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RESUMO 

O conceito emergente e cada vez mais consolidado da indústria 4.0 traz consigo em 

um de seus pilares a rápida adaptação aos anseios do mercado, sendo necessário prover cada 

vez mais produtos mais individualizados e customizados, fazendo da flexibilidade, uma das 

características chaves para prosperar nesse ambiente. 

Nesse contexto, a montagem final de produtos de larga escala, como por exemplo, na 

indústria automotiva, apresenta um ambiente bastante flexível devido ao baixo número de 

produtos e a imensa gama de variações dos mesmos. Essa flexibilidade, porém, é obtida ao 

custo de um baixo nível de automação no ambiente da montagem final. 

Manipuladores robóticos apresentam-se como elementos bastante flexíveis: 

apresentam alto grau de liberdade de movimentação e capazes de atuar na execução das mais 

diversas tarefas. Tradicionalmente, estes são empregados em um layout celular que permitem 

um alto grau de versatilidade. 

A fim de se diminuir o ciclo de tempo da montagem final nas linhas de produção, cada 

vez mais, opta-se por um layout de fluxo contínuo, ininterrupto, capaz de reduzir em mais de 

63% os tempos da montagem. 

Assim, o Werkzeugmaschinenlabor -WZL (Laboratório de Máquinas-Ferramenta) da 

Universidade Técnica da Renânia do Norte-Vestefália em Aachen através do projeto FASIM - 

Final Assembly in Motion (Montagem Final em Movimento) busca solucionar toda a 

problemática envolvida na sincronização dos manipuladores robóticos, com o restante dos 

componentes da linha de produção em um ambiente de movimento contínuo. 

Através de diversos trabalhos envolvendo anos de pesquisa, o laboratório optou por 

uma sincronização realizada através de um controle preditivo (Model Predictive Control - 

MPC) capaz de: garantir a sincronização requerida ao passo que compensa interferências das 

vibrações do sistema de movimentação e; lidar com o tempo de zona morta proveniente da 

comunicação entre sistema de controle, manipuladores robóticos e o sistema de medição.  

Como qualquer abordagem de controle clássica, para um devido ajuste e um bom 

resultado do sistema de controle, é preciso antes de mais nada um bom modelo que represente 

o sistema. Durante as etapas mais recentes do projeto, o modelo do sistema foi obtido através 

de uma estrutura caixa-preta utilizando a captação de dados reais de entrada e saída do sistema. 



Esse trabalho se propõe, então, a identificar um modelo de um manipulador robótico, 

acoplado ao sistema de medição de larga escala, através de uma abordagem caixa-preta, que 

gere resultados mais próximos ao sistema real que o modelo até então obtido pelo WZL.  

O trabalho se centrou em pesquisar diversas técnicas de identificação e possíveis 

ferramentas de implementação que pudesse proporcionar uma integração rápida ao ambiente 

do laboratório. Indo desde identificação usando-se de técnicas de aprendizado de máquina, 

otimização a estimação online de parâmetros do sistema. Visou-se estudar a possibilidade de 

identificação de um modelo adaptativo capaz de aproximar a dinâmica do sistema real em pose 

do laboratório a fim de melhorar os resultados do controle projetado pelo mesmo. 

 

  

Palavras-chave: Identificação de sistemas. Estimação de parâmetros de sistemas. Estimação 

online. Modelos caixa-preta. 



ABSTRACT 

The growing desire for more individualized products requires from the industry a high 

degree of flexibility and shorter production times. In this context, in order to achieve the 

required quality and time standards in the final assembly in the automotive industry, the process 

is done through a high degree of manual work in continuous assembly line. 

Seeking to create a more automated production environment while maintaining the 

same levels of flexibility and quality, the Werkzeugmaschinenlabor -WZL through the FASIM 

(Final Assembly in Motion) project, studies the possibility of employing robotic manipulators 

synchronized with the movement of the product in the continuous production line. 

Synchronization is performed through a model predictive control (MPC) capable of 

compensating for deviations of the manipulator system and conveyor system while, rejecting 

system's disturbances and dealing with the dead-time delays from the robot and measurement 

system . 

In order for the control to have an adequate behavior, it needs a good model of the 

system. Thus, this work aims to study methods and tools capable of  providing a more accurate 

model than the current one in the possession of the laboratory. Several methods and tools were 

researched, which could provide an adaptive model for the robotic system. 

It focused on evaluating the possibility of implementing a neural network model and 

the implementation of an online estimator of system parameters. 

 

 

Keywords: Systems identification. Estimation of system parameters. Online estimation. Black 

box models.  
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1 INTRODUCTION 

The work that is described along this thesis was developed in the Model-based Systems 

Department of the Chair of Metrology and Quality Management from the Laboratory of 

Machine Tools and Production Engineering (Werkzeugmaschinenlabor – WZL), of the RWTH 

Aachen University [1].  

It consists mainly in the research and development of an adaptive model for a robotic 

manipulator. It seeks to observe the applicability of machine learning methods, in the form of 

a model based on a neural network, or to improve an existing linear model of the robotic system. 

This work would benefit the research and design of the articulated robot control system. 

1.1 Overview and motivations 

Nowadays the industry undergoes a new set of changes, the strengthening of the 

concept of the industry 4.0 brings with it a new collection of challenges. In this context, a highly 

agile and flexible environment is required to meet the demands of high product variability and 

short product life cycles [2]. 

In the case of the automobile industry, more specifically in the assembly of large 

components in a car or truck production line, the high degree of flexibility that can provide the 

desired production time and the required tolerance is given by a large percentage of manual 

process [3]. This is noticed as the final assembly features a level of automation between 20%, 

while other production phases have a level of around 90% [4]. 

Industrial articulated robots are primarily used to increase productivity, save costs and 

eliminate dangerous and laborious work [5] and, in this context, can be seen as a highly flexible 

tool that could be used to raise the level of automation, providing the desirable flexibility and 

keeping up with the needed requirements at the same time. 

Aiming to provide an autonomous system capable of dealing with the large-

components assembly in motion, the Metrology-assisted Assembly Group and WZL, through a 

series of researches, developed the FASIM (Final Assembly in Motion) project. The current 

phase of the project draws on an MPC control approach to handle the synchronization between 

robots and the product’s motion system.  

For its control approach to be successful, it is firstly necessary to have a good model 

of the system that the controller could base itself on. In the case of the FASIM project, the 

system is composed by an industrial robotic manipulator merged with the large-volume 
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metrology system chosen. However, identifying robot models is a challenging task since an 

industrial robot is a multivariable, nonlinear, unstable and resonant system [5].  

At the moment, WZL has identified a linear model with a black-box approach that 

represents the dynamics of the system and the metrology system, at the same time, it seeks to 

improve it to achieve better results with its controller that would correspond to the high 

demands of the final assembly environment. 

1.2 Objective 

The main objective of this work, inserted in the context above mentioned, is to research 

and provide an improved model for the FASIM project, that could provide a better 

approximation to the real systems than the current model.  

A black box model was selected because of its convenient identification form (it 

requires no previous knowledge of the system), and because WZL utilizes a control interface 

provide by the robot’s manufacturer.  

One of the minor objectives is to evaluate the possibility of applying machine learning 

methods, in the form of neural networks, to provide an adaptive model for the controller, that 

would adjust itself in system’s runtime. 

1.3 Location of the subject within the Control and Automation Engineering course 

Research and identify methods capable of providing a better model for the control 

system presents itself as a broad problem with many correlations with the areas of expertise of 

a control and automation engineer. In general, the engineer graduated in the control and 

automation course of the Universidade Federal de Santa Catarina (UFSC) presents a deepen 

knowledge in three main areas: Process Control; Industrial Informatics and; Manufacturing 

Automation. 

In the Process Control field, the most notable correlation is the process modeling, even 

so, the knowledge in analysis, design and implementation of controllers for linear and non-

linear systems are totally valid and highly helpful as this work took place in parallel with the 

development of a newer version of the WLZ’s controller.  

In the informatics field, the subject of Artificial Intelligence and Machine Learning are 

approached as it is studied the possibility of applying them in the identification of the system   

Finally, the field of manufacturing automation is addressed as knowledge in, 

automated systems programming, production management, process planning, integrated 
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manufacturing systems, modeling and performance evaluation of manufacturing systems, 

promote a knowledge base for understanding the problem. 

In conclusion, the whole scope of the project synthetizes the work environment of a 

control and automation engineer as it inserts itself on the three main fields of learning of the 

course. At the same time, all mathematical and physical expertise, together with a base 

knowledge in computer science and mechanics fundamentals are extremely useful for the 

development of this work. 

1.4 Adopted methodology 

Given that this work will be characterized as a research work, several technologies and 

tools will be addressed. The initial goal is to evaluate if the use of neural networks is possible 

and for that point look for alternatives. That being said, the plan adopted for the workflow can 

be summarize in the following steps: 

1. Search of literature regarding the state of art of a given approach; 

2. Evaluation if it is appropriate for the identification problem; 

3. Evaluation of implementation tools, for the chosen approach, that would be 

suitable for the project; 

4. Implement the approach selected aiming to identify a model that can be 

approximated to the WZL’s current model; 

5. If the previous step presents a good result, capture real data from the system to 

use as and identification and test data set; 

6. Identify a model that can approximate the real data of the system; 

7. Finally, if the identified model presents an acceptable results, test the given 

approach with WZL’s controller.  

1.5 Document structure 

This document is divided in a total of 8 chapters. Firstly, the Laboratory where this 

work took place in is presented. Afterwards, a more in-depth discussion about the problem and 

all its context is provided. Following, it presents all the theoretical background and then, the 

system in study. Finally, the developed activities are commented before presenting the final 

conclusions. 
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2 THE LABORATORY  

With more than 100 years of history, the Werkzeugmaschinenlabor (WZL), translated 

as Laboratory of Machine Tools and Production Engineering, of the RWTH Aachen University 

is a research institute globally recognized for its pioneering research, forward-thinking and 

highly successful innovations in the field of production engineering. 

The WLZ is focused mainly in four chairs, being these: Production metrology and 

quality management; Production Engineering; Manufacturing Technology; and, Machine tools. 

It also retains hundreds of employees and maintain committed with research activities related 

with fundamental theories, and applications of these findings in industrial context. 

Researches carried out on WLZ characterized itself by the combination of various 

disciplines in both a pure research and/or applied development environment as well with the 

collaboration with numerous industrial companies that provide a rapid application in industrial 

context.  

Figure 1- Production Engineering Cluster at RWTH Aachen Campus 

 
Source: WZL [1] 

2.1 Chair of Metrology and Quality Management  

The research area of Metrology and Quality Management focus primarily in explore 

problems related with the mastery of production process and management of inspection task as 

well as, error-free, robust and efficient processes that would provide unique products that appeal 

to the costumer.  

Within the research of these chair are included: the development and optimization of 

measurement processes and equipment; production-integrated metrology; machine-oriented 

quality control loops; quality management systems; knowledge, innovation and optimization 

management; including also, quality management methods and computer aided quality 

management. 
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2.1.1 Model-based Systems Department 

The Model-based Systems Department is one of three different departments included 

in the chair of Metrology and Quality Management, and where this work has taken place. 

Driven with the search to attain success in today’s competition, the Model-base Systems 

Department concern itself with the challenges of control of production processes and the 

efficient management of inspection tasks.  

The department endeavor itself in developing and optimizing modern quality-oriented 

solutions considering organizational and methodical information-technical aspects while 

engage in design, advancement and optimization of inspection processes and sensors as well. 

This works took place within the Metrology-assisted Assembly Group that deals with 

the conception, realization and validation of integrated metrologically monitored assembly 

systems.  
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3 THE PROBLEM 

For more than fifty decades the introduction of automated process sought to increase 

industrial production with efficient costs. Throughout this time, the machinery took the form of 

robots that enhanced productivity and provided comfort and safety for human operators. As the 

demand of performance increase, it's necessary to implement adaptive controllers for the 

robotics manipulators, which have the capability to handle the complex dynamics of these 

systems. As a result, a mathematical description of the system is needed for the design of theses 

controllers [6]. 

In parallel, in times of the Industry 4.0, the progressive need of “individualization” is 

changing the production line. Due to the volatility of current markets, it is becoming more 

important to produce small size lots of variants of one product [7]. In such a context, it’s 

important to possess a flexible manufacturing environment to keep up with the markets’ 

evolution. 

At the same time, the main design of technologically challenging assembly process 

such as the assembly of large-scale components in the automotive industry, took the form of 

pulsed lines. Aiming to reduce the production time, a continuous flow assembly is preferred. In 

comparison with stationary assembly points, the production time can be reduce by up to 64%. 

([3] apud. Prasch, 2010). 

The highly flexible environment, capable of maintaining the high levels of 

requirements in these kind of production lines are, however, obtained through a high degree of 

manual process. In comparison to the other stages of the production process, the final assembly 

can present a level of automation 450% smaller. These manual assembly processes can be used 

to compensate for variant-specific differences in production. 

In the industrial environment, the tool capable to meet these requirements are the robot 

manipulators. Industrial robots can be seen as a pretty flexible tool for manufacturing, capable 

to perform a series of task like the ones stated in [5]: spot welding, arc welding, assembly, 

handling materials, gluing, painting, cutting, and so on. Yet, this tool are traditionally applied 

in fixed workstations and therefore, the product have to be transported to the workstation [8]. 

This transport is not cost and time effective [8]. 

In this context, in development in WZL throughout a series of works [3, 4, 9, 10],the 

FASIM project seeks to provide a suitable continuous flow autonomous assembly for large 

components employing the Nikon’s large-volume metrology systems indoors GPS to provide 

support and guidance. 
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Through the researches developed in WZL, the synchronization between the product 

and the handling system required a use of a controller to guarantee a safe environment and the 

compensation of interferences: in one hand, vibrations of the conveyor system that affect the 

accuracy during assemble, in the other, the uncertainty and the dead time of the measure system. 

For these reasons and seeking a robust control, the laboratory chose the approach of Model 

Predictive Control (MPC) [9]. 

The control approach selected relies on a prior model of the system, since the quality 

of the control is based on the future behavior of the system that is predicted through this model. 

The WLZ have currently available a prior model, but seeks ways to improve it, which would 

provide better conditions to enhance the overall control synchronization 

3.1 Main Objective 

Considering the above mentioned problem and taking into account what is stated in [9] 

that, “the model is the core element of the MPC”, the main objective of this works is to provide 

a suitable model to WZL for its MPC application, researching the viability of applying machine 

learning algorithms to identify and improve the model in system’s run time. The physical 

systems subject to the modeling promoted by this work are the same as those discussed in [9]: 

the robot manipulator and the measurement system used.  

3.2 Specific Objectives 

• Evaluate the viability, and subsequent implementation of machine learning algorithms 

to identify physical systems; 

• Implement online algorithm to improve model in run time; 

• Compare the proposed approach with other methods; 

• Identify and evaluate suitable implementations tools for the chosen approaches; 

• Validate the implementation with the real system. 

3.3 Problems identified in the current state of the project 

The current model provided by WZL to the control research was obtained throughout 

the System Identification Toolbox™ as described in [9]. Seeking ways to improve it, it was 

implemented a PID control approach to estimate the parameters associated with the dynamics 

of the inputs of the system during the system’s operation.  
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This strategy showed itself insufficient as it wasn’t capable to provide a good 

estimation for different kinds of inputs to the system, probably, because of the fact that the 

estimation only updates the input dynamics of the system. 
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4 THEORETICAL BACKGROUND 

The following chapter aims to cover the state of the art of the project and the 

subsequent issues of this work with in it. 

4.1 Flexible production Systems 

In the field of flexible production Systems, KUKA [7], presents an example of its 

vision for the industry 4.0, the matrix production. The concept of matrix production consists on 

categorized, standardized production cells. Arranged in a grid layout, with any given number 

of cells. These cells are equipped with turntables for storing the components, tool holders and 

the robots that carry out the process.  

The components and tools reach each of the cells through Automated Guided Vehicles 

(AGV). The AGVs can pick up and transport different components or tools via configurable 

load handling devices.  

Logistics process and production are decoupled from one another in matrix production, 

this allows the production chain to be reconfigurable as demands need it. Cells could easily be 

integrated or removed in a given process without interrupting the value chain. 

Figure 2 - Exemplary of standard cell in matrix production 

 
Source: [7] 

4.2 Synchronization for autonomous assembly in motion  

Synchronization can be given by three principles as described by [9]: mechanical 

synchronization, conveyor-tracking, or by a feedback control loop.  
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Mechanical synchronization is the simplest one. Usually done with a rail guide in 

parallel to the conveyor system where the whole manipulator system could move and track the 

product. The synchronization is done by physical contact of the conveyor system. 

The conveyor-tracking is done by measuring the speed of the conveyor system and 

feedback into the handling system controller. For heavy and large-scale components, this type 

can cause deviations of several millimeters due to vibrations of the motion system not 

compensated. 

The feedback control loop relies on the measurement of the actual position values to 

compensate deviations between the conveyor and handling systems. To achieve this method, 

however, a sensor that measure the entire system’s dynamics is necessary. 

4.3 Robot manipulators overview 

The mechanical structure of a robot manipulator consists of a sequence of rigid bodies 

connected by rotatory or prismatic joints also called links and axes respectively. Each joint is 

actuated by an electric motor combined with a gearbox. Prismatic joins give relative 

translational motion between links while rotatory joints provide rotational motion between them 

[5].  

Figure 3 - 6-DOF Robot Manipulator Scheme 

 
Source: Wernholt [5] 

 



4.3 Robot manipulators overview 33 

4.3.1 Robot dynamics and non-linearities 

The idea of this section is to provide an overview of the system and its components, 

and not to focus on a precise modeling of the whole physical system as presented in [5]. Instead, 

a summary of the modeling conducted by [5] is presented. 

One usual robot manipulator is composed of a series of links, actuators sensors and a 

robot controller. 

4.3.1.1 Actuators 

Actuators are the elements responsible to provide motion between the links of the 

robot, basically composed by a motor attached, or not, to a transmission gearbox, a break for 

emergency stops and power supply unit. The gearbox, in the same time that provides the high 

torques and low speeds demanded by the join, reduces the nonlinear coupling in the dynamic 

model, with the disadvantage of introducing flexibilities, backlash and friction. [5] 

Robotic Manipulators' actuators are mainly electric motors. AC permanent magnet 

motors are fast, compact and robust. A drawback, however, is that the generated torque changes 

periodically dependent of the rotor position. Since the torque ripple is periodic in the motor 

angular position 𝑞𝑚, it can be modeled as a generic sum of sinusoids like: [5] 

 
𝜐𝜏(𝑡) =  ∑ 𝑎𝑛 𝑠𝑖𝑛(𝑛𝑞𝑚(𝑡) + 𝜙𝑎,𝑛)

𝑛 ∈ ℕ𝑎

+ 𝜏𝑐(𝑡) ∑ 𝑏𝑛 𝑠𝑖𝑛(𝑛𝑞𝑚(𝑡) + 𝜙𝑏,𝑛)

𝑛 ∈ ℕ𝑏

 4-1 

Where ℕ𝑎 and ℕ𝑏 are associated with the number of components and depend on the 

specific type of motor.  

4.3.1.2 Sensors 

Sensors are often divided in proprioceptive sensors or heteroceptive, that measure 

respectively, the internal state of the robot like or the surrounding environment. Encoders and 

resolvers used for joint position measure and tachometers for joint velocity measure are 

examples of proprioceptive sensors. For heteroceptive, sensors for end effector force measure 

and vision sensors for environment inspection can be cited.[5] 

Because of transmission and other sources of flexibilities these components require 

advanced dynamics models to accurately estimate the robot’s movement. Wernholt (apud. 

Hanselman, 1990) exemplify this complexity by modeling the position error of a non-ideal 

resolver as a sum of sinusoids: [5] 
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𝜐𝑞𝑚(𝑡) =  ∑ 𝑐𝑛 𝑠𝑖𝑛(𝑛𝑞𝑚(𝑡) + 𝜙𝑐,𝑛)

𝑛 ∈ ℕ𝑐

 4-2 

4.3.1.3 Kinematics 

Kinematics of a robot is the description of the geometric relationship between joints 

variables and the end effector position and orientation in task space. Usually the motion of the 

end effector is described in Cartesian coordinates with respect to a reference frame. Frequently, 

for convenience, the robot kinematics is defined adopting a series of coordinate systems, where 

each link, the base (reference) and the end effector have its own coordinate frame. [5] 

The coordinates of the 𝑛 joints can be given by a vector 𝑞𝑎. One realization of 𝑞𝑎is 

named configuration of the robot: [5] 

 𝑞𝑎 = (𝑞𝑎1,  𝑞𝑎2, … 𝑞𝑎𝑛)𝑇 4-3 

The position of the tool frame, or the tool center point (TCP) and its orientation may 

be determined, respectively,  by a vector 𝑥 ∈  ℝ3 and a rotation matrix 𝑅 ∈  ℝ3𝑥3. [5] 

4.3.1.3.1 Position Kinematics 

The positioning kinematics can be divided in two problems, the forward kinematics 

and inverse kinematics. The first one is to determine the following mapping from the joint space 

to task space with 𝑋 being named the robot location: 

 X = [
𝑥(𝑞𝑎)
𝛾(𝑞𝑎)

] =  𝑓𝑘𝑖𝑛(𝑞𝑎) 4-4 

In other words, the forward kinematics problem refers to calculate the position of the 

TCP in Cartesian coordinates given in the joints’ angles. The determination of this function is 

straightforward in a serial link robot, for example, and it can be done iteratively from the base 

frame to the first link and then sequentially until the TCP, determining the relation by geometric 

properties of the links and a single joint variable. [5]  

The inverse kinematics, on the other hand is to determine the inverse of the mapping 

in 4-4, i.e. determinate the corresponding joint configuration given a position and rotation of 

the TCP. In general, this case is a much harder problem as it is not always possible to find a 

closed-form solution and it may exist multiple or infinitely solutions. 
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Figure 4 -Forward kinematics (left) and inverse kinematics examples scheme 

 
Source: [11] 

4.3.1.3.2 Velocity Kinematics 

Velocity kinematics express the relationship between joint velocities and the end 

effector linear and angular velocities and can be written as:  [5]  

 𝑉 =  [
𝑣
𝜔

] = 𝐽(𝑞𝑎)𝑞̇𝑎 4-5 

Where, 

 𝐽(𝑞𝑎) =  
𝜕𝑓𝑘𝑖𝑛

𝜕𝑞𝑎

(𝑞𝑎) ∈  ℝ6 ×𝑛 4-6 

is the manipulator Jacobian, 𝑉 represents the linear and angular velocities of the tool 

frame in respect to the base frame. The Jacobian is a key element in the analysis and control of 

the robots' motion. As it is a function of the configuration of the robot, those configurations, in 

which it loses rank are called singularities and can be interpreted as points in the task space 

where the robot manipulator loses one or more degree of freedom. [5] 

4.3.1.4 Rigid Body Dynamics 

The dynamic model of a robot describes the evolution of the robot’s joints position in 

time as a function of the applied torques and forces. The identification of such model is the 

main focus of the work in [5] and in its simple form presented as: 

 
𝑀𝑎(𝑞𝑎)𝑞̈𝑎 +  𝑐𝑎(𝑞𝑎, 𝑞̇𝑎) + 𝑔𝑎(𝑞𝑎) + 𝜏𝑓𝑎(𝑞̇𝑎) =  𝜏𝑎 4-7 
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Where: Ma(qa) is the inertia matrix; ca(qa, q̇a) is the velocity dependent term, which contains 

the centrifugal and Coriolis effects; ga(qa) is the gravitational term; τfa(q̇a) the friction torque, and; τa 

is the applied torque. [5] 

4.3.1.5 Flexible Body Dynamics 

Another approach for dynamic model used for control aside from the entirely Rigid 

Body Dynamics model is to consider flexible joint models as well, i.e. elastic gear transmissions 

and  rigid links ([5] apud. Albu-Schäffer & Hirzinger, 2000, Spong, 1987).  

Besides, because of the trend of using lighter robots that could perform the same tasks 

while promoting cost and power reduction and a safer environment (reduced mass of moving 

parts), an elastic model is also convenient. Lighter robots result in a weaker and more complex 

mechanical structure because of the enhanced elastics effects of the materials. Wernholt [5] 

presents a simple overview of the flexible joint models and elastics models. 

Considering a single joint, the flexible joint model results in a two-mass flexible model 

as shown in Figure 5. 𝐽𝑚 and 𝐽𝑎 are respectively the moments of inertia of the motor and the 

arm, 𝑟𝑔 the (inverse) gear ration, 𝑘𝑔 the spring stiffness, 𝑑𝑔 the spring damping, τfm(q̇m) the 

motor friction and finally, 𝜏 is the motor torque. 

Figure 5 - Two-mass flexible joint model for robot arm 

 
Source: [5] 

The equations that describe the dynamics are listed below: 

 

𝐽𝑚𝑞̈𝑚 + 𝜏𝑓𝑚(𝑞̇𝑚) + 𝑟𝑔𝜏𝑔 =  𝜏 

𝐽𝑎𝑞̈𝑎 =  𝜏𝑔 

𝑘𝑔(𝑟𝑔𝑞𝑚 − 𝑞𝑎) + 𝑑𝑔(𝑟𝑔𝑞̇𝑚 −  𝑞̇𝑎) =  𝜏𝑔 

4-8 

The combination of the rigid body dynamics with the generalized two-mass flexible 

model is then given by: 

 𝑀𝑚𝑞̈𝑚 +  𝜏𝑓𝑚(𝑞̇𝑚) + 𝑟𝑔𝜏𝑔 =  𝜏 4-9 
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𝑀𝑎(𝑞𝑎)𝑞̈𝑎 +  𝑐𝑎(𝑞𝑎 , 𝑞̇𝑎) + 𝑔𝑎(𝑞𝑎) =  𝜏𝑔 

𝑘𝑔(𝑟𝑔𝑞𝑚 − 𝑞𝑎) + 𝑑𝑔(𝑟𝑔𝑞̇𝑚 −  𝑞̇𝑎) =  𝜏𝑔 

where 𝜏 is now a vector of applied torques, qa is the vector of arm joint variables, and 

𝑞𝑚the vector of motor joint variables. 

As for the elastics’ models, Wernholt [5] considers the lumped parameters  approach 

base on Khalil and Gautier’s work (2000), by considering that each link is divided into a number 

of rigid bodies connected by spring-damper pairs. The flexible joint model 4-9 is then extended 

giving the following: 

 

𝑀𝑚𝑞̈𝑚 +  𝜏𝑓𝑚(𝑞̇𝑚) + 𝑟𝑔𝜏𝑔 =  𝜏 

𝑀𝑎𝑒(𝑞𝑎, 𝑞𝑒) [
𝑞̈𝑎

𝑞̈𝑒
] + 𝑐𝑎𝑒(𝑞𝑎, 𝑞𝑒 , 𝑞̇𝑎, 𝑞̇𝑒) + 𝑔𝑎𝑒(𝑞𝑎, 𝑞𝑒𝑒) =  [

𝜏𝑔

𝜏𝑒
] 

𝑘𝑔(𝑟𝑔𝑞𝑚 − 𝑞𝑎) + 𝑑𝑔(𝑟𝑔𝑞̇𝑚 −  𝑞̇𝑎) =  𝜏𝑔 

−𝑘𝑒𝑞𝑒 − 𝑑𝑔𝑞̇𝑒 =  𝜏𝑒 

4-10 

The additional variable 𝑞𝑒 describe the angular motion between the rigid bodies due 

to elastic effects, 𝑘𝑒 and 𝑑𝑒 took a similar definition as 𝑘𝑔 and 𝑑𝑔. 

The above equation represents a simple but a profound overview of the modeling of a 

robot manipulator, it could be adapted depending of its degree of freedom and could also be 

transformed in a nonlinear state-space model ideal for some kind of control approaches. 

4.4 Global Reference Systems in production 

Global Reference System (GRS) is similar to the well know Global Positioning System 

(GPS). [3, 9] In a production context is a common coordinate system to all present elements. A 

GRS can also provide a reference system to both simulation and production for which 

compensation for the deviations could be applied. [3] In other words, a GRS can provide an 

object’s location in the production line through time. A GRS can be stablished through the 

application of Large-volume metrology systems. 

4.5 Large-volume metrology 

Large-volume metrology deals with the measurement of large machines and structures, 

in which the linear dimensions range from tens to hundreds of meters. ([12] apud. Puttock, 

1978). The figure below can summarize the measuring systems for large volumes. 
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Figure 6 - Classification of large-volume measuring systems 

 
Source: [12] 

Maisano et al. [12] classifies the large-volume metrology systems in two categories: 

distributed and centralized systems. Centralize systems (e.g. Laser Tracker) are basically a 

single unit that work independently to measure a spatial co-ordinate of a point on a objects 

surface. Distributed systems, like iGPS, differently, need a series of measure units working co-

operatively to determine the co-ordinates of a point in an object’s geometry and, although, 

generally, an individual unit is not capable of ascertain the position of a point, their light 

weighted peripherical and portable devices can easily be moved to the point of interest. 

Figure 7 - Examples of large-volume metrology applications 

 
Source: [13] 

There is an increasing interest in accurate measurement of three-dimensional 

co-ordinates on industries such as aircraft and ship construction. [12] These systems are capable 

of keep tracks of, for example, an aircraft fuselage and its wings and the tools responsible to 

perform an autonomous assembly. [13] 
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4.5.1 Laser based non-contact measurement methods 

The above section presents briefly two laser based non-contact large-scale 

measurement systems: iGPS and laser tracker.  

Laser tracker works utilizing the principle interferometry. It generates a coherent laser 

beam of know wavelength and passes it through a beam-splitter. One beam is reflected back 

within the system, the other is aimed at a Spherical Mirror Reflector (SMR). constructive and 

destructive interference at the laser wavelength can be observed by the detector and thus the 

distance from the SMR could be determined. [14]  

Laser trackers are considered one of the most reliable, well established metrology 

systems. Their main disadvantage is that a line of sight from the laser tracker and the SMR must 

be clear at all time, and that only one point of interest can be tracked at a time. 

The iGPS from Nikon (see 5.2 for details) uses lasers transmitters that create a 

measurement field that encompass a field as large as the room facility. [13] Laser detectors 

scattered through the working determine its position through a GRS prior stablished by the 

known position of the transmitters. 

4.6  MPC’s Model 

A Model Predictive Controller (MPC) does not correspond to any specific control 

strategy but a range of methods that make explicit use of a model of the process to obtain the 

control signal by minimizing an objective function. Each approach will diverge itself form other 

by the model used and the cost function to be minimized. [15] 

Figure 8 – Basic structure of MPC 

 
Source: [15] 

The above figure represents a basic structure of an MPC algorithm and all its common 

elements. The process model plays a decisive role in the controller because it is necessary to 

predict the future outputs of the system. [15] 
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The basic operation of an MPC requires the observation of the futures outputs of the 

system in a certain time frame, this predicted observations are then provided by the controller’s 

model. 

4.7 Dynamic system in state space 

The behavior of linear (time-invariant) systems over time can be described throughout 

differential equations. Over the frequency domain, it could be described as a transfer function 

𝐺(𝑠) that specify the relation between the input 𝑈(𝑠) and output 𝑌(𝑠). [9] 

 𝑠𝑛𝑌(𝑠) + 𝑎𝑛−1𝑠𝑛−1𝑌(𝑠) + ⋯ + 𝑎1𝑠𝑌(𝑠) + 𝑎0𝑌(𝑠) =  𝑏𝑚𝑠𝑚𝑈(𝑠) + ⋯ + 𝑏0𝑈(𝑠) 4-11 

 𝐺(𝑠) =  
𝑌(𝑠)

𝑈(𝑠)
=  

𝑏𝑚𝑠𝑚 + 𝑏𝑚−1𝑠𝑚−1 + ⋯ + 𝑏1𝑠 + 𝑏0

𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + ⋯ + 𝑎1𝑠 + 𝑎0 
 4-12 

Unfortunately, this kind of representation do not provide any kind of information 

regarding the internal dynamics of the system operating between the input and output. One 

representation that takes these dynamics in account is the state-space representation. [9] 

 {
𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)  

𝑦(𝑡) = 𝐶𝑇𝑥(𝑡) + 𝐷𝑢(𝑡)
 4-13 

Figure 9 - State-space representation 

 
Source: author 

4.8 Machine Learning 

Machine Learning is a subfield of computer science [16] and Artificial Intelligence 

[17]. Often referred as predictive analytics or predictive modeling, its goal is to build and/or 

enhance existing algorithms that, learning from data, could provide generalizable models that 

give accurate predictions. [16] Common Machine Learning applications involve natural 
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language processing, recommendation systems, univariate and multivariate regression and 

many others. 

From a systems identification point of view, regressions problems are the most 

appropriate case. Regression models are characterized by its ability to assign a continuous 

output to an observed data. [16] That means that a regression machine learning model could 

predict a given system’s output or identify the change in its parameters in time. 

Regression models are adjusted only by supervised learning, that is, the algorithm is 

trained with already correct labeled data. [16, 18] Some algorithms that could be mentioned in 

this class are linear regression, decision tree or forest regression, random forest, neural 

networks, and many others. 

4.9 System Identification 

The main problem in system identification is to select a suitable structure in which a 

good model could be found, the later problem, that is, estimating the parameters for the given 

structure tend to be a lesser problem. It's common knowledge that one should prioritize prior 

knowledge and physical insights about the system when selecting such structures. [19] 

As presented in [19], the basics structures can be divided in tree levels of prior 

knowledge: White Box Models, Grey Box Models, Black Box Models, each representing 

respectively: a model constructed from full knowledge of the system; a model with some 

physical insight with some parameters determined from observed data; and, a model with no 

physical knowledge at all.  

Linear black-box models are tasked to approximate the system's frequency response, 

Sjöberg et al. [19] define that as a "modest approximation problem". For nonlinear black-box 

models however, the problem is more complicated. The main reason is that nothing can be 

excluded, and it is necessary to handle a large spectrum of possible models’ description. 

4.9.1 The identification problem 

Given the inputs 𝑢(𝑡) and outputs 𝑦(𝑡), from a dynamical system: 

 𝑢𝑡 = [𝑢(1), 𝑢(2), … 𝑢(𝑡)] 4-14 

 𝑦𝑡 = [𝑦(1), 𝑦(2), … 𝑦(𝑡)] 4-15 

The problem of identification is defined by [19] as to find a relationship between past 

data [𝑢𝑡−1, 𝑦𝑡−1] and the future output 𝑦(𝑡): 
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 𝑦(𝑡) = 𝑔(𝑢𝑡−1, 𝑦𝑡−1) + 𝑣(𝑡) 4-16 

The term 𝑣(𝑡) is added because of the fact that the output 𝑦(𝑡) will not be an exact 

function of past data, though, the objective is that 𝑣(𝑡) would be small enough so that  the 

function 𝑔(𝑢𝑡−1, 𝑦𝑡−1) would be consider a good approximation of 𝑦(𝑡). 

To find the function 𝑔 in 4-16 it is necessary to approximate it by parameterizing 𝑔 by 

a finite dimensional vector 𝜃: 

 𝑔(𝑢𝑡−1, 𝑦𝑡−1, 𝜃) 4-17 

Chosen a good structure and collected the data set, the quality of the parameters vector 

𝜃 could be measured through the fitting between the model and the data recorded, using the 

norm for example: 

 
∑‖𝑦(𝑡) −  𝑔(𝑢𝑡−1, 𝑦𝑡−1, 𝜃) ‖2

𝑁

𝑡=1

 
4-18 

Because of the generality of  4-17, usually, it is convenient to write 𝑔 as a 

concatenation of two mappings: one that takes the past data 𝑢𝑡 and 𝑦𝑡 and maps them into a 

vector 𝜑(𝑡) with finite dimensions; one that takes 𝜑 to the space of outputs: 

 𝑔(𝑢𝑡−1, 𝑦𝑡−1, 𝜃) = 𝑔(𝜑(𝑡), 𝜃) 4-19 

where vector 𝜑 is defined as: 

 𝜑(𝑡) =  𝜑(𝑢𝑡−1, 𝑦𝑡−1) 4-20 

The vector defined in 4-20 is called regression vector. 

Summarizing, the problem of identification as two partial problems: 

1. Choose the regression vector 𝜑(𝑡); 

2. Choose the mapping 𝑔(𝑡) from the regressor space to the output space 
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4.9.2 Regression Possibilities 

4.9.2.1 Linear case 

The simplest dynamical model addressed by [19] is the Finite Impulse Response 

model: 

 

𝑦(𝑡) = 𝐵(𝑞)𝑢(𝑡)                                                                     

= 𝑏1𝑢(𝑡 − 1) + ⋯ + 𝑏𝑛𝑢(𝑡 − 𝑛) + 𝑒(𝑡) 
4-21 

Where, 𝐵(𝑞) is a polynomial in 𝑞−1 and 𝑞 denote the shift operator. The noise tern is 

modeled as 𝑒(𝑡) [19]. 

The predictor for the above model is: 

 𝑦̂(𝑡|𝜃) = 𝐵(𝑞)𝑢(𝑡) 4-22 

And thus, based on the following regressor: 

 𝜑(𝑡) = [𝑢(𝑡 − 1), 𝑢(𝑡 − 2), … , 𝑢(𝑡 − 𝑛)] 4-23 

With 𝑛 tending to infinity, it is possible to describe a wide range of linear systems 

dynamics [19]. 

In practice, the most common linear black-box structures are variations of  4-21 with 

different ways to define the poles of the system and describe the noise characteristics, but can 

all be summarized by the following (Ljung, 1987 apud [19]): 

 𝐴(𝑞)𝑦(𝑡) =  
𝐵(𝑞)

𝐹(𝑞)
𝑢(𝑡) + 

𝐶(𝑞)

𝐷(𝑞)
𝑒(𝑡) 4-24 

The known special cases are: 

1. ARX:  𝐶(𝑞) = 𝐷(𝑞) = 𝐹(𝑞) = 1; 

2. ARMAX:  𝐷(𝑞) = 𝐹(𝑞) =  1; 

3. Box-Jenkins (BJ): 𝐴(𝑞) = 1; 

4. Output-Error (OE): 𝐴(𝑞) = 𝐶(𝑞) = 𝐷(𝑞) = 1 

The regressors are usually given by: 

1. 𝑢(𝑡 − 𝑘): associated with the 𝐵-polynomial; 

2. 𝑦(𝑡 − 𝑘): associated with the 𝐴-polynomial; 
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3. 𝑦̂𝑢(𝑡 − 𝑘 |𝜃): simulated outputs from past inputs and associated with the F-

polynomial; 

4. 𝜀(𝑡 − 𝑘) =  𝑦(𝑡 − 𝑘) − 𝑦̂(𝑡 − 𝑘 |𝜃): Prediction errors and associated with the 

𝐶-polynomial; 

5. 𝜀𝑢(𝑡 − 𝑘) =  𝑦(𝑡 − 𝑘) − 𝑦̂𝑢(𝑡 − 𝑘 |𝜃): Simulation errors, associated with the 

𝐷-polynomial; 

4.9.2.2 Nonlinear case 

The nonlinear cases follow similar structures of the linear ones. In the work of Sjöberg 

et al. [19] it is adopted the following: 

 𝑦̂(𝑡|𝜃) = 𝑔(𝜑(𝑡), 𝜃) 4-25 

Where 𝑔 corresponds to a nonlinear function parameterized by 𝜃. The components of 

φ(t) are similar to the ones described to the linear case: 

Table 1 - Nonlinear models' regressors 

Structures Regressors 

NFIR-models 𝑢(𝑡 − 𝑘) 

NARX-models 𝑢(𝑡 − 𝑘) and 𝑦(𝑡 − 𝑘) 

NOE-models 𝑢(𝑡 − 𝑘) and 𝑦̂𝑢(𝑡 − 𝑘 |𝜃) 

NARMAX-models 𝑢(𝑡 − 𝑘), 𝑦(𝑡 − 𝑘) and 𝜀(𝑡 − 𝑘|𝜃) 

NBJ-models 𝑢(𝑡 − 𝑘), 𝑦̂(𝑡 − 𝑘|𝜃), 𝜀(𝑡 − 𝑘|𝜃) and 𝜀𝑢(𝑡 − 𝑘|𝜃) 

Non-linear state space e.g.: virtual outputs, internal  

Source: [19] 

4.9.3 Nonlinear Mappings 

Sjöberg et al [19] presents the nonlinear mapping as: 

 𝑔(𝜑, 𝜃) 4-26 

Where for any given 𝜃, goes from 𝑅𝑑 to 𝑅𝑝 with 𝜑 ⊂  𝑅𝑑
. 

The function 𝑔 is then, parameterized as a function expansion as follows [20]: 
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 𝑔(𝜑, 𝜃) =  ∑ 𝑎𝑘𝑔𝑘(𝜑)            𝜃 = [𝑎1, … , 𝑎𝑛]𝑇

𝑛

𝑘=1

 4-27 

𝑔k is referenced as basis functions because of its similarity to a functional space basis. 

The equation  4-27, together with the regression vector summarize most known nonlinear black-

box model structures, where 𝑔k is obtained by parameterizing a single “mother basis function” 

usually denoted by 𝜅(𝑥) [19].  

 𝑔𝑘(𝜑) =  𝑔𝑘(𝜑, 𝛽𝑘 , 𝛾𝑘) = 𝜅(𝛽𝑘(𝜑 − 𝛾𝑘)) 4-28 

With βk and γk representing a dilation parameter and a translation parameter respectivetly. 

Both works [19, 20], state that the equation above should be interpreted symbolically and 

specify it through out a series of examples. The most interest one for the sake of this works is 

the sigmoid function: 

 𝜅(𝑥) = 𝜎(𝑥) =  
1

1 + 𝑒𝑥
 4-29 

For a multidimensional case in other words, for 𝑔𝑘 as a function of several variables, 

in most black-box models cases, their structure is constructed from a single-variable function 

𝜅. One simple case is Ridge construction [19, 20]: 

 𝑔𝑘(𝜑) =  𝑔𝑘(𝜑, 𝛽𝑘 , 𝛾𝑘) = 𝜅(𝛽𝑘
𝑇𝜑 + 𝛾𝑘), 𝜑 ∈  𝑅𝑑 4-30 

The ridge function bases itself in the idea of letting its value depend only on the 

distance of 𝜑 to a given hyperplane, hence, for all 𝜑 in the hyperplane its value is constant (𝜑 ∈

 𝑅𝑑 ∶  𝛽𝑘
𝑇𝜑 = constant). The consequence is that if the mother basis function 𝜅 has local 

support, the basis function 𝑔𝑘 will have unbounded support in this subspace. [20] 

Thus, for the multidimensional case, the resulting model becomes: 

 𝑔(𝜑, 𝜃) =  ∑ 𝑎𝑘𝜅(𝛽𝑘(𝜑 −  𝛾𝑘))

𝑛

𝑘=1

 4-31 

 

The work of Sjöberg et al. [19] in addition, correlates the basics of the non-linear 

mapping to some known named structures as the followings: 
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4.9.3.1 Sigmoid Neural Networks 

The combination of the model expansion 4-27, with the sigmoid choice for mother 

function 4-29, and with a ridge construction method 4-30, provide the known one hidden layer 

feed-forward sigmoid neural net. [19, 20] 

4.9.3.2 Multi-layer Networks 

A network-like structure is more noticeable when the basic mappings are convoluted 

with each other. Let the output of the basis function be: 

 𝜑𝑘
(2)

(𝑡) = 𝑔𝑘(𝜑(𝑡)) =  𝜅(𝜑(𝑡), 𝛽𝑘 , 𝛾𝑘) 4-32 

Group them into a vector: 

 𝜑(2)(𝑡) =  [𝜑1
(2)

(𝑡), … , 𝜑𝑛
(2)

(𝑡)] 4-33 

Finally, instead of considering the linear combination 𝜑(2)as the output of the model, 

it is possible to treat it as new regressor inserting it into another layer of basis functions forming 

a second expansion. 

 
𝑔(𝜑, 𝜃) =  ∑ 𝛼𝑙

(2)
𝜅(𝜑(2), 𝛽𝑙

(2)
, 𝛾𝑙

(2)
)

𝑙

 4-34 

Where 𝜃 represents the whole collection of involved parameters.  

Figure 10 - Feedforward network with two hidden layers 

 
Source: [20] 

4.9.3.3 Recurrent Networks 

Recurrent Networks states for networks structures in which  some of the regressors 

used at time 𝑡 are previous outputs from the model. [20] 
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 𝜑𝑘(𝑡) = 𝑔(𝜑(𝑡 − 𝑘), 𝜃) 4-35 

Figure 11 - Recurrent Network scheme 

 

Source: [20] 

4.10 Linear regression for parameter estimation and the least-squares method 

The parameter estimation problem can be briefed as: given a chosen model structure 

ℳ, the objective is to find a model ℳ(𝜃), with the parameters 𝜃, that would provide a small 

prediction error 𝜀 in a certain data set 𝑍𝑁, where 𝑁 represents the number of elements of the 

data set [20]. In this context, the problem consists in minimizing the prediction error. 

Lennart [20] describes the linear regression applied to linear model structures 

employing the following predictor: 

 𝑦̂(𝑡|𝜃) =  𝜑𝑇(𝑡)𝜃 + 𝜇(𝑡) 4-36 

In the above case, 𝜇 is a known dependent vector, but for simplicity is taken as null, 

the prediction error is then given by: 

 𝜀(𝑡, 𝜃) = 𝑦(𝑡) − 𝜑𝑇(𝑡)𝜃 4-37 

Given this problem, the least squares criterion for the linear regression in 4-36 is 

defined by: 

 𝑉𝑁(𝜃, 𝑍𝑁) =  
1

𝑁
∑

1

2
[𝑦(𝑡) − 𝜑𝑇(𝑡)𝜃 ]2

𝑁

𝑡=1

 4-38 

This criterion is deduced as an especial case norm that, for a given 𝑍𝑁, is a well-defined 

scalar-value function of the parameters 𝜃 and therefore a natural measure of the validity of the 

model ℳ(𝜃). The estimation of the parameters can be defined then as the following 

minimization: 
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 𝜃𝑁 =  𝜃𝑁(𝑍𝑁) = arg min 𝑉𝑁(𝜃, 𝑍𝑁) 4-39 

 𝜃𝑁
𝐿𝑆 =  [

1

𝑁
∑ 𝜑(𝑡)𝜑𝑇(𝑡)

𝑁

𝑡=1

]

−1

1

𝑁
∑ 𝜑(𝑡)𝑦(𝑡)

𝑁

𝑡=1

 4-40 

In 4-39, “arg mim” stands for “the minimizing argument of the function”. The 4-40 

represents the specific representation for the least-squares case. 

4.10.1 Weighted least-squares criterion 

The Least-Squares (LS) can also assume a weighted form from the concept of time-

varying Norms. This allows the LS to associate different weights to each measure of the system 

in regard to its reliability. For example, a measure with a high noise component can be given a 

lower weight. 

  𝑉𝑁(𝜃, 𝑍𝑁) =  
1

𝑁
∑ 𝛽(𝑁, 𝑡)[𝑦(𝑡) − 𝜑𝑇(𝑡)𝜃 ]2

𝑁

𝑙=1

 4-41 

The weighted version of the LS is presented above (4-41) with the weighting being 

determined by the weighting function 𝛽(𝑁, 𝑡). 

Rewriting the estimation expression 4-40 for the weighted case: 

 𝜃𝑁
𝐿𝑆 =  [

1

𝑁
∑ 𝛽(𝑁, 𝑡)𝜑(𝑡)𝜑𝑇(𝑡)

𝑁

𝑡=1

]

−1

1

𝑁
∑ 𝛽(𝑁, 𝑡)𝜑(𝑡)𝑦(𝑡)

𝑁

𝑡=1

 4-42 

 

According to Lennart [20] the LS method presents a series of advantages, being the 

most notable one the fact that a global minimum can be found efficiently and unambiguously 

(without local minima other than the global exists). 

4.11 Recursive Estimation Methods 

The identification techniques that provides an online computation of the model in a 

way that the processing of measurements from one sample can, with certainty be completed 

during one sampling interval are called recursive identification methods. [20] Ljung [20] states 

that this methods are “quite competitive” alternatives for parameters estimation as in off-line 

situations. 
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4.11.1 Recursive Algorithms for Online Estimation 

A general identification problem can be defined as a mapping from the data set 𝑍𝑡 to 

the parameter space, as stated in [20]: 

 𝜃𝑡 = 𝐹(𝑡, 𝑍𝑡) 4-43 

The above general expression is not suitable for a recursive algorithm as the evaluation 

of  𝐹 cannot be guaranteed at the next sample time, thus, the following format is more suitable: 

[20] 

 

𝑋(𝑡) = 𝐻(𝑡, 𝑋(𝑡 − 1), 𝑦(𝑡), 𝑢(𝑡)) 

𝜃𝑡 = ℎ(𝑋(𝑡)) 
4-44 

Where 𝑋(𝑡) is a vector with fixed dimensions that holds some information of the 

system. In this case, 𝐻 and ℎ are expressions that can be evaluated with a fixed amount of 

calculations. Considering that the system’s information usually consists of the input 𝑢(𝑡) and 

output 𝑦(𝑡) the expression can be rearranged as: [20] 

 

𝜃(𝑡) = 𝜃(𝑡 − 1) + 𝛾1𝑄𝜃(𝑋(𝑡), 𝑦(𝑡), 𝑢(𝑡)) 

𝑋(𝑡) = 𝑋(𝑡 − 1) +  𝜇𝑡𝑄𝑋(𝑋(𝑡 − 1), 𝑦(𝑡), 𝑢(𝑡)) 
4-45 

Lennart [20] takes the least-squares method as a simple archetypal case to deduce other 

forms of algorithms. Considering the weighted LS criterion presented in both 4-41 and 4-42, 

the estimated parameters in one time step can be given by: 

 𝜃(𝑡) = 𝑎𝑟𝑔 𝑚𝑖𝑛 ∑ 𝛽(𝑡, 𝑘)[𝑦(𝑘) − 𝜑𝑇(𝑘)𝜃 ]2

𝑡

𝑘=1

 4-46 

Restructuring, we have: 

 𝜽̂(𝒕) =  𝑹̅−𝟏(𝒕)𝒇(𝒕) 4-47 

 
𝑅̅(𝑡) =  ∑ 𝛽(𝑡, 𝑘)𝜑(𝑘)𝜑𝑇(𝑘)

𝑡

𝑘=1

 
4-48 
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 𝑓(𝑡) =  ∑ 𝛽(𝑡, 𝑘)𝜑(𝑘)𝑦(𝑘)

𝑡

𝑘=1

 4-49 

The solution of  4-47, at a given time 𝑡, provides the parameters of the system  from a 

data set 𝑍𝑡. At first sight there is no explicit relation between the 𝜃(𝑡) and a past value 𝜃(𝑡 −

1). Lennart [20] deduce a relation as follows, supposing that the weighting sequence has the 

following property: 

 
𝛽(𝑡, 𝑘) =  𝜆(𝑡)𝛽(𝑡 − 1, 𝑘), 0 ≤ 𝑘 ≤ 𝑡 − 1 

𝛽(𝑡, 𝑡) = 1 
4-50 

This can be rewritten as: 

 𝛽(𝑡, 𝑘) =  ∏ 𝜆(𝑗)

𝑡

𝑘+1

 4-51 

Resulting in: 

 𝑅̅(𝑡) =  𝜆(𝑡)𝑅̅(𝑡 − 1) + 𝜑(𝑡)𝜑𝑇(𝑡) 4-52 

 𝑓(𝑡) =  𝜆(𝑡)𝑓(𝑡 − 1) +/𝜑(𝑡)𝑦(𝑡) 4-53 

Applying the two above equations on 4-47 the following could be reached: 

 𝜃(𝑡) =  𝜃(𝑡 − 1) + 𝑅̅−1(𝑡)𝜑(𝑡)[𝑦(𝑡) − 𝜑𝑇(𝑡)𝜃(𝑡 − 1)] 4-54 

 𝑅̅(𝑡) =  𝜆(𝑡)𝑅̅(𝑡 − 1) +  𝜑(𝑡)𝜑𝑇(𝑡) 4-55 

The two above equations characterize a recursive algorithm that complies with the 

4-44 requirement where, the parameters are given by a function of 𝑋(𝑡), a finite-dimension 

vector  

Aiming to avoid inverting 𝑅̅(𝑡), Lennart [20] conveniently assumes: 

 𝑃(𝑡) =  𝑅̅−1(𝑡) 4-56 

 

And utilizes the matrix inversion lemma: 
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[𝐴 + 𝐵𝐶𝐷]−1 =  𝐴−1 − 𝐴−1𝐵[𝐷𝐴−1𝐵 + 𝐶−1]−1𝐷𝐴−1 4-57 

Assuming:  

 𝐴 =  𝜆(𝑡)𝑅̅(𝑡 − 1) 4-58 

 𝐵 =  𝐷𝑇 =  𝜑(𝑡)  4-59 

 𝐶 = 1 4-60 

Finally resulting into the summarized algorithm: 

 𝜃(𝑡) =  𝜃(𝑡 − 1) +  𝐿(𝑡)[𝑦(𝑡) − 𝜑𝑇(𝑡)𝜃(𝑡 − 1)] 4-61 

 𝐿(𝑡) =  
𝑃(𝑡 − 1)𝜑(𝑡)

𝜆(𝑡) +  𝜑𝑇(𝑡)𝑃(𝑡 − 1)𝜑(𝑡)
 4-62 

 𝑃(𝑡) =  
1

𝜆(𝑡)
(𝑃(𝑡 − 1) −

𝑃(𝑡 − 1)𝜑(𝑡)𝜑𝑇(𝑡)𝑃(𝑡 − 1)

𝜆 + 𝜑𝑇(𝑡)𝑃(𝑡 − 1)𝜑(𝑡)
) 4-63 

4.11.2 Matlab’s implementation of recursive algorithms for online estimation 

The general form of  a recursive estimator adopted in [21] are defined below: 

 𝜃 =  𝜃(𝑡 − 1) + 𝐾(𝑡)(𝑦(𝑡) −  𝑦̂(𝑡)) 4-64 

Where, for recall, 𝜃 is the estimated parameters at the time 𝑡, 𝑦(𝑡) and 𝑦̂(𝑡) are 

respectively, the observed output, and the prediction of the system at time 𝑡. The gain 𝐾, 

corresponds to the proportion in which the current prediction error y(t) −  ŷ(t) affects the 

update of the parameter estimation. The focus of the algorithm is to minimize de error 𝑦(𝑡) −

 𝑦̂(𝑡). 

The gain 𝐾 in the other hand is defined with the following form: 

 𝐾(𝑡) = 𝑄(𝑡)Ψ(𝑡) 4-65 

The different recursive algorithms available in [21] differ on the choosing form of 

𝑄(𝑡) and the computing of Ψ(𝑡) that, represents the gradient of the predicted output 𝑦̂( 𝑡 | 𝜃 ) 

with respect to the parameter 𝜃. In comparison with Lennart’s [20] deduction, these algorithms 

diverge themselves on the function 𝑄𝜃 in 4-45. 

The role of Ψ(𝑡) is better described by [21] using a linear regression form: 
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 𝑦(𝑡) =  𝛹𝑇(𝑡)𝜃0(𝑡) + 𝑒(𝑡) 4-66 

In  4-66, Ψ(𝑡) correspond to the regression vector which is calculated based on 

previous values of inputs and outputs; θ0(t) is the true parameters; 𝑒(t) is the noise source, that 

is assumed to be white noise. The predicted output could be given then by: 

 𝑦̂(𝑡) =  𝛹𝑇(𝑡)𝜃(𝑡 − 1) 4-67 

The exact form of Ψ(𝑡) will depend of the structure of the polynomial model. 

4.11.3 Forgetting Factor 

Forgetting Factor is one kind of recursive estimation algorithm and as stated in [21] 

can be summarized by the equations 4-64, 4-65, 4-67 with the following additions: 

 𝑄(𝑡) =  
𝑃(𝑡 − 1)

𝜆 + 𝛹𝑇(𝑡)𝑃(𝑡 − 1)𝛹(𝑡)
 4-68 

 𝑃(𝑡) =  
1

𝜆
(𝑃(𝑡 − 1) −

𝑃(𝑡 − 1)𝛹(𝑡)𝛹𝑇(𝑡)𝑃(𝑡 − 1)

𝜆 +  𝛹𝑇(𝑡)𝑃(𝑡 − 1)𝛹(𝑡)
) 4-69 

𝑄(𝑡) is then obtained by minimizing the following function at time t: 

 ∑ 𝜆𝑡−𝑘(𝑦(𝑘) − 𝑦(𝑘))2
𝑡

𝑘=1
 4-70 

The forgetting factor method discount old measurements exponentially in a way that 

an observation 𝜏 samples old have a weight equal to 𝜆𝜏 times the weight of the most recent one. 

𝜆 is called the forgetting factor and 𝜏 =  1
1 − 𝜆⁄  represents the memory horizon of the 

algorithm. 

4.11.4 Kalman Filter 

The second recursive estimation is, as well, defined by the equations 4-64, 4-65, 4-67 

 𝑄(𝑡) =  
𝑃(𝑡 − 1)

𝑅2 + 𝛹𝑇(𝑡)𝑃(𝑡 − 1)𝛹(𝑡)
 4-71 

 𝑃(𝑡) =  𝑃(𝑡 − 1) + 𝑅1 −
𝑃(𝑡 − 1)𝛹(𝑡)𝛹𝑇(𝑡)𝑃(𝑡 − 1)

𝑅2 + 𝛹𝑇(𝑡)𝑃(𝑡 − 1)𝛹(𝑡)
 4-72 
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This algorithm assumes the linear-regression form given by 4-66, and 𝑄(𝑡) is 

calculated using a Kalman Filter. 

4.11.5 Normalized and Unnormalized Gradient 

In the linear regression case, the gradient methods are also known as the least mean 

squares (LMS) methods. [21] This algorithm bases itself on 4-64, 4-65, 4-67 as well. 

The unnormalized gradient has 𝑄(𝑡) given by: 

 𝑄(𝑡) =  𝛾∗𝛹(𝑡) 4-73 

The normalized gradient on the other hand: 

 𝑄(𝑡) =  
𝛾∗𝛹(𝑡)

|𝛹(𝑡)|2
 4-74 

 

4.12 Multilayer Perceptron (MLP) - Backpropagation network for regression 

A multilayer perceptron network has the following scheme: 

Figure 12 - Multilayer Perceptron network scheme 

 
Source: [22] 

Drifting from the principles of the multivariable mapping (4-31), for a convoluted in 

layers case, the output of an MLP is given by: 

 𝑦𝑖̂(𝑤, 𝑊) =  𝐹𝑖 (∑ 𝑊𝑖ℎℎ𝑗(𝑤) + 𝑊𝑖0

𝑞

𝑗=1

) = 𝐹𝑖 (∑ 𝑊𝑖𝑗

𝑞

𝑗=1

𝑓𝑗 (∑ 𝑤𝑗𝑙

𝑚

𝑙=1

𝑧𝑗 + 𝑤𝑗0) + 𝑊𝑖0) 4-75 
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The above equation states that the output of an MLP is a function of its inputs 𝑧 and 

the weights 𝑤 and 𝑊. Neural networks used for system identification (and other cases) relies 

on supervised training, in other words, the weights of a neural network are adjusted by applying 

a set of labeled training samples. [23] 

Several works address the system identification problem using a neural network 

structure. Qin et al. [24] compare four different neural network structure to identify dynamics 

systems. Chen et. al. [25] propose a use of a NARMAX model structure identified using a 

neural network. Nørgaard [22] implements a whole system identification toolbox using neural 

networks. Ljung [20] stated that that: “one hidden layer is usually sufficient for modeling most 

types of systems”. The idea remains the same, determinate a map from the training data set 𝑍𝑁, 

to the set of possible parameters 𝜃, in this case, the weights of the MLP. 

One of the most common algorithm to update the weights of the neural network is the 

backpropagation algorithm. Used in Narendra et. al. [26] and Nørgaard [22] the 

backpropagation algorithm is a simple application of the gradient of an error function. 

Suppose for example an error function giver by the mean square error: 

 𝑉𝑁(𝜃, 𝑍𝑁) =  
1

2𝑛
∑[𝑦(𝑡) − 𝑦̂(𝑡|𝜃) ]2

𝑁

𝑡=1

 4-76 

The weights are then selected by: 

 
𝜃 = 𝑎𝑟𝑔

𝜃
𝑚𝑖𝑛 𝑉𝑁(𝜃, 𝑍𝑁) 4-77 

Nørgaard [22] simply describe this process with the following iterative scheme: 

 𝜃(𝑖+1) =  𝜃(𝑖) +  𝜇(𝑖)𝑓(𝑖) 4-78 

Where 𝜃(𝑖) specifies the current parameters in the iteration, 𝑓 is the search direction 

and 𝜇 the step size. The direction can be determined by the gradient of the function 𝑉𝑁(𝜃, 𝑍𝑁). 

For a single output network, the gradient is given by the partial derivatives of the error function 

with respect of each weight of the network. 

 𝑔𝑟𝑎𝑑 𝑉𝑁(𝜃, 𝑍𝑁) = 〈
𝜕𝑉𝑁(𝜃, 𝑍𝑁)

𝜕𝑤11
, … ,

𝜕𝑉𝑁(𝜃, 𝑍𝑁)

𝜕𝑤𝑞𝑚
,
𝜕𝑉𝑁(𝜃, 𝑍𝑁)

𝜕𝑊11
, … ,

𝜕𝑉𝑁(𝜃, 𝑍𝑁)

𝜕𝑊𝑞𝑚

〉 4-79 
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4.13 Optimization and Genetic Algorithm 

Arora [27] defines the problem of systems design as an problem optimization, stating 

that “several systems can usually accomplish the same task”. Also is stated that, any problem 

in which certain parameters need to be determined to satisfy some constraints can be seen as an 

optimization problem. In other words, an optimization problem is  the search of best suitable 

variables that can maximize or minimize the value of a given function.  

In this context, the problem of system identification could also be seen as an 

optimization problem. Considering that a given structure of a model with variable parameters, 

can have multiple models deriving  from it, with all being able to approximate a certain  system, 

the optimization approach would consider which parameters would give the model with the 

best “performance”, for example, less deviation for the real system measured by an error 

function. 

4.13.1 Genetic Algorithm  

Genetic algorithm is a computational model inspired by the principle of evolution, and 

natural selection, where the fittest individuals (solutions) are selected for reproduction to 

generate the next generation The concept consists in incapsulate the solution of a problem in a 

“chromosome-like” data structure, that characterize an individual. A collection of individuals, 

(the solution candidates) are called population. [28] 

The Genetic Algorithm is a method for solving constrained and unconstrained 

optimization problems. [29] It continually modifies the population selecting random individuals 

in each generation to be parents of new generation solutions. Over successive generations, the 

population "evolves" toward an optimal solution. [29] 

The algorithm follows a set of three rules to create each generation:  

• Selection: Select the parents that will contribute to the population for the next 

generation. The individuals with better performance have better chances to be 

selected  

• Crossover: combine two different parents to form the children for the next 

generation. Figure 13 - Genetic Algorithm: Crossover example exemplifies 

that by showing the generation of two news binary-structured chromosomes 

(A5 and A6) from the crossover of its parents (A1, A2); 



56 Chapter 4: Theoretical Background 

Figure 13 - Genetic Algorithm: Crossover example 

  
Source: [28] 

• Mutation: applies random mutation to  individuals to maintain diversity within 

the population (Figure 14 - Genetic Algorithm: Mutation Example). 

Figure 14 - Genetic Algorithm: Mutation Example 

 
Source: [28] 

The performance of each individual is given by a so-called fitness function. The 

selection can be made throughout a series of different methods, as for example the stochastic 

uniform selection. This method uniformly lays the individuals in a line, in which each individua 

corresponds to a section of it, proportional to its fitness value. The algorithm moves along the 

line with a fixed step size selecting the parent  that it lands on. 
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5 SYSTEM DESCRIPTION 

This chapter aims to present the specific the elements that compose the system to be  

identified. The research environment is constituted in a way to simulate a continuous flow 

assembly line. Composed by two ABB IR-4600 robots, a truck cabin and windshield provide 

by WZL’s partners, an AGV transporter and NIKON’s iGPS system transmitters, spread 

through the shop floor, and receivers located on the truck’s cabin and robot’s actuators (Figure 

15). 

Figure 15 - Overview of the development environment 

 
Source: [4] 

The focus of this work it’s to identify a better model of the ABB robot using its 

provided control interface, merged with the iGPS large volume metrology device. Figure 16 

exemplify the elements of interest. 

Figure 16 - Overview scheme of whole system 

 
Source: author, [9] 
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5.1 ABB IRB-4600 / IRC5 

The ABB IRB 4600 is one 6-DOF robot manipulator model, manufacture by ABB, 

suitable for material handling, machine tending, laser- and water jet cutting, dispensing, 

measuring, assembly and welding applications. [30] The IRC5 correspond to the control unit 

shipped with the articulated robot. 

5.1.1 EGM – Externally Guided Motion 

The Externally Guided Motion is the communication interface that conducts the 

communication of the robot controller with the central control unity. Provided by the robot 

manufacturer. EGM offers two different features: EGM Position Guidance and EGM Path 

Correction, the first being the most suitable one for the problem. [31] 

The purpose of EGM Position Guidance is to generate the path of the robot through 

the use of an external device to generate position data for one or several robots. [31] In this 

context, EGM it's a valid approach to the project as it's capable to handle the position data 

provided from a metrology system and feed data to multiple robots   

EGM Position Guidance is ideal to applications when high responsive robot 

movements are needed as it provides a fast reading and writing of positions to the motion system 

(4 𝑚𝑠) reaching a control lag of 20 𝑚𝑠. [31] 

The operation of EGM can be summarized by its control loop (Figure 17): 

1. Set point for speed of the robot to be controlled is determine with the help of 

an external sensor; 

2. Send the setpoint to EGM controller through its interface; 

3. EGM controller: 

a. generates the manipulated variable for speed through a position gain; 

b. superimposing the manipulated variable with value of the feedforward 

control for the speed; 

c. filter the speed performance, generating the speed reference to the servo 

control; 

4. The robot is moved via the servo drives; 

5. Position is detected by the sensor and the loop comes back to 2. 
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Figure 17 - Structure of EGM controller 

 
Source: [31] 

One of its limitations is that it is not possible to perform linear movements using EGM 

Position Guidance, since EGM Position Guidance does not contain interpolator functionality. 

[31] Even so, throughout the observations made in [9] and in this work, EGM showed a strong 

sense of linear behavior in the desired operation range (Figure 18) and presents a lower dead 

time making it the selected interface by WZL. 

Figure 18 - EGM speed characteristic curve 

 
Source: [9] 

Given the defined methodology, identifying a model close to the current laboratory 

model is one of the first steps in implementation. That said, this work assumes the same 

assumptions as in [9]: the robot modes at a maximum speed of 200 𝑚𝑚/𝑠; the object to be 
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tracked moves at a continuous speed through the working area of the robot without string delays 

and standstills.  

5.2 Nikon iGPS 

In a flexible production system environment with several robots it is necessary to keep 

track of the position of the robots as well other elements of the production. As presented in 

section 4.5.1, the iGPS from Nikon [13] is a modular, distributed, laser-base non-contact, large-

volume metrology system capable of defining the position of several elements in a production 

environment. Its hardware is divided in two types: optical sensors and transmitters 

The transmitters are placed in the working area and continuously generate three 

signals; two infrared fanned beams rotating in the head, and an infrared LED strobe. [14] These 

signals are converted into timing pulses through a photo detector and the so-called, strobe 

signal, marks the reference time, which is analog to the zero degree angle of the transmitter in 

the axis of rotation [3].The rotation speed of the head are different in each transmitter to 

distinguish one from another. 

The receivers can then be set on the point of interest to determine its position in the 

working area. Due to the tilt of the two laser beans it is possible to determine the vertical 

position of the sensor. As the beams are close to each other below the head, a smaller time 

between the detection of the two lasers means that the sensor is located below it (Figure 19). 

The time between the LED signal and the midpoint of the two lasers signals is used to calculate 

the horizontal position. 

Figure 19 – iGPS  

 
Source: [32] 

Each transmitter-receiver pair can identify the position of the sensor along a line, but 

its distance is unknow, for that at least two transmitters are required. [32] The Global Reference 
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System can be conceived by measuring a number of point inside the working area and applying 

scaling information between the points. 

The process of determine the position of the sensor is determined by a so-called 

Position Calculation Engine (PCE), part of the sensors’ hardware and able to communicate with 

a PC through an industrial network, wired or wirelessly. In order to identify the elements of the 

system, a frame consisting of four receivers with a PCE unit is mounted on the manipulators’ 

actuator and the product. [3] 

Prior analyzes have determined [9, 14] that the iGPS meets the systems requirements 

in both static and dynamic conditions with the advantage of being capable to identify multiple 

points at the same time at a lower cost. [14] To speeds bellow 100 𝑚𝑚/𝑠 is possible to achieve 

a deviation of less than 0.5 𝑚𝑚 with a standart deviation of ± 3 𝜎 (Table 2). 

Table 2 - Key figures of the iGPS 

Position update rate 40 𝐻𝑍 

Static accuracy ~ 0.05 𝑚𝑚 

Dynamic accuracy Speed < 100 𝑚𝑚/𝑠 < 0.5 𝑚𝑚 

Speed = 1000 𝑚𝑚/𝑠 3 to 4 𝑚𝑚 

Standard deviation ± 3 𝜎 

Transmitter range 2 to 55 𝑚 

Transmitter frequency 40 to 55 𝐻𝑧 

Deadtime delay ~ 200 𝑚𝑠 

Source: [9] 

Tests carried out by WZL [9] showed the following deviations (Table 3) for both static 

and dynamic conditions. Under dynamics conditions, 70% of the measurment where to be 

found in the interval of the desired specification of ± 1 𝑚𝑚 [9]. 

Table 3 - iGPS characteristics observed by WZL 

Standard deviation static 0.053 

Standard deviation Dynamic (𝑣 = 100 𝑚𝑚/𝑠) 0.719 

Dead time ~ 180 𝑚𝑠 (max. 200 𝑚𝑠, min100 𝑚𝑠) 

Source: [9] 

The data collected for this study showed a mean standard deviation for some of the 

data about 0.200. The procedure to calculate the standard deviation was performed by defining 

an interval with a good linear behavior of the system output and applying a linear regression as 

the mean of the measurements. The lower deviation between this and [9]works could have been 
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given due to the low speed during tests, since under dynamic conditions the system is less 

precise [9, 14]. 
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6 IMPLEMENTATION 

Section 4.3 showed the principles of modeling the components and the robot 

manipulator, presenting an overview of the nonlinearity’s and uncertainties presenting in the 

physical system. That being said, a model that describes the entire dynamics of the system 

would be very complex and time consuming to be found.  

Like shown in the Figure 16 on chapter 5, the system which this works seeks to identify 

consists of a closed loop control system of the robotic manipulator integrated with the chosen 

measurement system. Consequently, it’s safe to assume that a model with such complexity is 

already defined by the robot manufacturer as pointed out in section 5.1.1. The EGM interface 

provide a velocity control, leaving the laboratory to define the path of the actuator, through its 

controller.  

In this case, aiming to avoid any kind of rework in the physical modeling of the system, 

and due to the lack of knowledge dynamics of the ABB controller, it has been chosen a black-

box model structure approach to identify the system in study.  

The current implementation of the controller from WLZ was carried out in Matlab’s 

Simulink. The selection of the implementing tools took this strongly into account. 

The present section aims to describe the activities carried out through the development 

of this work, presenting the steps taken, the tools used and its partial results.  

6.1 Applying machine learning to the identification problem 

Focusing to provide a different approach that the one utilized by WZL, this work 

addressed the problem initially, by using machine learning methods for identifying the system. 

Chapter 4 showed that the most appropriate machine learning algorithm for identification are 

neural networks due to their application as mapping in the theory of systems identification. That 

being said, the firsts steps of this works were to identify a NN model that could, at least, 

approximate the current WZL model. 

Following the adopted methodology, after determining that a given method is 

appropriate for the identification problem, it is necessary to identify a suitable environment to 

implement it. In this case, the Matlab’s Deep Learning Toolbox [33] Neural Time Series Tool 

was selected. 

Firstly, it was investigated if it would fit to approximate the currently model provided 

by WZL. To do this a series of signals were generate as input to the model (a step input, a sine 
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input, and a uniformly distributed random signal), its output was then recorded and used as a 

pair input-output data for the training of the network.  

The user interface of the tool can be seen in ANNEX A. It was selected a Nonlinear 

Autoregressive with External (Exogenous) Input structure - NARX (Table 1). The other 

configuration was maintained in the preconfiguration of Matlab’s, these encopass: the division 

of the data set ( 70% of the data set for training data, 15% for validation and, 15% for testing); 

the number of neurons, and delayed outputs that are used as inputs to the NN; and the training 

algorithms. 

The tool provide an option to generate a Simulink block after the training is finished. 

With this block the NN was used in a feedfoward configuration (the inputs of the network were 

inputs and past ouputs of the system model), and simulated in the simulink enviroment. 

The use of the step and sine inputs present some case of overfitting, when the model 

"memorizes" the training data and fails to generalize well the behavior of the system. An 

example of this could be seen in Figure 20, where a NN that was trained with just the step input-

output of WZL model (Figure 20, Right-Above) shows a output with strong resemblese to the 

step response of the system.  

The simulation presented below and the subsequent ones are simulations of the models' 

behavior over time. 

Figure 20 - Overfitting example: Input(Left-Above), Output(Left-Bellow), Step trained NN(Right-Above), Sine 

trained NN (Right-Bellow) 

 
Source: author 

Figure 20 also examplify the poor choosing of the NN’s sample time in the response 

of the sine-trained NN that presented a bad result in post simulation (Right-bellow). Matlab’s 
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tool generate a Simulink block for use with WZL’s model, but generate it with a pre-established 

sample time. 

Training the NN with a uniformly distributed random signal promoted better results as 

it was understood that the data set would present a more general view of WZL’s model. The 

configuration of the time-sample prior to the creation of the Simulink block also correct the bad 

post simulations problem above mentioned.  

The results of a series of different signals could be seen following: 

Figure 21 - Simulation of NARX NN model with WLZ's model - Step Input 

 
Source: author 

Figure 22 - Simulation of NARX NN model with WLZ's model - Sine Input 

 
Source: author 
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Figure 23 - Simulation of NARX NN model with WLZ's model – Uniform Random Signal 

 
Source: author 

The above results proved that the time series networks were able to capture the 

dynamics of the model from WZL. The following picture Figure 24 demonstrate also that the 

model trained NN could also approximate the real system with relatively good results if its 

inputs are changed to the real system data. 

Figure 24 - Simulation Results of NARX NN with the Real System 

 
Source: author 

6.1.1 Adapting the NN structure for the WZL case 

The above results showed that the NN model is possible and presents good results in 

dealing with predict the system’s output during run time. Unfortunately, the above 

implementation wouldn’t be well suited to WZL. The controller was in an advanced process of 

development and it required a State Space structured model (4.7). 
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Because of this, the following activities focused on evaluate the possibility to adapt 

this approach to the requirements from WZL, and to locate a better tool to use as an 

implementation stating point since the adaption of the NN provided by the Time Series Network 

was limited. 

In this context, the Neural Network based System Identification Tool Box provided by 

Nørgaard [22] seemed to be an good starting point. Its recursive version of the back-propagation 

algorithm was select as the starting point. The idea was to use regression capability of a NN 

making its output (4-75) a function to determine the parameters that would provide the best 

results desired.  

The training would be given the same way as for any other NN, providing as training 

data, the input and output of WZL’s model, the difference will be that the output of the NN 

model in training, would not be the output of the NN but of a state space structure. Figure 25 

demonstrates a concept of the idea proposed.  

Figure 25 - Proposed scheme to neural network for adapt SS model 

 
Source: author 

During the evaluation and adaptation of Nørgaard’s tool [22], the problem with this 

approach was identified. For the back-propagation training algorithm to work, its necessary to 

calculate de gradient of the error function in respect to each weight that would be adjusted, like 

demonstrated in 4-75 and presented again bellow. 

 𝑔𝑟𝑎𝑑 𝑉𝑁(𝜃, 𝑍𝑁) = 〈
𝜕𝑉𝑁(𝜃, 𝑍𝑁)

𝜕𝑤11
, … ,

𝜕𝑉𝑁(𝜃, 𝑍𝑁)

𝜕𝑤𝑞𝑚
,
𝜕𝑉𝑁(𝜃, 𝑍𝑁)

𝜕𝑊11
, … ,

𝜕𝑉𝑁(𝜃, 𝑍𝑁)

𝜕𝑊𝑞𝑚

〉 6-1 
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The problem here is that the error would no longer be a function of system’s output 

and neural network’s output. For this case, the error would be a function of the state space 

representation output, which would imply being a function of the system dynamics as well, that, 

will vary over time due to updating of the parameters. This makes the calculation of the 

gradient, before simple to define, become extremely complex and time consuming. 

Due to this problem, other approaches being studied during the work were selected as 

the main approach. 

6.2 An optimization approach 

Following what is said in 4.13, the system identification problem can be seen as a 

optimization problem, even more, when the structure of the model is well defined, in this case, 

the state space structure used by WZL’s MPC. Following the definition in [27], the problem of 

system identification as an optimization one was formulated as following. 

The purpose of this problem is to design a model for a robot arm using the states space 

representation structure, that provide a good approximation with the real system. The focus is 

to minimize the error between the output of the real system and the output of the model.  The 

error function utilized was the mean square error: 

 𝑀𝑆𝐸 =  
1

𝑁
∑(𝑦𝑖 −  𝑦̂𝑖)2

𝑛

𝑖=1

 6-2 

The limitations are provided by the state space model. There are no clear restrains for 

the variables as them are parameters of the matrix A of the system, and it’s assumed that any 

real value is applicable. The B, C, and D matrix were defined by converting the TF WZL’s 

model to a state space representation. The size of the matrix A was defined similarly. 

The chosen optimization algorithm was Genetic Algorithm. The implementation was 

taken by using Matlab’s Global Optimization Tool [29]. The user interface of  the tool is shown 

below (Figure 26): In this works case, only the parameters fields were determined, even so, the 

tool provide a series of configurations for the algorithm.  

The fitness function field takes a Matlab function file that establish the GA fitness 

function and the variables field takes the number of desirable parameters to determine. The 

population type was defined as a vector of double variables. 

The Matlab function file (APPENDIX A) generates both a step and a sine signal that 

is passed to the WZL’s model and the output is stored. Later, the same signals are passed to the 
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GA models and the prediction is also stored. Finally, the score of the fitness function is 

calculated as the MSE. 

Figure 26 - Optimization tool interface 

 
Source: [29] 

With the parameters established by the optimization tool, they were then, passed to an 

state space model using the ss command [34], and then the model is simulated side by side with 

WZL’s models. Figure 27 shows the results of these simulation. The results were promising 

and showed a satisfactory approximation from the GA model to WLZ’s, with the error 

oscillating from 0 to 0.003.  

Figure 27 - Genetic Algorithm results: Step input (left), Sine input (right). Position (up), error (below) 

 
Source: author. 

This approach was not carried out through the rest of the stablished methodology 

because it presented an only offline identification approach, meaning that it only could identify 

the system with previous collected data, and not provide an adaptive model as the system works. 



70 Chapter 6: Implementation 

Even so, the optimization approach with genetic algorithm was implemented relatively 

fast with the Matlab’s Optimization Tool and was taken alongside the development of 6.1.1. It 

showed that the neural network approach would present itself as a challenging approach to 

adjust to the WLZ’ problems, while better and more appropriate options to solve the problem 

would exist. 

6.3 Recursive Algorithms for Online Estimation 

Seeking a more suitable and simpler method to provide a better model, the research 

role of this works explored the applications of online estimation methods. Designed for this 

sole purpose of parameter estimation, seemed to be the most reasonable approach for WZL’s 

problem. 

The System Identification Toolbox from Matlab was previous applied in [9] to identify 

a model that provide sufficient approximation to prove that the problem of the controller 

synchronization was possible using a MPC. However, it was not good enough to keep up with 

the high standards of the flexible production line in the automotive industry for example. 

Even so, the same toolbox provides tools for online estimation with easy and fast 

implementation. Being able to address the specific problem of state space parameters estimation 

with a small number of Simulink blocks and parameters. For that reason, this tool was used for 

further implementations. 

The Recursive Polynomial Model Estimator (ANNEX B) presents itself as an 

approach to identify adaptive linear polynomial models (see 4.9.2.1 for the structures available) 

within a closed time window or a continuous estimation during the system’s runtime. The tool 

also provided a converter for the state space representation natively  

Because of the strong sense of linear behavior of the EGM (5.1.1), and considering 

that lower order models are preferred, the firsts implementations of the on Recursive 

Polynomial Model Estimator were made with the simplest model possible: an ARX polynomial 

model, with a first order 𝐴 and 𝐵 polynomial. The input delay was considered 1, meaning that, 

the model considers that it takes 1-time step for the input affects the output. 

Initial results showed that it was capable of approximating WZL’s models with no 

prior knowledge of the model. Figure 28 exhibit that by showing the track of the adaptive model 

for cases of steps and sines inputs. The algorithm applied was the Forgetting Factor (4.11.3), 

and the factor itself was configurated in a manner to present a fast “learning”, in other words, a 

small memory horizon. 
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Figure 28 - Simulation of ARX adaptive model approximating WZL's model 

 
Source: author 

Being able to provide a great approximation to the original model, this approach was 

selected between the others to pass through real data tests. The parameters selected were the 

same as the as previous described. Simulation results (Figure 29) showed that the online 

estimation provide better results than the model from WZL. 

Figure 29 – Simulation of ARX adaptive model approximating the real system 

 
Source: author 

Tests results with the real system however were flawed. The unforeseen variation the 

𝐴, 𝐵, 𝐶 and 𝐷 matrices’ parameters led to misleading control signals that moved the robot in 

the wrong direction. More specifically, the parameters of the 𝐵 matrix, the one tied to the input 

dynamics, presented a fast change in its value, and presenting some cases of zero crossing 
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(Figure 30). In the experiment, this resulted in both cooperative robots moving in the opposite 

direction 

Figure 30 - Evolution of non-zero parameter of Matrix B 

 
Source: author 

Because of this, it was necessary to step back in the adopted methodology to better 

adjust the parameters of the online estimation.  

Regarding the Forgetting Factor algorithm (APPENDIX B), it was identified that it 

wasn’t possible to avoid the oscillation in the parameters without losing in accuracy. Models 

with less oscillation provide poor accuracy in comparison to WZL’s model. It was also noticed 

that the algorithm provides no convergence. 

To solve this problem, two approaches were adopted: reinvestigate the other 

algorithms to identify a model with less accuracy, but with less oscillation or with convergence; 

provide an offline-estimated model as an initial approximation to the online algorithm. 

The first one did not present conclusive results by itself. For all algorithms (4.11.2) of 

the Recursive Polynomial Model Estimator’s (ANNEX B) a good better approximation than 

the original model came at the cost of variation in the parameters and no convergence. 

For the offline estimation, the Matlab’s System Identification Toolbox [21] App 

(ANNEX C) was used. This tool, the same used by WZL to identify the prior model, also 

provide command lines code that let the user create scripts for more specific problems. 

The tool also provides options to select the most appropriate order for the model. By 

estimating ARX models for a range of structures of different orders and delays comparing each 

order and highlighting the structures with best results in three different best-fit criterion. 

• Red: Mean Square Error; 
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• Green: Rissanen MDL criterion.  

• Blue: Akaike AIC criterion. 

Figure 31 - Order selection section 

 
Source: author, [21] 

Testing with a series of offline-estimated models combined with different online 

estimation algorithms made possible to conclude that the Gradient and the Normalized Gradient 

provide an overall better results. The following figures Figure 32 and Figure 33 exemplify this 

by showing results of the fours available algorithms with the same base model (the prior, 

identified by WZL). 

In general, the Kalman Filter provide good results if well adjusted, but the oscillation 

in the parameters were always higher. The Forgetting Factor wasn’t able to approximate the 

system with an offline combination. The Normalized Gradient seemed to stabilize but presented 

a “step-like” variation in the parameters. Finally, the Gradient approach was the only one that 

showed some kind of convergence, but, wasn’t able to give a better model than the initial one. 
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Figure 32 - Simulation with WZL's model as base 

 
Source: author 

Figure 33 - Nonzero parameters from 𝐵 matrix – Off/On-line estimation 

 
Source: author 

With what was presented, two approaches were selected for further implementations: 

The Gradient and Normalized Gradient.  

Simulation tests showed that the models estimated offline in this works had better 

approximation than the original WZL mode, however, the data for estimating and testing the 
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models where captured within a short period of time, this could mean that the current state of 

the system has changed and the data used for WZL’s model no longer generalize well the system 

as the data set used here. Or, that the current data is misleading. 

For this reason, it was selected the algorithm that better managed to detach itself from 

the initial parameters. In this matter, the Normalized Gradient showed a more accurate and 

precise results (see APPENDIX C) in most cases. Figure 34 exemplifies that demonstrating that 

the Normalized Gradient managed to track the model’s outputs with time. 

Figure 34 - Gradient methods in comparison 

 
Source: author 

With the approach selected, and with the algorithm determined, it was possible to 

develop the final solution for WZL’s problem. 
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7 FINAL RESULTS 

The previous chapter provided the steps taken and its subsequent results throughout 

the development of this work in seeking a suitable approach, and its implementation to solve 

WZL’s identification problem. Through the described steps it was concluded that the online 

estimation tool from Matlab, combined with an offline estimated model could provide an 

adaptative model for the articulated robot using EGM and iGPS. 

The integration with the control was tested in the real system, but without measuring 

the quality of the model in this environment. Thus, the results were considered using strictly a 

series of different test data sets in a simulation environment. The capacity of the models to 

follow the real position of the system and its relative error (Figure 35) while maintaining a 

smooth parameter variation (Figure 36) was evaluated. 

Figure 35 - Example of final validation of models. Output from models (above). Error (below) 

 
Source: author 

It was also studied a application of a filter with a slower time constant between the 

estimator’s converter and the model to evaluate the possibility to provide more aggressive 

estimation. Even so the paramerters showed a slower variation (Figure 36), it was not capalbe 

to provide any better results (Figures Figure 35,Figure 37 and Figure 38) 
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Figure 36 - Nonzero parameters of 𝐵 matrix varying over time 

 
Source: author 

 

It was also considered an performance parameter to evaluate the quality of the models 

identified. The Mean Square Error was used for this matter. FiguresFigure 37 and Figure 38 

presents the results for seven different datasets comparing the performance of each model.  

These results showed that the combination of offline and online estimation provided 

by Matlab is an adequate tool capable of providing an adaptive model that promotes more 

accurate results than the current one, while presenting an easy integration to the environment 

and current control. 

Unfortunately, the low order model requested by the control design proved that the 

online estimation does not handle oscillating inputs very well. For more accurate results, a 

higher order model would be preferable (APPENDIX D). 

Regardless, it is possible to assume, that, the main goal of this work was achieved. The 

following MSE charts proved that it’s possible to provide adaptative models with bettter 

aproximation than that which was obtained by WZL. And, at the very least, it can improve the 

current WZL’s model (APPENDIX C). 
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Figure 37 - Mean Square Error – Longer Simulation 

 
Source: author 

Figure 38 - Mean Square Error – Short Simulation 

 
Source: author 
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8 FINAL CONSIDERATIONS AND PERSPECTIVES 

Through the research carried out it was possible to identify and implement three 

different techniques for identify a model for an articulated robot with a black box approach. 

Machine Learning represented by the use of Neural Networks are an appropriate 

method to identify a system, unfortunately, the structures observed through the conception of 

this work are not well suited for WLZ’s control method at its current state and, are too difficult 

or time-consuming to adapt.  

Yet, the NN model provide a good approximation and as stated in [15]: any model that 

can predict the output of the system in the future time window of the MPC could be used in this 

control approach. If desired by WZL to explore others MPC control approaches, this model 

identification technique could prove itself very useful if not better.  

The optimization approach using Genetic Algorithm was implemented relatively fast 

with the help of the Mathworks’ Matlab’s Optimization Tool [29], however it presents no major 

advantage to the remaining alternatives. It only can be used as an offline approach to identify 

the system and, produces results too similar to the obtained firstly by WZL in previous works, 

and to the offline estimated models from System Identification Tool Box [21]. 

For the optimization approach to be interesting to the scope of the FASIM project it 

would be necessary to investigate any other optimization algorithm or an online option. In this 

scenario Hasan’s et. al. work’s [35] could it be an alternative for futures investigation. 

With that said, online estimation prove itself as a simpler, and more convenient 

approach to the system identification problem and, made specifically to these kind of problems.  

Throughout the whole research period of this work, the online estimation provided by 

Mathworks’ Matlab’s, System Identification Toolbox [21] produced the most interesting 

results. Simulations have proved that the tool is capable of providing more faithful 

approximations to the real system than the WZL’s previously identified model. 

Unfortunately, the best results achieved in simulation were not viable in real 

implementation. The high frequency in which the parameters of the model varied provoked a 

misled control signal that forced the work to redesign the models. In this context, finding the 

optimum parameters proved to be a challenging task, as it was necessary to keep in mind that 

faster, more accurate and more precisely models, came with the cost of fast change in its 

parameters. 
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Even so, the online estimation was able to provide better approximation than the 

original model, with no high frequency parameters’ change, when combined with an offline 

approach as the one used by WZL previously.  

The fact that it wasn’t possible to achieve convergence in any available method, 

implies that the nonlinearity from EGM’s is more present than expected, making the algorithms 

needs constant adjustment. Also, the lower order requirement by the controller design has 

promoted limitations to the performance of the models. Larger order models were able to 

present better results and the study of their application in the future of the project is suggested.  

Other alternatives that counteract this work that may be cited are: further investigation 

of the Deep Learning Toolbox™ [33] from Mathworks’ Matlab, and a grey-box modeling but 

may involve the need to change the structure of the MPC. 

The Deep Learning Toolbox also provide the possibility to identify three neural 

networks architectures for prediction and control of a system, including as well a MPC control 

approach. Even though this feature was not explored in this work, it could be an interesting 

alternative tool to investigate in future works on the FASIM project.  

One other path would it be the modeling of a grey-box model. The work from Wernholt 

[5] would fit as a great stating place. It focusses on a grey-box approach, using physical insights 

to stablish a structure more faithful to the real system and relays on estimation methods to 

identify the parameters as was done in this work. 

In conclusion, the accuracy of MPC approaches depends, in some extent, of a good 

prediction of the system. Better models contribute to the optimum control signal that would 

bring the desired future output in dead-time delayed systems. In this context, any improvement 

in the adopted model is valid.  

Two of the three implementations here developed were able to predict the position 

with better accuracy and precision to the real system as the previous method. The online 

estimation prove itself as a fast deployable, simple, that could be easily integrated in the WZL’s 

control environment and capable of improving a linear black-box model for an extremely 

complex, nonlinear system. 
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APPENDIX B Simulation results to Forgetting Factor algorithm 

 
APPENDIX B I - System's and Models' outputs and errors 

 

 
APPENDIX B II – Variation of nonzero parameters of 𝐵 matrix 
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APPENDIX C MSE Comparison: WZL’s model with online estimation 

 
APPENDIX C I -  MSE Comparison with WZL’s model with online estimation – Longer simulation 

 

 
APPENDIX C II - MSE Comparison with WZL’s model with online estimation – Shorter simulation 
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APPENDIX D MSE Comparison: different orders models 

 
APPENDIX D I - MSE comparison in different order models  – Longer simulation 

 

 
APPENDIX D II - MSE comparison in different order models  – Shorter simulation
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