Gustavo Walther Lueders

ESTUDO COMPARATIVO DE PERFORMANCE DE UM SISTEMA FOTOVOLTAICO UTILIZANDO AS BASES DE DADOS SOLARIMÉTRICAS PVGIS, NASA E *METEONORM*

Trabalho de Conclusão de Curso (TCC) submetido ao Curso de Graduação em Engenharia Elétrica da Universidade Federal de Santa Catarina como parte dos requisitos para obtenção do grau de Bacharel em Engenharia Elétrica

Orientador: Eng. Lucas da Silveira

Florianópolis 2019

Ficha de identificação da obra elaborada pelo autor através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Lueders, Gustavo Walther

ESTUDO COMPARATIVO DE PERFORMANCE DE UM SISTEMA FOTOVOLTAICO UTILIZANDO AS BASES DE DADOS SOLARIMÉTRICAS PVGIS, NASA E *METEONORM*/ Gustavo Walther Lueders; orientador Lucas da Silveira ; 2019. 83 p.

Trabalho de Conclusão de Curso (graduação) - Universidade Federal de Santa Catarina, Centro Tecnológico, Graduação em Engenharia Elétrica, Florianópolis, 2018.

Inlcui referências.

1. Engenharia Elétrica. 2. Energia Solar Fotovoltaica. 3. Energia Solar. 4. Energia Renovável. 5. Tecnologia Fotovoltaica. I. Da Silveira, Lucas. II. Universidade Federal de Santa Catarina. Graduação em Engenharia Elétrica. III. Título. Gustavo Walther Lueders

ESTUDO COMPARATIVO DE PERFORMANCE DE UM SISTEMA FOTOVOLTAICO UTILIZANDO AS BASES SOLARIMETRICAS PVGIS, NASA E METEONORM

Este Trabalho foi julgado adequado como parte dos requisitos para obtenção do Título de Bacharel em Engenharia Elétrica e aprovado, em sua forma final, pela Banca Examinadora

Florianépolis, 15 de agosto de 2019. of. Jean Vianei Leite, Dr. Coordenador do Curso de Graduação em Engenharia Elétrica

Banca Examinadora:

ins

Eng. Eletric. Lucas da Silveira Orientador Intelbras

Prof. Carlos Renato Rambo, Ph.D. Universidade Federal de Santa Catarina

Prof. Hans Helmut Zürn, Ph.D. Universidade Federal de Santa Catarina

Este trabalho é dedicado aos meus colegas de classe e aos meus queridos pais.

AGRADECIMENTOS

Agradeço aos meus pais por tudo.

Agradeço à Kaedlyn pela lealdade.

Agradeço à Fernanda pela confiança.

Agradeço ao Pedro pela parceria.

"Tudo que vai volta" (Lima, 2018)

RESUMO

Esse trabalho compara o histórico de performance de geração de três anos de um sistema fotovoltaico instalado na cidade de Brusque- SC com simulações geradas no *software PVSystm* utilizando as bases de dados abertas NASA, PVGIS e *Meteonorm* e comparando a exatidão de cada uma delas.

Palavras-chave: Energia solar fotovoltaica. Bases de dados solarimétricas. Irradiação solar.

ABSTRACT

The present study compares a 3-year series of generation performance of a photovoltaic system installed in the city of Brusque- SC with the aid of PVSyst simulations using the open databases available by NASA, PVGIS and Meteonorm and comparing the accuracy of each database.

Keywords: Photovoltaic solar energy. Solarimetric databases. Solar irradiation.

LISTA DE FIGURAS

Figura 2 - Performance de um sistema fotovoltaico em um dia Figura 3 - Diagrama esquemático com as principais componentes de um Figura 4 - Variação da irradiância espectral em função do comprimento de onda da radiação incidente de quatro tecnologias fotovoltaicas...... 34 Figura 5 - Cost breakdown de sistemas fotovoltaicos no mercado Figura 6 - Volatilidade do preço de minério de ferro, uma das principais matérias primas que impactam no custo de sistemas fotovoltaicos, no mercado global de commodities de 2016 a 2019......41 Figura 7 - Volatilidade do preço do carvão, uma das principais matérias primas que impactam no custo de sistemas fotovoltaicos, no mercado Figura 8 - Dados de datasheet de saída do inversor Fronius IG Plus Figura 9 - Curvas de eficiência de datasheet do inversor Fronius 120V-3 Figura 10 - Coeficientes de temperatura e parâmetros de datahsheet das Figura 11 - Parâmetros físicos de datasheet das placas fotovoltaicas Figura 12 - Detalhe nas dimensões da estrutura de fixação dedicada ao Figura 13 - Detalhe na estrutura de fixação dedicada ao recebimento das Figura 14 - Sistema fotovoltaico de silício monocristalino, objeto de estudo desse trabalho, instalado sobre estrutura dedicada de fixação ... 46 Figura 15 - Principais componentes e processos associados ao saldo Figura 16 - Estações de solo de monitoramento meteorológico da NCDC Figura 17 - Desvio e desvio da raiz quadrada média dos dados obtidos pela metodologia SSE contra os dados da BSRN 50 Figura 18 - Esquemático em AutoCAD do telhado do galpão onde o

Figura 20 – Dados de geração Fronius por inversor e total	no ano de
2016	55
Figura 21 - Dados de geração Fronius por inversor e total	no ano de
2017	55
Figura 22 - Dados de geração Fronius por inversor e total	no ano de
2018	56
Figura 23 - Simulação utilizando a base de dados Meteonorm.	56
Figura 24 - Simulação utilizando a base de dados PVGIS	57
Figura 25 - Simulação utilizando a base de dados NASA	57
Figura 26 - Erros e desvios para o ano de 2016	60
Figura 27 - Erros e desvios para o ano de 2017	61
Figura 28 - Erros e desvios para o ano de 2018	62
- ·	

LISTA DE TABELAS

Tabela 1 - Participação de cada grupo do mercado con	sumidor
brasileiro	28
Tabela 2 - Vantagens e desvantagens das tecnologias fotovoltaic	as mais
utilizadas	35
Tabela 3 - Convenção dos tamanhos de sistemas fotovoltaicos	39
Tabela 4 - descrição do cost breakdown de um sistema fotovoltai	co40
Tabela 5 – Lista de materiais	
Tabela 6 - Desvio e RMSE dos dados obtidos pela metodologia	NASA-
SSE	50
Tabela 7 - Comparação entre os resultados do algoritmo PVGIS	S contra
medições feitas pela BSRN	51
Tabela 8 - Desvio dos dados obtidos pela metodologia PVGIS	52
Tabela 9 – Rankeamento das bases em 2016	59
Tabela 10 - Rankeamento das bases em 2017	59
Tabela 11 - Rankeamento das bases em 2018	59
Tabela 12 - Rankeamento geral das bases	59
-	

LISTA DE ABREVIATURAS E SIGLAS

ABNT – Associação Brasileira de Normas Técnicas IBGE – Instituto Brasileiro de Geografia e Estatística SWERA – Solar and Wind Energy Resource Assessment PNUMA - Programa das Nações Unidas para o Meio Ambiente GEF – Global Environment Facility EPE – Empresa de Pesquisa Energética ANEEL - Agência Nacional de Energia Elétrica UC – Unidade Consumidora REN - Resolução Normativa NBR – Norma Brasileira CA – Corrente Alternada CC – Corrente Contínua NREL – National Renewable Energy Laboratory NASA – National Space Agency SSE – Solar Meteorology and Solar Energy BSRN – Baseline Surface Radiation Network DPS – Dispositivo de Proteção contra Surtos BOS – Balance of System ISCCP – International Satellite Cloud Climatology Program GMAO – Global Modelling and Assimilation Office TOMS – Total Ozone Mapping Spectometer TOVS – Tiros Operational Vertical Sounder RMSE – Root Mean Square Error

CAD – Computer Aided Design

1. INTRODUÇÃO 23 1.1 OBJETIVOS 23
1.1.1 Objetivo Geral
1.1.2 Objetivos Específicos
2. REVISÃO BIBLIOGRÁFICA
2.2. EFEITO FOTOVOLTAICO
2.3. MERCADO CONSUMIDOR BRASILEIRO
2.4. SISTEMA DE COMPENSAÇÃO DE CRÉDITOS FOTOVOLTAICOS
2.4. REGULAMENTAÇÃO
2.5. COMPOSIÇÃO DO SISTEMA
2.6. FIXAÇÃO EM TELHADOS
2.7 FIXAÇÃO NO SOLO
2.8 TECNOLOGIAS NO MERCADO
2.9. RENDIMENTO
2.10 COMPONENTES ELÉTRICOS NÃO-FOTOVOLTAICOS 36
2.11 FIGURAS DE MERCADO
2.12 NATIONAL RENEWABLE ENERGY LABORATORY
2.12 BASES DE DADOS
2.13. ESTIMATIVA POR SATÉLITE GEOESTACIONÁRIO
2.14 <i>COST BREAKDOWN</i>
3. METODOLOGIA 433.1 CARACTERÍSTICAS DO SISTEMA43
3.2 BASE DE DADOS NASA-SSE
4. RESULTADOS

SUMÁRIO

APÊNDICE B – R ELATÓRIO PVGIS GERADO PEL	O PVSYST
	75
APÊNDICE C – R ELATÓRIO METEONORM GERA	DO PELO
PVSYST	81

1. INTRODUÇÃO

Há uma preocupação crescente com a sustentabilidade do uso dos recursos naturais globais aliado ao crescimento da demanda por energia elétrica ano a ano. Nesse contexto, o uso de energia fotovoltaica sofreu um enorme aumento na última década e é esperado que esse aumento continue sustentado nos anos vindouros. Para que a energia fotovoltaica seja integrada da melhor maneira possível à infraestrutura energética atual, um amplo conhecimento científico do recurso solar é necessário. A força comercial de projetos de empresas que hoje disseminam a instalação e comercialização de sistemas de autogeração fotovoltaica faz forte uso das bases de dados solarimétricas. Uma grande parte da expansão da energia fotovoltaica distribuída no mundo depende do conhecimento que temos a respeito das bases de dados.

As bases de dados mais difundidas utilizadas para simulação de performance de sistemas utilizam tratamento de um longo histórico de fotografias de satélite da superfície da Terra em conjunto com modelos de cálculo de radiação solar máxima. Em seguida, os dados tem o erro comparado com estações meteorológicas de medição espalhadas de forma esparsa e discreta pela superfície da Terra.

No Brasil, o software de simulação mais utilizado comercialmente pela indústria é o *PVSyst* e possui integração com bases de dados gratuitas e pagas. Três grandes bases de dados gratuitas consideradas de alta qualidade são a NASA-SSE, PVGIS e *Meteonorm* e que são objeto do presente estudo.

Por fim, concluiu-se que a base NASA é a mais exata, seguida da base *Meteonorm*, sendo a base PVGIS a menos exata nas condições desse estudo.

1.1 OBJETIVOS

1.1.1 Objetivo Geral

Esse trabalho tem como objetivo geral analisar e comparar a exatidão das três bases de dados solarimétricas mais utilizadas comercialmente, NASA, PVGIS e *Meteonorm* utilizando o histórico de geração dos anos de 2016, 2017 e 2018 de um sistema fotovoltaico de autogeração instalado no médio vale catarinense.

1.1.2 Objetivos Específicos

-Avaliar o histórico de geração dos anos 2016, 2017 e 2018 de um sistema fotovoltaico instalado em Brusque;

-Simular o sistema no *software PVSyst* utilizando as bases de dados abertas NASA, PVGIS e *Meteonorm*;

-Comparar o histórico real de geração do sistema com os resultados obtidos nas simulações.

2. REVISÃO BIBLIOGRÁFICA

2.1 RECURSO SOLAR

As emissões eletromagnéticas do sol possuem espectro amplo que vai desde os raios-x, altamente energéticos, passando pelo espectro visível, até as ondas de rádio. Essas emissões interagem com a atmosfera terrestre e com seu envelope eletromagnético próprio sofrendo várias perdas e atenuações e apenas uma pequena parte da energia solar chega à superfície da atmosfera pronta para ser convertida em outras fontes de energia. A radiação solar passa por processos de absorção, dispersão e espalhamento em função de componentes atmosféricas como ozônio, CO_2 e partículas sólidas e líquidas em suspensão como aerossóis e vapor de água, sendo a principal fonte de atenuação a cobertura de nuvens. A magnitude relativa do impacto de cada componente é uma função do comprimento do caminho percorrido pela radiação através da atmosfera e o caminho percorrido é uma função da posição do sol no céu.

A radiação solar recebida a nível do solo é a soma das componentes radiação direta, ou aquela que vem do sol sem atenuação; radiação difusa, ou aquela que sofreu atenuação e radiação refletida, tanto do solo como obstáculos próximos. A presença de nuvens impede completamente a passagem da radiação direta, sendo a radiação difusa o recurso solar mais presente. A incidência de radiação solar sob condições de céu limpo e atmosfera limpa e seca é utilizada como parâmetro de máxima radiação de um determinado local. As duas formas mais comuns de medir o recurso solar é a radiação e a irradiação. Irradiação é um valor instantâneo de quantidade de energia solar incidente em uma determinada área expresso em watts por metro quadrado (W/m²) e radiação é irradiação em um determinado período de tempo (Wh/m²). Outra medida importante de recurso solar é o albedo, que indica a parcela de reflexão difusa em relação à radiação total recebida por um corpo cósmico. O albedo é adimensional e varia entre 0 (o equivalente a un corpo negro, que absorve toda a luz incidente) e 1 (o equivalente a um corpo que reflete toda a luz incidente). (PVGIS METHODS DOCUMENTATION, 2017)

Em 2001 surgiu o projeto SWERA (Solar and Wind Energy Resource Assessment Project) com o objetivo de auxiliar no desenvolvimento de energias renováveis pelo mundo, principalmente em países emergentes através do mapeamento dos recursos solar e eólico nessas regiões. O projeto foi financiado pelo Programa das Nações Unidas para o Meio Ambiente (PNUMA) e co-financiado pelo Fundo Global para o Meio Ambiente (GEF) (PEREIRA ET AL., 2006). Os três pilares do projeto são prover informação completa para tomada de decisão, incentivar políticas para desenvolvimento sustentável e aumentar a confiança de investidores globais em projetos de energia renovável. O projeto foi concluído em 2011 e toda a base de dados foi transferida para a plataforma *OpenEI* onde se encontra à disposição de qualquer instituição ou pessoa física. A base de dados do projeto SWERA foi utilizada para a confecção do Atlas Brasileiro de Energia Solar, cujo os mapas são hoje fonte de dados de maior confiabilidade no Brasil.

A posição do sol para um observador localizado na superfície da Terra é definida pela altura e pelo azimute solar. A altura é a elevação que o sol se encontra em relação ao observador. É um ângulo que varia entre 0° e 90° para objetos que se encontram acima da linha do horizonte. O azimute é o ângulo que compara a posição do sol em relação ao norte. Varia entre -180° e 180. O sistema de coordenadas celestes pode ser verificado na figura 1.

Figura 1: Sistema horizontal de coordenadas celestes.

Fonte: BRESSAN et al, 2017.

2.2. EFEITO FOTOVOLTAICO

Quando luz incide sobre silício cristalino, uma parte é refletida, uma parte é absorvida e uma parte passa direto. Usualmente quando luz de baixa energia incide sobre um sólido, calor é gerado sem que as propriedades elétricas do material sejam alteradas, isto é, a vibração dos átomos aumenta mas não o suficiente para que eles fiquem livres no cristal. O mesmo não acontece quando luz de alta energia incide sobre cristal de silício. Se a energia da luz incidente for alta o suficiente, o elétron se solta da ligação onde ele se encontra e ele fica livre no meio do cristal. Diz-se que esse elétron livre encontra-se na banda de condução do cristal. O espaço deixado pelo elétron se chama lacuna e as lacunas também podem se mover pelo cristal. Os elétrons deixam a sua ligação atual, passam a se ligar com as lacunas próximas, deixando uma nova lacuna para trás, e assim por diante, de forma errática e frequente. (HERSCH ET AL., 1982)

Contudo, apenas esse fenômeno não é condição suficiente para a o surgimento de uma diferença de potencial. Uma célula fotovoltaica possui ainda uma barreira que separa os elétrons dos buracos, forçando mais elétrons para um lado e mais buracos para outro, dificultando assim a religação dessas cargas. (HERSCH ET AL., 1982) Com a presença dessa barreira cria-se então uma diferença de potencial entre as duas extremidades do material, que pode causar uma corrente caso um condutor elétrico conecte as duas partes. Essa barreira é criada através de um processo de dopagem, onde se adiciona um átomo externo -uma impureza, à estrutura do cristal para que se obtenha uma nova configuração eletrônica específica desejada.

2.3. MERCADO CONSUMIDOR BRASILEIRO

Em 2016 as três maiores classes consumidoras do mercado cativo no Brasil são a residencial, com 132 GWh e 39,4% de participação, em segundo lugar o comercial, com 78 GWh e 23,4% de participação e em terceiro lugar o industrial, com 52 GWh e 15,7% de participação, segundo tabela 1 (ANUÁRIO ESTATÍSTICO DE ENERGIA ELÉTRICA EPE 2017, 2017).

Nas capitais brasileiras, o consumo por ar condicionado corresponde a 50% do consumo total dos edifícios públicos e comerciais, chegando a 70% em edifícios envidraçados. O consumo por

ar condicionado tem o perfil de consumo praticamente idêntico ao da geração do sistema fotovoltaico, iniciando no começo do dia, tendo seu pico no sol a pino e finalizando no fim do horário comercial. (RÜTHER ET AL., 2004).

rabela 1. Meredao consumado prasheno					
		Consumo	Participação	n° de	Consume
		em GWh	em %	estabelecimentos	estabeleci
					o em kWh
Residencial		132	39,4	69.000.000	1.900
Comercial		78	23,4	1.605.767	48.750
Industrial		52	15,7	175.760	297.00

Tabela 1: Mercado consumidor brasileiro

Fonte: Adaptado de Anuário EPE, 2017.

2.4. SISTEMA DE COMPENSAÇÃO DE CRÉDITOS FOTOVOLTAICOS

O sistema de compensação vigente no Brasil para sistemas *ongrid* (conectados à rede) permite um fluxo duplo de energia elétrica que funciona da seguinte forma: a energia gerada pelo painel é consumida instantaneamente dependendo da carga da unidade consumidora naquele instante. Como o consumo instantâneo é local, as perdas por transmissão são mínimas. Caso haja um excedente de energia gerada em relação à consumida, a energia flui para a rede, passando por um medidor bidirecional, que contabiliza créditos de energia elétrica para aquele consumidor em uma espécie de banco de créditos de energia elétrica. Caso haja um déficit de energia gerada, a energia fluirá da rede para dentro da unidade consumidora, consumindo os créditos acumulados no banco. Os créditos tem validade 60 meses.

A curva de geração tem o formato de uma curva de Gauss, como na figura 2. A figura 2 foi retirada de um aplicativo de monitoramento de clientes de uma empresa de projeto fotovoltaico da região e descreve a curva de geração em um dia limpo de sol de uma madeireira no município de São José - SC com um sistema instalado e operante.

2.4. REGULAMENTAÇÃO

O sistema elétrico brasileiro não previu o surgimento de mini e micro unidades geradoras espalhadas pelos telhados das cidades e essa é

uma discussão ainda em andamento, não apenas no Brasil mas em todo o mundo. Em 18 de maio de 1999 a ANEEL publicou a resolução N° 112, a primeira resolução que regulamenta a energia fotovoltaica e outras fontes renováveis até 5.000 kW, para consumo na própria UC. Nessa resolução é indicado quais são os requisitos necessários e os procedimentos cabíveis para que a unidade consumidora adquira autorização para gerar a sua própria energia.

Em 17 de Abril de 2012, a ANEEL publicou a resolução N° 482, considerada marco regulatório para a autogeração de energia elétrica de fontes renováveis no Brasil. Nessa resolução são criadas as definições de microgeração (até 75 kW) e minigeração (de 75 kW até 5 MW), autoconsumo remoto, sistema de compensação de créditos e todas as outras condições gerais para o acesso à rede. A normativa entrou em vigência em dezembro do mesmo ano e já passou por várias edições e revisões.

Figura 2: Performance de um sistema fotovoltaico em um dia ensolarado de verão monitorada por aplicativo mobile.

Conforme a implantação da REN 482 foi sendo monitorada pela ANEEL, conclui-se que haviam diversos pontos de melhoria e com esse objetivo foi posteriormente publicada a REN 687/2015. A REN 687/2015 tem objetivos reduzir custos e tempo de instalação de sistemas de micro e minigeração, compatibilizar o Sistema de Compensação de Energia Elétrica com as Condições Gerais de Fornecimento (REN 414/2010) e aumentar o público alvo e melhorar as informações na fatura.

Outro documento importante é a ABNT NBR 5410, que normatiza instalações elétricas de baixa tensão (até 1000 V para corrente alternada e até 1500 V para corrente contínua) e todos os seus dispositivos de proteção.

Instalações fotovoltaicas no Brasil devem estar sujeitas também à NR-10, Norma Regulamentadora emitida pelo Ministério do Trabalho e Emprego do Brasil que tem por objetivo garantir a integridade e segurança de trabalhadores e instaladores de sistemas de eletricidade. A norma abrange todas as fases da transformação da energia elétrica, desde geração, transformação e transmissão até distribuição e consumo, e abrange também todas as etapas de projeto como construção, montagem, manutenção, operação ou quaisquer atividades na instalação elétrica.

2.5. COMPOSIÇÃO DO SISTEMA

A menor unidade do sistema fotovoltaico é a placa geradora e a potência total do sistema corresponde a potência somada de todas as placas. A energia gerada pelas placas está na forma de corrente contínua e por isso todo sistema conta com um inversor CC-CA. A unidade que descreve a potência de um painel é o Kilowatt pico, que corresponde à potência em corrente contínua que aquele painel gera quando uma radiação de 1000 W/m^2 a 25° C incide sobre ele.

A energia CA flui está conectada com a unidade geradora através do quadro de carga e com o medidor bidirecional. Na figura 3 pode-se verificar um diagrama com as componentes básicas de um sistema.

Figura 3: Diagrama esquemático com os principais componentes de um sistema fotovoltaico residencial..

Fonte: RÜTHER, Ricardo, 2004

2.6. FIXAÇÃO EM TELHADOS

Os sistemas fotovoltaicos montados em telhados hoje são classificados em integrados ou acoplados à construção. As formas de fixação integradas utilizam as placas como parte funcional da arquitetura do imóvel e são concebidas necessariamente no projeto arquitetônico civil. Dessa forma as placas solares servem como substitutas de telhas, chapas de cobertura e outros componentes integrados da estrutura. Apenas uma pequena minoria de imóveis conta com esse tipo de implementação.

O tipo mais frequente de fixação hoje é a fixação acoplada. A fixação acoplada conta com uma estrutura que não foi concebida no

projeto original do imóvel e que é fixada posteriormente no seu telhado ou fachada. Existem estratégias para cada tipo de telhado e hoje as mais frequentes no Brasil são dedicadas ao telhado de telha cerâmica, telha metálica e chapa de fibrocimento. De forma geral, essas fixações podem ser divididas em três categorias: trilho, sem trilho e trilho compartilhado. Todas elas requerem algum tipo de ancoragem ou penetração no telhado ou na estrutura dele.

Para o telhado residencial, onde a telha cerâmica predomina, utiliza-se um gancho quadrado parafusado diretamente no caibro do telhado. Esse tipo de fixação não requer que as telhas sejam furadas. Na parte do gancho que fica para o exterior, são fixados trilhos (geralmente de alumínio) que servem como sustentação para as placas. Uma outra forma de fixar os trilhos é através de um parafuso com prisioneiro fixado no caibro com um furo passante pela telha, ou chapa. Algumas empresas já empregam hoje estratégias que fixam os trilhos diretamente na chapa metálica apenas com parafusos e sem suportes adicionais. Dessa forma as placas ficam muito próximas à chapa e há uma grande economia em elementos de fixação ao custo de perdas de ventilação na parte inferior da placa e consequente perda de eficiência.

2.7 FIXAÇÃO NO SOLO

Além das estruturas de fixação de telhado, existem as estruturas de fixação de solo, utilizadas em projetos inerentemente maiores. Estruturas de fixação no solo são via de regra mais caras do que de telhado. Uma das vantagens da fixação no solo é a grande ventilação que as placas recebem na sua parte inferior melhorando sua eficiência. Além disso, instalação e manutenção das placas são mais seguras, rápidas e baratas pois não exige trabalho em alturas. Entre as desvantagens estão a necessidade de um terreno dedicado apenas para a usina, eventuais trabalhos de terraplanagem, manter o espaço constantemente livre de plantas e arbustos. As fileiras devem ser espaçadas de tal forma que a fileiras vizinhas não façam sombra no painel.

Para fixação no solo é comum o uso de trackers, chamados também de seguidores solares. As placas são fixadas em um dispositivo que acompanha o movimento do sol durante o dia, aumentando a incidência total de radiação e a geração anual total entre 30% e 50% (EKE; SENTURK, 2012). Possuem como desvantagem um custo maior de instalação, operação e manutenção, se justificando para usinas maiores.

2.8 TECNOLOGIAS NO MERCADO

O sistema fotovoltaico de geração distribuída é composto por um inversor, pela *string* de placas e por um medidor bidirecional. Atualmente, somando as tecnologias do mercado e da pesquisa, existem dezenas de tecnologias fotovoltaicas, mas a dominante e mais disponível em função do seu custo benefício no mercado são as placas de silício cristalino (c-Si). No peso do custo benefício da tecnologia c-Si pesa o fato de o silício ser o elemento mais abundante na superfície da Terra e por possuir toxicidade próxima de zero, levando em conta o descarte posterior das placas. A limitação do c-Si em comparação a outras tecnologias é a espessura da lâmina.

As tecnologias a base de silício cristalino utilizam energia com comprimento de onda que varia de 350 a 1100 nm (MYERS ET AL., 2013). Na figura 4 pode se verificar a atenuação da energia solar conforme ela percorre o caminho do sol até a superfície terrestre. Podese notar também a diferença entre a radiação extraterrestre e a radiação que efetivamente chega na superfície para uso humano. As barras no topo da figura mostram as regiões de comprimento de onda útil que cada tecnologia fotovoltaica utiliza.

Figura 4: Variação da irradiância espectral em função do comprimento de onda da radiação incidente de quatro tecnologias fotovoltaicas.

Na tabela 2 é possível verificar as principais diferenças entre cada tipo de tecnologia.

mais utilizadas				
	Vantagens	Desvantagens	Market	Eficiência
			Share	
Silício	Tecnologia	Requer	24%	24,4%
monocristalino	comercial de	lâmina mais		
c-Si	maior	grossa e		
	eficiência e	rígida. Placas		
	durabilidade.	mais caras.		
Silício	Processo de	Eficiência	62%	19,9%
policristalino	fabricação	levemente		
m-Si	barato.	abaixo do c-		
		Si		
Telureto de	Processo de	Cádmio	4%	18,6%
Cádmio CdTe	fabricação	extremamente		
	barato.	tóxico.		
		Telúrio é um		
		elemento não		
		abundante.		
Cobre Índio	Células	Custo de	2%	19,2%
Gálio Selênio	fotovoltaicas	fabricação		
CIGS	flexíveis e	menos		
	finas.	competitivo.		

Tabela 2: Vantagens e desvantagens das tecnologias fotovoltaicas mais utilizadas

Fonte: Adaptado de Myers, 2013.

2.9. RENDIMENTO

O rendimento dos sistemas fotovoltaicos é afetado por duas principais grandezas: radiação luminosa sobre as placas, que por sua vez é afetada pela localização geográfica do sistema no globo, inclinação e ângulo azimutal das placas, estado de limpeza das placas, sombreamento parcial, devido a obstáculos físicos como prédios vizinhos e árvores; e perdas de eficiência elétrica, que decorrem de perdas nos condutores, perda de eficiência em função da temperatura elevada nas placas. De forma geral, a inclinação das placas irá depender em qual latitude terrestre o sistema encontra-se instalado e será sempre voltada para o equador (sistemas no hemisfério sul serão instalados para o norte e sistemas no hemisfério norte serão instalados para o sul). Alguns sistemas podem ainda ser instalados sobre uma base giratória que acompanha o movimento diário do sol de forma que durante todo o dia, o ângulo de incidência solar na placa seja máximo. Entretanto esses sistemas não apresentaram um custo benefício justificável pois a base é composta por componentes ativos como sensores e motores que requerem manutenção e encarecem o projeto.

O sombreamento é crítico para o desempenho do sistema. As placas são ligadas em série (cada ligação em série é chamada de *string*), e o sombreamento em uma placa e a consequente queda na performance irá limitar a corrente circulante por toda a *string*. Além disso, uma placa sombreada passa a atuar como uma carga e consome energia da *string* ao invés de gerar, causando superaquecimento. Esse efeito é também chamado de *hot spot*. Para mitigar esse efeito, são utilizados diodos que permitem fluxo de corrente somente na direção geradora.

2.10 COMPONENTES ELÉTRICOS NÃO-FOTOVOLTAICOS

A energia gerada pelas placas é em corrente contínua e precisa ser convertida em alternada através do uso de inversores. Os inversores podem ser comutados pela frequência da rede ou auto-comutados com circuitos próprios. De qualquer forma, quando há falta de energia na rede, o sistema fotovoltaico também desliga pois: 1) perde a referência da rede e 2) por motivos de segurança, geradores distribuídos não devem ter autonomia para energizar a rede caso manutenção física seja necessária. Por esse mesmo motivo de segurança, é extremamente recomendado a instalação de um transformador de isolamento e dispositivos de proteção contra sobrecorrentes. surtos. sobre/subfrequências, sobre/subtensões tanto na parte CA quanto na parte CC do sistema.

2.11 FIGURAS DE MERCADO

Existem hoje duas figuras no mercado de projetos fotovoltaicos de geração distribuída: o instalador e o integrador. A figura do instalador em geral é representada por empresas menores e que tem no seu portfólio: geração de leads comerciais, venda e instalação de sistemas mas que não provêm soluções de financiamento. O integrador tem todos esses produtos no seu portfólio além de fornecer linhas de financiamento.
2.12 NATIONAL RENEWABLE ENERGY LABORATORY

O *National Renewable Energy Laboratory* (NREL) está localizado em Golden, no estado do Colorado, e é referência mundial em pesquisa e desenvolvimento em energias renováveis e eficiência energética. O laboratório é de propriedade do Governo Federal dos Estados Unidos e recebe financiamento através do Departamento de Energia dos Estados Unidos e pelo Congresso.

Como a maioria das tecnologias de energia renovável e eficiência energética são jovens e emergentes, o NREL auxilia na redução do risco do mercado privado e fomenta a adoção e desenvolvimento das mesmas. O propósito do NREL desde a sua fundação em 1977 tem como objetivo reduzir a dependência dos Estados Unidos no petróleo, no gás e em combustíveis fósseis em geral (NREL, 2018).

2.12 BASES DE DADOS

O estudo e construção das bases de dados solarimétricas são baseados na radiometria, que é o conjunto de técnicas de medição de radiação, incluindo luz solar. Os instrumentos de medição de radiação solar são separados em dois grandes grupos de funcionamento: os baseados em processos térmicos e os baseados em efeito fotoelétrico.

Os medidores baseados em efeito térmico consistem em um dispositivo que transforma a luz solar em calor, seguido de um instrumento que mede da forma mais precisa possível o calor resultante. Os dois detectores termoelétricos mais utilizados para medições solarimétricas são a termopilha e os detectores de resistência, como os baseados em platina por exemplo. Em aplicação mais específicas termistores também podem ser utilizados.

Os medidores baseados em efeito fotoelétrico medem a corrente que circula por um condutor quando a luz solar incide sobre um semicondutor com propriedades fotoelétricas conhecidas.

O padrão internacional vigente de medição solar para o Sistema Internacional de Unidades é a Referência Radiométrica Global que foi estabelecida pela Organização Meteorológica Mundial em 1980. O grau de incerteza para o padrão é de 0,3% para intensidades maiores que 700 W/m^2. Mesmo com o estabelecimento desse padrão, dados coletados de piranômetros apresentam exatidão de 2%; dados coletados de piranômetros térmicos apresentam exatidão de 3% - 5%; e dados coletados de piranômetros fotoelétricos apresentam exatidão de até 15% (MYERS ET AL., 2013). Em 1989 o WCRP (*World Climate Research Programm*) estimou que a maioria das estações de coleta de dados solares possui incertezas "*end-to-end*" de 6% a 12% (*NASA-SSE METHOD DOCUMENTATION*).

Esses erros ocorrem principalmente por diferenças intrínsecas do material de cada coletor, ângulos de incidência muito abertos nos períodos de nascer e pôr do sol, manutenção local do equipamento, etc.

Apesar da importância do mapeamento global do recurso solar, as estações de medição estão distribuídas de forma muito desigual ao redor do globo, em grande parte pelos custos de instalação, operação e manutenção, armazenamento e tratamento dos dados, e em função das políticas de incentivo a energias renováveis se alterando com frequência.

De forma sumarizada, as condições mínimas que devem ser atendidas para que a coleta de dados de uma estação seja considerada relevante incluem:

* Emprego de sensores de alta qualidade;

* Medições devem ser performadas pelo menos a cada hora;

* Sensores devem ser calibrados periodicamente;

* Sensores devem ser limpos periodicamente;

* Dados devem estar disponíveis por longos períodos de tempo, preferencialmente no mínimo 10 anos. (*PVGIS METHOD DOCUMENTATION*)

2.13. ESTIMATIVA POR SATÉLITE GEOESTACIONÁRIO

Uma alternativa às estações no solo, são dados coletados e tratados por satélites geoestacionários, principalmente para áreas onde as estações são esparsas. A principal vantagem desse método é a grande área de cobertura pois o algoritmo cobre e processa toda a área fotografada e a disponibilidade de longas séries de fotografias, ultrapassando frequentemente 30 anos. Como desvantagem, os dados coletados por satélite tem um grau de incerteza maior devido à incertezas nos valores de aerossol, detecção de múltiplas camadas de nuvens, inexatidão em áreas com neve ou regiões de latitudes maiores que 62° e áreas polares em geral. Além disso, requer o emprego de algoritmos matemáticos complexos e com muitas variáveis. (*METEONORM METHOD DOCUMENTATION*).

O primeiro passo do método de estimativa por satélite geoestacionário é comparar a tonalidade do pixel do mesmo local dentre todas as imagens da base de dados. O pixel mais escuro é a referência de condição de céu limpo daquele local. Todos os outros dias são calculados utilizando o "pixel de céu limpo" como referência. A partir desse valor é possível calcular o albedo de nuvem efetivo.

O segundo passo é calcular a radiação solar de céu limpo utilizando a teoria de transferência solar atmosférica e dados de aerossol e concentrações de vapor e ozônio.

O terceiro passo consiste no cálculo da radiação total, calculado a partir do albedo de nuvem efetivo e radiação solar de céu limpo.

O quarto passo é a validação dos dados produzidos pelo algoritmo. Esse passo consiste em comparar os dados calculados com dados obtidos por estações meteorológicas no solo, sendo esses dados provenientes em sua maioria da base de dados *Baseline Surface Radiation Network* (BSRN) (*NASA SSE METHOD DOCUMENTATION*).

2.14 COST BREAKDOWN

Trimestralmente o NREL publica um documento de *benchmark* que detalha o *cost breakdown* do mercado fotovoltaico atual no mercado americano. Esse relatório chama-se *U.S. Solar Photvoltaic System Cost Benchmark* e é referência em inteligência comercial no mercado fotovoltaico. O estudo separa os sistemas em três categorias de tamanho como detalhado na tabela 3. Os sistemas são separados por categorias de tamanho pois o custo do kW diminui conforme o sistema aumenta, tornando a comparação de um sistema residencial com um sistema comercial de 1 MW inapropriada.

Categoria do setor	Descrição	Tamanho
Residencial	Fixação em telhados	3 kW – 10 kW
	residenciais	
Comercial	Fixação em telhados	10 kW - 2 MW
	comerciais e	
	industriais	
Utility-scale	Fixação no solo,	> 2 MW
	estática ou com	
	tracker	

Tabela 3: descrição da NREL dos tamanhos de sistemas fotovoltaicos

Fonte: NREL, 2017.

Não há consenso para a definição exata de *Utility-scale*, nem em tamanho nem em formato. Diferentes instituições utilizam o termo para diferentes potências como por exemplo a *Solar Energy Industries Association*, que utiliza o termo para usinas acima de 1 MW. Nesse caso, será considerada a definição da NREL, de 2 MW.

O *cost breakdown* consiste em cinco tipos de custos conforme pode ser verificado na tabela 4 e na figura 5:

1010 / 0110100				
Custo	Descrição			
Módulos	Custo total dos painéis			
Inversor	Custo total dos inversores			
Hardware BOS	Estrutura e componentes elétricos (cabeamento, dispositivos de segurança, etc)			
Soft Costs – mão de obra	Remuneração de funcionários, encargos trabalhistas, etc.			
Soft Costs – outros	Aquisição do imóvel, impostos, encargos cartoriais, lucro, etc.			

Tabela 4: descrição do *cost breakdown* de um sistema fotovoltaico

Fonte: Adaptado de NREL, 2017.

Figura 5: *Cost breakdown* de sistemas fotovoltaicos no mercado americano separados em quatro diferentes escalas de tamanho.

Fonte: NREL, 2017.

A evolução anual do *cost breakdown* por tamanho de projeto publicado no estudo do NREL pode ser verificado na figura. De acordo com o NREL, os fatores responsáveis pela diminuição do custo do kilowatt hora são: inversores mais baratos e painéis mais eficientes devido a esforços de P&D, times de desenvolvimento menores devido à maior maturidade de produto e curva de aprendizado crescente, painéis fabricados com tensões maiores permitem correntes menores e menos perdas nos condutores.

Dentre os principais aspectos que causam o aumento dos preços do kWh estão: aumento do preço dos painéis e do aço, e aumento do custo da força de trabalho. Os custos dos materiais dos painéis e do aço são fortemente afetados pelos preços internacionais de mercado do carvão e do minério de ferro. Nas figuras é possível verificar o histórico de preços dos últimos 3 anos de dois dos principais *benchmarks* de carvão e minério de ferro negociados por bolsas internacionais de commodities. Aproximadamente 65% do *cost breakdown* do aço é composto pelo preço do carvão e do minério de ferro.

O custo de mercado das placas também já se mostrou sensível a episódios de choque de demanda. Durante todo o ano de 2017 o governo dos Estados Unidos não demonstrou firmeza quanto a continuidade das políticas de subsídios causando incerteza e elevando a procura de compra pelas placas além do esperado e causando um aumento de preços de 25 % naquele ano (NREL *Cost benchmark* 2017). Essa volatilidade pode ser verificada nas figuras 6 e 7.

Figura 6: Volatilidade do preço de minério de ferro, uma das principais matérias primas que impactam no custo de sistemas fotovoltaicos, no mercado global de commodities de 2016 a 2019.

Figura 7: Volatilidade do preço do carvão, uma das principais matérias primas que impactam no custo de sistemas fotovoltaicos, no mercado global de commodities de 2016 a 2019.

3. METODOLOGIA

3.1 CARACTERÍSTICAS DO SISTEMA

O presente trabalho analisa o desempenho de um sistema fotovoltaico de 21,06 kWp instalado sobre um telhado de uma indústria localizada na cidade de Brusque e que se encontra em operação desde agosto de 2015. Os dados de geração utilizados na análise são capturados pelo *datalogger* do inversor *Fronius* e enviados para a web enquanto o inversor estiver conectado à uma rede de internet, seja via cabo ou wireless. Altas taxas de erro na transmissão de internet, flutuações de recepção ou interrupções da transmissão prejudicam a operação online do *datalogger (Fronius Datalogger Web datasheet)*.

O sistema é composto por dois inversores *Fronius* IG *Plus* 120V-3. O sinal de referência de frequência do inversor é lido da rede, dessa forma o sistema é exclusivamente para uso *on-grid*, não havendo geração para sistemas que não estejam conectados. Nas figuras 8 e 9 podem ser verificados os dados de *datasheet* de saída e as curvas de eficiência dos inversores.

OUTPUT DATA	120 V-3
AC nominal output (P _{ac,r})	10,000 W
Max. output power	10,000 VA
Max. output current (I _{ac max})	14.5 A
Grid connection (U _{ac,r})	3~NPE 400 V / 230 V
Min. output voltage (Uac min)	180 V
Max. output voltage (U _{ac max})	270 V
Frequency (f _r)	50 Hz / 60 Hz
Frequency range (f _{min} – f _{max})	46 – 65 Hz
Distortion factor	< 3 %
Power factor ($\cos \varphi_{ac,r}$)	0.75 - 1 ind. / cap. ¹⁾

Figura 8: Dados	de datasheet	de saída	do inversor	Fronius IG
	Plus 120V	V-3.		

Figura 9: Curvas de eficiência de *datahsheet* do inversor *Fronius* 120V-3.

Cada inversor recebe três *strings* de 13 placas fotovoltaicas do fabricante *SunEdison*, modelo SILVANTIS MEMC F270CyC-3x, totalizando 39 placas por inversor e 78 placas no total. Nas figuras 10 e 11 podem ser verificados os parâmetros elétricos, físicos e coeficientes de temperatura das placas, retirados do *datasheet* das placas.

Figura 10: Coeficientes de temperatura e parâmetros de *datasheet* das placas fotovoltaicas *SunEdison* utilizadas.

Model # ³	F270KyC
Frame/Back Sheet Color	Black/ Black
Rated Maximum Power	270
Pmax (VV)	-0 t0 + 5 VV
Open-Circuit Voltage Voc (V)	38.5
Short Circuit Current Isc (A)	9.10
Module Efficiency (%)	16.4
Voltage Vmpp (V)	31.5
Current Impp (A)	8.58

Module Dimensions	1,658 mm x 990 mm x 50 mm
Module Weight	19.3 kg
Cell-Type	CCz monocrystalline
Number of Cells	60
Frame Material	Black Anodized Aluminum
Tempered ARC Coated Glass Thickness	3.2 mm
Connector Types (indicated in model #)	Amphenol Helios H4 (-38 or -28)

Figura 11: Parâmetros físicos de *datasheet* das placas fotovoltaicas *SunEdison* utilizadas.

O sistema encontra-se na cidade de Brusque, de coordenadas geográficas -27.091504 S, -48.904343 O e possui clima subtropical. O perfil completo de temperatura da cidade pode ser verificado na figura 12, cujos dados foram retirados da base de dados da Embrapa, que possui uma estação meteorológica completa em Brusque e Agência Nacional das Águas, que possui uma estação pluviométrica em Brusque. (Adaptado de Atlas Climático da Região Sul do Brasil, Embrapa).

Figura 12: Perfil de temperaturas médias do município de Brusque.

Perfil de temperaturas médias do município de Brusque													
	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ	Média anual
Temperatura média mensal (°C)	24,4	24,1	23,2	20,5	17,8	15,7	15	16	17,6	19,3	21,2	23	19,8
Média das temperaturas mínimas mensais (°C)	19,6	19,7	18,8	16,3	13,2	11,7	10,7	12	13,8	15,3	16,8	18,4	15,5
Média das temperaturas mínimas absolutas mensais (°C)	10	9,4	7,8	4,6	1	-0,8	-3,2	-4,6	-1	4	6,6	9,4	3,6
Média das temperaturas máximas mensais (°C)	31	31,1	30	27,6	24,7	22,6	22,4	23,1	23,7	25,8	27,8	29,8	26,6
Média das temperaturas máximas absolutas mensais (°C)	40,4	41	40,2	35,6	33,2	32,2	32	35	38,2	36,6	39,2	40,9	37

Fonte: Adaptado de Atlas Climático da Região Sul do Brasil, Embrapa (2012).

As placas encontram-se fixadas sobre uma estrutura dedicada, acoplada posteriormente na estrutura do telhado do galpão. A estrutura proporciona inclinação horizontal das placas de 25° como pode ser verificado nas figuras 13, 14, 15 e 18. O azimute do galpão e das *strings* de placas é de aproximadamente 0 °.

Figura 13: Detalhe nas dimensões da estrutura de fixação dedicada ao recebimento das placas fotovoltaicas.

Fonte: Memorial descritivo.

Fonte: Memorial descritivo.

A parte elétrica do *hardware* BOS compreende o cabeamento, os dispositivos de proteção CC, CA e os disjuntores. O esquemático elétrico pode ser verificado no diagrama unifilar geral (figura 19). Para proteção contra eventuais descargas atmosféricas o medidor bidirecional conta com dispositivos de proteção contra surtos (DPS CA), da marca *Exatron*, de 20kA no padrão de entrada existente na planta do acessante. Para proteção contra descargas nos inversores serão instalados DPS CC da marca OBO V20-C 3PH-100, máx. 1000 V_{DC}. Os inversores contam

com uma chave seccionadora tripolar incorporada na sua estrutura para eventual manutenção. Na tabela 5 pode ser verificada a lista de materiais com módulos geradores, inversores, *hardware* BOS estrutural e hardware BOS elétrico discriminados.

Figura 15: Sistema fotovoltaico de silício monocristalino, objeto de estudo desse trabalho, instalado sobre estrutura dedicada de fixação.

Fonte: Memorial descritivo.

It.	Descrição	Un.	Quant.			
1	Módulo fotovoltaico SunEdison, MEMC	Рç	78			
	SILVANTIS 270 Wp					
2	Inversor Fronius IG PLUS 120 V-3 Pç 02					
3	Conector de encaixe macho, tipo MC4 Pç 06					
4	Conector de encaixe fêmea, tipo MC4 Pç 06					
5	Cabo solar, 6 mm ² , AC 0,6/ 1 kV DC 1,8 kV m 282					
6	Cabo solar, 6 mm ² , AC 0,6/ 1 kV DC 1,8 kV	m	282			
7	Perfil de alumínio	Pç	54			

Tabela 5: Lista de materiais

It.	Descrição	Un.	Quant.
8	Grampo intermediário	Pç	144
9	Grampo final	Pç	24
10	Suporte de alumínio e aço inox	Pç	168
11	DPS, marca EXATRON, código DPSI2SD20, 275	Pç	03
	V, 20 kA	-	
12	DPS, marca OBO, código V20-C 3PH-100, mas	Pç	02
	1000 V _{DC}	-	
13	Datalogger, marca Fronius Web 2	Pç	01
14	Cabo de cobre, $0.6/1$ kV, 6.0 mm ² , cor preto	m	15
15	Cabo de cobre, $0.6/1$ kV, 6.0 mm ² , cor branco	m	15
16	Cabo de cobre, $0.6/1$ kV, 6.0 mm ² , cor vermelho	m	15
17	Cabo de cobre, $0.6/1$ kV, 6.0 mm ² , cor verde	m	15
18	Cabo de cobre, $0.6/1$ kV, 10.0 mm ² , cor preto	m	10
19	Cabo de cobre, $0.6/1$ kV, 10.0 mm ² , cor branco	m	10
20	Cabo de cobre, 0,6/1 kV, 10,0 mm ² , cor vermelho	m	10
21	Cabo de cobre, $0.6/1$ kV, 10.0 mm ² , cor verde	m	10
22	Cabo de cobre, 0,6/1 kV, 10,0 mm ² , cor azul	М	10
23	QD inversores com 1 disjuntor trifásico de 40A e	Pç	01
	2 disjuntores trifásicos de 20A		
24	DC Protection Box	Pç	02

Fonte: Memorial descritivo.

3.2 BASE DE DADOS NASA-SSE

Os dados incluem estimativas meteorológicas de longo prazo e fluxos de energia solar na superfície. Dados oriundos de satélite e baseados nos modelos já se provaram ter exatidão o suficiente também para regiões do globo onde centrais de medição são esparsas ou inexistentes. Os dados são globais, ou seja, cobrem toda a superfície terrestre, e são contínuos no tempo. Todos os dados armazenados foram tratados de tal forma que fosse possível sua utilização por usuários comerciais e públicos em geral. Dessa forma, a NASA concebeu o projeto SSE (*Surface meteorology and Solar Energy*), que dispõe esses dados de forma pública, para a utilização de todos, na web. Os parâmetros de radiação solar do SSE são obtidos diretamente ou derivados de parâmetros disponíveis no projeto NASA/GEWEX SRB, que tem como objetivo coletar via satélite, organizar e armazenar componentes de fluxo de energia radiativa solar na superfície da Terra. A figura 16 ilustra os maiores componentes e processos associados ao fluxo de energia solar na superfície da atmosfera. As componentes nas caixas amarelas são as mapeadas no Projeto SRB e são oriundas de medições coletadas de Julho de 1983 até Dezembro de 2007. O grau de incerteza absoluto dessas componentes ainda é objeto ativo de pesquisa e envolvem por exemplo calibração do satélite, propriedades atmosféricas das nuvens, aerossóis e gases constituintes e albedos de superfície. A resolução do pixel do algoritmo da NASA é de 1° x 1° (110 km x 110 km). A resolução do pixel para os algoritmos PVGIS e *Meteonorm* não são informados.

Figura 16: Principais componentes e processos associados ao saldo energético da superfície terrestre.

The Earth's Energy Budget

Fonte: NASA – SSE Method Documentation.

O modelo tem com entradas primárias: radiâncias visíveis e infravermelhas; propriedades de nuvem e superfície inferidas a partir do ISCCP (*International Satellite Cloud Climatology Project*); perfis de temperatura e umidade obtidos a partir do NASA GMAO (*Global Modelling and Assimilation Office*) e quantidades da coluna de ozônio a partir dos arquivos TOMS (*Total Ozone Mapping Spectometer*) e TOVS (*TIROS Operational Vertical Sounder*). Na figura 17 pode-se verificar a distribuição das estações meteorológicas em solo que compunham a base de dados em 2004.

Figura 17: Estações de solo de monitoramento meteorológico da NCDC em 2004.

No. of Stations = 2704 Fonte: NASA – SSE Method documentation.

Na tabela 6 é possível verificar o desvio da raiz quadrada média (RMSE) dos dados obtidos pela metodologia SSE contra os dados da BSRN.

Parâmetro	Região	Desvio	RMSE (%)				
Média mensal	Global	-2,24	15,37				
de 3-horas.	60° Polar	-9,29	38,77				
Radiação total	60° Equatorial	-1,57	12,85				
Média diária.	Global	-1,58	20,57				
Radiação total	60° Polar	-7,69	41,16				
	60° Equatorial	-0,83	17,87				
Radiação	Global	-2,22	13,94				
mensal.	60° Polar	-8,43	32,20				
Radiação total	60° Equatorial	-1,25	10,62				

Tabela 6: Desvio e RMSE dos dados obtidos pela metodologia NASA-SSE.

Fonte: Adaptado de NASA-SSE METHODOLOGY

3.3. BASE DE DADOS PVGIS

A documentação do PVGIS também disponibiliza a comparação entre os resultados do algoritmo contra medições feitas pela BSRN. O erro é disponibilizado por estação, como pode ser verificado na tabela 7. O desvio dos dados obtidos pode ser verificado na tabela 8.

Tabela 7: Comparação entre os resultados do algoritmo PVGIS contra medições feitas pela BSRN.

Estação	Erro do Satélite
Lindenberg (Alemanha)	-3,4
Cabauw (Países Baixos)	+0,4
Carpentras (França)	+2,1
Payerne (Suíça)	-3,0
Belsk (Polônia)	-5,5
Camborne (Reino Unido)	+3,0
Toravere (Estonia)	+5,1
Sde Boqer (Israel)	-3,3
Almeria (Espanha)	-0,9
Geneve (Suíça)	+2,6
Nantes (França)	+3,8
Vaulx-en-Velin	+3,9
(França)	
Kishinev (Moldávia)	+0,4
Liepaja (Letônia)	+2,5
Sonnblick (Áustria)	-14,0
Thessaloniki (Grécia)	+5,9
Wien Hohe Warte	-1,5
(Áustria)	
Ispra (Itália)	+8,4
Milano (Itália)	-0,5
Roma (Itália)	+4,1
Sarreguren (Espanha)	+1,6
A Coruna (Espanha)	+11,0
Lleida (Espanha)	+2,4
Madrid (Espanha)	-0,3
Xianghe (China)	+0,8

Estação	Erro do Satélite
De Aar (África do Sul)	+2,2
Tamanrasset (Algéria)	-6,0
Solar Village (Arábia	+3,2
Saudita)	
Florianópolis (Brasil)	+0,3
Cocos Island	+0,6
(Austrália)	

Fonte: Adaptado de PVGIS METHOD DOCUMENTATION.

Tabela 8: Desvio dos dados obtidos pela metodologia PVGIS.

Parâmetro	Região	Desvio	RMSE
Média mensal.	Total	-3,42	Não disponível
Radiação total	60° Polar	-3,56	
	60° Equatorial	-2,52	

Fonte: Adaptado de PVGIS METHOD DOCUMENTATION.

Os valores de desvio da raiz quadrada média não estão disponíveis pois a documentação do PVGIS não informa diretamente e também não informa a distribuição dos valores de radiação medidos contra os calculados, que é informação necessária para o cálculo do RMSE.

PLANTA DE LOCALIZAÇÃO E86. 1200

Figura 19: Diagrama unifilar geral do sistema.

DIAGRAMA UNIFILAR GERAL

Fonte: Memorial descritivo.

4. RESULTADOS

Os dados de performance são coletados pelo *datalogger* e armazenados no servidor *Fronius*, onde através de um login de cliente/integrador, os dados de geração podem ser acessados. Os dados são armazenados separadamente por inversor. Os inversores são denominados IG *PLUS* 120 V-3 #0 e IG *PLUS* 120 V-3 #1. Para efeitos de simplificação, os inversores serão chamados de #0 e #1. Inicialmente foram coletados os dados de geração de ambos os inversores para os anos de 2016, 2017 e 2018, e posteriormente somados, pois apenas a geração total é objeto de estudo, como pode ser verificado nas figuras 20 a 22.

Figura 20: Dados de geração *Fronius* por inversor e total no ano de 2016.

		2016								201	6				
	IG PLUS 120 V-3 #0	IG PLUS 120 V-3 #1	Total (kWh)	2000											
Jan	1316,21	1317,3	2633,51	3000											
fev	1072,78	1070,38	2143,16	2500											
nar	1261,43	1259,18	2520,61												
abr	1130,27	1129,68	2259,95	2000											
mai	862,3	861,33	1723,63												
jun	795,93	786,65	1582,58	1500											
ul	912,36	912,75	1825,11	1000											
igo	896,69	896,97	1793,66	1000											
set	1148,51	1149,19	2297,7	500											
out	971,47	986,32	1957,79												
nov	1188,12	1191,67	2379,79	0											
dez	1171,17	1177,27	2348,44		1	2	3	4	5	6	7	8	9	10	11

Figura 21: Dados de geração *Fronius* por inversor e total no ano de 2017.

		2017														
	IG PLUS 120 V-3 #0	IG PLUS 120 V-3 #1	Total (kWh)						2	201	7					
Jan	1353,73	1364,23	2717,96	3000												
fev	1242,23	1248,49	2490,72	5000	_											
mar	1071,06	1080,07	2151,13	2500	-											
abr	979,72	984,91	1964,63													
mai	706,76	710,89	1417,65	2000												
jun	823,27	826,38	1649,65													
jul	1029,4	1033,47	2062,87	1500												
ago	927,74	931,35	1859,09	1000				_								
set	926,3	930,03	1856,33													
out	1098,08	1103,32	2201,4	500	-											
nov	1288,26	1294,93	2583,19													
dez	1247,51	1255,56	2503,07	0	1	2	3	4	5	6	7	8	9	10	11	12

		2018							2	201	8					
_	IG PLUS 120 V-3 #0	IG PLUS 120 V-3 #1	Total (kWh)						ĵ.		0					
Jan	1231,83	1237,82	2469,65	3500												
fev	1159,1	1165,6	2324,7	3000												
mar	1038,59	1041,68	2080,27													
abr	1234,09	1238,35	2472,44	2500											-	
mai	930,21	933,43	1863,64	2000	-											-
jun	734,12	736,7	1470,82													
jul	875,23	876,66	1751,89	1500	- T											
ago	1042,65	1045,26	2087,91	1000	-											
set	897,7	899,48	1797,18													
out	827	828,89	1655,89	500	-											
nov	1125,77	1128,8	2254,57	0												
dez	1448,63	1456,46	2905,09		1	2	3	4	5	6	7	8	9	10	11	12

Figura 22: Dados de geração *Fronius* por inversor e total no ano de 2018.

Nas distribuições mensais pode-se verificar que a geração não possui perfil linear sempre, possuindo quebras de padrão, ou gaps. O segundo mês de maior geração no ano de 2016 foi março, um pouco atrás apenas de janeiro. Por outro lado, no ano de 2018 o segundo mês de maior geração foi abril, com uma diferença percentual considerável atrás de dezembro. Através dessas observações verifica-se que o erro quadrático médio do mesmo mês comparado em diferentes anos é relativamente grande quando se trata de clima.

Nas figuras 23 a 25 é possível verificar os dados das simulações que os bancos de dados NASA SSE, PVGIS e *METEONORM* retornaram.

Me	teonorm	Meteonorm											
Mês	Total (kWh)	3000		IV	lete	01101	111				_		
Jan	2362												
fev	2183	2500				_							
mar	2387	2000	L				.						
abr	2198	2000											
mai	2319	1500							-		-		
jun	1961												
jul	2035	1000	H			H				H			
ago	2252	500											
set	1999	500	П										
out	2359	0											
nov	2444	0	1 2	2	1	5 6	7 (2 0	101	11	\mathbf{r}		
dez	2436		1 2	3	4.	0	/ (> 9	101	11	2		

Figura 23: Simulação utilizando a base de dados Meteonorm.

I	PVGIS	PVGIS										
Mês	Total (kWh)	F VOIS										
Jan	2307	3000										
fev	2545	2500										
mar	3027	2300										
abr	2491	2000										
mai	1711	1500										
jun	1909	1300										
jul	2235	1000										
ago	2100	500										
set	1363	500										
out	1572	0										
nov	2056	1 2 3 4 5 6 7 8 9 101112										
dez	2688											

Figura 24: Simulação utilizando a base de dados PVGIS.

Figura 25: Simulação utilizando a base de dados NASA.

Os dados de simulação foram comparados com os dados de geração para os três anos de registro. As figuras estatísticas utilizadas foram o erro padrão, que mede o quanto os resultados da simulação se desviam da média e o desvio quadrático médio, que mede o desvio padrão dos resíduos. Os resíduos medem o quão longe os dados de

simulação se encontram dos resultados medidos e o desvio quadrático médio mede o quão espalhados os dados estão em torno da melhor reta. Quanto mais próximo de zero, menor o espalhamento.

Verifica-se que no ano de 2016, a simulação da Nasa possui o menor desvio médio e o menor desvio quadrático médio dentre as três bases, com 12,6% e 287 respectivamente. Isso representa uma diferença de aproximadamente 48% no desvio quadrático médio em comparação com a base PVGIS, que obteve a menor exatidão naquele ano.

O ranking de exatidão se mantém para o ano de 2017, com a base de dados da Nasa possuindo menor desvio médio e menor desvio quadrático médio dentre as três bases, com 13,6% e 323 respectivamente. A base do PVGIS novamente com a menor exatidão, dessa vez com uma diferença no desvio quadrático médio 38% menor em relação à Nasa.

Para o ano de 2018, a simulação da Nasa mantém liderando o desvio quadrático médio de valor 344, contra 377 da base PVGIS, contudo a base PVGIS apresenta o menor desvio médio, de valor 14,5% contra 15,9% da Nasa. A base *Meteonorm* apresentou a menor exatidão novamente. A dispersão (diferença entre as exatidões) para o ano de 2018 foi a menor dentre os três anos.

Nas tabelas 9, 10 e 11 pode-se verificar o *rankeamento* discriminado das bases e o respectivo RMSE de cada uma para os anos de 2016 a 2018. Na tabela 12 pode-se verificar o *rankeamento* global e o RMSE médio das bases para os três anos.

Os resultados da simulação divergiram do que foi gerado pelos seguintes possíveis motivos:

-O clima e a radiação solar são grandezas da natureza impossíveis de prever com exatidão. Fenômenos climáticos são avaliados como distribuições estatísticas e valores médios. A ocorrência de um mês atípico, por exemplo, é completamente imprevisível.

-Interrupções na internet onde o sistema está instalado interrompem momentaneamente o *datalogger*. A frequência e a quantidade dessas interrupções é desconhecida pois o *datalogger* não possui um monitoramento independente para si. O único dado de saída do *datalogger* são os valores mensais totais.

-Quedas de energia da rede ou qualquer desligamento para manutenção do sistema também desligam a geração, interrompem o registro, o que acarreta em discrepâncias entre a radiação efetiva e o registro do *datalogger*.

-Imprecisões intrínsecas dos algoritmos.

	Tabela 9: Rank	eamento 2016
	Base de dados	RMSE
1°	NASA	287
2°	Meteonorm	304
3°	PVGIS	427

	Tabela 10: Ranke	eamento 2017
	Base de dados	RMSE
1°	NASA	323
2°	Meteonorm	349
3°	PVGIS	448

	Tabela 11:Ran	keamento 2018
	Base de dados	RMSE
1°	NASA	344
2°	Meteonorm	359
3°	PVGIS	377
	Tabela 12: Ran	keamento Geral
	Base de dados	RMSE médio
1°	NASA	318

1° NASA	318
2° Meteonorm	337
3° PVGIS	417

		Desvio^2	1893	56093	1713	1932	258440	146245	28187	231688	74365	117793	16438	55961	82562	12,6%	287
	Nasa	Desvio %	-2%	11%	2%	-2%	29%	24%	%6	27%	-12%	18%	5%	10%	Média	Desvio Médio %	RMSE
		Desvio	-43,51	236,84	41,39	-43,95	508,37	382,42	167,89	481,34	-272,7	343,21	128,21	236,56	2166,07		
		Nasa	2590	2380	2562	2216	2232	1965	1993	2275	2025	2301	2508	2585			
		Desvio^2	106609	161475	256431	53384	160	106550	168010	93844	873664	148834	104840	115301	182425	17,6%	427
	VGIS	Desvio %	-12%	19%	20%	10%	-1%	21%	22%	17%	-41%	-20%	-14%	14%	Média	Desvio Médio %	RMSE
	Ч	Desvio	-326,51	401,84	506,39	231,05	-12,63	326,42	409,89	306,34	-934,7	-385,79	-323,79	339,56	538,07	Η	
2010		PVGIS	2307	2545	3027	2491	1711	1909	2235	2100	1363	1572	2056	2688			
		Desvio^2	73718	1587	17852	3838	354465	143202	44054	210076	89222	160969	4123	7667	92564	13,0%	304
	conorm	Desvio %	-10%	2%	-5%	-3%	35%	24%	12%	26%	-13%	20%	3%	4%	Média	Desvio Médio %	RMSE
	Met	Desvio	-271,51	39,84	-133,61	-61,95	595,37	378,42	209,89	458,34	-298,7	401,21	64,21	87,56	1469,07		
		Meteonorm	2362	2183	2387	2198	2319	1961	2035	2252	1999	2359	2444	2436			
		Total (kWh)	2633,51	2143,16	2520,61	2259,95	1723,63	1582,58	1825,11	1793,66	2297,7	1957,79	2379,79	2348,44			
	reradores	#1	1317,3	1070,38	1259,18	1129,68	861,33	786,65	912,75	896,97	1149,19	986,32	1191,67	1177,27			
	J	0#	1316,21	1072,78	1261,43	1130,27	862,3	795,93	912,36	896,69	1148,51	971,47	1188,12	1171,17			
			Jan	fev	mar	abr	mai	im	١ď	ago	set	out	NOU	dez			

Figura 26: Erros e desvios para o ano de 2016.

		io^2	74	59	814	87	166	46	82	981	50	20	54	13	320	6%	3
		Desv	163	122	168	631	663	994	48	172	284	66	56	67	104	6 13,	32
	Nasa	Desvio %	-5%	-4%	19%	13%	57%	19%	-3%	22%	%6	5%	-3%	3%	Média	Desvio Médio %	RMSE
		Desvio	-127,96	-110,72	410,87	251,37	814,35	315,35	-69,87	415,91	168,67	9'66	-75,19	81,93	2174,31		
		Nasa	2590	2380	2562	2216	2232	1965	1993	2275	2025	2301	2508	2585			
		Desvio^2	168888	2946	767148	277065	86054	67262	29629	58038	243374	396144	277929	34199	200723	18,8%	448
	SIDVG	Desvio %	-15%	2%	41%	27%	21%	16%	8%	13%	-27%	-29%	-20%	7%	Média	Desvio Médio %	RMSE
	I	Desvio	-410,96	54,28	875,87	526,37	293,35	259,35	172,13	240,91	-493,33	-629,4	-527,19	184,93	546,31	1	
2017		PVGIS	2307	2545	3027	2491	1711	1909	2235	2100	1363	1572	2056	2688			
		Desvio^2	126708	94692	55635	54462	812432	96939	LLL	154378	20355	24838	19374	4498	122090	14,7%	349
	teonorm	Desvio %	-13%	-12%	11%	12%	64%	19%	-1%	21%	8%	7%	-5%	-3%	Média	Desvio Médio %	RMSE
	Met	Desvio	-355,96	-307,72	235,87	233,37	901,35	311,35	-27,87	392,91	142,67	157,6	-139,19	-67,07	1477,31		
		Meteonorm	2362	2183	2387	2198	2319	1961	2035	2252	1999	2359	2444	2436			
		Total (kWh)	2717,96	2490,72	2151,13	1964,63	1417,65	1649,65	2062,87	1859,09	1856,33	2201,4	2583,19	2503,07			
	eradores	1#	1364,23	1248,49	1080,07	984,91	710,89	826,38	1033,47	931,35	930,03	1103,32	1294,93	1255,56			
	Ğ	0#	353,73	242,23	071,06	979,72	706,76	823,27	1029,4	927,74	926,3	1098,08	1288,26	1247,51			
			-	-	-												

Figura 27: Erros e desvios para o ano de 2017.

Nasa	Desvio^2	14484	3058	232064	65761	135689	244214	58134	35003	51902	416167	64227	102458	118597	15,9%	344
	Desvio %	5%	2%	23%	-10%	20%	34%	14%	%6	13%	39%	11%	-11%	Média	Desvio Médio %	RMSE
	Desvio	120,35	55,3	481,73	-256,44	368,36	494,18	241,11	187,09	227,82	645,11	253,43	-320,09	2497,95	Η	
	Nasa	2590	2380	2562	2216	2232	1965	1993	2275	2025	2301	2508	2585			
PVGIS	Desvio^2	26455	48532	896298	344	23299	192002	233395	146	188512	7038	39430	47128	141882	14,5%	377
	Desvio %	-7%	%6	46%	1%	-8%	30%	28%	1%	-24%	-5%	%6-	-7%	Média	Desvio Médio %	RMSE
	Desvio	-162,65	220,3	946,73	18,56	-152,64	438,18	483,11	12,09	-434,18	-83,89	-198,57	-217,09	869,95	-	
	PVGIS	2307	2545	3027	2491	1711	1909	2235	2100	1363	1572	2056	2688			
Meteonorm	Desvio^2	11589	20079	94083	75317	207353	240276	80151	26926	40731	494364	35884	220045	128900	16,4%	359
	Desvio %	-4%	-6%	15%	-11%	24%	33%	16%	8%	11%	42%	8%	-16%	Média	Desvio Médio %	RMSE
	Desvio	-107,65	-141,7	306,73	-274,44	455,36	490,18	283,11	164,09	201,82	703,11	189,43	-469,09	1800,95	-	
	Meteonorm	2362	2183	2387	2198	2319	1961	2035	2252	1999	2359	2444	2436			
Geradores	Total (kWh)	2469,65	2324,7	2080,27	2472,44	1863,64	1470,82	1751,89	2087,91	1797,18	1655,89	2254,57	2905,09			
	#1	1237,82	1165,6	1041,68	1238,35	933,43	736,7	876,66	1045,26	899,48	828,89	1128,8	1456,46			
	0#	1231,83	1159,1	1038,59	1234,09	930,21	734,12	875,23	1042,65	897,7	827	1125,77	1448,63			
		Jan	fev	mar	abr	mai	iun	luí	ago	set	out	nou	dez			

Figura 28: Erros e desvio para o ano de 2018.

5. CONCLUSÃO

Esse trabalho comparou os desvios e os desvios quadráticos médios das simulações utilizando as bases de dados solarimétricas NASA, PVGIS e *Meteonorm* com o histórico de geração de um sistema operante e com um monitoramento simples por *datalogger*. O *datalogger* por sua vez, não possui um monitoramento secundário, dessa forma o registro está sujeito a falhas e interrupções de monitoramento como por exemplo queda na internet. Essas interrupções possuem frequência e duração desconhecidas, caso tenham ocorrido.

A posição no ranking de exatidão de cada base de dados respeitou um padrão, com a base de dados NASA liderando nos anos de 2016 e 2017. No ano de 2018 a base de dados *Meteonorm* apresentou o menor desvio das três bases, com a NASA muito próxima.

A base Meteonorm performou sensivelmente pior nos três anos.

Como conclusão desse estudo, na ocasião da escolha dentre as três bases para utilização comercial, a escolha mais acurada fica entre NASA e *Meteonorm*.

Como sugestão para trabalhos futuros, é válido analisar com que exatidão as bases de dados se comportam no caso da utilização de um *tracker* no sistema.

REFERÊNCIAS

BARTLETT, J.S.; CIOTTI, A.M.; DAVIS, R.F.; CULLEN, J.J. **The spectral effects of clouds on solar irradiance. Journal of Geophysical Research**, vol. 103, pp. 31017-31031. 1998.

BRITO, M. C., SERRA, J. M., 1948. Células solares para a produção de energia eléctrica, Departamento de Física da FCUL.

BURGER, B., RÜTHER, R., 2006. Inverter sizing of gridconnected photovoltaic systems in the light of local solar resource distribution characteristics and temperature, Solar Energy, vol. 80, pp 32-45.

CRESESB. Manual de Engenharia para Sistemas Fotovoltaicos. CEPEL- CRESESB. Rio de Janeiro - Brasil, 2014.

COLLE, S.; PEREIRA, E.B. Atlas de Radiação Solar do Brasil - INMET/LABSOLAR/CEPTEC/INPE. 2000.

FREITAS, S. S. A. **Dimensionamento de sistemas fotovoltaicos**. Dissertação (Mestrado) – Curso de Engenharia Industrial, Departamento de Eletrotécnica, Instituto Politécnico de Bragança, Bragança, 2008.

GUEYMARD, C. A., MYERS, D.; EMERY, K., 2002. Proposed reference irradiance spectra for solar energy systems testing, Solar Energy, volt 73, n° 6, pp 443-467.

LACCHINI, C.; RÜTHER, R. The influence of government strategies on the financial return of capital invested in PV systems located in different climatic zones in Brazil. Renewable Energy, v. 83, p. 786-798. 2015.

MARION, B.; ADELSTEIN, J.; BOYLE, K.; HAYDEN, H.; HAMMOND, B.; FLETCHER, T.; CANADA, B.; NARANG, D.; SHUGAR, D.; WENGER, H.; KIMBER, A.; MITCHELL, L.; RICH, G.; TOWNSEND, T. **Performance Parameters for Grid-Connected PV Systems.** 31st IEEE Photovoltaics Specialists Conference and Exibition. Lake Buena Vista, Florida, 2005.

MARTINS, F. R.; PEREIRA, E. B.; ECHER, M. P. S. Levantamento dos recursos de energia solar no Brasil com o emprego de satélite geoestacionário: o Projeto Swera. Rev. Bras. Ensino Fís. [online]. vol.26, n.2, pp.145-159. 2004.

MARTINS, F. R.; PEREIRA, E. B.; ABREU, S. L. Satellitederived solar resource maps for Brazil under SWERA Project. Solar Energy, Vol. 81, Issue 4, Pp 517-528. 2007.

Meteonorm. Method Documentation. Disponível em: < https://meteonorm.com/> Acesso em: 03/03/19.

MME – Ministério de Minas e Energia. Capacidade Instalada de

Geração Elétrica Brasil e Mundo (2016.), 2017. Edição: 15/05/2018.

NASA. Surface meteorology and Solar Energy Release Data Set. Disponível em: http://eosweb.larc.nasa.gov/sse. Acesso em: 03/03/19.

NREL. CSR Model data for South America. Disponível em:

https://www.data.gov>. Acesso em: 03/03/19.

NREL. Glossary of solar radiation resource terms: National Renewable Energy Laboratory. 2017. Disponível em https://www.nrel.gov

PALTRIDGE, G. W.; PLATT, C. M. R. Radiative processes in meteorology and climatology. 6th ed. Amsterdam: Elsevier, 1976.

PEREIRA, E. B., MARTINS, F. R., GONÇALVES, A. R.,

COSTA, R. S., LIMA, F. J. L. D., RÜTHER, R., ABREU, S. L. D.,

TIEPOLO, G. M., PEREIRA, S. V., SOUZA, J. G. D., 2017. Atlas

Brasileiro de Energia Solar, 2ª ed.: INPE. São José dos Campos - SP.

PINHO, J. T., GALDINO, M. A., 2014. Manual de engenharia para sistemas fotovoltaicos.

PVGIS. Method Documentation. Disponível em: < https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html>. Acesso em: 03/03/19.

RAMPINELLI, G. A. Estudo de características elétricas e térmicas de inversores para sistemas fotovoltaicos conectados à rede. Tese (Doutorado) - Curso de Engenharia Mecânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2010.

SALAMONI, I., RÜTHER, R., 2007. O Potencial Brasileiro da geração Solar Fotovoltaica Conectada à Rede Elétrica: Análise de Paridade de Rede, IX Encontro Nacional e V Latino-Americano de Conforto no Ambiente Construído, Ouro Preto.

RÜTHER, R. **Edifícios Solares Fotovoltaicos** LABSOLAR/UFSC. Florianópolis - Brasil, 2004.

RÜTHER, R.; NASCIMENTO, L.; JUNIOR, J. U.; PFITSCHER, P.; VIANA, T. **Performance assessment of a microcrystalline Si PV installation in a warm climate.** In: 35th IEEE Photovoltaic Specialists Conference, Honolulu -HI, EUA, v.1. p. 4. 2010.

RÜTHER, R.; ZILLES, R. Making the case for grid-connected photovoltaics in Brazil. Energy Policy, vol. 39, Issue 3, pp, 1027-1030. 2011.

RÜTHER, R.; KLEISS, G.; REICHE, K. Spectral effects on amorphous silicon solar module fill factors. Solar Energy Materials and Solar Cells. Issue 3, v.71, p.375-385, 2002.

SELLERS, W.D. Physical Climatology, University of Chicago, Chicago, 1965.

SILVEIRA, J. L.; TUNA, C. E.; LAMAS, W. D. Q. The need of subsidy for the implementation of photovoltaic solar energy as supporting of decentralized electrical power generation in Brazil. Renewable and Sustainable Energy Reviews, Vol. 20, pp 133-141. 2013.

ZILLES, R., MACÊDO, W. N., GALHARDO, M. A. B., OLIVEIRA, S. H. F. Sistemas fotovoltaicos conectados à rede elétrica. São Paulo: Oficina de Textos, 2012.

APÊNDICE A – RELATÓRIO NASA GERADO PELO PVSYST

PVSYST V6.79					08/05/19	Page 1/5		
	Grid-Conne	cted System	Simulation par	rameters				
Project :	dicolore							
Geographical Site	Limoeiro		Country	Brazil				
Situation	Latitude	-27.06° S	Longitude	-48.88° W				
Time defined as	Legal Time	Time zone UT-3	3 Altitude	22 m				
Meteo data:	Albedo Limoeiro	0.20 NASA-SSE sate	ellite data 1983-2005	5 - Synthetic				
Olevel 41 - Training and	_					11		
Simulation variant :	Simulation date	08/05/19 09h54						
Simulation parameters	System type	Building syste	m					
Collector Plane Orientation	Tilt	25°	Azimuth	Azimuth 0°				
Models used	Transposition	Perez	Diffuse	Perez, Meteonorm				
Horizon	Average Height	2.5°						
Near Shadings	Linear shadings							
User's needs :	Unlimited load (grid)							
		_						
PV Array Characteristics								
PV module	Si-poly Model	CS6K - 270P						
Original PVsyst database Number of PV modules	Manufacturer In series	13 modules	r Inc. In parallel	6 strings				
Total number of PV modules	Nb. modules	78	Unit Nom. Power	270 Wp				
Array global power	Nominal (STC)	21.06 kWp	At operating cond.	17.53 kWp (65°C)				
Array operating characteristics	(50°C) U mpp	333 V	I mpp	53 A				
	woude area	126 11	Geirarea	11411				
Inverter	Model	IG Plus 120 V-	3					
Original PVsyst database	Manufacturer	Fronius Internat	tional	10.00 (111)				
Characteristics	Operating voltage	230-500 V	Unit Nom. Power	10.00 kvvac				
Inverter pack	Nb. of inverters	2 units	Total Power	20 kWac				
		51	Phom ratio	1.05	1/2			
DV Arrow loss fasters								
Thermal Loss factor	Uc (const)	20.0 W/m ² K	Uv (wind)	0.0 W/m²K / m/s				
Wiring Obmic Loco	Global array ros	56 mOhm	Loce Eraction	0.7 % at STC				
Module Quality Loss	Clobal allay ics.	oo monin	Loss Fraction	-0.5 %				
Module Mismatch Losses			Loss Fraction	1.0 % at MPP				
Strings Mismatch loss Incidence effect (IAM): Liser de	fined profile		Loss Fraction	0.10 %				
		100 500		700 000				
0.998	20* 30*	40* 50*	36 0.970	0.917 0.763	0.000	100		
(syst Evaluation mode								

PVsyst Evaluation mode

APÊNDICE B – RELATÓRIO PVGIS GERADO PELO PVSYST

PYSTSI V6.79 08/05/19 Page 1/5 Project: dicolore Geographical Site Limoeiro Country Brazil Stuation Latitude -700° S Longitude -48.85° W Time defined as Laga Time Time defined as Laga Time 20 Meteo data: Limoeiro PVGS19 06/14 22 m - Simulation variant: New simulation variant: Simula							
Giological Site in circuitation parameters Project: dicological Geographical Site Linneeiro Control Brait Situation Lafitudi 470 °S Longtudie 48.80 °A Time defined as Lagal Time Time control 8.80 °A Time defined as Lagal Time Time control 8.80 °A Time defined as Lagal Time Time control 8.80 °A Time defined as Lagal Time Time control 8.80 °A Time defined as Lagal Time Time control 8.80 °A Gindlation variant: New situation variant: Situation variant: Situation variant: Situation variant: Situation Situation variant: Situation Situatio	PVSYST V6.79					08/05/19	Page 1/5
Project:idoubreGeographical SiteLineareCountyPacitStudionLafture70° SLongiture42.8° VTime defined asLafture70° SAlture20°Meteo data:LaftureTime defined as000511 POSH120°Situation variant:New situation variant:New situation variant:New situation variant:New situation variant:Situation parametersSystem typeBiologi 100 PostNational0°Situation parametersSystem typeNational0°Models usedTranspootionProzDiffusNationalMorardsLinear shading:10°NationalNationalPV modeSipply ModelSitter SitterNational Sour Inc.Nationer of PV modulesNational Sour Inc.National Sour Inc.Nationer of PV modulesNational Sour Inc.17.53 XVPNationer of PV modulesNationer National Sour Inc.17.53 XVPNationer of PV modulesNational Sour Inc.17.53 XVPSoligial PVsyst databaseMatride Inc.17.53 XVPNationer of PV modulesNati		Grid-Conn	ected Syste	m: Simulation pa	rameters		
Geographical SiteLinneiroCountyPerziSituationLatitute-27.0° SLongtute-48.8° VTime defined asLagal Tim<	Project :	dicolore					
SituationLatiude2.76° SLongtide4.88° WTime defined asLegal TmTime zone UT-3Altude2.2 mAlterodatiUmoesVOIS TMY: SARAH, COSMO or NSRDE - TMYSimulation variant:New simulationSimulationBinulationSimulation parametersSystem vpBinulation systemOCollector Plane OrientationTime 3 System vpBinulation systemO*Models usedTranspositionPerzDiffuseImportedNorier StandingsLinner shadingsSimulation Solar Inc.Norier Solar Inc.Vorginal PVsyst databaseNamifectureCaradian Solar Inc.Imparale6 singisOriginal PVsyst databaseNamifectureCaradian Solar Inc.1000 Witer Solar Inc.Nameer of PV modulesNin mediation78 Mark Solar In paralle6 singisTotal number of PV modulesNin mediation78 Mark Solar Inc.1000 Witer Inc.Nameer of PV modulesNin mediation78 Mark Solar Inc.1000 Witer Inc.Nameer of PV modulesNin mediation78 Mark Solar Inc.1000 Witer Inc.Nameer of PV modulesNin mediation78 Mark Solar Inc.1000 Witer Inc.Nameer of PV modulesNin mediation78 Mark Solar Inc.1000 Witer Inc.Nameer of PV modulesNin mediation210 Witer Inc.1000 Witer Inc.Nameer of PV modulesNin mediation78 Mark Solar Inc.1000 Witer Inc.Nameer of PV modulesNin mediation210 Witer Inc.1000 Witer Inc. <th< td=""><td>Geographical Site</td><td>Limoeir</td><td>0</td><td>Country</td><td>Brazil</td><td></td><td></td></th<>	Geographical Site	Limoeir	0	Country	Brazil		
Time defined as Legal Time Abbedo Time zone UT.3 0.02 Attude 2.2 m 2.02 Meteo date: Linger Time Linger Time 2005 TMY: SARAH, COSMO rn NSRDB - TMY Simulation variant: New simulation data 0805/19.08h41 0 Simulation parameters System type Building system Collector Plane Orleand Transposition Time 20° Azimuth 0* Horizon Average Heigti 2.5* Verage Times Imported Verage Time and the data (grid) Unimited load (grid) Unimited load (grid) Imported 270 Verage Times Verage Characteristics Verage Manufacture Toriginal PVsyst database Manufacture Manufacture Toriginal PVsyst database Manufacture Manufacture Toriginal PVsyst database Manufacture Time of PV modules Time 20 Verage Times Time 20 Verage Times Verage Characteristics Manufacture Module area Toriginal PVsyst (database Manufacture Manufacture Torial area Torial Sintermaticand Torial area One Time Time Time Time Time Time Time Tim	Situation	Latitud	e -27.06°S	Longitude	-48.88° W		
Albedo 0.20 Meteo data: Limoeiro PVGIS TM: SARAH, COSMO or NSRDB - TMY Simulation variant: New sim simulation variant: New simulation variant: </td <td>Time defined as</td> <td>Legal Tim</td> <td>e Time zone U</td> <td>JT-3 Altitude</td> <td>22 m</td> <td></td> <td></td>	Time defined as	Legal Tim	e Time zone U	JT-3 Altitude	22 m		
Simulation variant : New simulation variant : Simulation date 08/05/19 09/41 Simulation parameters System type Building system Collector Plane Orientation Till 25° Azimuth 0° Models used Transposition Perez Diffuse Imported Horizon Average Height 2.5° Verage Stadings Verage Stadings User's needs : Unlimited load (grid) Verage Stadings Verage Stadings Verage Stadings PV Array Characteristics Si-poly Model CS6K - 270P Verage Manufacturer Criginal PVsyst database Manufacturer Canadian Solar Inc. In parallel 6 strings Number OP Vindules In series 13 modules In parallel 6 strings Array global power Nominal (STC) 21.06 KWp At operating cond. 17.53 KWp (65°C) Array global power Module area 18 modules 18 modules 19 module Interter Model IG Plus 120 V-3 Cell area 114 m² Interter Model IG Plus 120 V-3 1.000 kWac 1.05 Interter pack	Meteo data:	Albed Limoeir	0.20 PVGIS TMY	SARAH, COSMO or N	ISRDB - TMY		
Simulation parameters System type Building system Collector Plane Orientation Titl 25° Azimuth 0° Models used Transposition Perez Diffuse Imported Horizon Average Height 25° Veras Veras Veer Shadings Linear shadings Imported Veras Veras Veer Shadings Linear shadings Imported Veras Veras PV Array Characteristics Sipoly Model CS6K - 270P Veras Original PVeyst database Manufacture Canadian Solar Inc. In parallel 6 strings Total number of PV modules Nin medice 78 Unit Nom. Power 270 Vp. Array global power Nominal (STO) 21.06 KWp At operating cond. 17.53 KWp (65°C). Array global power Model area 128 V Imp 53.4 Total number of PV modules Manufacture Forius International 10.00 KWac Total area Model area 128 V Imp 53.4 T	Simulation variant :	New simulation va	riant				
Simulation parameters System type Building system Collector Plane Orientation Till 25° Azimuth 0° Models used Transposition Perez Diffuse Imported Horizon Average Height 2.5°		Simulation dat	e 08/05/19 09	h41			
Collector Plane Orientation Titl 2's Azimuth 0' Models used Transposition Perez Diffus Imported Horizon Average Heigh 2.5' Verage Meight Verage Height User's needs: Unimited load (grid) Verage Meight Verage Meight Verage Meight PV Models wash Manufacture Casker - 270 P Verage Meight Status Number of PV modules Nb. modules 78 Unit Nom. Power 270 Vbp Array operating characteristics (SPC) Vine Piperating cond 17.53 KWp (SPC) 77.53 KWp (SPC) Array operating characteristics (SPC) Nominal (STC) 10.06 KWp Alone Piperating cond 11.4 m ² Inverter Module area 200 Vmr Piperating cond 11.4 m ² 11.4 m ² Original PV-syst database Manufacture Fronius Intermetional 10.00 KWac Characteristics Operating Votage 200 VMr Pik 0.00 Wmr Pic Mr/s Module area 2 Units Total Power 10.00 KWac Inverter Module area 20 VMr Pic Module 0.00 Wmr Pic Mr/s Characteristics <td>Simulation parameters</td> <td>System typ</td> <td>e Building sy</td> <td>stem</td> <td></td> <td></td> <td></td>	Simulation parameters	System typ	e Building sy	stem			
Models used Transposition Perz Diffuse Imported Horizon Average Heigh 2.5' -	Collector Plane Orientation	т	lt 25°	Azimuth	0°		
Horizon Average Heigh 2.5' Near Shadings Linear shadings User's needs: Unlimited load (grid) PV Array Characteristics Si-poly Model PV module Si-poly Model Driginal PV-yett database Manufacture Canadian Solar inc. Number of PV modules Nib. modules 16 narallel 6 strings Array dobal power Nominal (STC) 21.06 KWp At operating cond. 17.53 KWp (65°C). Array dobal power Model area 128 m² Cell area 11 dm ² Total number of PV modules Manufacture Fornius International 17.53 KWp (65°C). Array operating characteristics (50°C) Module area 128 m² Cell area 11 dm ² Total area Module area 228 m² Cell area 10.00 KWac Characteristics Operating Votage 20.0 Vm²K Uv (wind) 0.00 Vm²K / m/s Portary Loss factor Uc (const) 2.0 Vm²K Uv (wind) 0.0 Vm²K / m/s Module area Exos Fraction 0.7 % at S7 Module	Models used	Transpositio	n Perez	Diffuse	Imported		
Near Shadings Linear shadings User's needs: Unlimited load (grid) PV Array Characteristics Si-poly Mode CSK- 270P Original PVsyst database Manufacture Canadian Solar inc. In parallel 6 strings. Total number of PV modules Namerois 13 modiles Unit Nom. Power 270 Vp. Array global power Nominal (STO) 21.06 KWp At operating cond. 7.53 KWp (65°C). Array global power Modile In array 21.07 KWp. At operating cond. 7.53 KWp (65°C). Array global power Modile 21.07 KWp. Old In Prove College 20.07 KWp. At operating cond. 7.53 KWp (65°C). Array global power Modile area 12 m² Old In Prove College 20.07 KWp. At operating cond. 7.53 KWp. (65°C). Array global power Modile area 12 m² Old In Prove College 20.07 KWp. At operating cond. 7.53 KWp. (65°C). Array global power Modile area 12 m² Unit Nom. Power 10.00 KWac 10.00 KWac Inverter Mode (cond) 20 VWm²K Uv (wind) 0.00 Wm²K / m/s <t< td=""><td>Horizon</td><td>Average Heigh</td><td>t 2.5°</td><td></td><td></td><td></td><td></td></t<>	Horizon	Average Heigh	t 2.5°				
User's needs : Unimited load (grid) PV Array Characteristics PV module Si-poly Model CS6K - 270 P Original PVsyst database Manufacture Canadian Solar Inc. Number of PV modules In series 13 modules In parallel 6 strings. Total number of PV modules Number of PV modules Number of PV modules Vin Num. Power 270 Wp. Array global power Nominal (STC) 21.05 KWp At operating cond. 17.53 KWp (65°C). Array global power Module area 128 m ² Impe 53.4 Total area Module 230 S V Impe 53.4 Total area Module area 128 m ² 10.00 KWac Characteristics Operating Voitage 230-S00 V Unit Nom. Power 10.00 KWac Inverter Module area 230-S00 V Unit Nom. Power 10.00 KWac Inverter pack Nb. of inverters 2 Units Total Power 20 KWac Phormation 1.05 Experimental Strings Experimental Strings Experimental Strings Ming Ohmic Loss <td>Near Shadings</td> <td>Linear shading</td> <td>5</td> <td></td> <td></td> <td></td> <td></td>	Near Shadings	Linear shading	5				
PV Array Characteristics PV module Si-poly Model CS6K - 270P Original PVsyst database Manufacturer Canadian Solar Inc. Number of PV modules In series 13 modules In parallel 6 strings Total number of PV modules Nb. modules Nominal (STC) 21.06 KWp At operating cond. 17.53 KWp (65°C) Array global power Nominal (STC) 21.06 KWp At operating cond. 17.53 KWp (65°C) Array global power Module area 128 m² Cell area 114 m² Inverter Module IS Plus 120 V-3 Cell area 10.00 KWac Original PVsyst database Manufacturer Fronius International Characteristics Operating Voltage 230-500 V Unit Nom. Power 10.00 KWac Inverter Model IG Plus 120 V-3 Total Power 20 KWac Pnom ratio 1.05 PV Array loss factors Nb. of inverters 2 units Total Power 20 KWac Inverter pack Nb. of inverters 56 mOhr Loss Fraction 0.7 % at STC Module Goronto	User's needs :	Unlimited load (grid)				
Number of PV module Si-poly Model CS8K - 270P Original PVsyst database Manufacturer Canadian Solar Inc. Number of PV modules Nis modules In parallel 6 strings Total number of PV modules Nis. modules In parallel 6 strings Array global power Nominal (STC) 21.06 KWp At operating cond. 17.53 KWp (65°C) Array operating characteristics (50°C) U mpp 333 V Impp 53 A Total area Module rea 12 m² Cell area 11 m² Inverter Model ISPust 20 V-3 Impp 53 A Original PVsyst database Manufacturer Fronius International 10.00 KWac Characteristics Operating Voitage 230-500 V Unit Nom. Power 10.00 KWac Inverter pack Nb. of inverters 2 units Total Power 20 KWac Promoratio 1.05 String Maratch Loss Strong Maratch Loss Strong Maratch Loss Promoratio 1.05 Loss Fraction 0.7 % at STC Loss Fraction 0.5 %	PV Array Characteristics						
Original PVeyst database Manufacture in series In series 13 modules In parallel 6 strings Total number of PV modules Nis medules 78 Unit Nom. Power 270 Vip Array global power Nominal (STC) 21.06 KWp At operating cond. 77.53 KWp (65°C) Array global power Module area 128 module 78 Unit Nom. Power 270 Vip Array global power Module area 128 module 78 Unit Nom. Power 53 A Total area Module area 128 module 78 Unit Nom. Power 10.00 KWac Original PVeyst database Manufacture Forinius International 00.00 KWac 10.00 KWac Inverter pack Nb. of inverters 2 units Total Power 20 KWac Phorm ratio 1.05 20 KWac 20 KWac 20 KWac Inverter pack Nb. of inverters 56 mOhr Loss Fraction 0.7 % at STC Module Quality Loss Loss Fraction 0.7 % at STC Loss Fraction 0.5 % Module Gouality Loss Global array res	PV module	Si-poly Mode	CS6K - 270	P			
Number of PV modules In series 13 modules In parallel 6 strings Total number of PV modules Nb monules 78 Unit Num. Power 27.0 % Array global power Nominal (STC) 21.05 KWp At operating cond. 17.53 KWp (65°C) Array global power Im operating cond. 17.53 KWp (65°C) 11 m² Array global power Module area 128 m² Cell area 11 m² Inverter Model 128 m² Cell area 10.00 KWac Original Polysit database Manufacture Fonius International 10.00 KWac Characteristics Operating Voitage 230-500 V Unit Nom. Power 10.00 KWac Inverter pack Nb. of inverters 2 units Total Power 20.00 KWac Inverter pack Nb. of inverters 2 units Total Power 20.00 KWac Promm ratio 1.05 10.00 KWac 1.05 10.00 KWac Promor ratio 0.0 Wim*K / m/s Loss Fraction 0.7 % at STC Ming Ohmic Loss Global array res 56 mOhm Loss	Original PVsyst database	Manufacture	r Canadian S	olar Inc.			
Non-Inductor Or Windowski (S) Nonimal (STC) 21.06 KWp Altopending cond. 77.53 KWp (65°C) Array goldal power Nonimal (STC) 21.06 KWp Altopending cond. 77.53 KWp (65°C) Array goldal power Nonimal (STC) 21.06 KWp Altopending cond. 77.53 KWp (65°C) Array goldal power Module area 128 m² Cell area 114 m² Inverter Module Is Plus 128 V-3 Cell area 114 m² Original Power Operating Voltage 230-500 V Unit Nom. Power 10.00 KWac Inverter pack Nb. of inverters 2 units Total Power 200 KWac Inverter pack Nb. of inverters 2 units Total Power 20.00 KWac Prom ratio 1.05 200 VIm*K Ur (wind) 0.00 Wim*K / m/s Vising Ohmic Loss Global array res 56 mOhm Loss Fraction 0.7 % at STC Module Mismath Losses Loss Fraction 0.10 % at MPP Loss Fraction 0.10 % Nodule Mismath Losse Loss Fraction 0.10 % st MPP Loss Fraction 0.10 %	Number of PV modules	In serie	s 13 modules	In parallel	6 strings		
Array operating characteristics (50°C) U mpp 333 V I mpp 53 A Total area Module area 12 m² Cell area 114 m² Inverter Module area ISPUS Cell area 114 m² Original PVsyst database Manufacture Fronius Intermational Coharacteristics 10.00 kWac Characteristics Operating Voise 2 unit Total Powe 20 kWac Inverter pack Nb. of inverters 2 unit Total Powe 20 kWac PV Array loss factors Uc (const) 20.0 W/m²K Uv (wind) 0.0 W/m²K / m/s Vidrig Outify Loss Global array res 66 mOhm Loss Fraction 0.05 % Module Mismatch Losses E Loss Fraction 0.10 % String Mismatch Losse E Loss Fraction 0.10 % Indefend profile 10° 20° 30° 40° 50° 60° 70° & 80° 90° Indefend Profile U 20° 30° 40° 50° 60° 70° & 80° & 90° 0.10 %	Array global power	Nominal (STC) 21.06 kWp	At operating cond.	17.53 kWp (65°C)		
Tatal area Module area 128 m² Cell area 114 m² Inverter Module area 128 m² Cell area 114 m² Original PVsyst database Manufacture Fronius intermational Cell area 114 m² Characteristics Operating Votage 230-500 V Unit Nom. Power 10.00 kWac Inverter pack Nb. of inverters 2 units Total Power 20 kWac PV Array loss factors Prominatio 0.0 W/m²K Uv (wind) 0.0 W/m²K / m/s VMring Ohmic Loss Global array res 56 mOhm Loss Fraction 0.7 % at STC Module Mismatch Losses Loss Fraction 0.0 % Loss Fraction 0.1 % Nodule Mismatch Losses Loss Fraction 0.1 % Loss Fraction 0.1 % Strings Mismatch Losses Loss Fraction 0.10 % Loss Fraction 0.10 % Incidence effect (LM): User defined profile Loss Fraction 0.10 % Loss Fraction 0.10 %	Array operating characteristics	(50°C) U mp	333 V	l mpp	53 A		
Inverter Mode IGPUs 128 V-3 Original PV-Syst database Manufacture Fronius Intermanue 1.000 KWac Characteristics Operating Votage 200-500 V Unit Nom-Power 1.000 KWac Inverter pack Nb. of Inverter 2 units Total Power 20 KWac PV Array loss factors 200-VVm*K Dy (wind) 0.00Vm*K / m/s PV Array loss factors 0 colonne 20.0 VMr*K Dy (wind) 0.00Vm*K / m/s Wring Ohmic Loss Global array res 66 mOhm Loss Fraction 0.7 % at STC Module Mismatch Losses Clobal array res Loss Fraction 0.10 % Nodrie Gauty Loss Verter Verter Loss Fraction 0.10 % Strings Mismatch Losses 30° 40° 50° 60° 70° 80° 90° India 20° 30° 40° 50° 60° 70° 80° 90°	Total area	Module are	a 128 m²	Cell area	114 m²		
Original PVsyst database Characteristics Manufacture Operating Votage Frontus International Characteristics Operating Votage 230-500 V Unit Nom. Power 1.0.0 kWac Inverter pack Nb. of Inverters 2 units Total Power 20 kWac PV Array loss factors 20.0 V/m²K Uv (wind) 0.0 W/m²K / m/s Ophicia Cost Global array res 56 mOhm Loss Fraction 0.7 % at STC Module Mismatch Losses So Son V Loss Fraction 0.7 % at STC Module Mismatch Losses Loss Fraction 0.10 % Incidence effect (MN; User defined profile Son V Son V 0.10 %	Inverter	Mode	IG Plus 120	V-3			
Characteristics Operating Votage 234-500 V Onit Knim. How TOUD KWac Inverter pack Nb. of inverters 2 units Total Power 10.00 kWac PV Array loss factors Total Power 20.0 W/m²K DV (wind) 0.0 W/m²K / m/s Wring Ohmic Loss Global array res. 56 mOhm Loss Fraction 0.7 % at STC Module Quality Loss Loss Fraction 0.7 % at STC Loss Fraction 1.0 % at MPP Strings Mismatch Losses Loss Fraction 0.10 %. Intervention 0.10 %. Incidence effect (IM): User defined profile Intervention 50° 60° 70° 80° 90° 0.988 0.998 0.9995 0.9982 0.886 0.970 0.917 0.763 0.000	Original PVsyst database	Manufacture	r Fronius Inte	mational	10.00 1111-		
Inverser pack Nb. of inverters 2 Lints Iotal Power 20 KWac Promir ratio 1.05 PV Array loss factors Thermal Loss factor Uc (const) 20.0 W/m ³ K Uv (wind) 0.0 W/m ³ K / m/s Wring Ohmic Loss Global array res. 56 mOhm Loss Fraction 0.7 % at STC Module Quality Loss Loss Fraction 0.7 % at STC Loss Fraction 0.7 % at MPP Strings Mismatch losses Loss Fraction 0.10 % at MPP Strings Mismatch losse Loss Fraction 0.10 % Incidence effect (LM): User defined profile 10° 20° 30° 40° 50° 60° 70° 80° 90° 0.988 0.998 0.9995 0.988 0.970 0.917 0.763 0.000	Characteristics	Operating Voltag	e 230-500 V	Unit Nom. Power	10.00 KVVac		
PV Array loss factors Thermal Loss factor Uc (const) 20.0 Wim*K Uv (wind) 0.0 Wim*K / m/s Wring Ohmic Loss Giobal array res. 56 mOhm Loss Fraction 0.7 % at STC Module Mismatch Loses Loss Fraction 0.5 % Module Mismatch Module Mismatch Loses Loss Fraction 0.7 % at STC Loss Fraction 0.7 % at STC Loss Fraction Nodule Mismatch Loses Loss Fraction 0.10 % Incidence effect (IAM): User defined profile Loss Fraction 0.10 % 10* 20* 30* 40* 50* 60* 70* 80* 90* 0.998 0.998 0.992 0.986 0.970 0.917 0.763 0.000	Inverter pack	Nb. of inverter	s 2 units	Total Power	20 kWac		
PV Array loss factors Thermal Loss factor Uc (const) 2.0.0 Wim*K Ur (wind) 0.0 Wim*K / m/s Wring Ohmic Loss Global array res 56 mOhm Loss Fraction 0.7 % at STC Module Quality Loss Loss Fraction 0.5 % Loss Fraction 0.5 % Module Mismatch Losses Loss Fraction 0.0 % at MPP Strings Mismatch loss Loss Fraction 0.10 % Indidence effect (IAM): User defined profile U Stor Robin Robin <th< td=""><td></td><td></td><td>-</td><td>Fildin facto</td><td>1.05</td><td>1</td><td>-</td></th<>			-	Fildin facto	1.05	1	-
Thermal Loss factor Uc (const) 20.0 WIm*K Uv (wind) 0.0 WIm*K / m/s Wring Ohmic Loss Global array res. 56 mOhm Loss Fraction 0.7 % at STC Module Quality Loss Loss Fraction 0.5 % Loss Fraction 0.5 % Module Mismatch Loses Loss Fraction 0.10 % strings Strings Mismatch Lose Loss Fraction 0.10 % Incidence effect (IAN): User defined profile 10° 20° 30° 40° 50° 60° 70° 80° 90° 0.9986 0.9995 0.9922 0.886 0.970 0.917 0.763 0.0000	PV Array loss factors						
Wring Ohmic Loss Global array res. 56 mOhm Loss Fraction 0.7 % at STC Module Quality Loss Loss Fraction 0.5 % -	Thermal Loss factor	Uc (cons) 20.0 W/m²K	Uv (wind)	0.0 W/m²K / m/s		
Module Quality Loss Loss Fraction -0.5 % Module Mismatch Losses Loss Fraction 0.0 % at MPP Strings Mismatch Losse Loss Fraction 0.0 % Incidence effect (IAM); User defined profile 10° 20° 30° 40° 50° 60° 70° 80° 90° 0.998 0.998 0.992 0.888 0.970 0.917 0.763 0.000	Wiring Ohmic Loss	Global array res	56 mOhm	Loss Fraction	0.7 % at STC		
Incidence effect (IAM); User defined profile 20° 30° 40° 50° 60° 70° 80° 90° 0.998 0.998 0.995 0.992 0.888 0.970 0.917 0.763 0.000	Module Quality Loss			Loss Fraction	-0.5 %		
Incidence effect (IAM): User defined profile 10° 20° 30° 40° 50° 60° 70° 80° 90° 0.988 0.988 0.985 0.982 0.888 0.970 0.917 0.763 0.000	Strings Mismatch loss			Loss Fraction	0.10 %		
10° 20° 30° 40° 50° 60° 70° 80° 90° 0.998 0.998 0.995 0.992 0.886 0.970 0.917 0.763 0.000	Incidence effect (IAM): User de	fined profile					
0.998 0.996 0.995 0.992 0.986 0.970 0.917 0.763 0.000	10°	20° 30°	40°	50° 60°	70° 80°	90°	
	0.998	0.998 0.995	0.992	0.986 0.970	0.917 0.763	0.000	_
	Wsyst Evaluation mode						

PVsyst Evaluation mode

APÊNDICE C – RELATÓRIO *METEONORM* GERADO PELO *PVSYST*

PVSYST V6.79									07/05/19	Page 1/5
Grid-Connected System: Simulation parameters										
Project :	di	colore								
Geographical Site		L	imoeiro			Cou	ntry	Brazil		
Situation			Latitude	-27.06	°S	Longit	ude	-48.88° W		
Time defined as		Le	gal Time	Time z	one UT-3	Altit	ude	22 m		
Meteo data:		ſ	Albedo Dicolore	0.20 Meteo	norm 7.2	Sat=100% - Sy	ynthe	etic		
Simulation variant :	N	ew simulat	on vari	ant						
	VA	Simula	ion date	07/05/	19 10h26					
Simulation parameters	5	Syst	em type	Buildi	ng syste	m				
Collector Plane Orient	ation		Tilt	25°		Azim	nuth	0°		
Models used		Tran	sposition	Perez		Diff	fuse	Perez, Meteonorm		
Horizon		Averag	e Height	2.4°						
Near Shadings		Linear	shadings							
User's needs :		Unlimited lo	ad (grid)							
PV Array Characteristic	s						7			
PV module		Si-poly	Model	CS6K	- 270P					
Original PVsyst datab	ase	Man	ufacturer	Canad	lian Solar	Inc.		0 - ++i		
Total number of PV modules	ules	Nb	modules	78	dules	Unit Nom, Por	wer	270 Wb		
Array global power		Nomin	al (STC)	21.06	kWp	At operating co	nd.	17.53 kWp (65°C)		
Array operating characte	ristics (50°C)		U mpp	333 V		In	npp	53 A		
Total area		Mod	ule area	128 m	*	Cell a	rea	114 m²		
Inverter			Model	IG Plu	is 120 V-3	3				
Original PVsyst datab Characteristics	ase	Man	Voltage	Froniu 230-50	s Internat	ional Unit Nom Po	wer	10.00 kWac		
Inverter pack		Nb of	invertere	2 unite	,	Total Po	wor	20 kl/kc		
interior pack				Lunic		Pnom r	atio	1.05		
	17 8			0	717					
PV Array loss factors										
Thermal Loss factor		U	c (const)	20.0 V	₩m²K	Uv (w	rind)	0.0 W/m²K / m/s		
Wiring Ohmic Loss		Global a	rray res.	56 mC	hm	Loss Frac	tion	0.7 % at STC		
Module Mismatch Losse	s					Loss Frac	tion	1.0 % at MPP		
Strings Mismatch loss						Loss Frac	tion	0.10 %		
Incidence effect (IAW): 0	ser denned p	one	_							_
0.998	0.998	0.995	c	40*	0.98	6 0.970)	0.917 0.763	0.000	11
	1/17		17			1	Γ			
R/mat Facilitative moti-										

P/syst Evaluation mode

