

# UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS, TECNOLOGIAS E SAÚDE - CTS DEPARTAMENTO DE COMPUTAÇÃO – DEC

### **PLANO DE ENSINO**

#### **SEMESTRE 2019.2**

## I. IDENTIFICAÇÃO DA DISCIPLINA:

| CÓDIGO          | NOME DA DISCIPLINA                            | Nº DE HORAS-AULA<br>SEMANAIS |          | TOTAL DE HORAS-<br>AULA SEMESTRAIS |
|-----------------|-----------------------------------------------|------------------------------|----------|------------------------------------|
|                 |                                               | TEÓRICAS                     | PRÁTICAS |                                    |
| DEC7551         | Tópicos Especiais I – Eletrônica<br>Analógica | 2                            | 2        | 72                                 |
|                 |                                               | HORÁRIO                      |          | MODALIDADE                         |
| TURMAS TEÓRICAS |                                               | TURMAS PRÁTICAS              |          | Presencial                         |
| 66              | 655 – 4-1010-2 e 6-1010-2                     | -                            |          |                                    |

### II. PROFESSOR(ES) MINISTRANTE(S)

Prof. Tiago Oliveira Weber

E-mail: tiago.weber@ufsc.br

Horário de atendimento: Quinta-feira das 14:00 às 15:00 – Unidade Mato Alto-Sala 206

### III. PRÉ-REQUISITO(S)

| CÓDIGO | NOME DA DISCIPLINA                        | : |
|--------|-------------------------------------------|---|
| -      | Esta disciplina não possui pré-requisitos |   |

# IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

Graduação em Engenharia de Computação

### V. JUSTIFICATIVA

Circuitos eletrônicos estão presentes em praticamente todos os sistemas modernos. Circuitos eletrônicos analógicos, por sua vez, propiciam a interface entre o mundo digital e o mundo real, além de serem fundamentais para sistemas de comunicação, condicionamento de sinais, entre outros. Por serem de grande complexidade, o projetista precisa ter conhecimento profundo sobre os dispositivos e técnicas de circuito para poder projetá-los adequadamente e atingir as especificações de projetó.

#### VI. EMENTA

Introdução a eletrônica analógica. Fluxo de projeto de circuitos analógicos. Amplificadores operacionais e aplicação em circuitos lineares e não lineares; Transistores de efeito de campo. Circuitos com transistores de efeito de campo. Transistores bipolares de junção. Circuitos com transistores bipolares; Amplificadores de um único estágio. Espelhos de corrente. Amplificadores diferenciais e de múltiplos estágios. Introdução a circuitos a capacitor chaveado. Fontes de ruído em circuitos eletrônicos.

### VII. OBJETIVOS

**Objetivos Gerais:** Esta disciplina deverá abordar aspectos do projeto de circuitos eletrônicos analógicos com enfoque nas técnicas clássicas de projeto.

#### **Objetivos Específicos:**

- Introduzir conceitos básicos de eletrônica;
- Discutir o fluxo de projeto de circuitos analógicos;
- Discutir diferenças entre projeto de circuitos discretos e circuitos integrados;
- Analisar dispositivos eletrônicos;

- Explorar circuitos tradicionais de eletrônica analógica;
- Explorar técnicas de projeto;

### VIII. CONTEÚDO PROGRAMÁTICO

### Conteúdo teórico:

- Introdução a eletrônica analógica;
- Fluxo de projeto de circuitos analógicos;
- Amplificadores operacionais e aplicação em circuitos lineares e não lineares;
- Transistores de efeito de campo
- Circuitos com transistores de efeito de campo;
- Transistores bipolares;
- Circuitos com transistores bipolares;
- · Amplificadores de um único estágio;
- · Espelhos de Corrente;
- Amplificadores diferenciais e de múltiplos estágios;
- Introdução a circuitos a capacitor chaveado;
- Fontes de ruído em circuitos eletrônicos.

## IX. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

O curso será baseado, em parte, em aulas expositivas com auxílio de quadro e projetor multimídia. Para fixação dos tópicos estudados, serão realizadas atividades e trabalhos envolvendo uso de simulador elétrico e softwares de computação científica.

### X. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

- A verificação do rendimento escolar compreenderá frequência e aproveitamento nos estudos, os quais
  deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada
  disciplina, no mínimo a 75% das mesmas (Frequência Suficiente FS), ficando nela reprovado o aluno que
  não comparecer a mais de 25% das atividades (Frequência Insuficiente FI).
- Serão realizadas duas avaliações, sendo:
  - AV1: atividades individuais e em grupos no decorrer do semestre, como trabalhos em aula e extraclasse;
  - AV2: trabalho final da disciplina.
- A Média Final (MF) será calculada da seguinte forma:
  - MF = (AV1 + AV2) / 2
- A nota mínima para aprovação na disciplina será MF>=6,0 (seis) e Frequência Suficiente (FS). (Art. 69 e 72 da Res. nº 17/CUn/1997).
- Ao aluno que não comparecer às avaliações ou não apresentar trabalhos no prazo estabelecido será atribuída nota 0 (zero). (Art. 70, § 4º da Res. nº 17/CUn/1997)

### Observações:

#### Avaliação de recuperação

• Não há avaliação de recuperação nas disciplinas de **caráter prático** que envolve atividades de laboratório (Res.17/CUn/97).

### Nova avaliação

O aluno, que por motivo de força maior e plenamente justificado, deixar de realizar atividades avaliativas
previstas no plano de ensino, deverá formalizar pedido à Chefia do Departamento de Ensino ao qual a
disciplina pertence, dentro do prazo de 3 (três) dias úteis, apresentando documentação comprobatória. O
pedido de nova avaliação deverá ser formalizado na Secretaria Integrada de Departamentos.

### XI. CRONOGRAMA PRÁTICO

| AULA (semana) | DATAS |       | ASSUNTO                                                                       |  |
|---------------|-------|-------|-------------------------------------------------------------------------------|--|
| 1             | 07/08 | 09/08 | Introdução a eletrônica analógica;                                            |  |
| 2             | 14/08 | 16/08 | Semana acadêmica / Fluxo de projeto de circuitos analógicos                   |  |
| 3             | 21/08 | 23/08 | Revisão de técnicas de análise de circuitos                                   |  |
| 4             | 28/08 | 30/08 | Amplificadores operacionais e aplicação em circuitos lineares e não lineares; |  |
| 5             | 04/09 | 06/09 | Amplificadores operacionais e aplicação em circuitos lineares e não lineares; |  |
| 6             | 11/09 | 13/09 | Transistores de efeito de campo                                               |  |
| 7             | 18/09 | 20/09 | Circuitos com transistores de efeito de campo                                 |  |
| 8             | 25/09 | 27/09 | Transistores bipolares                                                        |  |
| 9             | 02/10 | 04/10 | Circuitos com transistores bipolares                                          |  |
| 10            | 09/10 | 11/10 | Amplificadores de um único estágio                                            |  |
| 11            | 16/10 | 18/10 | Amplificadores de um único estágio                                            |  |
| 12            | 23/10 | 25/10 | Espelhos de Corrente                                                          |  |
| 13            | 30/10 | 01/11 | Amplificadores diferenciais e de múltiplos estágios                           |  |
| ,14           | 06/11 | 08/11 | Introdução a circuitos a capacitor chaveado                                   |  |
| 15            | 13/11 | 15/11 | Fontes de ruído em circuitos eletrônicos.                                     |  |
| 16            | 20/11 | 22/11 | Acompanhamento de Trabalhos                                                   |  |
| 17            | 27/11 | 29/11 | Acompanhamento de Trabalhos                                                   |  |
| 18            | 04/12 | 06/12 | Avaliação de Recuperação                                                      |  |

### Obs.:

- o calendário está sujeito a pequenos ajustes de acordo com as necessidades das atividades desenvolvidas
- Semana Acadêmica de Engenharia de Computação nos dias 13, 14, e 15 de Agosto.

## XII. FERIADOS E DIAS NÃO LETIVOS PREVISTOS PARA O SEMESTRE 2019.2:

| DATA       |                                                             |   |
|------------|-------------------------------------------------------------|---|
| 07/09/2019 | Independência do Brasil (Sexta)                             |   |
| 12/10/2019 | Nossa Senhora Aparecida (Sexta)                             | - |
| 28/10/2019 | Dia do Servidor Público (Lei nº 8.112 – art. 236) (Segunda) |   |
| 02/11/2019 | Finados (Sábado)                                            |   |
| 15/11/2019 | Proclamação da República (Sexta)                            |   |

## XIII. BIBLIOGRAFIA BÁSICA

- 1. SEDRA; Smith. Microeletrônica, Pearson, 2007.
- RAZAVI, BEHZAD. Fundamentos de Microeletrônica LTC, 2010, ISBN: 8521617321, ISBN-13: 9788521617327
- 3. NILSSON, James William; RIEDEL, Susan A. Circuitos elétricos. 6. ed Rio de Janeiro: LTC, c2003. 656p.

## XIV. BIBLIOGRAFIA COMPLEMENTAR:

1. THOMAS, Roland E.; ROSA, Albert J.; TOUSSAINT, Gregory J. **Análise e projeto de circuitos elétricos lineares**. 6th ed. Porto Alegre: Bookman, 2011. xii, 816 p. ISBN 9788577807876.

- ALEXANDER, CHARLES K.; SADIKU, MATTHEW. Fundamentos de Circuitos Elétricos MCGRAW HILL - ARTMED, 2008, ISBN: 8586804975, ISBN-13: 9788586804977
- 3. EDMINISTER, Joseph A. **Circuitos elétricos** : reedição da edição clássica. São Paulo: Makron: McGraw-Hill, c1991. 585p.
- 4. JOHNSON, D.E, J.L. Hilburn, J.R. Johnson, Fundamentos de análise de circuitos elétricos, 4ª Ed., Editora Prentice-Hall do Brasil, 1994.
- 5. MALVINO. Eletrônica V.1 e 2, McGrawHill, 2008.
- DORF, RICHARD; SVOBODA, JAMES A. Introdução a Circuitos Elétricos LTC, 2008, ISBN: 8521615825, ISBN-13: 9788521615828

Os livros acima citados constam na Biblioteca Universitária e Setorial de Araranguá. Algumas bibliografias também podem ser encontradas no acervo da disciplina, via sistema Moodle.

## XV. INFRAESTRUTURA E MATERIAS NECESSÁRIOS:

- 1. Datashow
- 2. Quadro branco e canetas
- 3. Impressão: monocromática
- 4. Computadores

Obs.: A indisponibilidade de infraestrutura/materiais listados pode causar prejuízos ao processo pedagógico.

Tiago Oliveira Digitally Weber:00972 signed by 727019 Tiago Oliveira

Professor da Disciplina

Aprovado na Reunião do Colegiado do Curso em: 16/08/19