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RESUMO

Os algoritmos clássicos de assinatura digital como RSA e ECDSA baseiam
sua segurança na dificuldade da fatoração de inteiros, e no logaritmo dis-
creto, respectivamente. Esses problemas já possuem algoritmos quânticos
que os resolvem em tempo polinomial, ou seja, com computadores quânti-
cos poderosos o suficiente, o uso dos algoritmos de assinatura digital mais
difundidos tornará-se impraticável. Naturalmente, com o aumento do poder
computacional quântico, o interesse por criptossistemas resistentes a ataques
que utilizam-se de tais computadores também cresceu. A área que estuda es-
ses criptossistemas é chamada de criptografia pós-quântica. Particularmente,
esses algoritmos baseiam-se numa série de problemas que, por enquanto, per-
manecem difíceis, mesmo que computadores quânticos poderosos sejam utili-
zados, logo, despertam o interesse para substituir os criptossistemas clássicos.
Este trabalho aborda criptossistemas baseados em sistemas de polinômios
multivariados, que, baseiam-se em problemas como a solução de sistemas de
polinômios e o isomorfismo de polinômios, os quais ainda são resistentes a al-
goritmos quânticos, e portanto, são candidatos para criptografia pós-quântica.
Tais esquemas possuem tamanhos de chaves muito maiores que os algoritmos
clássicos. Neste trabalho um novo método para redução de chaves privadas
do esquema de assinatura digital Rainbow é proposto. Usando este método as
chaves privadas podem ser reduzidas em até 84%. Ainda, este método pode
ser combinado com outros de forma a reduzir tanto a chave privada como a
chave pública.

Palavras-chave: criptografia pós-quântica, assinatura digital, Rainbow





ABSTRACT

Classic digital signature algorithms base their security upon the difficulty of
the integer factorization problem, and the discrete logarithm problem, respec-
tively. These problems already have quantum algorithms that solve them in
polynomial time, consequently, with sufficiently powerful quantum compu-
ters, the use of the most common digital signature algorithms would become
impractical. Naturally, with the rise in quantum computational power, the
interest in cryptosystems resistant to attacks that make use of such compu-
ters has raised as well. The area that studies such cryptosystems is called
post-quantum cryptography. Particularly, these algorithms are based upon a
series of problems that, at this time, continue to be hard, even with quantum
computers available, hence, provoke interest to substitute the classical sche-
mes. This work approaches cryptosystems based on systems of multivariate
polynomials. They base their security upon problems like the polynomial
system solving and the isomorphism of polynomials, which are still resistant
to quantum computers, henceforth are candidates to post-quantum crypto-
graphy. Such schemes have much larger keys than classical algorithms. In
this work a new method that allows the reduction of private keys of the Rain-
bow digital signature scheme is proposed. Using this method, private keys
can be reduced by up to 84%. Still, this method can be combined with others
to reduce the private key and the public key simultaneously.

Keywords: post-quantum cryptography, digital signatures, Rainbow
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1 INTRODUCTION

Classic asymmetric cryptography is threatened as a result of the ad-
vance in quantum algorithms development. The hardness of recovering pri-
vate keys, for instance, RSA and ECDSA keys, relies, respectively, on the
hardness of the integer factorization problem and the discrete logarithm pro-
blem. Quantum polynomial-time algorithms that solve those problems alre-
ady exist (SHOR, 1999). Using such algorithms, recovering private keys can
be done efficiently by a sufficiently powerful quantum computer. Hence, the
most used digital signature algorithms would become insecure.

In such a scenario, cryptosystems that run on classical computers and
cannot be broken by quantum computers should be used for handling digital
signatures. The area that studies such cryptosystems is called post-quantum
cryptography, and the interest in this has emerged with the development of
quantum computers. The security of these algorithms relies on problems that
are not known to be solvable in polynomial-time, therefore, they appear to be
good candidates for use in a scenario of quantum adversaries.

There are several classes of post-quantum cryptosystems proposed in
the literature, and each of them relies on one kind of hard problem. This
work aims to study Multivariate Public-Key Cryptosystems (MPKCs) based
on Rainbow (DING; SCHMIDT, 2005). These cryptosystems are construc-
ted using multivariate polynomials systems. A polynomial system is usually
composed of polynomial equations with single variable monomials, and can
be easily solved using, for instance, Gaussian elimination. However, with
the inclusion of more variables into the monomials, it becomes a multivariate
system. The problem of solving multivariate systems is NP-Hard (GAREY;
JOHNSON, 1979). Therefore, it may be interesting to build cryptosystems
based on this trait.

Several digital signature schemes were developed based on the struc-
ture of multivariate systems. One of the first schemes presented was the Oil
and Vinegar (OV) signature scheme (PATARIN, 1997), which was broken by
Kipnis and Shamir in its original specification (KIPNIS; SHAMIR, 1998).
A subsequent work (KIPNIS; PATARIN; GOUBIN, 1999) reparametrized it,
leading to a scheme called Unbalanced Oil and Vinegar. The trapdoor intro-
duced in the original OV is used in many other schemes. In essence, they
are similar to OV but ended up optimizing the signature, and key sizes, while
maintaining security levels. These schemes are still considered secure.

MPKCs have very efficient signature generation and verification al-
gorithms, as well as small signatures, in some cases, smaller than classic
algorithms. The main caveat of such schemes is that they have large public
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and private keys. Various efforts were made to reduce such parts of these
cryptosystems, but, to the best of our knowledge, none of them reduced both
public and private keys. This work aims to understand the Rainbow signature
scheme, its subsequent optimized schemes and the key reduction techniques
proposed in the literature. Finally, a new framework that allows for a re-
duction of both the private and the public keys in Rainbow-like schemes is
proposed.

1.1 GOALS AND SCOPE

General goal: Study and describe Rainbow-like digital signature sche-
mes, understand the optimizations that reduce keys and signature sizes, and
their impact on the security of the classic schemes. Observe and analyze the
impact of parameter selection for such algorithms, as this plays an important
role in efficient and fast implementations of the schemes. Analyze the state-
of-the-art schemes, to understand the strategies being used to optimize the
cryptosystems.

Specific goals: Describe the classic OV and the UOV digital signature
schemes; Describe the Rainbow signature scheme; Introduce relevant optimi-
zations on Rainbow, like CyclicRainbow (PETZOLDT; BULYGIN; BUCH-
MANN, 2010); Compare and analyze the performance of the aforementioned
schemes in terms of operations needed to generate and verify signatures as
well as storage requirements. Finally, propose new optimizations on top of
those schemes.

Scope: This work is focused on the Rainbow digital signature scheme,
its ancestors, and the optimizations made on top of it. Other classes of post-
quantum algorithms such as code-, lattice- and hash-based cryptosystems are
not covered. Classical asymmetric algorithms are not covered as well. Quan-
tum algorithms are also not discussed.

1.2 METHOD

The work was developed using the infrastructure and resources pro-
vided by the Computer Security Laboratory (LabSEC/UFSC). A literature
review was made to determine the state-of-the-art in MPKCs. Recently pro-
posed schemes were studied, as well as broken ones for a better understanding
of the constructions used that optimize the classic multivariate schemes. The
performance of all the schemes studied were observed along with the impact
of the optimizations.
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2 CRYPTOGRAPHY AND ALGEBRA BACKGROUND

In this chapter some basic background on cryptography and algebra is
given for a complete understanding of the following chapters. All definitions
and descriptions are based on (STINSON, 2006).

2.1 PUBLIC KEY CRYPTOGRAPHY

Symmetric cryptography consists of ciphering and deciphering a mes-
sage with the same key. This can be very useful if two parties, say Alice and
Bob, have agreed upon using the same key through a secure channel. But if
Alice and Bob are distant and do not have a secure channel to share a sym-
metric key, this cannot be used. Public key cryptography solves this issue, as
there exists two keys. One of the keys is public, everyone can have access,
and it is used to encrypt a message. The other key is private and can be held
only by its owner, no one else can access it. Deciphering a message can only
be made with the private key. Also, getting the private key from the public key
should be computationally unfeasible. Now, if Bob wants to send a private
message to Alice, he gets her public key through any channel of communica-
tion, encrypts the message, and sends it to Alice. Alice, which possesses the
private key, is the only one capable of decrypting Bob’s message.

The idea of public key cryptosystems was first introduced in (DIFFIE;
HELLMAN, 1976), but the first practical scheme of such kind was propo-
sed in (RIVEST; SHAMIR; ADLEMAN, 1977). These algorithms can be
thought as a trapdoor one-way function, i.e. the encryption process “traps”
the message, and only with the possession of the private key, one can untangle
the original message from the trap. The security of these algorithms rely on
the difficulty of getting the private key from the public one, that is, it should
be hard to unravel the message from the trap.

2.2 DIGITAL SIGNATURES

Conventional signatures are used everyday to provide authenticity of
documents, like letters and contracts. A digital signature is a signature to a
digital document, that can be transmitted across a digital medium. Digitally
signed documents have considerable differences to conventional signatures.
First, a digital signature is not physically bonded to the signed document.
Second, the verification procedure of the signature is done in a different way
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than classical signatures. Conventional signatures are verified by similarity to
other signatures that are trusted. Digital signatures are verified using publicly
known algorithms. Also, a digital signature can be copied several times, and
it remains authentic. Care should be taken, such that a document is not used
more times than it should be. For instance, a signed document saying that
Alice wants to transfer some amount of money to Bob should be used only
once, as Bob could force the bank to transfer this same amount multiple times.
Adding the time the signature was made to the signed document can mitigate
this problem.

A digital signature scheme is composed of three efficient1 algorithms:

• Key generation: Alice generates a key pair, publishes the public key
to anyone who wants to verify her signatures, and keeps the private key
secret.

• Signature generation: Alice, possessing the private key, signs a docu-
ment d, yielding a signature σ , and publishes the pair (d,σ). For each
different document, a different signature is produced.

• Signature verification: Bob wants to verify Alice’s signature (d,σ).
With the public key, Bob can verify that, indeed, only Alice’s private
key could generate σ for d. If someone altered d to insert malicious
information and sent this modified document d′, to Bob, the signature
σ would not be verified by the verification algorithm.

This can be seen as the inverse of sending private messages using pu-
blic key cryptography, as the owner of the private key ciphers the message to
be signed. Recall that it should be hard to find the private key from the public
one, thus it is hard to forge new signatures without possessing the private key.

A secure digital signature scheme should provide three properties to
the signed documents, as long as they are valid:

• Integrity: The document is untouched compared to the originally sig-
ned document. Flipping one bit of the document would render the sig-
nature invalid.

• Authenticity: Only the owner of the private key can generate valid sig-
natures for the corresponding public key. So, if a document is signed,
it could only be signed be the private key owner. Generating new sig-
natures, without the private key, should be computationally unfeasible
for secure schemes.

1Can be computed in a reasonable time by the parties involved.
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• Non-repudiation: The signer cannot deny having created a valid sig-
nature σ for a document d. This is due to the fact that, it is unfeasible
to forge signatures.

2.3 CRYPTOGRAPHIC HASH FUNCTIONS

In the scope of this work, a hash function is a function that is used to
map arbitrarily sized data to a fixed length value, i.e. H : {0,1}∗→ {0,1}n.
Such functions are useful to maintain integrity of documents, for instance, a
document d has this fingerprint h = H(d), which can be verified whenever
one wants to ensure that d was not modified. If for some reason the docu-
ment was changed, this modified version d′ would have a different fingerprint
h′ =H(d′), and the integrity of the original document would not be verified
because h 6= h′.

Of course, due to the “compression” made by H, there ought to exist
two documents that generate the same fingerprint, that is h =H(d1) =H(d2)
and d1 6= d2. This happens due to the fact that there exists infinitely more do-
cuments than fingerprints, so by the pigeonhole principle there are infinitely
many documents with the same fingerprint. This can be a problem, because
the integrity of those documents could be erroneously verified. However, in
practice, for secure hash functions, this happens with negligible probability
for a large enough n.

Hash functions are extensively used in digital signatures. It enables the
algorithms to sign arbitrarily big documents by signing only the fingerprint
h. However, a hash function should satisfy some properties to be considered
cryptographically secure. Specially, three problems should be unfeasible to
solve. LetH : X → Y be a hash function:

• Preimage: Given y ∈ Y , find x ∈ X such that y =H(x).

• Second preimage: Given x ∈ X , find x′ ∈ X , x′ 6= x such that H(x) =
H(x′).

• Collision: Find x, x′ ∈ X such thatH(x) =H(x′).

Suppose that Alice is usingH to sign a document d, this is, Alice only
signs h =H(d). If a malicious party, namely Eve, could solve any of the prei-
mage problems efficiently, let’s say, Eve finds d′ such that h =H(d) =H(d′),
then she could publish the same signature yielded by Alice as a valid signa-
ture for d′ without Alice’s private key. If Eve solves the collision problem
efficiently, she could hand Alice a document d to be signed, while having ge-
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nerated a document with malicious content d′. The signature created by Alice
would be valid for both d and d′.

2.4 FINITE FIELDS

These section’s definitions are based on (LIDL; NIEDERREITER,
1983), and a basic understanding of the algebraic structures used in multi-
variate schemes is given.

Definition 1. A group (G,∗) with the set G and the binary operation ∗ satis-

fies the following conditions:

• ∗ is associative, that is, a∗ (b∗ c) = (a∗b)∗ c for any a,b,c ∈ G.

• There exists an identity element e ∈ G such that a∗ e = e∗a = a.

• There exists an inverse for every a ∈ G such that a∗a−1 = a−1 ∗a = e.

If the group also satisfies the condition a∗b = b∗a for all a,b ∈ G then it is

called an abelian or commutative group.

Corollary 1. The set of integers modulo n, denoted Z/n, along with the or-

dinary addition, form a finite abelian group denoted Zn.

Proof. The associativity and commutativity come from the regular addition
operation. The identity element is 0 and the inverse element of any a ∈ Z/n

is −a mod n. Hence, (Z/n,+) is an abelian group.

Definition 2. A ring (R,+,∗) with the set R and the two binary operations +
and ∗ satisfies the conditions:

• (R,+) forms an abelian group.

• ∗ is associative, that is, a∗ (b∗ c) = (a∗b)∗ c for any a,b,c ∈ R.

• ∗ is distributive, that is, a∗ (b+ c) = a∗b+a∗ c for any a,b,c ∈ R.

It must be emphasized that not only the ordinary multiplication and
addition can be used to form groups or rings.

Definition 3. A ring (R,+,∗) can be further classified as:

• Commutative if ∗ is commutative, that is, a∗b = b∗a for all a,b ∈ R.

• A division ring if the nonzero elements of R form a group under ∗.

• A field if it is a commutative division ring.
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Corollary 2. The set of integers modulo a prime p, denoted Z/p, along with

the ordinary addition and multiplication, form a finite field denoted Fp.

Proof. As stated above (Z/n,+) is an abelian group, therefore (Z/p,+) is a
commutative group as well. The ordinary multiplication is associative, dis-
tributive and commutative. Now it must be shown that (Z \ {0},∗) forms a
group. The identity element of this group is 1. It can be observed that a ∗ b

is never zero, because if a ∗ b ≡ 0 mod p then either a or b is zero and di-
vides p, which is a contradiction because p is prime. Now to show that all
elements have inverses, the Bézout’s identity can be used. For every a ∈ Z/p

there exists x,y ∈ Z/p such that a∗ x+ p∗ y≡ 1 mod p, due to the fact that
gcd(a, p) = 1. Note that p ∗ y ≡ 0 mod p, hence a ∗ x ≡ 1 mod p and x is
the inverse of a. It can be concluded that (Z/p,+,∗) is a finite field.

Definition 4. Given a ring (R,+,∗) there exists a positive integer n such that

n∗ r = 0 for every r ∈ R. The least such positive integer is the characteristic

of the ring. If n does not exist, the characteristic is 0.

It can be noted that finite fields have prime characteristic. If a finite
field had a characteristic n = p∗q with p,q ∈ Z and 1 < p,q < n, then n∗e =
(p∗q)∗e = (p∗e)∗ (q∗e) = 0 which implies that either p∗e = 0 or q∗e = 0
and it is a contradiction, because n should be the least positive integer such
that n∗ e = 0.

Corollary 3. Let Fp[x]/ f be the set of polynomials with coefficients in a finite

field Fp, modulo an irreducible polynomial2 f of degree n. Fp[x]/ f along

with the ordinary polynomial addition and multiplication modulo f , form an

extension field denoted Fpn .

For illustration, the finite field F22 can be defined with its elements
being P = {0,1,x,x+1}, and the operations, the ordinary addition and multi-
plication of polynomials modulo f (x) = x2 + x+1. Note that all coefficients
are in F2. The addition operation is given in Table 1 and the multiplication
in Table 2. The addition in F22 is the trivial polynomial addition with co-
efficients modulo 2, and there is no need for polynomial reductions. The
multiplication though needs reductions modulo the irreducible polynomial.
For instance, x∗ (x+1)≡ x2 + x≡ 1+1∗ f (x)≡ 1 mod f .

Proof. To prove Corollary 3 the field properties should hold for the finite
fields of this fashion. Let P = Fp[x]/ f . Then, (P,+) forms an abelian group
with e = 0 and the inverse of any a ∈ P being −a. Also, (P \ {0},∗) forms
a group, with the identity element being 1. The inverse element of any a ∈

2An irreducible polynomial cannot be divided by a polynomial other than f (x) = 1.
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+ 0 1 x x+1
0 0 1 x x+1
1 1 0 x+1 x

x x x+1 0 1
x+1 x+1 x 1 0

Table 1 – Addition operation of F22

∗ 0 1 x x+1
0 0 0 0 0
1 0 1 x x+1
x 0 x x+1 1

x+1 0 x+1 1 x

Table 2 – Multiplication operation of F22

P \ {0} can be found using Bézout’s indentity because gcd(a, f ) = 1, this
comes from the fact that f is irreducible. So, there exists g,h ∈ P\{0} such
that a ∗ g + f ∗ h ≡ 1 mod f . Note that f ∗ h ≡ 0 mod f , hence g is the
inverse of a. Observe that a ∗ b ≡ 0 mod f never happens in the group (P \
{0},∗), because either a or b would need to be zero and would divide f ,
which is a contradiction because f is irreducible. All other properties can be
trivially extended from the ordinary polynomial addition and multiplication.
Therefore, (P,+,∗) is a finite field.

Extensions of the binary field F2 are specially interesting because re-
presenting and operating with them can be very computationally efficient. An
element of Fpn needs n elements of Fp to be represented, hence an element
of F28 needs 8 bits, or 1 byte. For instance, the element x7 + x5 + x+1 ∈ F28

can be represented by the binary 8-uple (1,0,1,0,0,0,1,1). The addition,
when elements are represented in such way, is simply the bitwise exclusive
or XOR operation. The multiplication operation can be performed efficiently
using a modification to the Peasant’s algorithm, which takes advantage of the
binary representation. The reduction modulo f can also be done by a series of
bitwise XOR operations. For small finite fields, a lookup table such as Table
1 and 2, can be precomputed in order to dramatically improve the efficiency
of the operations, as only one query to such table would be needed to obtain
the result.
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3 MULTIVARIATE CRYPTOGRAPHY

In this chapter, basic foundations are given for the comprehension of
the techniques proposed in the current work. Section 3.1 contains a descrip-
tion of the basic mathematical structure used to build MPKCs. Section 3.2
presents the construction used in the schemes discussed in this work. Section
3.3 depicts the underlying problems in which MPKCs rely their security on.
Section 3.4 describes the schemes addressed in this study. Section 3.5 illus-
trates some variants of the Rainbow digital signature scheme present in the
literature. Section 3.6 demonstrates a method to find equivalent private keys
in Rainbow-like schemes and how it can be used to reduce the outer maps.

3.1 SYSTEMS OF MULTIVARIATE EQUATIONS

Standard polynomials are simply a sum of monomials, each mono-
mial consists of a variable and a constant that multiplies it. Polynomials can
be represented using a vector that stores those constants. With multivariate
polynomials, each monomial consists of a multiplication of more than one
variable and, again, a constant. This inclusion of multiple variables to the
monomials is what makes them interesting to use in cryptosystems, since sol-
ving a system of such polynomials is computationally hard. For the purpose
of multivariate cryptography, multivariate quadratic equations are sufficient,
hence most commonly used.

Definition 5. A multivariate quadratic polynomial over a finite field F is de-

fined as:

p(x1, . . . ,xn) =
n

∑
i=1

n

∑
j=i

αi jxix j +
n

∑
i=1

βixi + γ, (3.1)

where all x,α,β ,γ ∈ F.

A system of polynomials is a set of polynomials that share the same
variables. It is known that, for polynomials with n variables, systems that have
at least n linear polynomials, may be solvable, and the existence of solutions
can be checked efficiently. One of the most common methods for solving
such systems is the Gaussian elimination. Note that, not all systems with n

polynomials and n variables have a unique solution, some of them may even
have infinitely many solutions. It happens due to the fact that a polynomial
can be linearly dependent of others in the systems.

Systems of multivariate polynomials can be constructed as well. Op-
posed to the systems explained above, solving multivariate systems is a NP-
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Hard problem (GAREY; JOHNSON, 1979), even for the simplest case of
quadratic polynomials, therefore they are interesting to be used in building
cryptosystems. Specially, systems of multivariate quadratic polynomials are
used, as the addition of more variables to the monomials does not increase
the hardness of the problem.

These systems can be seen as maps. For instance, a system P , with n

variables and m equations, defines a map P : Fn → F
m. Applying this map

over a vector of variables consists of substituting these variables into the equa-
tions and taking their results as the output of the map.

Definition 6. A system P of multivariate quadratic polynomials over a finite

field F is defined as:

p(1)(x1, . . . ,xn) =
n

∑
i=1

n

∑
j=i

α
(1)
i j xix j +

n

∑
i=1

β
(1)
i xi + γ(1),

p(2)(x1, . . . ,xn) =
n

∑
i=1

n

∑
j=i

α
(2)
i j xix j +

n

∑
i=1

β
(2)
i xi + γ(2),

...

p(m)(x1, . . . ,xn) =
n

∑
i=1

n

∑
j=i

α
(m)
i j xix j +

n

∑
i=1

β
(m)
i xi + γ(m),

(3.2)

where all x,α,β ,γ ∈ F.

Each equation of the system can be represented as an upper triangular
square matrix of order n+ 1, where the element on the i-th line and the j-th
column represents the constant that multiplies the monomial xix j. The last
column is used to represent the linear terms and the constant term. The k-th
polynomial of the system is represented by a matrix of the form:

A(k) =




α
(k)
11 α

(k)
12 α

(k)
13 · · · α

(k)
1n β

(k)
1

0 α
(k)
22 α

(k)
23 · · · α

(k)
2n β

(k)
2

0 0 α
(k)
33 · · · α

(k)
3n β

(k)
3

...
...

...
. . .

...
...

0 0 0 · · · α
(k)
nn β

(k)
n

0 0 0 · · · 0 γ(k)




. (3.3)

Furthermore, p(k) may be written as:

p(k)(x1, . . . ,xn) = (x1, . . . ,xn,1) ·A
(k) · (x1, . . . ,xn,1)

T . (3.4)
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Systems of multivariate quadratic equations can be represented and
stored with ease, as shown above. It is worth recalling that the coefficients
of those equations are elements in a small finite field, thus operating with
them is computationally efficient. Although easy to manipulate, storing these
matrices is not space efficient. A notable effort resulted in various works that
reduce the public map, e.g. (PETZOLDT; BULYGIN; BUCHMANN, 2010),
or the private map, e.g. (YASUDA; SAKURAI; TAKAGI, 2012), but none of
them reduced the key pair simultaneously.

With the keys represented as matrices, some works introduce special
structures into these matrices, in such a way that representing them requires
less space. For instance, the series of works by Petzoldt et al., introduce a
framework that enables the public key to be partially selected. Such selection
is done in a way that some special structure is introduced into the matri-
ces, hence reducing their space requirements. Notably, CyclicRainbow (PET-
ZOLDT; BULYGIN; BUCHMANN, 2010) uses a cyclic structure in the ma-
trix representation of the public key.

3.2 BIPOLAR CONSTRUCTION

The basic construction used in multivariate cryptosystems is based on
the composition of multiple transformations. As described above, a multiva-
riate system, as per Definition 6, may be used as a map F : Fn → F

m. The
central transformation of this construction is a system of such kind, that con-
tains some specific structure such that, one can find preimages. In this case,
F remains secret, and with the combination of one or more affine transforma-
tions, a public system of equations, with no apparent structure, is generated.

As shown in Figure 1, the bipolar construction consists of three secret
maps, and a public map that is derived from these three. Let, P and F be
multivariate systems, and S and T be random invertible affine maps. Affine
maps are simply linear maps that do not preserve the origin, that is, they may
translate the object. In the signing procedure, F−1 means finding one of pos-
sibly many preimages, and F introduces some structure that allows one to do
such. The affine maps take care of hiding this structure by actually scram-
bling the variables of the system. When generating the keys, one calculates
P composing the secret maps P = S ◦F ◦T .

Note that n≥m > 0 should hold when using the construction for digi-
tal signature schemes. This makes the public map P surjective, and ensures
that for every hash h ∈ F

m there exists a signature σ ∈ F
n. Encryption sche-

mes can be constructed too, in this case n ≤ m should hold, thus making the
map injective and ensuring that the decryption process results in only one
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h ∈ F
m y ∈ F

m x ∈ F
n σ ∈ F

nS−1 F−1

Sign
T −1

P

Verify

Figure 1 – Flow of the bipolar construction

plain text.
With a hash function H : {0,1}∗ → F

m one can sign a document d

by calculating h = H(d). As shown in Figure 1, recursively compute the
signature σ = T −1(F−1(S−1(h))). This is possible due to the fact that those
maps are constructed such that they can be inverted. Actually, F can’t be
inverted, but preimages can be found. To verify the signature σ for document
d one can simply check if h = P(σ) holds.

3.3 UNDERLYING COMPUTATIONAL PROBLEMS

This section describes the problems in which multivariate cryptosys-
tems security rely on.

3.3.1 Polynomial system solving

Solving systems of polynomials is the basic underlying problem, since,
solving the public system is sufficient to forge new signatures.

Definition 7. Polynomial System Solving problem: given a system P as per

Equation 3.2, find a vector x′ = (x′1, · · · ,x
′
n) such that p(1)(x′) = p(2)(x′) =

· · ·= p(m)(x′) = 0.

This problem was proven to be NP-Hard (GAREY; JOHNSON, 1979,
Appendix A7.2) even for the simplest case of quadratic polynomials over
F2. The special case of this problem where the polynomials have degree 2
is called MQ-Problem. The NP-Hardness of this problem is important due
to the fact that, it is not feasible for an attacker to solve the public map P
directly, hence not feasible to forge signatures this way.
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3.3.2 Isomorphism of polynomials

The security of multivariate cryptosystems, due to their construction,
usually does not rely exclusively on the MQ-Problem. An attacker knows that
the public map is constructed by the composition of the private maps, thus one
can try to decompose the map P into three maps, isomorphic to the private
ones, and forge new signatures. The problem of finding such isomorphic
maps is the Extended Isomorphism of Polynomials problem.

Definition 8. Extended Isomorphism of Polynomials problem: given a non-

linear multivariate system P = S ◦F ◦T with F belonging to some class C
of special nonlinear systems that can be inverted, find S̃ , F̃ and T̃ such that

P = S̃ ◦ F̃ ◦ T̃ and F̃ ∈ C.

With S̃ , F̃ and T̃ one may forge a signature for a document d by
computing σ = T̃ −1(F̃−1(S̃−1(H(d)))) and publish it as a valid signature
for the public key P . Recall that F̃ ∈ C so it can be inverted.

Some variations of the problem with only one affine map or others
that involve finding the original central map F exist, but the extended varia-
tion is the most generic one. In fact, solving the problem as stated above, in
polynomial time, is enough to break the Rainbow Signature Scheme (DING;
SCHMIDT, 2005) submitted to the NIST Post-Quantum Cryptography Stan-
dardization Process (DING et al., 2017).

Opposed to the MQ-Problem, the hardness of this problem is not well
established. Actually, on the balanced Oil and Vinegar scheme (PATARIN,
1997) decomposing the public map was done efficiently by (KIPNIS; SHA-
MIR, 1998). While this remains an open problem, security proofs for mul-
tivariate schemes based on the bipolar construction will be absent. Still,
MQDSS (CHEN et al., 2016) is a provably secure multivariate cryptosystem,
however it is based on a totally different construction.

3.4 MULTIVARIATE DIGITAL SIGNATURE SCHEMES

This section contains a description of the main schemes that are based
on the bipolar construction.

3.4.1 Oil and Vinegar

The original Oil and Vinegar signature scheme was presented by (PA-
TARIN, 1997). It introduces a trapdoor that is based upon the idea of having
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two sets of variables in the central map, called oil and vinegar. The central
map is constructed in such a way that the polynomials are linear in the oil
variables, that is, there are no monomials with two oil variables. With this
fact in mind, when generating a signature, one may actually linearize the cen-
tral system and solve for oil variables. A detailed description of the Oil and
Vinegar signature scheme follows.

3.4.1.1 Key generation

Let K be a small finite field, e.g. F2. Let o and v be integers, such that
o is the number of oil variables and v the number of vinegar variables. Let O

be the set of oil variables and V the set of vinegar ones. LetH : {0,1}∗→ Ko

be a cryptographic hash function.
The private key consists of two maps T and F . Let T : Ko+v→ Ko+v

be a random invertible affine transformation, its effect is to rewrite every va-
riable as a linear combination of all other variables. This map is used to hide
the structure of the central map. Let F : Ko+v → Ko be the central map,
composed of o equations of the form:

y(k) =
v

∑
i=1

v

∑
j=i

α
(k)
i j xix j

︸ ︷︷ ︸
V×V

+
v+o

∑
i=v+1

v

∑
j=1

β
(k)
i j xix j

︸ ︷︷ ︸
O×V

+
o+v

∑
i=1

γ
(k)
i xi

︸ ︷︷ ︸
linear

+ δ (k)
︸︷︷︸

constant

, (3.5)

where x1, . . . ,xv ∈ V are the “vinegar” variables and xv+1, . . . ,xv+o ∈ O are
the “oil” variables. Note that the oil variables are not multiplied between
themselves, this is important to find preimages for this map when signing a
message.

The public map P : Ko+v→ Ko is a simple composition of the secret
maps, P = F ◦T . Both F and P are multivariate systems, and F has the
special structure mentioned above, neverthelessP looks randomly built. With
these maps described, let the public/private key pair be (P,(F ,T )).

3.4.1.2 Signature generation

To sign a document d, compute its hash value h = H(d) and find a
preimage (x1, . . . ,xo+v) for the map F such that (y(1), . . . ,y(o)) = (h1, . . . ,ho).
Observe that the structure present in F implies that, setting random values
to the vinegar variables makes the system linear. Hence, finding a preimage
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consists of selecting vinegar variables at random, substituting them into F ,
and finding the oil variables through Gaussian elimination. If the system
cannot be solved, new vinegar variables need to be chosen. The vector of
variables x are found such thatF(x) = h. Next, using the map T the signature
itself may be computed. Recall that T is invertible, thus T −1 can be obtained.
With both maps inverted, the signature σ of d is published as σ = T −1(x).

3.4.1.3 Signature verification

To verify a signature σ of a document d, one can simply check if
P(σ) = H(d) holds, therefore the signature is valid, otherwise it is invalid.
The equality does actually hold for valid signatures, as P is a composition of
the maps that were inverted in the signing procedure. Remember that P is a
system of multivariate equations, hence hard to solve.

3.4.2 Unbalanced Oil and Vinegar

The original Oil and Vinegar explained in Section 3.4.1 is actually in-
secure due to the fact that o = v. It is called Balanced Oil and Vinegar due the
same amount of oil and vinegar variables. This aspect of the cryptosystem
was exploited by (KIPNIS; SHAMIR, 1998), where a method was introdu-
ced to efficiently forge new signatures when o = v. Subsequently, a new
scheme was proposed, namely Unbalanced Oil and Vinegar (KIPNIS; PATA-
RIN; GOUBIN, 1999). This work proposes new parameters for the original
OV. The most common instantiation of this new scheme is the v = 2o case.

3.4.3 Rainbow

The Rainbow signature scheme was proposed in (DING; SCHMIDT,
2005). It can be described simply as a multilayered UOV. Actually, it is a
generalization of the UOV scheme, in other words, UOV is a single layer
Rainbow instantiation. This newly proposed scheme greatly improves space
requirements in comparison to UOV. Both public and private key sizes, as
well as signatures size, are reduced for equivalent security levels. A detailed
description of the Rainbow cryptosystem follows.

Each layer of this Rainbow has its own polynomials, as well as its own
set of oil and vinegar variables. These polynomials have the same structure
as OV polynomials, but the layers are intrinsically connected when construc-
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ted. Namely, Vl and Ol are respectively the set of vinegar variables and the
set of oil variables of the l-th layer. Let u be the number of layers. Let
v1,v2, . . . ,vu+1 be the number of vinegar variables in each layer, such that
0< v1 < v2 < · · ·< vu+1 = n. It may be observed that the layers actually grow
bigger, this is due to the fact that each set of vinegar variables contains the
vinegar variables from the previous layer, that is V1 ⊂V2 ⊂ ·· · ⊂Vu. Deeper
into the layers, the oil variables become vinegar variables, i.e. Vl+1 =Vl ∪Ol .
Keep in mind that |Vl |= vl and |Ol |= ol = vl+1− vl .

The connection between variables of the layers exist in such a way that
the layers have to be inverted one after the other for the complete inversion
of the central map. To start this process, one randomly selects the first set of
vinegar variables and substitutes them, making the first layer linear. Notice
that the oil variables of some layer are part of the vinegar variables of the
subsequent layer. When the first layer is solved, the set O1 can be used to
construct V2 in its entirety. With known values for V2 one can linearize the
second layer and solve it. Repeating this process for every layer, inverts the
whole central map. It may happen that some layer is not be solvable, in
this case, a new set V1 is chosen and the inversion process starts over. This
happens with very small probability as shown in Section 4.2.

3.4.3.1 Key generation

Let the sets Vl = {x1, . . . ,xvl
} be the vinegar variables of the l-th layer,

and Ol = Vl+1−Vl the respective oil variables. Observe that, each layer l

has ol = vl+1− vl equations, and thus ol equations are needed to solve for Ol

variables. For each layer l, construct a systemFl composed of ol polynomials
of the form:

y(k) =
vl

∑
i=1

vl

∑
j=i

α
(k)
i j xix j +

vl+1

∑
i=vl+1

vl

∑
j=1

β
(k)
i j xix j +

vl+1

∑
i=1

γ
(k)
i xi +δ (k), (3.6)

for k = vl , . . . ,vl+1−1 and l = 1, . . . ,u. Observe that the polynomials are Oil
and Vinegar polynomials, just like the ones in Equation 3.5, and they can be
solved for Ol when Vl has known values. Let the central map F : Kn→Kn−v1

be the union of the u layers. To hide the central map, two random invertible
affine maps are used. Let S : Kn−v1 → Kn−v1 and T : Kn→ Kn be part of the
private key. Then, P = S ◦F ◦T is published as the public key.
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Security level
(bits)

Parameters
(K,o1,v1,v2)

Private key size
(bytes)

Public key size
(bytes)

80 (F256,17,17,9) 19208 25740
100 (F256,26,22,11) 45450 60390
128 (F256,36,28,15) 103704 139320
192 (F256,63,46,22) 440638 596904
256 (F256,85,63,30) 1086971 1498230

Table 3 – Rainbow key sizes for parameters proposed in (PETZOLDT, 2013)

3.4.3.2 Signature generation

Let H : {0,1}∗ → Kn−v1 be a cryptographic hash function. To sign
a document d, compute h = H(d). Compute y = (y1, . . . ,yn−v1) = S

−1(h).
All layers of F are solved using the process described above, in order to find
x = (x1, · · · ,xn) such that F(x) = y. Finally, σ = T −1(x) is published as the
signature for d.

3.4.3.3 Signature verification

Verifying a signature σ for a document d is as simple as checking
if P(σ) = H(d) holds. Remark that, again, P is a multivariate system that
appears to be randomly built, thus hard to solve directly.

3.4.3.4 Key sizes

For illustration, Table 3 shows a comparison between the key sizes of
some Rainbow instances proposed in (PETZOLDT, 2013, Chapter 6). Let
m = n− v1 be the number of equations in Rainbow central and public maps.
The private and public key sizes of Rainbow-like signature schemes are given,
respectively, by the formulas:

Kpr = m2 +m︸ ︷︷ ︸
S

+n2 +n︸ ︷︷ ︸
T

+
u

∑
l=1

ol

(
vl(vl +1)

2
+ vlol + vl+1 +1

)

︸ ︷︷ ︸
F

, (3.7)
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Kpu = m

(
n(n+1)

2
+n+1

)
= m

(n+1)(n+2)
2

. (3.8)

These can be easily checked by looking at Equation 3.6 and the size
of the affine maps S and T . Also, the public key size is simply the size
of a multivariate system with n variables and m equations. The public key
size formula can be checked by observing Equation 3.3, as the public map is
composed of m matrices of such kind. With u = 1, OV and UOV key sizes
can be calculated using Kpr and Kpu also, as Rainbow is a generalization of
the Oil and Vinegar schemes.

3.5 RAINBOW VARIANTS

The cryptosystems described above have a notable space requirement.
For instance, the Rainbow public key can get up to 1.6 MB for secure pa-
rameters (DING et al., 2017, Table 2) in comparison to ECDSA’s 64 bytes
public keys. This section presents some variants in the literature that reduce
Rainbow key sizes. It is shown that, all of them reduce either the public map
or the private central map, but not both.

3.5.1 Establishing a linear relation between public and private maps

In (PETZOLDT; BULYGIN; BUCHMANN, 2010) an approach is used
in such a way that one can partially select the public key. It relies on an
important aspect of the schemes previously discussed. In the UOV case, it
is demonstrated that the secret map S actually establishes a linear relation
between the private and public coefficients of the equations. This makes it
possible to select P and S in a clever manner, such that their representations
are smaller, introducing some kind of structure like a circulant matrix in the
case of CyclicRainbow.

Think of the UOV construction of the maps P = F ◦ T . To better
understand this linear relation, the equations can be simplified, without its
linear and constant terms. Let n = o+ v, and the k-th private polynomial of
the system, without its linear and constant terms, be denoted as:

y(k) =
n

∑
r=1

n

∑
s=r

(
α
(k)
rs xrxs

)
. (3.9)

Let T ∈ Kn×n be the matrix that describes the secret affine map. The
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k-th public polynomial can be written as:

p(k) =
n

∑
r=1

n

∑
s=r

[
αk

rs

n

∑
i=1

(tirxi)
n

∑
j=1

(t jsx j)

]
, (3.10)

where ti j is the element of T in the i-th line and the j-th column. The inner
summations come from the matrix multiplication operation, where the vector
of x variables is multiplied with T when the map is applied, giving a “new”
vector of x variables, that are actually just linear combinations of the old ones.
Let the public polynomial be denoted similarly to the private one:

p(k) =
n

∑
r=1

n

∑
s=r

(
ρ
(k)
rs xrxs

)
. (3.11)

To establish a relation between αrs and ρrs observe the structure of
Equation 3.10 where αrs is multiplying two polynomials. Expanding the inner
summations gives:

(t1rx1 + t2rx2 + · · ·+ tnrxn)(t1sx1 + t2sx2 + · · ·+ tnrxn), (3.12)

which can be described as a new polynomial with quadratic terms, applying
distributive multiplication:

n

∑
i=1

n

∑
j=i

(
τrs

i j xix j

)
where : τrs

i j =

{
tirtis if i = j,

tirt js + t jrtis otherwise.
(3.13)

Substituting Equation 3.13 into Equation 3.10 yields:

p(k) =
n

∑
r=1

n

∑
s=r

[
αk

rs

n

∑
i=1

n

∑
j=i

(
τrs

i j xix j

)
]
, (3.14)

therefore, a relation between private and public coefficients can be written as:

ρ
(k)
i j =

n

∑
r=1

n

∑
s=r

(
τrs

i j αk
rs

)
. (3.15)

After randomly choosing S , Equation 3.15 depicts the linear relation
between the public (ρ) and private (α) coefficients. Hence one can choose and
fix ρ and find α using this equation. Observe that not all public coefficients
can be chosen, otherwise no structure would be present in F and it could not
be inverted. This could also be used to recalculate F from P and S . The idea
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behind this relation is further expanded to Rainbow key pairs, and is described
in detail by (PETZOLDT et al., 2011). This relation was extensively used to
reduce either public or private keys, but not both. Reducing key sizes with
this strategy consists of introducing some structure into one part of the key,
such that its representation becomes smaller, and calculating the other part
using the equations above. Notable key optimizations are briefly discussed
hereafter.

3.5.2 CyclicRainbow

CyclicRainbow (PETZOLDT; BULYGIN; BUCHMANN, 2010) uses
the relations explained in Section 3.5.1 to structure the public key. In the
key generation step, parts of the public key matrix representation are selected
such that they form a circulant matrix.

Definition 9. A square circulant matrix of order n is of the form:

A =




a1 a2 · · · an−1 an

an a1 a2 · · · an−1

an−1 an a1 an−2
...

. . .
. . .

...

a2 · · · an−1 an a1



. (3.16)

Such matrices allow for a compact representation. Storing the vector
(a1,a2, . . . ,an) is enough to represent the matrix completely, as its elements
form a structured repetition. Introducing this structure in parts of the public
key, when possible, reduces the representation of the public system signifi-
cantly. In fact this method allows a public key reduction factor of up to 2.9,
for secure parameters. This repetition of elements also leads up to a repetition
of operations when verifying a signature. Exploiting this common field multi-
plications leads to a reduction factor of up to 2.4 in the number of operations
needed to evaluate the public map, i.e. to verify a signature (PETZOLDT,
2013, Table 10.3).

3.5.3 RainbowLRS2

RainbowLRS2 (PETZOLDT, 2013, Section 9.2) introduces matrices
generated by Linear Recurring Sequences into the public key, just like in
CyclicRainbow. To generate an m× n matrix of this type, a vector a =
(a1,a2, . . . ,am) ∈ F

m of distinct elements is selected. The i-th row of this
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matrix is:

A[i] = (a0
i ,a

1
i ,a

2
i , . . . ,a

n−1
i ) i = 1, . . . ,m. (3.17)

Storing the vector a is sufficient to represent the matrix A, since every
row can be calculated using Equation 3.17. Using matrices of this fashion
in the public map representation, allows for a reduction factor of up to 3.1.
Veritably, this method is similar to the one used in CyclicRainbow, thus provi-
des an akin improvement in space requirements. The main difference is that
CyclicRainbow uses rotations to generate each row. In RainbowLRS2 the
rows are defined by Equation 3.17. It is shown in (PETZOLDT, 2013) that
field multiplications also repeat in the verification process of RainbowLRS2,
allowing a speed up factor of 2.2 (PETZOLDT, 2013, Table 10.3).

3.5.4 Circulant Rainbow

Circulant Rainbow (PENG; TANG, 2017) introduces circulant matri-
ces in the central private map, in contrast to CyclicRainbow that does it on the
public map. These circulant relations are present in very specific parts of the
central polynomials, precisely in the terms that have oil variables. Throughout
the signature generation, after inserting values into the vinegar variables, one
has to solve a linear system as shown in Section 3.4.3. Due to the structure
introduced in the coefficients of the central map, this system is represented
by a circulant matrix. Solving such systems can be done more efficiently
using a method described in (PENG; TANG, 2017). Indeed, the private key
needs less space to be represented. Circulant Rainbow has a private key 1.8
times smaller than the original Rainbow, and the signature generation can be
2.9 times faster if the optimized method for solving the special linear sys-
tems is used instead of the Gaussian elimination. Notably, (HASHIMOTO,
2018) discourages the use of Circulant Rainbow. It is shown that the Kipnis-
Shamir’s attack (KIPNIS; SHAMIR, 1998) can be used to recover equivalent
Circulant Rainbow private keys in polynomial time.

3.5.5 NC-Rainbow

NC-Rainbow (YASUDA; SAKURAI; TAKAGI, 2012) proposes the
use of non-commutative rings instead of a finite field in the central map.
Further, isomorphisms between the rings and the fields are used in the com-
position of the public map. Through this isomorphism it can be shown that a
NC-Rainbow central map is equivalent to the original Rainbow central map.
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In fact, it is stated that an element α of a non-commutative ring R can be
represented by r elements in the finite field K. This smaller representation
of the elements in R is what leads to a more compact representation of the
central map. Indeed, it is shown that the use of this technique can reduce
the private key by a factor of 4 and sign documents with 1.6 times less field
multiplications with the proposed parameters for the new scheme.

In (THOMAE, 2012), it is shown that NC-Rainbow is just a special
case of introducing structures into the private central map. Additionally, it
is demonstrated that, the reduction of NC-Rainbow to the original Rainbow
is not enough to prove security. The reduction in the opposite direction is
needed and is absent in the original work. The existent reduction just pro-
vides an upper bound for the security of the new scheme. Actually, known
attacks on Rainbow were sensibly improved for the NC-Rainbow case. The
optimizations reduce the MinRank attack complexity from 2288 to 2192 and
for the HighRank, the reduction is from 2128 to 296. Hence, the usage of
non-commutative rings in the central map is not recommended, as it greatly
decreases the security of the original Rainbow.

3.6 EQUIVALENT KEYS IN MULTIVARIATE CRYPTOSYSTEMS

In (WOLF; PRENEEL, 2005) is introduced the idea of equivalent keys
for Multivariate Cryptosystems. Equivalent keys are different private keys
that lead to the same public key. They can be found using the idea of “sustai-
ners”. Sustainers are transformations that do not alter the property present in
the central map that allow its inversion. For instance, a sustainer to UOV is a
transformation that, when applied to the central map, does not change the fact
that oil variables do not multiply themselves. By letting ∆,Γ be sustainers, an
equivalent key can be found using the equation:

P = S ◦∆−1
︸ ︷︷ ︸

S ′

◦∆◦F ◦Γ︸ ︷︷ ︸
F ′

◦Γ−1 ◦T︸ ︷︷ ︸
T ′

. (3.18)

The maps S ′,F ′,T ′ are equivalent keys for P . If for every S and T ,
∆ and Γ can be found such that S ′ and T ′ contain some special structure, the
private key space can be reduced.

For instance, if this idea is applied to UOV, additive sustainers can
be used to reduce the storage requirements of T . An additive sustainer only
adds a term to the constant term. This sustainer clearly does not break the Oil
and Vinegar property of the central map, and it can be used to subtract the
constant terms in T . Let T be a random affine map, then Γ−1 can be chosen
such that it subtracts all its constant terms. So, for every T , there exists an
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equivalent map T ′ that has no constants. Using this fact, T can be chosen
without its constants already.

Other sustainers are presented in (WOLF; PRENEEL, 2011). For ins-
tance, Gauss sustainers can be used to further reduce the private key space.
These sustainers are transformations that permute or add rows and columns
of a matrix and they can be described by invertible matrices. Again, let Γ be
a sustainer for UOV:

Γ(x) =

(
A 0
B C

)
· x, (3.19)

such that A ∈ Kv×v
q , B ∈ Ko×v

q , C ∈ Ko×o
q and A,C are invertible. Observe that

x is the column vector of variables in the central equations. The transforma-
tion Γ only shuffles the vinegar variables within themselves, so it is in fact a
sustainer. The construction of Equation 3.18 can be applied as:

P = F ◦

(
A 0
B C

)
◦

(
A−1 0

−C−1 ·B ·A−1 C−1

)
◦T , (3.20)

Now an structure can be enforced in T ′. Let In be identity matrix of
size n:

T = Γ◦T ′
(

T1 T2

T3 T4

)
=

(
T1 0
T3 T4−T3 ·T

−1
1 ·T2

)
◦

(
Iv T−1

1 ·T2

0 Io

)
.

(3.21)

For every T , with T1 being invertible, there exists an equivalent map
T ′, thus T can be chosen with the shape of T ′. This greatly reduces the space
requirements, as only a matrix of size v×o, i.e. the upper right portion of T ′,
is sufficient to represent T .

The idea of equivalent keys and the use of Gauss sustainers to reduce
the outer maps of the private keys, is extended in (PETZOLDT, 2013, Chapter
3.5) to be used in Rainbow. The multilayer construction allows to build ∆

sustainers that mix layer equations within their own layer. The improvement
is actually used in the Rainbow submission (DING et al., 2019) to round 2 of
NIST’s standardization process. The proposal consists of using almost upper
triangular matrices, with the main diagonal only composed by 1’s, in the outer
maps. Matrices of such kind are always invertible due to the fact that their
determinant is always equal to 1. This reduction in the outer maps key space
can be used along with the Rainbow variants mentioned above, nonetheless it
only reduces the maps S and T which do not make part of the majority of the
private key size, as it can be observed in Equation 3.7.
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4 REDUCING PRIVATE KEYS BY REUSING VINEGAR
VARIABLES

In Section 3.5, some examples of Rainbow variants that introduce
structure in either the public key or the central map F are introduced. As sta-
ted above, none of these strategies could be used simultaneously to achieve
smaller key pairs. In this section, a novel modification to the original Rainbow
scheme is presented. It can reduce up to 84% of the private key. Additionally,
this optimization can be used along with variants that introduce structure into
the public key, reducing the whole key pair by up to 71% (ZAMBONIN; BIT-
TENCOURT; CUSTÓDIO, 2019). The pitfalls of using such optimization are
discussed as well.

4.1 PROPOSAL

It can be noted that introducing structure into the central map is gene-
rally not well succeeded. Such schemes usually offer some vulnerability due
to the special structure in F . With this in mind, a new general framework to
reduce private keys in Rainbow-like signature schemes is proposed. The mo-
dification, namely Rainbow-η , consists in tweaking the key generation and
the signature generation step, rather than introducing structures in the central
system of equations. Remind that the first set of vinegar variables is chosen
at random for every new signature. If this set of vinegar variables could be
reused across multiple signatures, a reduced version of the central map, with
the first set of vinegar variables substituted into the equations could be stored,
in contrast to the whole map with all variables.

Generating new keys now includes an additional step. After building
F , the set V1 is chosen randomly and then substituted into the equations. No-
tice that the first layer polynomials are now linearized. In this way V1 can be
substituted in the subsequent layers too. These layers remain quadratic but
with far less monomials, because the monomials that contain variables from
V1 are simplified. This linearized central map F ′ is stored along with the cho-
sen V1 for use in the signature generation step. The rest of the key generation
step remains the same. Henceforth, P is calculated using the whole F , but
only F ′ needs to be stored. The private key is now the tuple (S,F ′,T ,V1).

To further generate new signatures, the first step of the signing pro-
cedure, that is, choose and substitute V1 into F , is not needed anymore, as
this is done in the key generation step. The layers are inverted as described
in Section 3.4.3. After the preimage of F is found, the set V1, selected in the



50

key generation step, is used along with the rest of the variables to compute
the signature. It may happen that some layer is not solvable for a given signa-
ture. Originally, when this happens, a new set V1 is chosen and the inversion
process is repeated. In Rainbow-η this cannot be done, due to the fact that
the central map F ′ is already simplified with the previously chosen V1, and
F is not available. With this issue in mind, three alternatives are proposed to
viabilize Rainbow-η .

4.1.1 Rainbow-η1

In order to regenerate the central map F , a PRNG (Pseudorandom
Number Generator) seeded by S can be used to generate F in the key gene-
ration step. Storing S with the rest of the private key, enables the signer to
regenerate F in the case of the some layer not being solvable for some signa-
ture. Therefore, in the signature procedure, if some layer fails to be solved,
F is regenerated completely and a new set Ṽ1 is chosen until the first layer
becomes solvable. After Ṽ1 is substituted into F , only this new simplified
version of F needs to be kept for subsequent signatures.

This alternative is efficient and adds only the cost of regenerating F
every time that some layer is not solvable, which occurs with small probabi-
lity, as it is shown in Section 4.2. Also, the small cost of storing S along with
the private key is added.

4.1.2 Rainbow-η2

It is show in Section 3.5.1 that a linear relation between the public and
private maps exist. This relation can be used to generate F from P , S and
T . Therefore, in the case of the signer being unable to find a preimage for
the central map, F is regenerated and the signing procedure occurs just like
in Rainbow-η1. With this method, no additional data is needed in the private
key, however, regenerating the central map by this manner is less efficient
than through the PRNG solution.

4.1.3 Rainbow-η3

If the central map layers could be solved for different values, there
would be no need for new vinegar variables to be plugged inF . This could be
achieved using a random nonce in the generation of h. When creating a new
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signature, a random salt r is chosen and h is given by h =H(H(d)‖r). Note
that changing r changes h completely. Observe that the image y is calculated
by y = S−1(h), hence changing r completely alters y. With this modified
hashing procedure, in the case of an unsolvable layer, r is changed and the
hashing repeated, getting new values for y. This is done until all layers are
solvable and the signature step can finish properly. The verification process
is done by checking if P(σ) =H(H(d)‖r) holds. Note that now, r is part of
the signature.

Actually, this method is used in the Rainbow proposal to NIST’s stan-
dardization process (DING et al., 2017). This technique is used to achieve
EUF-CMA security and to avoid the need of choosing new vinegar variables
in the case of some layer being unsolvable. Rainbow-η3 is clearly more ef-
ficient than the other variants, as it avoids the regeneration of F . Since this
method is more efficient, and it is already used in Rainbow implementations,
the use of Rainbow-η3 is recommended.

4.2 INVERTIBILITY OF THE CENTRAL MAP

As described in Section 3.4.3, to sign a document, F needs to be in-
verted1. To invert F , all layers need to be inverted individually. Inverting
each layer, after the values for the vinegar variables are substituted, consists
in solving systems of linear equations. These systems may be solvable or
not. In the case of some of these systems not being solvable, the inversion of
the central map needs to be restarted. Specially, in Rainbow-η restarting this
process adds some cost to the signature generation. In this section, it is shown
that this happens with small probability, hence the average cost introduced by
the η variants is small.

A linear system of equations can be represented by a matrix of its
coefficients. Each row of this matrix represents one equation. For instance,
the following system with n equation and n variables:

y(1) = α
(1)
1 x1 +α

(1)
2 x2 + · · ·+α

(1)
n xn +β (1),

y(2) = α
(2)
1 x1 +α

(2)
2 x2 + · · ·+α

(2)
n xn +β (2),

...

y(n) = α
(n)
1 x1 +α

(n)
2 x2 + · · ·+α

(n)
n xn +β (n),

(4.1)

1Note that F is surjective, hence there is no inverse of this map. This inversion is actually a
“pseudo-inversion” and it consists in finding a preimage for F .
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with all x,y,α ∈ Fq, can be rewritten as:

y =




α
(1)
1 α

(1)
2 · · · α

(1)
n

α
(2)
1 α

(2)
2 · · · α

(2)
n

...
...

. . .
...

α
(n)
1 α

(n)
2 · · · α

(n)
n



· x+




β
(1)
n

β
(2)
n

...

β
(n)
n



, (4.2)

with x and y being the column of x and y variables. Let A be the coefficient
matrix of Equation 4.2 and B the column of constant terms. The system for a
given vector y can be solved by calculating:

x = A−1 · (y−B). (4.3)

Actually, the system is solvable if and only if A is invertible. The-
refore, observing the probability of a randomly built matrix being invertible
shows the probability of random linear systems being solvable. From now
on, it is assumed that the linear systems generated in the signature step, are
randomly built.

Definition 10. Let In be the identity matrix of size n. A matrix A ∈ F
n×n
q

is invertible if and only if there exists another matrix B ∈ F
n×n
q such that

AB = BA = In. The inverse of A is denoted as A−1.

It can be shown that all rows of an invertible matrix are linearly inde-
pendent. Let A be an invertible matrix. By contradiction, assume that some
row of A is linearly dependent of one or more other lines. So, there exists a
nonzero column vector x such that Ax = 0. If A is invertible, then A−1Ax = 0
can be calculated and the equality holds only if x = 0, contradicting the linear
dependency.

With this fact in mind, invertible matrices can be constructed row by
row, choosing a vector that is not linearly dependent of the previously selected
ones. For the first row l1 there are a total of qn−1 choices, as the zero vector
cannot be chosen. The second row must satisfy the condition l2 6= cl1, since q

values for c can be selected, the second row has qn−q possibilities. Without
loss of generality, the k-th row must satisfy lk 6= c1l1 + c2l2 + · · ·+ ck−1lk−1.
As there are qk−1 possibilities for c constants, the k-th row has qn − qk−1

possibilities. Multiplying all these possibilities, the probability of a random
matrix with elements in Fq being invertible is given by:

p(n,q) =
n

∏
k=1

qn−qk−1

qn
=

n

∏
k=1

(
1−q−k

)
. (4.4)

Moreover, the probability of all layers being invertible for a given
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Rainbow instance with parameters (v1,o1,o2, . . . ,ou) is:

p̃(q,o1, . . . ,ou) =
u

∏
l=1

ol

∏
k=1

(
1−q−k

)
. (4.5)

It can be observed that smaller matrices with bigger fields are more
probable to be invertible. For instance, with the parameters proposed in (PET-
ZOLDT, 2013, Chapter 6), using the finite field F16 and a Rainbow instance
that achieves 256-bit security level, the probability of all layers being inver-
tible is p̃(16,69,59) ≈ 87.15%. However using another proposed instance,
with F256 and for the same security level, p̃(256,63,30)≈ 99.21%. So, only
in 0.79% of the cases some layer is not solvable. In Rainbow-η , this proba-
bility is even smaller, as the first layer is fixed throughout multiple signatures
and it only has a chance of not being invertible when a new set V1 is chosen.
Specially, in Rainbow-η3, as no new set V1 is chosen, only the probability of
the subsequent layers need to be taken into account. It can be noted that the
third proposed variant does not add any cost to the implementation submitted
in (DING et al., 2017).

4.3 ATTACKING MULTIPLE SIGNATURES

Rainbow-η fixes part of the preimage of F , which may raise a con-
cern. Multiple signatures, with the same vinegar variables, can leak infor-
mation about the private keys or even the variables found in the signature
process.

It should be noted that the attacker has no information about T , so if
one would try to find and invert this first transformation that hides the central
map F , a quadratic polynomial system would need to be resolved. That is,
one would need to resolve the equation σ = T −1(x), and with x and T being
unknowns, it actually forms a quadratic polynomial system. If part of x is
fixed, this system remains quadratic, still with more variables than equations.
Suppose that even though it is unfeasible to solve the above equation and to
find the original T , an attacker finds it efficiently via some other method. The
possession of T would be of no use because P is also hidden by S .

4.4 APPLICATION OF KNOWN ATTACKS

There are many known attacks on Rainbow and UOV that could also
be applied to Rainbow-η . In the previous sections, some problems and pos-
sibly security flaws are analysed. In this section, the applicability of existing



54

attacks is discussed.

4.4.1 Direct Attack

A direct attack consists on solving the public system directly, i.e. solve
P(x) = h, without any information of the private key or signatures. This
can be done via methods like the one described in (BETTALE; FAUGERE;
PERRET, 2009). This is the most generic attack to multivariate systems, as it
tries to tackle the base MQ-Problem which, as described in Section 3.3.1, is
NP-Hard. Clearly this attack is not facilitated by Rainbow-η , as the proposed
scheme does not alter the public key in any form, and the attack does not
make use of multiple signatures.

4.4.2 Rank Attacks

The attack based on the MinRank problem was exposed in (BILLET;
GILBERT, 2006). The attack consists in finding a linear combination of all
public matrices, that represent the equations, with very low rank. This rank
threshold depends on the parameters of Rainbow. Finding this combination
allows an attacker to extract the first layer of the central polynomials, and part
of the outer maps. Repeating the process, the others layers can recovered as
well, and with negligible effort, due to the partial knowledge of the private
maps.

HighRank can be seen as the opposite of MinRank. It tries to find
linear combinations between the public matrices and inverts Rainbow layers
from last to first. An improved version of the HighRank attack for Rainbow
is proposed by (DING et al., 2008). Both the MinRank and the HighRank
attacks try to recover the private map from the public one. The attacks cannot
be optimized for Rainbow-η as, again, it does not modify the public key
generation and structure.

4.4.3 Rainbow-Band-Separation Attack

The Rainbow-Band-Separation attack was proposed in (DING et al.,
2008) as an extension of the UOV-Reconciliation attack. Basically the at-
tack tries to find an equivalent private key to forge new valid signatures.
Again, it attacks the public key directly, hence the complexity of the attack
for Rainbow-η is the same.
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Security level
(bits)

Parameters
(K,o1,v1,v2)

Kpr

(bytes)
K

η
pr

(bytes)
Difference

80 (F256,17,17,9) 19208 5914 -69.21%
100 (F256,26,22,11) 45450 11013 -75.77%
128 (F256,36,28,15) 103704 22110 -78.68%
192 (F256,63,46,22) 440638 71773 -83.71%
256 (F256,85,63,30) 1086971 164721 -84.85%

Table 4 – Rainbow-η improvements

4.4.4 Side-Channel Attacks

As described in Sections 3.4.3 and 4.1, when some Rainbow layer is
not solvable, a new set of first layer vinegar variables should be chosen. This
adds a considerable computation time to the signature generation step when
some layer is not solvable. Specially, in Rainbow-η2 this difference can be
huge, as the signer recalculates the central map. In a chosen message attack,
an attacker can observe the time taken to generate signatures and know the
messages that cause a non-invertibility of some layer.

(DING et al., 2017) claims that their implementation is side-channel
resistant as “... all key dependent operations are performed in a time-constant

manner.”. However, when some layer is not solvable, the signature generation
takes longer, as described in Section 4.1.3. There are no known attacks that
make use of such information, but this possibility is not discarded, and the
submitted implementation may be vulnerable to such timing attack.

4.5 IMPROVEMENT ON RAINBOW INSTANCES

The new private key size for Rainbow-η , without the additional data
required for Rainbow-η1, can be calculated by:

Kη
pr = m2 +m+n2 +n+ v1+

u

∑
l=1

ol

(
(vl− v1)(vl− v1 +1)

2
+(vl− v1)ol +(vl+1− v1)+1

)
.

(4.6)

Table 4 shows the reduction of the private key achieved by using
Rainbow-η on those parameters. This reduction can be combined with some
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variant that reduces public keys, like the ones described in Section 3.5, to
achieve smaller key pairs. Also, the use of the limited key spaces, described
in Section 3.6, to reduce the outer maps of the private key can be used along
with the η variant. So this method is a general framework that can be applied
to all Rainbow variants that do not change the private key, and it can be joined
with other methods to achieve smaller key pairs.

4.6 IMPLEMENTATION

A proof of concept implementation2 was made to validate the propo-
sed optimization. The repository contains a modified version of the Rainbow
implementation submitted to NIST’s standardization process. In this imple-
mentation, the first set of vinegar variables is only substituted in the first layer,
so the full potential of the technique is not exploited.

2https://github.com/matheuspb/rainbow-eta
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5 CONCLUSION

Rainbow has a space requirement problem as its keys are orders of
magnitude bigger than the classic digital signature algorithms. In order to
viabilize the usage of Rainbow in a post-quantum scenario, this issue is being
extensively addressed in the literature. A series of modifications to the ori-
ginal Rainbow scheme presented in the literature were studied in order to
comprehend the techniques used to tackle the key size problem. It is obser-
ved that the introduction of structures into the private key, in general, makes
the schemes less secure. Finally, a novel modification was proposed.

5.1 CONTRIBUTIONS

In this work a detailed description and comprehension of the Rainbow
digital signature scheme was given, along with all the basic foundations nee-
ded to understand it. Also, a new method to reduce Rainbow private keys was
proposed. This method does not involve a direct modification of the central
map, thus can be unified with other methods to achieve smaller Rainbow key
pairs. The use of such method can reduce up to 84% of the private key.

5.2 FUTURE WORKS

The security analysis of Rainbow-η could be further expanded, spe-
cially its sensitivity to side-channel attacks, as this could be an issue of the
original Rainbow too. Also, cryptanalytic attacks were not discarded, as an
attacker with access to multiple signatures could potentially derive some in-
formation of the central map due to the reuse of the vinegar variables.
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Abstract. Multivariate quadratic equations are the basis of
one of the main mathematical techniques for the creation of
digital signatures that are quantum-resistant. In these schemes,
the creation and verification of signatures is highly efficient.
However, key sizes are quite impractical and orders of mag-
nitude greater than conventional schemes. One of the best-
known signature schemes built upon multivariate equations is
called Rainbow, which is based on the Oil-Vinegar principle.
We observe that the reuse of vinegar variables in the signa-
ture generation step of the Rainbow scheme leads to a shorter
representation of its central map, and thus, of the entire pri-
vate key. We analyse the security implications of this strategy
and present a modification to the Rainbow scheme, enabling
a private key size reduction of up to 85% with secure param-
eters. Additionally, this framework can be applied on top of
already existing schemes that shorten either private or public
keys, spawning derivatives that reduce the total key pair size
by a factor of 3.5.

Keywords: multivariate cryptography · digital signatures ·
Rainbow

1 Introduction

Secure exchange of messages is nowadays treated as a requirement in
digital systems, instead of a privilege. It is often mandatory that data
is not altered in transit, that its sender is uniquely identifiable and
that it cannot deny having sent the message. These notions, known



as integrity, authenticity and non-repudiation, are achieved through
the use of cryptographic foundations known as digital signatures. Data
protected with such a method is adequate to prevent forgery and ensure
confidentiality, according to Goldreich [13].

Conventional digital signature schemes are predominantly bound
to one of two mathematical problems, namely integer factorisation
and discrete logarithm. The most common examples are the RSA and
ECDSA signature schemes [12], respectively. Nonetheless, in the wake
of possible quantum adversaries, these problems are provably solvable
in polynomial time, due to Shor’s algorithm [26]. Ergo, the design of
quantum-resistant, or post-quantum digital signature schemes, is indis-
pensable to preserve secure communications in a scenario with quantum
computers.

The creation of post-quantum digital signatures can be achieved
through several approaches, one of which is based on systems of multi-
variate quadratic equations. Due to this fact, it is named multivariate
cryptography, and schemes derived from this mathematical foundation
are based on problems not known to be more efficiently solved by quan-
tum computers [2]. Moreover, their signature generation and verifica-
tion procedures are extremely efficient [7], since most computations rely
only on simple finite field arithmetic.

It is known that multivariate cryptography hosts distinct schemes
with several combinations of security parameters, signature and key
pair lengths, as summarised by the authors of [8]. A balanced choice lies
in the Rainbow signature scheme [9], itself a generalisation of the classic
Unbalanced Oil and Vinegar (UOV) scheme [16]. It is a popular scheme,
with several improvements featured in the literature, and multiple hard-
ware implementations, e.g. [27,5,34]. Furthermore, it is currently fea-
tured in the second round of the standardisation process organised by
the National Institute of Standards and Technology (NIST) [1].

One major drawback of multivariate cryptography, including Rain-
bow, is the size of private and public keys. While conventional signature
schemes have key sizes that are a few bytes long, schemes based on mul-
tivariate equations feature keys that are dozens of kilobytes long. Hence,
it is desired to reduce these by means of novel mathematical strategies,
without decreasing the security of the scheme. Various strategies are
applied to shorten keys, such as generating systems of equations repre-
sented by sparse matrices, or elements produced by cyclic recurrences.
However, the security implications of such modifications are often ob-
scure and possibly harmful.



Our contributions. We present a general framework that can be
applied to any Rainbow-like signature scheme, with the final intent
of reducing private key sizes. It manipulates vinegar variables that are
originally chosen randomly to successfully invert the central map. These
variables are now locked into the private key, thus reducing the degree
of all monomials that feature such variables, lowering the total num-
ber of field elements used to represent it by up to a factor of 6.25. To
sustain our proposal, we analyse the relation between signatures and
the choice of vinegar variables, security implications of this strategy
and experiment on known Rainbow variants. To the best of our knowl-
edge, Rainbow variants proposed in the literature allow the reduction
of private or public keys, but not both simultaneously. We show that
our proposal allows for a shorter private key without preventing mod-
ifications to the public key. Thus, by making use of known proposals
to reduce public keys, we create the first Rainbow variants that reduce
the total size of the key pair.

Notation. We will use the following symbols throughout this work.

The symbol
$
←− is read as “chosen randomly from”, and ≈ε means

that two numbers are equal within a precision of ε. A finite field F with
order q and elements as vectors of length n is represented as F

n
q , with

q and n omitted for brevity if appropriate. The cardinality of a set S
is given by |S|. This notation may also be used as the absolute value
of an integer, if applicable. The usual function composition is given by
the symbol ◦, and the inverse of a function f is given by f−1. The
usual standard deviation and mean functions for a set of elements S
are respectively given by σ(S) and µ(S).

Organisation. The next sections are organised as follows. Section 2
succinctly describes the theoretical background needed to assimilate
our proposal, with a definition of the Rainbow signature scheme in
Subsection 2.1 and a review of works that already reduce keys for this
scheme in Subsection 2.2. Section 3 presents the rationale for our pro-
posal and a formal description, alongside a security analysis. Section 4
shows the impact of our proposal when applied to the original Rainbow
and variants. Finally, Section 5 offers our final considerations.



2 Preliminaries

2.1 Original Rainbow signature scheme

We will present below a description of the Rainbow signature scheme, a
generalised version of the UOV scheme that reduces the length of keys
and signatures. It consists of several “oil and vinegar” layers, that are
combined to create a “rainbow”. Consider a finite field Fq and u, n ∈ N

where u ≤ n. Choose a sequence of integers v1, . . . , vu such that 0 =
v0 < v1 < · · · < vu < vu+1 = n. Take the usual set V = {1, . . . , n} and
define the vinegar variables as Vl = {1, . . . , vl} for all l ∈ {1, . . . , u}.
Observe that vl = |Vl| and V1 ⊂ · · · ⊂ Vu = V . Oil variables are given
by Ol = {vl + 1, . . . , vl+1}. Note that ol = |Ol| and Ol = Vl+1 − Vl.
Let m = n − v1. Now, we define vector spaces spanned by quadratic
Oil-Vinegar polynomials of the form

Pl =
∑

i,j∈Vl

αij · xi · xj +
∑

i∈Vl,j∈Ol

βij · xi · xj +
∑

i∈Vl∪Ol

γi · xi + δ. (1)

Key generation. The central map of Rainbow is defined as F :
F
n −→ F

m, with the following construction: for each layer l, Fl =

(F 1
l , . . . , F

ol
l )

$
←− Pl, and F = (F1, . . . , Fl). Since each sequence of vine-

gar variables in a layer contains all variables from the previous layer,
this allows for the inversion of this map. Further, let S : Fm −→ F

m

and T : Fn −→ F
n be two affine invertible maps, used as the trapdoor

to this construction. Let P : Fn −→ F
m as P = S ◦ F ◦ T . Coefficients

αij , βij , γi, δ ∈ F are chosen randomly. The private key is the triple
(S,F , T ) and the public key is the map P.

Signature generation. To sign a message M , consider a crypto-
graphic hash function H : {0, 1}

∗
−→ F

m, and obtain the message
digest d = H(M). The signature will be the set of variables which yield
the solution to the equation P(x1, . . . , xn) = d. Compute x = S−1(d).
To generate y = F−1(x), every layer must be inverted recursively. Start
by randomly choosing values for x1, . . . , xv1

and inserting them into
the first layer. This will bring forth a system of o1 linear equations in
xv1+1, . . . , xv2

. It can be solved with an algorithm such as Gaussian
elimination. If the system does not have a solution, new vinegar vari-
ables have to be chosen. These solutions can then be substituted into
the next layer, which will create a system of o2 linear equations, that
can be solved analogously. This procedure is repeated until all layers
are solved. Finally, we compute σ = T −1(y).



Signature verification. To verify a signature, compute d′ = P(σ). If
d = d′, then the signature is valid, and invalid otherwise.

Finally, denote an instance of the scheme by Rainbow(Fq, v1, o1, . . . , ou).
Note that when u = 1, we get the UOV scheme. Measured in field ele-
ments, the size of a private key is

|KPr| = m2 +m+ n2 + n

+
u∑

k=1

ok ·

(
vk · (vk + 1)

2
+ vk · ok + vk+1 + 1

)
, (2)

whereas the size of a public key is

|KPu| = m ·
(n+ 1) · (n+ 2)

2
. (3)

Further details on the construction of Rainbow may be found on [7,
Section 3.3].

2.2 Related works

Schemes based on multivariate cryptography with modifications that
enable the reduction of private key sizes have been suggested even
before Rainbow was created. Tame transformation schemes, such as
the ones listed by Wolf and Preneel in [29], feature sparseness in their
maps, a common strategy used to shorten private keys. However, these
schemes were either broken, as summarised by the authors in [10], or
in the case of Enhanced TTS, new parameters were suggested, and it
was subsequently found to be a special case of Rainbow [28].

Additionally, there have been several published variations of Rain-
bow with the same goal, making use of distinct approaches. A scheme
called Lite-Rainbow-0 [25] makes use of a small pseudorandom number
generator (PRNG) seed to replace the private key entirely. This short-
ens the private key by a factor of approximately 99.8%, but greatly
increases the cost for signature generation. NC-Rainbow was proposed
in [31] with a novel strategy based in non-commutative rings to reduce
a private key by up to 75%. However, it was shown by independent re-
searchers to be insecure [28,14]. Other variants called MB-Rainbow [30]
and NT-Rainbow [33] employ sparseness of maps to reduce the number
of terms in the private key by up to 40%.

The authors merged MB- and NC-Rainbow into a single scheme
called MNT-Rainbow [32], shortening private keys by up to 76%. Never-
theless, the original schemes were deemed insecure and new parameters



were suggested in [18]. It also proposes a new scheme called Circulant
Rainbow, which reduces the private key by up to 45% due to the con-
cept of rotating relations. Yet, it was broken shortly after [15].

It is also relevant to cite the approach by the authors of [21], which
is, to the best of our knowledge, the main method for public key re-
duction without compromises to the signature size. It is summarised
in several publications [22,24,20]. However, these cannot be combined
with the private key improvements previously cited. Furthermore, it
appears that the introduction of structures in the private key is highly
threatening to the overall security of a Rainbow scheme. We will sub-
sequently present a novel approach to these issues.

3 Our proposal

We will describe our improvement to Rainbow-like signature schemes
below, as well as supporting research on its soundness. Subsections 3.1
and 3.2 give a formal description of our modifications. In Subsection 3.3,
we look into the probability of matrices with elements in finite fields
being invertible. In Subsection 3.4, we present a statistical analysis of
the structure of signatures created by our method, and finish with a
security overview in Subsection 3.5.

3.1 Modification to the original scheme

Our approach consists of modifications to the key and signature gen-
eration steps of Rainbow-like signature schemes. We propose to reuse
the first set of vinegar variables for several signatures and replace these
only when necessary, i.e. situations where the central map cannot be
inverted and creating a signature would fail. By locking such variables
and substituting them on the central map F early in the key generation
algorithm, we create a F ′ linear in v1, thus reducing storage require-
ments. This approach does not modify the underlying structure of the
private key, but rather of the central map preimages.

To induce lower storage requirements for key pairs of Rainbow-like
schemes, we explore constructions given in the literature and suggest
general alterations to use our proposal. As per Subsection 2.2, most
variants that shorten private keys are structural in nature, that is, the
key space is limited by some heuristic with the intent of producing a
compact private key. Moreover, the main approach to reduce public
keys [19] prevents alterations to the private key, since it indirectly gen-
erates F from a partial public key through linear relations between the
maps.



This division of improvements is blurred by our proposal. We present
general methods based on different techniques that shorten private keys
in all Rainbow-like schemes. We collectively denote these by Rainbow-η
and use the same definitions as in Subsection 2.1, further denoting the
vinegar variables for the first layer as Ṽ1 = (x1, . . . , xv1

).

Rainbow-η1 key generation. We use the fact that a PRNG has
the ability to regenerate the same sequence of numbers given a seed.
The choice of such a generator is outside the scope of our work, and we
assume that a cryptographically secure PRNG is chosen. This approach
is similar to Lite-Rainbow-0, but it is not as costly, since the private key
does not need to be regenerated before every signature generation. It is
best suited to environments in which an efficient generator is previously
supplied.

We bound the creation of the key pair to a seed S. We are not aware
of any Rainbow variants that disallow this practice. Thus, S, F and T ,
as well as the public key P = S◦F ◦T are generated through the target

scheme key generation algorithm, seeded by S. We set Ṽ1
$
←− F, and

substitute these into F , giving F ′. According to Subsection 3.3, in the
rare case that a failure occurs in the central map inversion algorithm, we
use S to regenerate F , choose other values for Ṽ1 and create a different
F ′. The private key of Rainbow-η1 is (S,S,F ′, T ) and the public key
is P.

Rainbow-η2 key generation. This approach is based on the fact
that a private key owner is able to recover the original F through the
possession of all other private maps and the public key. We make use of
the linear relations given by the authors of [21] and applied in the def-
inition of the well-known CyclicRainbow scheme. A short explanation
is given below, with the full rationale available in [19, Chapter 7].

Consider the public key P = S ◦ F ◦ T and let Q = F ◦ T . Denote
Q̃ as a matrix containing only coefficients of the quadratic monomials
from Q, and define F̃ and P̃ similarly. Further let T̃ be the matrix
representation of T , with its coefficients tij , i, j ∈ {1, . . . , n}, and define

S̃ analogously. By fixing tij , the composition of P actually represents
a linear relation between coefficients qkij , f

k
ij of the monomial xi · xj in



the k-th component of, respectively, Q and F , with the form

qkij =

n∑

r=1

n∑

s=r

αrs
ij · f

k
rs, αrs

ij =

{
tri · tsi if i = j,

tri · tsj + trj · tsi otherwise,

k ∈ {v1 + 1, . . . , n}.

(4)

This can be simplified, since F does not allow quadratic monomials
with only oil variables, and results in

qkij =

vl∑

r=1

vl+1∑

s=r

αrs
ij · f

k
rs, k ∈ Ol, l ∈ {1, . . . , u}. (5)

A square matrix of order n2+n
2

is created to further streamline the
previous equations. Given a particular monomial ordering, let A =
(αrs

ij ) such that i, j, r, s ∈ {1, . . . , n}, where i ≤ j and r ≤ s denote row

and column indices, respectively. Thus, we have that P̃ = S̃ · Q̃ and
Q̃ = F̃ ·AT. We note that the performance of this method is lower than
that of Rainbow-η1. However, it is a general technique that works on
all Rainbow-like schemes.

Observe that the central map may not feature any linear or constant
terms, due to the use of the above relations. This does not lower the
overall security of the scheme, due to the fact that they are not mul-
tiplied with quadratic terms. With this implication in mind, the usual
key generation algorithm for the target scheme is employed, yielding
(S,F , T ) and P at a marginally faster rate. Substitute the sequence

Ṽ1
$
←− F into F , giving F ′. By the relations above, one is able to

reconstruct F with no additional mechanisms if the central map inver-
sion algorithm fails. The private key of Rainbow-η2 is (S,F ′, T ) and
the public key is P.

Signature generation. A digest d = H(M) from a message M is
signed with a similar procedure. Compute x = S−1(d), and attempt
to generate y = F ′−1(x) by inverting every layer recursively. The first

layer already has Ṽ1 set, and the remaining linear system needs only to
be solved by providing appropriate values of d. It will generate a new
set of vinegar variables, that can be used on the next layer, until all
layers are solved. If any of the transitory systems are not solvable, a
new Ṽ1 is chosen and F ′ regenerated, according to one of the methods
given above. We finish by computing σ = T −1(y).



Signature verification. This step does not change. If d = P(σ), then
the signature is valid, and invalid otherwise.

By making the first layer linear and substituting the remaining vari-
ables, the size of the private key is now

|Kη
Pr| = m2 +m+ n2 + n+ |Ṽ1|

+
u∑

k=1

ok·

(
(vk − v1)(vk − v1 + 1)

2
+ (vk − v1) · ok + (vk+1 − v1) + 1

)
,

(6)

plus the additional size of S if the Rainbow-η1 method is used. One
needs to store Ṽ1, since it is part of the central map preimage, used on
further map applications. The public key size does not change.

3.2 Application to the EF-CMA variant

The Rainbow submission to the NIST standardisation process [6] presents
a scheme description that diverges from the original works. The au-
thors introduce modifications that provide security against the existen-
tial forgery under chosen-message attack (EF-CMA) model, whereas
the original scheme only offers security against universal forgery. These
changes are built upon the introduction of a random salt. We will briefly
describe this approach, with the intent of preventing the recalculation
of F ′ in the case that Ṽ1 is not suitable. Let us denote this method as
Rainbow-η3.

Key generation. Consider w ∈ N as the length of the aforementioned
salt. Generate private and public keys as per Subsection 3.1. The private
key for this scheme is (S,F ′, T , w), with the addition of S in the case
of Rainbow-η1. The public key is (P, w).

Signature generation. Let r
$
←− {0, 1}

w
. The digest value is cal-

culated as d = H(H(M) || r), where M is the message. The value
x = S−1(d) is obtained as usual. In the rare case that the y = F ′−1(x)

preimage calculation does not succeed, new variables in Ṽ1 are chosen.
However, the addition of a random salt to the original message digest
alters d completely, due to the cryptographic hash function application.
Thus, it is only necessary to generate a new r and restart the signature
generation process, such that Ṽ1, and consequently F ′, are not modi-
fied. Alternatively, if the preimage is generated successfully, we finish
by letting z = T −1(y) and σ = (z, r).



Signature verification. Recalculate the digest value d. If d = P(z),
the signature is valid, and invalid otherwise.

The size of the private and public keys increase in exactly one el-
ement due to the addition of w. Real implementations of Rainbow-η3
are tested on Section 4.

3.3 Invertibility of F

Recall that, to create a Rainbow signature, the central map F needs to
be inverted. Random guessing of vinegar variables is done in order to
create a solvable linear system. It is also known that the central map
is expressed as multivariate systems of equations, which can be them-
selves interpreted as multidimensional matrices of coefficients. Observe
that, to describe these in a clearer way, a given monomial ordering is
used such that only usual matrices are needed. With this in mind, we
first derive the probability that a random matrix with elements in F is
invertible.

Assume a square matrix M of order n such that mij ∈ Fq, i, j ∈
{1, . . . , n}. For M to be invertible, it must be composed entirely of
vectors, i.e. its rows mi ∈ F

n, that are linearly independent. The zero
vector (0, . . . , 0) ∈ F

n is linearly dependent of all other vectors. Thus,
m1 6= (0, . . . , 0), with all other qn−1 possible vectors eligible. m2 must
not feature any of the q multiples of m1, and qn − q vectors remain.
Without loss of generality, mk 6= c1v1 + c2v2 + · · · + ck−1vk−1, ck ∈ F,
and qn − qk−1 vectors can be selected. Then, the probability that all
vectors chosen are linearly independent is

Π(q, n) =

n∏

k=1

qn − qk−1

q−n

=

n∏

k=1

1− q−k.

(7)

In the context of Rainbow, the number of layers directly influences
Π(q, n), since it dictates how many linear systems have to be solved.
In other words, all square matrices of size vi, i ∈ {1, . . . , u} need to be
invertible to achieve a preimage under F . Thus, the probability

Π(q, n, u) =

u∏

i=1

vi+1∏

k=1

1− q−k (8)

more accurately represents the upper bound for these chances. In the
literature, the usual number of layers for a Rainbow instance is two,



and we will denote this common case as Π(q, n, 2) = Π̃(q, n). Note that
Π(q, n, 1) = Π(q, n). Hence, schemes with more layers have a slightly
lower probability of success in the signature generation preimage step.

Parameters for Rainbow are selected according to a number of
restrictions, imposed by attacks that may harm the security of the
scheme. Furthermore, note that the central map can be represented
as square matrices of order n. Hence, we choose n ∈ {56, . . . , 90}
from [19, Tables 6.4, 6.8, 6.13] and calculate the probability that a
random matrix is invertible in finite fields of typical orders. For in-
stance, Π(16, 90) ≈ 93.3594% and Π(256, 56) ≈ 99.6078%. Figure 1
depicts the lowest probabilities computed for the appropriate range.
To simulate layering, we set vi = i · ⌈n

u
⌉ and approximate to n when

needed.
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Fig. 1. Probability of obtaining an invertible matrix, populated with field
elements where q ∈ {2, . . . 256} and q is a prime power, given the quantity of
layers of Rainbow.

It is also useful to calculate limn→∞ Π(q, n) to observe changes in
the probability with the growth of m. Note that this is very similar to
the Euler function φ(q). Ergo, we can use one of Euler’s identities to
redefine the above limit as

Π(q) =
∞∑

k=−∞

(−1)
k
q

−3·k2+k

2 (9)



and obtain a fast approximation of the probability when n tends to in-
finity. We use the SageMath language arbitrary precision real numbers
to obtain these values and find out that, when n ≥ 56, Π(q) ≈10−18

Π(q, n) and Π̃(q) ≈10−8 Π̃(q, n). Thus, Figure 1 also accurately reflects
the behaviour of Π(q), i.e., current values of n already reach effective
upper bounds for this probability.

If we consider that the two-dimensional coefficient matrix of F has
an effective size of n2+n

2
due to the aforementioned monomial order-

ing strategy, we note that the inversion event happens almost surely.
This evidence shows that computing a preimage in order to sign a mes-
sage happens at the first try with high probability in a wide range of
Rainbow configurations. Therefore, the cost of a central map reconfig-
uration, in the case that chosen vinegar variables do not lead to an
invertible central map, is amortised by the overwhelming probability
that a signature is successfully generated.

3.4 Similarity of multiple signatures

Vinegar variables chosen to invert the central map are an integral part
of the preimage y = F−1(x). For instance, in the case u = 2, these
make roughly a third of the output, considering common parameters for
Rainbow. Further, recall that there are approximately qv possibilities
for y. Our proposal eliminates this choice by locking vinegar variables
into the private key. Hence, it is essential to know if such variables create
patterns in which private information may leak through a multi-target
attack. We use the SageMath PRNG, which implements a front-end to
the /dev/urandom Linux kernel space generator.

Recall that a message digest d is signed instead of the entire doc-
ument. Evidently, a secure cryptographic hash function shall produce
an output that appears to be random. The application x = S−1(d)
does not affect this behaviour, since the map is also random. Hence, we
need not simulate this calculation in this analysis. According to Sub-
section 3.3, the inversion y = F−1(x) creates a valid preimage with
overwhelming probability, where the first v1 elements of any y will be
the same.

We observe the distribution of field elements in vectors after the final
function application, that is, z = T −1(y). Let Z ′

t = (z1, . . . , zt)
$
←−

F
n, t ∈ N be a t-uple of “signatures”. We build the sequence Zt =

(z11 , z
2
1 , . . . , z

n
1 , z

1
2 , . . . , z

n−1
t , znt ). When part of the vector y is fixed, we

will instead denote these by Z̃ ′
t and Z̃t. Our hypothesis is that Zt and Z̃t

will behave similarly to observations sampled from the discrete uniform



distribution U{0, q− 1}. It is known that its standard deviation, where

r values are observed in an equally likely manner, is equal to
√

r2−1
12

.

For a finite field F, we set r = q and obtain the desired value. It is
expected that

lim
t→∞

σ(Z̃t) =

√
q2 − 1

12
, (10)

suggesting that greater values of n and t approximate faster to the
theorised standard deviation.
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Fig. 2. Difference of standard deviations when t ∈ {1, . . . , 1024}, and q ∈
{2, . . . , 256} with q as a prime power.

Let us denote the absolute difference between standard deviations
for a value t as dtσ = |σ(Zt) − σ(Z̃t)|. Figure 2 shows the amplitude
of such values for various values of q and t. We note that the largest
values of dtσ occur for finite fields of higher orders and lower t. For
instance, given the finite field F

42
223, we have d1σ ≈ 8.25, and for a slightly

higher t, we obtain a much lower value d11σ ≈ 0.24. This behaviour is
also observed within absolute differences of means, defined analogously
as dtµ. The field F

42
191 gives the values d1µ ≈ 5.31 and, comparatively,

d9µ ≈ 1.14.
The comparison of expected and obtained standard deviations and

means in our experiments, gives positive results and confirms the law
of large numbers. Still, it is interesting to look at the diffusion of values
within Z̃t and infer that it does not simply simulate the mean and
standard deviation for a known discrete uniform. We count the amount





state each of those, along with their estimated complexities [23], and
argue that our methods do not facilitate such attacks.

Direct attack. An attacker with possession of a digest d and the
public key P tries to solve P(x) = d. This is done by fixing some of the
variables and applying an algorithm built upon the theory of Gröbner
basis, such as the Hybrid approach [3]. While it is hard to pinpoint the
exact running time of such methods, the authors give an estimation of
its asymptotic complexity in Equation 5 of the aforementioned work.

UOV attack. The multi-layer approach of Rainbow does not hinder
attacks that also work on the UOV signature scheme. This attack was
originally created by Kipnis and Shamir [17] to break the Balanced
Oil-Vinegar scheme. The objective of this attack is to obtain an equiv-
alent private key by means of finding the preimage of a specific oil
subspace under the map T . The complexity of the generalised attack
for unbalanced schemes [16] is o4u · q

n−1−2·ou field multiplications.

MinRank attack. All systems of polynomials in the public key P may
be individually represented as matrices. This attack consists in finding
linear combinations of these, such that they have a lesser rank than v2,
in the case of Rainbow. This allows an attacker to isolate the central
map polynomials from the first layer of Rainbow, and analogously re-
cover the remaining layers with a much lower effort. In the context of

Rainbow [4], its complexity is qv1+1 ·m · (n
2

2
− m2

6
) field multiplications.

HighRank attack. In a similar way to MinRank, linear combinations
of public key matrices are used to find the variables which appear the
lowest number of times in the central map. This is used to identify
the last Rainbow layer, and obtain the previous layers similarly. The

complexity of the improved attack [11] is qou · n
3

6
field multiplications.

Rainbow-Band-Separation attack. An extension of the UOV - Rec-
onciliation attack by the same authors [11] that targets Rainbow, with
the intent of producing an equivalent private key. It explores the fact
that the central map matrix representation is composed of zeroes on
its lower right corner. These yield quadratic equations which, if solved,
lead to an alternative private key. The complexity of this attack is given
by the hardness of solving a large system of equations, as seen above,
is hard to estimate.



Side-channel attacks. It may be observed that none of the proposed
Rainbow variants, as well as the original scheme, present constant time
signature generation algorithms. Particularly, in Rainbow-η2, a con-
siderable amount of computation is added to the signature algorithm
when one of the systems is not solvable. In a chosen message attack,
one may observe the time spent on multiple signature generation steps
and easily check if the linear systems are solvable, thus obtaining infor-
mation about the central map. Although there are no known attacks
that make use of this technique, it is possible that there may exist in-
formation leaks when applying our methods to Rainbow-like schemes.

We do not discard the possibility that specialised attacks exist, par-
ticularly ones that take in account multiple signatures, due to our fix-
ing of vinegar variables. However, we have seen in Subsection 3.4 that
signatures generated by our method are comparably random with re-
spect to conventional Rainbow signatures. Furthermore, we note that
most attacks look for special structures within the private key. While
our methods indeed modify the private key representation, it is still
present in its entirety on the public key composition, which is the only
information available to malicious entities that can be possibly used to
forge signatures. We thus suggest that the right choice of parameters
is made whenever our methods are applied, e.g. according to [23], to
protect the scheme instance against these attacks.

4 Enhancement of existing schemes

Our method does not depend on special structures inserted on the pri-
vate key. Consequently, it can be applied to all known Rainbow-like
schemes. We experiment with several sets of parameters and observe
the reduction of private keys. It is known that there are various lim-
itations for the choice of parameters that lead to secure instances of
Rainbow [23]. We implement several known guidelines and confirm that
our proposal does indeed work for a large range of parameters. How-
ever, we only show results for known secure parameter sets to prevent
accidental endorsement of untested, and possibly insecure, instances.

We show results for the application of our method in Table 1, con-
sidering the following Rainbow instances. Conservative choices were
made by the Rainbow submission authors [6] to fit security categories
as requested by NIST. We apply our method to these recent proposals,
and additionally choose parameters from Petzoldt [19, Table 6.12] for
further comparison. The latter are named P-ℓ, where ℓ is the security



Table 1. Reduction of Rainbow key sizes, in bytes, for various instances of
the scheme.

Instance Parameters n m |KPr| |Kη

Pr| Difference

I-a (F16, 32, 32, 32) 96 64 100208 33152 −66.92%

I-b (F31, 36, 28, 28) 92 56 114308 31676 −72.29%

I-c (F256, 40, 24, 24) 88 48 143384 33024 −76.97%

III-b (F31, 64, 32, 48) 144 80 409463 87628 −78.60%

III-c (F256, 68, 36, 36) 140 72 537780 99656 −81.47%

IV-a (F16, 56, 48, 48) 152 96 376140 103336 −72.53%

V-c (F256, 92, 48, 48) 188 96 1274316 218984 −82.82%

VI-a (F16, 76, 64, 64) 204 128 892078 233044 −73.88%

VI-b (F31, 84, 56, 56) 196 112 1016868 217244 −78.64%

P-080 (F256, 17, 17, 9) 43 26 19208 5914 −69.21%

P-100 (F256, 26, 22, 21) 69 43 75440 23193 −69.26%

P-128 (F256, 36, 28, 15) 79 43 103704 22110 −78.68%

P-192 (F256, 63, 46, 22) 131 68 440638 71773 −83.71%

P-256 (F256, 85, 63, 30) 178 93 1086971 164721 −84.85%

level in bits. Indeed, the choice of v1 remarkably affects the results.
Moreover, a minimal value of ou is also known to further reduce the
private key size. Indeed, we suggest that v1 ≥ ou as much as possible
to maximise the results of our method. However, we remark that one
must set sufficient parameters for oi such that the scheme still resists
direct and UOV attacks.

The case of Rainbow variants is slightly more convoluted. Schemes
claim optimisations of the private key often through the inclusion of
inner structuring. To measure the impact of our method within the
context of these schemes, it is imperative to understand such structures.
For instance, it may be the case that a method introduces sparseness
related to specific vinegar variables. Thus, the reduction would not
be equally distributed over the private key elements and, as such, our
method would have its efficiency reduced.

To the best of our knowledge, the schemes presented in Subsec-
tion 2.2 feature changes that target the whole private key evenly. Hence,
our method would yield similar results to those in Table 1 if this as-
sumption is true. However, it is also the case that some variants were
subsequently broken or new parameters were suggested. We will thus



consider only schemes that reduce the public key size, i.e. CyclicRain-
bow [22] and RainbowLRS2 [19, Section 9.2].

Table 2. Total reduction of Rainbow key pairs, in bytes, for variants of the
scheme.

Instance Parameters Variant |KPr| |Kη

Pr| |KPu| Difference

P-080 (F256, 17, 13, 13)

Classic

19546 6524

25740 −28.76%

Cyclic 10618 −62.15%

LRS2 9789 −63.98%

P-100 (F256, 26, 16, 17)

Classic

46131 12474

60390 −31.60%

Cyclic 22246 −67.41%

LRS2 20662 −68.89%

P-128 (F256, 36, 21, 22)

Classic

105006 24924

139320 −32.78%

Cyclic 48411 −69.98%

LRS2 45547 −71.16%

We compare the total key pair sizes |KPr|+ |KPu| when our method
is used alongside Rainbow variants that reduce the public key size.
Table 2 shows the quantity of field elements for sets of parameters from
Petzoldt [19, Table 9.8]. We calculate |KPu| for the variants according
to Equations 9.2 and 9.4 of the same work, and as per its Remark 9.1,
note that q = 16 and q = 31 are not considered due to a security
restriction of RainbowLRS2. We obtain positive results, with key pair
size reductions of up to factors of 3 and no security harm to the resulting
scheme.

The use of CyclicRainbow or RainbowLRS2 with the Rainbow-η2
method is recommended. These variants are based on the linear rela-
tions described in Subsection 3.1, and resulting implementations may
be effortlessly modified to use our proposal. Moreover, in the case that
higher parameters are needed, e.g. a security level of 256 bits, we note
that the key pair will be reduced more aggressively. Thus, our results
reflect changes over a wide variety of platforms and possible Rainbow
deployments that benefit from lower storage requirements.

We also briefly discuss the effect of these changes on the signature
generation step overall performance. In the case of Rainbow-η1, it does
not vary greatly due to the fast regeneration of the central map ele-
ments from a given PRNG and S. On the other hand, Rainbow-η2 uses



elaborate techniques to reconstruct the central map if vinegar variables
are not suitable. This process is not without cost, and it may nega-
tively affect the average signature generation time. Still, by making
use of Rainbow-η3, these computations are entirely avoided by choos-
ing a new salt instead of new vinegar variables, reducing the inherent
overhead.

5 Conclusion

Throughout this work, we have proposed general methods to lower
private key sizes that can be applied to all known Rainbow variants.
We suggest fixing the first sequence of vinegar variables and reuse it
on the creation of signatures, reducing the static central map storage
requirements, and thus obtaining a smaller private key. Our security
analysis shows that this modification creates orderly signatures and
does not harm the target scheme. Furthermore, we have also addressed
the problem in which no scheme could reduce both keys in the key pair,
by applying our proposal to known variants that reduce the public key
size. We obtain gains of up to 85% on the private key size and 71% on
the total key pair size.

We propose some topics to extend this work. Evidently, it is crucial
for the security of our proposal that multiple signatures do not leak
information for the chosen vinegar variables. Thus, we point out that
further security analysis on multi-target and side-channel attacks is
desirable. We also observe that our methods directly affect the signature
generation performance, since the first layer computations are moved
to the key generation step. As such, we suggest that measurements
are made considering the average time for signature generation, in the
case that the private key has to be recomputed due to a new choice of
vinegar variables.
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