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Resumo

Tendo em vista a dificuldade de escolha gerada pela grande diversidade de estabelecimentos
encontrados nas cidades atualmente e a crescente aderência da população a redes sociais
baseadas em localização, realiza-se uma pesquisa aplicada exploratória quali-quantitativa
com enfoque indutivo sobre os frameworks existentes de recomendação e de predição de
pontos de interesse. Foram identificados 5 fatores que influenciam usuários de redes sociais
baseadas em localização a visitarem novos estabelecimentos: geografia, tempo, amizade,
personalidade e escolhas feitas por usuários similares. Baseado nesses frameworks e nas
influências identificadas, desenvolve-se um modelo unificado que será capaz de prever que
estabelecimentos cada usuário visitará com base em parte de sua trajetória individual.
Para tanto, divide-se a trajetória de cada usuário em duas partes, a primeira para análise e
a segunda para validação, de modo que, ao aplicar o modelo desenvolvido à primeira parte
da trajetória, idealmente chega-se na segunda. O modelo é aplicado à base de dados da
rede social Gowalla. Diante disso, verifica-se que dentre os 5 fatores identificados, a escolha
de usuários similares e a amizade obtiveram a melhor acurácia, e a união dos 5 fatores
apresentou resultados melhores que cada fator individualmente, porém, diferentemente dos
outros frameworks estudados, a melhora não foi significativa, o que impõe a constatação
de que o problema precisa ser estudado mais a fundo.

Palavras-chave: Previsão de pontos de interesse. Trajetórias semânticas. Redes sociais
baseadas em localização.





Abstract

Taking into account the difficulty of choice generated by the great diversity of points of
interest currently found in cities and the population increasing adherence to location-based
social networks, a qualitative and quantitative exploratory applied research with inductive
reasoning is performed on existing points of interest prediction and recommendation. 5
factors that influence users from location-based social networks to visit new points of
interest were identified: geography, time, friendship, personal taste and choices made from
similar users. Based on the identified influences and the frameworks, an unified model that
is capable of predict what points of interest each user will visit based on their individual
trajectory is developed. To validate the model, each user trajectory is divided in two parts,
the first for analysis and the second for validation, so that by applying the developed model
to the former, ideally the latter is achieved. Finally, the model is applied to a Gowalla
social network dataset. Facing the results, it is stated that among the five influential factors
identified (geography, time, friendship, personal taste and similarity with other users), the
similarity with other users and the friendship achieved the best prediction accuracy, and
the unified model presented better results than each factor individually, however, unlike
the other studied frameworks, the improvement was negligible, which imposes that the
problem needs further research.

Keywords: POI prediction. Semantic trajectories. Location-based social networks.
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1 Introduction

The evolution of the web 2.0 and the popularization of social networks allowed the
creation of many communities within a virtual environment, and permitted that people
met around the world through interests and friends in common, no matter where in the
world those people live. The social networks are of great utility and provide information
about the social link between users. There are many types of social networks, and one of
them is known as Location Based Social Networks (LBSN). This kind of social network
provides a unique experience to their users, where they can voluntarily check-into a place
they have visited and share their experience within that place with their friends and
strangers, including information about that place like its name, service provided, weather
condition and many other. As social beings that live in community, this information with
semantic richness is capable of influencing the decision on whether visitings a point of
interest (POI) rather than others. Figure 1 shows the user-user friendship and user-POI
check-in activity in a LBSN in the form of a graph, where un is a user and ln is a POI of
the LBSN. A friend link indicates a real life connection between un and um, and a check-in
is a timestamp t connecting un and lm, meaning that user un visited the POI lm at t.

Figure 1 – LBSN in form of a graph [Ye et al. 2011]

This kind of virtual environment generates a large amount of data about an
individual’s location on a daily basis, and this data allows looking at human mobility
and behavior in a more analytic way. The analysis of POIs visited by users is of great
importance when looking for populational behavior patterns. Each individual has different
tastes, personalities and routines, and these characteristics are determinant in the choice
of a place to visit (i.e., a POI).
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1.1 Problematic

Nowadays, with the advance of globalization and technology, the crescent number
of people living in cities and consequently the increase on the amount of options to do
what we like or even to perform the simplest activities on our daily routine has become
more of a hard task than a synonym of freedom. This phenomenon is called the paradox
of choice [Schwartz 2004]. Take the example of buying a pair of jeans, found in his book
SCHWARTZ, B. The paradox of choice: Why more is less? 2004, p. 1 :

"About six years ago I went to the Gap to buy a pair of jeans. I tend to
wear my jeans until theyre falling apart, so it had been quite a while since my
last purchase. A nice young salesperson walked up to me and asked if she could
help.

- I want a pair of jeans 32 - 28, I said. Do you want them slim fit, easy
fit, relaxed fit, baggy, or extra baggy? she replied.

- Do you want them stonewashed, acid-washed, or distressed? Do you want
them button-fly or zipper-fly? Do you want them faded or regular?

I was stunned. A moment or two later I sputtered out something like, I just
want regular jeans. You know, the kind that used to be the only kind. It turned
out she didn’t know, but after consulting one of her older colleagues, she was
able to figure out what regular jeans used to be, and she pointed me in the right
direction.

For some people, the task of buying a pair of jeans is simple and straight: I just
want a pair of jeans. On the counterpart, for others, this amount of options would be
essential to choose a pair of jeans, like the regular Gap customer the salesperson would
be used to sell for. More than that, for some people, the place they went over to buy a
pair of jeans would not matter much as they just wanted a pair of jeans, and for others it
would matter a lot. But how to identify and separate those two categories of individuals?

A pair of jeans is a metaphor that can represent every single task a person may
be interested in pursuing during its daily routine. Despite the fact that every person has
similar needs, they choose to satisfy those needs differently, and some tasks may interest
more to ones and less to others. To be able to differentiate every individual, it is important
to take a look on his/her daily routine, every place they visit, which POIs they tend to
visit and with whom. A POI is a widely known concept that represents a point location
that is useful or interesting for someone, and it is a concept used in many fields of study. In
our case, a POI is a place that a person tend to visit during its daily trajectory, and may
be its home, workplace, a bakery, park, among others. With the modernization of smart
phones and of the remote tracking via satellite technology, there is plenty of space-temporal
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data from diverse objects, like cars, animals and even people, available to be collected
and analyzed. This data allowed a number of studies on trajectories in a very wide field
of application. Data provided by tracking devices are called raw data, and trajectories
extracted from raw data are called raw trajectories [Bogorny et al. 2012]. However, raw
trajectories are limited in the way that they do not provide much semantic information
about the location, as they provide only information about the geometry of the trajectory.
To attain richer knowledge on the analysis of the data, it is necessary to add semantics to
the trajectory, which can be achieved by providing extra information like the name of the
visited place, what kind of place it is, and many other information that may be relevant
to the study.

Figure 2 illustrates 3 examples of trajectories: Trajectory 1 is a raw trajectory,
that contains only points located in time-space. Trajectory 2 is a semantic enriched
trajectory with information of POIs for a tourism application. Trajectory 3 is an example
of semantic trajectory enriched with POIs for a traffic application. Both trajectories 2 and
3 are semantic trajectories constructed from the raw trajectory 1, however they consist of
different POIs. This is because the semantics of the trajectory depends on what is being
analyzed.

Figure 2 – Examples of Brute and semantic trajectories [Bogorny et al. 2012]

The LBSNs provide rich data about their users’ trajectories, and through those
semantic trajectories it is possible to observe many individual and collective behaviors.
Although the concept of semantic trajectories is recent, many studies have been made,
mainly on POI recommendation [Ye et al. 2011,Yuan et al. 2013,Yuan, Cong and Sun
2014,Gao et al. 2015,Zhang and Chow 2015,Zhang, Chow and Zheng 2015,Li et al. 2017]
and location prediction [Cho, Myers and Leskovec 2011,Cheng, Ye and Zhu 2013]. The
first tries to identify places for their users to visit based on the most diverse characteristics
that a place may present, and the second one, based on his or her routine, environment
and other characteristics, tries to correctly identify the next location the user is going to
visit given his or her check-in history. Those characteristics are decisive factors when a user
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chooses a POI to visit or seek for a service, and they are called influences. After studying
the existing frameworks on the area of POI recommendation and location prediction, we
identified five factors that influence human choices:

1. Geographic influence: relates to distance and accessibility;

2. Temporal influence: relates to periodicity;

3. Social influence: relates to friendship and social encounters;

4. Personal influence: relates to personal tastes and goals;

5. Collateral influence: relates to behavior similarity between users;

Each studied framework addresses only a subset of the identified influential factors.
Also, each framework models the considered influential factors differently (e.g. different
frameworks have different formula to calculate the same influence). Having all the things
mentioned above in mind, the objective of this work is introduced in the next section.

1.2 Objective

The general objective is to predict the POIs each user is going to visit based on his
or her check-in history taken from a LBSN record.

1.2.1 Specific Objectives

Considering the presented general objective, the specific objectives are the following:

• Score each unvisited POI using the five human mobility influential factors for every
user with models based on the current state-of-the-art LBSN recommender and
prediction systems;

• For each influence and the combined influence, rank the top-N unvisited POIs the
user is most likely to visit;

• Check the accuracy of each model, and then compare their results.

1.3 Methodology

The methodology used to accomplish the objective described earlier is:

• Study the state-of-the-art on recommendation algorithms to identify which factors
are relevant to successfully recommend venues and to predict the location of LBSN
users;



1.4. Organization 25

• Compare the influential factor models from each recommendation and location
prediction framework with the others of the same category in order to identify the
best approach;

• Divide the dataset into train and test;

• Define a model to score every influential factor for each unvisited POI has on a user
based on the studied frameworks for POI recommendation and location prediction;

• Apply the model for each user’s check-in activity on the train dataset and rank each
unvisited POI;

• Compare the results of the model with the test dataset;

• Expose the conclusions over the analysis of the results.

1.4 Organization

The present work is further divided as follows:

• Chapter 2: Base concepts and brief explanation of the human mobility influential
factors learned from the state-of-the-art recommendation systems;

• Chapter 3: Introduction to the state-of-the-art algorithms and a brief explanation of
how they address the recommendation problem;

• Chapter 4: formal definition of the human mobility influential factors extracted from
the algorithms studied;

• Chapter 5: application of the proposed definitions on a real dataset and analysis of
the results obtained;

• Chapter 6: conclusions and future work.
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2 Basic Concepts and Influences

In section 2.1, 2.2 and 2.3 we define concepts about trajectories, LBSNs and
Recommender systems, respectively. Then, in section 2.4 we discuss deeper the influential
factors on human mobility.

2.1 Trajectories

The understanding of a trajectory is the one defined by [Spaccapietra et al. 2008]:

Definition 1 (Trajectory). A trajectory is the user defined record of the evolution of the
position (perceived as a point) of an object that is moving in space during a given time
interval in order to achieve a given goal, i.e.

trajectory : [tbegin, tend] → space.

Where tbegin is the instant when the trajectory starts, and tend the instant when
trajectory ends.

With the advance of the global navigation satellite systems, it became possible to
record its position at a defined time interval or distance travelled, e.g., every 1 second, or
every 10 meters. This record contains its carrier location and time and can be seen as a
footprint generated by the travelling object. The sequence of this recorded points from an
individual is called moving object trajectory, which allows us to track an individual, as
well as analyzing its trajectory.

Data generated by mobile devices are spatio-temporal data called raw trajectories,
or as defined by [Furtado et al. 2016]:

Definition 2 (raw trajectory). Raw trajectories’ refer to trajectory sample points in their
original format, i.e., sequences of spacetime points 〈((x1, y1), t1), ..., ((xn, yn), tn)〉, where x

and y represent a location in space and t corresponds to the time dimension.

Raw trajectories are nevertheless limited, considering that they only carry infor-
mation about the physical properties of the traveling object, and they do not provide
any extra information to the context of their location that might be interesting in an
application’s point-of-view. However, the simple analysis of raw trajectories on a broader
aspect can provide useful information: the traveling object is not necessarily always moving,
which means a trajectory can be also semantically segmented by defining a temporal
sequence of time sub-intervals where alternatively the object position changes and stays
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fixed. The first is called moves and the latter stops, originally introduced by [Spaccapietra
et al. 2008]. Having that in mind, trajectories can be seen as a sequence of stops separating
two different moves or as a sequence of moves between a stop and the next one. These
stops and moves can be further enriched with any additional information that may be
useful for an application, forming semantic trajectories, or as defined by [Furtado et al.
2016]:

Definition 3 (Semantic trajectory). A semantic trajectory A is a sequence of stops
〈a1, ..., an〉 with each stop in the form of a tuple ((x, y), [t1, t2], type), where (x, y) is the
centroid of all points of the subtrajectory identified as the stop, representing the space
dimension, t1 and t2 are the start and end time of the stop, respectively, corresponding to
the time dimension, and type is the category of the place where the stop was detected,
characterizing the semantics.

More attributes can be added to the stop: the activity of the stop, the goal of
the trajectory, or many others, as long as they provide spatio-temporal information. It is
important to notice that the moves of a user is not provided by most location-based social
networks, so only stops information is going to be relevant for this work.

2.2 Location-Based Social Networks

Social Networks (SN) are networks of interpersonal relationships (e.g., friendship,
family, common interests and shared knowledge) between two or more individuals [Zheng
et al. 2011,Zheng 2012]. LBSN is a type of Online Social Network (OSN), where people can
share not only their relationship to others but also places they have visited and activities
they have performed. According to [Kefalas, Symeonidis and Manolopoulos 2013], a LBSN
has 4 basic entities, which are users, locations, groups and activities, and they also relate
to each other, as shown in Figure 3.

1. On the right side of Figure 3 there are four graphs labeled as Unipartite graphs:

a) Group graph: The Group graph is a group-group unipartite graph, which consists
of the relations among groups (i.e. RecSys, KDD, and LBSN conference).

b) User graph: The User graph is a user-user unipartite graph, which indicates the
social relations among the five users. Each node represents a user connected
with another user.

c) Location graph: The Location graph is a location-location unipartite graph,
which presents relations among locations. Each location is represented as a
node and is connected with another location.
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Figure 3 – [Kefalas, Symeonidis and Manolopoulos 2013] Group, User, Location, Activities
and their correlations on in LBSNs

d) Activity graph: The Activity graph is an activity-activity unipartite graph,
which presents relations between activities. Each node represents an activity,
which users have performed in the past.

2. On the left side of Figure 3, there are three graphs labeled as Bipartite graphs:

a) User-Group Graph: User-group is a bipartite graph that indicates the groups
where users belong to.

b) User-Location Graph: User-location is also a bipartite graph presenting locations
that users have visited. There are two types of nodes. One type of node represents
the user, whereas the second represents the location.

c) Location-Activity Graph: Location-activity graph is a bipartite graph that
consists of two types of nodes, i.e. the activity that is performed in a given
location.

3. On the bottom of Figure 3, there are two tripartite graphs labeled as Tripartite
graphs, which are the following:

a) Group-User-Location Graph: The group-user-location graph is a tripartite graph,
which presents information about what locations have been visited by users
who belong in specific groups.
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b) User-Location-Activity Graph: The user-location-activity graph is also a tri-
partite graph that indicates what activities have been performed in a specific
location by the users.

4. On the top of Figure 3, there is one quadripartite graph labeled as Quadripartite
graph, which is the following:

a) Group-User-Location-Activity Graph: The group-user-location-activity graph
is a quadripartite graph that includes all four dimensions. In this way, all
knowledge about user preferences for activities and groups in POI’s is available.

As it can be seen, the applications of LBSN can be very wide, however, in this study
we are interested in understanding the influential factors a user has when visiting a POI,
so the only relevant graphs are the user graph, the location graph and the user-location
bipartite graph.

2.3 Recommender Systems

2.3.1 Traditional Recommender Systems

The recommender problem is a recurrent issue that has been addressed by many
companies differently since early 1990s, when the recommender system Tapestry was
created and its developers coined the term Collaborative filtering. Facebook, for example,
recommended ads to users according to their profile and to the ones their friends liked.

In 2005, [Adomavicius and Tuzhilin 2005] defined the recommendation problem as
it follows. U is the collection of all users and S is the collection of all items (e.g. stores, news,
locations). let v: U ×S →R be an utility function that measures the effect of recommending
an item s to a user u, where R can be a sorted collection. For each user u ∈ U, item s’ ∈
S is chosen to maximize the user’s utility:

∀u ∈ U, s′u = argmax
s∈S

v(u, s) (2.1)

As pointed out by [?], the traditional recommender systems mine the two-dimensional
relationship between users and items, and recommend items to users through collaborative
filtering (CF), content-based (CB) or hybrid recommendation:

1. Collaborative Filtering Recommendation: Collaborative filtering finds the user
preference through its ratings on different items, next it finds users with the same
preference to the target user, and then infer the score of an item to the target
user according to the similar user ratings on that item. There are two types of
Collaborative Filtering techniques:
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• Item-based CF : Analyses the user’s rating on different items to speculate the
similarity among items, and then recommend items based on this similarity.

• User-based CF : Analyses different users’ ratings on an item to speculate the
similarity among items, and then recommend items based on this similarity.

Although CF’s simplicity and acceptance in the most variable fields, it faces a cold
start problem with both items and users, as new items almost never get rated and
new users rarely rate anything, so there are no recommendations for that items or
users.

2. Content-Based Recommendation: CB recommendation first finds the user pref-
erences through its rating on items, and then recommends items whose contents
match the user preference. It differs from collaborative filtering because the first uses
other user information to determinate the item rating towards the target user, and
the second uses only the target user preference through its historical information.

3. Hybrid Recommendation: Combines both CF and CB to avoid their disadvan-
tages: A recently added item will rarely receive any rating through CF so it may
never be recommended, but can be recommended via CB through the user’s profile.
A user that has such uniqueness that no similar users are found via CF would never
get recommendations, although he or she still can be recommended via his or hers
rating history. A user with little history may be difficult to recommend to via CB,
but some similarity may be found through CF and so on.

2.3.2 LBSN Recommender Systems

LBSN recommender systems are an extension to the traditional recommender
systems, so they also use CF and CB, but the difference is that the items are restricted to
the four elements of a LBSN. It can recommend friends (users that play the role of an item
in collaborative filtering) to users (user unipartite graph), POIs to users (user-location
bipartite graph), activities performed on a specific location to users (user-location-activity
tripartite graph), activities performed on a specific location to users that belong to a
determined group (group-user-location-activity quadripartite graph) and so on. This study
is interested in the user bias towards a location via his or her check-in record. In this
case, there are many other filters that can be applied to increase the quality of the
recommendation that are based on the influential factors that will be further discussed on
the next section.
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2.4 Influential Factors on Human Mobility

In this section we discuss the factors that may influence and individual to visit a
location. The symbols that are used in this section are presented in Table 1. There are
many factors that can be taken into account when searching a place to visit:

Table 1 – Table of Symbols

Symbol Description
U the User set
ui a user ∈ U
L the POI set
li a POI ∈ L
C the check-in set
ci,j check-in from user i →POI j ∈ C

1. Geographic Influence

According to Tobler’s First Law of Geography [?], "Everything is related to everything
else, but near things are more related than distant things". The influence of geography
in human mobility is an old and well known concept, and also very intuitive. It is
much more likely for a person to search for a clothing store nearby his or her house,
workplace or in the way between them than to go to the next city. Although Tobler’s
Law has never been actually proven, it is a widely accepted and philosophical concept,
and this influence is verified in many studies in POI recommendation and location
prediction [Ye et al. 2011,Cho, Myers and Leskovec 2011,Yuan et al. 2013,Cheng,
Ye and Zhu 2013,Yuan, Cong and Sun 2014,Zhang and Chow 2015,Li et al. 2017]
in the form of a power law distribution for distances below 100 km2, as illustrated
on Figure 4. Even before Tobler, [Stouffer 1940] proposed the theory of intervening
opportunities, suggesting that the distance is not the only matter that counts, but
also the density. The probability of a user u visiting a POI p far away from home
decreases proportionally to the number of POIs that would provide the same service
between u and p. If there are many pizza places in 3 block radius from home, it is
very likely that the user would choose one of those places if she or he wanted to go
out and eat a pizza rather than one that is 15 blocks away. Regardless of the theory
adopted, it is undeniable that geography has an influence on choosing a POI.

2. Temporal Influence

Habits and routines are basically activities executed periodically, so it is natural
to think that time also has an influence to the user’s choice over a place to visit.
As stated by [Yuan et al. 2013], "Users’ activities are often influenced by time. For
example, a user is more likely to go to a restaurant rather than a bar for lunch at
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Figure 4 – [Cho, Myers and Leskovec 2011] Probability for a check in to occur as function
of the check-in distance

noon, and is more likely to go to a bar rather than a library at midnight". Depending
on the time of the day, some services are more requested than others. Culturally,
people tend to have lunch around noon, so it is expected that most of the visited
POI around noon would belong to the category Food. Also, people are usually in
their homes at night and at work during the day. People go to the park during the
day, and are very unlikely to go at night because it can be dangerous. As noticed,
there are many time constraints that can be inferred depending on the category of
the POI, suggesting that choosing one has a strong temporal influence, and many
recommender systems are based on that influence.

To verify the periodicity of the human movement behavior, [Cho, Myers and Leskovec
2011] divided the daily check-ins of several users into two states named Home and
Work and calculated the probability from all check-ins to be generated either by the
Home or Work state as a function of the time of the day.

3. Social Influence

Humans are social beings. As a consequence, it is expected that people that are close
to each other tend to visit the same places. It is more likely to a user to visit some
highly recommended place from a friend than from a total stranger. This influence is
verified by [Cho, Myers and Leskovec 2011], and their study shows that it increases
with the geographical distance between two friends. This makes sense specially when
we think that people usually know their neighborhood well, so most nearby places
will be known to them already, but when they visit a distant friend they won’t
know many nearby places and their suggestion would weight more on the decision of
which place to visit. However, their research also showed that only a small fraction
of user check-ins from the used databases were previously checked-in by a friend,
indicating that friendship has low influence on check-in decision. In contrast, [Zhang
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and Chow 2015] affirmed from their research that social influence plays a key role
on the performance for recommending POIs. Despite the doubts on social influence
being a factor that could be taken into account to successfully indicate a place for
one to visit, not all LBSN have explicit friendship links, and some of the LBSN
implement them differently: many consider friendship as directed, i.e. user a can be
friend of user b without user b being friends of user a, and others consider friendship
as reflexive, meaning that if a is a friend of b, then necessarily b is a friend of a.

4. Personal Influence

People have preferences and personalities. Consequently, they perform some activities
more often compared to others. A person that likes shopping would have more check-
ins into shopping-related POIs than a person that does not. Many LBSN divide
their registered POIs into categories, and the category a point of interest belongs
to reflect their usual business activity and nature. It is expected that people would
have biases towards some categories they identify themselves the most. If a user has
a large number of check-ins into some category and there is some popular place into
that category that he has not yet visited, there is a great chance that this place
would be a very good recommendation for him or her.

5. Collateral Influence

Even though every single person is different, some people are more alike than others.
People share tastes, preferences and visit the same kinds of places although they
do not necessarily know each other. The collateral influence addresses this kind of
issue, also called user similarity, employed by many POI recommender systems in the
form of collaborative filtering. Suppose a user that regularly visits three vegetarian
restaurants, let us call it user a, indicating a’s taste on vegetarian food. Then suppose
user b has only visited steakhouses. Clearly users a and b do not frequent the same
kind of restaurant, so user b would not be a good reference to indicate restaurants
to user a and vice versa. Now, suppose user c has visited the same three vegetarian
restaurants and also a fourth vegetarian restaurant r, which he goes frequently. Since
users a and c share the vegetarian food taste, and user c likes r, then there is a
high chance that restaurant r is going to be a good indication for user a. This is
specially uneffective for cold-start users, which are users that just started to use the
recommender system and thus have a few check-in data available.

6. Sentimental Influence

People usually like to share their good and bad experiences when they go somewhere.
Not only LBSNs, but social networks in general and some mobile applications have
largely facilitated the diffusion of user sentiment and experiences towards a location.
Places that provide people a good time tend to attract more and more people and
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may even become popular places, while places that people have bad experiences
tend to repulse other people to come around. Take a dangerous neighborhood for
example. Individuals that have a previous knowledge that some street or alley have
a great incidence of robbery would try to avoid passing by that place. Or the other
way around: people are having a good time on some food event happening on their
neighborhood park. Others seeking for a good time would eventually go there and
have a good time as well. Sentiment influence analysis, or also called user opinion
influence, is however not well developed yet, as it requires human-text interpretation,
and there are not many conclusive studies on this influence on POI recommendation.
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3 State of the art Frameworks on POI

recommendation and location predic-

tion

3.1 Introduction

In this chapter we present a study on several of the existing frameworks on POI
recommendation and location prediction to discover how they address the recommenda-
tion/prediction problem. Table 2 summarizes the year the framework has been published,
the datasets used as base to the frameworks, what influential factors are considered, the
geographic granularity level the data is extracted from (i.e. city, state, country or global),
statistics of the dataset like number of users, number of POIs and number of check-ins,
the restriction applied to the data (pre-processing filters), if the goal is recommendation
or prediction and then the type of evaluation. Some frameworks also consider friendship
links and user tips or other types of data that contain relevant information about POIs
and users such as tweets.

The evaluation of POI recommendation frameworks consist basically in selecting a
part of the data as training set and the other as test set. The training set is used by each
framework to learn the user preferences, returning the top-N locations to be recommended
for every user by the own framework criterion. Then, the test set is used to verify the
precision and recall of the algorithm, as expressed below:

Precision@N =
1

n

n∑
i=1

|Si(N) ∩ Ti|
K

(3.1)

Recall@N =
1

n

n∑
i=1

|Si(N) ∩ Ti|
|Ti|

, (3.2)

where Si(K) is a set of top-K unvisited locations recommended to user i that he
has not visited in the training set, and Ti is the set of locations that are visited by user i
in the testing set. Because of the check-in matrix data sparsity, both precision and recall
are very low in POI recommendation and the frameworks are interested in comparing with
other frameworks and some baseline methods. Also, many of the authors are interested in
observing the weight of each influential factor individually on their dataset. In Table 2,
the precision and recall values are related to the dataset that reached the best precision
values. Note that every dataset has different characteristics, so better performance values
from an algorithm does not reflect that it is superior to others.
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For location prediction, there are many evaluation metrics that can be taken into
account. [Cho, Myers and Leskovec 2011] use 3 kinds of metrics, which are: (1) The average
log-likelihood of the check-ins on the unseen test set; (2) predictive accuracy, meaning that
the exact location is predicted; (3) Expected distance error, which is a minimum distance
of the exact location and the predicted. [Cheng, Ye and Zhu 2013] use category prediction
accuracy and location prediction accuracy, which recognize a prediction as correct as long
as the true location is at least 400 meters distant to the the top-k (k = 1, 2, 3) returned
locations.

In the next sections of this chapter, a brief explanation to each framework is pre-
sented considering three categories: (1) Framework, (2) Data analysis and (3) Conclusions
made by the authors of each framework.
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3.2 USG

3.2.1 Framework

The USG framework is one of the earliest frameworks that makes POI recommen-
dation and it is based on three kinds of influence:

1. User similarity (U), or collateral influence as called by this study, which is handled
simply via user-based collaborative filtering, where the similarity is calculated via
cosine similarity; 1

2. Social influence (S), also handled via collaborative filtering, where friends that
have closer social ties and similar check-in behavior have greater influence on the
user;

3. Geographical influence (G), which the authors claim to be the first study to
consider this kind of influence. They use a Naive-Bayes probabilistic model considering
that the check-in over distance probability fits a power-law distribution 2, then they
calculate the probability of an unvisited POI lj belong to the user u visited spot set
Lu.

The fusion of those three influences result in their final framework Si,j that calculates the
probability score that user i has on POI j, which can be expressed as:

Si,j = (1− α − β)Si,j(U) + αSi,j(S) + βSi,j(G), (3.3)

where Si,j(U), Si,j(S) and Si,j(G) are collateral, social and geographical influence scores of
user i over POI j, and α and β are weighting parameters.

3.2.2 Data analysis

The authors [Ye et al. 2011] apply their framework on a Foursquare and a Whrll
dataset separately, both with check-ins gathered over a month. The Foursquare dataset has
153,577 users, 96,229 POIs and a check-in matrix with density of 4.24× 10−5. The Whrll
dataset has 5,892 users, 53,432 POIs and a check-in matrix with density of 2.72× 10−4,
as can be seen in Table 2. The geographic granularity level and from where in the world
the check-in activity data was extracted from was not revealed. Users with less than 5
check-ins were discarded from their data. The precision and recall measures are then
1 Cosine similarity is a measure of similarity between two non-zero vectors of an inner product space

that measures the cosine of the angle between them. If two vectors are equal, then the angle between
them is zero, so the value of the cosine is 1.

2 Probabilistic distribution function that decays very quickly for lower values of x and very slowly for
higher values.
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compared with other algorithms, such as Random Walk 3, user-based collaborative filtering
and friend-based collaborative filtering.

3.2.3 Conclusions

The authors have concluded with their experiment that, through the way they
defined the problem, geographical influence shows a more significant impact on the
effectiveness of POI recommendations than social influence. Also, Random Walk have shown
very poor evaluation results, indicating that it is not suitable for POI recommendation in
LBSNs. Finally, because a lot of POIs did not have enough visitors, item-based CF was
not an effective approach. This last conclusion agrees with our previous comment that CF
tends to never recommend new locations because not many users have actually visited the
POI.

3.3 PSMM

3.3.1 Framework

PSMM, or Periodic & Social Mobility Model is a framework proposed by [Cho,
Myers and Leskovec 2011] and is used to perform location prediction based on two states
"home" and "work", that depend on the time of the day (i.e. people are at work during
the day and at home in the night) and has three components:

1. a Geographical influence model of spatial locations that a user regularly visits
when he or she is in the home/work state using a 2-dimensional time-independent
Gaussian distribution based on the user check-in distribution during the day (work)
and night (home);

2. a Temporal influence model of temporal movement between these locations, that
is modeled as a probability distribution over the home/work state of the user with a
truncated Gaussian distribution;

3. a Social influence model of movement that is influenced by the ties of the social
network (i.e., meeting friends). The probability that user u will perform a social
check-in at a certain place xi is determined by two factors: how long since a friend
w has checked in, and the distance of w’s check-in to xi, both factors decaying as a
power-law over time and distance, respectively.

As stated by the authors [Cho, Myers and Leskovec 2011], PSMM is a two-state mixture
of Gaussians with a time-dependent state prior. The temporal part of the model governs
3 Succession of random steps on some mathematical space, like a user-POI graph.
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the transition between home/work states and then depending on the state geographic
location of the check-in is generated the time-varying mixture of two time-invariant
2-dimensional Gaussian distributions. The parameters of the model are fitted using
Expectation-Maximization. Every check-in is classified as "home", "work" or "outlier",
and then the outliers may be further classified into "social" or remain "outlier".

3.3.2 Data analysis

The authors use three datasets for this study: Gowalla, Brightkite and Cell-phone
call data from europe. The check-in data is collected between Feb. 2009 and Oct. 2010
for Gowalla and Apr. 2008 to Oct. 2010 for Brightkite. The total number of check-ins for
Gowalla is 6.4 million and 4.5 million for Brightkite, rendering the largest check-in data,
as can be seen in Table 2. Gowalla and Brightkite also contain an explicit social network.
In Gowalla the friendships are undirected and in Brightkite they are directed, but only
bi-directional edges are considered for simplicity. There are 196,591 nodes, 950,327 edges
in Gowalla and 58,228 nodes, 214,078 edges in Brightkite. The cell phone dataset consists
of nearly two million users and 450 million phone calls over the course of 455 days yielding
nearly 900 million check-ins with a spatial accuracy of about 3km. Social network ties are
created between pairs of people that have both called each other at least five times (10
calls total), yielding a network on 2 million nodes and 4.5 million edges. Only users that
had more than 10 check-ins per day were considered, meaning that only 6,233 Brightkite,
10,997 Gowalla, and 853,812 Cellphone users were evaluated.

3.3.3 Conclusions

Even though location-based social networking services are very different from cell
phone tower location data, [Cho, Myers and Leskovec 2011] have found many common
patterns of human mobility across their datasets, such as the power-law distribution model
for geographical movement under 100Km, where there is a change of slope in the probability
of a check-in to occur in function of the distance from home (Figure 4), suggesting that the
short range and periodic movement is not impacted by social influence while long-distance
travel is more influenced by the social network ties.

3.4 UTE-SE

3.4.1 Framework

The UTE-SE framework exploits a mix of 3 influences:

1. Temporal Influence: Instead of using a user-POI check-in matrix, the authors
adopt a user-time-POI cube (or UTP cube) to represent a user u checking into a POI
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l at time slot t. The similarity between two users is high if they always check-into
the same location at the same time, but if they check-in the same place in different
times the similarity between the two time slots is considered.

2. Collateral Influence: user similarity is treated via simple collaborative filtering
through extended cosine similarity enhanced by temporal behavior, meaning that the
cosine similarity is calculated over the UTP cube, instead of the user-POI check-in
matrix.;

3. Geographical Influence: The willingness of a user moving from one location to
another is modeled through a power-law distribution in the distance function between
the two locations, and then given a user u and his/her historical POIs Lu , they
calculate P (l|Lu) as the ranking score for each candidate POI l, and then recommend
the top ranked POIs to the user based on the Bayesian probability model, which is
further enhanced by the POI popularity at the given time.

The unified framework that gives the probability score cu,t,l for a user u checking into a
POI l at time t is then represented by:

cu,t,l = α× c
(t)
u,t,l + (1− α)× c

(s)
u,t,l, (3.4)

where c
(t)
u,t,l and c

(s)
u,t,l are the probability score for temporal and geographical

influence, respectively, and α is a tuning parameter.

3.4.2 Data analysis

The authors [Yuan et al. 2013] used two datasets in their experiment: (1) Foursquare,
with Singapore check-in data from Aug. 2010 to Jul. 2011 and (2) Gowalla, with data
from California and Nevada between Feb. 2009 and Oct. 2010. All users with less than 5
check-ins and all POIs with less than 5 users that checked-in were removed from the data,
resulting in 194,108 check-ins made by 2,321 users at 5,596 POIs and a check-in matrix
density of 6.35 ×10-3 for the Foursquare dataset and 456,988 check-ins made by 10,162
users at 24,250 POIs and a check-in matrix density of 9.85 ×10-4 for the Gowalla dataset.
Note that, as can be verified in Table 2, UTE-SE and GTAG use the same datasets for
their experiment.

3.4.3 Conclusions

This study has verified that check-in behavior is influenced by the day of the
week and maybe the month of a year. Moreover, it was verified that POI popularity
varies as function of the time of the day. Through the evaluation of other algorithms
against UTE-SE, [Yuan et al. 2013] concluded that social friend links contribute little for
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the accuracy of POI recommendations. This work also verified that Random-walk based
method and item-based CF have low performance compared to user-based CF for POI
recommendations.

3.5 MHMM

3.5.1 Framework

The MHMM stands for Mixed Hidden Markovian Model4, where the authors [Cheng,
Ye and Zhu 2013] divide each user check-in data into a semantic trajectory of stops, where
each stop is in the form of 〈uid, time, latitude, longitude, POI, category〉, where uid is the
id of the check-in tuple, time is the timestamp of the check-in, latitude and longitude are
the geographic coordinates of the POI and category is the category that the POI belongs to,
one the nine top-level categories from Gowalla: Community, Entertainment, Food, Night
life, Outdoors, Shopping, Travel, Events, and None. Then, the whole city of New York is
divided into 1km x 1km squares, where they mark the most dominant category, which will
be useful to calculate the geographic influence. Their goal is to make location prediction:
given a test semantic trajectory T = c1c2...cn , they want to predict the location of the
next check-in record cn+1. The problem is decomposed into two sub-problems: predicting
the category of the user activity at a determined time, and then predict the location of the
user activity given the predicted category. This framework is based on three influences:

1. Personal Influence: To predict the category of the user, they consider the user
semantic trajectory as a sequence of check-ins into one of the nine categories. Then,
they map the categories into a set of M hidden states via Hidden Markovian Model,
where the ideal value of M is also calculated by their framework. For each semantic
trajectory, the model calculates the most probable next underlying state of the user,
then the probability of the user next check-in being at a category c given the current
state.

2. Geographic influence and Temporal Influence: The authors then mix the
Hidden markovian model (MHMM) with temporal and spatial covariates, making the
underlying state also depend from the time of the day, the day of the week, and from
the spatial information. The latter is accomplished by collecting all check-in records
each 1km x 1km square and compute a probability distribution of the check-in
categories.

4 Statistical model in which the system being modeled is assumed to be a sequence of possible events
with hidden states, where the probability of the next event depends only on the state attained in the
previous event.
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3.5.2 Data analysis

The authors have inspected 13 million check-in records of over 230,000 users from
Gowalla for 12 months, from September 2009 to August 2010. The average check-in times
of a user during the 12-month period is 58, and users with less than the average are not
considered. After the data selection of 23,040 users with a total of 6,634,176 check-in
records at 817,683 POIs remain, amount that is approximately half of the original dataset.
There are 9 categories of POIs in Gowalla: Community, Entertainment, Food, Night life,
Outdoors, Shopping, Travel and Events. Every user is treated by a daily check-in sequence,
resulting in a total of 1,054,689 sequences. It holds the second largest check-in records, as
can be seen in Table 2, behind only PSMM, which was compared for performance by the
authors of MHMM.

3.5.3 Conclusions

The authors [Cheng, Ye and Zhu 2013] verified that individuals have a bias towards
specific categories according to the time of the day, and that filtering possible locations
taking into account that bias has great impact on location prediction. This means that
personal influence overlaps temporal influence. They had also found out that many 1km
x 1km squares have a dominant category, which is a category that represents more than
50% of the POIs from that square.

3.6 GTAG

3.6.1 Framework

Geographical-Temporal Influences Aware Graph (GTAG) is a graph-based approach
introduced by [Yuan et al. 2013] to the POI recommendation problem. It has three types
of nodes (user node, POI node, and session node) and two types of links (check-in link and
POI link). Each user is represented by a user node that connects to a set of session nodes
of the user, which represents a time slot (e.g., an hour in a day). A session node of a user is
connected to a POI node if the user of the session node visits the POI in the corresponding
time slot, like represented on Figure 5, ln represents a POI node, sa,b represents a session
node, where a is the index of the time slot and b is the index of the session node among
others with the same time slot, and um represents a user node. A pair of edges (between
user node and session node, and between session node and POI node, respectively) form a
check-in link, which represents a check-in record of the user. Two POI nodes are connected
through a POI link if they are located geographically near each other, representing the
Geographical Influence. The authors consider that (1) Users interests vary with time,
and a user may visit different POIs at different time. The temporal interests of a user in
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Figure 5 – [Yuan, Cong and Sun 2014] Examples of valid propagation paths of lengths 3,
4, and 6, from a user node u to a location node. The numbered nodes in black
color indicate the propagation steps in each path.

a time is reflected as the POIs he or she visited in that time, so each day is divided in
24 time slots; (2) The check-in of a user in the time closer to the target time are more
relevant, and thus more important for recommendation, therefore more recent edges, i.e.
have occurred later, have larger weights and (3) If two users have similar behavior over a
time, they tend to visit the same POIs at that time, so there are edges from POIs to session
nodes, enabling the exploitation of other users temporal interests for recommendation,
exposing the Temporal and Collateral Influence. The basic idea of the framework
is to use Breadth-first 5 preference propagation, which consists in injecting the initial
preference on the target user node u, and then propagate the preference to candidates
POI nodes through various paths over the graph. The resulting paths are selected by these
3 restrictions, that determines that a valid path must be of length 3, 4 or 6, as shown in
Figure 5:

1. There is no repeated node in a path, so there are no loops.

2. The path can contain only one visited POI node and session node of the target user,
which avoid long paths.

3. The path terminates when an unvisited POI node is met. Without this constraint,
the preference would be propagated from an unvisited POI to another unvisited POI,
which will amplify the uncertainty in recommendation.

The POIs with N greatest weight sum along the path among all POI paths are
accounted for recommendation.

3.6.2 Data analysis

The two datasets contain check-in records from Foursquare and Gowalla, respec-
tively. As it can be seen in Table 2, the UTE-SE framework uses the exact same two
5 Like breadth-first search, in opposition of depth-first search.
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Content Information Facets of check-in actions
POI properties What is this POI about?
User Interests Am I interested?
Sentiment Indications How good is this POI?

Table 3 – [Gao et al. 2015] Check-in Actions with respect to Content Information

datasets with the same restriction. The Foursquare dataset contains 342,850 check-ins
made in Singapore between Aug. 2010 and Jul. 2011. The Gowalla dataset contains 736,148
Gowalla check-ins made within California and Nevada between Feb. 2009 and Oct. 2010.
The users who checked in less than 5 POIs and the POIs which have less than 5 users
checked in were removed. After preprocessing, the Foursquare dataset contains 194,108
check-ins made by 2,321 users at 5,596 POIs, and the Gowalla dataset contains 456,988
check-ins made by 10,162 users at 24,250 POIs.

3.6.3 Conclusions

The authors have concluded that temporal influence should be taken into account
by POI recommendation algorithms, since there was a significant better performance from
algorithms that explore temporal influence from the ones that do not. Indeed, it was
verified that increasing the time slot length would increase the precision at the cost of
recall.

3.7 CAPRF

3.7.1 Framework

CAPRF stands for content-aware point of interest recommendation framework,
where the authors [Gao et al. 2015] retrieve content information (Table 3) from user tips
related to check-ins from twitter and perform low-rank matrix factorization 6 method for
POI recommendation in order to exploit both Sentimental influence and Personal
influence. The basic POI recommendation model approximates user uis latent interests
in an unvisited vj by solving the following optimization problem:

min
ui,H,Vj≥0

J =
1

2
||Ŵ � (C − UHV T )||2F +

λ1

2
||A− UG||2F (3.5)

+
λ2

2
||B − V (G−D)||2F + δ||D||1

+
α

2
(||U ||2F + ||H||2F + ||V ||2F + ||G||2F ),

where Ŵ = W = η ∗ S is a non-negative sentiment-enhanced function, W is a Weighting
matrix to the user sentiments, S are the sentiment indications, � is the symmetric tensor
6 A technique used to compress a sparse matrix into smaller data
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product operator, C is a check-in matrix, U is the user interest matrix, H is a data-
dependent matrix for model flexibility, V is the POI latent properties matrix, A is the
user interest content and B is the POI-property content, both extracted from the tweets,
G and Ĝ are overlapping word latent topics whose relationship G − Ĝ = D, where the
former is in user context related to user-interest content, and the latter is in POI context
related to POI-property content, ||θ||p is the p-norm of θ and η, λ1, λ2, α and δ are control
weights. The parameters from the function are estimated via gradient descent.

3.7.2 Data analysis

The check-in data from this work is gathered from Foursquare distributed over
California from May 2008 and Sep. 2013, totalizing 4,287 users, 134,556 check-ins and
5,878 POIs. Only users with at least 2 check-ins in 2 distinct POIs were considered. On top
of that, 19,741 tips and 56,718 comments were extracted from the corresponding tweets
over those check-ins. The first framework to use data from a non location-based social
network. Also the first to perform sentiment analysis, as can be verified in table 2.

3.7.3 Conclusions

The authors had verified that sentimental influence provides an increase of per-
formance against the algorithms that do not take it into account. Furthermore, through
comparison of other frameworks, it seems that personal influence have a greater impact
than sentiment influence.

3.8 GeoSoCa

3.8.1 Framework

GeoSoCa stands for geographic, social and categorical correlations, and is based
solely on the 3 influences:

1. Geographical Influence: The distribution form from the check-in POIs of a user
is learned based on a kernel density estimation, which include 3 steps: (1) pilot
estimation based on a kernel density estimation with a fixed bandwidth, weighting
every check-in in relation to the frequency the user has visited it over all of his or
her check-in record (2) local bandwidth determination from the pilot estimation and
(3) adaptive kernel estimation for geographical relevance score.

2. Social Influence: The social influence relevance scoring process also consists of 3
steps: (1) social aggregation which is simply the user rating over a location based
on his friends rating over that same location (2) distribution estimation of social
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frequency or rating, modeling social check-in frequency as a power-law distribution
(verified through their data) and (3) social relevance score computation, which ranks
the check-in frequency on a POI over all check-in frequency.

3. Personal Influence: Another 3 steps incorporate the personal influence, or user
bias towards a category: (1) weighting popularity by categorical bias, which extracts
the categories the user is more inclined to visit as an arithmetic mean (2) distribution
estimation of categorical popularity, approaching the categorical popularity to a
power-law distribution (verified through their data) and (3) categorical relevance
score computation, similar to the social relevance score computation. Finally, all
influences are merged into a unified preference score s(u, l) based on the product
rule:

s(u, l) = fGeo(l|u) · FSo(xu,l) · FCa(yu,l), (3.6)

where fGeo(l|u) is the adaptive kernel estimation f Geo (l|u) of the check-in dis-
tribution, FSo(xu,l) is the social relevance score computation and FCa(yu,l) is the
categorical relevance score computation of user u on an unvisited POI l.

3.8.2 Data analysis

This study made by [Zhang and Chow 2015] is based on a Foursquare dataset
with 4,163 users with 32,512 social links, 121,142 POIs belonging to 35 categories and
483,813 check-ins over the world but focusing in two cities, which were not specified. A
Yelp dataset with 70,817 users with 303,032 friend links, 15,579 POIs belonging to 591
categories and 335,022 check-ins over the state of Arizona, USA. This framework has also
the best precision value compared to the other analyzed frameworks (Table 2).

3.8.3 Conclusions

In this work, [Zhang and Chow 2015] observed that the social information had the
best performance among the three influences on the Foursquare dataset, contradicting
the thought that social influence was not significant to POI prediction, as concluded
by [Cho, Myers and Leskovec 2011] (for small distances) and [Yuan et al. 2013]. However,
it performed worse than the other two influences on the Yelp dataset.

3.9 ORec

3.9.1 Framework

ORec, or opinion-based point-of-interest recommendation framework, proposed
by [Zhang and Chow 2015] is a framework to extract the polarity from the user tips by
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Figure 6 – [Zhang, Chow and Zheng 2015] ORec overview

extracting opinion phrases from tips and determining the sentiment orientation (positive
or negative) of an opinion word depending on the associated aspect (i.e. atmosphere, taste,
quality, price and their synonyms), and then process the data for POI recommendation.
ORec explores 3 influential factors and is divided in two major parts, illustrated on Figure
6:

• Sentimental Influence: Handled in the polarity detection part, that generates the
polarities of tips for the POI recommendations part. This part has three steps:

1. Extracting pairs of aspects and opinions from tips;

2. Grouping aspects into clusters and aggregating opinions of a tip into a sentiment
vector in the cluster space;

3. Training a classification model to predict the polarity of new tips on the polarity
labeled tips.

• Geographical and Social Influences: The POI recommendations part exploits
the tip polarity with social links and geographical information to estimate the score
of a user to check into an unvisited POI in order to recommend POIs for the user
and also has three steps:

1. using collaborative filtering techniques to combine tip polarities with social
links to estimate the social rating of users to new POIs;

2. modeling geographical influence by integrating sentimental influence and geo-
graphical information of POIs to predict the probability of users visiting new
POIs;

3. fusing the social influence and geographical influence into a unified score for
POI recommendations.

3.9.2 Data analysis

[Zhang, Chow and Zheng 2015] use two datasets from two different cities in his
work:
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1. Los Angeles, which contain 30,208 users, 142,798 POIs, 244,861 tips, 349,985 friend
links and a check-in matrix density of 5.68 ×10-5

2. New York City, which contains 47,240 users, 203,765 POIs, 388,594 tips, 810,672
friend links and a check-in matrix density of 4.04 ×10-5.

This data was extracted from both Foursquare and Yelp, and the latter also has 113,993
tips labeled by ratings for 15,585 POIs from various categories including Food, Nightlife,
etc. The authors use the tips extracted from Yelp on the Foursquare dataset.

3.9.3 Conclusions

The greatest contribution [Zhang, Chow and Zheng 2015] have made with ORec is
to successfully fuse sentimental influence with personal and geographical influence. Their
method to extract the polarity by linking sentiment orientation to aspects from user tips
greatly improves the enhancement of POI-property and user interest information.

3.10 IEMF

3.10.1 Framework

IEMF, or Intrinsic and Extrinsic model framework, created by [Li et al. 2017],
proposes to resume the recommendation problem into a Matrix-Factorization collaborative
filtering of two factors:

1. Intrinsic: Which is, in other words, personal influence;

2. Extrinsic: The role that the environment plays on the user interest to visit a
location, meaning geographical influence.

The framework first identify user activity areas, which cluster user local check-in history
over a minimum distance. The user is considered to have unrestricted access to every POI
within the user area, so any check-in within would be motivated by intrinsic interest. The
chance for the user to visit a POIs outside the user activity area is modeled by extrinsic
interest. To deal with data sparsity, the authors propose to deal with unobserved feedback
(i.e. user never checked in into that POI) as a mix of positive and negative values and then
learn optimal values from missing entries. Integrating all the previous steps, the authors
reduce the problem to a optimization function that is solved by a stochastic gradient
descent approach.
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3.10.2 Data analysis

The data gathered by [Li et al. 2017] are from both Gowalla and Foursquare dataset,
from Jan. 2009 to Aug. 2010 and from Dec. 2009 to Jun. 2013, respectively. The former
has 52,216 users with 2,577,336 check-ins on 98,351 POIs, and the latter has 2,551 users
with 124,993 check-ins on 13,474 POIs.

3.10.3 Conclusions

Recent works focused on squared error based loss were approaching the data-
sparseness problem by treating the unobserved feedbacks as negative. [Li et al. 2017] had
success when introduced the adaptive learning of the missing feedback. Furthermore, it
was verified through comparing with traditional recommender systems that the distinction
from this systems and the LBSN recommender system is necessary.
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4 Proposed Model

In this chapter we model each influence based on the frameworks explained on
chapter 3, and then a unified model that is able to rank the influence factors on each user.
The goal of the model is to make POI prediction to the users by analyzing the training
dataset, and then comparing the predicted POIs to the test dataset.

4.1 Geographic Influence

Since LBSNs work in a way that users have to go to a POI to perform a check-in,
geography plays a very important role when a user is interested to visit a POI. POIs that
are closer to the user daily routine are more likely to be visited than others that are far
away. The previously discussed frameworks address the geographic influence differently:
USG as a Naive-Bayes probability function, PSMM as a Gaussian distribution, and so
on. [Cho, Myers and Leskovec 2011] also stated that the probability of a user to check-into
a POI is inversely proportional to the square of the distance, and we observe that this
is similar to how gravity works. According to Newton’s law of universal gravitation, the
gravitational force g between two objects is:

g =
Gm1m2

r2
, (4.1)

where G is the gravitational constant, m1 and m2 are the mass of the objects 1
and 2, respectively, and r is the distance between the center of mass of m1 and m2. This
equation shows that the gravitational force between two objects decay with the square
distance and are proportional to each of the objects mass. Similarly, the probability of a
user visit an unvisited POI given a visited POI is proportional to the check-in count of
the two POIs (the number of check-ins to the visited POI represents the probability that
at any time the user is at that POI, and the number of check-ins to the unvisited POI
represents the attractiveness the POI has among the other nearby unvisited POIs) and
inversely proportional to the square of the distance between the two POI.Assuming that
check-in count plays a similar role to the mass of an object in space, we propose that the
geographic influence generated by an unvisited POI can be approached to the sum of the
force exerted by each of the user visited POIs to the user unvisited POI, or more formally,
the geographic score Sg(u, l) of an unvisited POI l has on the user u is:
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Sg(u, l) =
∑
j∈Lu

αcj · cl
d2

, (4.2)

where Lu is the set of the POIs visited by user u, cj is the number of check-ins user
u has on POI j and cl is the number of check-ins the unvisited POI l have from all users.
To simplify the calculation, α is going to be 1, because it’s a multiplicative constant that
would be applied to every score equally and consequently can be neglected.

4.2 Temporal Influence

Time has also a great influence when it comes to choose a location to visit. People
have strong temporal behaviour. There is time to eat, time to work, basically time for
everything, and since POIs are managed by people, it is natural that they also have to
follow a timely routine. Restaurants open at Lunch and Diner, Night clubs only open at
night, Shopping have greater activity when people are not working and so on. People have
a relatively fixed daily routine and perform similar tasks at the same time of the day, as
stated by [Yuan et al. 2013]. More than that, as verified by [Cho, Myers and Leskovec
2011], people usually commit to activities on a weekly basis. At working days people do
work-related activities, like having lunch at a restaurant because they do not have time to
cook, at weekends people tend to spend time with their family or friends, every Wednesday
night a person may go to the gym and many others. Based on the fact that both people
and POIs have a temporal behavior, it is natural to assume that people will have a greater
chance to visit POIs that have a schedule that matches their own. For temporal influence,
it is clear that people tend to have two types of temporal behaviour: daily and weekly.

To model the daily temporal behavior, the model proposed by us divides a day
into M time slots, and every time slot is mapped into the respective check-in percentage
that occurred in that time slot, for every user and POI. Then, the difference between the
POI l and the user u temporal behavior can be calculated as:

Sd(u, l) =
M∑

td=0

|cdl (td)− cdu(td)|, (4.3)

where cdl (td) is the check-in percentage of the total number of check-ins for the POI
l that occurred in the time slot of a day td, cdu(t) is the check-in percentage of the total
check-ins of user u in the same time slot. To simplify, in this study the M is arbitrarily set
to 24 to represent the 24 hours in a day.

The weekly temporal behavior is calculated similarly to the daily temporal behavior,
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except that the time slot is the day of the week:

Sw(u, l) =
N∑

tw=0

|cwl (tw)− cwu (t+ w)|, (4.4)

where tw = 0 is Sunday, tw = 1 is Monday, and so on until N = 6, which is Saturday,
cwl (tw) is the check-in percentage of the total number of check-ins on POI l that occurred
in the day of the week tw and cwu (tw) is the check-in percentage of the total number of
check-ins of user u in the same day.

So the user temporal influence score St(u, l) over a POI is defined as:

St(u, l) = β · (1− Sd(u, l))
2 + (1− β) · (1− Sw(u, l))

2 (4.5)

Where β is a tuning parameter. Note that each difference is squared, so larger
discrepancies are scored worse.

4.3 Social Influence

Since humans are social beings, a person who had a great experience on a POI will
certainly share it with his or her friends, influencing them to visit that POI eventually. The
same thing happens with negative experiences. Certainly, friends are a strong influence to
a person, and they tend to be a good source for recommendation. People tend to visit a
place highly rated by a friend, usually the ones that are closer or have a greater influence
on them. People also like to go to a place with their friends to have a good time together.
Since the database holds no record of user ratings, the user rating on a POI is going to be
represented by user check-in frequency on that same POI. [Zhang, Chow and Zheng 2015]
noted that some recommender systems assume that the check-in count is equivalent to the
user rating on that POI, however it does not reflect how much the user enjoyed the POI:

"These methods assume that the check-in frequencies of users to POIs directly
reflects the preference levels, which may not be true in reality. For example, when a user
checks in a POI only once, the user may like the POI very much or conversely."

In the same year, on another article, [Zhang and Chow 2015] analyzed the social
check-in frequency on a Foursquare dataset and the rating distribution of a user into a
POI on a Yelp dataset to calculate the social aggregation of a POI l on a user u, defined
below, and they have found that both social check-in frequency and rating fits a power-law
distribution, indicating that there is at least a distribution correlation between them.
The social aggregation of a POI l and a user u proposed by [Zhang and Chow 2015] is
calculated as:
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xu,l =
∑
u′∈U

Su,u′ ·Ru′,l, (4.6)

where Su,u′ is 1 if there is a social link between u and u′ or 0 if not, Ru′,l is the
check-in count (for their Foursquare dataset) or rating (for their Yelp dataset) of u′ on l.
The authors go further by exploiting the power-law distribution and calculate the social
relevance score taking into account the relative position of the social aggregation score
among all users. This work simplifies the Social influence score Ss(u, l) by normalizing
the social aggregation score to the friend check-in count, and then weighting it to the
similarity between the two friends:

Ss(u, l) =
∑
u′∈F

Ru′,l · wu,u′

cu′
, (4.7)

where F is the set of u’s friends, cu′ is the total number of check-ins of u′, and wu,u′

is the similarity between user u and u′. The similarity between the two friends is going
to be used instead of the user proximity, since there is no way of calculating the latter.
The similarity between the two friends can be calculated as the cosine similarity between
them:

wu,u′ =

∑
l∈L cu,lcu′,l√∑

l∈L c
2
u,l

√∑
l∈L c

2
u′,l

(4.8)

When u = u′, then both friends have the exact same check-in amount on the same
POIs, and wu,u′ is at it’s maximum value 1. When both u and u′ have not visited any POI
in common, then wu,u′ is zero.

4.4 Personal influence

As explained in the previous sections, the personal influence considers the user’s
taste and personal choice when choosing a POI to visit. It reflects the user preferences on
a specific category of POI that provides a certain type of service, like a user that visits
several restaurants that belongs to the Vegetarian Food category means that the user likes
vegetarian food, and consequently is more inclined to visit other vegetarian restaurants as
well. [Zhang and Chow 2015] use the bias Bu,c of a user u towards a category c, which is
roughly the check-in count of user u into category c, and the popularity Pc,l of the POI l
among other POIs of category c, which is the percentage of check-ins from category c that
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were performed into l. Then, the categorical (personal) popularity yu,l of an unvisited POI
for a user proposed is given by:

yu,l =
∑
c∈C

Bu,c · Pc,l (4.9)

Note that a POI can belong to more than one category, i.e. a vegetarian restaurant
belongs to the category Vegetarian Food, which itself is a subset of the category Food,
meaning that the POI belongs to both categories, consequently Bu,c = 0 if the POI does
not belong to any subset of category c, and Bu,c > 0 if the POI belongs to a subset
of c. The same idea is used for the POI categorical popularity Pc,l. That is why the
categorical popularity is a sum from the product of the categorical bias and the POI
categorical popularity. [Zhang and Chow 2015] go further by calculating the distribution
of the categorical popularity learned from all users, similarly to the social influence score.
To simplify, the personal influence score proposed by us will be calculated by normalizing
the categorical bias with all user’s average bias Bc to that category:

Sp(u, l) =
∑
c∈C

Bu,c · Pc,l

Bc

, (4.10)

where Bc =
∑

u∈U Bu,c

|U | .

4.5 Collateral Influence

Collateral influence is, in simple words, the similarity between two users considering
the POIs both have visited. The more POIs visited they have in common, the greater is the
similarity between them, and the more similar two users are, the greater the probability that
a POI that was visited by user u and unvisited by the user u′ to be a good recommendation
for u′. The model proposed is no different than the classic user-based collaborative filtering
technique, which can be calculated as:

Sc(u, l) =

∑
u′∈U wu,u′ · cu,l∑

u′∈U wu,u′
, (4.11)

where wu,u′ is the similarity between the users u and u′, cu,l is the check-in count of
user u on POI l and U is the set of all users from the dataset. wu,u′ can be any similarity
equation, but for this study the cosine similarity is considered due to its simplicity, as
presented in equation (4.8).
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4.6 Unified Influences

Each influence score formula previously introduced allows us to rank all POIs
for every user, but only by one influence at a time. To calculate the combined score, all
influences must be taken into account. [Zhang and Chow 2015] for example multiply each
of the influences to generate the final score. The approach selected was based on [Ye et al.
2011], [Yuan, Cong and Sun 2014] and many others, where they calculate the combined
score by summing all of them, each multiplied by a factor called tuning parameters.
They vary the tuning parameters to discover approximately how much each influence was
responsible for the model accuracy. To calculate the unified influence score, first the score
for each influence is going to be normalized within the range of [0, 1] for every user u,
where 0 represents the lowest score a POI p has on u, and 1 the highest. Then, the unified
influence formula S(u, l) is defined as:

S(u, l) = a · Sg(u, l) + b · St(u, l) + c · Ss(u, l) + d · Sp(u, l) + e · Sc(u, l), (4.12)

where a, b, c, d and e are the tuning parameters for geographic, temporal, social,
personal and collateral, respectively, and a+ b+ c+ d+ e = 1.

4.7 Comparison to the State-of-the-art

In this section we give a comparison between our model and the state-of-the-art
frameworks for each influence individually.

1. Geographic Influence:

The authors [Ye et al. 2011] use a power-law model to describe the geographic
model which is used in a naive-Bayes network. The geographic score is sorted by
the probability of an unvisited POI to belong to the user visited POIs set using the
network. [Cho, Myers and Leskovec 2011] use the home and work check-in position
covariance matrices and the means of users check-in locations when she is in home
and work state to feed a 2-dimensional time-independent Gaussian distribution that
returns the user geographic score. [Yuan et al. 2013] fit the model the same way [Ye
et al. 2011], however they use a Bayesian network instead of naive-Bayes. [Cheng,
Ye and Zhu 2013] use a mixed hidden Markovian model with temporal and spatial
covariates followed by a Monte Carlo Bayes estimation to calculate the geographic
score. [Yuan, Cong and Sun 2014] use a graph-based approach mixing geographic,
temporal and collateral influences, where the vertices are users, POIs and session
nodes using a breadth-first preference propagation method. The POI nodes are
connected to nearby POIs, so the user preference can transition from a visited to an
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unvisited POI depending on the edge weight. [Gao et al. 2015] are the only authors
that do not consider the geographic influence. [Zhang and Chow 2015] and [Zhang,
Chow and Zheng 2015] calculate the geographic influence using an adaptive kernel
estimation method on their data. [Li et al. 2017] calculate a mixture personal and
geographic influences by maximizing the stochastic gradient descent learned from
their data. This work innovates the geographic influence by proposing that it could
be approximated by an analogy to the law of universal gravitation.

2. Temporal Influence:

[Cho, Myers and Leskovec 2011] model the temporal influence as a truncated
Gaussian distribution parameterized by the time of the day, and the model created
for each day of the week. [Yuan et al. 2013] divides a day into 24 time slots and include
the time slot into the user-POI check-in matrix, turning it into a user-POI-time cube,
and then the temporal score is retrieved via collaborative filtering. [Cheng, Ye and
Zhu 2013] calculate both geographic and temporal influences in the same process
using the MHMM. [Yuan, Cong and Sun 2014] incorporate the temporal influence by
connecting the POI nodes to the POI visitors session nodes, so a user can transition
from a POI node to another user session node and then to an unvisited POI. Our
work uses the same approach used by [Yuan et al. 2013] by dividing a day into 24
time slots to map each user and POI check-ins, however we do not integrate it into
the check-in matrix. Instead, we calculate the differences between the user and the
POI activity during the day, and do the same for each day of the week.

3. Social Influence:

[Ye et al. 2011] calculate the social influence via enhanced collaborative filtering,
where they consider common POIs and friends to calculate the similarity between two
friends. [Cho, Myers and Leskovec 2011] enhance the temporal and geographic model
by incorporating non-periodic check-ins and considering them social check-ins. The
social influence is modeled as a power-law probability function that decreases with the
distance between the user u and the friend v last check-in and how long has been since
v has checked in. [Zhang and Chow 2015] first calculate the social aggregation of the
candidate POI, which is the sum of all check-in on that POI from all the user friends.
Then, they fit their data to a power-law function, and finally the social influence
score is calculated with a cumulative distribution function. [Zhang, Chow and Zheng
2015] calculate their social influence score with a user-based collaborative filtering
using the users rating instead of check-in count. We adopt the cosine similarity to
calculate the similarity between the user and his or her friends, and then multiply
by percentage of the friend total check-ins that belong to the candidate POI.

4. Personal Influence:
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[Cheng, Ye and Zhu 2013] calculate the most likely location to be visited from the
category distribution generated by the MHMM. [Gao et al. 2015] extract the user
preference by analyzing the semantics from the tips written by the users. [Zhang and
Chow 2015] uses the user bias towards the categories of the candidate POI multiplied
by the POI popularity, which is calculated as the percentage of the check-ins to
the candidate POI categories that belong to the POI itself. Then, they fit their
data to a power-law function and calculate the personal influence score with a
cumulative distribution function. [Li et al. 2017] calculate the personal influence
together with the geographic influence by maximizing the stochastic gradient descent.
Our approach is similar to [Zhang and Chow 2015] as we use both the user bias
towards the categories of the candidate POI and the candidate POI popularity,
however we do not fit our data to a power-law distribution and instead we calculate
the general category bias learned from all users, that is used together with the user
bias to determine the personal influence score.

5. Collateral Influence:

[Ye et al. 2011] use a simple user-based collaborative filtering that uses common
POIs between the users as the measure of similarity. [Yuan et al. 2013] use the
enhanced UTP cube to get the similarity between the users and [Yuan, Cong and
Sun 2014] incorporate the collateral influence through their graph by connecting the
session node to their user node, so the graph can transition through visitedPOI −→
anotherusersessionnode −→ anotherusernode −→ anothersessionnode −→ unvisitedPOI.
Our work use the exact same approach as [Ye et al. 2011].
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5 Evaluation and Results

In this chapter we perform the experimental evaluation with the Gowalla dataset.
We introduce the dataset and the baseline models in sections 5.1 and 5.2, respectively.
The explanation on how we conduce the experiment is presented in Section 5.3. Section
5.4 shows a visual representation of the user scores, an important step to understand the
experimental results analyzed in Section 5.5.

5.1 Dataset

The data used in the experiment is the Gowalla Dataset gathered by [Liu et al.
2014]. The unprepared dataset contains over 130 thousand users with 4.4 million friendship
links, 2.7 million POIs and 36 million check-ins over the whole world. This dataset was
chosen because both check-in records and friendship link records are vast and a category
tree structure with over 266 categories, which allows us to deeply explore user preference.
Only POIs with at least 10 user visitors within the state of New York and users that
have visited at least 10 of those POIs in their whole lifetime with at least 10 friends were
used on the influence learning. Most of the studied frameworks consider only users and
POIs with at least 5 check-ins. However, their interest is to make POI recommendation,
which requires that they address fresh users (i.e. users with few check-ins). Since this study
is focused on prediction, it is interesting that users have more check-ins so the model
can learn the user check-in behavior better. Also, less users increase the algorithm speed.
The check-in data for each user were divided in two groups: train and test, where the
former contains approximately 70% of the user check-ins and is used to calculate the user
influences. The latter contains the remaining check-ins, and is used to validate the learning
model. The percentages of the training and test dataset division is what is generally used
on the state-of-the-art. The users that did not visit at least 3 unvisited POIs in the test
dataset were also discarded. The filtered dataset contains 1,250 users, 3,459 spots over
266 categories and 311,167 check-ins combining train and test datasets. All POIs that are
already visited by the user receive a score of zero.

5.2 Tuning parameters

There are a total of seven tuning parameters used in this work. α from equation
4.2 is considered to be 1, since α multiplies each score for each user and its value would
not make a difference to the experiment, and it is used in equation 4.2 to make an analogy
to the law of the universal gravitation. The other is β from equation 4.5 that is used to
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weight the daily and weekly temporal scores. Due to time difficulties, a deep analysis of β
could not have been done, and β was considered to be 0.5. The other five are a, b, c, d, e

from the equation 4.12. How we calculate them is explained further.

5.3 Baseline models

As previously discussed, the accuracy of the methods was calculated by two metrics:
precision@N and recall@N, where N is the number of top-ranked recommendations. The
precision@N calculates the fraction of the predicted POIs that the user actually visited on
the test dataset, while recall@N calculates the fraction of the correctly predicted POIs
among all POIs that were previously unvisited on the train dataset. Because there are 5
influences being considered, the number of individual combinations among them is 25 − 1,
which gives a total of 31 combined influences to compare. One of them, the collateral score,
which is already used by many recommender systems and can be used as a baseline model
itself. Since we did not have access to any of the state-of-the-art frameworks, the only real
baseline model is given by the collaborative filtering. As there are many combinations of
influence, only each individual and the combined score were actually tested.

5.4 POI prediction

The raw dataset contains the following data:

1. User: each user has a set of friends and of visited POIs.

2. POI: each POI have the geographic coordinates, the category and the set of visitor
users.

3. Check-ins: each check-in links a user to a POI through a timestamp.

4. Category: each category has a set of subcategories.

To perform the prediction, for every pair of user u and unvisited POI l from
the train dataset we calculate the score for the five influences through their respective
formula introduced previously. After calculating the scores, all the user unvisited POI are
ranked by their own individual influence score. For each individual influence, the POIs
that have achieved the top-N scores are predicted. With the predicted POIs for each
individual influence, we compare to the POIs the user has visited in test dataset. With
both the predicted POIs from the training set and the visited POIs from the test set, the
precision@N and recall@N are calculated through equations 3.1 and 3.2. The previous
steps are performed for N ∈[1, 50], and the results are exposed further.
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5.5 Experiment setup

The first step of the experiment is to calculate the precision and recall for every
individual influence. Then, we calculate the precision and recall for the combined influence.
To do that, the optimal tuning parameters to maximize the accuracy of the model must be
found. There are a few ways to estimate them: The first is to naively give random values to
the tuning parameters a few times and run the experiment and consider the one that scored
best, which would not be the best approach to discover optimized values and it would take
lots of iterations, however it could give an idea of what influences would account more
to predict check-ins to unvisited POIs. There are many parameter estimation algorithms
on the literature such as Maximum-Likelihood estimation (MLE), used by [Yuan, Cong
and Sun 2014] to estimate GTAG parameters, also Expectation-Maximization (EM), used
by [Cho, Myers and Leskovec 2011] together with MLE to estimate different parameters.
Since there are 5 parameters to be found, the optimization problem is too complex. The
solution is to use the harmonic mean between precision and recall for each individual
factor as a multiplicative constant to their respective score fraction on the combined model.
To tune the weights, we elevate each score to a weighting constant γ, and then find the
optimal value for γ. This way, each score maintains its relative importance, while we can
tune the result to get the best precision and recall values. More formally:

a =

(∑N Fgeo

N

)γ

, (5.1)

b =

(∑N Ftem

N

)γ

, (5.2)

c =

(∑N Fsoc

N

)γ

, (5.3)

d =

(∑N Fper

N

)γ

, (5.4)

e =

(∑N Fcol

N

)γ

, (5.5)

where N is the number of recommended POIs, γ is a tuning parameter and Fgeo,
Ftem, Fsoc, Fper and Fcol are the average harmonic mean calculated between precision@N and
recall@N for geographic, temporal, social, personal and collateral influences, respectively.
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The harmonic mean F@N between precision@N(p@N) and recall@N(r@N) is defined
as:

F@N = 2 · p@N · r@N

p@N + r@N
, (5.6)

and the average Harmonic mean F is:

F =
N∑

F@N (5.7)

The actual values for each tuning parameter are exposed on section [?].

5.6 User scores

In this Section we show some visual feedback from each of the influential factor
experiment. The scores are showed in different scales to give an idea of their behavior. The
data generating a line on a log-log function is necessary but not sufficient to conclude that
the data follows a power-law distribution. A line on a semi-log function indicates that the
data follows a exponential distribution.

5.6.1 Geographic Influence

Figure 7a shows the user rank in relation to the geographic score for a random
user on a semi-logarithmic scale. As we can see, the user geographic influence peaks on
the first few ranked POIs, and it decreases very rapidly. This is due to the fact that the
geographic score decreases with the square of the distance between the unvisited POI and
the POIs visited by the user. Figure 7b shows the same information on a logarithmic scale.
Figure 7c shows the geographic influence for all users on a semi-logarithmic scale. We
can observe that the decrease ratio vary with each user. Some users even have plateaus
of scores, where the POI influence score tends to stabilize, decreasing slowly as the rank
decreases. The variation between the decrease ratio for different users can be explained by
a number of reasons: 1) the user has checked-in in a few, distant POIs in an area with
small POI density, as constrained check-in area will have very high ratings on nearby POIs
and very small on far away POIs. This is aggravated if the area has a few POIs, because
only those few will have high scores while the rest have insignificant scores. The data
show that many POIs receive scores in the order of 10−10, while others in the order of
10−1, which represents a huge difference. 2) All POIs visited by the user receive the score
zero, so some users have less POIs that actually scored. The plateaus are an interesting
phenomenon: it most likely indicates that the user has a scattered check-in behavior, where
many unvisited POIs have a similar average distance to the user visited POIs. Figure 7d
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(a) For a single user on a semi-
logarithmic scale.

(b) For a single user on a logarithmic
scale.

(c) For all users on a semi-logarithmic
scale.

(d) For the average user on a logarith-
mic scale.

Figure 7 – POI geographic influence score in relation to the POI ranking.

shows the geographic influence as a function of the POI rank for the average user1 on a
logarithmic scale. The line on the log-log scale indicates that the geographic score can be
fitted to a power-law distribution.

5.6.2 Temporal Influence

Figure 8 shows the POI rating over the POI score for the same user from Figure 7
in different points of view. As we can see in Figure 8a, differently from the geographic
influence, the temporal influence score does not reduce rapidly with the POI rank. It has a
steep decrease at first, but then it tends to stabilize in the middle ranks and then another
rapid decrease at the end. This shows that there are three kinds of temporal relationships
between users and POIs: The first is represented by the top-ranked POIs, which are the
few that have a truly similar temporal behavior with the user, which are the minority. The
second one is represented by the middle ranked POIs, that are the ones that have some
activities at the same time but the behavior is not really alike, which represents most
of the POIs. This happens because the influence calculates the difference between both

1 The average user is a fictional user that holds the average score between all users
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(a) For a single user on a linear scale. (b) For a single user on a semi-
logarithmic scale.

(c) For all users on a linear scale. (d) For the average user on a linear
scale.

Figure 8 – POI temporal influence score in relation to the POI ranking.

the user and the POI schedule at each time slot and at each day of the week. Since all
POIs are located in the state of New York, all POIs belong to the same time zone and the
check-in behavior between the user and the POI time slots will overlap most of the time,
saved a few exceptions. The same is valid for the day of the week parcel: Users and POIs
have some check-ins on the same day, even though their greatest days of check-in activity
may not match, resulting in an average temporal score for the two of them. The opposite
behavior explains the third group, which are the worst-ranked POIs. Figure 8b shows the
same data displayed on a semi-logarithmic scale for comparison with other influences.

Figure 8c shows the POI influence score w.r.t the POI ranking for all users on a
linear scale. As we can see, the three kinds of temporal relationships between users and
POIs happen to most users. This only shows that the proportion of POIs and users with
real similar behavior and with real different behavior represent the minority, and most
POIs and users have an average check-in behavior. Figure 8d shows the POI influence
score w.r.t the POI ranking for the average user on a linear scale.
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(a) For a single user on a semi-
logarithmic scale.

(b) For a single user on a logarithmic
scale.

(c) For all users on a semi-logarithmic
scale.

(d) For the average user on a semi-
logarithmic scale.

Figure 9 – POI social influence score in relation to the POI ranking.

5.6.3 Social Influence

Figure 9a shows the POI social influence score in relation to the POI ranking for
the same single user in a semi-logarithmic scale, and Figure 9b in a logarithmic scale. The
social score does not fit very well into a power-law distribution as the geographic. However
it is a better fit compared to the temporal one, meaning that the geographic score can be
better described as a power-law distribution, while the social score can be poorly described
as one and temporal score can not be described at all. Figure 9c shows that many users
have multiple POIs with the same influence score. This happens because many users have
few friends, and as can be seen in Figure 4.7, if the friend has visited many spots once
(i.e. Ru′,l is 1), as the other two variables are constant for each friend, then all of those
once visited POIs are going to receive the same score. Also, if a POI is not visited by any
friend then its rating would be zero, leaving most scores for those POIs as zero, which
explains why the curve decreases quicker in the first few POI ranks for the average user,
as shown in Figure 9d.
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(a) For a single user on a semi-
logarithmic scale.

(b) For a single user on a logarithmic
scale.

(c) For all users on a semi-logarithmic
scale.

(d) For the average user on a logarith-
mic scale.

Figure 10 – POI personal influence score in relation to the POI ranking.

5.6.4 Personal Influence

The personal influence scores higher POIs that belongs to categories that the user
has a greater check-in number to POIs belonging to that category than the average, as
defined in equation 4.9. Further than that, it also scores POIs with a higher popularity
among all POIs belonging to the same category. The first statement implies that the fewer
check-ins a category has, the greater is the potential score of a POI belonging to that
category. Assume two hypothetical categories c and d, with biases Bc = 0.5 and Bd = 0.05,
respectively. A user u with all of his check-ins belonging to POIs on category c would have
a bias weight of 2, while a user v with all of his check-ins belonging to POIs on category
d would have a bias weight of 20. The second statement implies that POIs belonging to
categories with fewer POIs will receive a greater score in general, since the popularity of a
POI p is calculated as the percentage of all check-ins to the category of p that belongs to
p. This means that the more uncommon and unpopular the POI category is, the higher
is the POI score to a user that have a strong bias to that category. Figure 10a shows
the POI personal influence score with relation to the POI in a semi-logarithmic scale. As
we can see, only a few POIs have really high personal influence score. Figure 10b show
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the POI personal influence score with relation to the POI ranking for the same user in a
logarithmic scale. Figure 10c shows the POI personal influence score in relation to the
POI ranking for all users in a semi-logarithmic graph and Figure 10d shows the average
POI personal influence in relation to its ranking. The figure indicates that the personal
score also fits a power-law distribution. The further implications of this could be verified
in a future work. In overall, 10 shows that personal influence score has a similar shape to
the geographic score.

5.6.5 Collateral Influence

(a) For a single user on a semi-
logarithmic scale.

(b) For a single user on a logarithmic
scale.

(c) For all users on a semi-logarithmic
scale.

(d) For the average user on a semi-
logarithmic scale.

Figure 11 – POI collateral influence score in relation to the POI ranking.

Figures 11a and 11b show the POI collateral influence score in relation to the POI
ranking for the same user in both semi-logarithmic and logarithmic scales, respectively.
Similarly to the temporal influence, the collateral influence has three clear regions: the
few top ranked-POIs, whose score decreases quickly until it stabilizes at the middle and a
quick decay at the end. Unlike the temporal influence, however, this influence gives much
clearer high scores. The high scores can be mostly explained by the fact the more two
users have in common, the less different their check-in behavior is, and consequently the
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differences are more evident. This represents the absolute minority of users. Most users
will have few visited POIs in common, so they will have a large amount of unvisited POIs
to recommend at a low score, which represents the majority of the cases. At last, POIs
that are too distant from the user activity area will be frequented by users that have few
to none common visited POIs, so unpopular, distant POIs will receive score zero.

Collaborative filtering is a common approach used by recommender systems. Al-
though this work is not focused on recommendation, the technique can be adapted to
prediction, as we will show later. Figure 11c shows the POI combined score in relation to
its rank for all users in a semi-logarithmic graph. Curiously, the graph shows that many
users can be approximated by the one shown in Figure 11a. There are clearly two distinct
curves. This can be elucidated by the fact that the less POIs n user has visited, the less
users he or she will receive recommendations from. So this dataset has many users that
have a few check-ins and consequently receive recommendations from less users, which will
result in a smaller pool of recommended POIs by collateral influence. Also, because the
collateral influence score is based on the amount of check-ins similar users have on a POI,
POIs with a large number of check-ins will be most likely to be recommended to any user.
The inverse is also true: POIs that have a small number of check-ins will be less likely to
be recommended to any user. Finally, Figure 11d shows the average collateral influence
score in relation to the POI ranking on a semi-logarithmic graph, which shows a little
to no difference from the user from Figure 11a. This indicates that despite the fact that
cases like the ones from Figure 11c that follow the second curve happen, they represent
the minority of the cases and have little to no impact to the average collateral score.

5.6.6 Unified Influence

The last analysis is the POI unified influence score in relation to the POI ranking.
The optimal value to the exponent γ from equations 5.1 to 5.5 that will be replaced in
equation 4.12 is γ = 1.95. This is the approximated converged value of γ that gives the
maximum precision and recall to the combined score, calculated through multiple iterations
with different values of γ. This way, the final weights to each individual influence are
a = 0.071, b = 0.027, c = 0.220, d = 0.067 and e = 0.615. This means that collateral score
alone accounts for more than 60% of the combined score. Figure 12a and 12b represent
the POI unified influence score in relation to the POI ranking for the same single user.
It is possible to notice that the combined rating is very close to the collateral influence
score, the exception is that middle rankings got higher values. The other influences help to
suppress the downsides of the collateral influence. Figure 12c shows the unified influence
score for all users. Here it is evident that the combined influence gave higher scores to the
POIs that were considered zeros in the collateral influence score. This is a reinforcement
that the combined score gives better recommendation.
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(a) For a single user on a semi-
logarithmic scale.

(b) For a single user on a logarithmic
scale.

(c) For all users on a semi-logarithmic
scale.

(d) For the average user on a semi-
logarithmic scale.

Figure 12 – POI unified influence score in relation to the POI ranking.

Figure 12d shows the average unified influence score in relation to the POI ranking
for all users in a semi-logarithmic scale, which is similar to the average collateral influence
score shown in figure 11d. This is expected, since the collateral influence has the greatest
weight on the unified score calculation.

5.7 Experiment Results

In this section we analyze the prediction accuracy values obtained from the top
N = 1 to N = 50 recommended POIs based on each of the 5 individual influences, plus
the combined influence. Figures 13 shows the precision values for the top-N predicted
POIs and 14 shows the recall values.

The temporal influence got the worse score. This is because the temporal influence
accounts only for the similarity between the user and the POI check-in amount over the
same time slot, not mattering where in the world the POI is or if the user is effectively
able to go visiting. It also does not reflect any of the user taste or bias to actually make
the POI be more attractive to the user than other POIs. Indeed, the experiment has shown
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that, for most users, the actual POI temporal score was very similar in all ranks and did
not decrease fast enough to represent a great change between ranks. The state-of-the-art
algorithms have managed to condensate the temporal influence in a more precise model,
such as PSMM ( [Cho, Myers and Leskovec 2011]), UTE-SE( [Yuan et al. 2013]), MHMM
( [Cheng, Ye and Zhu 2013]) and GTAG( [Yuan, Cong and Sun 2014]). The result effectively
has shown that our approach to the temporal influence was not very suitable for the
prediction problem.

The personal influence had also low accuracy results, however the results were
better than the ones we got from temporal score. The fact that Gowalla has so many
categories has turned the prediction harder. Personal influence score has also the same
problem that the temporal influence has: it does not take into account the distance between
the POI and the user activity.

The Geographic influence was more precise than the personal score, however the
recall had worse results than the personal score for lower N values. Geographic score does
not take into account the density of POIs around the areas, so there may be actually fewer
POI choices in a greater area, which is why it could not perform so well.

The social score got a surprisingly high relative score compared to the other
proposed models. This indicates that friend taste is a good recommendation for users, and
a user will more likely visit POIs that were visited by a friend.

The collateral score, which is a name wrapper for collaborative filtering, got
absolutely the best score between the individual influences, with more than double precision
than the second best. This proofs that it is a good recommending and predicting approach,
specially if the dataset has the users with low check-in amount filtered out. Users are a
good prediction hint to those users who behave similarly.

The combined score had, as expected, the best accuracy. However, the accuracy gain
from the other influences combined performed worse than expected. The combined score
barely outperformed the collateral score alone. This is probably because each influence
was modeled with great independence from each other, so they did not work well when
used collectively. Indeed, many of the influences performed too poorly, which disqualified
them as good prediction metrics.

Finally, the relatively low accuracy of the influences was expected, because the
trajectory data of users on LBSNs is incomplete since it requires that the user explicitly
log their activity in the social network, which does not necessarily happen every time
a user visit a POI. Also, many locations a user visits during his or her trajectory are
not registered on the social network. Consequently, most users do not have enough data
to receive a precise analysis. Because there is almost no gain from using the combined
influence, it is best to use the collateral influence alone to predict POIs on a real POI
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prediction application.

Figure 13 – Prediction precision with respect to given-N values

Figure 14 – Prediction recall with respect to given-N values
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5.8 Result comparison

In this section we compare the results with other frameworks. Figure 15 shows a
graph comparing the accuracy reached by each of the studied frameworks, except PSMM
and MHMM, as they use different evaluation metrics. We did not have access to the studied
frameworks, so it was not possible to run each algorithm in our own filtered dataset, and
the values exposed here are the approximated accuracy values the ones provided by each
author, reached on their own dataset and with their own data constraints. All frameworks
displayed on Figure 15 are recommender systems, and the precision and recall values are
based on a total of 5 recommended POIs.

Figure 15 – Accuracy comparison between studied frameworks

As we can see, all frameworks have low precision and recall values. This is due to
the check-in matrix sparsity and it is a well-known problem faced by all recommender
systems. Among the studied frameworks, GeoSoCa have reached the best precision values
(0.105) by examining Geographic, Social and Personal influences, followed by ORec (0.071)
examining Geographic, Social and Sentimental influences, and IEMF (0.070), examining
Geographic and Personal influences. The lowest values are achieved by CAPRF (0.019)
examining Personal and Sentimental influences, UTE-SE (0.031) examining Geographic,
Temporal and Collateral influences, and GTAG (0.040), examining Geographic, Temporal
and Collateral influences. USG (0.061) have achieved the intermediary precision value
examining Geographic, Social and Collateral influences. Our framework have reached
the highest precision value by examining Geographic, Temporal, Social, Personal and
Collateral influences altogether, however the collateral influence alone have reached better
precision values than all other frameworks. This difference can be explained by the higher
threshold for user and POI check-in amount. Collaborative filtering yields better results
for users with higher number of check-ins, as more similar users can be found and the
increased amount of data can differentiate users better.

Geographic influence has been considered by all frameworks except CAPRF, that
has the lowest precision among the studied frameworks. This indicates that geography
indeed plays an important role on POI recommendation and prediction: although alone it
does not determinate which POI is a good candidate, the distance can determinate which
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POIs are bad candidates.

The frameworks that have considered the temporal influence have also achieved
low precision (UTE-SE and GTAG). This suggests that temporal influence is not suitable
for POI recommendation or prediction, as they make recommendations (or predictions)
only caring that the user effectively visits the POI, disregarding when the visit happens.

Friendship certainly influence people to visit POIs. Both frameworks that have
achieved the highest precision values (GeoSoCa and ORec) considers the social influence.
It is also the individual influence with the second highest accuracy on our framework. [Ye
et al. 2011] have reported that although friends have good influence on the user check-ins,
some friends do not have common taste and the similarity of the check-in behavior is more
important than the social ties to make POI recommendation. This is also verified in our
work, as the social score have performed worse than the collateral score.

Personal score was only considered by three of the studied frameworks that are on
15. Contradictorily, two of them are in the top 3 accuracy and the other have achieved the
lowest values. This indicates that the personal score can be crucial to predict user behavior.
In fact, what differentiate users are their personality. The challenge is to successfully
extract the user preference from the available data and linking it to other underlying
factors that influence user behavior.

At last, collateral influence was considered by three out of the four frameworks with
the lowest accuracy (UTE-SE, GTAG and USG) and none of the ones with high accuracy.
However, in our work it has achieved the best results. [Ye et al. 2011] have also reported
that the collateral influence was responsible for the largest share of their accuracy. The
problem with the collateral influence is that it requires a plentiful user data to perform
well. This work allow us to conclude that collateral influence is a good way to discover
underlying user check-in patterns on a dense dataset.

In general, it is important to consider multiple influential factors when trying to
predict user behavior on LBSNs, as each one of them provide a different perspective to
the user. There are many underlying factors that makes a user visit a POI, and the more
factors are considered, the more precise the prediction can be.
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6 Conclusion

In this work, we identified five main influences to the mobility of LBSN users. They
are: geographic, temporal, social, personal and collateral. Then, we created a framework
unifying all of them in an attempt to predict the user check-in behavior and, among many
unvisited locations in a city, discover the most attractive to them based on their previous
individual trajectory. After that, we learned how much each influence affects the user
decision to visit a previously unvisited location.

After studying some of the current state-of-the-art frameworks on location prediction
and recommendation, we discovered many approaches to each of the five influences, and
then proposed new models to simulate each of the influences in order to rank unvisited
POIs to users, or simply reused the state-of-the-art model. After unifying the influences
and applying the resulting model to our train dataset, we have got the top-1 to top-50
locations each user would most likely visit, and then we have compared the results with the
test dataset to check our model accuracy, fulfilling the general and each specific objective
of this work.

The overall low accuracy of the model was expected due to location-based social
network data incompleteness, although some influences scored worse than initially expected.
The experiment confirmed that predicting a person’s choice towards location preference
is indeed a complex problem, and thus the hypothesis that too many choices actually
difficult making decisions was confirmed.

Due to the database size, managing computational resources was a challenging task.
Many times we were forced to rethink our approach because the complexity got too high
and it would take too long for the calculation to finish or because the computer memory
was depleted. Also, many analysis were left undone because the deadline to perform this
work was short.

This work gathers many of the current state-of-the-art frameworks on POI prediction
and POI recommendation, each one of them with unique approaches and insights to the
matter. The results also show a little improvement to the consolidated recommendation
technique of collaborative filtering when recommending POIs. It has also confirmed that
collaborative filtering can be effectively used with POI prediction as well.

6.0.1 Future work

This work focus on five influences. Temporal and Personal influences have shown a
very poor performance, thus they could be better studied and remodeled to have their
accuracy improved. Geographic influence had an intermediary performance, but only the
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distance between the POIs and not the density of the area between them was considered.
The effects of the theory of intervening opportunities ( [Stouffer 1940]) on the geographic
influence was also not tested in this study. Both social and collateral influences have shown
good results, the first was newly proposed by us, so it can be tested in the dataset of other
LBSNs for comparison.

This work makes comparison between the results of a POI prediction with POI
recommender systems because the work has pivoted many times during its execution. A
comparison between other recommender systems could provide many useful new informa-
tion.

The chosen dataset from Gowalla is large, however there are other LBSNs that
holds different user, POI and check-in information. The same model could be adapted to
a new dataset and the results compared. Further than that, the new information from the
datasets may allow us to extract different influences that could also be tested.
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Abstract. Taking into account the difficulty of choice generated by the great
diversity of points of interest currently found in cities and the population in-
creasing adherence to location-based social networks, a research is performed
on existing points of interest prediction and recommendation, where 5 factors
that influence users to visit new points of interest were identified: geography,
time, friendship, personal taste and choices made from similar users. Based on
the identified influences and the frameworks, an unified model that is capable
of predict what points of interest each user will visit based on their individual
trajectory is developed.

Resumo. Tendo em vista a dificuldade de escolha gerada pela grande diver-
sidade de estabelecimentos encontrados nas cidades atualmente e a crescente
aderência da população a redes sociais baseadas em localização, pesquisa-se
frameworks existentes de recomendação e de predição de pontos de interesse,
de onde foram identificados 5 fatores que influenciam seus usuários a visitarem
novos estabelecimentos: geografia, tempo, amizade, personalidade e escolhas
feitas por usuários similares. Baseado nesses frameworks e nas influências
identificadas, desenvolve-se um modelo unificado que será capaz de prever que
estabelecimentos cada usuário visitará com base em parte de sua trajetória in-
dividual.

1. Introduction
The evolution of the web 2.0 and the popularization of social networks allowed the cre-
ation of many communities within a virtual environment, and permitted that people met
around the world through interests and friends in common, no matter where in the world
those people live. The social networks are of great utility and provide information about
the social link between users. There are many types of social networks, and one of them is
known as Location Based Social Networks (LBSN). This kind of social network provides
a unique experience to their users, where they can voluntarily check-into a place they
have visited and share their experience within that place with their friends and strangers,
including information about that place like its name, service provided, weather condition
and many other. As social beings that live in community, this information with semantic
richness is capable of influencing the decision on whether visiting a point of interest (POI)
rather than others.

This kind of virtual environment generates a large amount of data about an in-
dividual’s location on a daily basis, and this data allows looking at human mobility and
behavior in a more analytic way. The analysis of POIs visited by users is of great im-
portance when looking for populational behavior patterns. Each individual has different



tastes, personalities and routines, and these characteristics are determinant in the choice
of a place to visit (i.e., a POI). The information that LBSNs hold on users is presented in
the form of semantic trajectories, which consists of a sequence of stops, i.e., POIs that the
user have visited.

Although the concept of semantic trajectories is recent, many studies have
been made, mainly on POI recommendation [Ye et al. 2011, Yuan et al. 2013,
Yuan et al. 2014, Gao et al. 2015, Zhang and Chow 2015, Zhang et al. 2015,
Li et al. 2017] and location prediction [Cho et al. 2011, Cheng et al. 2013]. The
first tries to identify places for their users to visit based on the most diverse characteristics
that a place may present, and the second one, based on his or her routine, environment
and other characteristics, tries to correctly identify the next location the user is going to
visit given his or her check-in history. Those characteristics are decisive factors when a
user chooses a POI to visit or seek for a service, and they are called influences. After
studying the existing frameworks on the area of POI recommendation and location
prediction, we identified six factors that influence human choices:

1. Geographic influence: relates to distance and accessibility;
2. Temporal influence: relates to periodicity;
3. Social influence: relates to friendship and social encounters;
4. Personal influence: relates to personal tastes and goals;
5. Collateral influence: relates to behavior similarity between users;
6. Sentimental influence: relates to the user feelings on POIs;

Each studied framework addresses only a subset of the identified influential fac-
tors. Also, each framework models the considered influential factors differently (e.g.
different frameworks have different formula to calculate the same influence). Having all
the things mentioned above in mind, the objective of this work is to predict the POIs each
user is going to visit based on his or her check-in history taken from a LBSN record.
To accomplish this, first we score each unvisited POI using the six human mobility in-
fluential factors for every user with models based on the current state-of-the-art LBSN
recommender and prediction systems. Then, for each influence and the combined influ-
ence, we rank the top-N unvisited POIs the user is most likely to visit, check the accuracy
of each model, and finally, compare the results.

2. Basic Concepts
In this section we introduce the concept of Semantic trajectories (Section 2.1), an in-
troduction to recommender systems (2.2) and how they interact with LBSNs (2.3), and
finally, the influential factors of human mobility identified while performing this study
(2.4).

2.1. Semantic Trajectory

A semantic trajectory A is a sequence of stops 〈a1, ..., an〉 with each stop in the form of
a tuple ((x, y), [t1, t2], type), where (x, y) is the centroid of all points of the subtrajectory
identified as the stop, representing the space dimension, t1 and t2 are the start and end time
of the stop, respectively, corresponding to the time dimension, and type is the category of
the place where the stop was detected, characterizing the semantics. More attributes can
be added to the stop: the activity of the stop, the goal of the trajectory, or many others,



as long as they provide spatio-temporal information. It is important to notice that the
moves of a user is not provided by most location-based social networks, so only stops
information is going to be relevant for this work.

2.2. Recommender Systems
The recommender problem is a recurrent issue that has been addressed by many compa-
nies differently since early 1990s, when the recommender system Tapestry was created
and its developers coined the term Collaborative filtering. Facebook, for example, rec-
ommended ads to users according to their profile and to the ones their friends liked. The
traditional recommender systems mine the two-dimensional relationship between users
and items, and recommend items to users through collaborative filtering (CF), content-
based (CB) or hybrid recommendation ([Ding et al. 2018]):

Collaborative Filtering Recommendation: Collaborative filtering finds the user
preference through its ratings on different items, next it finds users with the same pref-
erence to the target user, and then infer the score of an item to the target user according
to the similar user ratings on that item. There are two types of Collaborative Filtering
techniques:

• Item-based CF: Analyses the user’s rating on different items to speculate the sim-
ilarity among items, and then recommend items based on this similarity.
• User-based CF: Analyses different users’ ratings on an item to speculate the sim-

ilarity among items, and then recommend items based on this similarity.
Although CF’s simplicity and acceptance in the most variable fields, it faces a cold start
problem with both items and users, as new items almost never get rated and new users
rarely rate anything, so there are no recommendations for that items or users.

Content-Based Recommendation: CB recommendation first finds the user pref-
erences through its rating on items, and then recommends items whose contents match
the user preference. It differs from collaborative filtering because the first uses other user
information to determinate the item rating towards the target user, and the second uses
only the target user preference through its historical information.

Hybrid Recommendation: Combines both CF and CB to avoid their disadvan-
tages: A recently added item will rarely receive any rating through CF so it may never be
recommended, but can be recommended via CB through the user’s profile. A user that has
such uniqueness that no similar users are found via CF would never get recommendations,
although he or she still can be recommended via his or hers rating history. A user with
little history may be difficult to recommend to via CB, but some similarity may be found
through CF and so on.

2.3. LBSN Recommender Systems
LBSN recommender systems are an extension to the traditional recommender systems,
so they also use CF and CB, but the difference is that the items are restricted to the
four elements of a LBSN: Users, POIs, activities and groups. It can recommend friends
to users, POIs to users, activities performed on a specific location to users, activities
performed on a specific location to users that belong to a determined group and so on.
This study is interested in the user bias towards a location via his or her check-in record.
In this case, there are many other filters that can be applied to increase the quality of the
recommendation that are based on the influential factors that will be discussed further.



2.4. Influential Factors on Human Mobility

In this section we discuss the factors that may influence and individual to visit a location.
There are many factors that can be taken into account when searching a place to visit:

Geographic Influence: According to Tobler’s First Law of Geography
[Tobler 1970], ”Everything is related to everything else, but near things are more related
than distant things”. The influence of geography in human mobility is an old and well
known concept, and also very intuitive. It is much more likely for a person to search for a
clothing store nearby his or her house, workplace or in the way between them than to go
to the next city. Although Tobler’s Law has never been actually proven, it is a widely ac-
cepted and philosophical concept, and this influence is verified in many studies in POI rec-
ommendation and location prediction ([Ye et al. 2011, Cho et al. 2011, Yuan et al. 2013,
Cheng et al. 2013, Yuan et al. 2014, Zhang and Chow 2015, Li et al. 2017]).

Temporal Influence: Habits and routines are basically activities executed period-
ically, so it is natural to think that time also has an influence to the user’s choice over a
place to visit. As stated by [Yuan et al. 2013], ”Users’ activities are often influenced by
time. For example, a user is more likely to go to a restaurant rather than a bar for lunch
at noon, and is more likely to go to a bar rather than a library at midnight”. Depending
on the time of the day, some services are more requested than others. There are many
time constraints that can be inferred depending on the category of the POI, suggesting
that choosing one has a strong temporal influence, and many recommender systems are
based on that influence.

Social Influence: Humans are social beings. As a consequence, it is expected
that people that are close to each other tend to visit the same places. It is more likely to
a user to visit some highly recommended place from a friend than from a total stranger.
[Zhang and Chow 2015] affirmed from their research that social influence plays a key role
on the performance for recommending POIs.

Personal Influence: People have preferences and personalities. Consequently,
they perform some activities more often compared to others. A person that likes shopping
would have more check-ins into shopping-related POIs than a person that does not. Many
LBSN divide their registered POIs into categories, and the category a point of interest
belongs to reflect their usual business activity and nature. It is expected that people would
have biases towards some categories they identify themselves the most. If a user has a
large number of check-ins into some category and there is some popular place into that
category that he has not yet visited, there is a great chance that this place would be a very
good recommendation for him or her.

Collateral Influence: Even though every single person is unique, some groups
of people are more similar than others. People share tastes, preferences and visit the
same kinds of places although they do not necessarily know each other. The collateral
influence addresses this kind of issue, also called user similarity, employed by many POI
recommender systems in the form of collaborative filtering.

Sentimental Influence: People usually like to share their good and bad experi-
ences when they go somewhere. Not only LBSNs, but social networks in general and
some mobile applications have largely facilitated the diffusion of user sentiment and ex-
periences towards a location. Places that provide people a good time tend to attract more



and more people and may even become popular places, while places that people have bad
experiences tend to repulse other people to come around.

3. Related Work

This section reviews existing frameworks that use LBSN data to recommend POIs to users
or make location prediction by exploiting the influential factors.

Geographic Influence: The authors [Ye et al. 2011] use a power-law model to
describe the geographic model which is used in a naive-Bayes network. The geographic
score is sorted by the probability of an unvisited POI to belong to the user visited POIs
set using the network. [Cho et al. 2011] use the home and work check-in position co-
variance matrices and the means of user’s check-in locations when she is in home and
work state to feed a 2-dimensional time-independent Gaussian distribution that returns
the user geographic score. [Yuan et al. 2013] fit the model the same way [Ye et al. 2011],
however they use a Bayesian network instead of naive-Bayes. [Cheng et al. 2013] use a
mixed hidden Markovian model with temporal and spatial covariates followed by a Monte
Carlo Bayes estimation to calculate the geographic score. [Yuan et al. 2014] use a graph-
based approach mixing geographic, temporal and collateral influences, where the vertices
are users, POIs and session nodes using a breadth-first preference propagation method.
The POI nodes are connected to nearby POIs, so the user preference can transition from
a visited to an unvisited POI depending on the edge weight. [Gao et al. 2015] are the
only authors that do not consider the geographic influence. [Zhang and Chow 2015] and
[Zhang et al. 2015] calculate the geographic influence using an adaptive kernel estima-
tion method on their data. [Li et al. 2017] calculate a mixture personal and geographic
influences by maximizing the stochastic gradient descent learned from their data.

Temporal Influence: [Cho et al. 2011] model the temporal influence as a trun-
cated Gaussian distribution parameterized by the time of the day, and the model created
for each day of the week. [Yuan et al. 2013] divides a day into 24 time slots and include
the time slot into the user-POI check-in matrix, turning it into a user-POI-time cube, and
then the temporal score is retrieved via collaborative filtering. [Cheng et al. 2013] cal-
culate both geographic and temporal influences in the same process using the MHMM.
[Yuan et al. 2014] incorporate the temporal influence by connecting the POI nodes to the
POI visitors session nodes, so a user can transition from a POI node to another user ses-
sion node and then to an unvisited POI.

Social Influence: [Ye et al. 2011] calculate the social influence via enhanced col-
laborative filtering, where they consider common POIs and friends to calculate the simi-
larity between two friends. [Cho et al. 2011] enhance the temporal and geographic model
by incorporating non-periodic check-ins and considering them social check-ins. The so-
cial influence is modeled as a power-law probability function that decreases with the
distance between the user u and the friend v last check-in and how long has been since v
has checked in. [Zhang and Chow 2015] first calculate the social aggregation of the can-
didate POI, which is the sum of all check-in on that POI from all the user friends. Then,
they fit their data to a power-law function, and finally the social influence score is cal-
culated with a cumulative distribution function. [Zhang et al. 2015] calculate their social
influence score with a user-based collaborative filtering using the users rating instead of
check-in count.



Personal Influence: [Cheng et al. 2013] calculate the most likely location to be
visited from the category distribution generated by the MHMM. [Gao et al. 2015] ex-
tract the user preference by analyzing the semantics from the tips written by the users.
[Zhang and Chow 2015] uses the user bias towards the categories of the candidate POI
multiplied by the POI popularity, which is calculated as the percentage of the check-ins
to the candidate POI categories that belong to the POI itself. Then, they fit their data
to a power-law function and calculate the personal influence score with a cumulative
distribution function. [Li et al. 2017] calculate the personal influence together with the
geographic influence by maximizing the stochastic gradient descent.

Collateral Influence: [Ye et al. 2011] use a simple user-based collaborative
filtering that uses common POIs between the users as the measure of similarity.
[Yuan et al. 2013] use the enhanced UTP cube to get the similarity between the users and
[Yuan et al. 2014] incorporate the collateral influence through their graph by connecting
the session node to their user node, so the graph can transition through visitedPOI −→
anotherusersessionnode −→ anotherusernode −→ anothersessionnode −→
unvisitedPOI .

Sentimental Influence: [Gao et al. 2015] Analyze sentiment information con-
tained on textual user tips from their LBSN dataset together with twitter data, and fuse it
with Personal influence and POI-property content to build an optimization problem that
is solved via gradient descent. [Zhang et al. 2015] also analyze the user tips using many
edge techniques and use a naive Bayesian classifier to calculate the POI scores for each
user.

4. Modeling the influences
In this section we describe how we model the Geographic (Section 4.1), Temporal (Sec-
tion 4.2), Social (Section 4.3), Personal (Section 4.4) and Collateral (Section 4.5) influ-
ences that are going to be used to calculate the POI score for each user. The Sentimental
influence was considered a future work because of time restrictions to the execution of
this work. The Unified model can be found at Section 4.6.

4.1. Geographic Influence
Since LBSNs work in a way that users have to go to a POI to perform a check-in, ge-
ography plays a very important role when a user is interested to visit a POI. POIs that
are closer to the user daily routine are more likely to be visited than others that are far
away. The previously discussed frameworks address the geographic influence differently:
USG as a Naive-Bayes probability function, PSMM as a Gaussian distribution, and so on.
[Cho et al. 2011] also stated that the probability of a user to check-into a POI is inversely
proportional to the square of the distance, and we observe that this is similar to how grav-
ity works. According to Newton’s law of universal gravitation, the gravitational force g
between two objects is:

g =
Gm1m2

r2
, (1)

where G is the gravitational constant, m1 and m2 are the mass of the objects 1
and 2, respectively, and r is the distance between the center of mass of m1 and m2. This



equation shows that the gravitational force between two objects decay with the square
distance and are proportional to each of the objects mass. Similarly, the probability of
a user visit an unvisited POI given a visited POI is proportional to the check-in count
of the two POIs (the number of check-ins to the visited POI represents the probability
that at any time the user is at that POI, and the number of check-ins to the unvisited
POI represents the attractiveness the POI has among the other nearby unvisited POIs) and
inversely proportional to the square of the distance between the two POI.Assuming that
check-in count plays a similar role to the mass of an object in space, we propose that the
geographic influence generated by an unvisited POI can be approached to the sum of the
force exerted by each of the user visited POIs to the user unvisited POI, or more formally,
the geographic score Sg(u, l) of an unvisited POI l has on the user u is:

Sg(u, l) =
∑
j∈Lu

αcj · cl
d2

, (2)

where Lu is the set of the POIs visited by user u, cj is the number of check-ins
user u has on POI j and cl is the number of check-ins the unvisited POI l have from all
users. To simplify the calculation, α is going to be 1, because it’s a multiplicative constant
that would be applied to every score equally and consequently can be neglected.

4.2. Temporal Influence
Time has also a great influence when it comes to choose a location to visit. People have
strong temporal behaviour. There is time to eat, time to work, basically time for every-
thing, and since POIs are managed by people, it is natural that they also have to follow
a timely routine. Restaurants open at Lunch and Diner, Night clubs only open at night,
Shopping have greater activity when people are not working and so on. People have a rel-
atively fixed daily routine and perform similar tasks at the same time of the day, as stated
by [Yuan et al. 2013]. More than that, as verified by [Cho et al. 2011], people usually
commit to activities on a weekly basis. At working days people do work-related activi-
ties, like having lunch at a restaurant because they do not have time to cook, at weekends
people tend to spend time with their family or friends, every Wednesday night a person
may go to the gym and many others. Based on the fact that both people and POIs have a
temporal behavior, it is natural to assume that people will have a greater chance to visit
POIs that have a schedule that matches their own. For temporal influence, it is clear that
people tend to have two types of temporal behaviour: daily and weekly.

To model the daily temporal behavior, the model proposed by us divides a day into
M time slots, and every time slot is mapped into the respective check-in percentage that
occurred in that time slot, for every user and POI. Then, the difference between the POI l
and the user u temporal behavior can be calculated as:

Sd(u, l) =
M∑

td=0

|cdl (td)− cdu(td)|, (3)

where cdl (td) is the check-in percentage of the total number of check-ins for the
POI l that occurred in the time slot of a day td, cdu(t) is the check-in percentage of the total



check-ins of user u in the same time slot. To simplify, in this study the M is arbitrarily set
to 24 to represent the 24 hours in a day.

The weekly temporal behavior is calculated similarly to the daily temporal behav-
ior, except that the time slot is the day of the week:

Sw(u, l) =
N∑

tw=0

|cwl (tw)− cwu (t+ w)|, (4)

where tw = 0 is Sunday, tw = 1 is Monday, and so on until N = 6, which is
Saturday, cwl (tw) is the check-in percentage of the total number of check-ins on POI l
that occurred in the day of the week tw and cwu (tw) is the check-in percentage of the total
number of check-ins of user u in the same day.

So the user temporal influence score St(u, l) over a POI is defined as:

St(u, l) = β · (1− Sd(u, l))
2 + (1− β) · (1− Sw(u, l))

2 (5)

Where β is a tuning parameter. Note that each difference is squared, so larger
discrepancies are scored worse.

4.3. Social Influence

Since humans are social beings, a person who had a great experience on a POI will cer-
tainly share it with his or her friends, influencing them to visit that POI eventually. The
same thing happens with negative experiences. Certainly, friends are a strong influence
to a person, and they tend to be a good source for recommendation. People tend to visit a
place highly rated by a friend, usually the ones that are closer or have a greater influence
on them. People also like to go to a place with their friends to have a good time together.
Since the database holds no record of user ratings, the user rating on a POI is going to
be represented by user check-in frequency on that same POI. [Zhang et al. 2015] noted
that some recommender systems assume that the check-in count is equivalent to the user
rating on that POI, however it does not reflect how much the user enjoyed the POI:

”These methods assume that the check-in frequencies of users to POIs directly
reflects the preference levels, which may not be true in reality. For example, when a user
checks in a POI only once, the user may like the POI very much or conversely.”

In the same year, on another article, [Zhang and Chow 2015] analyzed the social
check-in frequency on a Foursquare dataset and the rating distribution of a user into a
POI on a Yelp dataset to calculate the social aggregation of a POI l on a user u, defined
below, and they have found that both social check-in frequency and rating fits a power-
law distribution, indicating that there is at least a distribution correlation between them.
The social aggregation of a POI l and a user u proposed by [Zhang and Chow 2015] is
calculated as:

xu,l =
∑
u′∈U

Su,u′ ·Ru′,l, (6)



where Su,u′ is 1 if there is a social link between u and u′ or 0 if not, Ru′,l is the
check-in count (for their Foursquare dataset) or rating (for their Yelp dataset) of u′ on l.
The authors go further by exploiting the power-law distribution and calculate the social
relevance score taking into account the relative position of the social aggregation score
among all users. This work simplifies the Social influence score Ss(u, l) by normalizing
the social aggregation score to the friend check-in count, and then weighting it to the
similarity between the two friends:

Ss(u, l) =
∑
u′∈F

Ru′,l · wu,u′

cu′
, (7)

where F is the set of u’s friends, cu′ is the total number of check-ins of u′, and
wu,u′ is the similarity between user u and u′. The similarity between the two friends is
going to be used instead of the user proximity, since there is no way of calculating the
latter. The similarity between the two friends can be calculated as the cosine similarity
between them:

wu,u′ =

∑
l∈L cu,lcu′,l√∑

l∈L c
2
u,l

√∑
l∈L c

2
u′,l

(8)

When u = u′, then both friends have the exact same check-in amount on the same
POIs, and wu,u′ is at it’s maximum value 1. When both u and u′ have not visited any POI
in common, then wu,u′ is zero.

4.4. Personal influence

As explained previously, the personal influence considers the user’s taste and personal
choice when choosing a POI to visit. It reflects the user preferences on a specific cate-
gory of POI that provides a certain type of service, like a user that visits several restau-
rants that belongs to the Vegetarian Food category means that the user likes vegetarian
food, and consequently is more inclined to visit other vegetarian restaurants as well.
[Zhang and Chow 2015] use the bias Bu,c of a user u towards a category c, which is
roughly the check-in count of user u into category c, and the popularity Pc,l of the POI
l among other POIs of category c, which is the percentage of check-ins from category c
that were performed into l. Then, the categorical (personal) popularity yu,l of an unvisited
POI for a user proposed is given by:

yu,l =
∑
c∈C

Bu,c · Pc,l (9)

Note that a POI can belong to more than one category, i.e. a vegetarian restaurant
belongs to the category Vegetarian Food, which itself is a subset of the category Food,
meaning that the POI belongs to both categories, consequently Bu,c = 0 if the POI does



not belong to any subset of category c, and Bu,c > 0 if the POI belongs to a subset of c.
The same idea is used for the POI categorical popularity Pc,l. That is why the categorical
popularity is a sum from the product of the categorical bias and the POI categorical popu-
larity. [Zhang and Chow 2015] go further by calculating the distribution of the categorical
popularity learned from all users, similarly to the social influence score. To simplify, the
personal influence score proposed by us will be calculated by normalizing the categorical
bias with all user’s average bias Bc to that category:

Sp(u, l) =
∑
c∈C

Bu,c · Pc,l

Bc

, (10)

where Bc =
∑

u∈U Bu,c

|U | .

4.5. Collateral Influence
Collateral influence is, in simple words, the similarity between two users considering the
POIs both have visited. The more POIs visited they have in common, the greater is the
similarity between them, and the more similar two users are, the greater the probability
that a POI that was visited by user u and unvisited by the user u′ to be a good recommen-
dation for u′. The model proposed is no different than the classic user-based collaborative
filtering technique, which can be calculated as:

Sc(u, l) =

∑
u′∈U wu,u′ · cu,l∑

u′∈U wu,u′
, (11)

where wu,u′ is the similarity between the users u and u′, cu,l is the check-in count
of user u on POI l and U is the set of all users from the dataset. wu,u′ can be any similarity
equation, but for this study the cosine similarity is considered due to its simplicity, as
presented in equation (8).

4.6. Unified Influences
Each influence score formula previously introduced allows us to rank all POIs for every
user, but only by one influence at a time. To calculate the combined score, all influences
must be taken into account. [Zhang and Chow 2015] for example multiply each of the in-
fluences to generate the final score. The approach selected was based on [Ye et al. 2011],
[Yuan et al. 2014] and many others, where they calculate the combined score by summing
all of them, each multiplied by a factor called tuning parameters. They vary the tuning
parameters to discover approximately how much each influence was responsible for the
model accuracy. To calculate the unified influence score, first the score for each influence
is going to be normalized within the range of [0, 1] for every user u, where 0 represents
the lowest score a POI p has on u, and 1 the highest. Then, the unified influence formula
S(u, l) is defined as:

S(u, l) = a · Sg(u, l) + b · St(u, l) + c · Ss(u, l) + d · Sp(u, l) + e · Sc(u, l), (12)



where a, b, c, d and e are the tuning parameters for geographic, temporal, social,
personal and collateral, respectively, and a+ b+ c+ d+ e = 1.

5. Experiments

In this section we present how the experiment was performed, the dataset used (Section
5.1), the evaluation metrics (Section 5.2), how we discover the tuning parameters (Section
5.3), how the prediction is made (Section 5.4) and the results (Section 5.5). Finally, a
comparison between this and the studied frameworks can be found in Section 5.6.

5.1. Dataset

The data used in the experiment is the Gowalla Dataset gathered by [Liu et al. 2014].
Only POIs with at least 10 user visitors within the state of New York and users that have
visited at least 10 of those POIs in their whole lifetime with at least 10 friends were used
on the influence learning. Most of the studied frameworks consider only users and POIs
with at least 5 check-ins. However, their interest is to make POI recommendation, which
requires that they address fresh users (i.e. users with few check-ins). Since this study is
focused on prediction, it is interesting that users have more check-ins so the model can
learn the user check-in behavior better. The check-in data for each user were divided
in two groups: train and test, where the former contains approximately 70% of the user
check-ins and is used to calculate the user influences. The latter contains the remaining
check-ins, and is used to validate the learning model. The percentages of the training and
test dataset division is what is generally used on the state-of-the-art. The users that did not
visit at least 3 unvisited POIs in the test dataset were also discarded. The filtered dataset
contains 1,250 users, 3,459 spots over 266 categories and 311,167 check-ins combining
train and test datasets. All POIs that are already visited by the user receive a score of zero.

5.2. Evaluation metrics

The evaluation of POI recommendation frameworks consist basically in selecting a part of
the data as training set and the other as test set. The training set is used by each framework
to learn the user preferences, returning the top-N locations to be recommended for every
user by the own framework criterion. Then, the test set is used to verify the precision and
recall of the algorithm, as expressed below:

Precision@N =
1

n

n∑
i=1

|Si(N) ∩ Ti|
K

(13)

Recall@N =
1

n

n∑
i=1

|Si(N) ∩ Ti|
|Ti|

, (14)

where Si(K) is a set of top-K unvisited locations recommended to user i that he
has not visited in the training set, and Ti is the set of locations that are visited by user i in
the testing set. .



5.3. Tuning parameters

There are a total of seven tuning parameters used in this work. α from equation 2 is
considered to be 1, since α multiplies each score for each user and its value would not
make a difference to the experiment, and it is used in equation 2 to make an analogy to the
law of the universal gravitation. The other is β from equation 5 that is used to weight the
daily and weekly temporal scores. Due to time difficulties, a deep analysis of β could not
have been done, and β was considered to be 0.5. The other five are a, b, c, d, e from the
equation 12. The optimal value to the weights of each individual influence is calculated
from the results of each individual influence and they are a = 0.071, b = 0.027, c =
0.220, d = 0.067 and e = 0.615.

5.4. POI prediction

To perform the prediction, for every pair of user u and unvisited POI l from the train
dataset we calculate the score for the five influences. After calculating the scores, all the
user unvisited POI are ranked by their own individual influence score. For each individual
influence, the POIs that have achieved the top-N scores are predicted. With the predicted
POIs for each individual influence, we compare to the POIs the user has visited in test
dataset. With both the predicted POIs from the training set and the visited POIs from the
test set, the precision@N and recall@N are calculated through equations 13 and 14. The
previous steps are performed for N ∈ [1, 50], and the results are exposed further.

5.5. Results

In this section we analyze the prediction accuracy values obtained from the top N = 1
to N = 50 recommended POIs based on each of the 5 individual influences, plus the
combined influence. Figures 1 shows the precision values for the top-N predicted POIs
and 2 shows the recall values.

The temporal influence got the worse score. This is because the temporal influ-
ence accounts only for the similarity between the user and the POI check-in amount over
the same time slot, not mattering where in the world the POI is or if the user is effec-
tively able to go visiting. It also does not reflect any of the user taste or bias to actually
make the POI be more attractive to the user than other POIs. Indeed, the experiment
has shown that, for most users, the actual POI temporal score was very similar in all
ranks and did not decrease fast enough to represent a great change between ranks. The
state-of-the-art algorithms have managed to condensate the temporal influence in a more
precise model, such as PSMM ([Cho et al. 2011]), UTE-SE([Yuan et al. 2013]), MHMM
([Cheng et al. 2013]) and GTAG([Yuan et al. 2014]). The result effectively has shown
that our approach to the temporal influence was not very suitable for the prediction prob-
lem.

The personal influence had also low accuracy results, however the results were
better than the ones we got from temporal score. The fact that Gowalla has so many
categories has turned the prediction harder. Personal influence score has also the same
problem that the temporal influence has: it does not take into account the distance between
the POI and the user activity.

The Geographic influence was more precise than the personal score, however the
recall had worse results than the personal score for lower N values. Geographic score



does not take into account the density of POIs around the areas, so there may be actually
fewer POI choices in a greater area, which is why it could not perform so well.

The social score got a surprisingly high relative score compared to the other pro-
posed models. This indicates that friend taste is a good recommendation for users, and a
user will more likely visit POIs that were visited by a friend.

The collateral score, which is a name wrapper for collaborative filtering, got abso-
lutely the best score between the individual influences, with more than double precision
than the second best. This proofs that it is a good recommending and predicting approach,
specially if the dataset has the users with low check-in amount filtered out. Users are a
good prediction hint to those users who behave similarly.

The combined score had, as expected, the best accuracy. However, the accuracy
gain from the other influences combined performed worse than expected. The combined
score barely outperformed the collateral score alone. This is probably because each in-
fluence was modeled with great independence from each other, so they did not work well
when used collectively. Indeed, many of the influences performed too poorly, which dis-
qualified them as good prediction metrics.

Figure 1. Prediction precision with respect to given-N values

5.6. Comparison

In this section we compare the results with other frameworks. Table 1 shows all stud-
ied authors, their respective frameworks and the influences considered by them on their
work. Figure 3 shows a graph comparing the accuracy reached by each of the studied
frameworks, except PSMM and MHMM, as they use different evaluation metrics. We did
not have access to the studied frameworks, so it was not possible to run each algorithm



Figure 2. Prediction recall with respect to given-N values

in our own filtered dataset, and the values exposed here are the approximated accuracy
values the ones provided by each author, reached on their own dataset and with their own
data constraints. All frameworks displayed on Figure 3 are recommender systems, and
the precision and recall values are based on a total of 5 recommended POIs.

Figure 3. Accuracy comparison between studied frameworks

As we can see, all frameworks have low precision and recall values. This is due
to the check-in matrix sparsity and it is a well-known problem faced by all recommender
systems. Among the studied frameworks, GeoSoCa have reached the best precision val-
ues (0.105) by examining Geographic, Social and Personal influences, followed by ORec
(0.071) examining Geographic, Social and Sentimental influences, and IEMF (0.070), ex-
amining Geographic and Personal influences. The lowest values are achieved by CAPRF
(0.019) examining Personal and Sentimental influences, UTE-SE (0.031) examining Ge-
ographic, Temporal and Collateral influences, and GTAG (0.040), examining Geographic,
Temporal and Collateral influences. USG (0.061) have achieved the intermediary preci-
sion value examining Geographic, Social and Collateral influences. Our framework have



Authors Framework Influences

[Ye et al. 2011] USG
Geographic
Social
Collateral

[Cho et al. 2011] PSMM
Geographic
Temporal
Social

[Yuan et al. 2013] UTE-SE
Geographic
Temporal
Collateral

[Cheng et al. 2013] MHMM
Geographic
Temporal
Personal

[Yuan et al. 2014] GTAG
Geographic
Temporal
Collateral

[Gao et al. 2015] CAPRF
Personal
Sentimental

[Zhang and Chow 2015] GeoSoCa
Geographic
Social
Personal

[Zhang et al. 2015] ORec
Geographic
Social
Sentimental

[Li et al. 2017] IEMF
Geographic
Personal

Table 1. Authors and their respective frameworks and considered influences

reached the highest precision value by examining Geographic, Temporal, Social, Personal
and Collateral influences altogether, however the collateral influence alone have reached
better precision values than all other frameworks. This difference can be explained by the
higher threshold for user and POI check-in amount. Collaborative filtering yields better
results for users with higher number of check-ins, as more similar users can be found and
the increased amount of data can differentiate users better.

Geographic influence has been considered by all frameworks except CAPRF, that
has the lowest precision among the studied frameworks. This indicates that geography
indeed plays an important role on POI recommendation and prediction: although alone it
does not determinate which POI is a good candidate, the distance can determinate which
POIs are bad candidates.

The frameworks that have considered the temporal influence have also achieved
low precision (UTE-SE and GTAG). This suggests that temporal influence is not suitable
for POI recommendation or prediction, as they make recommendations (or predictions)
only caring that the user effectively visits the POI, disregarding when the visit happens.

Friendship certainly influence people to visit POIs. Both frameworks that have



achieved the highest precision values (GeoSoCa and ORec) considers the social influence.
It is also the individual influence with the second highest accuracy on our framework.
[Ye et al. 2011] have reported that although friends have good influence on the user check-
ins, some friends do not have common taste and the similarity of the check-in behavior is
more important than the social ties to make POI recommendation. This is also verified in
our work, as the social score have performed worse than the collateral score.

Personal score was only considered by three of the studied frameworks that are on
3. Contradictorily, two of them are in the top 3 accuracy and the other have achieved the
lowest values. This indicates that the personal score can be crucial to predict user behav-
ior. In fact, what differentiate users are their personality. The challenge is to successfully
extract the user preference from the available data and linking it to other underlying fac-
tors that influence user behavior.

At last, collateral influence was considered by three out of the four frameworks
with the lowest accuracy (UTE-SE, GTAG and USG) and none of the ones with high
accuracy. However, in our work it has achieved the best results. [Ye et al. 2011] have
also reported that the collateral influence was responsible for the largest share of their
accuracy. The problem with the collateral influence is that it requires a plentiful user data
to perform well. This work allow us to conclude that collateral influence is a good way to
discover underlying user check-in patterns on a dense dataset.

In general, it is important to consider multiple influential factors when trying to
predict user behavior on LBSNs, as each one of them provide a different perspective to
the user. There are many underlying factors that makes a user visit a POI, and the more
factors are considered, the more precise the prediction can be.

6. Conclusion

In this work, we identified five main influences to the mobility of LBSN users. They
are: geographic, temporal, social, personal and collateral. Then, we created a framework
unifying all of them in an attempt to predict the user check-in behavior and, among many
unvisited locations in a city, discover the most attractive to them based on their previous
individual trajectory. After that, we learned how much each influence affects the user
decision to visit a previously unvisited location.

After studying some of the current state-of-the-art frameworks on location predic-
tion and recommendation, we discovered many approaches to each of the five influences,
and then proposed new models to simulate each of the influences in order to rank unvisited
POIs to users, or simply reused the state-of-the-art model. After unifying the influences
and applying the resulting model to our train dataset, we have got the top-1 to top-50 lo-
cations each user would most likely visit, and then we have compared the results with the
test dataset to check our model accuracy, fulfilling the general and each specific objective
of this work.

The overall low accuracy of the model was expected due to location-based so-
cial network data incompleteness, although some influences scored worse than initially
expected. The experiment confirmed that predicting a person’s choice towards location
preference is indeed a complex problem, and thus the hypothesis that too many choices
actually makes difficult making decisions was confirmed.



Due to the database size, managing computational resources was a challenging
task. Many times we were forced to rethink our approach because the complexity got
too high and it would take too long for the calculation to finish or because the computer
memory was depleted. Also, many analysis were left undone because the deadline to
perform this work was short.

This work gathers many of the current state-of-the-art frameworks on POI predic-
tion and POI recommendation, each one of them with unique approaches and insights to
the matter. The results also show a little improvement to the consolidated recommenda-
tion technique of collaborative filtering when recommending POIs. It has also confirmed
that collaborative filtering can be effectively used with POI prediction as well.

7. Future work
This work focus on five influences. Temporal and Personal influences have shown a very
poor performance, thus they could be better studied and remodeled to have their accuracy
improved. Geographic influence had an intermediary performance, but only the distance
between the POIs and not the density of the area between them was considered. The
effects of the theory of intervening opportunities ([Stouffer 1940]) on the geographic in-
fluence was also not tested in this study. Both social and collateral influences have shown
good results, the first was newly proposed by us, so it can be tested in the dataset of other
LBSNs for comparison. Also, the sentimental influence was not analyzed, so a future
work could include sentimental influence analysis.

This work makes comparison between the results of a POI prediction with POI
recommender systems because the work has pivoted many times during its execution. A
comparison between other recommender systems could provide many useful new infor-
mation.

The chosen dataset from Gowalla is large, however there are other LBSNs that
holds different user, POI and check-in information. The same model could be adapted to
a new dataset and the results compared. Further than that, the new information from the
datasets may allow us to extract different influences that could also be tested.
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