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ABSTRACT

The wide use of mobile devices such as GPS, as well as the popular-
ization of social media, has led to the generation of large amounts of
movement data, called trajectories of moving objects. Trajectory data
analysis and mining has become very important because of the variety
of information that may be extracted/inferred from these data, such
as the daily habits or the profile of individuals. Because of the com-
plexity of the data, they must be analyzed not only from the spatial
and temporal characteristics, but any other semantics that may be re-
lated to the data. Behind the large amount of information available
about movement, trajectories may be analyzed from multiple points of
view, that we call multiple aspect trajectories. Similarity measures are
widely employed for trajectory data analysis and have a large impact
on the analysis outcomes. Most existing works for trajectory similarity
are limited to the space and time dimensions of trajectories, and only a
few analyze some semantic characteristics of trajectories. Works such
as LCSS, EDR and MD-DTW are very rigid and limited to the order of
the trajectory points, and two trajectories are considered similar if they
match on all dimensions. On the other hand, works such as MSM are
too flexible, considering two trajectories as similar if they match in any
dimension. In this work, we define the concept of multiple-aspect trajec-
tory, proposing the use of several attributes regarding different aspects
related to movement. We propose MUITAS, a novel similarity mea-
sure for multiple-aspect trajectory similarity analysis, which overcomes
the described limitations of previous works. MUITAS is evaluated on
a toy example and over a real dataset of user check-ins on a social
network containing different aspects related to movement. The results
show that MUITAS is more accurate than existing similarity measures
for analyzing multiple-aspect trajectories, in addition to allowing the
analysis of trajectories in ways not explored before.
Keywords: trajectory similarity, multiple-aspect trajectory.





RESUMO

O amplo uso de dispositivos móveis como GPS e a popularização das
redes sociais têm gerado um grande volume de dados de movimento,
também chamados de trajetórias de objetos móveis. A análise e a
mineração de dados de trajetórias se tornou muito importante pela
variedade de informações que podem ser extraídas/inferidas desses da-
dos, como hábitos diários ou perfis de comportamento dos indivíduos.
Devido a riqueza desses dados e sua complexidade, eles precisam ser
analisados com relação a características espaciais, temporais e semânti-
cas. Além disso, devido a grande variedade de informações disponíveis
sobre trajetórias, faz-se necessária a análise de trajetórias sobre múltip-
los pontos de vista, denominados neste trabalho como trajetórias mul-
tiaspecto. Medidas de similaridade são amplamente empregadas na
análise de trajetórias e têm grande influência nos resultados obtidos na
análise. Grande parte das medidas de similaridade existentes analisam
apenas os atributos espaciais e temporais de trajetórias, e poucos uti-
lizam alguns atributos semânticos na análise. Medidas de similaridade
como LCSS, EDR e MD-DTW dependem fortemente da ordem dos pon-
tos da trajetória e na similaridade de todos os atributos dos pontos. Por
outro lado, trabalhos como MSM analisam a similaridade considerando
quaisquer semelhanças entre pontos e ignorando a frequência em que
um comportamento ocorre na trajetória. Neste trabalho, é introduzido
o conceito de trajetórias multiaspecto, propondo o uso de vários atribu-
tos relacionados a diferentes aspectos do movimento na análise de sim-
ilaridade. Ainda, este trabalho propõe uma nova medida denominada
MUITAS, uma medida de similaridade para trajetórias multiaspecto
que supera as limitações de trabalhos existentes. MUITAS é avaliada
por meio de um exemplo e em um conjunto de dados de check-ins de
usuários em uma rede social, contendo diferentes aspectos relacionados
ao movimento. Os resultados mostram que MUITAS é mais robusta na
análise de trajetórias multiaspecto em relação a trabalhos existentes,
além de permitir a análise de trajetórias por meios não explorados an-
teriormente.
Palavras-chave: similaridade de trajetórias, trajetória multiaspecto.
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1 INTRODUCTION

Our daily movement is guided by goals and influenced by the
environment where we move. For example, one may go to a coffee shop
to work, while another person goes there to get coffee; people may go
out to eat early in the evening by car because their neighborhood is
too dangerous. Being able to understand and to capture the underlying
factors behind movement data can help, for instance, recommendation
systems to more accurately target their audience based on similar user
profiles.

With the popularization of GPS (Global Positioning System)
technology and social media, huge amounts of geotagged data are gen-
erated and collected about people lives. GPS devices, for instance,
make it possible to know the spatial location of a person at a certain
time. The collection of movement points of an object, i.e., the loca-
tions and timestamps collected by a GPS device, constitute the object
trajectory. Any moving object, such as a person, an animal, a car, a
tornado, can generate a trajectory.

The emergence of trajectories and means to collect them allowed
their study and analysis for the past decade. Due to the explosion of
social media and geolocation services, it became possible to enrich tra-
jectories with semantic information, such as interesting places visited
by the trajectory (e.g., park, restaurant, hotel). More recently, Bogorny
et al. (2014) proposed a model for trajectory representation comprising
different aspects related to movement, such as means of transporta-
tion, weather conditions and the trajectory goal, composing what we
call multiple-aspect trajectory. Therefore, the existence of similarity
measures for analyzing multiple-aspect trajectories has become essen-
tial for performing data mining tasks, such as extracting movement
patterns, associating trajectories with certain profiles regarding how
they move, what they do or where they go, etc.

Trajectory similarity measuring has been deeply investigated in
the last few years (some examples are (BERNDT; CLIFFORD, 1994),
(BOLLOBáS et al., 1997), (VLACHOS; KOLLIOS; GUNOPULOS, 2002), (CHEN;
ÖZSU; ORIA, 2005), (HOLT; REINDERS; HENDRIKS, 2007), (LIU; SCHNEI-
DER, 2012) and (FURTADO et al., 2015)) and it is still a challenge when
dealing with several aspects behind movement data. Besides the space
and time information that is intrinsic to trajectory data, large amounts
of information from social media, sensors and weblogs can be used for
trajectory analysis. The semantic enrichment of trajectories (ALVARES
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et al., 2007; KRUEGER; THOM; ERTL, 2014) with context and social infor-
mation leads to multiple-aspect trajectories. Examples are trajectories
enriched with visited places, weather and traffic conditions during the
movement, means of transportation, among others. All aforementioned
information provide a large amount of relevant features regarding tra-
jectory similarity, but such data have not been explored so far.

The analysis of trajectories with respect to their different as-
pects, i.e., distinct representations of the same trajectory, has become
extremely important to better understand movement and to discover
more interesting patterns. Multiple-aspect trajectory analysis can be
widely applied from a simple GPS trajectory to the life trajectory of a
person (NOËL et al., 2015), and it is one of the main challenges in current
trajectory research (FERRERO; ALVARES; BOGORNY, 2016). Moreover,
existing approaches for trajectory analysis and mining, in general, have
limitations regarding semantic information of trajectories and they do
not analyze these multiple aspects of trajectories in conjunction.

To the best of our knowledge, existing approaches have addressed
the similarity of trajectories by comparing their points in two ways: (i)
considering only points that match in all dimensions (e.g., space, time)
(VLACHOS; KOLLIOS; GUNOPULOS, 2002; CHEN; ÖZSU; ORIA, 2005; HOLT;
REINDERS; HENDRIKS, 2007) or; (ii) that match in at least one dimen-
sion (FURTADO et al., 2015). Besides that, no work in the literature has
analyzed the similarity of trajectories from their multiple aspects.

Figure 1 presents different representations of the same trajec-
tories P , Q and R, in order to illustrate the problem addressed in
this work. Figure 1 (a) shows three raw trajectories, the simplest
portrayal of trajectories. Figure 1 (b) displays the same trajectories
represented by their stops, i.e., the places visited by the users for a
minimal amount of time. Figure 1 (c) encompasses the previous repre-
sentations and other aspects related to movement data, such as means
of transportation, weather conditions and social media interaction, i.e.,
multiple-aspect trajectories.

From the point of view of raw trajectories or stops, it is clear
that trajectories P and Q are more similar. In Figure 1 (a) P and Q
are closer in space and in Figure 1 (b) they visit the same category
of places (Home, Restaurant and Mall), thereby being more similar.
When analyzing their multiple aspects (see Figure 1 (c)), however, it
might not be trivial to infer their similarity. Regarding weather condi-
tions, for example, P and R are more similar. When looking at means
of transportation, Q and R are more similar. If we analyze the social
media interactions, we are able to derive information not available in
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raw movement data. For example, the user of trajectory P is less happy
than the user of trajectory R, according to their postings on Twitter
and on Facebook. We can also infer from the Facebook post of R that
the user is eating, and similarly is the user of trajectory Q that checked
in at the restaurant on Foursquare.

P

Q

R

Restaurant

Restaurant

Home

Home

Mall

Mall

Cinema

Gym

Home

Hate the rain :(

Checked in!

Dinner with
my love <3

Multiple Aspects

P

Q

R

Raw Trajectories

P

Q

R

Restaurant

Restaurant

Home

Home

Mall

Mall

Cinema

Gym

Home

Stops

(a)

(c)

(b)

Figure 1 – Different trajectory representations.

The problem becomes even more complex when there is the need
to combine different information, so a deeper analysis can be performed.
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For instance, which users visit the same places when it is raining? Do
the means of transportation change if the weather conditions change?
Do people only go to highly rated places, regardless if they are cheap or
expensive? From the users trajectories, which ones are of tourists and
which ones are of residents? The multiple-aspect representation of tra-
jectories opens a whole new world of possibilities never explored before.
The main challenge here is how to group, store and deal with these
different aspects all together, so that it becomes possible to analyze
trajectories considering all the information available. In the following
section we detail the problem addressed in this work.

1.1 PROBLEM STATEMENT

Suppose we have a dataset of trajectories of user check-ins on
Foursquare. Every user check-in is connected to a venue on Foursquare,
which is the place visited by the user. There is a lot of information and
statistics about venues on Foursquare, such as their rating by users,
how expensive they are, whether or not they take credit cards, and
many others.

There are many factors behind user choices of places to visit,
and these factors may be related to each other. For instance, let us say
a user only goes to well-rated restaurants. Because of the high violence
index in the area where the user lives, he only carries some cash and
his credit card whenever he goes out. Therefore, for him to eat at an
expensive restaurant they must take credit cards. Otherwise, he would
not be able to afford it due to the small amount of cash he has. Notice
that, in this example, there are a few dependency relations on the char-
acteristics of the places he visits. A restaurant must be cheap or, if it is
expensive then it must take credit cards. Additionally, the restaurant
must be well-rated. When we aim to discover users whose trajectories
have the described behaviour, the similarity measure employed must be
able to capture these relationships, so that only the trajectories we are
interested on, i.e., the ones that satisfy these conditions, are retrieved.

Existing similarity measures, however, are still limited to a few
trajectory features and do not capture all of these dependency relation-
ships. Measures like LCSS (VLACHOS; KOLLIOS; GUNOPULOS, 2002),
EDR (CHEN; ÖZSU; ORIA, 2005) and MD-DTW (HOLT; REINDERS; HEN-
DRIKS, 2007), for instance, only compare trajectories regarding their
space and time dimensions. Additionally, they do not take into consid-
eration partial similarity among dimensions, i.e., points of two trajecto-
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ries only match if they are similar in both space and time, so becoming
very rigid measures. As for our problem, if we extended these measures
to work with semantic information, they would be able to capture the
relationship between the rating, the price tier and the credit cards op-
tion of places. However, because they are rigid measures, they would
not be able to retrieve trajectories that semantically match if they do
not match in space and time.

More recently, Furtado et al. (2015) proposed a new similarity
measure considering the partial matching for points of two trajectories
and supporting all three dimensions of space, time, and semantics. The
proposed measure, MSM, is very flexible, but such flexibility may lead
to an inaccurate similarity analysis in some cases. For the problem de-
scribed, MSM would not necessarily retrieve trajectories that follow the
described relationships. If a point of a trajectory was similar to another
point in everything, except for the price tier of the place, MSM would
still result in a high similarity score, which is not the desired behaviour.
Moreover, MSM always accounts the best match for every point of two
given trajectories, regardless if their points were already considered in
a previous match. For this reason, it may assign a high similarity score
even if two trajectories are only similar for a small portion of their
length. In other words, suppose a user A, whose trajectory has one
check-in at a restaurant and 9 check-ins at the gym, and another user
B who checked in at the same restaurant 9 times, but only once at the
gym. The similarity computed by MSM, considering time, space and
semantics, could be close to 100%1. In sum, MSM is not effective when
analyzing repetitive behaviour, leading to inaccurate results.

In multiple-aspect trajectory similarity some characteristics or
attributes2 might be related and should be analyzed together, while
others may be optional. In our example, when a place is expensive
its price tier must be considered together with the credit cards option.
Due to the fact that for some cases EDR, LCSS and MD-DTW may be
too rigid and MSM too flexible, a new similarity measure that combines
such characteristics becomes necessary.

1Given that semantic and spatial dimensions are given more importance than
the time dimension.

2We use the terms dimension and attribute interchangeably.
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1.2 OBJECTIVE

The general objective of this work is to propose a new similarity
measure that allows the combination of different attributes of different
aspects for analyzing multiple-aspect trajectories.

In order to overcome the limitations of previous works, the spe-
cific objectives to be achieved include:

(i) The design of a new flexible similarity measure for multiple-aspect
trajectories;

(ii) The definition of dependency relations between attributes of points,
so that the matching of points is more flexible or stricter, depend-
ing on the nature of the problem;

(iii) The computation of trajectory similarity observing the single match-
ing of their points;

(iv) The use of different aspects of trajectories in the similarity anal-
ysis.

1.3 OUTLINE

The rest of this document is organized as follows. Chapter 2
describes basic concepts relevant to our work and summarizes related
works and their limitations. In Chapter 3 we introduce the proposed
similarity measure, its properties and results on a running example
based on the problem statement defined in this chapter, and present an
evaluation and comparison of our measure with existing ones, validating
the accuracy and improvements made by our approach. Finally, in
Chapter 4 we conclude by describing advantages and limitations of this
work, in addition to potential future work.
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2 BASIC CONCEPTS AND RELATED WORK

In this chapter we introduce the basic concepts that are fun-
damental to our work. We begin by defining distance and similarity,
followed by definitions of raw, semantic and multiple-aspect trajecto-
ries. Subsequently, we describe related work in the literature.

2.1 BASIC CONCEPTS

2.1.1 Distance and Similarity

Distance and similarity are concepts largely used in database
queries and data mining techniques, such as top-k queries, nearest
neighbor classification methods, clustering analysis, among others. Sim-
ilarity and distance quantify how similar or distant two objects are, re-
spectively. In fact, they can be obtained directly from the objects - for
example, "subjects in a food tasting experiment may be asked to state
similarities between flavors of ice-cream", or indirectly measured from
the objects characteristics. Once there is a formal definition of one of
the measures, the other one can be easily computed (HAND; MANNILA;
SMYTH, 2001). For instance, suppose we have objects A, B and C
located at points (1, 3), (4, 7) and (1, 5), respectively. Let us compute
the distances among them using the Euclidean distance. The distances
are presented below, where Equation 2.1 shows the distance between A
and B; Equation 2.2 between A and C; and Equation 2.3 between B
and C.

d(A,B) =
√

(1− 4)2 + (3− 7)2 = 5 (2.1)

d(A,C) =
√

(1− 1)2 + (3− 5)2 = 2 (2.2)

d(B,C) =
√

(4− 1)2 + (7− 5)2 ≈ 3.6 (2.3)

We can use the Euclidean distance to see how similar the objects
are. Thus, A is more similar to C than to B, because the distance
between A and B is 5, but only 2 for A and C. The greater the
distance of two objects is, the less similar they are.
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2.1.2 Raw, Semantic and Multiple-Aspect Trajectory

A raw trajectory is essentially a sequence of points composed by a
pair of spatial coordinates and a timestamp. Alvares et al. (2007) define
a raw trajectory as "a list of space-time points 〈(x0, y0, t0), (x1, y1, t1),
. . . , (xN , yN , tN )〉, where xi, yi, ti ∈ R for i = 0, . . . , N and t0 < t1 <
· · · < tN ." Raw trajectories can be directly collected from GPS devices
and may be generated by any moving object, such as a person, an
animal, a car, a tornado, among others. Figure 1 (a) illustrates three
raw trajectories P , Q and R.

By enriching raw trajectories with semantic information, we then
create semantic trajectories (SPACCAPIETRA et al., 2008). One ap-
proach for semantic enrichment of trajectories is introduced by Alvares
et al. (2007), whose work introduces an algorithm to extract stops and
moves of trajectories. Stops are collections of sample points (x, y, t)
that are very close in space and time, representing interesting spatial
locations called Points of Interest (POIs). Every stop has a start and
an end time, a spatial location and a minimal duration. Moves, on the
other hand, are composed by the sample points between stops (or at
the beginning or at the end of a trajectory). Figure 1 (b) depicts the
stops of three trajectories, labeled with categories of POIs representing
the semantics of the trajectories.

The use of semantics in the context of trajectories, including
aspects such as weather conditions, social media interactions, means
of transportation, etc, defines what we call multiple-aspect trajectory.
There is no formal definition for multiple-aspect trajectory in the lit-
erature. Bogorny et al. (2014), for instance, introduced a model for
trajectory representation comprising several aspects related to move-
ment, but they are limited to means of transportation, environment
conditions, places visited by the object, and events related to the tra-
jectory goal. Figure 1 (c) illustrates the same three trajectories previ-
ously presented, including aspects of weather, means of transportation,
the visited POIs and interactions with social media. Ferrero, Alvares
and Bogorny (2016) later emphasized the need for similarity analysis
of trajectories regarding their multiple representations. In this work,
we introduce a formal definition for multiple-aspect trajectory, which is
described in Definition 1.

Definition 1. A multiple-aspect trajectory is a sequence of points
T = 〈p1, p2, . . . , pn〉, with pi = {A1, A2, . . . , Aj} being the i-th point
of the trajectory composed of j aspects, where Ai = {a1, a2, . . . , al} is
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an aspect composed by l characterizing attributes, and these attributes
may refer to space, time or any other attributes, and aspects referring
to space and time are mandatory.

A point of a multiple-aspect trajectory can be, for instance, a
sample point of a raw trajectory with the attributes space and time, as
shown in Figure 1 (a); the stops of a trajectory (space, time and the
POI category) as presented in Figure 1 (b); or a complex element with
any other aspects. As commented before, an aspect may be the means
of transportation, weather conditions, the POI and its characteristics,
the person’s humor or feelings, among others. The attributes of the
aspect means of transportation could be the name (bus, car, foot) and
the speed; for weather conditions there could be the temperature and
humidity; and the POI could have its category, its rating in a social
media network, the price tier, among others.

As an example, one could define aspects A1 as space, A2 as time,
A3 as POI information and A4 as weather conditions, as follows:

A1

{
x

y
A2 {t A3


POI category

rating

price tier

A4


temperature

humidity

weather condition

A trajectory T1 could then be instantiated, with each point hold-
ing information about every aspect.

T1 = 〈 {(2, 4), (1), (Restaurant,Good, Cheap), (31.2, 0.70, Sunny)},
{(5, 9), (2), (Market,Medium,Cheap), (33.2, 0.75, Cloudy)},
{(22, 2), (3), (Hotel,Good,Expensive), (25.5, 0.80, Rainy)},
{(27, 3), (4), (Nightclub,Good,Expensive), (22.0, 0.79, Rainy)} 〉

2.2 RELATED WORK

The similarity of sequences and time series was the primary prob-
lem discussed in the literature, long before first works started analyzing
actual trajectories. Agrawal, Faloutsos and Swami (1993) discussed the
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problem of similarity among sequenced data and proposed an indexing
technique to efficiently process similarity queries in sequence databases.
Faloutsos, Ranganathan and Manolopoulos (1994) extended their work,
so they were able to search for similar sequences that not necessarily
fully match.

Despite of the pioneering of these works, a well-known algorithm
for similarity measurement between time series was designed by Berndt
and Clifford (1994), called Dynamic Time Warping (DTW). The DTW
algorithm aligns two sequences in order to minimize the distance be-
tween their elements. A matrix with the distances between elements of
both series is created, which is then used to find the contiguous path
with the minimum total distance between the series. Given DTW’s lim-
itation to uni-dimensional data, Holt, Reinders and Hendriks (2007)
extended DTW to create Multidimensional Dynamic Time Warping
(MD-DTW). MD-DTW normalizes the distance of elements in all di-
mensions and then builds the distance matrix, whose elements are the
sum of the distances in all dimensions for every two elements in the
sequences. DTW and MD-DTW tend to be sensitive to noise because
all elements of the sequences being compared are taken into considera-
tion. If at least one of the elements of a sequence is far away from all
the ones in the other sequence, the whole similarity may be affected.

The Longest Common Subsequence (LCSS)1 was introduced as a
robust similarity measure for trajectories (VLACHOS; KOLLIOS; GUNOP-
ULOS, 2002). It is based on the longest common subsequence concept,
in which two sequences are considered to be similar if they have similar
behavior for a large part of their length. Differently than DTW and
MD-DTW, LCSS reduces the impact of noisy data by defining distance
and matching thresholds. Two elements match and are assigned a sim-
ilarity value of 1 if their distance lies below the matching threshold;
otherwise, they do not match and have a similarity of 0. Although it
works well with noise, LCSS has some disadvantages. First, two el-
ements match only if they are close in all dimensions. Additionally,
LCSS ignores possible gaps in sequences, which, for certain problems,
would mean giving the same similarity value for different pairs of tra-
jectories.

Chen, Özsu and Oria (2005) measured the similarity of trajecto-
ries similarly to LCSS. Edit Distance on Real sequence (EDR), as the
measure was named, is based on Edit Distance (ED), widely used for

1Even though LCSS was first designed for time series by Bollobás et al. (1997), we
only consider the most recent approach proposed by Vlachos, Kollios and Gunopulos
(2002) for trajectory data, since it is more robust than the first one.
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measuring similarity between strings. The underlying idea in EDR is
that, being A and B two trajectories, EDR(A,B) is given by the mini-
mum number of insert, delete and replace operations needed to change
A into B. Clearly, a matching threshold must be defined. Like LCSS,
EDR assigns 1 when two elements are similar and 0 otherwise. Besides
reducing the effects of noise and dealing with local time shifting, EDR
overcomes a major drawback present in LCSS. It assigns penalties ac-
cording to the length of the gaps between two matched sub-sequences,
which results in more accurate results than those reached by LCSS.
However, a match occurs only if all dimensions match for any two ele-
ments.

Another work, by Liu and Schneider (2012), computes the simi-
larity of trajectories by considering both geographic and semantic fea-
tures. They segment trajectories into sub-trajectories based on changes
in direction and in the speed of the movement. The authors then com-
pute the geographic distance between two sub-trajectories, using the
distance between their centroids, the difference of their length, and the
cosine similarity of their directions. Afterwards, a semantic ratio is
calculated based on the LCSS measure, to compare the sequence of
visited places. Finally, the semantic ratio is combined with the ge-
ographic similarity and a constant value to form the total distance
between trajectories. One issue with this approach is that it ignores
the time dimension.

More recently, Furtado et al. (2015) presented a new similarity
measure that overcame most limitations of previous works. Essentially,
given two trajectories A and B, for every point of A, the Multidi-
mensional Similarity Measure (MSM) looks for the best match in se-
quence B. Subsequently, the weighed scores of the matches are added
to compose the parity of A with B. Since the parity is not symmet-
ric, MSM(A,B) is computed by the "average" of parity(A,B) and
parity(B,A). Rather than considering pairs of elements only if they
match in all dimensions, MSM treats all dimensions separately and as-
signs partial similarity according to the number of dimensions in which
the elements match. MSM also allows one to define different weights
for every dimension, given that a dimension might be of more or less
importance for different problems. The high flexibility of MSM, how-
ever, may not be appropriate to certain problems. For instance, two
semantic trajectories A and B that visit the same places in a different
order are identified to be very similar. In a traffic management appli-
cation, for example, objects moving in the opposite direction should be
very dissimilar. In addition, MSM disregards any dependency relations
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that might exist between dimensions and that could be important in
multiple-aspect analysis. For instance, if we want to analyze the means
of transportation under certain weather conditions, the attributes of
means of transportation and weather conditions are related and should
be analyzed together. Lastly, MSM always accounts the best match
for every element of two given trajectories, regardless if elements were
already considered in a previous match. For that reason, it may assign
a high similarity score even if two trajectories are only similar for a
small portion of their length.

Another measure, proposed by Furtado (FURTADO et al., 2017), is
a new distance and similarity measure for raw trajectories called Uncer-
tain Movement Similarity (UMS), which is more robust than previous
works regarding different sampling rates and the heterogeneity of tra-
jectory data. Although UMS is more robust than works such as DTW,
LCSS and EDR, it is also limited to the spatial dimension, presenting
the same limitations of previous works regarding semantic information.

Sharif and Alesheikh (2017) define a context model for trajec-
tories, subdivided in four specific contexts called motivation, move-
ment, modality and milieu. Subsequently, they propose a new similarity
measure based on DTW (BERNDT; CLIFFORD, 1994), which essentially
computes DTW on each context and adds it all together according to
specific weights defined by the user. Even though weights are defined
for each context, if two trajectories are very distant in one of the con-
texts, the whole similarity may be affected. Moreover, this approach
disregards any relationships that may exist between different contexts.

Ferrero, Alvares and Bogorny (2016) focus on the need for ana-
lyzing trajectories from different points of view, which they called as-
pects. According to their work, only a few trajectory data analysis and
mining methods in the literature have considered several dimensions of
trajectories, and none of them have taken into account distinct repre-
sentations of a single trajectory for similarity analysis. Multiple-aspect
similarity evaluation would allow us to consider different paradigms
when measuring trajectory similarity, such as spatial location, seman-
tics of the visited places, weather conditions, means of transportation
used throughout the trajectory, and others.

So far, to the best of our knowledge, there is no work in the
literature on multiple-aspect trajectory similarity. Indeed, previously
mentioned works address trajectory similarity, regarding trajectory di-
mensions, either in a too restrictive or too flexible manner. For instance,
while DTW, MD-DTW, LCSS and EDR consider that elements should
match in all dimensions together, MSM considers pairs of elements that
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Table 1 – Features and limitations of existing similarity measures.

Feature MD-DTW LCSS EDR MSM
Proposed
Measure

Noise
(outliers)

X X X X

Gaps in
trajectories

X X X

Order X X X X2 X
Semantic
trajectories

X3 X3 X3 X X

Dimensional
weighing

X X

Unordered
events4

X X

Restrictive match
of elements5

X X X X

Partial match
of elements6

X X

Multiple-aspect
trajectories

X

Attributes dependency
relations7

X

match in a single dimension.
Table 1 compares characteristics of the main discussed approaches

and our work, such as robustness to noise, ability to handle various di-
mensions or aspects, account of partial similarity, among others. As
shown in Table 1, the similarity measure being proposed has the chal-
lenge to group together the main characteristics of other works, and
support multiple-aspect trajectories.

2Order may be considered partially.
3The measure may be extended for semantic information.
4The measure accounts similarity for different sequences of the same events.
5The measure enforces the full match of dimensions between pairs of elements.
6Ability to account partial similarity between elements.
7Ability to define relations of dependence between attributes, mixing partial and

restrictive matching.



32



33

3 THE PROPOSED SIMILARITY MEASURE

In this chapter we propose a new similarity measure for multiple-
aspect trajectories. As stated before, existing approaches address tra-
jectory similarity by comparing their points either by considering only
points that match in all the dimensions, or points that match for any
dimension independently. Therefore, in the next section we introduce
a flexible multiple-aspect similarity measure that allows the definition
of dependency relations between attributes of aspects. The measure is
flexible to the point that it can behave similarly to MSM (FURTADO
et al., 2015); or be stricter and behave like LCSS (VLACHOS; KOLLIOS;
GUNOPULOS, 2002), EDR (CHEN; ÖZSU; ORIA, 2005) and MD-DTW
(HOLT; REINDERS; HENDRIKS, 2007), if necessary.

3.1 MUITAS: MULTIPLE-ASPECT TRAJECTORY SIMILARITYMEA-
SURE

In this section we introduce the basic definitions that are essen-
tial to our work, followed by the proposed similarity measure, MUITAS.
Afterwards, the similarity problem is described as the General Assign-
ment Problem (GAP) (KUHN, 1955) and an algorithm to compute the
similarity is introduced.

In (FURTADO et al., 2015), trajectory similarity measuring was
performed with each dimension corresponding to a single attribute of
a trajectory, and the dimensions were analyzed independently. This
means, for example, that two trajectories P and Q that visit the same
places at different times still have 50% of similarity. When dealing with
multiple-aspect trajectories, however, some dimensions should not be
treated separately and must be aggregated as a complex feature. For
instance, to compare if two objects travel by the same means of trans-
portation under the same weather conditions, these multiple dimensions
must be considered together, because they are related (or dependent)
to each other.

In order to measure the similarity between two multiple-aspect
trajectories it is necessary to quantify the distance between points.
For each point we must quantify the distance for each attribute, since
different attributes may belong to different aspects, and so having dis-
tinct natures they require different distance functions. We define the
attribute distance measuring as follows.



34

Definition 2. Attribute matching. Let P and Q be two multiple-
aspect trajectories P = 〈p1, p2, . . . , pm〉 and Q = 〈q1, q2, . . . , qn〉, and
let A = {a1, a2, . . . , al} be an aspect with l attributes. Subsequently,
for any two elements p ∈ P and q ∈ Q, the distance between p and q on
attribute ai is given by the function distai : P ×Q→ Q. Two elements
p ∈ P and q ∈ Q will match on attribute ai if distai(p, q) ≤ δi, where
δi is a distance threshold for attribute ai.

For our problem definition in Chapter 1, there were attributes
like rating, price tier, and the credit cards option of payment at places.
For the rating attribute ranging from 4 to 10, one could define a distance
function as the one in Equation 3.1, and a threshold δRating = 1. The
dot in p.rating means we are accessing the attribute rating of point p.

distRating(p, q) = |p.rating − q.rating| (3.1)

Thus, two check-ins on venues rated 7.8 and 8.4 would match on
attribute rating, because |7.8−8.4| = 0.6, which is less than 1 (δRating).
Credit cards, on the other hand, is a binary attribute with values Y es
and No. A possible distance function is shown in Equation 3.2.

distCreditCards(p, q) =

{
0, if p.credit_cards = q.credit_cards
∞, otherwise

(3.2)
In multiple-aspect trajectory similarity measuring we tackle a

very important issue that refers to some sets of attributes that must
be considered together in the matching process. In other words, there
might be a dependency between a subset of attributes such that they
should all match and must be considered as a whole, while others should
be considered independently. We saw in the research problem in Chap-
ter 1 that the user goes to restaurants that are well-rated and cheap,
or the ones well-rated, expensive and that accept payments with credit
cards. The rating, the price tier and the credit cards option are re-
lated to each other, but the space and time attributes are not related
to anything. To address the relationships of attributes, we introduce
the concept of feature, which will be the unit of analysis for measuring
similarity.

Definition 3. Feature. A feature f = {a1, a2, . . . , az} is a nonempty
set of attributes that describe a unit of analysis of a multiple-aspect
trajectory. Let F = {f1, f2, . . . , fk} be the set of features through
which trajectories are analyzed. For each feature fi ∈ F we define a
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corresponding weight wi, so that
|F|∑
i=1

wi = 1.

The weight wi of a feature fi represents the importance of that
feature for computing the similarity between trajectories for a specific
application. For our research problem, we should define a feature f1 =
{Rating, PriceT ier, CreditCards} in order to express the attributes
relationships discussed before. Other features f2 = {Space} and f3 =
{Time} could be defined, so the similarity of check-ins would be a bit
lower if they occurred in different locations or different times (according
to distance functions distSpace and distTime, and thresholds δSpace and
δTime) and also because space and time are independent attributes. To
avoid misunderstanding and conflict of concepts, we hereafter refer to
attribute as an atomic view of a point, and to feature as the unit of
analysis of a trajectory.

As the important features for similarity analysis are application
dependent, we give the formal definition of Application in Definition 4.
We define an application according to the features, the distance func-
tions and distance thresholds used in the analysis.

Definition 4. Application. An application A is defined by a tuple
A = (F ,D,∆), where F = {f1, f2, . . . , fk} is a nonempty set of features,
D = {dista1 , dista2 , . . . , distal

} is a nonempty set of distance functions
and ∆ = {δ1, δ2, . . . , δl} is a nonempty set of distance thresholds.

An application essentially defines the context of the problem,
i.e., how trajectories will be analyzed. Different applications may im-
ply different features, distance functions and/or different thresholds.
We must now define how to measure the similarity between points of
trajectories, and the trajectories themselves, under a defined applica-
tion A.

Definition 5. Score. Given two points p ∈ P and q ∈ Q and
an application A = (F ,D,∆), the matching score between p and q is
given by the function score : P ×Q→ [0, 1], defined as follows

score(p, q) =

|F|∑
k=1

(matchfk(p, q) ∗ wk),

where matchfk(p, q) =

{
1, if ∀al ∈ fk, distal

(p, q) ≤ δl
0, otherwise
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At this point, we have the basic definitions necessary to, indeed,
propose the similarity measure. The work of Furtado et al. (2015)
(MSM) defines a parity function which is the basis of the similarity
measure. The parity function adds the scores of the best matches of
the points of one trajectory with points of another trajectory, regardless
if a point is matched more than once. As stated in Chapter 1, if a user
A checked in once at a restaurant and 9 times at the gym, and another
user B checked in at the same restaurant 9 times, but only once at
the gym, the similarity computed by MSM could be close to 100%.
Thus, differently from MSM, we define a map function, which is an
important concept behind our measure and fundamental for overcoming
this limitation of MSM.

Definition 6. Map function. Given two multiple-aspect trajectories
P and Q such that |P | ≤ |Q|, a map function is an injection map :
P → Q that maps all the elements of P to distinct elements in Q.

The goal is to map all the points in the shorter trajectory to
distinct points in the possibly longer trajectory. Figure 2 (a) shows
a mapping example for two trajectories of the same length, and Fig-
ure 2 (b) portrays the mapping of two trajectories of different lengths.
If P and Q had the same length, map would be a bijection, because
all the points of both sequences would be in the mapping. Otherwise,
some points would be left out (as displayed in Figure 2 (b)).

It is important to emphasize that the shorter trajectory (if the
trajectories are not of the same length) is kept in the domain of function
map so that map may be an injection (only for definition matters) and,
therefore, it is guaranteed that there is no pair of elements p1 and p2
in P , such that map(p1) = map(p2). Similarly, one could define map
as a surjection with the shorter trajectory in the co-domain.

Finally, Definition 7 details the similarity of two multiple-aspect
trajectories.

Definition 7. MUITAS Similarity. Let M be the set of all map
functions for two given multiple-aspect trajectories P andQ, with |P | ≤
|Q|. The similarity of P and Q is defined as

MUITAS(P,Q) = max




2 ·
∑
p∈P

score(p,m(p))

|P |+ |Q|
: m ∈M




Definition 7 states that the similarity of two trajectories is given
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(a)

P

Q

Different-length Trajectory Mapping

(b)

P

Q

Same-length Trajectory Mapping

Figure 2 – Trajectory mapping example.

by the mapping of scores between points with the highest global similar-
ity value. In the example of users A and B from the problem statement
in Chapter 1, while MSM could assign the users a similarity score close
to 100%, MUITAS would result in at most 20% of similarity.

Given two trajectories of length n, there are n! possible map func-
tions for these trajectories. Computing the scores of the trajectories
for all of these n! functions is not computationally feasible. Therefore,
we address the problem through an analogous problem known in the
literature, which is the Generic Assignment Problem (GAP) (KUHN,
1955).

3.1.1 The Similarity Problem as The General Assignment Prob-
lem (GAP)

Kuhn (1955) introduces the General Assignment Problem (GAP)
as the problem of assigning n tasks to nmen, such that the performance
of the men in their assigned tasks is the maximum. Also, every men
must be assigned a job and no job can be assigned to two different men.
Subsequently, a dual problem is defined where there is a cost for every
men to perform each of the n tasks, and the goal is to assign the tasks
to the men in order to minimize the total cost of performing the jobs.
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The number of possible assignments is n! and, therefore, it is not viable
to analyze every possible assignment. In his work, Kuhn describes a
method for solving the problem in polynomial time.

P

Q

Computation of Scores Between p1 and q1, q2, q3 and q4

p1p2
p3

p4

q1
q2

q3
q4

0.9
0.90.9

0.3

Figure 3 – Computation of scores of between pairs of points.

Now, suppose we have two trajectories P and Q containing 4
points each, as shown in Figure 3. After computing the scores between
all pairs of points from distinct trajectories, we can build a matrix S of
similarities, which is a |P | × |Q| matrix, with sij = score(pi, qj), where
sij is the element on row i and column j of S, pi is the i-th point of
P and qj is the j-th point of Q. Figure 3 illustrates the computation
of the scores between point p1 of P and all points of Q, which is then
stored in S, presented as follows.

S =


q1 q2 q3 q4

p1 0.3 0.9 0.9 0.9
p2 0.9 0.4 0.2 0.1
p3 0.9 0.1 0.3 0.2
p4 0.9 0.1 0.1 0.2


Similarly to the GAP presented by Kuhn (1955), given the ma-

trix of similarities, we intend to "assign" points of P to points of Q,
such that the sum of the total similarity between points is the max-
imum possible and no point from both trajectories is assigned twice.
We can easily verify that the scores highlighted in S are the mapping
of points with the highest global similarity score. By that we con-
clude that the set of scores {score(p1, q4), score(p2, q2), score(p3, q3),
score(p4, q1)} are the mapping with the greater similarity score for P
and Q, resulting in a similarity of 0.625 (Equation 3.3).
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MUITAS(P,Q) =
2 · (0.9 + 0.4 + 0.3 + 0.9)

4 + 4
= 0.625 (3.3)

MSM (FURTADO et al., 2015), on the other hand, would assign P
andQ a similarity of 0.9 (Equation 3.4), because it makes use of a parity
function that finds the best match for every point in one trajectory,
regardless if a point was matched more than once.

MSM(P,Q) =
4 · 0.9 + 4 · 0.9

4 + 4
= 0.9 (3.4)

For this specific problem, notice that point p1, unlike other points
in P , is very similar to q2, q3 and q4 (their similarity is 0.9). Similarly,
there is a high similarity between q1 and p2, p3 and p4. Hence, MSM
matches points q2, q3 and q4 with p1, and points p2, p3 and p4 with q1,
assigning an inaccurate similarity score between P and Q.

Lastly, it is important to highlight that even though the two
trajectories in our example have the same length, it is possible to ex-
tend the problem for trajectories of different lengths (or non-square
matrices). The problem is addressed by Bourgeois and Lassalle (1971).
The next section presents and describes an algorithm for computing
the similarity of two trajectories. We also describe the experimental
evaluation in the following sections, showing that the behavior of MSM
may be an issue when dealing with semantic information of trajectories
for certain types of problems.

3.1.2 An Algorithm for Computing the Similarity

Algorithm 1 shows how to compute the similarity score of two
trajectories. It takes as input the two multiple-aspect trajectories and
outputs the similarity degree. The first step is to compute the similarity
matrix (lines 6-12). The function score() in line 10 is the score function
of Definition 5. For two trajectories with n points each, the similarity
matrix S is computed in O(n2) time.

Subsequently, the indexes of the similarities that are the solution
to the problem, i.e., the mapping of points with the highest possible to-
tal similarity, are calculated by the function computeMaximumIndexes()
(line 12). This function is essentially the execution of an algorithm that
solves the GAP. For the similarity matrix S presented in the previous
section, for example, indexes would be the set {(1, 4), (2, 2), (3, 3), (4, 1)}.
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Algorithm 1 MUITAS

1 Input : The mult ip le−aspect t r a j e c t o r i e s T1 and T2
2 Output: the s im i l a r i t y s co r e
3 Begin :
4 Let S be a matrix o f s i m i l a r i t i e s |T1 | x |T2 | ;
5
6 For i from 0 to | T1 | − 1 do :
7 For j from 0 to | T2 | − 1 do :
8 Let Pi be the i−th po int o f T1 ;
9 Let Pj be the j−th po int o f T2 ;

10 Let S [ i ] [ j ] = s co r e ( Pi , Pj ) ;
11 End For
12 End For
13
14 Let i ndexes = computeMaximumIndexes (S) ;
15 Let t o t a l = 0 ;
16
17 For each ( i , j ) in i ndexes do :
18 Let t o t a l = t o t a l + S [ i ] [ j ] ;
19 End For
20
21 Return 2∗ t o t a l / ( | T1 | + |T2 | ) ;
22 End

Algorithms for solving the GAP are proposed in the works of Kuhn
(1955), Munkres (1957) and Bourgeois and Lassalle (1971). The best
algorithms are executed in O(n3) time.

Finally, the total similarity can be computed by adding the sim-
ilarity values indicated by the vector of indexes (lines 17-21). For two
trajectories with n points each, the total similarity is computed in O(n)
time. Therefore, the computation of our similarity measure takes O(n3)
time.

3.2 RUNNING EXAMPLE

In this section we present a running example for which existing
measures give undesired results. We consider a generic application
that consists of five user check-ins on Foursquare. Figure 4 presents
the five trajectories that will be analyzed. The check-ins are presented
along with the POI name, how expensive the POI is ($), its rating (?),
whether or not the place takes credit cards (CC) and the time that the
user checked in (HH). The POI type is implied from its name.

We are interested on Anna’s trajectory, because she has a similar
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0

1

2

Anna

Bob
(b1) Cinema A
$ = Expensive, ★ = Good
CC = Yes, HH = 12:00pm

(a1) Market A
$ = Expensive, ★ = Good
CC = Yes, HH = 2:00pm

(a2) Cinema A
$ = Expensive, ★ = Good
CC = Yes, HH = 2:30pm

(a3) Restaurant A
$ = Cheap, ★ = Good
CC = No, HH = 6:30pm

(a4) Gym A
$ = Expensive, ★ = Good
CC = Yes, HH = 9:00pm

(b2) Market A
$ = Expensive, ★ = Good
CC = Yes, HH = 2:30pm (b3) Restaurant B

$ = Expensive, ★ = Good
CC = No, HH = 8:00pm

(d1) Restaurant C
$ = Expensive, ★ = Good
CC = No, HH = 8:30am

(d4) Restaurant E
$ = Cheap, ★ = Bad
CC = No, HH = 6:00pm

(d3) Restaurant D
$ = Cheap, ★ = Good
CC = No, HH = 4:00pm

Anna
(a1) Market A
$ = Expensive, ★ = Good
CC = Yes, HH = 2:00pm

(a2) Cinema A
$ = Expensive, ★ = Good
CC = Yes, HH = 2:30pm

(a3) Restaurant A
$ = Cheap, ★ = Good
CC = No, HH = 6:30pm

(a4) Gym A
$ = Expensive, ★ = Good
CC = Yes, HH = 9:00pm

(d2) Market B
$ = Cheap, ★ = Good
CC = Yes, HH = 1:00pm

David

(e1) Cinema B
$ = Expensive, ★ = Bad
CC = No, HH = 1:15pm

Anna

(a1) Market A
$ = Expensive, ★ = Good
CC = Yes, HH = 2:00pm

(a2) Cinema A
$ = Cheap, ★ = Good
CC = No, HH = 2:30pm

(a3) Restaurant A
$ = Cheap, ★ = Good
CC = No, HH = 6:30pm

(a4) Gym A
$ = Expensive, ★ = Good
CC = Yes, HH = 9:00pm

Eric

(e3) Restaurant F
$ = Expensive, ★ = Medium
CC = No, HH = 5:45pm

(e4) Pub A
$ = Expensive, ★ = Good
CC = No, HH = 9:30pm

(e2) Store A
$ = Cheap, ★ = Bad
CC = No, HH = 3:30pm

(d5) Restaurant B
$ = Expensive, ★ = Good
CC = No, HH = 7:30pm

0 1 2 3 4 5 6 7 8

0

1

2

Anna

(a1) Market A
$ = Expensive, ★ = Good
CC = Yes, HH = 2:00pm

(a2) Cinema A
$ = Cheap, ★ = Good
CC = No, HH = 2:30pm

(a3) Restaurant A
$ = Cheap, ★ = Good
CC = No, HH = 6:30pm

(a4) Gym A
$ = Expensive, ★ = Good
CC = Yes, HH = 9:00pm

Ross
(r1) Cinema C
$ = Cheap, ★ = Good
CC = No, HH = 11:00am

(r2) Restaurant G
$ = Cheap, ★ = Good
CC = No, HH = 2:15pm

(r4) Gym B
$ = Expensive, ★ = Good
CC = Yes, HH = 7:30pm

(r3) Market C
$ = Expensive, ★ = Good
CC = Yes, HH = 5:25pm

Figure 4 – Users check-ins on Foursquare.
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behaviour to the one described in the problem statement in Chapter 1.
She only goes to places that are well-rated, and they must be cheap or,
if they are expensive, then they must accept credit cards. We start by
computing the similarity of Anna and Bob, step by step, in order to
illustrate the computation of the similarity measure. Afterwards, we
evaluate the similarity of all trajectories against Anna’s trajectory and
compare with existing works.

3.2.1 MUITAS Step by Step

Let us compute the similarity of trajectories of Anna and Bob in
Figure 4. The first step is to define the distance functions and distance
thresholds of the attributes. Table 2 shows the functions and thresholds
that will be used in our running example. For the sake of simplicity, we
defined the price tier as a binary attribute, and most of the distances
are based on the equality of the attributes. For the space, we considered
the manhattan distance according to the cell line (y) and column (x)
numbers, and two points are similar if their distance is zero, i.e., they
are in the same cell.

Table 2 – Distance functions and thresholds for the attributes.

Attribute Distance Function δ

POI Type dist(p, q) =
{
0, if p.poi_type = q.poi_type

∞, otherwise
0

Price Tier dist(p, q) =
{
0, if p.price_tier = q.price_tier

∞, otherwise
0

Rating dist(p, q) =
{
0, if p.rating = q.rating

∞, otherwise
0

Credit Cards dist(p, q) =
{
0, if p.credit_cards = q.credit_cards

∞, otherwise
0

Space dist(p, q) = |p.x− q.x|+ |p.y − q.y| 0
Time dist(p, q) = interval(p.time, q.time)1 3600

Subsequently, we must define the features that will be used for
the similarity analysis. In order to ensure that the objects similar to
Anna only visit well-rated places (because Anna only goes to well-rated
places), we must have the rating attribute in every feature where the
semantics is relevant, otherwise a matching of other attributes but not
in the rating could result in a high similarity. Additionally, the places

1Function interval(t1, t2) returns the number of seconds between time t1 and
t2.
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must take credit cards if they are expensive. Therefore, the corre-
sponding attributes price tier and credit cards need to be analyzed
together. Here the rating should also be analyzed with the price tier
and the credit cards attribute, so there will be no match of check-ins if
the rating is not good for whichever value price tier and credit cards
have.

Table 3 presents the defined features and the corresponding weights.
We also define features for analyzing the space, time and POI type at-
tributes. They are kept separate from any other features because they
do not hold any relationship with other attributes. However, we would
still like to account some similarity if there is a match in space, in time
or for the POI type, since that may indicate a similar behaviour. For
that reason, we set lower weights for features f2, f3 and f4, than for
feature f1. Given that feature f1 represents the relationship between
attributes that we are most interested, we give it a weight of 0.7.

Table 3 – Attributes and weights of features.

Feature Attributes w

f1 Rating, Price T ier, Credit Cards 0.7
f2 POI type 0.1
f3 Space 0.1
f4 Time 0.1

The application A can now be defined, according to definition 4,
as the tuple (F ,D,∆), where F = {f1, f2, f3, f4}, D = {distPOIType,
distPriceT ier, distRating, distCreditCards, distSpace, distTime} and ∆ =
{δPOIType, δPriceT ier, δRating, δCreditCards, δSpace, δTime}. Once set
the application A, we are ready to compute the scores between every
pair of points of Anna and Bob’s trajectories.

Let us start by computing the score between points a1 and b1
(see Figure 4). The matches on each feature are presented as follows:

• matchf1(a1, b1) = 1, because the price and the rating of the POI
in a1 and b1 are the same, and they both take credit cards;

• matchf2(a1, b1) = 0, because the POI of a1 is a market, while the
one of b1 is a cinema;

• matchf3(a1, b1) = 0, because dist(a1, b1) = |1 − 2| + |1 − 3| = 3,
which is greater than 0 (δSpace);
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• matchf4(a1, b1) = 0, because interval(2:00pm,12:00pm) = 7200,
which is greater than 3600 (δTime).

Lastly, Equation 3.5 shows the score between a1 and b1.

score(a1, b1) = matchf1(a1, b1) ∗ 0.7 +matchf2(a1, b1) ∗ 0.1

+matchf3(a1, b1) ∗ 0.1 +matchf4(a1, b1) ∗ 0.1

score(a1, b1) = 0.7

(3.5)

We can compute the score between points a1 and b2 in a similar
manner. The matches on each feature are given as follows.

• matchf1(a1, b2) = 1, because the POI in a1 is the same as the one
in b2;

• matchf2(a1, b2) = 1, because the POIs in a1 and in b2 are the
same, which is a market;

• matchf3(a1, b2) = 1, because dist(a1, b2) = |1 − 1| + |1 − 1| = 0
and 0 ≤ δSpace;

• matchf4(a1, b2) = 1, because interval(2:00pm,2:30pm) = 1800,
which is less than 3600 (δTime).

Equation 3.6 shows the score between a1 and b2.

score(a1, b2) = matchf1(a1, b2) ∗ 0.7 +matchf2(a1, b2) ∗ 0.1

+matchf3(a1, b2) ∗ 0.1 +matchf4(a1, b2) ∗ 0.1

score(a1, b2) = 1

(3.6)

After computing the scores between every pair of points of the
two trajectories, we can build a matrix S of similarity scores. The full
matrix S for the similarity analysis of Anna and Bob is presented as
follows.

S =


b1 b2 b3

a1 0.7 1.0 0.0
a2 0.9 0.8 0.0
a3 0.0 0.0 0.1
a4 0.7 0.7 0.2


With the matrix of similarities, we solve the maximization prob-

lem using one of the approaches aforementioned (KUHN, 1955; MUNKRES,
1957; BOURGEOIS; LASSALLE, 1971). The scores selected by the algo-
rithm will be score(a1, b2), score(a2, b1) and score(a4, b3). Figure 5
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shows the attributes considered in the analysis of the similarity of Anna
and Bob, and any other attributes not considered are faded. The re-
sulting similarity score of Anna and Bob is

MUITAS(Anna,Bob) =
2 · (1.0 + 0.9 + 0.2)

4 + 3
= 0.6

0 1 2 3 4 5 6 7 8

0

1

2

Anna

Bob
(b1) Cinema A
$ = Expensive, ★ = Good
CC = Yes, HH = 12:00pm

(a1) Market A
$ = Expensive, ★ = Good
CC = Yes, HH = 2:00pm

(a2) Cinema A
$ = Expensive, ★ = Good
CC = Yes, HH = 2:30pm

(a3) Restaurant A
$ = Cheap, ★ = Good
CC = No, HH = 6:30pm

(a4) Gym A
$ = Expensive, ★ = Good
CC = Yes, HH = 9:00pm

(b2) Market A
$ = Expensive, ★ = Good
CC = Yes, HH = 2:30pm (b3) Restaurant B

$ = Expensive, ★ = Good
CC = No, HH = 8:00pm

Figure 5 – Mapping of Anna and Bob check-ins.

If we take a look on the trajectories of Anna and Bob, the result
represents exactly what we expected. Bob visited only one place that
was not the behaviour we were looking for (check-in b3 was at a place
that is expensive and does not accept credit cards). However, he went
to two places where Anna also went to, which explains the 0.6 score.
In the next section we evaluate the similarity results for existing works
and the proposed measure for the same application on the same set of
trajectories shown in Figure 4.

3.2.2 Evaluation with the Running Example

Now we evaluate the accuracy of the proposed similarity measure
on the running example. Our objective is to find out which of the
four users in our toy example is the most similar to Anna, according
to application A; and to compare the effectiveness of our work with
existing similarity measures.

Besides MUITAS, we also implemented LCSS (VLACHOS; KOL-
LIOS; GUNOPULOS, 2002), EDR (CHEN; ÖZSU; ORIA, 2005), MSM (FUR-
TADO et al., 2015) and a modified version of EDR, which we call EDRM.
EDRM was implemented based on the work of (FURTADO et al., 2015),
which runs EDR on each attribute and composes the total similarity
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according to the attribute weights, analogous to MSM and our work.
For the first experiment, we set up the same weights for all at-

tributes when running EDRM and MSM, i.e., each of the six attributes
(POI type, price tier, rating, credit cards, space and time) has a weight
of 1/6 ≈ 0.17. MUITAS, as stated, was set up according to applica-
tion A previously defined, with weights as defined in Table 3. Table 4
portrays the results of the first experiment run.

As it is noticeable, EDR resulted in a zero score in all compar-
isons. EDR is strictly dependent on the order of the trajectory points
and will only score similarity if all the attributes of two points match,
thereby outputting the results shown in Table 4 for our running exam-
ple. Similarly, LCSS assigned zero scores for all comparisons, except
for Anna and Bob, in which it was able to capture some similarity.
LCSS has the same limitations mentioned of EDR, but it also ignores
the existence of gaps in trajectories. Thus, it assigned a 0.33 similarity
value for Anna and Bob, because they both visit Market A around the
same time. Due to the limitations and poor performance of LCSS and
EDR, we focus our analysis on EDRM, MSM and MUITAS.

Table 4 – Similarity results of the first experiment.

Similarity LCSS EDR EDRM MSM MUITAS

Anna x Bob 0.33 0.00 0.58 0.79 0.60
Anna x David 0.00 0.00 0.50 0.61 0.24
Anna x Eric 0.00 0.00 0.54 0.54 0.23
Anna x Ross 0.00 0.00 0.38 0.63 0.63

Anna and Bob visited two places in common with some time
discrepancies. Bob, however, checked in at a restaurant that does not
represent the behaviour pattern we are looking for. Also, Anna checked
in at four places while he visited only three. For these reasons, a score
of 0.6 is appropriate. MSM, on the other hand, computed a higher
score for Anna and Bob, because it disregards the relationships between
attributes. Besides the two check-ins in common, MSM also assigned
check-in b3 of Bob to check-ins a3 and a4 of Anna with a high score.
EDRM resulted in a score close to the one computed by MUITAS,
because, unlike MSM, EDRM considers the order of the points, so its
computed score is basically the score computed by MSM penalized by
the wrong order of points. Even though the score of 0.58 is appropriate,
the reasons behind it are not the same reasons that MUITAS is based
on. We shall see that in further comparisons.
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It is clear from Figure 4 that Ross is the closest user to Anna
regarding the semantic aspects. He behaves just like Anna throughout
his entire trajectory: he visits places that are expensive and they accept
credit cards; and all the places are well-rated. Note that the similarity
score computed by our work for Anna and Ross is 0.63, while for Anna
and Bob it is 0.6. The small difference comes from a trade-off between
space and time matching, and the matching of the behaviour pattern.
The score of Anna and Ross was not higher because their check-ins did
not match in space and time. MSM resulted in the same similarity
score for Anna and Ross. However, Ross would be disregarded in MSM
approach, because Bob has a significantly higher similarity score with
Anna. EDRM performed poorly in this case due to the fact that the
most similar check-ins of Anna and Ross are in a different order.

The trajectory of Eric is visibly the one most similar to Anna in
space and time. They checked in at places spatially close and around
the same time. Eric’s behaviour, however, is not like Anna’s. He went
to places that are not well-rated and expensive ones that do not take
credit cards. As a result, the similarity score between Anna and Eric
computed by MUITAS is 0.23, because they are similar only in space,
time and a few POI types. MSM and EDRM, however, assigned them
a high score (0.54). Again, MSM and EDRM are not able to capture
the dependencies between attributes, so they considered any attributes
that were similar to build the total similarity score.

David, like Eric, went to places with a bad rating and expensive
ones that do not accept payments with credit cards. In addition, the
location of the POIs and the time of the check-ins differ for most parts in
comparison to Anna. Analogously, the similarity score of our work for
Anna and David is 0.24. MSM, however, gave them a 0.61 similarity
value. If we take a closer look at the check-ins of David and Anna,
we can find the root of the problem. The best match for all the four
restaurants visited by David, for MSM, is Restaurant A visited by Anna.
Therefore, because it considered the same check-in several times and
due to the nonobservance of relationships between attributes in the
analysis, the resulting score is overestimated. The analysis of EDRM
does not consider the points more than once, but it still computed a
relatively high score for Anna and David, because of the dependencies
between attributes that it cannot analyze.

We performed a second experiment aiming to get better results
with EDRM and MSM. The weights of the attributes rating, price
tier and credit cards were increased to 0.25 each, because they are
the most important ones. The attributes POI type, space and time
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were decreased to 1/12 ≈ 0.083 each, because they are less important.
Table 5 summarizes the new results of EDRM and MSM. MUITAS
results were repeated for matters of comparison.

Table 5 – Similarity results of the second experiment.

Similarity EDRM MSM MUITAS

Anna x Bob 0.67 0.83 0.60
Anna x David 0.55 0.68 0.24
Anna x Eric 0.44 0.53 0.23
Anna x Ross 0.44 0.81 0.63

As Table 5 shows, the change of weights caused an increase in all
the scores for both EDRM and MSM, except for Anna and Eric. Both
measures still cannot precisely compute and capture the relationships
in attributes that are essential to our problem.

MUITAS performs a significantly better and more accurate simi-
larity analysis than existing measures. EDRM and MSM have difficulty
in capturing the attributes relationships, explaining the discrepant sim-
ilarity scores in all comparisons. LCSS and EDR performed poorly,
because they were not designed to deal with semantic information and
multiple-aspect trajectories. In summary, the experiments demonstrate
the improvements by our approach especially developed for analyzing
the similarity of multiple-aspect trajectories.

3.3 EVALUATION ON A REAL DATASET

We evaluated the similarity measure over a real dataset. We
use a dataset of Foursquare check-ins at the city of New York between
April 2012 and February 2013 (YANG et al., 2015). The dataset con-
tains users check-ins and their corresponding venue IDs on Foursquare.
We then collected venue information, such as rating, price tier, parking
information, tips, etc, using the Foursquare API2, in August 2017. Sub-
sequently, historical weather data were collected via the Weather Wun-
derground API3 and added to the check-in data. The data were stored
in a PostgreSQL database and Figure 6 shows the relational model
of the database. The proposed measure was implemented in Python
and the experiments were conducted on a PC running Linux (Ubuntu

2https://developer.foursquare.com/
3https://www.wunderground.com/weather/api/
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16.04) equipped with an Intel Core i7-3630QM CPU 2.4GHz × 8 and
6GB RAM.

Figure 6 – Relational modeling of the Foursquare check-ins dataset.

3.3.1 Preliminary Experiment

We performed a simple preliminary experiment with only seman-
tic data in order to facilitate the result interpretation. The rating and
the price tier of the places users checked in at were the two attributes
used. The price tier of places ranges from 1 to 4, with 4 being the
most expensive. The rating, on the other hand, ranges from 4 to 10.
We collected statistics about the places the users visited and then built
a set of trajectories with 10 check-ins each, for the sake of simplicity.
Afterwards, we retrieved a ranking of users, according to the number
of places visited with a price tier of 1, and a rating of 8 or more, si-
multaneously. We then labeled the first trajectory in our ranking as
the reference trajectory, i.e., we are interested on finding users with a
similar behaviour as the reference user. Table 6 shows the trajectory
of user 165, the reference user.

The reference user only went to places rated as 8.4 or more, and
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Table 6 – Trajectory of the reference user (user ID 165).

# Date Time POI Type Rating Price Tier
1 2012-07-03 05:21:57 PM Cafe 8.4 1
2 2012-07-11 07:42:48 PM Restaurant 9.2 3
3 2012-07-12 01:57:00 PM Cafe 8.4 1
4 2012-07-18 11:22:37 AM Cafe 9.0 1
5 2012-08-09 01:40:36 PM Cafe 8.4 1
6 2012-08-13 12:40:37 PM Cafe 9.0 1
7 2012-11-26 08:42:55 AM Cafe 9.0 1
8 2012-12-10 08:43:27 AM Cafe 9.0 1
9 2012-12-19 08:44:41 AM Cafe 9.0 1
10 2013-02-03 11:42:05 AM Cafe 9.0 1

all of them are cheap (price tier of 1), except for the restaurant the
user visited, which has a price tier of 3. We labeled the ten trajectories
right below user 165 in our ranking as relevant, because they were the
ones that checked in at the highest number of cheap and well-rated
places. In the same manner, ten trajectories after the first eleven in
our ranking were labeled as irrelevant. We now want to compute the
similarity between the trajectories labeled as relevant and the ones
labeled as irrelevant against the reference trajectory, using MUITAS
and existing works. We claim that a good measure would be able to
assign high similarity scores between the reference trajectory and the
relevant ones, and low scores to the ones that are not relevant.

Table 7 displays the distance functions and distance thresholds
used for each attribute. Table 8 shows the features and the weights
applied in our experiment. We have a feature of rating and price tier,
because we want users that go to cheap and well-rated places, just like
user 165. We set an equal weight for each of the two attributes rating
and price tier, when running MSM.

Table 7 – Distance functions and thresholds for the attributes.

Attribute Distance Function δ

Price Tier dist(p, q) = |p.price_tier − q.price_tier| 1
Rating dist(p, q) = |p.rating − q.rating| 1

Table 9 presents the results for LCSS, EDR, MSM and MUITAS
over the small set of trajectories. The column "Rlv." is the relevance
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of that comparison, according to what we had previously labeled. The
IDs of the trajectories being compared are displayed in the first column.
The results are ordered in descending order of the value computed by
MUITAS.

Table 8 – Attributes and weights of features.

Feature Attributes w

f1 Rating, Price T ier 1.0

Table 9 – Similarity results of the experiment on the Foursquare
dataset.

Similarity Rlv.4 LCSS EDR MSM MUITAS

165 x 886 R 1.00 1.00 1.00 1.00
165 x 707 R 0.90 0.90 1.00 1.00
165 x 980 R 0.90 0.90 1.00 1.00
165 x 1021 R 0.90 0.90 1.00 1.00
165 x 151 R 0.90 0.80 1.00 1.00
165 x 264 R 0.90 0.80 0.98 0.90
165 x 818 R 0.90 0.80 0.98 0.90
165 x 294 R 0.90 0.80 0.95 0.90
165 x 315 R 0.90 0.80 0.95 0.90
165 x 953 R 0.70 0.60 1.00 0.80
165 x 54 I 0.80 0.80 0.95 0.80
165 x 66 I 0.70 0.70 0.93 0.70
165 x 4 I 0.70 0.60 0.93 0.70
165 x 10 I 0.60 0.60 0.93 0.70
165 x 51 I 0.50 0.50 0.90 0.60
165 x 55 I 0.30 0.20 0.95 0.30
165 x 23 I 0.30 0.20 0.83 0.30
165 x 21 I 0.30 0.20 0.83 0.30
165 x 17 I 0.20 0.20 0.80 0.20
165 x 65 I 0.00 0.00 0.50 0.00

LCSS, EDR and MUITAS had a similar behaviour, being able
to correctly classify most of the trajectories. The comparisons with
trajectories of IDs 953 and 54 were confused by LCSS and EDR, i.e.,

4Relevance of the similarity. R means relevant and I stands for irrelevant.
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despite the fact that trajectory 953 is relevant and 54 is not, 165 and
54 were computed by LCSS and EDR as more similar than 165 and
953. MUITAS, however, computed the same score of 0.80 for both
trajectories.

MSM was the only measure that was not able to accurately clas-
sify most of the irrelevant trajectories. For instance, if we take a look
at the similarity of trajectory 165 and 55, highlighted in Table 9, we
notice that MSM resulted in a 0.95 score, while all the other measures
computed a 0.20 or 0.30 score. We further investigate the similarity of
users 165 and 55. Table 10 shows the trajectory of user 55.

Most of the places visited by user 55 have a rating above or equal
to 8. However, most of the places are also expensive (price tier of 3
and 4). The reasons why MSM resulted in such a high similarity score
for users 165 and 55 is that (i) it matched 6 of the 7 expensive places
that user 55 checked in at with the only expensive restaurant visited
by user 165; and (ii) it is not able to consider the dependency between
the rating and the price tier of the places.

Table 10 – Trajectory of the irrelevant user 55.

# Date Time POI Type Rating Price Tier
1 2012-05-21 06:47:21 PM Restaurant 8.6 3
2 2012-07-04 03:22:10 PM Restaurant 8.2 3
3 2012-07-08 01:12:03 AM Restaurant 8.4 4
4 2012-07-08 09:13:04 PM Restaurant 9.3 3
5 2012-07-09 10:56:13 AM Cafe 9.4 2
6 2012-10-11 06:15:03 PM Restaurant 7.0 1
7 2012-10-12 10:22:52 PM Nightclub 8.0 3
8 2012-12-06 08:44:14 PM Restaurant 9.4 3
9 2012-12-11 01:59:31 PM Restaurant 8.8 3
10 2012-12-22 08:13:06 AM Cafe 7.4 1

The results of this experiment once again showed that MSM
cannot handle strong relationships between attributes. In addition,
the fact that it may match the same points of a trajectory multiple
times may lead to inaccurate results.
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3.3.2 Clustering Analysis

Clustering analysis is one of several applications for similarity
measures in data mining. A clustering algorithm allows us to group
user trajectories according to similar profiles, so a recommendation
system, for instance, more accurately targets its audience.

We run a second experiment on the same dataset of Foursquare
check-ins, using a random subset of 150 user trajectories of length rang-
ing from 10 to 356 check-ins. Our objective was to group users accord-
ing to their habits, i.e., the types of places they visit and spend money
on, how much money they spend, and when during the day they visit
these different types of places. We run a clustering algorithm for MSM
and MUITAS, in order to further analyze the results achieved by each
measure. EDR and LCSS were not analyzed because they perform
poorly when more semantic data is considered, as shown in the evalua-
tion of the running example. The attributes considered in the analysis
were Space, Time, the POI Type, its Rating and Price tier. Table 11 de-
scribes the format of the attributes and Table 12 presents the distance
functions and distance thresholds employed for each attribute.

Table 11 – Attributes format.

Attribute Format
Space Latitude and longitude

Time Hours, minutes and seconds, from 00:00:00AM
to 11:59:59PM

POI Type String, from a set of 10 root categories5

Rating Decimal number, from 4.0 to 10.0
Price Tier Integer number, from 1 to 4

For MUITAS we define features as presented in Table 13, in
order to capture the behaviour previously described - to group users
according to the types of places they visit and spend money, how much
money they spend, and when during the day they visit these different
types of places. The POI Type is considered together with each of the
attributes Rating, Price T ier and Time, because we only would like

5https://developer.foursquare.com/docs/resources/categories
6Function haversine(s1, s2) returns the haversine distance between s1 and s2

in meters.
7Function interval(t1, t2) returns the number of seconds between time t1 and

t2.
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Table 12 – Distance functions and thresholds for the attributes.

Attribute Distance Function δ

Space dist(p, q) = haversine(p.space, q.space)6 1000
Time dist(p, q) = interval(p.time, q.time)7 5400

POI Type dist(p, q) =
{
0, if p.poi_type = q.poi_type

∞, otherwise
0

Rating dist(p, q) = |p.rating − q.rating| 1
Price Tier dist(p, q) = |p.price_tier − q.price_tier| 1

to consider check-ins of the same type when analyzing these attributes,
as they describe habits of the user. The space is kept alone because two
check-ins close in space will probably share commonalities, regardless of
the type of place they are. Certain areas within a city, for example, have
their own characteristics regarding public transportation, cleanliness,
safety and general quality of life.

We define an application A, with the features shown in Table 13
and the distance functions and thresholds in Table 12. For MSM the
five attributes are considered independently, with the same weight of
0.2. For MUITAS all features were computed with an equal weight of
0.25.

Table 13 – Attributes and weights of features.

Feature Attributes w

f1 POI Type, Rating 0.25
f2 POI Type, Price T ier 0.25
f3 POI Type, Time 0.25
f4 Space 0.25

We computed a matrix of similarity scores between every pair of
trajectories for each similarity measure, and subsequently applied hier-
archical clustering on the matrix of similarities using the agglomerative
strategy. The linkage criteria employed was the complete-linkage clus-
tering. Complete-linkage clustering is more appropriate for our analy-
sis than other methods, because it allows us to achieve more consistent
clusters, i.e., the maximum distance between a pair of elements in a
cluster is the minimum possible, as opposed to criteria such as single-
linkage and average-linkage clustering.

Figures 7 and Figure 8 show the dendrograms of the computed
clusters. The horizontal axis shows the trajectory identifiers and the
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vertical axis represents the distance between trajectories. The verti-
cal lines of the dendrogram tree represent clusters, while the horizontal
lines of the tree represent merged clusters. For purposes of analysis and
visualization, only the last 8 levels of the dendrogram tree are shown.
The cut-off point is at 0.4, i.e., only clusters with a maximum intra-
cluster distance of 0.4 were accepted (minimum intracluster similarity
of 0.6).

Through a first analysis of the dendrograms, a few things come
to our attention. MSM resulted in 6 dense clusters, while 32 small
clusters were formed with MUITAS. Besides that, when using MSM the
maximum distance computed between two trajectories was close to 0.6
(last merge in the dendrogram tree), while for MUITAS it was close to 1.
These statistics are a result of the extremely high flexibility of MSM,
which, as we stated earlier, may lead to inaccurate or overestimated
results. MSM considers any similarity between two points, regardless of
any relationships between attributes such as the ones we are interested
on, and such behaviour is reflected on the high computed scores.

Let us take a closer look on the trajectories of users 48 and 250,
which are both in the yellow cluster computed by MSM (see Figure 8).
The similarity computed by MSM for users 48 and 250 was 0.78, while
MUITAS assigned them a similarity of 0.31. Table 14 summarizes the
trajectories of users 48 and 250. Note that the trajectory of user 48
is almost four times longer than user 250 trajectory. Both users only
visited food and nightlife places, such as restaurants and pubs. The
majority of check-ins of user 48 are at nightlife places, while user 250
visited more food places than nightlife ones. These numbers tell us that,
even though user 48 and user 250 visit the same types of places, they
do not visit these places with the same frequency. Such aspect is not
captured by MSM, but it is considered by MUITAS when computing
similarity.

Table 14 – Summary of users 48 and 250 trajectories.

User 48 % User 250 %
Food Check-ins 20 31 10 59
Nightlife Check-ins 45 69 7 41
Total of Check-ins 65 100 17 100
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Figure 9 shows the locations of the places where users 48 and 250
checked in. It is clear that there is not match for most of the check-ins.
User 250 mostly visited places in the Brooklyn area (bottom of the
map in Figure 9), while user 48 stayed for most parts in Manhattan
and Queens (center and top areas in Figure 9).

Users 48 and 250 Check-ins

User 250

Food

Nightlife Spots

User 48

Nightlife Spots

Food

Figure 9 – Check-ins of user 48 (red) and 250 (blue).

Figure 10 shows the distributions of check-ins for the Price Tier
and Rating attributes for users 48 and 250. For each attribute, the
data is presented according to the POI Type (food or nightlife). The
price tier of nightlife places are similar between both users. For food
places, however, they are not as similar, but the differences are within
the threshold defined for Price Tier. The Rating, on the other hand,
differs more for both users. While user 250 goes, for the most part,
to places rated approximately as 8.25 or more, user 48 goes to several
places with a lower rating than 8.25, i.e., there should not be a match
for many of those places. Additionally, the fact that user 48 goes to
nightlife spots more often than user 250 should be significant for their
similarity.

In conclusion, the similarity computed by MSM for user 48 and
250 is overestimated, because (i) their trajectories differ by almost four
times in length; (ii) user 48 visits way more nightlife places than food
ones, while user 250 visits more food places than nightlife ones; (iii)
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most of their check-ins do not match for attribute Space; and (iv) there
are some discrepancies for the Price Tier and Rating attributes for the
same POI Types.

Even though MSM groups some of the users also clustered to-
gether by MUITAS, MSM includes many other trajectories that are
not relevant or similar to each other in the clusters, such as users 48
and 250 previously analyzed. The results presented once more demon-
strated that MUITAS is more adequate for analyzing multiple-aspect
trajectories than existing similarity measures. Due to time constraints,
we were not able to further develop experiments on this dataset.
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Figure 10 – Price Tier and Rating of places visited by users 48 (left)
and 250 (right).
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4 CONCLUSION

The analysis of multiple-aspect trajectories has become very at-
tractive and necessary because of the high volume of geotagged informa-
tion available nowadays. In this work, we proposed a formal definition
of multiple-aspect trajectories, as well as a new similarity measure for
computing the similarity of these trajectories. Our similarity measure
overcame limitations of previous works, such as the ability to define de-
pendency relationships between attributes and the observance of repet-
itive behaviour when considering the points of two trajectories in the
similarity analysis.

In order to evaluate the relevance and effectiveness of our work,
we performed and presented an experimental evaluation based on a toy
example, using multiple aspects that are present on real world data. We
then compared previous works with MUITAS, the proposed measure,
demonstrating the improvements made by our work. We also described
a simple experiment on a real dataset of Foursquare check-ins, but due
to time constraints, we were not able to further develop the experiment.

Even though we focused on multiple-aspect trajectories, the pro-
posed similarity measure can be applied to any sequenced data includ-
ing any number of attributes. Potential future work include, but is not
limited to:

• Analyzing the similarity of multiple-aspect trajectories regarding
their global attributes (e.g., distance traveled, average speed);

• Analyzing the similarity of heterogeneous points of trajectories,
i.e., points that have different aspects and different attributes
throughout the trajectory;

• Proposing a clustering technique based on the similarity measure
for multiple-aspect trajectories;

• Algorithmically finding the best relationships between attributes,
in order to automatically set up the features of an application.
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