

UNIVERSIDADE FEDERAL DE SANTA CATARINA (UFSC) CENTRO DE CIÊNCIAS, TECNOLOGIAS E SAÚDE (CTS) COORDENADORIA ESPECIAL DE FÍSICA, QUÍMICA E MATEMÁTICA (FQM) PLANO DE ENSINO

SEMESTRE 2019.2

I. IDENTIF	ICAÇÃO DA DISCIPLINA	1-14-14-14-14-14-14-14-14-14-14-14-14-14	
CÓDIGO	NOME DA DISCIPLINA	Nº DE HORAS-AULA SEMANAIS TEÓRICAS PRÁTICAS	TOTAL DE HORAS-AULA SEMESTRAL
FQM7537	Mecânica dos Materiais	1111/43/14 TELLY # # # # # # # # # # # # # # # # # #	\$1 \ F \(\text{F} \) 72 \(\text{A} \) \(\text{A} \) \(\text{A} \)

HORÁRIO E LOCAL		MÓDULO 1 4
TURMAS TEÓRICAS	TURMAS PRÁTICAS	
05655:214202 / 414202		Presencial
ALOCAR / ALOCAR		

II. PROFESSOR(ES) MINISTRANTE(S)	
Bernardo Walmott Borges	bernardo.borges@ufsc.br

III. PRÉ-REQUISITO(S)		
CÓDIGO	NOME DA DISCIPLINA	
	Não possui pré-requisitos	

IV. CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

Bacharelado em Engenharia de Computação

V. JUSTIFICATIVA

Esta disciplina se justifica pela contribuição teórica e investigativa na formação básica de egressos da área de Ciências Exatas e Engenharias. Ela é necessária para a complementação da formação do profissional em Engenharia, fornecendo uma base para a compreensão de problemas relacionados à Estática e Dinâmica de Corpos Rígidos e à Resistência dos Materiais.

VI. EMENTA

Estática dos pontos materiais. Equilíbrio dos corpos rígidos. Centroides. Análise de estruturas. Atrito. Momento de inércia. Noções de dinâmica de corpo rígido. Estado de tensão. Esforços solicitantes como resultantes das tensões. Barras submetidas à força normal. Flexão. Torção. Critérios de resistência. Flambagem.

VII. OBJETIVOS

1. Objetivos Gerais

Desenvolver a habilidade do aluno na análise crítica e na resolução de problemas concretos, integrando conhecimentos multidisciplinares, viabilizando o estudo de modelos abstratos e sua extensão a novos padrões e técnicas de solução. Aplicar conceitos de disciplinas de Física e Matemática para análise e solução de problemas relacionados à Estática, Cinemática e Dinâmica de Corpos Rígidos e à Resistência dos Materiais.

2. Objetivos específicos

- Reconhecer as relações da Física e Matemática com problemas de Engenharia;
- Utilizar linguagem específica na expressão de conceitos físicos relativos à Estática, Cinemática e Dinâmica de Corpos Rígidos e à Resistência dos Materiais;

- Aplicar os conceitos básicos da mecânica newtoniana na abordagem e solução de problemas relacionados ao comportamento de corpos rígidos sob ação de sistemas de forças;
- Conhecer o comportamento de corpos deformáveis, identificando, comparando e quantificando tensões e deformações em elementos estruturais elementares;
- Verificar condições de segurança de elementos estruturais elementares sob diversos carregamentos;
- Transmitir conhecimento, expressando-se de forma clara, formal e consistente na divulgação dos resultados científicos.

VIII. CONTEÚDO PROGRAMÁTICO

- 1. Introdução (conceitos básicos, princípios e leis fundamentais) e estática de partículas
- 2. Sistemas equivalentes de forças (e noções de cinemática e dinâmica de corpos rígidos)
- 3. Equilíbrio de corpos rígidos
- 4. Atrito
- 5. Centroides e forças distribuídas
- 6. Forças internas (diagramas de esforço cortante e momento fletor)
- 7. Análise estrutural
- 8. Momentos de inércia de superfícies planas
- 9. Tensão
- 10. Deformação
- 11. Torção em eixos circulares
- 12. Flexão pura
- 13. Flambagem de colunas

IX. METODOLÓGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

O programa será apresentado em aulas expositivas e aulas de discussão e resolução de problemas.

X. METODOLOGIA E INSTRUMENTOS DE AVALIAÇÃO

A verificação do rendimento escolar compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. É regulamentada pela Resolução número 17/CUn/97 de 30 de setembro de 1997 (disponível em goo.gl/dhqv6k).

1. Frequência

Será obrigatória a frequência às atividades correspondentes a cada disciplina, ficando nela reprovado o aluno que não comparecer, no mínimo, a 75% (setenta e cinco por cento) das mesmas (Art. 69, §2º da Res. nº 17/CUn/97).

2. Aproveitamento nos estudos

Serão realizadas 3 (três) provas individuas, escritas e sem consulta (P1, P2 e P3). As datas das provas poderão ser alteradas de acordo com as necessidades do curso e do andamento do cronograma. Ao aluno que não comparecer às avaliações será atribuída nota 0 (zero) (Art. 70, §4º da Res. nº 17/CUn/97). A média final (MF) será calculada como a média aritmética das notas obtidas nas provas escritas:

$$MF = \frac{P1 + P2 + P3}{3}$$

A nota mínima de aprovação em cada disciplina é 6,0 (seis vírgula zero) ($MF \ge 6,0$) (Art. 72 da Res. nº 17/CUn/97). O aluno com frequência suficiente (ou seja, maior ou igual a 75%) e média das notas de avaliações (MF) do semestre entre

3,0 (três) e 5,5 (cinco vírgula cinco) terá direito a uma nova avaliação no final do semestre (recuperação *REC*) (Art. 70, §2º da Res. nº 17/CUn/97). O aluno enquadrado nesse caso terá sua nota final (*NF*) calculada através da média aritmética entre a média das notas das avaliações semestrais (*MF*) e a nota obtida na recuperação (*REC*) (Art. 71, §3º da Res. nº 17/CUn/97):

$$NF = \frac{MF + REC}{2}$$

O aluno, que por motivo de força maior e plenamente justificado, deixar de realizar avaliações previstas no plano de ensino, deverá formalizar pedido de avaliação à Chefia da Coordenadoria Especial de Física, Química e Matemática (FQM) na Secretaria Integrada de Departamentos (SID), dentro do prazo de 3 (três) dias úteis, apresentando documentação comprobatória (Art. 74 da Res. nº 17/CUn/97).

Abaixo estão listados os conteúdos das avaliações, que poderão ser alterados de acordo com as necessidades e andamento da disciplina. Os conteúdos seguem a numeração da seção VIII (Conteúdo Programático) acima.

Prova P1 (11/09/2019): seções 1 a 4 Prova P2 (23/10/2019): seções 5 a 8 Prova P3 (02/12/2019): seções 9 a 13

Recuperação REC (04/12/2019): todas as seções

XI. CRON	OGRAMA	
SEMANA	DATAS	ASSUNTO(S)
1ª	05/08 a 10/08/2019	Introdução e estática de partículas
2ª	12/08 a 17/08/2019	Introdução e estática de partículas Semana Acadêmica da Engenharia de Computação (o cronograma poderá sofre alterações de acordo com a programação do evento)
3ª	19/08 a 24/08/2019	Sistemas equivalentes de forças
4ª	26/08 a 31/08/2019	Sistemas equivalentes de forças
5ª	02/09 a 07/09/2019	Equilíbrio de corpos rígidos
6ª	09/09 a 14/09/2019	Atrito; Prova P1
7ª	16/09 a 21/09/2019	Centroide e forças distribuídas
8a	23/09 a 28/09/2019.	Centroide e forças distribuídas
9a /	30/09 a 05/10/2019	Centroide e forças distribuídas
10ª	07/10 a 12/10/2019	Forças internas
11ª	14/10 a 19/10/2019	Análise estrutural
12ª	21/10 a 26/10/2019	Momentos de inércia de superfícies planas; Prova P2
13ª	28/10 a 02/11/2019	Dia do Servidor Público; Tensão
14ª .	04/11 a 09/11/2019	Tensão
15 ^à	11/11 a 16/11/2019	Deformação
16ª	18/11 a 23/11/2019	Torção em eixos circulares; Flexão Pura
17ª	25/11 a 30/11/2019	Flexão Pura; Flambagem de colunas
18ª	02/12 a 06/12/2019	Prova P3; Recuperação REC

DIAS NÃO LE	TIVOS NO SEMESTRE
07/09/2019	Independência do Brasil
12/10/2019	Nossa Senhora Aparecida
28/10/2019	Dia do Servidor Público (Lei nº 8.112 – Art. 236)
02/11/2019	Finados

15/11/2019	Proclamação da República	
16/11/2019	Dia não letivo	

XII. BIBLIOGRAFIA BÁSICA

- 1. BEER, F. P.; DEWOLF, J. T.; JOHNSTON Jr., E. R.; MAZUREK, D. F. Estática e Mecânica dos Materiais. Porto Alegre: AMGH, 2013. 728 p.
- 2. BEER, F. P.; JOHNSTON Jr., E. R.; MAZUREK, D. F. Mecânica Vetorial para Engenheiros: Estática. 9. ed. Porto Alegre: AMGH, 2012. 648p.
- 3. BEER, F. P.; JOHNSTON Jr., E. R.; CORNWELL, P. J. Mecânica Vetorial para Engenheiros: Dinâmica. 9. ed. Porto Alegre: AMGH, 2012. 776p.
- 4. HIBBELER, R. C. Resistência dos Materiais. 7. ed. São Paulo: Pearson, 2010. 656p.
- 5. UGURAL, A.C. Mecânica dos Materiais. Rio de Janeiro: LCT, 2009. 650p.

XIII. BIBLIOGRAFIA COMPLEMENTAR

- 1. BEER, F. P.; JOHNSTON Jr., E. R.; DEWOLF, J. T.; MAZUREK, D. F. Mecânica dos Materiais. 9. ed. Porto Alegre: AMGH, 2011. 800p.
- 2. POPOV, E. P. Introdução à Mecânica dos Sólidos. São Paulo: Edgard Blucher, 1978. 552 p.
- 3. HIBBELER, R. C. Mecânica para Engenharia: Estática. 12. ed. São Paulo: Pearson, 2011. 528 p.
- 4. HIBBELER, R. C. Mecânica para Engenharia: Dinâmica. 12. ed. São Paulo: Pearson, 2011. 608p.
- 5. MERIAM, J. L.; KRAIGE, L. G. Mecânica para Engenharia: Estática. 6. ed. Rio de Janeiro: LTC, 2009. 384p.
- MERIAM, J. L.; KRAIGE, L. G. Mecânica para Engenharia: Dinâmica. 6. ed. Rio de Janeiro: LTC, 2009. 540p.
- RILEY, W. F.; STURGES, L. D.; MORRIS, D. H. Mecânica dos Materiais. 5. ed. Rio de Janeiro: LTC, 2003. 616p.
- 8. FRANÇA, L. N. F.; MATSUMURA, A. Z. Mecânica Geral. 3. ed. São Paulo: Edgard Blucher, 2011. 316p.
- 9. CRAIG Jr., R. R. Mecânica dos Materiais. 2. ed. Rio de Janeiro: LTC, 2003. 570p.
- 10. GERE, J. M.; GOODNO, B. J. Mecânica dos Materiais. 7. ed. São Paulo: Thomson., 2011. 880p.

OBS.: Os livros acima citados constam na Biblioteca Setorial de Araranguá ou estão em fase de compras pela UFSC. Algumas bibliografias também podem ser encontradas no acervo da disciplina, impressos ou em CD/DVD, disponíveis para consultas em sala.

Digitally signed by Bernardo Walmott Borges:02210411920	Ω
Date: 2019.06.13 13:34:43 BRT LIMINENSTOADE PROPERS. DE SANTE CATARINA	Prof. Bernardo Walmott Borges SIAPE 1780642
Aprovado na Reunião do Colegiado do Departamento em / /	
	Chefia
Aprovado na Reunião do Colegiado do Curso em 16 / 08 / 2019	Prof. Fabricio de Oliveira Ourique, Ph. Coordenador do Curso de Eng. de Computação - UFSC Portada 2703

Coordenação