
Development using Software Quality
Control Techniques of a Modern
Application for the Shop Floor

Report submitted to the Universidade Federal de Santa Catarina

as a requirement to approval on the subject:

DAS 5511: Projeto de Fim de Curso

Rafael Scheffer

Berlin, November 2018

Development using Software Quality Control
Techniques of a Modern Application for the Shop Floor

Rafael Scheffer

This paper was judged in the context of the subject:

DAS 5511: Projeto de Fim de Curso

and approved in its final form by the Course

Engenharia de Controle e Automação

Prof. Rômulo Silva de Oliveira

Examiner Committee:

Ricardo Grützmacher
Mentor at Rolls-Royce

Prof. Rômulo Silva de Oliveira
Mentor at UFSC

Hector Bessa Silveira
Responsible for the Course

Leonardo Martins Rodrigues, Committee member

Matheus Felipe Souza Valin, Committee member

Ígor Assis Rocha Yamamoto, Committee member

Abstract

Traditional companies, such as Rolls-Royce, are heavily investing in the digitalization
of their manual and analog processes. In the department of Assembly and Test, a good
example of this type of process is the monitoring of jet engines production in the shop
floor, which is done by in-person verification of the module builds, Excel spreadsheets and
paper-based systems. These methods are intrinsically slow, inefficient and error prone.

As a solution, the development of Shopino, a modern web application for monitoring and
data visualization for the shop floor, was proposed. In order to lower costs and save time,
the application was developed on top of an existing platform, called Engino. However, since
Engino was not finished, it had to be improved and tested. For this purpose and to ensure
that Shopino is a secure and high quality application, software quality control techniques
were applied during the planning and development of the application. Furthermore, a
Test-Driven Development methodology was used in combination with an agile methodology.

As a result, a initial version of the application was implemented and integrated with two
shop floor systems, which are responsible for inspecting the quality of the built modules
in the shop floor. These integrations were made available in a very short time and, thus,
created immediate value for the company. Moreover, reviews and all levels of automated
tests were implemented, ensuring the quality of the software produced.

Keywords: web-development, shop-floor, quality-control, tdd, elixir, react.

List of Figures

Figure 1 – Rolls-Royce family day in Dahlewitz gathered 5000 people on 29/06/2017
[11]. 15

Figure 2 – View of one of the shop floors in Rolls-Royce Dahlewitz [10]. 15
Figure 3 – The four dimensions of quality according to Chemuturi [4, p. 26]. . . . 18
Figure 4 – The PDCA cycle [19, p. 112]. 22
Figure 5 – Quality control loop [19, p. 113]. 23
Figure 6 – Landing page of Engino. 32
Figure 7 – Overview of some of the shop floor systems currently in place. 32
Figure 8 – Use Case Diagram. 35
Figure 9 – Simplified view of the current Engino database. 36
Figure 10 – Simplified view of the final database. 38
Figure 11 – Planned schedule. 49
Figure 12 – View of the development environment. 51
Figure 13 – Step-by-step guide to install the Oracle client. 51
Figure 14 – Comparison of the old frontend file structure (left) and the new one

(right). 52
Figure 15 – New GraphQL schema structure. 53
Figure 16 – Permission screen. 54
Figure 17 – Test to check the view scope by the user access groups. 56
Figure 18 – Map importer test. 57
Figure 19 – Integration test for the login mutation request in the backend. 58
Figure 20 – End-to-end test for one of the authentication flows. 59
Figure 21 – Shop floor view management screen. 60
Figure 22 – Dialog to display shop floor systems data. 62
Figure 23 – Heat map displaying the amount of BAMs per shop floor area. 62
Figure 24 – Indicator showing the amount of Findings of each shop floor area. . . . 63
Figure 25 – End-to-end test to check the application flow. 65
Figure 26 – Shopino main view. 66
Figure 27 – Frontend code coverage. 67
Figure 28 – Backend code coverage. 68

List of Tables

Table 1 – Test cases for the login resolver . 55
Table 2 – Test case for the userIsAdmin HOC . 57
Table 3 – Case coverage evaluation . 69

List of abbreviations and acronyms

PHP Hypertext Preprocessor

SQC Software Quality Control

SQA Software Quality Assurance

QA Quality Assurance

PDCA Plan, Do, Check and Act

DRY Don’t Repeat Yourself

TDD Test Driven Development

JSON JavaScript Object Notation

DOM Document Object Model

MVC Model-View-Controller

API Application Programming Interface

URL Uniform Resource Locator

CI Continuous Integration

CD Continuous Delivery

HOC Higher Order Component

LDAP Lightweight Directory Access Protocol

CRUD Create, Read, Update and Delete

ES6 ECMAScript 6

Contents

1 INTRODUCTION . 11
1.1 The problem . 11
1.2 Objectives . 11
1.2.1 General objectives . 11
1.2.2 Specific objectives . 12
1.3 Methodology and structure . 12

2 ROLLS-ROYCE PLC . 14
2.1 Rolls-Royce Deutschland . 14
2.2 Shop floor . 14
2.3 Engino . 16

3 THEORETICAL BACKGROUND AND TECHNOLOGIES 17
3.1 Quality . 17
3.2 Software quality . 19
3.2.1 Software quality dimensions . 20
3.2.2 Coding best practices . 21
3.3 Software quality control . 21
3.3.1 Continuous software quality control . 21
3.4 Software reviews . 23
3.5 Software testing . 24
3.5.1 Testing approaches . 24
3.5.1.1 Black-box testing . 24

3.5.1.2 White-box testing . 24

3.5.1.3 Gray-box testing . 24

3.5.1.4 Manual testing . 24

3.5.1.5 Automated testing . 25

3.5.2 Testing levels . 25
3.5.2.1 Unit testing . 25

3.5.2.2 Integration testing . 25

3.5.2.3 System testing . 25

3.5.2.4 Acceptance testing . 26

3.5.3 Testing techniques . 26
3.5.3.1 Regression testing . 26

3.5.3.2 End-to-end testing . 26

3.5.4 Testing disadvantages . 26

3.6 Methodologies . 26
3.6.1 Scrum . 27
3.6.2 Test-Driven Development . 27
3.7 Technologies . 27
3.7.1 Single Page Applications . 27
3.7.1.1 React . 28

3.7.2 Phoenix . 28
3.7.2.1 Elixir . 28

3.7.3 PostgreSQL . 28
3.7.4 GraphQL . 28
3.7.4.1 Web Socket . 29

3.7.5 Git and GitLab . 29

4 THE PROBLEM . 30
4.1 Engino platform . 31
4.2 Shop floor systems . 31
4.3 Shopino . 32
4.4 Software quality . 33

5 PROJECT PLANNING . 34
5.1 Software Modelling . 35
5.1.1 Requirements . 35
5.1.2 Database . 36
5.1.3 Technology stack . 38
5.1.3.1 Frontend . 38

5.1.3.2 Backend . 39

5.1.3.3 Gitlab . 39

5.2 Quality control plan . 39
5.2.1 Quality model . 40
5.2.2 Quality plan . 40
5.2.2.1 Engino platform review plan . 40

5.2.2.2 Shopino review plan . 41

5.2.2.3 Engino platform test plan . 41

5.2.2.4 Shopino Test plan . 42

5.3 Engino platform development plan 42
5.3.1 Basic project documentation . 42
5.3.2 Restructuring of the frontend file structure 43
5.3.3 Restructuring of the API schema . 43
5.3.4 Modification of the communication protocol 43
5.3.5 User authentication system . 44

5.3.5.1 Backend logic . 44

5.3.5.2 Frontend logic . 44

5.3.6 Permission system . 45
5.4 Shopino development plan . 45
5.4.1 Upload and manage shop floor layouts . 45
5.4.2 Create, update and delete zones . 46
5.4.3 Display shop floor systems data related to a shop floor area 46
5.4.4 Provide overlays on top of shop floor areas with different type of indicators 46
5.5 Shop floor systems analysis . 46
5.6 Shop floor systems integration . 47
5.7 Methodology . 48
5.8 Schedule . 49

6 IMPLEMENTATION AND TESTING 50
6.1 Development environment . 50
6.2 Testing environment . 50
6.3 Engino platform development . 50
6.3.1 Basic project documentation . 51
6.3.2 Restructuring of the frontend file structure 51
6.3.3 Restructuring of the API schema . 52
6.3.4 Modification of the communication protocol 52
6.3.5 User authentication system . 53
6.3.6 Permission system . 54
6.4 Engino platform testing . 55
6.4.1 Unit tests . 55
6.4.1.1 Testing authentication API resolver in the back end 55

6.4.1.2 Testing login screen in the frontend . 55

6.4.1.3 Testing permission persistence module in the back end 55

6.4.1.4 Testing scoping of views belonging to access groups in the back end 56

6.4.1.5 Testing the tiles importer . 56

6.4.1.6 Testing access permission to admin areas . 57

6.4.2 Integration tests . 58
6.4.2.1 Testing the integration between the authentication modules in the front and back

end . 58

6.4.3 End-to-end tests . 58
6.4.3.1 Testing the authentication flows . 59

6.5 Shopino development . 59
6.5.1 Create tables . 60
6.5.2 Upload and manage shop floor layouts . 60
6.5.3 Integration with BAMs and Findings database 61

6.5.4 Create, update and delete zones . 61
6.5.5 Display shop floor systems data related to a shop floor area 61
6.5.6 Provide overlays on top of shop floor areas with different type of indicators 61
6.6 Shopino testing . 62
6.6.1 Unit tests . 62
6.6.1.1 Testing API resolvers . 63

6.6.1.2 Testing shop floor views management screen 63

6.6.1.3 Testing map component . 63

6.6.1.4 Testing zone component . 64

6.6.2 Integration tests . 64
6.6.2.1 Testing the integration between the modules in the front and back end 64

6.6.3 End-to-end tests . 64
6.6.3.1 Testing the application flow . 64

7 RESULTS . 66
7.1 Test Coverage . 66
7.1.1 Code coverage . 67
7.1.1.1 Frontend . 67

7.1.1.2 Backend . 68

7.1.2 Case coverage . 69

8 CONSIDERATIONS AND PERSPECTIVES 70
8.1 Result analysis . 70
8.2 Future perspectives . 71

References . 72

APPENDIX A – PRODUCTION WIKI 74

APPENDIX B – USER SOCKET MODULE 76

APPENDIX C – AUTHENTICATION HOC 77

11

1 Introduction

In the last decade, thanks to the advance of technology and the reduction of the
cost of computers, internet and server infrastructure, software has become affordable as
never before. Consequently, traditional industries are now seeking the digitalization and
improvement of their processes through softwares, in order to save time, cut spending and
increase productivity.

At the same time, web applications have gained increasing popularity in the field
of software development, mainly because of its high flexibility, large reach and great
compatibility. These characteristics are attractive for large and multinational companies,
since it enables the application to be used in all their locations, in practically any device
and with almost no setup.

Nevertheless, the widespread nature of a web application increases the risk of attacks
and bug exploitation, specially when dealing with sensitive information or running in
critical areas of a company, such as the shop floor. In these cases, the software development
requires special attention regarding quality and security, which can be achieved by using
techniques of Software Quality Control.

1.1 The problem

Currently, the monitoring of logistics and quality of the shop floor is done by
in-person verification of the module builds, Excel spreadsheets and paper-based systems.
These methods are intrinsically slow, inefficient and error prone.

As a solution, the Assembly and Test department chose to develop Shopino: a web
application for the monitoring and visualization of the shop floor. In order to lower costs
and save time, the application is going to be built on top of an already existing application,
called Engino.

Engino is a modern web platform for marking engine views, developed by the
department of Technical Data Services.

1.2 Objectives

1.2.1 General objectives

The general objectives tackled in this document are:

Chapter 1. Introduction 12

• Develop Shopino, a monitoring and visualization system for the shop floor;

• Analyze and choose the shop floor systems to be integrated with Shopino;

• Ensure that Shopino is a high quality software and has no critical bugs.

1.2.2 Specific objectives

In order to solve the problem and achieve the general objectives described above,
this project aims to:

• Fulfill Shopino software requirements;

• Integrate shop floor systems without disturbing the production;

• Improve the software security and quality of the Engino platform;

• Develop Shopino using a Test-Driven Development methodology, meaning that all
modules are covered by, at least, a unit test;

• Implement integration tests to assure that different parts of the application work
correctly together;

• Develop end-to-end tests to assure that the final software system meets the specified
quality requirements;

• Create regression tests so that new changes to the software don’t break the applica-
tion.

1.3 Methodology and structure

This project was developed using a mix of agile and test-driven development
methodologies and is divided in the following 8 chapters:

• Chapter 1: Contextualizes the problem of the thesis and enumerates the objectives
to be achieved;

• Chapter 2: Describes briefly the company and the environment where the project
was developed;

• Chapter 3: Explains the theories of Software Quality Control and presents the
methodologies and technologies used in the project;

• Chapter 4: Presents the problem of the project and the challenges needed to be
overcome;

Chapter 1. Introduction 13

• Chapter 5: Contains the project planning and defines the methodology, schedule
and metrics to be used;

• Chapter 6: Describes the implementation and the tests created;

• Chapter 7: Presents the result obtained in terms of quality of software, test coverage
and metrics;

• Chapter 8: Contains the final considerations, a discussion about the results obtained
and the future perspectives for Shopino.

14

2 Rolls-Royce plc

Initially established in 1884 by Henry Royce, Rolls-Royce first manufactured
dynamos and electric cranes, until in 1904 it built its first motor car. In 1914, due to the
beginning of the First World War, it started producing aircraft engines for the military.
In 1953, after the end of the Second World War, Rolls-Royce entered the civil aviation
market.

Today Rolls-Royce employs almost 50,000 people in 50 countries and it is the
world’s leading engine supplier for business aviation, powering over 3,000 aircraft in service
today, with a 42% market share [13]. The company has customers in more than 150
countries, comprising more than 400 airlines and leasing customers, 160 armed forces,
4,000 marine customers including 70 navies, and more than 5,000 power and nuclear
customers.

2.1 Rolls-Royce Deutschland

Rolls-Royce Deutschland is situated in Dahlewitz, near Berlin, and Oberursel, near
Frankfurt/Main. It has invested more than 3.6 billion euros in the development of the
BR700 engine family. It is the only officially approved jet engine manufacturer in Germany
with development, manufacturing and maintenance license for modern civil and military
turbine engines [14].

At the Dahlewitz location, it has been manufactured more than 7000 aircraft
engines of small and medium size for the past 25 years. Currently, about 2800 people
work in this location, where the shop floor is the area of the company that contains the
highest number of workers and machines. Figure 1 displays an aerial view of part of the
Rolls-Royce Dahlewitz facilities.

2.2 Shop floor

The production in Dahlewitz is divided in two facilities: one dedicated for the
assembly of the big Trent XWB turbofan jet engines, that power the Airbus A350, and
the other for development and final assembly of the smaller BR700 and the new Pearl 15
engines. When finished, one Trent XWB engine can weight over 7000 kg [18] and provide
between 84200 and 97000 lbf [17] of thrust. In one of Rolls-Royce biggest sales, it was sold
for about 35 millions of dollars each in 2007 [16].

Since Rolls-Royce is part of the aerospace industry, it must comply with numerous

Chapter 2. Rolls-Royce plc 15

Figure 1 – Rolls-Royce family day in Dahlewitz gathered 5000 people on 29/06/2017 [11].

regulations and quality checks. In order to be compliant, there are rigorous tests and
quality assurance processes in place in the shop floor. Depending of the rework required to
pass the quality tests and the availability of the parts, one engine can take several months
to be built and assembled.

The department of Assembly and Test is responsible for assembling and testing the
engine modules and where the project of this document was developed. Figure 2 shows
one of the shop floors in Rolls-Royce Dahlewitz.

Figure 2 – View of one of the shop floors in Rolls-Royce Dahlewitz [10].

Chapter 2. Rolls-Royce plc 16

2.3 Engino

Engino is a web platform for visualization and marking of engine views developed
in the department of Technical Data Services. It integrates several internal systems by
importing data coming from Excel spreadsheets and databases into its own database or
by providing a specific link to other systems. The first version of the application was a
proof-of-concept designed in 2014 using PHP and quickly gained popularity among the
Rolls-Royce engineers. Despite it, the system wasn’t flexible and scalable enough, meaning
that new integrations took a lot of time to be implemented and the code became hard to
maintain.

The solution chosen for these issues was to recreate Engino from the scratch, using
a modern architecture and flexible frameworks, such as React, Elixir and Ruby on Rails.
Besides not being launched officially yet, Engino has already more features and systems
integrated to the platform than before. Nevertheless, the productivity of the developers
increased.

17

3 Theoretical Background and Technologies

In this chapter, the theoretical background about quality, software quality and
software quality control is presented. An explanation of the methodologies and technologies
used during the project development are also included.

3.1 Quality

The International Organization for Standardization (ISO) defines quality as "the
degree to which a set of inherent characteristics fulfills requirements" [1]. Requirements
are the product or service specifications, which can be determined by the customer, the
producer of the product or an external body, such as the government or a standard body.
The inherent characteristics are the never changing product properties that are responsible
for delivering the requirements to the customer. Lastly, it can be inferred from the word
degree that it is possible to evaluate how many and how good the requirements are fulfilled.
In other words, that a product can have good, bad or excellent quality.

According to Chemuturi in [4], that definition of quality can lead to the ambiguous
inference that "...quality is a continuum, beginning with zero and moving toward, perhaps,
infinity" [4, p. 3]. Therefore, it wouldn’t be clear who and how should measure the quality
of the product. Instead, he argues that specifications are at the heart of quality and that
quality should be defined from the standpoint of the provider, since the provider is the
actor responsible for the development and assurance of the quality of a product.

Chemuturi concludes defining quality as "an attribute of a product or service
provided to consumers that conforms in total to or exceeds the best of the available
specifications for that product or service." [4, p. 4]. Thus, quality would be divided in four
dimensions: specifications, design development and conformance, as shown in figure 3.

• Specification quality: defines the quality of the product specification, which is the
first activity to be done and impacts all the other activities;

• Design quality: determines how well the product was designed to meet the require-
ments. If the design is not correctly done, the product may not fulfill its requirements,
even if the specifications were well defined and the development was successful;

• Development quality: refers to the quality of the manufacture of the product and
how well it conforms to the design document;

Chapter 3. Theoretical Background and Technologies 18

Figure 3 – The four dimensions of quality according to Chemuturi [4, p. 26].

• Conformance quality: defines the quality of product in comparison with the
specifications and the product design. It uses measurements and metrics to evaluate
the quality of the product and what needs to be fixed.

Both these definitions condition quality to the capacity of fulfilling explicit re-
quirements. This could be problematic, because requirements can also be implicit or
based on user expectations. Therefore, even if all requirements are fulfilled, it could be
still possible that important requirements are missing or the product falls short of user
expectations [19, p. 6]. As an alternative, Wagner proposes in [19] a way to define product
quality by using Garvin’s approaches to quality:

• Transcendent approach: captures the feeling that a product has high quality.
It is not a concrete approach, but it helps us to remember that there is always a
subjective and immeasurable aspect to quality.

• User-based approach: defines quality as a way to satisfy the user needs. This
approach is useful for making us aware of the distinction between user satisfaction
and quality. Which means that even a cheap product that is not well produced and,
therefore, not considered of high quality could satisfy the user.

• Value-based approach: consists of assigning costs to conformance and non con-
formance requirements, comparing them to the benefits for the product and, then,
calculating its value.

• Product-based approach: describes quality as the differences in the quantity of
the desired product characteristics. This approach assumes that the desired product
can always be described.

Chapter 3. Theoretical Background and Technologies 19

• Manufacturing approach: defines quality as the conformance to the product
specifications. This approach assumes that the product can be always completely
specified and has the problems commented before.

Garvin defends that different approaches are more suitable, depending on the
stage of the product’s life cycle. In the beginning of the life cycle, the more important
approaches are the user-based and value-based, since they capture what is more important
and valuable to the user. Then, the product-based approach would describe the more
concrete product characteristics in form of a specification. Last, during the development
stage, the manufacturing approach would ensure the product fulfills the specification.

3.2 Software quality

Software can be developed and offered as a service or a product, but this project
is going to focus on the software as a product approach. A software has the following
inherent characteristics that make it different from the other types of product:

1. Software is intangible and not subjected to physical wear. Because of that, it can
last, in theory, forever;

2. The software environment is usually in continuous and fast change, whether is
the programming language, the platform, the libraries or other softwares and their
interfaces;

3. As a consequence of the point 1, a software can be always modified to add new
features;

4. As a result of the point 2, a software must be always updated to keep up with the
new changes to its environment and to have a decent performance, otherwise its
quality decay.

Unlike to a part or an engine, that can be physically tested and its quality evaluated
by objective indicators, a software, because of the attributes described above, is difficult
to be tested and its quality evaluated. Therefore, the subjects of quality assurance and
quality control are even more important for softwares.

Quality assurance is responsible for checking if all the processes related to the
quality of the product, such as planning, development and testing, are working. In order
to obtain objective evaluations, tools and techniques are used, such as process audits and
product audits. Process audits verify the flow and the utility of a process, while product
audits verify if the product was produced in conformance with the internal standards,
such as forms, templates, coding guidelines, etc [15, p. 264].

Chapter 3. Theoretical Background and Technologies 20

In this project, however, the practices of software quality control are the ones being
implemented, as discussed in the next section 3.3.

3.2.1 Software quality dimensions

When someone says a software is of high quality, the person is probably referencing
a few quality dimensions. Nonetheless, there are hundreds of software quality dimensions
and in several of them this software might be of low quality. Below are some of the most
important dimensions:

• Accessibility: The degree to which software can be used by all kinds of people,
including those who need assistive technologies;

• Compatibility: The capacity of software to be used in different environments, like
operating systems, browsers, etc;

• Concurrency: The ability of software to answer multiple requests at the same time;

• Efficiency: The capacity of software to run without wasting resources, time or
money;

• Maintainability: The ease with which software can be updated to add new features
or fix bugs;

• Reliability: The degree to which software can run without any errors;

• Security: The ability of software to prevent unauthorized access, access to sensitive
data, data theft, etc;

• Localizability: The ability of software to be used in multiple locations, in different
languages and time zones;

• Scalability: The extent to which software can grow in demand without affecting
performance;

• Reusability: The degree to which parts of the software can be reused in other
applications;

• Usability: The capacity of software to be easy to use;

• Testability: The ease with which software can be tested.

Chapter 3. Theoretical Background and Technologies 21

3.2.2 Coding best practices

Coding best practices and conventions are created to improve code quality. Below
is a list with the most popular ones:

• DRY principle: DRY stands for Don’t Repeat Yourself and aims to avoid code
duplication and increase software modularity;

• Code refactoring: is the practice of changing code without modifying its function-
ality, with the purpose of improving other dimensions of quality, such as readability,
modularity, performance, etc;

• Indentation and spacing: good and consistent code indentation and spacing
improve code readability and maintainability;

• Style guidelines: each programming language has its own coding conventions,
which are created to also improve code readability and maintainability;

• Deep nesting: deep nesting is considered a bad coding practice, because it makes
the code harder to read;

• Naming conventions: the most important ones are camel case (with the exception
of the first word, the first letter of each word is capitalized) and underscores (words
are separated by underscores);

• Commenting and documentation: both increase code readability, but comment-
ing should be avoided when it’s too obvious;

• File and folder organization: in order to improve code readability and navigation,
big files should be divided in smaller ones and grouped into folders with files of the
same functionality or context.

3.3 Software quality control

In contrast with quality assurance, that focus in the prevention of defects, quality
control is a reactive process to evaluate the quality of the product and to identify defects.
The tools and techniques used for quality control include peer reviews and the different
levels of testing, which are presented in the following subsections, along with practices for
continuous software quality control.

3.3.1 Continuous software quality control

Continuous quality control was originally created to provide methods for managing
the quality of non-software products. It then became a standard approach for process-

Chapter 3. Theoretical Background and Technologies 22

oriented quality standards, such as the ISO 9001 [2]. One of the most popular methods is
the PDCA cycle, which is composed of four stages: Plan, Do, Check and Act [19, p. 111],
as seen in figure 4.

Figure 4 – The PDCA cycle [19, p. 112].

In the Plan stage, it’s identified what can be improved and is created a plan to
introduce these changes. In the Do stage, the plan is implemented in only a few processes
in order to test it. In the Check stage, the results of the changes introduced are evaluated.
If the results are satisfactory, then the plan is implemented for all processes in the Act
stage.

As discussed in the previous section, a software is always suffering transformations,
whether to add new features or to update its compatibility with new changes and technolo-
gies. This is such a common process that it received a name: software evolution. Although
changes to software are crucial for increasing or maintaining user satisfaction, it can also
lead to defects and quality issues. This usually happens because of three factors: short
deadlines, lack of developers or resources and lack of training of the developers.

The result is copy and paste of previous codes, workarounds to fix problems, lack
of documentation and lack of tests. These bad practices affect the software quality by
introducing bugs and compromising efficiency, reliability and maintainability, which also
raise the costs for future projects.

Therefore, after every software change, the software should be always reassessed
in order to maintain a high quality. In order to obtain this continuous software quality
control, Wagner proposes in [19] a feedback loop as an analogy of the PDCA cycle that
can be applied to the software development process. Figure 5 shows the quality control
loop proposed by Wagner.

First, a set of product goals are set and a quality model is created to specify the
quality requirements. Then, the developers implement the first version of the software
product, which is going to be evaluated by the SQC professionals or the developers
themselves, through reviews, tests and analysis. Last, the results of the evaluations are fed

Chapter 3. Theoretical Background and Technologies 23

Figure 5 – Quality control loop [19, p. 113].

back to the quality model and compared to the quality requirements. If the quality of the
software falls short of the specified, new changes to the software must be made and a new
cycle begins. In order to not slow down the speed of the development cycle, long running
tests and manual activities, such as code reviews, should be done only in the end of some
milestones [19, p. 113].

3.4 Software reviews

Review is the most effective technique in SQC for identifying quality issues and
preventing future problems of readability and maintainability. By identifying defects early,
it saves time and money if compared to defects found by tests or users. Nevertheless, it’s
not frequently used in practice. According to a survey done by Cielkowski et al. (2003,
pp. 46-51 apud Wagner, 2013, p. 121), only 28% of the respondents performed code reviews.
The reasons gave by them included cost, time and lack of training.

There are mainly three types of software reviews: peer reviews, management reviews
and audit reviews. This project focus in the implementation of peer reviews, which are
divided in the following types:

• Pair programming is an activity where two programmers work on the same
computer and code together;

• Inspection is done by professionals of QA, which examine the software for bugs
and defects using a process;

• Code Review has the objective to fix bugs and remove vulnerabilities from a
software, but it can be done individually and don’t need a process;

Chapter 3. Theoretical Background and Technologies 24

• Technical review is done by a team of professionals of QA, which review the
software to evaluate its usability;

• Walkthrough is an activity done by the team of developers to ask questions and
make comments about the software defects and errors.

3.5 Software testing

Software testing is a risk management strategy, which can have different objectives,
such as verify if requirements are met or identify defects and errors. In order to achieve
these goals, many testing approaches were created. Some of them are described below.

3.5.1 Testing approaches

3.5.1.1 Black-box testing

Black-box testing, also known as functional testing, is a technique created to check
the software’s functionality without having information of the internal structure or logic
of the program. The objective of this type of test is to evaluate if the specifications are
met. The down side of black-box tests is that internal errors might not be detected.

3.5.1.2 White-box testing

White-box testing, or structural testing, consists of tests conditions designed to
test the internal structure and logic parts of the software. The goal of these tests is to
identify bugs and the logic of modules of the program, but they ignore the fulfillment of
the specifications. Besides, another disadvantage of structural tests is that missing modules
or data-sensitive errors might not be detected.

3.5.1.3 Gray-box testing

Gray-box testing is a combination of black-box and white-box testing, as it evaluates
both the functionality and the logic of the application. The motivation is to save time by
avoiding ambiguous tests, which test the same functionality.

3.5.1.4 Manual testing

Manual testing is a process done to identify bugs and defects manually. This usually
requires the preparation of a test plan which describes the approach and test cases needed
to test the whole application. Therefore, it is time consuming test and requires an exclusive
person to do this task.

Chapter 3. Theoretical Background and Technologies 25

3.5.1.5 Automated testing

In order for developers to have a fast feedback of the quality of their code, tests
need to be run frequently and consume little time. Manual tests are expensive and take
too much time to be executed, so the most part of tests needs to be automated. The
three phases of the test process that can be automated are: generation, execution and
evaluation.

Generation is the most difficult part to automate, because it is the most intellectual
demanding phase of the test process. On the other hand, execution is the easiest part to be
automated, because there are a lot of testing frameworks that already do this for almost
every programming language. Automation of the evaluation of the tests is usually included
in the testing frameworks cited before. Yet, depending on the types of tests being created
and the complexity of the system, simulation models need to be used in conjunction with
the testing framework.

3.5.2 Testing levels

According to the phase of the development cycle, different types of tests are
performed on the application. Below the four levels of testing are presented.

3.5.2.1 Unit testing

Unit test, also known as module or component test, evaluates the functionality of
the smallest block of a software. Because it is the easiest and fastest type of test to be
created, they are usually created first.

3.5.2.2 Integration testing

After all unit tests are created, the integration of the several modules of the
application are tested through integration tests. There are different strategies to create
these types of tests, such as bottom-up, top-down, big-bang and sandwich. Instead of
testing for the functionality of the units, the interaction between different modules is
tested to identify interface defects.

3.5.2.3 System testing

When the module integrations and integration tests are done, it means the software
is complete. Then, system tests can evaluate the final dimensions of the software quality,
such as functionality, performance, security, etc.

Chapter 3. Theoretical Background and Technologies 26

3.5.2.4 Acceptance testing

Acceptance test is a type of system and black-box test that is done by the users of
the application. The main aspects of the software tested are usually functionality, usability
and compatibility, but others can also be tested, depending on the application.

3.5.3 Testing techniques

This subsection describes some popular testing techniques that are used in one or
several testing levels and were applied or mentioned during this project.

3.5.3.1 Regression testing

Regression testing is one of the most important types of tests. Its goal is to identify if
new changes to software don’t break already functioning parts of the application. Therefore,
they are created and run after every software change and should be done on all test levels:
unit, integration and system.

3.5.3.2 End-to-end testing

End-to-end testing is a type of system test that verifies the functionality of the
application as a whole in a production scenario. This means that the application should
connect to the same databases, networks and have the same hardware than the application
that will run in production.

3.5.4 Testing disadvantages

Although tests can save a lot of valuable money and time by identifying bugs
and non conformance to requirements before deploying the software to production, it
can also slow down the productivity of the developers if too much time is spent doing
duplicated or useless tests. Moreover, having many slow automated tests to run when
using continuous integration and continuous testing tools, decreases the iterativity and
speed of the development cycle. Thus, it is important to choose the right tests and their
amount to be done, in order to avoid having a testing overhead.

3.6 Methodologies

In this section, the methodologies used during the project development are intro-
duced.

Chapter 3. Theoretical Background and Technologies 27

3.6.1 Scrum

Scrum is part of the agile software development methodology, whose main principle
is to focus on the development of the software itself, instead of documentation. This doesn’t
mean that agile methodologies don’t create documentation, but they only create enough
documentation for a new member of the team to understand the software.

In Scrum, the product is divided in small pieces and developed in iterations of 2 to
4 weeks, called sprints. Before each sprint, a planning meeting is done to plan the tasks
that should be implemented. Then, after the sprint is concluded, the progress is tracked
and the next plan is created in a new meeting. This process provides fast and continuous
feedback for all members of the team about the current progress of the project and what
needs to be improved.

3.6.2 Test-Driven Development

Test-Driven Development is a software development process that consists in repeti-
tive and short development cycles. First, a test is written for the new functionality that
needs to be implemented, then the minimum amount of code to make that test pass is
created and, at last, the code is refactored. This process tries to improve the design of the
application, making the developer think before writing any code. It also leads to more
clean, modularized and flexible code.

3.7 Technologies

This section describes the technologies used during the development of the applica-
tion.

3.7.1 Single Page Applications

Single Page Applications are web applications that receive only a single web page
from the server together with JavaScript files. Then, these applications are themselves
responsible for managing the navigation to other web pages via JavaScript. Therefore,
after the first response from the server, every other request is made with only the needed
information for that specific operation, thus, making the communication between the front
and back end very fast. For these type of requests, lightweight data formats are used, such
as JSON.

When the JavaScript scripts receive the response from the server, they can change
the user interface, by modifying the Document Object Model (DOM).

Chapter 3. Theoretical Background and Technologies 28

3.7.1.1 React

React is one of the most used libraries for developing Single Page Applications and
building user interfaces. It was developed and is maintained by Facebook. The advantages
of React to other similar frameworks, such as Angular and Vue.js, are:

• Easy to learn;

• High flexibility and responsiveness;

• One way data binding, meaning that child elements cannot affect their parents data;

• Virtual DOM, which improves performance by only updating the real DOM with
the modified objects;

• Lots of open source libraries.

3.7.2 Phoenix

Phoenix is a MVC framework that does not compromise speed and maintainability
[9]. One of its main advantages is the real time layer that works through channels and
concurrent web sockets. Phoenix is optimized to have multiple connections in real time,
being able to handle up to two millions connections at the same time. It is written in the
functional programming language Elixir.

3.7.2.1 Elixir

Elixir is a dynamic, functional language designed for building scalable and main-
tainable applications [6]. It was built on top of Erlang and is run on the Erlang virtual
machine (BEAM), which is known for running low-latency, distributed and fault-tolerant
systems. It also provides compile-time metaprogramming with macros and polymorphism
via protocols.

3.7.3 PostgreSQL

PostgreSQL is a powerful, open source object-relational database system that uses
and extends the SQL language combined with many features that safely store and scale
the most complicated data workloads [12]. It also allows custom definitions of data types,
index types, functional languages and others.

3.7.4 GraphQL

GraphQL is an open-source data query and manipulation language for APIs. While
REST APIs require loading from multiple URLs, GraphQL APIs get all the data needed

Chapter 3. Theoretical Background and Technologies 29

in a single request. Furthermore, only the requested data structure is sent in the response,
making the communication much more efficient and faster. GraphQL requires the creation
of a schema with the API data types and supports reading, writing (mutating) and
subscribing to changes to data (realtime updates) [8].

3.7.4.1 Web Socket

Web Socket is a communication protocol that enables interaction between client
and server with lower overheads, facilitating real-time data transfer. Unlike HTTP, Web
Socket provides full-duplex communication, meaning that both client and server can send
messages at any time. HTML5 Web Sockets can provide a 500:1 or, depending on the size
of the HTTP headers, even a 1000:1 reduction in unnecessary HTTP header traffic and
3:1 reduction in latency [20].

3.7.5 Git and GitLab

Git is a version-control system for tracking changes in files and coordinating work
when files are modified by multiple people. It is primarily used for source-code management
in software development. Git was created by Linus Torvalds in 2005 for development of
the Linux kernel, with other kernel developers contributing to its initial development [3].

GitLab is a web-based Git repository manager that provides several features, such
as wiki, issue tracking and CI/CD pipeline. It is the first single application built from the
ground up for all stages of the DevOps life cycle for Product, Development, QA, Security,
and Operations teams to work concurrently on the same project [7].

30

4 The problem

Currently, the process of monitoring the shop floor is done by:

• Physical dashboards that are manually filled in;

• Disconnected data coming from papers, Excel spreadsheets and legacy systems;

• In-person verification of the module builds.

These methods are intrinsically slow, inaccurate and error prone. In order to solve
these problems, a web application called Shopino was proposed. Comparatively, a web
application could provide the following advantages:

• Less time of engineers and production managers spent to obtain data about the
current state of the shop floor, resulting in gain of productivity;

• Low cost of integration with other shop floor systems, which could provide more
information and facilitate the decision-making;

• Data visualization and customized graphic interface;

• Storage of data in databases, assuring consistency and standardization of data;

• Low cost to generate reports about the production state, improving the identification
of issues and bottlenecks;

• Flexibility to add new data sources, including legacy systems;

• Access of thousands of packages in the web, allowing for fast addition of new
functionalities and speeding up the development of the application;

• More accurate view of the current state of the production, leading to better resource
allocation, less delays and increase of the company productivity.

Yet, developing a software application in a big company like Rolls-Royce is not a
easy task. First, the company has a high demand for new softwares, but the number of
developers is limited. Second, the company is part of the Aerospace industry and must
comply with a large number of strict regulations and, therefore, its IT department has
also internal and strict rules regarding its softwares, databases and networks.

In such a restricted environment, cooperation plays an important role in reducing
costs and saving time to develop a software application.

Chapter 4. The problem 31

4.1 Engino platform

A brief description and history of the application was given in chapter 2.3.

The high flexibility, high productivity and easy maintainability of Engino platform
attracted attention of other departments inside Rolls-Royce, such as the Assembly and
Test. By using Engino’s architecture and platform, Shopino can have a head start and be
in an scalable and flexible environment to grow.

Nevertheless, Engino platform is still a work in progress and has yet to be released
officially. Because it was developed by only two developers and in a short time frame, it
has almost no tests and needs to be improved in terms of security and software quality.
The biggest issues that need to be solved in the current state of Engino platform are the
following:

• Lacks basic project documentation;

• Part of the frontend file structure is hard to navigate;

• API schema is a monolith;

• Communication between the frontend and the backend is not optimized for real-time
updates;

• There is no authentication system;

• There is no permission system;

• Lack of tests.

Figure 6 shows the current landing page of Engino, which has no authentication
system.

4.2 Shop floor systems

The shop floor systems currently in place need to be analyzed and the most
suitable ones should be chosen to be integrated into Shopino. The following aspects should
be considered in order of importance when choosing the systems that are going to be
integrated:

1. Disturbance level of the production;

2. Cost and time required for the integration;

3. Data quality and importance for the monitoring of the production.

Chapter 4. The problem 32

Figure 6 – Landing page of Engino.

Furthermore, the systems shall be grouped in two groups: logistics and quality.
The first group needs to contain the systems related to the flow management of people,
resources and product. While the second group has to include the systems responsible for
determining the quality of the product.

Figure 7 shows an overview some of the shop floor systems currently in place.

Figure 7 – Overview of some of the shop floor systems currently in place.

4.3 Shopino

In order to improve the monitoring of the shop floor and assist the decision-making
of production managers and engineers, Shopino is going to be developed. The idea of

Chapter 4. The problem 33

Shopino is to have a similar user interface as Engino, but adapted for the shop floor.

Therefore, instead of displaying engine views in the background, Shopino would
present the layout of the shop floor. Instead of marking parts on top of the engine view, it
would be drawn rectangles that represent the shop floor areas and workstations. Then, the
data coming from the integrations with the shop floor systems could be displayed when
the user selects an area or as indicators and heat maps on top of the areas.

4.4 Software quality

As mentioned in the chapter 2.2, a turbine engine costs millions of dollar, takes
months to be produced and years to be developed. More important than that, it deals
with people lives. A small defect in an engine could cause an accident and cost hundreds
of lives. Because of that, all systems and processes in the shop floor must have the highest
standards of quality.

Although Shopino is not going to have a direct impact on the engines, it could
indirectly lead to wrong decisions of the production managers and engineers regarding the
production plans and cost valuable time and money. Therefore, the software application
needs to have also high standards of quality, which means it complies with the requirements,
has no critical bugs and is secure and reliable.

34

5 Project planning

In this chapter, the planning to solve the problems described in the previous chapter
is defined. In order to better tackle the problems, the plan was divided into the following
topics:

1. Software modelling;

2. Quality control plan;

3. Engino platform development plan;

4. Shopino development plan;

5. Shop floor systems analysis;

6. Shop floor systems integration;

7. Methodology;

8. Schedule;

9. Metrics.

First, the software modelling of Shopino was made, describing the requirements
of the application, the model of the database and the technologies to be used. Then, a
quality control plan was designed, using as reference the loop seen in chapter 3.3.1. The
third step was to plan how Engino platform should be improved in order to fulfill Shopino
requirements and be compliant with the quality model designed, thus solving the problems
listed in chapter 4.1. Next, a plan to develop the remaining requirements of Shopino
was created. In the fifth step, the shop floor systems were analyzed and some of them
were chosen to be integrated into Shopino. Then, a discussion about how to integrate the
selected systems is done.

The seventh step selects the methodologies to be used during the development of
the project. After that, a schedule is proposed and the metrics to be measured during and
after the project development are chosen.

All the plans discussed in this chapter were created by the author with the super-
vision of the project manager. They are the result of many meetings and interviews with
production managers and engineers.

Chapter 5. Project planning 35

5.1 Software Modelling

In this section, a software model is proposed for Shopino. It will be divided in four
topics: requirements, database and technology stack.

5.1.1 Requirements

The problem described in chapter 4 of improving the monitoring of the shop floor
was generic and open to multiple interpretations. Therefore, many meetings were done
with production managers and engineers, in order to raise the requirements for Shopino.
In order to facilitate the generation of the requirements, a simple Use Case Diagram, as
seen in figure 8, was created.

Figure 8 – Use Case Diagram.

Below are the final requirements established:

• User authentication system;

• Permission system;

• Upload and manage shop floor layouts;

• Create, update and delete zones;

• Display shop floor systems data related to a shop floor area;

• Provide overlays on top of shop floor areas with different type of indicators.

User authentication system will be responsible for controlling the access of the
application, with the objective of maintaining a session of who is logged in and ensuring

Chapter 5. Project planning 36

that contractors and guests can’t access the application. The permission system will allow
certain parts of the application only for user groups, which will be created and managed
by super users and the group owners. Both these functionalities will be developed for the
whole platform of Engino, since all other applications can benefit from it. The Engino
platform development plan is described in section 5.3.

Shop floor layouts are the images of the shop floor, which will be the background
of the application and facilitate the visualization and navigation of the data. Zones are
overlays that will be drawn on top of the shop floor layout and will be associated to
a shop floor area. Finally, overlays in form of heat maps, numbers or lists should be
available to be selected and, then, be displayed on top of shop floor areas, in order to
improve the visualization of key shop floor indicators. A development plan that covers the
implementation of these functionalities is presented in section 5.4.

5.1.2 Database

The current Engino database is a PostgreSQL database and contains 49 tables
from different projects, such as SAS, TDM and Engino itself. A simplified view of the
database is presented in figure 9.

Figure 9 – Simplified view of the current Engino database.

In order to share common tables and save resources, the same database will be
used for Shopino.

The most complicated modification of the current database could be the addition
of the table shop_floor_views, responsible for storing the data of the uploaded shop floor
layouts. The reason for it is that there are two ways of implementing this table. The first,
and easiest one, would be to mimic the engine_views table, so that it would contain
information about the tiles uploaded. The second option, that could cause conflicts, would

Chapter 5. Project planning 37

be to create a new generic table, called maps, that would store information about the
image and tiles uploaded and, then, the tables engine_views and shop_floor_views would
only store the name of the view and a foreign key to reference the map that contains the
tiles to be used. The advantages of this last approach is:

• Reuse the same tiles for different views;

• Multiple views could share the same map, but have different markers;

• Views with the same map could have different access permissions, meaning, for
instance, that each department could have its own view and mark only the parts
they are interested in;

• Possibility to mark in the same map parts in one view and zones in another.

Nevertheless, this approach would require to modify the attributes of table en-
gine_views and change the logic of the tiles importer and other parts of the application
related to engine views, such as the engine view management screen. These would have to
be done without interfering with the already uploaded tiles of every engine view.

After discussing this issue with the project manager of Engino, it was decided to
take the second approach, because of the advantages presented and the possibilities that
are being open for future features and projects. In the next chapter, the implementation
of this approach will be discussed in section 6.5.1.

For the implementation of the permission system, 4 new tables will have to be
created:

• access_groups: contains basic information about the group, such as: name, slug,
description and owner;

• users_access_groups: cross-reference table to insert users into groups. This is
done by relating a group_id to a user number;

• engine_views_access_groups: cross-reference table to insert engine views into
groups. This is done by relating a access_group_id to a engine_view_id ;

• shop_floor_views_access_groups: cross-reference table to insert shop floor
views into groups. This is done by relating a group_id to a sf_view_id.

Finally, a table zones will be created to store information about the map coordinates
of the rectangle drawn and a foreign key to reference the respective shop floor view.

The final and simplified view of the database with the added tables can be seen in
figure 10.

Chapter 5. Project planning 38

Figure 10 – Simplified view of the final database.

5.1.3 Technology stack

In order to reuse the already existing code in the Engino platform, the same
technologies will be used in Shopino. However, some testing libraries will be installed, such
as Jest, Enzyme and Puppeteer in the frontend, and ExMachina in the backend.

For the communication between the frontend and the backend, a GraphQL API
will be also implemented for Shopino.

Below are the most important technologies of the front and back end.

5.1.3.1 Frontend

The technologies that are going to be used in the frontend are:

• React: for building the user interface;

• Redux: for managing the application state;

• Leaflet: to create interactive maps;

• Apollo Client: to provide a GraphQL client;

• React Apollo: provides Apollo Client integration for React;

• Material-UI: user interface library that implements Google’s Material Design;

Chapter 5. Project planning 39

• Jest: to test JavaScript code without setup;

• Enzyme: for testing React components;

• Puppeteer: to create automated end-to-end tests in a headless browser.

5.1.3.2 Backend

In the backend, the following technologies will be used:

• Elixir/Phoenix: as the server side framework;

• PostgreSQL: as the main database;

• Absinthe: for handling the GraphQL requests and responses;

• ExMachina: for easily generating test data.

5.1.3.3 Gitlab

Gitlab will be used for code control and project managing. It provides nice features,
such as a task board, issue tracking, time tracking and built-in continuous integration.

5.2 Quality control plan

In this section, the quality model and quality plan of the software quality control
loop described in chapter 3.3.1 are created for Shopino. The first step of the loop is to set
the product goals:

• Successfully launch version 1 of Shopino;

• Integrate with at least 1 shop floor system before launch;

• Test most use cases;

• Test at least 70% of the Shopino backend code;

• Test at least 50% of the Shopino frontend code.

Then, a quality model has to be created.

Chapter 5. Project planning 40

5.2.1 Quality model

Below the quality requirements for the product level and the code level are listed,
as well as the actions required to fulfill them:

• Product Level Quality

– Functionality: provide the specified functionalities and create end-to-end tests;

– Compatibility with Internet Explorer 11 and big monitors: test the
development code in a Windows virtual machine and use the grid system from
Material-UI;

– Security: don’t allow access of unauthorized users;

– Reliability: test the overall application;

– Documentation: document critical modules of the software.

• Code Level Quality

– Reusability: reuse already existing code of the Engino platform;

– Maintainability: use coding best practices;

– Testability: write modules that are easy to test.

5.2.2 Quality plan

With the objective of achieving the quality characteristics specified in the quality
model, a quality plan is going to be created. The quality plan consists of a review plan
and a test plan, which will define what parts of the application should be reviewed and
tested and what they should be checked and tested for.

In the next subsections, the review and test plans for Engino platform and Shopino
are presented.

5.2.2.1 Engino platform review plan

Chapter 3.4 describes the most used types of review.

As the first activity to be done, in order to identify the issues in Engino platform,
a manual code review was chosen, because it is quicker and can be done individually by a
developer. Below are the parts of the application picked to be reviewed and the reason
behind it:

• Top level components of the frontend, which are responsible for the setup of the
commonly used libraries. Objectives: maintainability and reusability;

Chapter 5. Project planning 41

• File structure of the front and back end. Objectives: maintainability;

• Project documentation available. Objectives: documentation and maintainability;

• API schema in the backend. Objectives: maintainability and reusability;

• Authentication modules in the front and back end. Objectives: security and reusabil-
ity.

The review identified the issues listed in the chapter 4.1, that should be solved
in the next development phase of the software quality control loop. In section 5.3, it is
presented a plan to fix these issues.

5.2.2.2 Shopino review plan

During the development of Shopino, a manual code review will also be done after
each development cycle, with the objective of identifying defects and improving code
readability. More about the development plan of Shopino is described in chapter 5.4.

5.2.2.3 Engino platform test plan

Chapter 3.5 describes several testing approaches, the four levels of testing and some
testing techniques.

In reason of the short time frame of this project, manual tests won’t be executed,
because they require too much time to be performed. Therefore, only automated tests will
be created.

From the characteristics listed in the quality model in subsection 5.2.1, security and
functionality are the most important of them, so a focus will be given to them. Security
can be improved by testing the authentication and permission modules and data flows. In
Engino platform, functionality is represented by the use of shared modules, such as the
tiles importer. Therefore, the following automated tests should be implemented:

• Unit tests

– Test authentication API resolver in the back end;

– Test login screen in the frontend;

– Test permission persistence module in the back end;

– Test scoping of views belonging to access groups in the back end;

– Test if admin and regular user have access to admin areas;

– Test the tiles importer.

Chapter 5. Project planning 42

• Integration tests

– Test the integration between the authentication modules in the front and back
end.

• End-to-end tests

– Test the authentication flows with valid and invalid token and credentials.

5.2.2.4 Shopino Test plan

For the code aspect of Shopino, the most important characteristic of the quality
model to be tested is functionality. It’s represented by the following requirements: CRUD
of shop floor layouts, CRUD of zones, display data of integrated shop floor systems and
present overlays with indicators on top of shop floor areas.

• Unit tests

– Test API resolvers in the back end;

– Test the map component in the frontend;

– Test the zone component in the frontend;

– Test shop floor views management screen in the frontend.

• Integration tests

– Test the integration between the modules in the front and back end.

• End-to-end tests

– Test the application flow of accessing a shop floor view, creating a zone, clicking
on it to display the data from the integrated systems and, then, deleting the
created zone.

5.3 Engino platform development plan

In chapter 4.1, it is listed the biggest issues that Engino platform has currently.
Below a solution for each issue is presented.

5.3.1 Basic project documentation

Currently, the project documentation in Gitlab doesn’t explain how to set up
the Oracle client in the rails server of the development environment. As a result of not
installing the Oracle client, it is not possible to complete the installation of the required

Chapter 5. Project planning 43

gems and, thus, to start the rails server. In order to fix this, a step-by-step guide will be
created, with links to the pages where the required applications can be downloaded from.

Other issue is that there is no documentation of the paths and commands to deploy,
run and debug the production server. This caused a problem that only one developer
knew how to do these activities, thus creating a dependency. To solve this problem, all the
necessary information will be acquired from the developer and summarized into a wiki
page in Gitlab.

5.3.2 Restructuring of the frontend file structure

The folder located in frontend/app/components/presentational has 16 un-
grouped files, which makes the frontend code hard to navigate, reducing the productivity
of the developers. As a solution, the files shall be grouped in folders accordingly to their
function or context used in the application.

Furthermore, the folder frontend/app/components/ contains screens, containers
and presentational files mixed together. A better file structure would be if they were
separated in three different folders: screens, components and containers.

5.3.3 Restructuring of the API schema

Engino platform uses GraphQL as its API system. As described in section 3.7.4,
GraphQL requires a schema with types, queries and mutations to declared. At the moment,
one single file, a monolith, located in lib/engino_web/schema/ contains all the schema
declarations. As a result, the readability and maintainability of the API is not ideal, also
decreasing the productivity of the developers.

To solve this issue, the file shall be split into smaller files that group the resources
of same domain.

5.3.4 Modification of the communication protocol

Currently, the communication between the frontend and the backend uses the
HTTP protocol, which is not optimized for real-time updates. In order to fix this issue,
it needs to be implemented a web socket protocol. Web socket is much faster than the
HTTP protocol and compatible with the GraphQL API (see 3.7.4.1).

For security reasons, the backend will only connect to authenticated web sockets,
that is, web sockets that contain a valid token in their header. For non authenticated
users, the default communication protocol will be the HTTP, but only the authentication
module will be available.

Chapter 5. Project planning 44

5.3.5 User authentication system

An authentication system is crucial for restricting access of unauthorized users
to Shopino and other applications developed in the Engino platform. This issue can be
decomposed into four smaller issues. In the backend, the user has to be authenticated
and the access to the API restricted to only authenticated users. In the frontend, restrict
access and obtain user credentials.

5.3.5.1 Backend logic

For better user experience, a token will be created and stored in the browser cookies,
so that the user don’t have to log in every time it access the application. The following
procedures shall be implemented in the backend to run when the user logs in for the first
time:

1. Check if the user credentials (user number and password) are valid through the
internal LDAP server;

2. If the credentials are valid, create a token with the user number encoded in it;

3. Send the token to the frontend.

The next time this user will access the application again, the frontend will check if
there is a token stored in the browser cookies. If so, it will send the token to the backend
for validation. Then, the backend just needs to check if the token is valid and the decoded
value has the format specified. If so, the backend sends a :ok message to the frontend.

The same process will happen when the backend receives an API request. The
header of the web socket needs to be checked for a valid token. If so, the backend sends a
response for the request.

5.3.5.2 Frontend logic

The frontend shall capture the user number and password in the log in page and
send it to the backend for verification using the HTTP protocol. If the credentials are
valid, the frontend will receive a token and store it in the browser cookies. Then, the setup
of the web socket that is going to connect to the backend needs to be done and the token
stored in the web socket header.

Engino platform is composed of several application and most of them require
authentication, such as: Engino, SAS, TDM, Shopino and Admin. In order to avoid code
duplication, a Higher Order Component1 shall be implemented in the frontend and be
1 A Higher Order Component (HOC) is a technique in React for reusing component logic. A HOC is a

function that receives a component and returns a new component.

Chapter 5. Project planning 45

used in all those application. This HOC will serve as authentication middleware and block
the access of non authenticated users, which means, it will:

1. Get the token from the cookies and check it validity;

2. If it is valid, set up the web socket with the token in the header and redirect the
user to the requested page;

3. If it is not valid or there is no token, redirect the user to the log in page.

5.3.6 Permission system

The objective of a permission system is to restrict the access of parts of the
application to certain groups of users. In the frontend, a screen to create and manage
access groups and their users needs to be implemented. Then, certain screens can be
restricted to only particular groups, such as a screen to manage the views uploaded or the
screen to manage the permission groups itself. This can be implemented by saving the
groups of the authenticated user in the redux session of the frontend and then comparing
them to the permitted groups of each screen.

In the backend, the modules responsible for the CRUD of access groups, user access
groups and views access groups have to be implemented, as also the GraphQL schema for
the API to communicate with the frontend. Furthermore, scopes need to be created, so
that queries will return only the views that the respective user has access to.

5.4 Shopino development plan

The Shopino development plan will be divided in four topics, according to the
requirements specified in section 5.1.1.

5.4.1 Upload and manage shop floor layouts

In the frontend, two screens have to be created: one to create and other to manage
shop floor layouts. Both can reuse components used in the respective screens of engine
views. Furthermore, because it was decided in section 5.1.2 that a new table maps is going
to be created, a new screen to manage maps needs also to be implemented. For now, there
won’t be a screen to upload a map without a shop floor view or engine view, thus a map
is always going to be created during the importation of a new view.

In the backend, the tiles importer logic must be updated and basic CRUD modules
have to be created for maps and shop floor views. The corresponding GraphQL schema
needs also to be implemented.

Chapter 5. Project planning 46

5.4.2 Create, update and delete zones

A button to create a zone has to be added on top of the shop floor layout in the
frontend. After created, other button has to be added so that the user can edit or delete
the selected zone.

In the backend, the CRUD modules should be created and added to the GraphQL
schema.

5.4.3 Display shop floor systems data related to a shop floor area

The data coming from the integrated systems shall be displayed in the context of
a shop floor area. When the user clicks on a shop floor area, a dialog will open and the
data should be presented in a table. The systems should be grouped in tabs on top of the
dialog and the user should be able to navigate through the tabs by sliding the screen left
and right. The idea behind it is to facilitate the navigation in big screens, such as the big
monitors in the shop floor.

In the backend, the queries have to be created in the GraphQL schema. More about
the integration with the shop floor system in section 5.6.

5.4.4 Provide overlays on top of shop floor areas with different type of indicators

In the frontend, a button will be created on the top of the screen, so that an overlay
type can be selected. Then, the corresponding module of the selected overlay should be
rendered. Therefore such modules have to be created.

In the backend, the queries to provided indicators must be created and added to
the GraphQL schema.

5.5 Shop floor systems analysis

Since there are a large number of systems to be analyzed and the time frame
of this project is short, it was agreed between the Shopino stakeholders that only the
systems related to quality are going to be focused in this project. The systems analyzed
are described below:

• Inspect:

– Defects found during the engine module build;

– Generates reports with amount of defects, root causes and if it was accepted,
repaired or scrapped;

Chapter 5. Project planning 47

– Provides heat map with amount of defects found on each module build area in
the shop floor;

– Stored in a database in Derby and managed by a third party company.

• Measure Link:

– Collects data from production and measurement machines in real time;

– Provides a process analyzer to check trends and prevent future issues;

– System was created by an external company and can only be used with local
connected hardware lock.

• BAM:

– Identifies deviations in the build process;

– Manual document;

– Raised BAMs are digitalized and inserted in a local MySQL database.

• Findings:

– Defects found during inspection;

– Stored in the same database as BAM.

In order to integrate Shopino with the Inspect system, it is required to ask for
access permission to the database in Derby. However, the database is managed by a third
party company, which will probably take a long time to grant it and could also charge
a fee. Therefore, because it has a high cost and time required for the integration and it
doesn’t fulfill criteria number 2, mentioned in chapter 4.2, this system won’t be integrated.

Measure Link could be integrated by sending the collected data to an endpoint
in Shopino and saving it in the database. Nonetheless, it was developed by an external
company and can only run with a local connected hardware lock, thus making the necessary
modifications in the software code impossible to be done without paying the software
company. For this reason, this system won’t be integrated with Shopino.

BAM and Findings systems could be integrated together, since they use the same
local MySQL database. The only requirement for this integration is the access permission
from the database owner. Therefore, they could be easily integrated with Shopino, without
any additional costs. For these reasons, both systems will be integrated.

5.6 Shop floor systems integration

As described in the previous section, the selected systems to be integrated, Findings
and BAMs, use the same database to store their data. Therefore, it needs to be created

Chapter 5. Project planning 48

a connection to this database, which is a MySQL database and will be called Findings
database. This can be done by using a MySQL database adapter for Elixir/Ecto called
Mariaex, that will enable having Ecto features in the same environment as the rest of the
project.

Once the connection to the Findings database is done, there are two options of
how to deal with the data:

1. Import the required tables to the Engino database. Advantages:

• Faster queries, because the queried database will be in the same server as the
Shopino server;

• It won’t add additional load to the Findings database;

• Control of the data;

• No dependency to an external system.

2. Query directly to the Findings database. Advantages:

• Guarantee of live data;

• No need for creating and managing new tables in the Engino database.

A test was conducted to compare the duration of similar queries to Engino and
Findings databases. It resulted in not a big time difference between the two databases.
Besides, Shopino is only going to be used by shop floor managers and engineers, so there
won’t be enough users to cause a heavy load on the database. Nevertheless, it was clarified
with the database owner that the database can bear the Shopino load.

Therefore, the only remaining advantages of option number 1 are: control of the
data and no dependency to a external system. But, since the Findings database is used in
the shop floor, it must be reliable and stable. Thus, mainly for the guarantee of live data,
the option number 2 will be implemented.

5.7 Methodology

The methodologies used were Scrum and Test-Driven Development. Scrum, an
agile methodology, was chosen because of the short time frame of the project and the
flexibility it provides. As described in chapter 3.6.1, in Scrum, tasks are implemented in
periods no longer than one month, called sprints. Then, the progress is verified and a new
plan is done for the next sprint.

In Test-Driven Development, first a small test that fails is created, then changes are
made to the code until the test passes. This process is repeated until the desired feature

Chapter 5. Project planning 49

is implemented. TDD was chosen, because of the advantages it provides, such as fewer
bugs, better documentation, less time spent on rework, cleaner code and better software
quality. However, since the user interface is really hard to test, only some components of
the frontend were implemented using TDD.

5.8 Schedule

For achieving the the goals set in chapter 1.2 in the time available, a schedule was
created with the tasks described in this chapter. Figure 11 displays the planned schedule.

Figure 11 – Planned schedule.

50

6 Implementation and testing

In this chapter, it is described the implementation of the planning from chapter 5
and the modifications that had to be made.

Except for part of the Permission system and the integration with the LDAP
system in the user authentication system, which were implemented by other developer, all
activities reported in this chapter were done by the author.

6.1 Development environment

The development environment consists of a notebook with Ubuntu Desktop 18.04
as the operating system. The following softwares were installed:

• Visual Studio Code: was chosen as the code editor, because of its speed and vast
quantity of libraries for Elixir and Javascript;

• Yarn: to add and manage the frontend packages;

• Node.js: with the purpose of running webpack-dev-server, so that the browser can
be updated automatically every time a Javascript file has changed;

• pgAdmin 3: for managing the PostgreSQL database;

• Oracle VM VirtualBox: to run a Windows virtual machine inside the Linux envi-
ronment and test the development changes in the Internet Explorer, the production
browser.

The softwares needed to run the technologies listed in section 5.1.3 had also to be
installed.

6.2 Testing environment

The testing environment will be the same as the development environment described
in section 6.1. The testing libraries described in chapter 5.1.3 had also to be installed.

6.3 Engino platform development

In this section, the implementation of the plan discussed in chapter 5.3 is presented.

Chapter 6. Implementation and testing 51

Figure 12 – View of the development environment.

6.3.1 Basic project documentation

A step-by-step guide of how to install the Oracle client was implemented in the
README file of the Gitlab repository. After this installation, it’s possible to run the rails
server in the development environment. Figure 13 shows the view of the guide.

Figure 13 – Step-by-step guide to install the Oracle client.

For documenting the deployment path and commands, the Wiki section of Gitlab
was used. The final document is displayed in appendix A.

6.3.2 Restructuring of the frontend file structure

First, two new folders were created in frontend/app/: screens and containers.
Then, the screen files, Home.jsx and View.jsx, were moved to the folder screens, along
with the AppRouter.jsx file, which is responsible for defining the frontend routes. After
the application was tested and it was verified that everything still worked, the files from
the containers folder located in components/containers were moved to the new location

Chapter 6. Implementation and testing 52

and all file references were updated. Next, the application was tested again to verify its
functionality.

Then, the files from the presentational folder were grouped by function and moved
inside the components folder. At last, the references of these files were updated and the
application was tested again.

Figure 14 shows a comparison between the old file structure and the new one.

Figure 14 – Comparison of the old frontend file structure (left) and the new one (right).

An index.js file was also created in each folder, so that multiple files can be imported
in a single declaration by using ES6 import syntax.

6.3.3 Restructuring of the API schema

The big monolith file that contained the GraphQL schema was divided into smaller
files by grouping the resource types of same domain. New folders were created to store the
schema of other applications inside the Engino platform, such as Shopino and SAS.

In figure 15, it’s displayed the new GraphQL schema structure.

6.3.4 Modification of the communication protocol

In the frontend, the library Apollo Client was configured to use web sockets and
point to the backend endpoint.

In the backend, a user socket module to manage the connection of the users to the
web socket had to be created. Furthermore, an endpoint was created to receive the web
socket connections and point them to the user socket module.

Chapter 6. Implementation and testing 53

Figure 15 – New GraphQL schema structure.

The user socket module is presented in appendix B. Only connections with a valid
token in the header are accepted. After a token has been successfully decoded into a
user name, the user name is added to the Absinthe context, in order for the resolvers to
perform operations with this information, such as query scoping and verifying data access
permission.

Once the user connects to the web socket, the backend library Absinthe takes care
of receiving the GraphQL queries and mutations requests and redirecting them to the
appropriate resolvers.

For the non authenticated users, a special schema that uses HTTP as the commu-
nication protocol was created. Only the login mutation is available in this schema.

6.3.5 User authentication system

A mutation to login and a query to fetch the user from a token was implemented in
the backend. The login mutation is resolved in a function that checks through the company
LDAP system if the user credentials are valid and returns an OK message in positive case.
Then, the token is created with one month of validity, by encoding the user name through
the library Guardian, and sent back to the frontend. The query to fetch the user from the
token also uses the library Guardian, but now to decode the token into the user name.

In the frontend, a login screen was implemented to collect the user credentials and
send them to the backend through the login mutation. If the login is successful, the token
received is saved in the browser cookies. The next time the user accesses the application,
the authentication cookies are verified by an authentication HOC created and sent to the

Chapter 6. Implementation and testing 54

backend. In case the token is valid, the query returns the user name of the token and the
HOC permits the user to have access to the application. In case there are no authentication
cookies, the user is redirected to the login screen.

Futhermore, another GraphQL schema was created for the queries and mutations
that don’t need authentication, such as the login mutation.

In appendix C, the authentication HOC created is shown. With it, every application
inside the Engino platform can have the authentication system setup by wrapping the
root component of the application in the HOC.

6.3.6 Permission system

For the permission system, the tables mentioned in chapter 5.1.2 were created. In
the backend, the queries and mutations to read, create, update and delete access groups and
its relationships were implemented. Modules for resolving the requests and for persisting
the data were also created.

In the frontend, a screen to add and manage the permissions was implemented in
the Admin application. For verifying if the session user has access permission for restricted
pages, HOCs were created using the library redux-auth-wrapper. This package connects
the session state from redux and provides it as prop for a condition function, that has to
return a boolean value representing if the user has permission or not to access that page
or component.

The permission screen was divided in half, so that in the left side the user can add
and manage the access groups and, in the right part, users can be added or removed from
the selected groups. Figure 16 shows the permission screen.

Figure 16 – Permission screen.

Chapter 6. Implementation and testing 55

Table 1 – Test cases for the login resolver

Function login/2 login/2

Test Scenario with valid credentials returns username and token with invalid credentials returns error

Test Steps pass username and password as argument pass username and password as argument

Test data username = "tester"
password = "tester"

username = ""
password = ""

Expected Results {:ok, %{username: "tester", token: token}} {:error, _}

6.4 Engino platform testing

In this section, the implementation of the test plan discussed in chapter 5.2.2.3 is
presented.

6.4.1 Unit tests

In this subsection, the implemented unit tests are presented.

6.4.1.1 Testing authentication API resolver in the back end

Tests were created for the authentication API resolver, which resolves user authen-
tication queries and CRUD queries of access groups and user access groups.

In table 1 is displayed the test cases of the login resolver. During the application
flow in production, the function login/2 receives the username and password from the
request and checks with the LDAP server if the credentials are valid. In the test and
development environments, the credentials are tested against predefined credentials.

6.4.1.2 Testing login screen in the frontend

For the login screen in the frontend, four unit tests were done:

• Renders username and password inputs;

• Renders a submit button;

• Updates username input on change;

• Updates password input on change.

6.4.1.3 Testing permission persistence module in the back end

The permission persistence module in the back end was tested indirectly by testing
the authentication resolver, since it calls the persistence module functions. Furthermore,
the remaining functions that are not used by the authentication resolver were also tested.

Chapter 6. Implementation and testing 56

6.4.1.4 Testing scoping of views belonging to access groups in the back end

Figure 17 shows the test created in the back end for the scoping of views belonging
to the user access groups. In it, a group is created and associated a user to it. Then, in
line 19 is created an association between engine view and access group. In lines 17 and 21
orphan views are created, so that there are more than one engine view in the database.
Finally, in line 23 the function that applies the scope is called and it’s asserted that it
only returned the user associated engine view.

Figure 17 – Test to check the view scope by the user access groups.

6.4.1.5 Testing the tiles importer

In order to test the tiles importer without overwriting the already uploaded files, a
function was created in the importer module to check the environment of execution and
choose accordingly the path to create new tiles.

Figure 18 shows the map importer test created. It starts by uploading an image
and sending the map attributes as argument of the map importer function. Then, it is
verified if the map was correctly created, by checking if the name of the map returned
matches the sent one. After that, it is checked if the tiles folder of that map was indeed
created and its subfolders for each zoom level. At last, every zoom folder is iterated to
check if the correct amount of tiles were created for each level.

Once the test finishes, the temporary folder where the tiles were created is deleted.

Chapter 6. Implementation and testing 57

Figure 18 – Map importer test.

Table 2 – Test case for the userIsAdmin HOC

Component userIsAdmin HOC

Test Scenario does not render admin screen if user is not admin

Test Steps

1. mock user session state
2. mock redux store
3. pass mocked store as argument to component
4. mount admin screen wrapped by userIsAdmin HOC

Test data
accessGroupSlugs = ["verifier"]
currentUser = { accessGroupSlugs }
store = { session: { currentUser } }

Expected Results renderedComponent != adminScreen

6.4.1.6 Testing access permission to admin areas

Table 2 shows the test case for the HOC userIsAdmin, which is responsible for
blocking the access of non admin users to restricted screens. Other similar test was also
done, in order to check if admin users have access to admin screens.

Chapter 6. Implementation and testing 58

6.4.2 Integration tests

In this subsection, the implemented integration tests are presented.

6.4.2.1 Testing the integration between the authentication modules in the front and back end

In the frontend, the login screen is the module responsible for sending the user
credentials to the backend. In order to test the integration between this module and the
backend, a mock of the mutation response was created. Then, after setting the username
and password to match the ones configured in the response mock, it was checked if when
the submit button is clicked, the function in the login screen to handle the successful
response from the backend is called.

In the backend, the test was done by sending a GraphQL mutation to the login
resolver endpoint, in order to simulate the request coming from the frontend. Then, it is
checked if the response contains the sent username and a valid token. Figure 19 shows the
test done for the login mutation in the backend.

Figure 19 – Integration test for the login mutation request in the backend.

6.4.3 End-to-end tests

In this subsection, the implemented end-to-end tests are presented.

Chapter 6. Implementation and testing 59

6.4.3.1 Testing the authentication flows

The following end-to-end tests were created to test the authentication flows:

1. User logs in with valid credentials and logs out;

2. Logging in with invalid credentials returns error message;

3. Automatically logs in with valid token;

4. Logging in with invalid token causes a redirect to the login page.

In order to test them, five reusable functions were created: assertIsLoginPage,
assertIsHomePage, signIn, signOut and assertLoginError. Therefore, the test for each
authentication flow was easily built by simply calling the necessary functions in the right
order. Figure 20 shows the test implementation for the authentication flow number 1.

Figure 20 – End-to-end test for one of the authentication flows.

6.5 Shopino development

In this section, the implementation of the plan discussed in chapter 5.4 is presented.

Chapter 6. Implementation and testing 60

6.5.1 Create tables

As discussed in chapter 5.1.2, three tables were created: shop_floor_views, zones
and maps. In order to not interfere with the already uploaded tiles of the engine views, a
migration was created to copy the already existing engine views to the maps table.

Then, the attributes from the table engine views were drop, except for the attribute
name, and a foreign key to reference a map was added. After that, the map_id fields were
updated with their own id, in order to reference the copied map. At last, the id sequence of
the table maps was updated to the highest existing id, so that new maps are not assigned
to already existing ids. Tile references to engine views were also updated to reference
maps.

6.5.2 Upload and manage shop floor layouts

A screen to upload shop floor layouts was created, as well as a screen to manage
the shop floor views.

In the frontend, the uploader component was reused from the already existing
engine view upload screen. For the shop floor view management screen, the same user
interface of the engine view management screen was reused, with fields to rename, delete
or reassociate a shop floor view to a different map or access group.

In the backend, the queries and mutations were created and associated with the
respective resolvers. Figure 21 displays the final view of the shop floor management screen.

Figure 21 – Shop floor view management screen.

After the first shop floor layout was uploaded, the basic leaflet setup was done, in
order to display the layout in the background of the Shopino home page.

Chapter 6. Implementation and testing 61

6.5.3 Integration with BAMs and Findings database

In order to connect to the MySQL Findings database, the MySQL adapter Mariaex
was installed in the backend. Then, a new Ecto Repo was configured and the models
of the Findings database tables were created. For simulating the MySQL database in
development, a docker image was created and run. In the production server, a environment
variable with the URL, username and password was added.

6.5.4 Create, update and delete zones

In the backend, the CRUD functions were created in the persistence module, while
the necessary queries and mutations were added to the GraphQL schema.

In the frontend, a button to create a new zone on the bottom right corner of the
screen was added. Once clicked, the user can draw a rectangle to delimit the shop floor
area. Then, a sidebar opens, so that the user can select a shop floor area, whose options
come from the Findings database, and confirm the creation of the zone.

For editing, an edit button was added near the dialog title. When click, the dialog
closes and the sidebar opens, giving the options to change the shop floor area or to resize
the selected zone. Included in the sidebar is a button the delete the zone.

6.5.5 Display shop floor systems data related to a shop floor area

In order to display the data coming from the shop floor systems, tabs were imple-
mented inside a dialog. The dialog opens when the user clicks on a zone and each tab
represent an integrated shop floor system. For now, there are only the BAMs and Findings
tabs. Inside each tag, a table was added to display the most important information of each
system. On top of the table were also added a date and time selector, so that the user can
filter the data by date.

On the bottom of the table, pagination was added with the objective of increasing
the speed with which the page loads. Furthermore, filters were implemented , so that when
the user clicks on a table attribute, the table is filtered by that attribute. This is done in
the backend by sending a new query with the selected sorting attribute.

Figure 22 shows a view of the mentioned dialog and table.

6.5.6 Provide overlays on top of shop floor areas with different type of indicators

Two types of overlays were implemented: a heat map to display the amount of
BAMs for each area in a predefined period and a indicator to display the amount of
Findings for each area.

Figures 23 and 24 show the view of the implemented heat map and indicator.

Chapter 6. Implementation and testing 62

Figure 22 – Dialog to display shop floor systems data.

Figure 23 – Heat map displaying the amount of BAMs per shop floor area.

6.6 Shopino testing

In this section, the implementation of the plan discussed in chapter 5.2.2.4 is
presented.

6.6.1 Unit tests

In this subsection, the implemented unit tests are presented.

Chapter 6. Implementation and testing 63

Figure 24 – Indicator showing the amount of Findings of each shop floor area.

6.6.1.1 Testing API resolvers

Tests were created for the zone and shop floor view API resolvers, which are
responsible, respectively, for resolving the CRUD queries and mutations of zones and shop
floor views.

6.6.1.2 Testing shop floor views management screen

In order to test the shop floor view management screen, the queries for fetching
the views had to be mocked. Then, the following test cases were created:

• Lists views and their map and access groups;

• Deletes view on click.

The first test checks if the name of every mocked shop floor view and its map and
access groups are rendered in the screen. The second one tests if when the delete button is
clicked, the view name is not rendered anymore.

6.6.1.3 Testing map component

Map component is responsible for rendering the tiles and zones in the screen. Since
the rendering of the tiles is done by the library Leaflet, it is already tested. Therefore,
only one test was created to check if it renders the zones correctly. In order to do it, zone
components were passed as children to the map component and it was checked if the zone
names were rendered in the screen.

Chapter 6. Implementation and testing 64

6.6.1.4 Testing zone component

The zone component is responsible for rendering a rectangle in the map by calling
the Marker component from Leaflet with the same size and position as it was created and
the Tooltip component from Leaflet to display the name of the zone. Therefore, a test
was created to check if the component passes the correct props to the Marker and Tooltip
components.

6.6.2 Integration tests

In this subsection, the implemented integration tests are presented.

6.6.2.1 Testing the integration between the modules in the front and back end

For testing the integration between the modules in the front and back end, tests
were created in the backend to test the GraphQL API schema. The queries to fetch a
shop floor view and the view zones were chosen to be tested, as they important for the
application. For these tests, the ConnCase module of Phoenix was used, which sets up
a new connection with a testing endpoint before each test is run. Before sending the
connection to the test, a valid token was added to cookies of the connection, so that the
tests can access queries that require authentication.

In the tests, a post request is sent to the API endpoint with the query and variables
in the body. Then, it is verified if the response has a status code of 200 (OK) and if the
response body contains the correct data.

In the frontend, tests were created for the map container and zones container,
which are responsible, respectively, for sending the queries to fetch the shop floor view and
the view zones. First the queries were mocked and then it was checked if the component
had received the correct response from the query.

6.6.3 End-to-end tests

In this subsection, the implemented end-to-end tests are presented.

6.6.3.1 Testing the application flow

The application flow consists of accessing a shop floor view, creating a zone, clicking
on it to display the data from the integrated systems and, then, deleting the created zone.
In order to test it, small functions were created to perform each necessary task and assert
that it was correctly concluded. Figure 25 displays the test implementation.

Chapter 6. Implementation and testing 65

Figure 25 – End-to-end test to check the application flow.

66

7 Results

The developed application solved the problems listed in chapter 4 by implementing
all the specified requirements and integrating with two shop floor systems in short time.
Figure 26 shows the main view of the application.

Figure 26 – Shopino main view.

In terms of quality, the best coding practices were used and tests were created to
test the most important parts of the application in both the front and back end. In the
next chapter, the test coverage of Shopino is evaluated.

7.1 Test Coverage

Test coverage is useful for identifying paths of the software that are not tested and
improve the application adhesion to requirements. There are two types of test coverage:

• Code coverage: covers how much of the code is tested;

• Case coverage: verifies how many of the use cases are covered by test suites.

In the next subsections, both metrics are evaluated to measure the test coverage of
Shopino.

Chapter 7. Results 67

7.1.1 Code coverage

Measuring code coverage requires special tools for each programming language
evaluated. Therefore, the code coverage of the front and back end will be verified separately.

7.1.1.1 Frontend

Code coverage can be measured in the frontend using jest’s --coverage and
--collectCoverageFrom flags to specify where to look for the JavaScript files. Since many
modules related to the user interface are hard or not worthy to be tested, only the most
important modules will be verified. Figure 27 displays the file coverage for these modules.

Figure 27 – Frontend code coverage.

Unfortunately, jest only shows the percentage of the statements covered in each file
and not the amount of relevant and missing statements. Therefore, in order to estimate
the code coverage of the frontend, a simple average of the total percentage of statements

Chapter 7. Results 68

coverage of each module i will be used:

CODE_COV ERAGE =

n∑
i=1

TOTAL_PERCENTAGE_STMTSi

n
=

=
67, 5 + 41, 86 + 100 + 19, 7 + 37, 84

5
= 53, 4%

(7.1)

7.1.1.2 Backend

In the backend, the library ExCoveralls provides test coverage statistics for Elixir
files. Figure 28 displays the file coverage for the most important modules created or
modified during the development of Shopino.

Figure 28 – Backend code coverage.

The total code coverage of the Shopino backend can be evaluated by using the
formula:

CODE_COV ERAGE = 1−

n∑
i=1

MISSED_LINESi

n∑
i=1

RELEV ANT_LINESi

= 1− 102

229
= 55, 5%

That’s considering the first 6 files responsible for fetching data in the Findings
Database, which weren’t tested, because they require connection to an external database.
If they are ignored, the code coverage of the backend results in:

CODE_COV ERAGE = 1−

n∑
i=1

MISSED_LINESi

n∑
i=1

RELEV ANT_LINESi

= 1− 41

168
= 75, 6%

Chapter 7. Results 69

Table 3 – Case coverage evaluation

Use case Covered by a test? Score

CRUD Zones Yes 1

Login / Logout Yes 1

Visualize integrated data Yes 1

Visualize heat maps No 0

Visualize indicators No 0

Manage users of an access group Yes 1

Create shop floor views Partially, only in the backend 0.5

Manage shop floor views Yes 1

Manage access groups Yes 1

Manage maps No 0

TOTAL 65% 6.5

7.1.2 Case coverage

Code coverage is a good metric to understand how many parts of the software are
tested, but it doesn’t give any information if the use cases were tested. For this, it needs
to be measured the number of use cases covered by test suites.

Table 3 lists the Shopino use cases and if they are covered by a test or not. In the
end of the table, the total case coverage is shown.

70

8 Considerations and Perspectives

With the launch of the first version of Shopino, it is possible to access data about
the current state of production in a user friendly interface, through the integrated systems.
In order to choose the right systems to integrate with and provide immediate value to the
company, an effective investigation of the many shop floor systems in place was made.

For the planning of Shopino, many meetings with production managers and engi-
neers were done with the objective of gathering the software requirements. Then, following
software quality control techniques, a quality control plan was created, specifying the
product goals and quality requirements of the application, as well as the reviews and tests
that should be made. Furthermore, a development plan was designed to make sure the
best solutions were given for each problem.

During the development of the application, coding best practices were used and
tests were created to ensure the security and quality of the software. An authentication
and permission system was implemented in the Engino platform, as well as the planned
tests. Then, the development and test plan of Shopino were executed successfully.

8.1 Result analysis

Some results achieved with this project:

• Implementation of version 1 of Shopino using software quality control techniques,
therefore increasing the quality of the software;

• Made first integration with shop floor systems available in a very short time and,
thus, creating immediate value for the company;

• Improved the quality of the Engino platform by applying modern software develop-
ment techniques.

The code coverage of the backend is 75,6%, ignoring the modules that require a
connection to an external database, and 53,4% for the most important modules of the
frontend. The frontend code coverage is not very accurate, not only because some modules
have more statements than others, but also because some files that are displaying 0% of
statements covered should be ignored, since they are used only for setup or to reexport the
real components. Furthermore, in both evaluations, the end-to-end tests created weren’t
taken into account, because they were implemented using a different library, Puppeteer,
and are not identified by the testing coverage tools used. Nonetheless, the code coverage

Chapter 8. Considerations and Perspectives 71

evaluations gave a reasonable estimate of the amount of tests produced, which were
satisfactory and achieved the product goals set in chapter 5.2.

More important than the code coverage is the case coverage, that indicates how
many use cases are being tested. According to the evaluation explained in last chapter,
most use cases of Shopino were tested, as the case coverage of Shopino is 65%. This value
could be higher, but the use cases that weren’t tested were considered non critical for the
application operation and, therefore, were ignored for testing. However, they should also
be tested in the future.

In this project, because of the short time frame, it was given focus to quality control
tools and techniques, but there are other areas of software quality that should be used
more in depth in the future of Shopino, such as the improvement of software processes
through Software Quality Assurance techniques.

8.2 Future perspectives

Shopino is a modern and flexible software for the shop floor, which enables a lot of
possibilities of integration with shop floor systems and new data visualization features in
the future. The following activities are in the future plans for Shopino:

• Integrate with more shop floor systems;

• Enable creation of BAMs inside Shopino;

• Add new heat maps and indicators;

• Create multiple real-time views for different teams and locations, such as management,
support and office.

72

References

[1] ISO 9000. Quality Management Systems – Fundamentals and Vocabulary. Geneva:
ISO, 2015 (cit. on p. 17).

[2] ISO 9001:2008. Quality Management Systems – Requirements. 2008 (cit. on p. 22).

[3] A Short History of Git. English. url: https://git-scm.com/book/en/v2/Getting-
Started-A-Short-History-of-Git (cit. on p. 29).

[4] Murali Chemuturi. Mastering software quality assurance: best practices, tools and
techniques for software developers. J.Ross Publishing, 2011 (cit. on pp. 17, 18).

[5] M. Cielkowski, O. Laitenberger, and S Biffl. Software reviews: The state of the
practice. IEEE Softw., 2003 (cit. on p. 23).

[6] Elixir. English. url: https://elixir-lang.org/ (cit. on p. 28).

[7] GitLab. English. url: https://about.gitlab.com/2018/11/08/gitlab-for-
designers/ (cit. on p. 29).

[8] GraphQL. English. url: https://facebook.github.io/graphql/June2018 (cit.
on p. 29).

[9] Phoenix. English. url: https://phoenixframework.org/ (cit. on p. 28).

[10] Picture of one of the shop floors in Rolls-Royce Dahlewitz. German. url: http:
//www.maz- online.de/Lokales/Teltow- Flaeming/Rolls- Royce- feiert-

Firmenjubilaeum-in-Dahlewitz (cit. on p. 15).

[11] Picture of Rolls-Royce family day in Dahlewitz took on 29/06/2017. German.
url: http : / / www . frank - haueis . de / arbeiten / referenzen . html ? tx _

sbportfolio2 _ items % 5Bitem % 5D = 64 & tx _ sbportfolio2 _ items % 5Baction %

5D = single & tx _ sbportfolio2 _ items % 5Bcontroller % 5D = Item & cHash =

716e428e0847483c325c109951800c55 (cit. on p. 15).

[12] PostgreSQL. English. url: https://www.postgresql.org/about/ (cit. on p. 28).

[13] Rolls-Royce Deutschland. English. url: https://www.rolls-royce.com/media/
press-releases/2018/28-05-2018-rr-celebrates-launch-of-new-pearl-

engine-family.aspx (cit. on p. 14).

[14] Rolls-Royce Deutschland. English. url: https://www.rolls-royce.com/country-
sites/deutschland/uberblick/rolls-royce-in-deutschland.aspx (cit. on
p. 14).

[15] G. Gordon Schulmeyer. Handbook of Software Quality Assurance. Artech House,
2008 (cit. on p. 19).

https://git-scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git
https://git-scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git
https://elixir-lang.org/
https://about.gitlab.com/2018/11/08/gitlab-for-designers/
https://about.gitlab.com/2018/11/08/gitlab-for-designers/
https://facebook.github.io/graphql/June2018
https://phoenixframework.org/
http://www.maz-online.de/Lokales/Teltow-Flaeming/Rolls-Royce-feiert-Firmenjubilaeum-in-Dahlewitz
http://www.maz-online.de/Lokales/Teltow-Flaeming/Rolls-Royce-feiert-Firmenjubilaeum-in-Dahlewitz
http://www.maz-online.de/Lokales/Teltow-Flaeming/Rolls-Royce-feiert-Firmenjubilaeum-in-Dahlewitz
http://www.frank-haueis.de/arbeiten/referenzen.html?tx_sbportfolio2_items%5Bitem%5D=64&tx_sbportfolio2_items%5Baction%5D=single&tx_sbportfolio2_items%5Bcontroller%5D=Item&cHash=716e428e0847483c325c109951800c55
http://www.frank-haueis.de/arbeiten/referenzen.html?tx_sbportfolio2_items%5Bitem%5D=64&tx_sbportfolio2_items%5Baction%5D=single&tx_sbportfolio2_items%5Bcontroller%5D=Item&cHash=716e428e0847483c325c109951800c55
http://www.frank-haueis.de/arbeiten/referenzen.html?tx_sbportfolio2_items%5Bitem%5D=64&tx_sbportfolio2_items%5Baction%5D=single&tx_sbportfolio2_items%5Bcontroller%5D=Item&cHash=716e428e0847483c325c109951800c55
http://www.frank-haueis.de/arbeiten/referenzen.html?tx_sbportfolio2_items%5Bitem%5D=64&tx_sbportfolio2_items%5Baction%5D=single&tx_sbportfolio2_items%5Bcontroller%5D=Item&cHash=716e428e0847483c325c109951800c55
https://www.postgresql.org/about/
https://www.rolls-royce.com/media/press-releases/2018/28-05-2018-rr-celebrates-launch-of-new-pearl-engine-family.aspx
https://www.rolls-royce.com/media/press-releases/2018/28-05-2018-rr-celebrates-launch-of-new-pearl-engine-family.aspx
https://www.rolls-royce.com/media/press-releases/2018/28-05-2018-rr-celebrates-launch-of-new-pearl-engine-family.aspx
https://www.rolls-royce.com/country-sites/deutschland/uberblick/rolls-royce-in-deutschland.aspx
https://www.rolls-royce.com/country-sites/deutschland/uberblick/rolls-royce-in-deutschland.aspx

References 73

[16] Trent XWB price. English. url: https : / / www . flightglobal . com / news /

articles/rolls-royce-inks-biggest-ever-sale-214880/ (cit. on p. 14).

[17] Trent XWB thrust. English. url: https://www.rolls-royce.com/~/media/
Files/R/Rolls-Royce/documents/civil-aerospace-downloads/trent-xwb-

infographic.pdf (cit. on p. 14).

[18] Trent XWB weight. English. url: https://web.archive.org/web/201607251331%
2010/https://www.easa.europa.eu/system/files/dfu/EASA%20E%20111%

20TCDS_RR%20Trent%20XWB_issue%2003_%20201612004_1.0.pdf (cit. on p. 14).

[19] Stefan Wagner. Software Product Quality Control. Springer, 2013 (cit. on pp. 18, 22,
23).

[20] Web Socket. English. url: http://www.websocket.org/quantum.html (cit. on
p. 29).

https://www.flightglobal.com/news/articles/rolls-royce-inks-biggest-ever-sale-214880/
https://www.flightglobal.com/news/articles/rolls-royce-inks-biggest-ever-sale-214880/
https://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/civil-aerospace-downloads/trent-xwb-infographic.pdf
https://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/civil-aerospace-downloads/trent-xwb-infographic.pdf
https://www.rolls-royce.com/~/media/Files/R/Rolls-Royce/documents/civil-aerospace-downloads/trent-xwb-infographic.pdf
https://web.archive.org/web/201607251331%2010/https://www.easa.europa.eu/system/files/dfu/EASA%20E%20111%20TCDS_RR%20Trent%20XWB_issue%2003_%20201612004_1.0.pdf
https://web.archive.org/web/201607251331%2010/https://www.easa.europa.eu/system/files/dfu/EASA%20E%20111%20TCDS_RR%20Trent%20XWB_issue%2003_%20201612004_1.0.pdf
https://web.archive.org/web/201607251331%2010/https://www.easa.europa.eu/system/files/dfu/EASA%20E%20111%20TCDS_RR%20Trent%20XWB_issue%2003_%20201612004_1.0.pdf
http://www.websocket.org/quantum.html

74

APPENDIX A – Production Wiki

1 ## General Info
2

3 - Server host: `server-ajw`
4

5 - Engino path: `/engino`
6

7 - Environment variables path in production: `/engino/production/.env`
8

9 ## Elixir Application
10

11 - To start the server in staging:
12 `PATH="$PATH:/engino/:/engino/ruby/bin:/engino/librsvg/bin/:/engino/imagemagick/bin/: c

/engino/oracle/instantclient_12_1/: c

/engino/staging/engino-rails-api/gems/ruby/2.5.0/bin/" /engino/staging/bin/engino
start`

↪→

↪→

↪→

13

14 - To start the server in production:
15 `PATH="$PATH:/engino/:/engino/ruby/bin:/engino/librsvg/bin/:/engino/imagemagick/bin/: c

/engino/oracle/instantclient_12_1/: c

/engino/production/engino-rails-api/gems/ruby/2.5.0/bin/"
/engino/production/bin/engino start`

↪→

↪→

↪→

16

17 - To start a shell in production, like 'iex -S mix':
`PATH="$PATH:/engino/:/engino/ruby/bin:/engino/librsvg/bin/: c

/engino/imagemagick/bin/:/engino/oracle/instantclient_12_1/: c

/engino/production/engino-rails-api/gems/ruby/2.5.0/bin/"
/engino/production/bin/engino console`

↪→

↪→

↪→

↪→

18

19 - To connect to a running release in production: `/engino/production/bin/engino
remote_console`↪→

20

21 - To stop the server in production: `/engino/production/bin/engino stop`
22

23 - Locally, to test the application: `MIX_ENV=prod mix release` and then
`_build/prod/rel/engino/bin/engino console`↪→

24

25 ## Rails Application
26

27 **Important! To apply file modifications the server needs to be restarted**
28

APPENDIX A. Production Wiki 75

29 - To start the server in production: `cd /engino/production/engino-rails-api &&
PATH="$PATH:/engino/:/engino/ruby/bin:/engino/librsvg/bin/: c

/engino/imagemagick/bin/" env $(cat ../.env | xargs) bundle exec puma -C
./config/puma.rb`

↪→

↪→

↪→

30

31 - To stop the server:
32

33 1. Find the rails port by reading the environment variable `RAILS_PORT`
34 2. Find the PID of the `bundle` processes running on that port: `lsof -i

:$RAILS_PORT`↪→

35 3. Stop the `bundle` processes running on that port: `kill -9 $PID`
36

37 ## Deploying a release manually using PuTTY SCP Client
38

39 1. Download the release file from Amazon S3 bucket
40 2. Copy the release file to the external drive D in: `D:\Releases`
41 3. Open a **Command Prompt** and set the path of the [PuTTY SCP

Client](https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html): `set
PATH=D:\Releases;%PATH%`

↪→

↪→

42 4. Copy the release file to the server with the user number **$USER**: `pscp
D:\Releases\engino.gz $USER@server-ajw:/engino/staging`↪→

43 5. Use **PuTTY SSH Client** to access the server and change directory to where the
release file was copied↪→

44 6. Stop the elixir application
45 7. Extract the release file: `tar -xzf engino.gz`
46 8. Start the elixir application and restart rails application if necessary
47

48 ## Manually running migrations
49

50 1. Open a remote console: `/engino/production/bin/engino remote_console`
51 2. Run the command: `Enum.each([Engino.Repo], &Ecto.Migrator.run(&1,

Path.join([:code.priv_dir(:engino), "repo", "migrations"]), :up, all: true))`↪→

76

APPENDIX B – User socket module

1 defmodule EnginoWeb.UserSocket do
2 use Phoenix.Socket
3 use Absinthe.Phoenix.Socket, schema: EnginoWeb.Schema
4 alias Engino.Guardian
5

6 transport :websocket, Phoenix.Transports.WebSocket
7

8 def connect(%{"token" => token}, socket) do
9 with {:ok, claims} <- Guardian.decode_and_verify(token, %{}),

10 {:ok, username} <- Guardian.resource_from_claims(claims)
11 do
12 {:ok, Absinthe.Phoenix.Socket.put_options(
13 socket,
14 [
15 context: %{current_user: %{username: username, token: token}}
16]
17)}
18 else
19 _error -> :error
20 end
21 end
22 def connect(_, socket), do: :error
23

24 def id(_socket), do: nil
25 end

77

APPENDIX C – Authentication HOC

1 import React from "react";
2 import { connect } from 'react-redux';
3 import gql from 'graphql-tag';
4 import Cookies from 'universal-cookie';
5 import {
6 compose,
7 lifecycle,
8 branch,
9 renderComponent,

10 } from "recompose";
11 import { ApolloProvider } from 'react-apollo';
12

13 import newApolloClient from "shared/configs/apolloClient";
14 import * as actions from "shared/actions";
15 import PageLoading from "shared/components/PageLoading";
16

17 const CURRENT_USER_QUERY = gql`
18 query {
19 currentUser {
20 username
21 accessGroups {
22 id
23 slug
24 name
25 owner
26 }
27 ownedAccessGroups {
28 id
29 slug
30 name
31 }
32 }
33 }
34 `;
35

36 const mapDispatchToProps = dispatch => ({
37 createApolloClientAction: apolloClient => dispatch(
38 actions.createApolloClient(apolloClient)
39),
40 setCurrentUserAction: currentUser => dispatch(
41 actions.setCurrentUser(currentUser)
42),
43 });

APPENDIX C. Authentication HOC 78

44

45 export const connectApolloClient = connect(
46 ({ session: { apolloClient, currentUser } }) => ({
47 apolloClient,
48 currentUser,
49 }),
50 mapDispatchToProps,
51);
52

53 const fetchCurrentUser = lifecycle({
54 componentDidMount() {
55 const cookies = new Cookies();
56 const token = cookies.get("authToken");
57

58 if (token) {
59 const apolloClient = newApolloClient(token);
60 this.props.createApolloClientAction(apolloClient);
61 } else {
62 window.location = `${window.location.origin}/login`;
63 }
64 },
65

66 componentWillReceiveProps({ setCurrentUserAction, apolloClient }) {
67 if (!this.props.apolloClient && apolloClient) {
68 apolloClient.query({
69 query: CURRENT_USER_QUERY,
70 })
71 .then(({ data: { currentUser } }) => setCurrentUserAction(currentUser))
72 .catch(({ graphQLErrors, networkError }) => {
73 if (graphQLErrors || networkError) {
74 window.location = `${window.location.origin}/login`;
75 }
76 });
77 }
78 }
79 });
80

81 const renderSpinnerWhileLoading = branch(
82 ({ currentUser }) => !currentUser,
83 renderComponent(
84 ({ apolloClient }) => (
85 apolloClient
86 ? (
87 <ApolloProvider client={apolloClient}>
88 <PageLoading />

89 </ApolloProvider>

90)

APPENDIX C. Authentication HOC 79

91 : <PageLoading />
92

93)
94)
95);
96

97 export const withAuthentication = compose(
98 connectApolloClient,
99 fetchCurrentUser,

100 renderSpinnerWhileLoading,
101);
102

103 export default withAuthentication;

	Approval
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	The problem
	Objectives
	General objectives
	Specific objectives

	Methodology and structure

	Rolls-Royce plc
	Rolls-Royce Deutschland
	Shop floor
	Engino

	Theoretical Background and Technologies
	Quality
	Software quality
	Software quality dimensions
	Coding best practices

	Software quality control
	Continuous software quality control

	Software reviews
	Software testing
	Testing approaches
	Black-box testing
	White-box testing
	Gray-box testing
	Manual testing
	Automated testing

	Testing levels
	Unit testing
	Integration testing
	System testing
	Acceptance testing

	Testing techniques
	Regression testing
	End-to-end testing

	Testing disadvantages

	Methodologies
	Scrum
	Test-Driven Development

	Technologies
	Single Page Applications
	React

	Phoenix
	Elixir

	PostgreSQL
	GraphQL
	Web Socket

	Git and GitLab

	The problem
	Engino platform
	Shop floor systems
	Shopino
	Software quality

	Project planning
	Software Modelling
	Requirements
	Database
	Technology stack
	Frontend
	Backend
	Gitlab

	Quality control plan
	Quality model
	Quality plan
	Engino platform review plan
	Shopino review plan
	Engino platform test plan
	Shopino Test plan

	Engino platform development plan
	Basic project documentation
	Restructuring of the frontend file structure
	Restructuring of the API schema
	Modification of the communication protocol
	User authentication system
	Backend logic
	Frontend logic

	Permission system

	Shopino development plan
	Upload and manage shop floor layouts
	Create, update and delete zones
	Display shop floor systems data related to a shop floor area
	Provide overlays on top of shop floor areas with different type of indicators

	Shop floor systems analysis
	Shop floor systems integration
	Methodology
	Schedule

	Implementation and testing
	Development environment
	Testing environment
	Engino platform development
	Basic project documentation
	Restructuring of the frontend file structure
	Restructuring of the API schema
	Modification of the communication protocol
	User authentication system
	Permission system

	Engino platform testing
	Unit tests
	Testing authentication API resolver in the back end
	Testing login screen in the frontend
	Testing permission persistence module in the back end
	Testing scoping of views belonging to access groups in the back end
	Testing the tiles importer
	Testing access permission to admin areas

	Integration tests
	Testing the integration between the authentication modules in the front and back end

	End-to-end tests
	Testing the authentication flows

	Shopino development
	Create tables
	Upload and manage shop floor layouts
	Integration with BAMs and Findings database
	Create, update and delete zones
	Display shop floor systems data related to a shop floor area
	Provide overlays on top of shop floor areas with different type of indicators

	Shopino testing
	Unit tests
	Testing API resolvers
	Testing shop floor views management screen
	Testing map component
	Testing zone component

	Integration tests
	Testing the integration between the modules in the front and back end

	End-to-end tests
	Testing the application flow

	Results
	Test Coverage
	Code coverage
	Frontend
	Backend

	Case coverage

	Considerations and Perspectives
	Result analysis
	Future perspectives

	References
	Production Wiki
	User socket module
	Authentication HOC

