo.require the user requires just the resources needed to
accomplish that task. Also Dojo provides a Dijit UI framework. This framework contains
a set of layouts, forms, widgets with built in validation, many themes, etc. Furthermore,
Dojo has a DojoX library that includes extra layouts, form widgets, dataGrid and more.
In other words, Dojo is a Java Toolkit that provides many features, including basic
JavaScript language and helper utilities, on-demand asynchronous script loading, complete
UI framework and build tools.

2.2.5 D3.js

D3.js is a JavaScript library for manipulating documents based on data. It combines
powerful visualization and easy setup. D3 is bases on web standard, working on old and
modern browsers. Also, D3 is open-source and it has a big community support with many
examples on the internet.

According to the official D3 website [D3], D3 allows you to bind arbitrary data to
a Document Object Model (DOM), and then apply data-driven transformations to the
document. For example, you can use D3 to generate an HTML table from an array of
numbers.

D3 provides functionalities that makes the creation of data visualization easier. For
example, you can add enter, transition and exit selections to create new nodes, create the
transitions and remove nodes that are no longer needed.

2.2.6 JSON

JSON is an acronym for JavaScript Object Notation. JSON standard is a lightweight
data-interchange format, easy for humans to read and analyze if necessary and easy for
machines to parse JSON objects. With the rise of AJAX-powered sites, it’s becoming more
and more important for sites to be able to load data quickly and asynchronously, or in the
background without delaying page rendering.

14 Chapter 2. Background

JSON is built normally in a collection of name/value pairs. A value can also be an
array of name/value pairs. Figure 7 depicts the John example described in Section 2.2.1.
This example contains an object personName with a property named name and value
John. The next property is named carType and the value is a collection of name/value
pairs. The properties inside it are type and MaxNumberOfPassengers, with values
BMW and 5, respectively.

Figure 7 – JSONExample

15

3 OptImatch Architecture

In this chapter an overview of the OptImatch is given, explaining the main function-
alities of the system as well as how they are connected to each other. The idea of the tool is
to create an easy way for normal users to analyze the QEP files uploaded to the system, by
searching for an specific problem pattern that can be described at runtime by the user or
recommendations previously described by experts and stored in the knowledge base. The
main functionalities of the system are divided in the following parts: the transformation
engine, search for problem patterns and retrieval solutions in the knowledge base. Figure
8 depicts the proposed system architecture.

Figure 8 – System Architecture

Source: Damasio, G. (2016)

The QEPs uploaded by the user are transformed into RDF graphs by the transfor-
mation engine and stored in the server. The transformation engine also transforms the
problem pattern described by the user in an executable SPARQL. With this information,
Optimatch runs the SPARQL query against the RDF graphs and stores the results. The
tool also gets all recommendations from the knowledge base and run each query against
the RDF graphs. If any recommendation is found, the recommendation module, using the
handlers tagging interface, changes the handlers by the result of the query. The results are
put together and sent back to the user.

QEP can be seen as a directed graph that represents the flow of operations data
within a plan. Some information inside the QEP is stored in a tree structure, while others
are stored in textual blocks. The link between the tree structure and the textual block is

16 Chapter 3. OptImatch Architecture

given by the id of the node. Each node contains properties related to itself and related to
connections that it may have with other nodes. The transformation engine is responsible
for the transformation of the QEP workload uploaded by the user to RDF labeled graphs.
This transformation is done by parsing all the information contained in the QEP and then
storing it in the RDF format. Apache Jena RDF API was used in the framework to create
the RDF. RDF is composed of triples, where each triple contains the subject, predicate
and object. The system can map each property in the QEP into a triple, where the subject
is the node, the predicate is the property to be stored and the object is the value of this
property. After completion, the RDF file is temporarily stored into the server until the
user decides to delete or close the section on the web. RDF format was chosen because it
allows the retrieval of information with the SPARQL query language and also because
of the convenience, since DB2 supports RDF file format and SPARQL querying across
all editions from DB2 10.1, when the RDF specific layer, DB2 RDF Store, was added to
DB2. The DB2 RDF Store is optimized for graph pattern matching. Even though the
information could be represented as relations and queried using SQL, RDF can be easily
extended with new properties and relationships, something that is very difficult to do with
a relational structure, as it would constantly need modification of the schema and tables
storing the relationships.

Furthermore, the transformation engine is also responsible for transforming the
problem pattern into a JSON object, sending it to the server and then on server side,
transforming the JSON in a SPARQL query. The creation of the problem pattern is
made in the OptImatch’s graphical user interface. Dojo toolkit and d3.js JavaScript were
utilized for the development of the GUI. Dojo toolkit was chosen due to its modularity
and because of the asynchronous load of the resources needed by the application, keeping
the application fast and maintainable. D3.js was used for the graph tree representation of
the properties because of its easy setup and powerful visualization. After the creation of
the problem pattern, the transformation engine transforms all information into a JSON
object. For the transformation of the JSON to SPARQL, OptImatch maps each property
to a valid SPARQL query statement, as well as handlers from the recommendation, as
explained on Chapter 6. SPARQL was chosen given the compatibility with RDF, providing
a short way to match patterns in the RDF graph. SPARQL also includes property paths,
allowing the use of recursive queries, looking for connections that are not necessary direct.
Moreover, the recursion in SPARQL is a lot simpler than generating the recursion in SQL.

After uploading the QEP workload, the user can then search for problem patterns
and retrieve solutions in the knowledge base. To search for problem patterns the system
first uses the transformation engine to auto-generate the SPARQL query from the problem
pattern and then it retrieves any matched portion of the QEPs, rewriting the result in an
human-readable language.

3.1. Database 17

Lastly, OptImatch also allows the user to search for predefined patterns stored into
the system, called recommendations. Recommendations are problem patterns defined by
experts, representing a problem that can be found in a QEP. This problem pattern is
linked to a recommendation that describes what the problem found in the QEP workload
is. All recommendations are stored into the knowledge base, where DB2 is used to store
all tables. This tool allows the user to surround the static part of the recommendation
with a dynamic part. The proposed system provides a syntax where experts can make
references to specific nodes, as well as sub-functions of it. At running time, OptImatch
transforms the dynamic part of the recommendation into the data related to that specific
file, allowing experts to make recommendations more specific for each user. The result
found in the knowledge base is returned together with the problem pattern defined by the
user.

3.1 Database

Database is a collection of information organized in a way that it can be easily
retrieved. OptImatch makes use of the IBM DB2 database to store all necessary information,
such as logs, recommendations, and problems reported by the users. OptImatch’s database
consists of 4 tables, where the representation and the connections are shown in Figure 9.

The "PROBLEM REPORT" table is related to storing all information about any
problem reported by a user. This table is used to search for bugs in the system. OptImatch
stores the following information in this table, including the name and email of the user, as
well as a description of the error. Lastly, if the problem is related to a file itself, OptImatch
can also store the explain file.

KB table is the most important table in the system. It is here where all recommen-
dations are stored to be further consumed by the framework in order to find any solutions
for the user. This table contains the information about the tag, the recommendation with
the handlers attributed to it and the already modified query to retrieve the information
from the handlers if the query rewrite is necessary.

LOGS table is where any important event is stored. OptImatch keeps track of logs to
make analysis of the system, seeing how effective is the system doing the tasks. OptImatch
create logs when it fails or when it makes any match, for example. The information that
the framework keeps track is the JSON pattern sent to the server, the SPARQL generated
from it, the result found, the explain file and finally the file name.

The last table in the system is the "KB LOG LINE" table. This table is responsible
for keeping track of which recommendation matches which file. The information stored
here is the id of the "LOG" table and the id of the "KB" table, where both ids are foreign
keys. A record is created every time that a match is found by OptImatch.

18 Chapter 3. OptImatch Architecture

Figure 9 – Database Architecture

3.2 Data Integration

In the first version of this tool, giving the limited time and resources, the data was
not well integrated, as some data was stored in the frontend as well as in the backend. For
example, the data shown in the user side was stored statically in a javaScript file, while the
information for the creation of the RDF from the QEP was stored in the code inside the
server. This approach is not well scalable neither easy to change because any modification
in the frontend would also require a modification in the backend, so the data could remain
connected. In order to avoid this, all the data was abstracted to a folder inside the server.
This folder contains all data needed for integration of the GUI information, the parser
and RDF creation, ensuring the matching of properties. Figure 10 depicts how the data
are integrated.

3.2. Data Integration 19

The "properties.json" is the main file, where all information is stored. It contains
information about every property that OptImatch has, such as the RDF name, regex
to match in the QEPs, label to show for the user, and which LOLEPOPs this property
belongs to. This file is read by the server when the server is started. The engine looks
through all properties in the "properties.json" and then creates two new files: "pops.json"
and "plan.json".

Figure 10 – Data Integration

The "pops.json" file stores the properties related to the LOLEPOPs and it is used
by the frontend. The engine only gets the information needed from the user side from the
"properties.json" file. Also, the data in this file is stored in a structure that contains each
LOLEPOP as an object, where the object contains all properties related to it. "plan.json"
is also used in the frontend, but it is instead related to the global information about the
QEPs.

This integration makes the tool cleaner, as for any modification in the properties
the code does not need to be modified. Even more, it elevates the reliability of the
system because OptImatch does not contains anymore any duplicate information. As
example, before the RDF name was stored separately in the user and server side, so
any grammatical error could cause the system failure or misinterpretation. With this
modification, when the RDF name is modified in the "properties.json" file, both user and
server side are automatically updated to match the new property. Lastly, this capability
allows OptImatch the ability to connect to the tool that creates the QEPs. In the matter
of this project, related to the DB2, the properties could be updated by reading the
explain tables from DB2 and storing all the properties in the "properties.json" files. This
function would be beneficial to the tool as any modification in the DB2 properties would
automatically update OptImatch properties.

For easy understanding of the system, a sequence diagram is provided on Figure 11.
This image shows the main functionalities of the system and the order of the communication
between the web application and the server. In the first stage, when the user access the
website, the OpImatch website sends a request to the server asking for the LOLEPOPs and

20 Chapter 3. OptImatch Architecture

the properties related to them as well as the global plan properties. Once the properties
are received, the website creates the tables with the information and displays the site to
the user. The next step for the user is to upload the files to the server. When the user
uploads the QEP workload, if a user id is not yet set to the current user, the website will
request a new id from the server. On the server side, a request for a new user id is made to
the database which is then returned to the website. After the id is set, the website uploads
the QEP files. Once the files are received, the server then saves them in a folder for the
user. Once the files are saved in the server, OptImatch uses its transformation engine to
go through each QEP and create the RDF graph from it. After the process is completed,
a message stating that the files were saved successfully is shown to the user.

With the files uploaded, the user can then search for the pattern and recommenda-
tions. Once the button to perform the search is clicked, OptImatch’s website then sends a
request to analyze the file for the current user. The website sends the id of the user as
well as an array with the problem pattern described by the user in the GUI. With the
request received, the server will first use the transformation engine to create the SPARQL
query from the problem pattern. Next step is get the RDF files from the current user.
After RDF files are received, the server get the queries of the recommendations in the
knowledge base. With the possession of these three pieces of information (SPARQL query,
RDF files and queries from recommendations), the server performs the search for patterns.
Once finished with the task, an array with the results is returned to the website, where it
is translated to a human-readable text form and displayed it to the user.

The last functionality described in the sequence diagram is the ability to save a
recommendation. In order to save a recommendation, the website sends an array with the
problem pattern described by the user in the GUI as well as the tag for the recommendation
and the recommendation itself. When received, the server creates the SPARQL query from
the pattern and then save the tag, recommendation and SPARQL query in the knowledge
base. Once saved, the server returns a message stating that the recommendation was saved
successfully to the website, where the website displays the message to the user.

3.2. Data Integration 21

Figure 11 – OptImatch Sequence Diagram

23

4 Graphical User Interface

The interaction between the user and an electronic device or program typically
occurs by means of a graphical user interface (GUI). For this tool a web-based GUI was
created, where the user can have access to all features that OptImatch offers. To access the
tool, the user needs to use a browser and point to the IBM server using the correct URL.

A web-based type of GUI was chosen because it does not require any software
installation and it is platform independent. When connecting to the tool, the main page
is loaded, as it can be seen on Figure 12. There the user can upload all QEPs, create a
problem pattern and then search for recommendations.

Figure 12 – Main Screen Graphical User Interface

4.1 Creating a Problem Pattern

For the creation of the problem pattern, the user makes use of the "graph tree"
pane to visualize and select a node. Within the problem pattern, properties can be set
for the LOLEPOP as well as the Global Plan. They are separated in two tabs: "Set Pop
Properties" and "Set Plan Configuration", shown in Figure 13.

24 Chapter 4. Graphical User Interface

Figure 13 – LOLEPOP Properties (Left) and Global Properties (Right)

Inside the "Set Plan Configuration" tab the user can choose the LOLEPOP type
and then the system automatically creates a table containing only properties related to
this LOLEPOP, making the system more reliable as the user cannot add properties that
does not belong to the LOLEPOP. Figure 14 depicts an example of different properties
for different LOLEPOPs. For further configuration, the user can add properties that are
not related to LOLEPOP, but are instead related to the global plan, such as DBMS
instance and environment settings. Those configurations can be found inside the "Set Plan
Configuration" tab.

Figure 14 – Properties Differences

LOLEPOPs are connected to their parents as input streams. While specifying
the type of input when creating a problem pattern, the user can choose between two
types of relationships: immediate or descendant. Immediate child is a successor that is

4.1. Creating a Problem Pattern 25

immediately below the current LOLELOP. Descendant is an operator that is a child
but not necessarily immediately below the current LOLEPOP. This means that it could
contain a path between the current LOLEPOP and the descendant child. Figure 15 shows
an example of both relationships. Here, for example, "JOIN 2" is an immediate child of
"JOIN 1", while "CHILD 3" is a descendant child of "JOIN 1" and the LOLEPOPs between
"JOIN 1" and "CHILD 3" is the path of this connection.

Figure 15 – Immediate and Descendant Child

An example of problem pattern (pattern A) can be seen in Figure 16. The
following properties describe the pattern: (i) LOLEPOP "pop1" is of type "NLJOIN"; (ii)
"pop1" has an outer input stream of type "ANY" and cardinality greater than 1; (iii) "pop1"
has an inner input stream "pop3" of type TBSCAN; (iv) "pop3" has a generic input stream
of type "BASE OB" and cardinality greater than 100. Lastly, Figure 17 depicts a matched
portion of a QEP by the problem pattern provided above.

Figure 16 – Problem Pattern 1

26 Chapter 4. Graphical User Interface

Figure 17 – Problem Pattern 1 in a QEP

4.2 Recommendation

Recommendation is a pattern with a solution described by some expert or by the
user of the system. All recommendations are stored into a "KNOWLEDGE BASE" that
is used to search for problems in a QEP workload. The system automatically matches
the problem patterns in the knowledge base against the QEP workload and any match is
retrieved for the user in a result panel, ranking them using statistical correlation analysis.
The result panel differs the problem pattern created by the user from the recommendation
by dividing them inside the panel. Given the complexity of the recommendation syntax,
this chapter will explain just how to save, search and delete a recommendation. Syntax
will be explained in Chapter 6 as some information of the following chapters will be needed
for further comprehension.

To save a recommendation the user first needs to define a problem pattern. The
pattern described on Figure 16 (pattern A) can be used as example. After the pattern
is created, the user clicks on the "Save Query" button and a panel will pop-up as can be
seen on Figure 18. This panel contains three text boxes: TAG, recommendation and query,
where TAG and recommendation are writable, while query is not. The query text box shows
the query automatically created by the system, helping the build of a recommendation.

For this problem pattern an example of TAG could be "QC001", meaning that
this is a problem in a QEP (Q) that is Costly (C). The number 001 is given by the fact
that it is the first recommendation. As a recommendation, the user can say the following:
"Such a pattern is costly as deduced by satisfying the cardinality conditions. The NLJOIN
operator scans the entire table (TBSCAN) for each of the rows from the outer operator
ANY. It would likely be of value for a subject matter expert to spend time and attention
to try to optimize queries matching this problem pattern in the QEP".

4.2. Recommendation 27

Figure 18 – Save Query Pop-up

Furthermore, the system has extra capabilities related to recommendations. On
the top of the main screen, the user can click on the "Knowledge Base" drop-down button
to search or delete recommendations. For search capability, the user will click on "search
recommendation" and the search panel will pop-up. The system will look for both TAG
and Recommendation, returning all matches to the user.

For the deletion capability, the user can click on "delete recommendation" inside
the drop-down menu of the button "Knowledge Base". For security reasons, the system
asks for the TAG of the recommendation that the user wants to delete. Even more, the
system allows just 1 deletion at a time to ensure that the user does not erroneously delete
the wrong recommendation.

28 Chapter 4. Graphical User Interface

4.3 Extra Features

To make the user experience more enjoyable, extra features were added to OptI-
match. Firstly, the functionality of saving and importing the workspace was added, so the
user can stop their work and return at any later time, where all data will remain saved for
further changes. Moreover, the capability of undo and redo graph changes were included.
Since OptImatch still a prototype, the user can report any bug to the system through the
"report bug" button inside OptImatch. The user can then describe the problem and link
it to a QEP file, given that at least one was previously uploaded. Figure 19 depicts the
report bug panel.

Figure 19 – Report Bug Pop-up

All bugs sent to the server will remain on the system database, together with some
information of the current system status, so experts can analyze what could be the problem
and if it is related to the system or a given file. Explanation of what is saved in the server
is further explained in Section 3.1. Lastly, a help page was added to the system, where
the user can find tutorials and examples. For now 6 tutorials were created: "Creating a
Pattern", "Report Bug", "Saving a Recommendation in the Knowledge Base", "Searching
Problem Pattern in the Uploaded Files", "Searching Recommendations" and "Uploading
Files".

29

5 Transformation Engine

After uploading the QEP workload and creating a pattern, the user can then search
for recommendations and search for a given pattern. At this stage, all information is sent
to the server, where the tool will make all the analysis. For each user the server creates a
unique folder where all files will be stored.

5.1 Parser

The parser is responsible for parsing each QEP, looking for predetermined properties
and storing them to then later create an RDF from the given file. Before this work, the
parser and the related properties were created inside the main code of the system, so
any modification or addition of properties would cause a main code change, what is not
something trivial. Even more, the parser was not replicable as it was attached to the code.
Given these reasons, the parser was abstracted in a library.

For the creation of this library a concept of blocks was used, where the user set
blocks, sub-blocks and properties related for each block. Figure 20 depicts an example
of blocks that can be created in a QEP. In this example the user can set a block called
"Explain Instance" with a property "DB2 Version", so when running the program the parser
will find this property and will store inside the given block.

Moreover, this parser can make use of regex to gather data inside QEPs, turning
this into a library that can embrace more types of data. As an example, inside "PLAN
DETAILS" in the QEP, the first line of the each LOLEPOP contains both LOLEPOP
id and type, such as: 1) RETURN: (Return Result), where the id is "1" and type is
"RETURN". It could be difficult to gather both without the use of regex. In this example,
the user can make use of regex to grab a block of text, dividing the line in two blocks (id
and type) in order to gather both properties. Also, this library has functions to help the
RDF creation, such as specifying if the current line is a block or a property. Also, the user
can set prefix for each property, so the tool can use it to create the RDF. If no prefix was
created, the tool will take the prefix from its parent block. Lastly, the parser stores all
connections of properties with the blocks, so all complex diagnostic information can be
stored without any loss of information.

30 Chapter 5. Transformation Engine

Figure 20 – QEP in blocks

5.2 RDF Creation

After the parser definition, regarding the QEP workload the system can create the
RDF with the given parser. With all blocks, properties and connections defined, the RDF
creator will scan each line of the QEP looking for blocks and properties described in the
parser, connecting all information.

RDF does not posses a pre-defined structure, but one can be enforced by specifying
predicates, such as: hasOutputStreamPop together with hasInputStreamPop or hasInner-
InputStreamPop and hasOuterInputStreamPop, using them to establish a relationship
between LOLEPOPS. By these predicates the tree structure and characteristics in QEPs
can be recreated. While analyzing the QEP for RDF creation, the framework models all
data inside a QEP into entities with properties and relationships between them. RDF is
stored as triples, each one containing subject (resource), predicate (property or relationship)
and object (resource or value). Figure 21 depicts a real example of triple where the user
has set the IRI (RDF URI reference) for the predicate as "http://explainPlan/PlanPred/".

While analyzing the QEP workload, it was noticed that some properties are not
linked just to a LOLEPOP, but to a relationship between a LOLEPOP and another one.
For example, in the QEP, looking at the input stream of a LOLELOP, this connection

5.2. RDF Creation 31

Figure 21 – RDF Triple

contains a property called "hasColumnName", showing all columns used in this relationship.
However, a LOLEPOP can have more than one input stream. By this, it would be difficult
to differ which "hasColumnName" property is related to which input stream. To solve this
issue, the concept of a blank node was introduced to the tool. According to [Cyganiak,
Wood e Lanthaler 2014], blank nodes are disjoint from IRIs and literals. Otherwise, the
set of possible blank nodes is arbitrary. RDF makes no reference to any internal structure
of blank nodes. As optImatch does not need to know the resource name of the blank node
to search for data in an RDF file, the RDF capability to create arbitrary a name to the
blank node was used. An example of a generated RDF can be seen on Figure 22. Lastly,
the pseudocode of the RDF creation is described in Algorithm 1.

Figure 22 – Generated RDF from QEP

The pattern presented (pattern B) on the figure above represents the problem
related to estimation of the execution cost by optimizer. This pattern is given by the
following properties: (i) LOLEPOP of type index Scan (IXSCAN) or table scan (TBSCAN)
(ii) has cardinality smaller than 0.001; (iii) has a generic input stream of type Base Object
(BASE OB) and cardinality bigger than 100000. The recommendation in this case is to
create column group statistics (CGS) on equality local predicate columns and CGS on
equality join predicate columns of the Base Object.

32 Chapter 5. Transformation Engine

Algorithm 1 RDF algorithm

Input: query execution plan files QEPFs[]
Output: QEP files represented as RDF graphs, RDFGs[]
1: function CreateRDF(QEPFs[])
2: for all qepf in QEPFs[] do
3: i := 0
4: parserProperties[] := all properties previously created in the parser
5: model := each property of the qepf that is on the parserProperties[], saving

it in a structure pre-defined in the parser
6: rdfg := convert model into a RDF graph model with JENA RDF API
7: RDFGs[i] := rdfg
8: i := i + 1
9: end for
10: return RDFGs[]
11: end function

5.3 SPARQL Generator

After creation of the problem pattern, the user can search for this pattern through
the QEP workload. At this time, the information is sent to the server, where the system
analyzes it and automatically creates a SPARQL query. The problem pattern is transformed
into a JSON object that contains an array of JSON objects, where each object describes
a resource property or a relationship. This JSON object is constructed to contain a
transformation of all properties defined by the user to the RDF resources and the predicates
in the model used in the QEP. The transformation is made on the user’s side, before
it is sent to the server. The javaScript understands the human language utilized while
defining the properties and automatically translating it to the predicates that will be used
in the SPARQL query creation. The JSON has two main objects: pops and planDetails,
where the pops object contains all information related to the LOLEPOPS and planDetails

contains all information related to the global properties of a QEP.

Figure 23 represents a JSON object of a problem pattern that is: (i) LOLEPOP of
type "NLJOIN" with cardinality smaller than 1; (ii) has EARLYOUT of type "LEFT"; (iii)
has outer input stream of type "TBSCAN"; (iv) the QEP has more than 100 LOLEPOPs.
As an example, the type "NLJOIN" is translated into a JSON object array with three
objects: id, type and popProperties, where id has the value of 1, type has the value
of "NLJOIN" and popProperties contains an array with all properties related to this
LOLEPOP. The id attributed to each LOLEPOP is given by creation order, where the
first one receives the id 1, the second number 2 and so on.

JSON standard was chosen because it is a lightweight data-interchange format,
easy for humans to read and analyze if necessary and easy for machines to parse JSON
objects. OptImatch uses the received JSON to auto-generate the SPARQL query, mapping

5.3. SPARQL Generator 33

each JSON object to a clause inside the WHERE statement in the query. Figure 24 depicts
the JSON example above mapped to SPARQL query.

Figure 23 – Generated JSON Object

Figure 24 – JSON to SPARQL Mapping

A query is mainly divided in two parts: the "SELECT" clause that defines the
variables to be retrieved and the "WHERE" clause that defines the properties to be
matched against the RDF workload selected by the user. All variables that appear in the
query are defined by the "?" symbol prefix and a variable, for example, ?variableName.
The same variable can be referenced multiple times inside the "WHERE" clauses. This
convention is used to define properties to resources, relationships between them and also
for filtering purposes. Even more, the query accepts the use of alias in the "SELECT"
statement, with the purpose of changing the column name in the results. At the SPARQL
query creation the system defines the first LOLEPOP with the "TOP" alias and all other
LOLEPOPs with the type plus its number, such as: "BASE5" if the LOLEPOP is a "BASE
OB" and its id is 5.

To create a query, first OptImatch creates all prefixes that will be used in the query.
Prefixes are used to abbreviate IRIs (RDF URI references), making the query smaller
to send and more human readable. The four types of IRIs that our tool uses is: < http :
//explainP lan/P lanPop/ > for LOLEPOPS, < http : //explainP lan/P lanBaseObject/ >

for base objects, < http : //explainP lan/P lanPred/ > for predicates and < http :
//explainP lan/P lanDetails/ > for global properties of the QEP. After the prefixes are

34 Chapter 5. Transformation Engine

set, the system creates the "SELECT" clause and adds a LOLEPOP to it if the user has
chosen to retrieves the LOLEPOP in the result. Then, the "WHERE" clause is written by
the tool, line per line, transforming each property (JSON Object) to a clause in the query.

As mentioned in [Damasio et al. 2016], our framework allows us to autogenerate
SPARQL queries with a wide range of characteristics, including nesting, filtering, multiple
resource mapping, and specifying property paths as well as blank nodes. Looking to
facilitate the query creation, the concept of handlers was introduced. Handlers are used
inside the query to automatically create a name for variables and they are generated at
running time, when each property (JSON object) that needs a handler is added to the
query. OptImatch makes use of three types of handlers: result, internal and blank node.

Result handlers are used for retrieval of query results. This type of handler is
composed of the name "pop" plus the number of the LOLEPOP shown on the problem
pattern graph tree that appears to the user. As an example, the query refers to the first
LOLEPOP of the problem pattern by the handler ?pop1, where it is used in the "SELECT"
statement, returning a column with this name to the user. Additionally, the same handler
is used inside the "WHERE" statement for creation of properties of the pattern. To relate
the type property to the resource ?pop1, the SPARQL generator module of the proposed
tool adds the predicate hasPopType to the resource. As an example, if the type NLJOIN
is selected, the clause in the query will stay in the following way: ?pop1 hasPopType

"NLJOIN". Furthermore, depending on the type of property, the system needs to make use
of internal handlers to handle it.

Internal handlers are used to help properties creation, such as filtering. This
handler is composed of the name internalHandler plus a number. The number is created
in incremental order and is not attached to a specific resource. If the user wants to add
to the pop1 the property "Estimate Cardinality" with value smaller than 1, OptImatch
will then add the predicate hasEstimateCardinality to the resource ?pop1 with the
object ?internalHandler1 and then it will utilized the internal handler in the filter clause:
FILTER (?internalHandler1 < 1).

Blank node handlers are used to create relationship between LOLEPOPs. As
previously mentioned in this chapter, the system makes use of blank nodes for RDF creation,
so it can storage all properties correctly. As a result, the link between one LOLEPOP and
another is not direct, it must pass through a blank node. OptImatch makes use of this
handler to deal with the connection, for example, to create the relationship between ?pop1
and ?pop2, ?pop2 being an immediate outer input stream of ?pop1, first the system create
a clause connecting ?pop1 to the blank node handler ?BNodeOfpop2 to pop1 with the
predicate hasOuterInputStream: ?pop1 hasOuterInputStream ?BNodeOfpop2 to pop1.

Finishing the "WHERE" clause, OptImatch adds the statement "ORDER BY
?pop1", so the result returned to the user is ordered. Figure 25 depicts the full auto-

5.3. SPARQL Generator 35

generated query of the JSON on Figure 23 and Algorithm 2 represents the algorithm of
the transformation of a problem pattern to a SPARQL query.

Figure 25 – Auto-generated SPARQL Query

Algorithm 2 Problem Pattern to SPARQL Query

Input: problem pattern probPat
Output: problem pattern probPat transformed to SPARQL Query sparql

1: function CreateQueryFromProblemPattern(probPat)
2: probPatJsonObj[] := probPat translated to JSON array
3: for all probPatJsonObj in probPatJsonObj[] do
4: query := probPatJsonObj translated to a SPARQL query
5: sparql := sparql + query
6: end for
7: return sparql
8: end function

37

6 Syntax for Recommendations

Recommendations are pre-defined patterns created by experts inside IBM and
collaborators with the intuit of describing any problem for the user that is found in their
QEP workload. Sometimes, a problem could be complex and a static text for the user may
not be ideal, as the user may still not fully understand the recommendation. To avoid this
problem, a handler tagging language was introduced. With the recommendation syntax,
the recommendation is automatically adapted to the current QEP at running time. At
this point, the SPARQL query of the problem pattern shown on Figure 16 is introduced,
so all functionalities of the syntax can be covered. Figure 26 depicts this SPARQL query
and for convenience also repeats Figure 16.

As previously mentioned, the queries used in the OptImatch contain aliases related
to each result handler. For example, in Figure 26, ?pop1 has as alias ?TOP , ?pop2 has as
alias ?ANY 2 and ?pop4 has as alias ?BASE4. Aliases are used for tag recommendations
to a specific result handler. Also, OptImatch has the capability to tag multiple result

handlers and sets of result handlers in the same recommendation. Moreover, when
tagging, the user can use help functions to list results, predicates, column names, table
names, etc. Sometimes, when retrieving the result of a recommendation for a user, the
expert may want to limit the number of results since in some complex queries or big QEPs,
the number of results could be very large and only some are important to the user.

The tagging is done by surrounding the static piece of the recommendation with
the dynamic part. While writing a recommendation, the user can refer to a handler by the
use of "@" sign plus the name of the alias. For example, to refer to ?TOP1, the user writes
@TOP1. To retrieve the result of an handler, the function listResult() needs to be used.
For the current problem pattern, the expert may write the following recommendation:

"Create index on table @BASE4.listResult() on input columns of the LOLE-
POP @TOP.listResult()"

However, the recommendation syntax allows experts to add more information with
the use of help functions. For example, instead of mentioning that the user needs to
create index on columns of a given LOLEPOP, the expert can add the columns names
of the LOLEPOP to the recommendation. To achieve this, the function listColumns()
is used. The listColumns() function allows four types of inputs: INPUT , OUTPUT ,
PREDICATE and ALL, where ALL returns input, output and predicate columns. When
a recommendation is saved, OptImatch automatically goes through the recommendation
and looks for listColumns() functions. If any is found, the proposed tool rewrites the

38 Chapter 6. Syntax for Recommendations

query to return also the columns needed for each handler with the function attached to it.
For example, the recommendation above can be rewritten to the following one:

"Create index on table @BASE4.listResult() on the following columns:
@TOP.listColumns("INPUT")"

Figure 26 – SPARQL Query and related problem pattern

39

When saving this new recommendation, OptImatch will find the listColumns()
function attached to the @TOP handler, thus the system will add the hasColumnName

predicate to the input stream of the ?pop1 handler in the query. The system automatically
creates it by first adding an auxiliary handler ?COLUMN IN TOP AUX for the pred-
icate hasInputStream of the resource ?pop1. Then the predicate hasColumnName is
added to the resource ?COLUMN IN TOP AUX with the object ?COLUMN IN TOP .
By this, ?COLUMN IN TOP will retrieve all input columns. Lastly, this handler will be
added in the "SELECT" statement, so the information can be returned to the user. The
modified query is represented in the Figure 27, where all modifications are underlined.

Figure 27 – SPARQL Query from Figure 26 with listColumns

Additionally, OptImatch allows grouping handlers together for retrieval. This is
done by surrounding the handlers with "[]". For example, to retrieve the ?ANY 2 and
?BASE4 handlers together, the user will write: [@ANY2, @BASE4]. Grouping handlers
will make the system return them linked by result. For example, when running the query
on Figure 26, if the answer is LOLEPOP 3 and 6 (?ANY 2) with LOLEPOP 8 and

40 Chapter 6. Syntax for Recommendations

10 (?BASE4), respectively, the system will replace [@ANY2, @BASE4].listResults() by:
{3,8},{6,10}. Also, all functions that can be used in a handler can also be used for group
of handlers. Lastly, the user may want to limit the number of results for a pattern that
appears multiple times in the same QEP. To accomplish this, the following syntax needs
to be attached after the function of a handler: ":" sign plus the max number of results to
be retrieved. An example would be: [@ANY2, @BASE4].listResult():1, meaning that the
result will be retrieved grouped and limited by 1 result.

Algorithm 3 represents how OptImatch saves the recommendation in the knowledge
base.

Algorithm 3 Save Recommendation in KB

Input: problem pattern probPat
tag of recommendation tag
suggested recommendation rec
current knowledge base KB[]

Output: updated knowledge base KB[]

1: function SaveRecommendation(probPat, tag, rec, KB[])
2: query := CreateQueryFromProblemPattern(probPat)
3: if rec contains listColumns() function then
4: query := updated query with return columns names handlers
5: end if
6: recommendation := new Recommendation(tag, rec, query)
7: KB[] := recommendation
8: return KB[]
9: end function

41

7 Matching Patterns and Finding Solutions

in the Knowledge Base

7.1 Matching Patterns against QEP workload

As previously mentioned, OptImatch allows dynamic analysis of ad-hoc patterns
by matching problem patterns against a given QEP workloads. As explained in Chapter
5, the RDF file for a QEP is created at the time that the file is uploaded. With the
RDF created, the first step to matching a pattern is to create a SPARQL query from the
problem pattern described by the user. Then, with the auto-generated query, the system
uses the SPARQL to search the pattern in the RDF files from the QEP workload and
finally returns the result to the user.

The result is stored in a JSON object that contains an array of objects, where
each one represents the result for a QEP. For better understanding the following pattern
(pattern C) will be used: (i) LOLEPOP "pop1" is of type JOIN (which means any kind
of join method, e.g NLJOIN, MSJOIN, HSJOIN); (ii) "pop1" has a descendant outer input
stream "pop2" of type JOIN; (iii) "pop1" has a descendant inner input stream "pop3" of
type JOIN; (iv) "pop2" is a left outer join; (v) "pop3" is a left outer join. This is a problem
related to query rewrite and a possible recommendation may be: rewrite the query from
the following structure (T1 LOJ T2) ... JOIN ... (T3 LOJ T4) to ((T1 LOJ T2).... JOIN
....T3) LOJ T4 as the rewritten query is more efficient. As mentioned on [Damasio et al.
2016] and [Damasio et al. 2016], this optimization is now automatically done in DB2 but
was found to be a limitation in early versions of DB2. This illustrates the usefulness of the
tool in database optimizer development as well as supporting clients that use previous
version of the DB2 system.

The current problem pattern was found in a real user query workload, since it uses
a previous version of the DB2. Moreover, this pattern is an example of a recursive query
since the descendant outer and inner input stream with left outer join are not necessary
immediate children of JOIN. Figure 28 depicts a portion of a QEP that contains this
problem pattern, where the left outer join operator is prefixed by the > sign, as example:
>NLJOIN and >HSJOIN.

In this portion of the QEP, the "pop1" is the LOLEPOP of ID equals to 5, being
of type NLJOIN , the outer descendant child is the LOLEPOP number 6 and type of
HSJOIN . Looking at this node the user can see the presence of the left outer join operator
sign. Lastly, the inner descendant input stream is the LOLEPOP with ID number 15 and
type NLJOIN , which also contains the > sign. When searching for descendant children,

42 Chapter 7. Matching Patterns and Finding Solutions in the Knowledge Base

OptImatch does not require that all children have the same depth from their parent. As
presented in this example, LOLEPOP 6 and 15 are descendant children from LOLEPOP
5, but in comparison to the parent node, they are not in the same depth.

Figure 28 – Portion of a QEP with problem pattern

With the problem pattern defined, once the user clicks on "Search for Pattern",
the JSON object with all the properties is sent to the server and the system creates the
SPARQL query from the JSON object. Then the query is execute against each RDF
created from the QEP workload of the user. For each RDF, OptImatch creates an JSON
Object with all results from the current QEP. Once the system finishes analysis of all the
workload, a JSON Object with all results is returned to the user, where the result panel is
created.

On the user’s side, when OptImatch receives the answer, the JSON is translated
to a human readable language. For each QEP, the framework prints the file analyzed
and right below, in the result panel, it shows 2 sections: the result and recommendation
section. The result section provides an example of a result panel, where it shows the result
is shown to the user in a table format, with headers for each column that correspond to
the name of the node in the graphical tree. Figure 29 depicts this example of result panel
returned to the user. This search was based in six QEP, where 2 contains the problem
pattern defined above and four does not. Lastly, along the result, OptImatch also returns
a header with general information, such as analysis time, number of files analyzed and
how many of those were matched against the custom problem pattern created by the user
as well as how many matched any recommendation in the knowledge base.

7.1. Matching Patterns against QEP workload 43

As can be seen on this example, there is no recommendations returned to the
user. All recommendations are not necessarily shown to the user, just the ones that
matches the QEP file are shown by OptImatch. If none are find, the system does not
provide the recommendation section to the user. An illustration of the result panel with
recommendation is presented in Section 7.2, where an example is returned to the user,
showing the tag as well as the recommendation itself, with the handlers already changed
to the result of that specific file.

Figure 29 – Result Panel for Problem Pattern Without Recommendation

The algorithm for searching for single patterns is described in Algorithm 4. It
represents the whole process of finding custom problem patterns, starting from the creation
of the RDF files given the QEP workload, passing through the creation of the SPARQL
query until the creation of the JSON containing the result of all files analyzed.

The capability of allowing users to describe single patterns at running time adds
the functionality of dynamically analyzing patterns against QEP workloads uploaded by
an user in OptImatch. Even more, this tool also provides problem identification by finding
solutions and recommendations inside the knowledge base, adding versatility to the tool,
as described in the following section.

44 Chapter 7. Matching Patterns and Finding Solutions in the Knowledge Base

Algorithm 4 Search Problem Pattern

Input: query of the problem pattern query
RDF graph file of the QEP rdfg

Output: JSON object with the match match

1: function FindMatches(query, rdfg)
2: queryResult[] := match abstracted problem pattern query against RDF file of

the QEP rdfg
3: if queryResult[] != empty then
4: matchJsonObj := save into a JSON object the detransformation of the

queryResult[] by relating any portion matched of the rdf back to corresponding
QEP

5: match := matchJsonObj
6: end if
7: return match
8: end function

7.2 Finding Solutions in the Knowledge Base

Knowledge Base is a database table containing predetermined problem patterns
and recommendations for them. OptImatch has the capability of access the Knowledge
Base, iterating over all problem patterns, looking for those that match a QEP. If matched,
the system retrieves the recommendation and replace any handler in the recommendation
by the corresponding result of the QEP, returning it to the user.

For further elaboration, the following pattern will be used: (i) LOLEPOP "pop1" is
of type SORT; (ii) "pop1" has a input stream "pop2" with I/O cost less than the I/O cost
of the "pop1". This is a problem related to SORT spilling and a potential recommendation
for it could be to change the database memory configuration. This change is recommended
in order to increase sort memory if the number of QEPs containing this pattern is large
enough to benefit the performance of many queries in the workload.

To write this problem pattern, the user can utilize another capability of the system:
comparison of properties between different LOLEPOPs. Figure 30 depicts the problem
pattern above in the GUI. As seen on the figure, to achieve the property (ii), the value of
the estimate cardinality of the "ANY:2" (pop2) LOLEPOP to be filtered is a reference for
the LOLEPOP "SORT:1" (pop1). OptImatch automatically understands which property
of the referenced LOLEPOP needs to be compared, so the user does not need to specify it.
The auto-generated SPARQL query of this problem pattern is shown on Figure 31.

The underlined section of the query below represents the transformation of the
property (ii) to the SPARQL query. To accomplish it, the system utilizes an handler
?internalHandler2 inside the FILTER clause and then add it as the object of the predicate
"estimate cardinality" of the resource ?pop1.

7.2. Finding Solutions in the Knowledge Base 45

Figure 30 – GUI With Problem Pattern

Figure 31 – SPARQL Query from Figure 30

For this search the aforementioned recommendation was saved in the knowledge
base and the same 6 QEPs used in Section 7.2 will be used. Also, for comparison purposes,
the same custom problem pattern from last section will be utilized in the search. Figure
32 represents the result of searching for the problem pattern and for recommendations.
There are also 2 files that contain the recommendation. In order to best understand how
OptImatch creates the result panel, the figure displays the result panel with one file that
contains only the recommendation and another with recommendation and results matched
to the custom problem pattern.

For the recommendation the following description was added: "You have a problem
with SORT spilling. Change the database memory configuration to increase sort memory if
the number of QEPs containing this pattern is large enough to benefit the performance of

46 Chapter 7. Matching Patterns and Finding Solutions in the Knowledge Base

many queries in the workload.". Moreover, the following statement was also included: "Here
are the SORT LOLEPOPs with the related problem: @TOP.listResult()". As mentioned
in Chapter 6, when retrieving the result, OptImatch automatically replaces the syntax
with the result. In this case, it replaced the ID of the "TOP" LOLEPOP, that is the SORT
LOLEPOP.

Figure 32 – Result Panel for Problem Pattern With Recommendation

The algorithm used to search for the recommendation in the knowledge base is
described in Algorithm 5. Lastly, Algorithm 6 describes the searching for both recommen-
dations and problem pattern created by the user.

7.2. Finding Solutions in the Knowledge Base 47

Algorithm 5 Search Recommendations in the Knowledge Base

Input: RDF graph from query execution plan file rdfg
current knowledge base KB[]

Output: JSONArray containing all recommendations that matches RECs[]

1: function SearchRecommendations(rdfg, KB[])
2: for all Recommendations rec in KB[] do
3: query := GetQueryFromKB(rec)
4: queryResult[] := match abstracted problem pattern query against RDF file of

the QEP rdfg
5: if queryResult[] != empty then
6: rec := replace any handler inside the recommendation with the current

value in the queryResult[]
7: RECs.append(rec)
8: end if
9: end for

10: return RECs[]
11: end function

Algorithm 6 Search Problem Pattern And Recommendation

Input: problem pattern probPat
query execution plan files QEPFs[]
current knowledge base KB[]

Output: JSON object with all matches MATCHES[]

1: function SearchProblemPatternAndRecommendation(probPat, QEPFs[],
KB[])

2: RDFGs[] := CreateRDF(QEPFs[])
3: query := CreateQueryFromProblemPattern(probPat)
4: for all rdfg in RDFGs[] do
5: QEPName := get the query execution plan name from the rdfg
6: jsonProblemPattern := FindMatches(query, rdfg)
7: jsonRecommentadions := SearchRecommendations(rdfg, KB[])
8: QEPName.append(jsonProblemPattern).append(jsonRecommentadions)
9: if QEPName != empty then

10: MATCHES.append(QEPName)
11: QEPName := empty
12: end if
13: end for
14: return MATCHES[]
15: end function

48 Chapter 7. Matching Patterns and Finding Solutions in the Knowledge Base

7.3 Asynchronous Search

Previously the search was done in a synchronous way and in one time, meaning that
the server received one request which asked for the result for all the QEP files uploaded
by the user. This approach worked for small size of workloads. However, with the increase
of the number of files, depending on the number of matches, the size of the answer started
to get much larger, so the script was taking couple of minutes to prepare the answer in a
human readable language text and present it. Even more, during the server analysis, the
user did not receive any feedback about the number of files already analyzed, how many
matches were found or the number of files with recommendations.

As seen in the Section 8.3, for 1000 QEP files OptImatch took around 50 minutes to
analyze it. In other words, the user was waiting 50 minutes to received feedback from the
server, without knowing the status during analysis. Aiming to improve the performance of
the search and at the same time provide feedback for the user, the synchronous search
was replaced by an asynchronous search.

First, when the user decides to analyze the query workload, OptImatch divides
the total number of files in small buckets, each containing 20 QEP. This approach allows
the proposed tool to receive feedback from the server every 20 QEPs, which also provides
the necessary feedback to the user. The next step is to send asynchronous buckets to the
server. OptImatch can have 6 asynchronous buckets requested at a time. After an answer
is received from the server, it creates another request and stay in this loop until all files
are analyzed. Another benefit of using this method is that at the same time that the server
is analyzing the QEPs, OptImatch is building the result for the user with the already
analyzed files. Before the result was created just receiving all results.

This new search method provides the proposed tool an overall increase in perfor-
mance as well as a way to give back feedback for the user in terms of number of files
analyzed, number of files that matched the custom problem pattern and number of files
that matched at least one recommendation. In addition, now the user has access to the
partial result of the search.

49

8 Experimental Study

In this chapter the experimental studies performed as well as the results obtained
will be explained. The main idea of the experiments is to measure the benefits that
OptImatch provides for IBM. The experiments focus on four main objectives:

• Analysis of the effectiveness of this tool by utilizing 1000 QEP files from real IBM
customer query workload. (Sections 8.2 and 8.4).

• Evaluation of the performance and scalability of OptImatch against different size
of workload (Section 8.2.1), number of LOLEPOPs (Section 8.2.2) and number of
recommendations (Section 8.2.3).

• Performance evaluation of the asynchronous search against the old synchronous
search. (Section 8.3).

• A comparative study of this tool against the manual searching task, exposing the
benefit of OptImatch about time and precision. (Section 8.4).

8.1 Setup

A machine with Intel R© CoreTM i7-56600M with 2.6GHz and 8GB of RAM memory
was used to run the experiments. The three problem patterns utilized for the experiments
are described below. These problem patterns were created by IBM experts, where each of
them has its own recommendation (stored in the knowledge base).

• Pattern #1 (Pattern A) - Defined by the following properties: (i) LOLEPOP
"pop1" is of type "NLJOIN"; (ii) "pop1" has an outer input stream of type "ANY"
and cardinality greater than 1; (iii) "pop1" has an inner input stream "pop3" of type
TBSCAN; (iv) "pop3" has a generic input stream of type "BASE OB" and cardinality
greater than 100. This pattern is related to the cost of the NLJOIN to scan the
entire table TBSCAN. (Section 4.1).

• Pattern #2 (Pattern B) - Defined by the following properties: (i) LOLEPOP of
type index Scan (IXSCAN) or table scan (TBSCAN) (ii) has cardinality smaller
than 0.001; (iii) has a generic input stream of type Base Object (BASE OB) and car-
dinality bigger than 100000. This pattern is related to statistics for better cardinality
estimation, consequently changing the cost estimation. (Section 5.2).

50 Chapter 8. Experimental Study

• Pattern #3 (Pattern C) - Defined by the following properties: (i) LOLEPOP
"pop1" is of type JOIN (which means any kind of join method, e.g. NLJOIN, MSJOIN,
HSJOIN); (ii) "pop1" has a descendant outer input stream "pop2" of type JOIN; (iii)
"pop1" has a descendant inner input stream "pop3" of type JOIN; (iv) "pop2" is a
left outer join; (v) "pop3" is a left outer join. This pattern is related to rewriting the
query. (Section 7.1).

8.2 Performance and Scalability

The first phase of the experiments was focused on the evaluation of the performance
and scalability of the proposed system by testing it in three different scenarios: size of
workload (number of QEP files), number of LOLEPOPs (related to the size of a single
QEP) and number of recommendations.

8.2.1 Size of Workload

In the first experiment, the performance of OptImatch was measured in terms of
searching for portions of QEPs against various sizes of the QEP workload. The objective
here is to analyze how the number of files can interfere in the performance and whether the
system is scalable in term of files. To create this experiment, the real IBM query workload
was divided in 10 buckets, where each one contains a different number of QEP files. The
first bucket contains 100 QEPs, the second 200 QEPs and so on, adding 100 QEPs in each
bucket until the bucket with 1000 QEPs is reached. In other words, the distribution of the
buckets was as follows: [100, 200, ..., 1000].

The QEP files were divided randomly into buckets. This experiment was executed
10 times for each bucket and the average time (in seconds) is reported. Figure 33 depicts
the result of the experiment.

As can be seen, the proposed tool has a linear performance over the number of QEP
files in the workload, taking around 30 seconds to analyze 1000 QEPs. This performance
makes OptImatch a real-time query problem determination search tool. Looking at pattern
#1 and pattern #2, the tool takes around 10 seconds to analyze 1000 QEPs. Furthermore,
a performance variation can be seen between pattern #3 and the others, where #3 takes
3 times more to be completed. This difference is given by the fact that OptImatch makes
use of recursion in the pattern, searching against QEPs that normally contains more than
100 LOLEPOPs.

8.2. Performance and Scalability 51

Figure 33 – Size of Workload Experiment

8.2.2 Number of LOLEPOPs

The second experiment is related with the number of LOLEPOPs. The number
of LOLEPOPs in a QEP is tied to the size of the file, where the bigger the number, the
bigger the size. The purpose of this experiment is to analyze the performance of the tool
over different number of LOLEPOPs, verifying how efficient OptImatch is at searching for
patterns as a function of number of LOLEPOPs. For this experiment, the real IBM query
workload was divided in 11 buckets, where each one contains QEP files with different
numbers of LOLEPOPs on it. The first bucket contains QEPs with number of LOLEPOPs
between 0 and 50. The second one between 50 and 100 LOLEPOPs and so on, until bucket
#11, that contains QEP files with number of LOLEPOPs between 500 and 550. The
results of the performance for buckets #7, #9 and #10 in this test was not reported, as
the query workload does not contain QEP with that number of LOLEPOPs. In other
words, the distribution of the buckets is: [0-50], [50-100], [100-150], [150-200], [200-250],
[250-300], [350-400] and [500-550].

The test was repeated 10 times for each bucket and the average time (in milliseconds)
is reported. Figure 34 represents the result in a graph. The time for analysis increases as
the number of LOLEPOPs in a QEP increases, as expected. Also, OptImatch can analyze
files with big number of LOLEPOPs (between 500 and 550) in less than 200 milliseconds
for patterns #1 and #2. Moreover, for these patterns, the time increases linearly. For
pattern #3, when analyzing QEPs with more than 500 LOLEPOPs, the tool takes around
1.3 seconds. This extra time was expected as the query makes use of recursion.

52 Chapter 8. Experimental Study

Figure 34 – Number of LOLEPOPs Experiment

8.2.3 Number of Recommendations

The third experiment tests how the performance of the system is affected by the
number of recommendations analyzed against 1000 of QEP files. This experiment was
divided in six buckets, where the number or recommendations were 1, 10, 50, 100, 250 and
1000 for buckets 1, 2, 3, 4, 5 and 6, respectively. The purpose of this test is to stress the
importance of the recommendations in the system. The use case simulated is described
in 7.2. Instead of taking a custom problem pattern created by the user, the search of
complex query workload was analyzed over the predefined problem patterns created by
IBM experts. The system interacts over all the recommendations stored in the knowledge
base and returns matched solutions to the user.

This experiment was repeated 5 times for each bucket and the average time (in
hours:minutes:seconds) is reported. Figure 35 depicts the result in a graph. As can be
seen, the time for OptImatch analyzes 1000 QEPs grows linearly with the number of
recommendations in the knowledge base. This tool can search for 1000 recommendations
against 1000 QEPs in approximately 3 hours and 35 minutes. In other words, OptImatch
can perform 1 million searches in the given time. The results of this experiment shows
that the proposed tool can be populated with recommendations by experts without losing
performance.

8.3. Comparative Search 53

Figure 35 – Number of Recommendations Experiment

8.3 Comparative Search

The fourth experiment is a comparative study of the OptImatch’s performance
and involves comparing the asynchronous search versus the previous synchronous search.
As explained in Section 7.3, now instead of performing a synchronous search, OptImatch
performs an asynchronous search by dividing the search into buckets and sending them
separately to the server. For this experiment pattern #3 (with recursion) was chosen and
the same buckets from the experiment 8.2.1 were used.

The test was repeated 10 times and the average time (in seconds) is reported.
Figure 36 depicts the results in a graph. Both search methods grow linearly with respect
to the number of QEP files. However an expressive reduction of time to analysis can be
seen in the asynchronous search. For example, to analyze 1000 QEPs, the synchronous
took around 50 minutes to make the whole analysis. Asynchronously however, the search
takes around 30 minutes. In other words, the asynchronous search reduced the time for
search by nearly 40%.

Even more, another benefit of the new asynchronous search is that it divides the
workload in smaller buckets to be analyzed by the server, so it is not just faster in analysis,
it is also faster in returning the first result. In this example, the first result for the new
search was returned in around 4 minutes (with 20 files), while the result for the old search
(synchronous) was returned just after the full analysis (approximately 50 minutes).

54 Chapter 8. Experimental Study

Figure 36 – Comparative Search Experiment

8.4 Comparative User Study

The last experiment is a comparative study between the automatic search of this
tool versus the manual search used nowadays. The purpose of this test is analyze the
performance and also precision of the search. 100 different QEPs for each problem pattern
were utilized for the current experiment. From the 100 QEPs, the number of files that
matched the result were 15, 18 and 12 for the problem patterns A, B and C, respectively.

Three IBM experts were used for the test and the results reported are the average
between them. Figure 37 represents the result of the OptImatch’s automatic search versus
the manual search.

Due the limited time that the experts could spend participating in this experiment,
just 100 QEPs were utilized. Even for a small number of QEP files, OptImatch drastically
reduces the time to search for a pattern. For searching for patterns #1 and #2 (without
reduction), the manual search was around 27 minutes for #1 and 36 minutes for #2.
OptImatch analyzed each one in 1 second. For the problem pattern with recursion (#3)
the proposed tool reduced the time from 43 minutes to around 1 minute.

Furthermore, it is important to stress that the problem patterns used in the
experiment are considered really small and without any complexity. With complex and
big problem patterns the search time would be even more discrepant.

Also, beyond the performance a precision analysis was made for each of the patterns.
As can be seen on Table 1, the precision for the manual search was not perfect (80%
overall). Misinterpretation of information stored and formatting error while using search
tools such as grep were common errors found in the test. For example, the value of a

8.4. Comparative User Study 55

property inside the QEP could appear in decimal or in exponential mode, so for example,
the value "0.001" could appear as "0.001" or "10e-3".

Figure 37 – Number of Recommendations Experiment

Table 1 – Precision for Manual Search
Pattern # #1 #2 #3
Precision 88% 81% 71%

Even though IBM uses manual search nowadays, it has proven to be very time
consuming and prone to human error. As OptImatch is fully automatic and it is unaffected
by the different ways that a value of a property can be write, it provides 100% of precision.
Even more, this tool can drastically decrease the time consumed to search problem patterns.
Lastly, as OptImatch does not depend of any human intervention for searching, it can
perform long searches without fatigue.

57

9 Conclusions

Create complex queries is not something trivial, as it needs expertise in both
database and SQL like query languages. Database systems are become more sophisticated
leading to systems that can completely automatically self-tune and adapt even to dynamic
environments. To analyze performance issues DBAs use general problem determination
tools. However, these tools need improvements as they lack of customization capacity. As
a result, normally the process of searching is normally done manually or by the use of
searching tools like grep.

The manual search for performance issues is done by analyzing QEPs. QEP files
are complex and can have thousands of lines, requiring deep knowledge and expertise
in optimizer as well as in SQL language. Even for DBAs sometimes is difficult and time
consuming to determine the solution to a problem.

OptImatch provides an automatic search over a QEP workload, trying to find a
custom problem pattern created by the user and recommendations stored in the knowledge
base and provided by experts. The proposed tool makes use of RDF and SPARQL query
languages to analyze QEPs in order to find query problem patterns.

Five experiments were presented in this work. The first one measured the perfor-
mance of OptImatch in terms of searching for portions of QEPs against various size of
QEP workload. The objective of this experiment was the analysis of how the number of
files can interfere in the performance and whether the system is scalable in term of files.
OptImatch showed a linear performance for this experiment, taking around 30 seconds to
analyze 1000 QEPs, proving that the proposed tool can provide real-time analysis even for
big QEP workloads.

The second experiment focused on the performance of OptImatch in terms of
number of LOLEPOPs, where the bigger the number, the bigger the size of a QEP file. The
objective was the verification of how efficient this tool can search over different number of
LOLEPOPs. The performance proved to be linear for patterns without recursion.

The third experiment tested the performance of OptImatch in terms of number of
recommendations analyzed against 1000 QEPs. The purpose was to understand how the
number of recommendations can interfere in the OptImatch’s performance. This tool proved
to grow linearly with the number of recommendations in the knowledge base, analyzing
1000 recommendations over 1000 QEPs (meaning 1 million searches) in approximately 3
hours and 35 minutes.

The fourth experiment measured the performance of this tool comparing the new

58 Chapter 9. Conclusions

asynchronous search versus the previous synchronous search. The objective of this test
was the analysis of the benefits of the new method. OptImatch performed 40% faster with
this new search method.

The last experiment compared the automatic search of the proposed tool versus
the manual search used nowadays at IBM. This experiment had as objective an analysis
of the performance and the precision of this tool. OptImatch proved that it drastically
reduced the time for search for problem patterns. Moreover, the manual search was prone
to human error, with overall precision of 80%.

The experiments proved that OptImatch is scalable in terms of size of workload
and number of LOLEPOPs. The performance of the proposed tool does not decrease as
the size of the workload increases. OptImatch also proved to be able to be populated
with recommendations by experts without losing performance, increasing linearly with it.
Moreover, the new asynchronous search improved the performance of the tool, making it
faster in around 40%. Furthermore, a comparative user study showed that the manual
search of problem determination in QEPs was time-consuming and prone to human error.
OptImatch drastically decreased the time to search and provided 100% precision.

OptImatch is proving to be valuable to IBM, as it can help in the IBM support of
clients and database optimizer organization by providing solutions in faster way through
the use of a knowledge base.

Even though this work was applied for query performance problem determination,
the proposed methodology can be applied for any general software problem determination.
For a future work, OptImatch can be expanded to cover other general software for problem
determination. The proposed tool only requires the software to provide a structured
diagnostic file that eventually requires further analysis by experts.

59

Bibliography

ALTON, E. et al. Recommending materialized views and indexes with ibm db2 design
advisor. Autonomic Computing, International Conference on, IEEE Computer Society,
Los Alamitos, CA, USA, v. 00, p. 180–188, 2004.

CYGANIAK, R.; WOOD, D.; LANTHALER, M. RDF 1.1 Concepts and Abstract Syntax.
2014. Available at: <http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/>.
Accessed: January 13th, 2017.

D3. D3 : Data-driven documents. Available at: <https://d3js.org/>. Accessed: February
10th, 2017.

DAMASIO, G. et al. Optimatch: Semantic web system for query problem determination.
In: IEEE INTERNATIONAL CONFERENCE ON DATA ENGINEERING, ICDE, 32.,
2016, Helsinki, Finland. Proceedings... Helsinki, Finland, 2016. p. 1334–1337.

DAMASIO, G. et al. Query performance problem determination with knowledge
base in semantic web system optimatch. In: INTERNATIONAL CONFERENCE ON
EXTENDING DATABASE TECHNOLOGY, EDBT, 19., 2016, Bourdeaux, France.
Proceedings... Bourdeaux, France: OpenProceedings.org, 2016. p. 515–526.

HARRIS, S.; SEABORNE, A. SPARQL 1.1 Query Language. 2013. Available at:
<http://www.w3.org/TR/2013/REC-sparql11-query-20130321/>. Accessed: January
13th, 2017.

IBM. IBM Knowledge Center : The sql and xquery compiler process. Available at:
<https://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.
admin.perf.doc/doc/c0005292.html>. Accessed: February 08th, 2017.

RAPH, K.; MARGY, R. The Data Warehouse Toolkit: The Definitive Guide to
Dimensional Modeling. Third edition. [S.l.]: John Wiley & Sons, Inc., 2013.

ZILIO, D. C. et al. DB2 design advisor: Integrated automatic physical database design.
In: INTERNATIONAL CONFERENCE ON VERY LARGE DATA BASES, 30., 2004,
Toronto, Canada. Proceedings... Toronto, Canada: Morgan Kaufmann, 2004. p. 1087–1097.

http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://d3js.org/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0005292.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0005292.html

	Approval
	Acknowledgements
	Resumo Extendido
	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	List of abbreviations and acronyms
	Contents
	Introduction
	Contributions
	Manuscript Organization

	Background
	IBM Company and Related Technologies
	Other Adopted Technologies
	RDF
	SPARQL
	Jena
	Dojo toolkit
	D3.js
	JSON

	OptImatch Architecture
	Database
	Data Integration

	Graphical User Interface
	Creating a Problem Pattern
	Recommendation
	Extra Features

	Transformation Engine
	Parser
	RDF Creation
	SPARQL Generator

	Syntax for Recommendations
	Matching Patterns and Finding Solutions in the Knowledge Base
	Matching Patterns against QEP workload
	Finding Solutions in the Knowledge Base
	Asynchronous Search

	Experimental Study
	Setup
	Performance and Scalability
	Size of Workload
	Number of LOLEPOPs
	Number of Recommendations

	Comparative Search
	Comparative User Study

	Conclusions
	Bibliography

