
UNIVERSIDADE FEDERAL DE SANTA CATARINA
CENTRO TECNOLÓGICO

DEPARTAMENTO DE AUTOMAÇÃO E SISTEMAS
ENGENHARIA DE CONTROLE E AUTOMAÇÃO

Jamal Musa Rahman Filho

Development of an Application for
Supervision of Concrete Quality

Control

Florianópolis
2019

Jamal Musa Rahman Filho

Development of an Application for
Supervision of Concrete Quality

Control

Relatório submetido à Universidade Federal
de Santa Catarina como requisito para a
aprovação na disciplina DAS 5511: Projeto
de Fim de Curso do curso de Graduação em
Engenharia de Controle e Automação.
Orientador(a): Prof. Felipe Gomes de Oliveira
Cabral

Florianópolis
2019

Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Musa Rahman Filho, Jamal
 Development of an Application for Supervision of
Concrete Quality Control / Jamal Musa Rahman Filho ;
orientador, Felipe Gomes de Oliveira Cabral, 2019.
 86 p.

 Trabalho de Conclusão de Curso (graduação) -
Universidade Federal de Santa Catarina, Centro Tecnológico,
Graduação em Engenharia de Controle e Automação,
Florianópolis, 2019.

 Inclui referências.

 1. Engenharia de Controle e Automação. 2. Web
development. 3. Quality control. 4. Phoenix and elixir. 5.
Functional programming. I. de Oliveira Cabral, Felipe
Gomes. II. Universidade Federal de Santa Catarina.
Graduação em Engenharia de Controle e Automação. III. Título.

Jamal Musa Rahman Filho

Development of an Application for
Supervision of Concrete Quality

Control

Esta monografia foi julgada no contexto da disciplina DAS5511: Projeto de Fim de Curso
e aprovada na sua forma final pelo Curso de Engenharia de Controle e Automação.

Florianópolis, 27 de novembro de 2019

Banca Examinadora:

Rafael Jung
Orientador na Empresa

Jungsoft

Felipe Gomes de Oliveira Cabral
Orientador no Curso

Universidade Federal de Santa Catarina

Fabio Baldissera
Avaliador

Universidade Federal de Santa Catarina

Mateus Giovani Ewert Bonet
Debatedor

Universidade Federal de Santa Catarina

Murilo Peruch Nunes
Debatedor

Universidade Federal de Santa Catarina

Acknowledgements

The principal acknowledgement ought to be directed to my parents Jamal and
Rose, for they have provided me the true essence of love and support through my life path.
Education and knowledge were exposed by them as the key to achieve anything, as well as
kindness, respect and discipline to thrive in this modern world. Agradeço imensamente por
tudo que me foi ensinado, sem vocês eu seria apenas um composto orgânico complexo de
probabilidade existencial ínfima, amo vocês da maneira mais pura e real possível. Muito
obrigado por tudo. Also to my brother Mussa, with whom I’ve grown up and evolved
together. Plenty of good moments (and more to come) and a great partnership are carved
in my memory, ’preciated it my man.

To my friend and engineer colleague Victor Lopes (aka Surfista) for the opportunity
to work in such a project that represents the essence of the ECA program. Many thanks
to the backend engineer Rafael Scheffer at Jungsoft for all the Elixir support throughout
the development of this project, without him the path to completion of the application
would be much more painful.

A special thanks to my life brothers Gabriel, Murilo and João that the engineering
program has provided, you were the spirit boost that I needed to finish this phase of my
life, I heartily thank you for everything. I would also like to extend this thanks to my
friend and roommate Francisco for the three and a half years living together, thank you
for all the great conversations and teachings primão.

To the many friends I’ve made in UFSC and LVA, the latter in which I’ve achieved
three years of personal development alongside great people and scientists, thank you all.
Wouldn’t forget my brothers from the ODM higher mentality group, Criciúma and Floripa
would be far less interesting without your vast group knowledge. Só agradece família.

Resumo
A tecnologia alcançou um nível de evolução incessável, permitindo que uma grande
quantidade de dados possa ser compartilhada e facilitando uma cooperação global, o que
incentiva o desenvolvimento de projetos das mais variadas áreas. Com uma estrutura
online solidificada, projetos de serviços e produtos baseados na rede web começam a surgir
e dominar o mercado. A Jungsoft é uma empresa que desenvolve softwares e possui um
projeto de automação para centrais de concreto chamado Kartrak, no qual o autor pôde
cooperar e aumentar o conhecimento na área de desenvolvimento web. A plataforma
Kartrak não possui uma área para supervisionar e controlar os estados iniciais do controle
de qualidade do concreto e o presente projeto busca solucionar tal problema.

Uma aplicação web moderna chamada Kartrak Laboratory foi proposta para atacar esse
problema de supervisão. Devido ao curto espaço de tempo fornecido para desenvolver o
projeto e pelo fato do autor não ter experiência prévia na área de programação funcional
e desenvolvimento web, o programa foi construído em cima da plataforma de automação
Kartrak. Uma vantagem é que a manutenção do aplicativo será facilitada devido à mesma
estrutura estar sendo utilizada. Metodologias ágeis e baseadas em teste foram utilizadas de
modo a obter um melhor gerenciamento do tempo. Para atingir um alto nível de qualidade,
técnicas de controle de software foram aplicadas durante o desenvolvimento do projeto.

As principais funções backend do software, isto é, funcionamento do servidor, foram
implementadas, obtendo assim uma aplicação funcional para controlar e registrar todas as
etapas do ciclo de vida do corpo de prova. Para garantir um nível de confiança e qualidade,
vários testes unitários e de ponta-a-ponta foram desenvolvidos e implementados.

Palavras-chave: desenvolvimento web, controle de qualidade, desenvolvimento baseado
em testes, elixir, phoenix, programação funcional.

Abstract
Technology has reached a non-stop pace of evolution, allowing data sharing and global
cooperation to boost the development of projects from the most vast areas. With a solid
online structure, web-based services and products are beginning to emerge and conquer
the market. Jungsoft is a company that develops softwares and has a project for the
automation of concrete batching plants named Kartrak, in which the author had the
opportunity to cooperate and learn. The Kartrak platform doesn’t have a supervision
feature to control the early stages of concrete quality and this project targets that problem.

Kartrak Laboratory, a modern web-application, was proposed to counteract that problem.
Due to short deadline and no previous experience in functional programming and web-
development, it was built on top of the already existing Automation platform. An advantage
is that maintainability will be enforced since the same structure will be used. Agile and
test-driven-development methodologies were pursued in order to have a better management
of time. To attain a high level of quality, software quality assurance and control techniques
were applied during the application development.

The main backend functionalities of the application’s server-side were implemented, thus
achieving a working feature to control and register the specimen life cycle. To ascertain a
level o confidence and quality, several unit tests and an end-to-end test were designed and
implemented.

Keywords: web-development, quality control, test-driven-development, elixir, phoenix,
functional programming.

List of Figures

Figure 1 – Real-time storage overview. 26
Figure 2 – Plant supervisory layout matches the real batching plant. 26
Figure 3 – PDCA cycle. 32
Figure 4 – Quality assurance components. 32
Figure 5 – Quality control loop. 33
Figure 6 – The test-driven-development step cycle: design a failing test, implement

minimum code to pass the test and improve the design via refactoring. 37
Figure 7 – Slump test procedure. 41
Figure 8 – Kartrak web platform screens. 44
Figure 9 – A common location flow of the specimen, from creation to rupture. . . 45
Figure 10 – Kartrak Laboratory modal screens. 46
Figure 11 – Rupture modal. 47
Figure 12 – Simplified Kartrak Laboratory database diagram and its cardinalities. . 54
Figure 13 – End-to-end queries, from the GraphiQL interface, used for the integra-

tion testing. 78
Figure 14 – Screen holding general information about shipments and collections. . . 87
Figure 15 – Screen containing information about the total percentage of shipments

with specimens moulded. 88
Figure 16 – Screen with information about ruptures scheduling. 88

Listings

5.1 Specimen migration file. 55
5.2 Collection migration file. 55
5.3 Kartrak Laboratory enum types. 56
5.4 List specimens. 57
5.5 Get specimen by ID. 57
5.6 Specimen creation. 57
5.7 Specimen update. 57
5.8 Specimen context file. 59
5.9 Collection context file. 59
5.10 Specimen schema file. 60
5.11 Collection schema file. 61
5.12 Simplified GraphiQL endpoint implementation. 62
5.13 Specimen GraphQL schema: scaffold. 63
5.14 (Simplified) Specimen GraphQL schema: objects definition. 63
5.15 Query and mutation definition. 64
5.16 Resolver implementation. 64
5.17 All specimens query. 65
5.18 Create specimen mutation. 65
5.19 GraphQL query interpretation of 5.17. 66
5.20 Response data from query 5.17. 66
5.21 Corporation default settings update mutation. 67
5.22 Specimen settings creation. 68
5.23 Specimen settings update transaction. 69
5.24 Specimen batch creation based on the default settings of a corporation. 70
5.25 Recursive specimen creation. 70
5.26 Function to update a specimen batch. 71
5.27 Function to register a collection batch. 72
5.28 Function to update a collection. 72
5.29 Collection resolver private fuction to update the specimen situation. 72
5.30 Function to register a rupture. 73
5.31 Collection verifier function. 73
5.32 fck calculation function. 73
5.33 Asserting that creating a rupture with invalid data generates an error. 74
5.34 Rupture creation unit test to assert that valid data creates a rupture. 75
5.35 Possible testi to assess the integration between modules. 76
6.1 Test coverage result. 77

List of Tables

Table 1 – Code Management terminology. 36

List of abbreviations and acronyms

ABNT Associação Brasileira de Normas Técnicas

API Application Programming Interface

CD Continuous Delivery

CI Continuous Integration

CRUD Create, Read, Update and Delete

DRY Don’t Repeat Yourself

ECA Engenharia de Controle e Automação

ERP Enterprise Resource Planning

ISO International Organization for Standardization

JSON JavaScript Object Notation

NBR Norma Brasileira

PDCA Plan, Do, Check and Act

REST Representational state transfer

SQA Software Quality Assurance

SQC Software Quality Control

SQL Structured Query Language

TDD Test Driven Development

UI/UX User Interface/User Experience

UML Unified Modelling Language

URL Uniform Resource Locator

Contents

Listings . 13

1 INTRODUCTION . 23
1.1 Motivation . 23
1.1.1 General Objectives . 23
1.1.2 Specific Objectives . 24
1.2 Monograph’s Structure . 24

2 JUNGSOFT & KARTRAK . 25
2.1 Jungsoft . 25
2.2 Kartrak . 25

3 THEORETICAL BACKGROUND REVIEW 27
3.1 Requirements Engineering . 27
3.2 System Modelling . 28
3.3 Quality Management . 29
3.3.1 Software Quality . 29
3.3.2 Software Quality Assurance & Control . 31
3.4 Software Testing . 33
3.5 Configuration Management . 35
3.6 Methodology . 36
3.6.1 Agile software development . 36
3.6.2 Test-driven development . 37
3.7 Technologies . 37
3.7.1 Phoenix . 37
3.7.2 Elixir . 38
3.7.2.1 Functional Programming . 38
3.7.3 PostgreSQL . 38
3.7.4 GraphQL . 39
3.7.4.1 Absinthe . 39
3.7.5 Git . 39
3.7.5.1 GitLab . 40
3.8 Quality Control of Concrete . 40
3.8.1 Slump Test . 41
3.8.2 Compressive Strength Test . 41
3.8.3 Standardisation Review . 42

3.8.3.1 NBR 12655:2015 . 42
3.8.3.2 NBR 5738:2015 . 42
3.8.3.3 NBR 5739:2019 . 42

4 PROJECT APPROACH . 43
4.1 Current State . 43
4.1.1 Kartrak’s Web Platform . 43
4.2 Planned Solutions . 44
4.3 Software Modelling . 45
4.3.1 Requirements . 46
4.3.2 Database . 48
4.3.3 Tech stack . 48
4.4 Quality Management . 49
4.5 Kartrak Laboratory development plan 50
4.5.1 Create, Read, Update and Delete zones 51
4.5.1.1 Default Settings . 51
4.5.1.2 Specimens . 51
4.5.1.3 Collection . 51
4.5.1.4 Ruptures . 51
4.5.2 Queries . 52
4.6 Methodology . 52

5 IMPLEMENTATION AND TESTING 53
5.1 Development environment . 53
5.2 Database tables and model creation 53
5.2.1 Migrations . 55
5.2.2 Context & Schema . 56
5.3 GraphQL API . 61
5.3.1 Queries & Mutations . 62
5.4 CRUD Zones . 67
5.4.1 Corporation and Specimen default settings 67
5.4.2 Specimens . 69
5.4.3 Collections . 71
5.4.4 Ruptures . 72
5.5 Testing . 73
5.5.1 Unit Tests . 73
5.5.2 Integration End-to-end Tests . 75
5.5.3 Code Coverage Statistics . 76

6 DEVELOPMENT ANALYSIS AND RESULTS 77

6.1 Test Coverage . 77

7 CONSIDERATIONS AND PERSPECTIVES 79

BIBLIOGRAPHY . 81

ANNEX 85

ANNEX A – OVERVIEW PAGES 87

23

1 Introduction

Technology has reached a non-stop pace of evolution as a result of global cooperation
in the last years. Since the beginnings of the internet in 1969 with the introduction of
ARPANET (Advanced Research Projects Agency Network), ways of sharing information
escalated in an unprecedented manner. Associated with that and the decrease in computer
prices, old companies rush to keep up with the ongoing evolution whereas a new wave of
modern companies build their system’s structure entirely with the latest technologies.

As the foundation for sharing and storing data online gets solidified, web-based
services and products begin to emerge. The growing interest in web applications by software
developers is mainly due to its high flexibility, ease of access and low cost IT resources.
These are attractive benefits for any business size, ranging from local or regional companies,
as it is easy to scale up (or down), to multinationals. The application can be easily deployed
in multiple physical locations around the world with just a few clicks, providing a lower
latency and better experience for customers at minimal cost.

In order to develop and deploy a working and bug-free software, assurances regarding
software quality and security must be taken into account during the development phase.
In order to do so, we follow the procedures and techniques of Software Quality Control.

1.1 Motivation
A concrete batching plant must follow strict regulations defined by the Brazilian

National Standards Organisation (ABNT in portuguese-br) in order to be able to commer-
cialise its product. The current Kartrak’s web-platform offers a vast range of enterprise
management functionalities, such as an integrated Enterprise Resource Planning (ERP)
and real-time Internet of Things (IoT) system (embedded + mobile + web) to automate
the concrete plant, but it lacks a thorough supervision of the technological control of
concrete.

1.1.1 General Objectives

This project aims at the Technological and Quality Control stage, in which samples
of the mixed concrete must be moulded and supervised until its compression test in
accordance to Brazilian Standards (NBR in portuguese-br). The objective is to develop
a high-quality application to manage the test specimens1, from creation to rupture, and
integrate with the full web-platform.
1 Cylindrical-shaped (or cubic-shaped) concrete test samples.

24 Chapter 1. Introduction

1.1.2 Specific Objectives

• Development of backend functionality for an application to manage the life cycle of
specimens without interfering with the in-production software;

• Implement unit and integration tests to ensure that different parts of the application
work correctly together;

• Develop end-to-end tests addressing several use cases to assure that the specified
quality requirements are met;

1.2 Monograph’s Structure
This monograph is divided into seven chapters, with the present one being an

introduction to the project context. A brief presentation of the Jungsoft company and the
Kartrak Automation web-platform project is given in Chapter 2. In Chapter 3 the most
fundamental concepts to understand the project development are explained. A development
plan is exposed and the requirements are raised in Chapter 4. The code implementations
are shown and described in Chapter 5. The results are exposed in Chapter 6. Lastly,
considerations and perspectives are discussed in Chapter 7.

25

2 Jungsoft & Kartrak

2.1 Jungsoft
Jungsoft is a web and mobile software development consultancy company founded

by an ECA alumnus. With a team of 20 employees, distributed between the offices of
Berlin and Brazil, Jungsoft has multiple projects in production, with their latest projects
being:

• Woodspoon: Meal kit delivery e-commerce platform;

• Sppyns: Real time Crypto Investments Marketplace powered by the Ethereum
blockchain;

• Tailwind: System for processing user feedback and generating KPIs about the
company’s customer experience;

• Engino: A tool to integrate multiple aerospace engineering systems into a fast and
easy-to-access web software;

• Kartrak: Cloud-based web platform for enterprise management with a real-time
IoT system to automate cement factories, in which the author could cooperate with
the present monograph.

Jungsoft focus on providing the best experience for both the clients and end users
by delivering the best solutions through the latest technologies available.

2.2 Kartrak
The Kartrak Automation Concrete offers a vast range of functionalities, integrating

the entire batch plant supervision in a single platform accessible through any device,
locally or abroad.

Its Enterprise Resource Planning and Internet of Things system offers a total
management of the company resources while being able to supervise the production in
real-time through the mobile app. The client can have full control of the company by
means of performance indicators provided instantaneously in the platform.

Local servers cease to become a hindrance as all data is centralised and accessed
through the cloud. The Kartrak 2015 platform makes available remote shipments, automatic
updates and remote support without the need of in situ visits, as well as several other

26 Chapter 2. Jungsoft & Kartrak

benefits. Figure 1 presents the material storage in real-time and Figure 2 shows the
supervisory screen with an alert popping up informing that some operation error occurred.

Figure 1 – Real-time storage overview.

Source: Kartrak.

Figure 2 – Plant supervisory layout matches the real batching plant.

Source: Kartrak.

27

3 Theoretical Background Review

The purpose of this chapter is to familiarise the reader with concepts necessary
to comprehend the present project in its full extent. Basic concepts of Requirements
Engineering are presented in Section 3.1, which will be necessary to understand the
subsequent sections. Software Quality definitions are exposed in Section 3.3 to introduce
the testing techniques in the subsequent section. The methodology and technologies used
are presented in Sections 3.6 and 3.7, respectively. The final section is a review of the
followed standardisations defined by the ABNT.

According to Ian 2015, a software is both the computer program and its associated
documentation, where they may be developed for a general market or a particular customer.
Presently however, these system product types are merging into a single idea, which is to
build systems with a generic product as a foundation and then adapt them to suit the
requirements of a customer. As an example, Enterprise Resource Planning (ERP) systems,
such as the present project, are becoming more common in the market.

Essential attributes of good software are [Ian 2015]:

• Acceptability: it must be acceptable to the type of users for which it is designed.
Meaning that it should be understandable, usable, and compatible with other systems
that are in use.

• Dependability and security: software dependability includes a range of charac-
teristics including reliability, security, and safety. Dependable software should not
cause physical or economic damage in the event of system failure. A software has to
be secure so that malicious users cannot access or damage the system.

• Efficiency: it should not make wasteful use of system resources such as memory
and processor cycles. Efficiency therefore includes responsiveness, processing time,
resource utilisation; in sum, seeking for an optimal management.

• Maintainability: it should be written in such a way that it can evolve to meet the
changing needs of customers. This is a critical attribute because software change is
an inevitable requirement of a changing business environment that endeavours to
stay up-to-date with the latest technologies.

3.1 Requirements Engineering
In accordance to IEEE 1990, a requirement is:

28 Chapter 3. Theoretical Background Review

1. A condition or capability needed by a user to solve a problem or achieve an objective.

2. A condition or capability that must be met or possessed by a system or system
component to satisfy a contract, standard, specification, or other formally imposed
documents.

3. A documented representation of a condition or capability as in 1 or 2.

Requirements are a collection of needs arising from the user and various other
stakeholders, e.g., general organisation, community, government bodies and industry
standards, all of which must be met. Requirements must show “what” the system must do
rather than “how” it should be done [Wagner 2005]. That idealisation, however, has no
logic in reality since “what” and “how” are subjective concepts.

Ian 2015 distinguishes requirements by referring to high-level abstraction as user
requirements and detailed description of what the system should do as system requirements.
It is then defined as:

• User requirements are statements, in a natural language with the aid of diagrams, of
what services the system is expected to provide to system users and the constraints
under which it must operate. The user requirements may vary from broad statements
of the system features required, to detailed, precise descriptions of the system
functionality.

• System requirements are more detailed descriptions of the software system’s functions,
services, and operational constraints. The system requirements document (sometimes
called a functional specification) should define exactly what is to be implemented. It
may be part of the contract between system buyer and software developers.

3.2 System Modelling
At the modelling stage, abstract models of a system are developed with each model

presenting a different view or perspective of that system. A common representation is
using graphical notation based on diagram types in the Unified Modelling Language
(UML) [Rumbaugh 2004].

Models are used during the requirements engineering process to help derive the
detailed requirements for a system, during the design process to enlighten the developers,
and after post-implementation phase for documentation purposes.

A system model is not to be understand as a complete representation of the system,
it leaves out details for an easier understanding. A model is an abstraction of the system
being studied rather than an alternative representation of it.

3.3. Quality Management 29

When representing a system, all information about the entity should be maintained.
An abstraction deliberately simplifies a system design and chooses the most prominent
characteristics. Different models can be developed to represent the system from many
perspectives, for example [Rumbaugh 2004]:

1. An external perspective, where the context or environment of the system is modelled.

2. An interaction perspective, where the interactions between a system and its environ-
ment, or between the components of a system are taken into account.

3. A structural perspective, where the organisation of a system or the structure of the
data processed by the system is used in the model.

4. A behavioural perspective, where the dynamic behaviour of the system and how it
responds to events is modelled. This was the main model approached when designing
the system.

3.3 Quality Management
Software quality management is concerned with ensuring that developed systems

should meet the needs of their users, perform efficiently and reliably while also being
delivered on time and within budget.

The relationship between the quality of a product and the organisation responsible
for the development of that product is multidimensional. According to Schulmeyer 2007,
this relationship depends upon many factors such as the business strategy and business
structure of the organisation, available talent and resources needed to produce the product.

Minimising documentation and any process that doesn’t encompass the development
of code is a directive followed by agile methods of software engineering, where the team’s
synergy and communication are emphasised. Common practices in agile development,
such as refactoring (restructuring internally a chunk of code without altering its external
behaviour) and test-driven development (Subsection 3.6.2) are used to achieve a high code
quality.

3.3.1 Software Quality

The quality of a product is well established in the manufacturing industry. Parting
from the premise that products could be clearly specified and procedures set up to assert
if the product conforms to those specifications, with some tolerance allowed, a definition
of quality was then created. However, in the software domain, the sharpness in checking
against those tolerances does not exist, as stated by Ian 2015.

30 Chapter 3. Theoretical Background Review

ISO/IEC 25010:2011 2011 defines the following eight product qualities:

• Functional Suitability: measures if a set of functions covers and facilitates the
accomplishment of specified tasks and objectives, besides providing the correct results
with the needed degree of precision.

• Performance Efficiency: measures the response and processing times and the
amounts/types of resources used by a product system when performing its functions.

• Compatibility: a product can perform its functions efficiently while sharing a com-
mon environment with other products and exchange/use information in a cooperative
manner.

• Usability: degree to which a product can be easily used and understood by people
with wide range of personal characteristics.

• Reliability: a product system can be accessed and operated despite ongoing faults
and can recover from them.

• Security: the ability of a system, product or component to prevent unauthorised
access to, or modification of sensitive data.

• Maintainability: the ease to add new functionalities to the system and modify some
component with minimal impact over other components, as well as the effectiveness
of test criteria that can be established.

• Portability: degree to which a product can replace another software product with
the same purpose in the same functionality, while efficiently adapting to evolving
hardware and software.

Aiming at writing a more readable code, best practices were pursued. The most
common coding best practices and conventions are listed below:

• Code consistency: when a style or convention is chosen at the beginning of
implementation, it must be adopted for the entire code.

• Indentation and spacing: it increases code readability and maintainability, since
what is written becomes clearer.

• Function grouping: same function with different input parameters should be
grouped together without separating blank lines, in every other case a blank line
should be added.

3.3. Quality Management 31

• Naming: Camel case (capitalisation of the first letter of each word, except for the
first one, e.g., camelCase) should be used for module names, and snake case (words
separated by underscores, e.g., snake_case) should be used for module attributes,
functions, macros and variable names.

• Commenting: should be avoided when the subject of comment is too obvious.

• Refactoring opportunities: action of rewriting internal organisation of code with-
out interfering with external behaviour (e.g., refactor unnecessary multi-nested
logic).

• DRY principle: Don’t Repeat Yourself, to avoid code duplication and information
repetitiveness.

• Folder organisation: big files should be shrunk into smaller ones and separated
into their correspondent folders.

• Pitfalls: such as lines of code used for debugging should be removed from the
production code (e.g., console logging).

3.3.2 Software Quality Assurance & Control

Often confused with Quality assurance, quality control is the process of counteract-
ing the decay in quality during software evolution. Understanding that a software must
change throughout the years, a continuous quality control must be applied. Quality control
is inside the scope of Quality assurance.

SQA is the collection of support activities and functions used to supervise and
control a software project so that specific objectives are achieved with the desired level of
confidence. It establishes guidelines for quality control to ensure the software withholds
the integrity of its functionalities. Quality assurance is determined via consensus of the
entire development team.

Continuous improvement processes is, currently, a standard approach for process-
oriented quality standards such as the ISO 9001 [ISO 9001:2015 2015]. A popular model
of continuous improvement is the PDCA cycle (Figure 3), it enables an organisation to
ensure that its processes are adequately resourced and managed.

The name comes from stages of the cycle: Plan, Do, Check and Act. In the Plan
phase, a plan is developed to improve the current state of the process, then the plan is
implemented with sufficiently few lines of code in the Do phase. In the Check phase, the
results are evaluated and, if succeeded, implemented for all processes in the Act phase.

Normally, quality assurance processes include software testing (Section 3.4), with
verification and validation of code, software configuration management (Section 3.5), for

32 Chapter 3. Theoretical Background Review

Figure 3 – PDCA cycle.

Source: Wagner 2005.

keeping track of modifications, and quality control. These components can be seen in
Figure 4. It can be concluded that quality assurance is a managerial tool oriented toward
preventing defects, whereas quality control is a corrective tool designed to detect and fix
them.

Figure 4 – Quality assurance components.

Source: Lewis 2005.

As mentioned in the beginning of this subsection, all softwares tend to undergo
some changes as time evolves, and that process is called software evolution. Hardware,
user requirements, market, technologies, everything changes; and the modifications that
goes along with these changes must be made with awareness of constant transformation.

Tight deadlines, low budget, inexperienced developers, poor team communication
can all end up blurring that state of awareness, with direct effects on overall quality.
Previous code being copied over, workaround to fix problems instead of solving them, these
bad practices degrade the code while generating many bugs that reduce maintainability,
reliability and performance efficiency.

To hinder the previously alluded behaviour, continuous improvement in product

3.4. Software Testing 33

level is imperative. Deissenboeck et al. 2008 proposed the loop shown in Figure 5 using
the same analogy of the PDCA cycle (Figure 3) to describe the quality control process.

It begins by defining the product goals and from that, a quality model is used to
specify the quality requirements for the project. Following those requirements, developers
build a software product which is then passed to the SQA team, or developers themselves,
which by means of reviews, tests and analyses, check if the specified quality requirements
are met. Lastly, the results are introduced back into the quality model. Any deviation
from the product goals is included in development as the cycle continues.

This project focused on code reviews by another developer every time new code
was pushed to the repository. If both CI/CD pipelines (explained in Subsection 3.7.5.1)
and peer review pass, the new code can be merged into the master code (main working
version).

Figure 5 – Quality control loop.

Source: Wagner 2005.

3.4 Software Testing
Software testing is a known strategy for risk management. With the objective of

verifying and validating the raised functional requirements, such that code and software
design requirements are met, it aids to ascertain whether all phases of the software
development life cycle are fulfilled. Less complexity is needed if conducted continuously
throughout the development process. The most common testing techniques are presented
in the following items:

• Black-box (Functional): used to test the system’s functionality by providing an

34 Chapter 3. Theoretical Background Review

input and observing the output. In this type of testing, no information about the
internal structure is given, as it is seen as a “black box”. A drawback is that internal
errors are not perceived, even though the output might be consistent. A major
advantage of black-box testing is to make sure that the system do what it is supposed
to do, in other words, if the requirements are met.

• White-box (Structural): this testing technique is aimed at highlighting flawed logic
paths in the internal structure of the system, focusing in the written code. On the
other side, this test does not verify any specification or detects any data-sensitive
errors.

• Grey-box (Hybrid): a combination of black-box and white-box testing, it provides
both advantages of detecting internal errors as well as system specifications. It
can also eliminate ambiguous tests, reducing effectively the number of tests to be
implemented.

• Regression: it approaches by reapplying a set of test every time the code changes,
in order to ensure that new modifications will not affect the former functionality. It
continuously maintains and improves quality.

• End-to-end: used to verify the whole application as if it were in production state.
The same environment settings should be utilised, such as databases and hardwares.

Lewis 2005 explains that the development life cycle has three test levels: unit,
integration and system tests. At the unit testing phase, the system is decomposed into
components, which are classes for object oriented languages andmodules for other languages
such as the one used in this project. These modules are the smallest building blocks that
can be tested, they describe its functionality against the module specification.

In test-driven development, these unit tests are written first, then the module itself
is implemented based on the test. Unit tests avoid large modifications that break the
system, as it checks every change that could break an existing test. They are commonly
developed as white-box tests when verifying the module’s consistency and black-box tests
to encounter defects to a greater extent.

Code examinations are common in unit testing, a process known as code review.
Two types are usually associated: code walkthroughs and inspections. In a walkthrough,
the tester presents its code to a review team and lead an informal discussion where the
main subject is finding faults in the code and not the coder itself. Code inspections are
similar to walkthroughs, but are driven with more formalities and steps to be followed;
both of them focus on the written code, not the programmer. Inspections are an efficient
solution to spot early faults in the code development and are considered best practices.

3.5. Configuration Management 35

With the unit tests sufficiently satisfied, integration testing with the rest of
the system can be initialised. Pfleeger e Atlee 2009 exposes several strategies to achieve
integration, i.e., bottom-up, top-down and sandwich integration.

Bottom-up integration begins with tests from the lowermost component (general-
purpose routines, e.g., input and output functions) and builds up to the top-level programs,
until all components are included, as was approached in the development of the present
project. An disadvantage is that the topmost components are usually more relevant and
are the last to be implemented.

The top-down integration is basically the reverse of bottom-up, with the drawback
of generating multiple mock data. Sandwich integration combines both bottom-up and top-
down strategies with the middle layer as target. This strategy allows an early integration
in the testing process.

Completing the integration phase, the system is practically finished and its tests
can be implemented to check against specified functionality. Supposing that the customer
makes the system test, it is then called as acceptance test.

3.5 Configuration Management
It is important to have all assets secured and available in a controlled and reliable

repository. Code management offers tools and processes to manage source code and all the
resulting artefacts that make up a system, called configuration items. Good source code
management allows long-term developments along with quick emergency fixes [Aiello e
Sachs 2010]. Non-effective source code management processes may result in major outages,
unnecessary defects and wasted time doing the same work over again.

Configuration management is profitable for both individual and team projects, as
one person may forget what changes have been made and several developers might work
at the same time on a software system in the same place or across the world. Conforming
to Ian 2015, the configuration management of a software product involves the four closely
related activities below:

1. Version control: involves keeping track of the multiple versions of system compo-
nents and ensuring that changes made by different developers do not interfere with
each other.

2. System building: process of assembling program components, data, and libraries,
then compiling and linking these to create an executable system.

3. Change management: involves keeping track of requests for changes to delivered
software from customers and developers, managing costs and impacts of making

36 Chapter 3. Theoretical Background Review

these changes and deciding if and when the changes should be implemented.

4. Release management: involves preparing software for external release and keeping
track of the system versions that have been released for customer use.

Common terminologies in code management can be seen in Table 1.

Table 1 – Code Management terminology.

Term Description

Branching The creation of a new codeline from a version in an existing codeline.
The new codeline and the existing codeline may then develop independently.

Codeline A set of versions of a software component and other
configuration items on which that component depends.

Configuration (version) control
The process of ensuring that versions of systems and components are
recorded and maintained so that changes are managed and all versions
of components are identified and stored for the lifetime of the system.

Merging
The creation of a new version of a software component by merging
separate versions in different codelines. These codelines may have
been created by a previous branch of one of the codelines involved.

Repository A shared database of versions of software components and meta-
information about changes to these components.

Version An instance of a configuration item that differs, in some way, from other
instances of that item. Versions should always have a unique identifier.

Workspace A private work area where software can be modified without affecting
other developers who may be using or modifying that software.

3.6 Methodology

This section exposes the main methodologies used during project development in
order to increase the organisational level and build a solid foundation for the application
to evolve.

3.6.1 Agile software development

Design and implementation are the central activities in the software process when
approaching the development with an agile intent. Other activities, such as requirements
elicitation and testing, are incorporated into design and implementation. These agile
methods allow the development team to focus on the software itself rather than on its
design and documentation. They are best suited to application development where the
system requirements usually change rapidly during the development process [Cha, Taylor
e Kang 2019].

3.7. Technologies 37

3.6.2 Test-driven development

Test-driven development is a discipline of design and programming where every
new line of code is written in response to a test implemented just before coding. As the
cycle shown in Figure 6 progresses, the program grows into form and the design evolves
simultaneously.

The first step is to identify the increment of functionality that is required, which is
usually small and implementable in a few lines of code. A test is written for this functionality
and implemented as an automated test, meaning that the test can be executed and will
report whether it has passed or failed. At the beginning of every cycle, the intention is for
all tests to pass except the new one, which is “driving” the new code development. Then
the functionality is implemented and the existing code is refactored to improve it.

Figure 6 – The test-driven-development step cycle: design a failing test, implement mini-
mum code to pass the test and improve the design via refactoring.

Source: Jeffries e Melnik 2007.

3.7 Technologies
This subsequent section addresses the technologies approached in the Kartrak

Laboratory development.

3.7.1 Phoenix

Phoenix is a web framework written in Elixir with high developer productivity and
high application performance, providing libraries and a standard way to build and deploy
web applications into the web.

A strong functionality of Phoenix is Channels, a real-time layer that uses Web
Sockets as a transport protocol, enabling a back and forth connection between client

38 Chapter 3. Theoretical Background Review

and server. Vastly used in telecommunications, it leverages the Erlang Virtual Machine,
allowing it to handle millions of concurrent connections [Phoenix 2016].

3.7.2 Elixir

Elixir is a modern, dynamic, functional, concurrent language that allows scalable
and maintainable applications to be built [Elixir 2011]. Built on top of Erlang, it uses
the Erlang VM (BEAM), known for running low-latency, distributed and fault-tolerant
systems. Elixir’s pragmatic syntax and built-in support for meta programming can highly
increase productiveness.

Another advantage is the use of supervisors to manage execution faults. Said
supervisors monitor other processes and always put the system in a working state in case
an error is raised, thus creating an hierarchical process structure called supervision trees.
They provide fault-tolerance and encapsulate the application’s beginning and ending.

It also has an interactive mode named IEx, a command-line interface where the
developer can type any Elixir expression and get its result. It proved to be extremely
useful in this project when debugging and testing implemented functions and expected
behaviour after a request is made. Any data can be outputted and checked if its value is
consistent.

3.7.2.1 Functional Programming

Functional programming is a paradigm that values immutability, first-class functions,
referential transparency, and pure functions. In Elixir, all data is immutable, which means
that their values are never modified, only transformed [Thomas 2018]. Any function that
transforms data will return a new copy of it.

According to Halvorsen 2018, one of the most characteristic patterns of functional
programming is composition. A complex code is divided into smaller and decoupled
functions, then its full behaviour is recreated by chaining these functions together. That
increases the code maintainability because smaller functions reduce cognitive load and are
easier to work on.

3.7.3 PostgreSQL

PostgreSQL is a powerful, open source object-relational database management
system that uses and extends the SQL language combined with many features that safely
store and scale the most complicated data workloads [PostgreSQL 1996]. Custom data and
index types are allowed to be defined, that is convenient as many custom states describing
a specific attribute are indispensable.

3.7. Technologies 39

A database is an organised, machine-readable collection of symbols, to be interpreted
as a true account of some enterprise. A database is machine-updatable as well, and so
must also be a collection of variables. A database is typically available to a community of
users, with possibly varying requirements [Rothwell 1992]. It is where all persistent data
pertinent to the project is stored.

3.7.4 GraphQL

GraphQL is a data query and manipulation language for APIs developed internally
by Facebook in 2012 and open-sourced in 2015. It allows the data structure to be defined
as the project needs, and the server returns only the data requested.

Each GraphQL module contains a declarative schema that defines the syntax for
queries that the module supports, as well as the attributes that can be returned. It supports
reading, writing (mutating) and subscribing to data changes (realtime updates) [GraphQL
2015].

While REST APIs require loading from multiple URLs, GraphQL APIs get all
data the application needs in a single request, making apps using GraphQL fast even on
slow mobile network connections.

3.7.4.1 Absinthe

Absinthe is the GraphQL toolkit for Elixir, an implementation of the GraphQL
specification built to suit the language’s capabilities and idiomatic style. Its functionality
is understood as two broad areas: defining schemas and executing documents.

A schema defines the structure and relationships between data entities, as well as
the available queries, mutations, and subscriptions. A GraphQL document can be any
standard GraphQL query, mutation, or subscription; it can be analysed for its complexity
and be rejected if it’s unsafe/too expensive. Authentication and authorisation strategies
can be integrated with an Absinthe context, which provides shared values to a given
document execution, such as the current user of a given request [Absinthe 2017].

3.7.5 Git

Git is an open source version control system suited for any size of project. When
multiple people are concurrently developing and modifying files from a project, Git is an
excellent source code management tool that helps get track of what changes were made.

Nearly all operations are performed locally, giving Git a huge speed advantage on
centralised systems that constantly have to communicate with a server somewhere. As
it was built to work on the Linux kernel, it can effectively handle large repositories with
high performance [Git 2005].

40 Chapter 3. Theoretical Background Review

3.7.5.1 GitLab

GitLab is a fully integrated software development platform, not only for hosting
code repositories with version control, but also for tracking bug reports and issues with the
Issue Tracker. It has a tool for software development utilising continuous methodologies,
such as: continuous integration (CI), delivery (CD) and deployment (CD) [GitLab 2014].
It can be defined a CI/CD pipeline for the pushed chunk of code to pass in order to build,
test and validate the code changes before merging them into the main branch.

3.8 Quality Control of Concrete
There exists a vast range of tests regarding the quality of concrete. A few of them

are:

• Tests on hardened concrete

- Compressive strength (cylinder or cube);

- Tensile strength;

- Density;

- Absorption;

- Permeability;

- Resistance.

• Tests on fresh concrete

- Workability (e.g., slump test);

- Air content;

- Setting time;

- Wet analysis.

In spite of existing several possible tests, in practice over 90% of all routine tests
on concrete are concentrated on compression tests and slump tests [Day, Aldred e Hudson
2013]. These tests aim at establishing whether the concrete has attained a sufficient
maturity (for stress testing or to be sent in a shipment), to ascertain that it is satisfactory
for its purpose and to detect quality variations.

The primary objective of standard cured specimens is to assure that the concrete
mixture delivered at the job site is able to meet the contract specifications. The potential
strength and variability of the concrete can be established only by specimens made, cured,
and tested under standard conditions, e.g., prolonged mixing when shipping concrete will

3.8. Quality Control of Concrete 41

cause slump loss and result in lower workability [Committee 2011]. The two most common
concrete tests are presented in the following subsections.

3.8.1 Slump Test

One of the main characteristics that influences in the workability of concrete
is the consistency, construction site and shipping characteristics. Workability can be
understood as a quality of concrete not an inherent characteristic. The slump test is a way
of determining the workability (or consistency), which relates with the mixed concrete
mobility and the cohesion between its components or, in other words, the water/cement
ratio.

The test (Figure 7) consists of filling a conical mould with fresh concrete in 4 layers
at the time, tamping each layer and slowly removing the mould. The test result, given in
millimetres, is obtained by measuring the height difference between the mould and the
specimen being tested.

Figure 7 – Slump test procedure.

Source: [Quora 2018].

3.8.2 Compressive Strength Test

After the process of moulding and curing of specimen samples, the batch is trans-
ported to a certified laboratory responsible for rupturing. The specimen goes through a
capping procedure before being ruptured, as it must have a uniform surface when placed
in the test machine.

The machine applies a constant increasing load on the specimen body, until it
reaches a rupture point. The maximum load value is given in newtons (N) and used to
calculate the compressive strength factor (fck) of the concrete, in megapascals (N/mm2 or
MPa). The characteristic compression resistance of the concrete is utilised in the structural
calculation.

42 Chapter 3. Theoretical Background Review

3.8.3 Standardisation Review

As commented before, a set of regulations is defined by ABNT as an effort to
standardise procedures and impose a minimum degree of quality and security for whatever
purpose the concrete shall be destined. This rule set was contemplated in the application’s
development so as to prevent future unnecessary modifications to assure the code is abiding
by the standards. The main consulted regulations are listed below.

3.8.3.1 NBR 12655:2015

This Brazilian Standard covers the structural use of Portland cement concrete, a
material composed by the homogeneous mixture of cement, fine and coarse aggregates,
water and non-speciality grout material. Concrete can be mixed on site, ready-mixed or
produced in precast plant. This Standard also establishes requirements for properties of
fresh and hardened concrete and their verification; composition, preparation and control
of concrete; and receipt and acceptance of the concrete.

3.8.3.2 NBR 5738:2015

This Standard prescribes the procedure for moulding and curing cylindrical and
prismatic concrete test specimens. Some of them are: the height should have the doubled
value of diameter; the mould must be made of steel or non-absorbent material; how
many strokes are needed for each layer in the slump test, which depends on the specimen
dimensions.

3.8.3.3 NBR 5739:2019

This Standard specifies the compression test method for cylindrical specimens of
concrete moulded in accordance with ABNT NBR 5738. A test machine classification is
exposed as well as how to calculate the compressive strength factor and what data should
be in the result report, such as: specimen identification, moulding date, curing age, rupture
test date, specimen dimensions, capping type, test machine class and compressive test
result (fck). The characteristic compressive strength calculation is shown in the Equation
3.1 below:

fck = 4 · F
π ·D2 , (3.1)

where fck is the compressive resistance, given in megapascals (MPa); F is the
maximum load reached, expressed in newtons (N); and D is the specimen’s diameter,
given in millimetres (mm).

43

4 Project Approach

4.1 Current State
Currently, the Kartrak platform has no control over the specimens life cycle,

whereabouts and test results; in other words, there is no quality control supervision over
the early stages of the concrete mixture. Therefore, a web application was proposed to
tackle this problem. The following advantages could be obtained:

• Ease in the access of specimen data as it is centralised in a single application;

• Assuring that all concrete shipments meet the regulation and are up-to-date with
the current standardisations defined by ABNT;

• Increased organisation when scheduling ruptures and viewing test results;

• Data visualisation;

• More control over the specimen’s current location and state;

• Access of a great number of packages in the web, which allows a faster addition of
new functionalities and speeds up the application development;

• Data is stored in databases, assuring data consistency and standardisation;

• Overall enhancement in concrete quality control.

4.1.1 Kartrak’s Web Platform

As described briefly in Chapter 2, Kartrak was developed with high portability,
flexibility and easy maintainability in mind. This kind of architecture provides a scalable,
flexible and comprehensive environment for the new application to be built.

It makes use of three main databases, one for the automation platform (Cloud), one
for corporations, clients and user authentication (ERP) and one for receipts and invoices
related data (ERP-invoice). Kartrak Laboratory will be inside the automation platform as
a new feature and hence new tables were proposed to be included in the Cloud database.

The current web platform is implemented with Elixir/Phoenix and makes use of
Postgres adapters for databases, so the same technologies were sought. A similar code
design was adopted in order to maintain consistency between applications and increase
maintainability and readability for other developers who might continue this work. Some
screens of the platform are shown in Figure 8.

44 Chapter 4. Project Approach

Figure 8 – Kartrak web platform screens.

(a) Kartrak Automation platform.

Source: [Kartrak 2015].

(b) Kartrak Enterprise Resource Planning platform.

Source: [Kartrak 2015].

Concrete is the main material for several structures in urbanised areas, with a great
number of them being home to many people. A rigid quality supervision and control must
be embraced and pursued; the probability of a disaster leading to many casualties due to
poor quality concrete is huge, therefore high standards for quality level must be assured
to cover all those risks.

4.2 Planned Solutions
This section contains the planned solutions to assess and solve the issues debriefed

in the beginning of this chapter. The following list summarises the topics of this section as
well as the steps taken to develop the project:

1. Software modelling

2. Quality Management

3. Kartrak Laboratory development plan

4. Methodology

Firstly, the software must be modelled raising its requirements and defining database
model and technology stack. A continuous improvement of quality is then conceived, keeping
in mind the specified requirements. With the foundation for a high quality software in a
solider state, a development strategy is plotted to enhance the system’s overall quality and
abide by the specifications. Lastly, understanding what needs to be done, the methodologies
approached to comprehend how it will be done is exposed. All modal screens shown in
this chapter were made by the UI/UX team.

4.3. Software Modelling 45

4.3 Software Modelling

The intent of this new feature is to supervise the whole range of locations and
operations regarding the life cycle of a specimen. Based on Section 3.2, Figure 9 represents
an abstraction of a possible specimen flow.

Figure 9 – A common location flow of the specimen, from creation to rupture.

Source: Author.

Supposing a company has many batching plant branches where the concrete is
mixed and has its head office containing the test laboratory located elsewhere, the specimen
must be collected after curing either in the branch or construction site and taken to the
headquarters, where the compression test will rupture and end the specimen cycle.

The present concrete_shipments table has a proof_body attribute that flags true
when specimen samples are required. Right after a shipment is authorised in the Automation
platform and sent to deliver the concrete mixture, specimens are created automatically,
given that proof_body = true, and the user is taken to the Laboratory feature, where
the modal screen shown in Figure 10a pops up. The number of specimen rows listed will
depend on default settings specified in the modal shown in Figure 10c.

After the period of curing, the specimen batch must be collected and shipped to
the main office laboratory and, upon retrieving the specimen, the user registers a collection
for that batch by using the modal contained in Figure 10b. To contemplate the case where
a specimen is not collected due to any reason, an observation field is made available for
justification. At this point, the batch of specimens has reached its final destiny and will
be taken to the compression test machine. The result data is inputted into the rupture
modal “Força (N)” field, presented in Figure 11.

46 Chapter 4. Project Approach

Figure 10 – Kartrak Laboratory modal screens.

(a) Specimen registration modal.

Source: Kartrak.

(b) Specimen collection modal.

Source: Kartrak.

(c) Corporation default settings modal.

Source: Kartrak.

4.3.1 Requirements

Based on the above mentioned and reunions with the team, requirements for the
application were specified. Considering the specimen cycle presented in Figure 9, the
following requirements were raised:

4.3. Software Modelling 47

Figure 11 – Rupture modal.

Source: Kartrak.

• CRUD zones for each stage of the specimen life cycle:

- Creation;

- Collection;

- Rupture.

• Provide default settings CRUD operations for a company to auto-fill data in routine
tasks;

• Design tests to cover most of the backend code;

• Create a shipment and collection overview page that displays specimen-related data;

• Display ruptures schedule;

• Generate moulding reports and compression test certificate.

48 Chapter 4. Project Approach

After implementing CRUD zones for the specimen and its related operations, the
default settings table for a corporation was planned. A corporation can have its own default
diameter and height for moulding specimens and number of samples per age of specimen,
which will be used in the automatic specimens batch creation.

Due to a tight deadline, most of the queries to meet the requirements of retrieving
data to be displayed in overview pages of collections1, shipments2 and ruptures3 couldn’t
be implemented in this software release.

4.3.2 Database

In order to keep persistence of specimen data, four tables were added to the current
Cloud PostgreSQL database. The specimen and rupture tables had its rows chosen based
on ABNT standard NBR 5739:2018, as exposed in Section 3.8.3.3. The associations and
cardinalities were defined:

• A specimen has_one collection and vice-versa;

• A specimen has_one rupture and vice-versa;

• A specimen belongs_to a concrete shipment;

• A concrete shipment has_many specimens;

• A corporation has_many specimen settings (number of samples for each age).

All tables will be added in migration files, except for the corporations table which
already exists, in such case the table should only be altered by including the new default
settings fields. A simplified view of the Laboratory database can be seen in Figure 12 of
the next chapter.

4.3.3 Tech stack

To enforce acceptability, the same technologies from the Automation platform will
be used. The communication between backend and a future frontend will be developed
and tested through a GraphQL API. The technologies pursued were:

• Elixir & Phoenix will be the framework from the server side of the application.

• PostgreSQL as the main relational database management system.
1 See Figure 14 in Annex A.
2 See Figure 15 in Annex A.
3 See Figure 16 in Annex A.

4.4. Quality Management 49

• Absinthe will serve as a handler for GraphQL requests and responses.

• Credo4, a static code analysis tool for the Elixir language with a focus on code
consistency and teaching was used for linting. It exposes refactoring opportunities
in the code, too complex code fragments, warn about common mistakes, show
inconsistencies in scheme nomenclature and help to enforce a desired coding style. It
will be used to increase code readability and maintainability.

• ExCoveralls5 is an Elixir library for reporting test coverage statistics as console
output using Erlang’s cover to generate coverage information.

• ExMachina6 simplifies the generation of test data. When testing, many attributes
must specified to fulfil validations, even if there is no relation with the test in hand.
It offers a solution to set up various models and their associations without having to
rewrite the creation logic.

• GitLab was used to manage the project and for code configuration and version
control.

4.4 Quality Management
This section encloses the quality planning to be followed throughout the develop-

ment. Firstly, in conformance to the loop shown in Figure 5, the product goals are hereby
defined:

• Implement mostly all backend functionality for the Laboratory application;

• Integrate frontend and backend of Laboratory through GraphQL API requests;

• Test at least 80% of the code;

• Test as many use cases as possible.

The quality model proposed has three different orientations: Product Operation,
Product Revision and Product Transition; as conceptualised in the McCall, Richards e
Walters 1977 report. These characteristics identify quality factors as follows:

• Product Operation influences the extent to which the specifications are fulfilled.

- Correctness: if the application actually does what it is supposed to do;
4 https://github.com/rrrene/credo
5 https://github.com/parroty/excoveralls
6 https://github.com/thoughtbot/ex_machina

50 Chapter 4. Project Approach

- Reliability: guarantee that data requested is consistent and uniform for all
outputs;

- Integrity: only authorised users can access the app.

• Product Revision enhances the ability to modify the software in future due to
user requirements.

- Maintainability: keeping coding best practices a priority;

- Flexibility: easily changeable, not much effort must be made to change a section
of the code;

- Testability: composition of modules that are easy to test.

• Product Transition enables the software to adapt in different environments.

- Portability: if the application can run in other hardwares;

- Reusability: reusing code excerpts from the Automation software;

- Interoperability: how well all components work together.

With the quality model defined, a quality plan consisting of reviews and tests is
elaborated to assess which part of the application will be inspected and tested. The reviews
will be done on the folder/file structure, to assess maintainability; all API schemas must
be inspected to attain a higher level of maintainability, reusability and correctness.

Automated tests will be developed due to the tight deadline of the project. Unit
tests for all API resolvers were developed so as to test as many situations as possible.
Manual tests will be executed to assure connections between the GraphQL API and the
backend functionalities are stable and have no data loss.

Lastly, end-to-end tests are designed to ascertain that all modules are transforming
and returning the correct data as well as the entire flow runs fluently. The specimen flow
to be tested will be to create a specimen batch, updating it with correct data, collect and
then rupture the specimen.

4.5 Kartrak Laboratory development plan
The raised requirements in the beginning of this chapter will be met by building

the foundation blocks of the application: CRUD zones, which were created for each
phase of the specimen life cycle. Once the fundamental functionality of the system is
concluded, the queries to retrieve general information necessary to display data on reports
are implemented.

4.5. Kartrak Laboratory development plan 51

4.5.1 Create, Read, Update and Delete zones

4.5.1.1 Default Settings

Keeping in mind that a concrete batching plant can send multiple shipments in a
single day, routine operations might share data patterns such as specimen diameter and
height — both measured in millimetres — which comes from the moulding equipment,
is usually the same. A corporation may also follow a sampling protocol stating that, for
example, two samples of three distinct curing ages (e.g., 3, 7 and 14 days) must be created
for every shipment, therefore a table containing all that repetitive data is stored in the
database so as to auto-fill those default values when requested.

4.5.1.2 Specimens

Sampling procedures, performed either by the shipment driver or an assistant
(attribute moulder_type), consist of moulding a number of specimens per age (specimen
batch) instead of a single specimen, therefore group operations must be executed so as
to keep track of the whole batch location. The parameter holding that information is
situation, which can have one of the following values and descriptions:

• :pendente: a specimen is created without a code;

• :na_filial: a specimen is moulded in the batching plant site;

• :na_obra: a specimen is moulded in the construction site;

• :na_matriz: a specimen is collected and received in the head office;

• :observation: a specimen is lost or broken (unknown location) and an observation
text is inputted when collected;

• :concluido: a specimen is ruptured and reaches its end of existence.

4.5.1.3 Collection

The collection modules will have the same implementation plan of the specimens,
with the difference of needing a function to update the specimen situation. The function
must inspect the attribute observation and, if a nil value is provided, the situation
changes to :observation; else it receives the value :na_matriz.

4.5.1.4 Ruptures

The rupture components will also share many resemblances with the other modules;
they need to update the specimen situation after the compression test is executed,
diverging only in the status being modified to :concluido.

52 Chapter 4. Project Approach

A clause to check whether a specimen has already been collected must be imple-
mented to avoid inconsistency. As explained in Section 3.8, a function to calculate the
compressive strength factor fck must be designed by providing a force value, in newtons.

4.5.2 Queries

The required return data from queries are listed for each overview page below.

Collections:

• Receipt number;

• Receipt data;

• Client name;

• Construction site address;

• Specimen situation.

• Filtering Options:

- Corporation;

- Time interval;

- Specimen situation.

Shipments:

• Start date;

• Concrete formula;

• Client name;

• Driver name;

• Shipment load volume;

• Specimen situation.

• Filtering Options:

- Specimen situation.

Rupture schedule:

• Specimen code;

• Concrete formula;

• Branch location;

• Specimen age;

• Specimen moulding date;

• Days left to rupture;

• Specimen rupture date;

• Specimen situation.

• Filtering Options:

- Today;

- Next 7, 15 and 30 days;

4.6 Methodology
As the project focus was in the software itself and only a short amount of time

(from a beginner developer perspective) was available, agile software development was
adopted. To make sure that the modules implemented had a secure ground of testing,
test-driven development was the chosen cycle of production.

Firstly, a macro understanding of the targeted problem is acquired, then the main
problem will be divided into smaller issues and each one individually assessed. Creating
tests prior to the actual implementation of the component aids in avoiding performance
holes in the overall functionality. The smaller modules were first designed and the system
was built on top of them, this type of approach corresponds to a bottom-up strategy, as
explained in Section 3.4.

53

5 Implementation and Testing

This chapter contains a description of the development needed to successfully solve
the problems explained in the beginning of this chapter.

5.1 Development environment
The author’s notebook running Ubuntu 16.04 LTS (Xenial Xerus) as the operating

system was chosen as the environment for the application to be built. Below is a list of
the installed softwares necessary to build a default application:

• Visual Studio Code was adopted as the source code editor, for its smart syntax
highlighting and autocompletion features as well as built-in support for JavaScript
and extensions for Elixir and Git;

• Elixir, the functional language optimised on top of Erlang.

• Hex, a package manager necessary to get a Phoenix app running by installing
dependencies needed during the development.

• Phoenix as the web framework for the backend to be built;

• Node.js, with the purpose of running webpack-dev-server, so that the browser can
be updated automatically every time a JavaScript file has changed;

• pgAdmin 4 for managing the PostgreSQL database;

Phoenix works within the ordinary structure of a regular Elixir application. One
can install Phoenix and Hex package manager by running:

(1) $ mix local.hex –force, (2) $ mix local.rebar –force and (3) $ mix
archive.install phoenixframework_link1. All necessary dependencies are fetched and
installed in this step. Now, a new project named “Kartrak Laboratory” could be boot-
strapped using the command $ mix phx.new kartrak-laboratory and phoenix would
generate the directory structure and all the necessary files for the application scaffold.

5.2 Database tables and model creation
Since Kartrak Cloud Automation application already has its database and tables

created, that step was skipped and the git repository containing the source code was
1 https://github.com/phoenixframework/archives/raw/master/phx_new.ez

54 Chapter 5. Implementation and Testing

cloned running the command $ git clone git@gitlab.com:repositoryName.git and
all tables were created using $ mix ecto.setup, based on Automation’s migration files.
Migrations are used to modify the database schema over time.

As discussed in Chapter 4, five tables were created:

• specimens

• collections

• ruptures

• corporations

• specimen_settings

In addition to the tables cited above, the simplified database shown in Figure
12 also has a concrete_shipments table included, which comes from the Kartrak Cloud
Automation database. Its existence is to contemplate the association between specimens(S)
and concrete_shipments (CS) during explanation, which is that a specimen belongs_to
a concrete shipment and a concrete shipment has_many specimens.

Figure 12 – Simplified Kartrak Laboratory database diagram and its cardinalities.

Source: Author.

To avoid repetitiveness, only the specimen and collection models were explained.
The codes exposed in 5.1 & 5.2 are the migration files, whereas codes 5.8 & 5.10 are the
context and schema files, respectively, for the specimen model and codes 5.9 & 5.11 refers
to the collection model.

5.2. Database tables and model creation 55

5.2.1 Migrations

Listing 5.1 – Specimen migration file.
1 defmodule KartrakAutomation . Repo . Migrat ions . CreateSpecimens do
2 use Ecto . Migrat ion
3
4 def change do
5 SpecimenSituationEnum . create_type ()
6 SpecimenMolderType . create_type ()
7
8 c r e a t e t a b l e (: specimens) do
9 add : code , : i n t e g e r

10 add : age , : i n t e g e r , n u l l : fa l se
11 add : height , : decimal , n u l l : fa l se
12 add : diameter , : decimal , n u l l : fa l se
13 add : molder_type , SpecimenMolderType . type ()
14 add : molder_id , : i n t e g e r
15 add : s i t u a t i o n , SpecimenSituationEnum . type () , d e f a u l t : " pendente "
16 add : concrete_shipment_id , r e f e r e n c e s (: concrete_shipments , on_delete : : nothing) ,

n u l l : fa l se
17
18 timestamps ()
19 end
20
21 c r e a t e (index (: specimens , [: concrete_shipment_id]))
22 end
23 end

Listing 5.2 – Collection migration file.
1 defmodule KartrakAutomation . Repo . Migrat ions . C r e a t e C o l l e c t i o n s do
2 use Ecto . Migrat ion
3
4 def change do
5 c r e a t e t a b l e (: c o l l e c t i o n s) do
6 add : observat ion , : s t r i n g
7 add : specimen_id , r e f e r e n c e s (: specimens , on_delete : : nothing) , n u l l : fa l se
8
9 timestamps ()

10 end
11
12 c r e a t e (unique_index (: c o l l e c t i o n s , [: specimen_id]))
13 end
14 end

In order to create a module in Elixir, the defmodule macro must be used. The
def macro is used to define functions in that module. Both files use the Ecto.Migration
behaviour, which is a module that provides many helpers for migrating the database.

Inside the change function, the table is created and its attributes and types are
defined. When an attribute consists of the enum type in Elixir, it’s defined as a list of
custom atoms, as shown in 5.3. Atoms are a data type that are greatly used in pattern-
matching [Laurent e Eisenberg 2016] and are often used to express the state of an operation,
by using values such as :ok and :error.

56 Chapter 5. Implementation and Testing

The null: false parameter is set to all obligatory attributes, preventing it from
being added with a null field in the database. To reference another table attribute, a
foreign_key is declared with the references(attrs) parameter, where attrs contains the
external table name and the behaviour to adopt when the referenced object is deleted. A
unique_index makes the attribute exclusive to the parent table.

Listing 5.3 – Kartrak Laboratory enum types.
1 import EctoEnum
2
3 defenum SpecimenSituationEnum , : specimen_situation_enum , [
4 : pendente ,
5 : n a _ f i l i a l ,
6 : na_obra ,
7 : na_matriz ,
8 : observat ion ,
9 : conc lu ido

10]
11
12 defenum SpecimenMolderType , : specimen_molder_type , [: motor ista , : a s s i s t e n t e]
13
14 defenum SpecimenCappingType , : capping_type , [: r e t i f i c a c a o , : capeamento]
15
16 defenum SpecimenRuptureType , : rupture_type , [
17 : type_A ,
18 : type_B ,
19 : type_C ,
20 : type_D ,
21 : type_E ,
22 : type_F ,
23 : type_G
24]
25
26 # Machine c l a s s e s r epr e s en t the maximum a d m i s s i b l e v a l u e s f o r
27 # each r e l a t i v e error inheren t to the measurement system .
28 defenum TestMachineClass , : machine_class , [: c lass_05 , : c lass_1 , : c lass_2 , : c lass_3]

5.2.2 Context & Schema

Contexts are dedicated modules that expose and group related functionality, often
encapsulating patterns such as data access and validation. The intent is to build an
API that handles fetching, creating, updating, and deleting each model. Considering the
specimen model as an example, the Specimens context module will be the public API for
all specimen functionality in the system.

Web applications need some form of data validation and persistence, Ecto handles
this issue with its out of the box support for PostgreSQL. Ecto.Repo is the foundation
necessary to work with databases in a Phoenix application, it defines a repository. A
repository maps to an underlying data store, controlled by the adapter. This project uses
a Postgres adapter that stores data into a PostgreSQL database.

Following theDon’tRepeatYourself (DRY) principle, which states that duplication

5.2. Database tables and model creation 57

in logic should be eliminated via abstraction, the Crudry library was used. Crudry,
developed by an ECA student, is an elixir library for DRYing CRUD of Phoenix Contexts
and Absinthe Resolvers while also providing a simple middleware for translating changeset
errors into readable messages, as described in its repository2.

Aliases are used to shorten a module call, as an example, in the specimen context
(Code 5.8), instead of writing the entire path “KartrakLaboratory.Specimens.Specimen”,
one can use alias and simply call “Specimen”, enhancing the code readability.

Using Context.generate_functions(Specimen) will generate CRUD functions
for that schema (5.10), some of those functions are described below:

Listing 5.4 – List specimens.
1 # Fetch a l l specimen e n t r i e s in the database
2 def l i s t_spec imens () do
3 Repo . a l l (Specimen)
4 end

Listing 5.5 – Get specimen by ID.
1 # Fetch a specimen by pass ing i t s ID
2 def get_specimen (id) do
3 Repo . get (Specimen , id)
4 end

Listing 5.6 – Specimen creation.
1 # Recieves a map with the necessary a t t r i b u t e s and c r e a t e s a specimen .
2 def create_specimen (a t t r s) do
3 %Specimen {}
4 |> Specimen . changeset (a t t r s)
5 |> Repo . i n s e r t ()
6 end

Listing 5.7 – Specimen update.
1 # Updates an e x i s t i n g specimen by pass ing the Specimen s t r u c t .
2 def update_specimen(%Specimen {} = specimen , a t t r s) do
3 specimen
4 |> Specimen . changeset (a t t r s)
5 |> Repo . update ()
6 end

One way to pass arguments to a function is through the pipe operator “|>”. In
Code 5.7, for example, Repo.update/1 receives a changeset as parameter, which comes
through the pipe transformation above from function Specimen.changeset/2 that had
the specimen struct piped into it.

It’s clear that when mutating a model, the model’s struct must be piped through
the schema’s changeset first and just then the database is modified through Repo functions.
Changesets define the pipeline transformations a given data needs to undergo before it can
be used by the application. These transformations might include type-casting, user input
validation, and filtering out wrong parameters. The changeset is defined in the schema
module (5.10 and 5.11).

2 https://github.com/gabrielpra1/crudry

58 Chapter 5. Implementation and Testing

Both validations and constraints are turned into errors in case something goes
awry. The difference is that most validations can be executed without interacting with
the database and, therefore, are always executed before attempting to insert or update
the database entry. Since constraints rely on database and are always safe, validations are
checked before constraints. In case the changeset is not valid, an error will be raised and
the constraints are not even checked.

Ecto schemas are responsible for mapping Elixir values to external data sources,
as well as mapping external data back into Elixir data-structures. By default, a schema
will automatically generate a primary key named id of type :integer. The field macro
defines a field in the schema. Relationships to other schemas can also be defined. In the
specimen schema (5.10), for example, has_one associates one collection with the specimen
schema, whereas belongs_to creates a foreign_key to associate the specimen with the
concrete_shipment schema. Schemas are regular structs in the form presented below using
IEx :

1 iex> co l l ec t ion_example =
2 %C o l l e c t i o n {
3 type : : na_obra ,
4 molder_id : 1 ,
5 specimen_id : 1 ,
6 c o l l e c t e d _ a t : " 2019−09−18T11 : 2 7 : 2 4 Z"
7 }

Inside a module, private functions can be defined with defp and can only be
invoked locally. The final transformation pipe in the specimen changeset is a private
function dubbed null_code?, it has an arity3 of 2 (defp/2) and checks if a specimen has
the attribute code. If the given Specimen returns a code with nil value, it modifies the
situation attribute to “pendente” and updates the changeset. In any other case it returns
the changeset in pristine conditions.

It’s also observable that the function was defined two times; that is done in order
to prevent any changes to an invalid changeset. It’s achieved by pattern-matching the
key: value pair valid?: false with the changeset map. If a match happens, the unmodified
changeset is returned.

3 Number of arguments that a function can handle.

5.2. Database tables and model creation 59

Listing 5.8 – Specimen context file.
1 defmodule KartrakLaboratory . Specimens do
2 @moduledoc " " "
3 The Specimens context .
4 " " "
5
6 import Ecto . Query , warn : fa l se
7 r e q u i r e Crudry . Context
8
9 al ias Crudry . Context

10 al ias Dataloader . Ecto , as : DataloaderEcto
11 al ias KartrakAutomation . Repo
12 al ias KartrakLaboratory . Specimens . Specimen
13
14 Context . generate_funct ions (Specimen)
15
16 def data do
17 DataloaderEcto . new(Repo , query : &query /2)
18 end
19
20 def query (queryable , _args) do
21 order_by (queryable , : id)
22 end
23 end

Listing 5.9 – Collection context file.
1 defmodule KartrakLaboratory . C o l l e c t i o n s do
2 @moduledoc " " "
3 The C o l l e c t i o n s context .
4 " " "
5
6 import Ecto . Query , warn : fa l se
7 r e q u i r e Crudry . Context
8
9 al ias Crudry . Context

10 al ias Dataloader . Ecto , as : DataloaderEcto
11 al ias KartrakAutomation . Repo
12 al ias KartrakLaboratory . C o l l e c t i o n s . C o l l e c t i o n
13
14 Context . generate_funct ions (C o l l e c t i o n)
15
16 def data do
17 DataloaderEcto . new(Repo , query : &query /2)
18 end
19
20 def query (queryable , _args) do
21 order_by (queryable , : id)
22 end
23 end

60 Chapter 5. Implementation and Testing

Listing 5.10 – Specimen schema file.
1 defmodule KartrakLaboratory . Specimens . Specimen do
2 @moduledoc " " "
3 (S i m p l i f i e d) Specimen schema
4 " " "
5
6 use Ecto . Schema
7 import Ecto . Changeset
8
9 al ias KartrakAutomation . Shipments . ConcreteShipment

10 al ias KartrakLaboratory . {
11 C o l l e c t i o n s . C o l l e c t i o n ,
12 Ruptures . Rupture
13 }
14
15 schema " specimens " do
16 f i e l d : code , : i n t e g e r
17 f i e l d : age , : i n t e g e r
18 f i e l d : s i t u a t i o n , SpecimenSituationEnum
19 f i e l d : molding_date , : utc_datetime
20
21 belongs_to : concrete_shipment , ConcreteShipment
22 has_one : c o l l e c t i o n , C o l l e c t i o n , r e f e r e n c e s : : id , fore ign_key : : specimen_id
23 has_one : rupture , Rupture , r e f e r e n c e s : : id , fore ign_key : : specimen_id
24 timestamps ()
25 end
26
27 @doc fa l se
28 def changeset (specimen , a t t r s) do
29 specimen
30 |> c a s t (a t t r s , [
31 : code ,
32 : age ,
33 : s i t u a t i o n ,
34 : molding_date ,
35 : concrete_shipment_id
36])
37 |> v a l i d a t e _ r e q u i r e d ([
38 : age ,
39 : height ,
40 : diameter ,
41 : concrete_shipment_id
42])
43 |> fore ign_key_const ra int (: concrete_shipment_id)
44 |> null_code ?(specimen)
45 end
46
47 defp nul l_code ?(%{ v a l i d ? : fa l se } = changeset , _) , do : changeset
48
49 defp nul l_code ?(changeset , specimen) do
50 case specimen . code do
51 ni l −> put_change (changeset , : s i t u a t i o n , : pendente)
52 _else −> changeset
53 end
54 end
55 end

5.3. GraphQL API 61

Listing 5.11 – Collection schema file.
1 defmodule KartrakLaboratory . C o l l e c t i o n s . C o l l e c t i o n do
2 @moduledoc " " "
3 De f ine s the C o l l e c t i o n schema .
4 " " "
5 use Ecto . Schema
6 import Ecto . Changeset
7
8 al ias KartrakLaboratory . Specimen
9

10 schema " c o l l e c t i o n s " do
11 f i e l d : type , Col l ect ionType
12 f i e l d : co l l e c t ed_at , : utc_datetime
13 f i e l d : molder_id , : i n t e g e r
14 f i e l d : observat ion , : s t r i n g
15
16 belongs_to : specimen , Specimen , r e f e r e n c e s : : id , fore ign_key : : specimen_id
17
18 timestamps ()
19 end
20
21 @doc fa l se
22 def changeset (c o l l e c t i o n , a t t r s) do
23 c o l l e c t i o n
24 |> c a s t (a t t r s , [: type , : observat ion , : co l l e c t ed_at , : molder_id , : specimen_id])
25 |> v a l i d a t e _ r e q u i r e d ([
26 : type ,
27 : co l l e c t ed_at ,
28 : molder_id ,
29 : specimen_id
30])
31 |> fore ign_key_const ra int (: specimen_id)
32 |> unique_constra int (: specimen_id)
33 end
34 end

5.3 GraphQL API

GraphQL APIs are organised in terms of types and fields, which runs in a single
endpoint. This endpoint will be used to view and alter data stored in the database through
queries and mutations.

The router implementation in 5.12 shows how incoming requests are parsed and
dispatched to the correct action, passing parameters as needed. After a request goes
through the pipelines, route paths or URLs are generated to access resources. With the
endpoint set up, all types, fields and operation, i.e., queries and mutations, related to a
model must be defined and imported in the schema file.

In order to execute some queries, the user must have a valid token in the header
to be authenticated. After a token has been successfully decoded into a user name, the
authenticated user name is added to the Absinthe context, which allows resolvers to perform

62 Chapter 5. Implementation and Testing

operations with this information, such as verifying data access permission. Rajska4, created
by an ECA alumnus, is an elixir authorisation library for Absinthe that provides many
middlewares to handle user permissions.

Once the user establishes a connection, the Absinthe library handles the oncoming
GraphQL queries and mutations requests by redirecting them to the specified resolvers. Non-
authenticated users are allowed to perform login mutations only. The user authentication
system was already implemented by another developer.

Listing 5.12 – Simplified GraphiQL endpoint implementation.
1 defmodule KartrakAutomationWeb . Router do
2 use KartrakAutomationWeb , : r o u t e r
3
4 p i p e l i n e : ap i do
5 plug : accepts , [" j son "]
6 end
7
8 p i p e l i n e : graphql do
9 plug KartrakAutomationWeb . AbsintheContext

10 end
11
12 scope " / " do
13 pipe_through [: api , : graphql]
14
15 forward " / g r a p h i q l " , Absinthe . Plug . GraphiQL ,
16 schema : KartrakAutomationWeb . Schema ,
17 i n t e r f a c e : : playground ,
18 context : %{pubsub : KartrakAutomationWeb . Endpoint } ,
19 socke t : KartrakAutomationWeb . UserSocket
20 end
21 end

5.3.1 Queries & Mutations

The GraphQL API is how data will be exposed to the web, therefore the model’s
GraphQL schema must be defined in the web context of the application. In order to better
explain the steps taken to write the web schema code, the implementation was divided
into three steps: write the GraphQL schema (with Absinthe) “skeleton”; write a query to
fetch all Specimens and a mutation to create a Specimen; implement the resolver function
to actually access the database and test the functionality in GraphiQL interface. The
complete CRUD zones will be shown in 5.4.

4 https://github.com/rschef/rajska

5.3. GraphQL API 63

Listing 5.13 – Specimen GraphQL schema: scaffold.
1 defmodule KartrakAutomationWeb . Schema do
2 @moduledoc " " "
3 De f ine s the Absinthe graphQL schema .
4 " " "
5 use Absinthe . Schema
6 al ias KartrakAutomationWeb . SpecimenResolver
7
8 # Object t ypes d e f i n i t i o n area −−−−−−−−−−−−
9 # −−−

10
11 query do
12 # query entry po in t
13 end
14
15 mutation do
16 # mutation entry po in t
17 end
18 end

The Absinthe.Schema module is used to provide some macros for schema building.
Absinthe Schemas are also type checked at compile time, which means that if a type
that doesn’t exist is referred to, Absinthe will catch the error rapidly. With the empty
root query and mutation objects set, the input/output objects types are written in the
indicated area (Code: 5.13) and the abilities to get all specimens and create one are
implemented as follows.

Listing 5.14 – (Simplified) Specimen GraphQL schema: objects definition.
1 # Object t ypes −−−
2 enum : specimen_situation_enum do
3 value : pendente
4 value : n a _ f i l i a l
5 va lue : na_obra
6 value : conc lu ido
7 end
8
9 @desc " a specimen "

10 o b j e c t : specimen do
11 f i e l d : id , : i n t e g e r
12 f i e l d : code , : i n t e g e r
13 f i e l d : age , : i n t e g e r
14 f i e l d : s i t u a t i o n , : specimen_situation_enum
15 f i e l d : concrete_shipment_id , : i n t e g e r
16 end
17
18 @desc " Params to c r e a t e a specimen "
19 input_object : specimen_params do
20 f i e l d : code , : i n t e g e r
21 f i e l d : age , non_null (: i n t e g e r)
22 f i e l d : s i t u a t i o n , : specimen_situation_enum
23 f i e l d : concrete_shipment_id , non_null (: i n t e g e r)
24 end
25 # −−

64 Chapter 5. Implementation and Testing

If any attribute has a custom enum type, its values must be defined. The @desc
attribute will be shown as an object description in the GraphQL interface. When querying,
the :specimen object fields will be available, while mutating, the :specimen_params
input_object fields will be available. A non_null parameter will abort the query if the
specified field is left blank.

Listing 5.15 – Query and mutation definition.
1 query do
2 @desc " Get a l l specimens "
3 f i e l d : a l l_specimens , l i s t _ o f (: specimen) do
4 r e s o l v e &SpecimenResolver . l i s t_spec imens /2
5 end
6 end
7
8 mutation do
9 @desc " r e g i s t e r a new specimen "

10 f i e l d : create_specimen , type : : specimen do
11 arg : params , non_null (: specimen_params)
12 r e s o l v e &SpecimenResolver . create_specimen /2
13 end
14 end
15 end

Resolvers are functions mapped to GraphQL fields, with their actual behavior.
A field is specified for a resolver by using the resolve macro and passing it a function.
The field :all_specimens expects the function SpecimenResolver.list_specimens/2
to return a list of specimens. When mutating, the :create_specimen field will receive an
argument of type :specimen and expect the SpecimenResolver.create_specimen/2 to
return a new specimen with the given attributes passed as argument.

“&SpecimenResolver.list_specimens/2” is a reference to the 2 arity function
list_specimens found in the KartrakAutomationWeb.SpecimenResolver module, pre-
sented below.

Listing 5.16 – Resolver implementation.
1 defmodule KartrakAutomationWeb . SpecimenResolver do
2 @moduledoc " " "
3 De f ine s the Specimen r e s o l v e r f u n c t i o n s .
4 " " "
5 al ias KartrakLaboratory . Specimens
6 al ias KartrakLaboratory . Specimens . Specimen
7
8 def l i s t_spec imens (_args , _info) do
9 { : ok , Specimens . l i s t_spec imens () }

10 end
11
12 def create_specimen(%{params : params } , _info) do
13 Specimens . create_specimen (params)
14 end
15 end

5.3. GraphQL API 65

A resolver module must handle all function calls from the web-context schema. In
the resolver above, the functions defined in 5.4 and 5.6 are called to fetch all specimens
and create one, respectively.

One might question the reason to return the tuple {:ok, Specimens.list_specimens()}
instead of just the second term; that is because the function list_specimens/0 returns
only the Specimen struct and GraphQL expects a tuple with {:ok, data} or {:error,
error}.

To support that, the function create_specimen/1 returns a {:ok, specimen}
tuple, when succeeds, so itself is sufficient as the return data. The server can be started by
running $ iex -S mix phx.server and accessed at localhost:4000/graphiql in the
browser.

Listing 5.17 – All specimens query.
1 query a l lSpec imens {
2 a l lSpec imens {
3 id
4 code
5 age
6 s i t u a t i o n
7 concreteShipmentId
8 }
9 }

Listing 5.18 – Create specimen mutation.
1 mutation createSpec imen {
2 createSpec imen (params : {
3 code : 1444 ,
4 age : 1 ,
5 s i t u a t i o n : NA_FILIAL,
6 concreteShipmentId : 1
7 }) {
8 id
9 code

10 age
11 concreteShipmentId
12 }
13 }

66 Chapter 5. Implementation and Testing

Listing 5.19 – GraphQL query interpretation
of 5.17.

1 [debug] QUERY OK source=" u s e r s " db=0.4ms
2 SELECT
3 u0 . " id " ,
4 u0 . "name" ,
5 u0 . " emai l " ,
6 u0 . " r o l e " ,
7 u0 . " encrypted_password " ,
8 u0 . " created_at " ,
9 u0 . " updated_at " ,

10 u0 . " corporat ion_id "
11 FROM " u s e r s " AS u0 WHERE (u0 . " id "=$1) [3]
12
13 [debug] QUERY OK source=" specimens " db=1.1

ms queue =1.1ms
14 SELECT
15 s0 . " id " ,
16 s0 . " code " ,
17 s0 . " age " ,
18 s0 . " he ight " ,
19 s0 . " diameter " ,
20 s0 . " concrete_shipment_id " ,
21 s0 . " in se r ted_at " ,
22 s0 . " updated_at "
23 FROM " specimens " AS s0

Listing 5.20 – Response data from query
5.17.

1 {
2 " data " : {
3 " a l lSpec imens " : [
4 {
5 " s i t u a t i o n " : "NA_FILIAL" ,
6 " id " : 1 ,
7 " concreteShipmentId " : 1 ,
8 " code " : 144101 ,
9 " age " : 7

10 } ,
11 {
12 " s i t u a t i o n " : "NA_FILIAL" ,
13 " id " : 2 ,
14 " concreteShipmentId " : 1 ,
15 " code " : 144102 ,
16 " age " : 14
17 } ,
18]
19 }
20 }

In 5.19 the actual query used to access the database appears in the VS Code
terminal5, which can be used for debugging. Firstly, the query is authenticated for the user
with id = 3 ($1 is a reference to the first argument passed in the login function, which
is not presented here); secondly, after the authentication succeeds, the attributes from
specimens table are retrieved. The elapsed time of the database access is also shown.

It can be concluded that GraphQL has a clear separation of structure and behaviour.
The structure of a GraphQL server is represented by its schema, an abstract description
of the server’s capabilities and resolver functions, which are key components to determine
the server’s behaviour.

In order to increase code readability, all types were defined in separate files and
imported into a single file. In this way, all laboratory web-context schema types can be
loaded from a single line of code. That is, Codes 5.14 and 5.15 would be written in a
separated file and imported into a file arbitrarily named laboratory_types.ex with the
function import_types(Specimens), minding the aliases. Then, laboratory_types.ex
would be loaded via import_types/1 in the schema.ex file.

5 An interface in which text based commands can be typed and executed.

5.4. CRUD Zones 67

5.4 CRUD Zones

This section contains some of the fundamental functionalities of each model and
explanations regarding specific sections, instead of the entire code. Reminding briefly of
the specimen life cycle explained in Section 3.8:

1. When a concrete shipment is registered and has the attribute proof_body = true,
a specimen batch based on the corporation’s default settings is created; if a specimen
is registered with a null code, its situation is set to pendente ;

2. After ageing, specimens are collected and taken to a laboratory for compression
tests;

3. The specimen is ruptured to obtain its compressive strength (fck), measured as
fck = F/A in megapascal [MPa], where F is the maximum load applied to the
specimen in newtons [N] and A the cross sectional area of the specimen (in mm2).

Based on the thoughts above and the screens shown in Section 4, the details of
each model implemented will be presented and discussed below.

5.4.1 Corporation and Specimen default settings

Analogously to Code 5.15, a query to retrieve the corporation default settings via
id was implemented. A mutation to update existing corporations from the ERP database
was created in its schema file and the resolver function generated via Crudry.

Listing 5.21 – Corporation default settings update mutation.
1 # Mutations −−−
2 o b j e c t : corporat ion_defau l t s_mutat ions do
3 @desc " update d e f a u l t s e t t i n g s f o r a c o r p o r a t i o n "
4 f i e l d : update_corporat ion_defaults , type : : c o r p o r a t i o n _ d e f a u l t s do
5 arg : id , non_null (: i n t e g e r)
6 arg : params , non_null (: corporat ion_defaults_params)
7 middleware Rajska . QueryAuthorization , [permit : : user , scope : fa l se]
8 r e s o l v e &Corporat ionReso lver . update_corporat ion /2
9 end

10 end

As for the specimen settings, a slightly different approach was needed. According
to what was explained in the previous chapter, a corporation can have many specimen
settings, therefore a list must be manipulated and several database operations shall be
executed.

Repo transactions are the countermeasure for this kind of problem. In Elixir, the
function Repo.transaction/2 works by rollbacking all modifications made in the database

68 Chapter 5. Implementation and Testing

in case one of them fails. Both resolver functions of creation and update below are wrapped
inside a transaction, ensuring that the database remains untouched if any error occurs.

Listing 5.22 – Specimen settings creation.
1 def create_spec imen_sett ings (%{params : params } , _info) do
2 c r e a t i o n =
3 Repo . t r a n s a c t i o n (fn −>
4 {
5 : ok ,
6 with %{defaul t_diameter : _default_diameter } <−
7 Corporat ions . get_corporat ion (corporat ion_id) do
8 for specimen_settings_params <− params do
9 case Corporat ions . c reate_spec imen_sett ings (

10 Map. put (specimen_settings_params , : corporat ion_id , corporat ion_id)
11) do
12 { : ok , spec imen_sett ings } −> spec imen_sett ings
13 { : e r ro r , changeset } −> Repo . r o l l b a c k (changeset)
14 end
15 end
16 else
17 ni l−>Repo . r o l l b a c k ({ : e r ro r , " no c o r p o r a t i o n found with id [#{ corporat ion_id }] " })
18 end
19 }
20 end)
21
22 case c r e a t i o n do
23 { : ok , c r e a t i o n } −> c r e a t i o n
24 { : e r ro r , _} −> c r e a t i o n
25 end
26 end

The GraphQL schema calls the create_specimen_settings function and passes
a map with the specimen settings parameters list, that map is then pattern-matched to
a variable named params. Since the resolver function expects a {:ok, data} resolution,
that structure was adopted.

Inside the transaction, before a specimen setting is created for each list iteration,
a with clause verifies if the corporation to which the specimen setting is being set does
exists; in case of a failure, the operation rolls-back returning either an error message or
the changeset, depending on the error location. When the transaction finishes, it is then
pattern-matched for errors and returned to the schema. The with statement is a condition
checker, the execution continues as long as left ← right matches.

In the code below, it will abort the execution if the function get_specimen_settings/1
returns a SpecimenSettings struct with a field id inside it (the compiler ignores any
value with an underscore before its name), if there are no specimens with the given id, it
executes the case block rolling back the transaction with an error message.

5.4. CRUD Zones 69

Listing 5.23 – Specimen settings update transaction.
1 Repo . t r a n s a c t i o n (fn −>
2 {
3 : ok ,
4 for specimen_settings_params <− params do
5 with spec imen_sett ings =
6 %Spec imenSett ings { id : _specimen_id} <− Corporat ions . get_spec imen_sett ings (id)

do
7 case Corporat ions . update_specimen_sett ings (spec imen_sett ings ,

specimen_settings_params) do
8 { : ok , spec imen_sett ings } −> spec imen_sett ings
9 { : e r ro r , changeset } −> Repo . r o l l b a c k (changeset)

10 end
11 else
12 ni l −> Repo . r o l l b a c k (" no spec imen_sett ings found with id [#{ id }] ")
13 end
14 end
15 }
16 end)

5.4.2 Specimens

Everytime a shipment is created with the attribute proof_body as true, a spec-
imen batch related to that shipment must be created. All specimens must have an
identification code so it can be traced. Since the specimens might be created with-
out a code, their situation attribute must be automatically set to “pendente”. An
update_specimen_batch/2 function was implemented so those fields can be filled.

Two alternatives for the specimen creation were proposed: specifying all attributes
of the specimens in the batch, or an automatic creation with the only parameters passed
being the corporation_id and concrete_shipment_id, therefore all specimens attributes
would be retrieved from the corporation default settings.

For the first alternative, a list with the specimen parameters is given and thus a
simple iteration through that list in an analogous way done in Code 5.23 is enough. The
second option was implemented by means of recursive calling since immutability is a pillar
of functional programming.

Firstly, the corporation and its default settings are loaded and checked for nullity;
once passed that condition, the create_specimens/3 function (Code 5.25) is called to
create the default number of samples for each specimen age; it has three call matches
where te first one will inspect if the corporation actually has default settings and roll back
the transaction if it doesn’t. The recursion resides in calling the function inside itself and
continue executing until the when clause is flagged.

70 Chapter 5. Implementation and Testing

Listing 5.24 – Specimen batch creation based on the default settings of a corporation.
1 Repo . t r a n s a c t i o n (fn −>
2 {
3 : ok ,
4 # corporat ion d e f a u l t dimensions
5 with %{
6 defaul t_diameter : default_diameter ,
7 de fau l t_he ight : de fau l t_he ight
8 } <− Corporat ions . get_corporat ion (corporat ion_id) do
9 # specimen d e f a u l t s e t t i n g s

10 for s <− Corporat ions . get_spec imen_default_sett ings (corporat ion_id) do
11 case create_spec imens (
12 s . num_of_specimens ,
13 %{
14 age : s . num_of_days ,
15 diameter : default_diameter ,
16 he ight : de fau l t_he ight ,
17 concrete_shipment_id : concrete_shipment_id
18 } ,
19 default_diameter
20) do
21 { : ok , specimen } −> specimen
22 { : e r ro r , e r r o r } −> Repo . r o l l b a c k (e r r o r)
23 end
24 end
25 else
26 ni l −> %{e r r o r : " no c o r p o r a t i o n found with id [#{ corporat ion_id }] " }
27 end
28 }
29 end)

A (seemingly) common approach in Elixir to call the same function with different
arguments can be observed in Code 5.25, where the two first function definitions make the
use of Guards, which start with the when keyword.

Guards are a way to augment pattern matching with more complex checks, such as
type checking the default_diameter with is_nil/1, to verify if the Corporation actually
has default settings setted, and using recursive loop constructs to create the default
quantity of specimens.

Listing 5.25 – Recursive specimen creation.
1 defp create_spec imens (_, _, de fau l t_diameter) when i s _ n i l (de fau l t_diameter) do
2 { : e r ro r , " Corporat ion doesn ’ t have d e f a u l t s e t t i n g s " }
3 end
4
5 defp create_spec imens (quantity , params , _) when quant i ty <= 1 do
6 { : ok , %{id : _specimen_code }} = Specimens . create_specimen (params)
7 end
8
9 defp create_spec imens (quantity , params , _) do

10 { : ok , %{diameter : diameter }} = Specimens . create_specimen (params)
11 create_spec imens (quant i ty − 1 , params , diameter)
12 end

5.4. CRUD Zones 71

To update a batch of specimens, the implemented function expects two lists: the
id’s of all specimens in the batch and their update attributes, i.e., code, situation,
molder_type and molder_id, which are the ones missing from the first option of creation.

From an object-oriented view, iterating two lists simultaneously could be achieved
by referring both lists with the same mutating loop index, yet it cannot be done in Elixir
due to immutability. The “elixir way” of solving that is shown in Code 5.26.

The Enum.zip/2 function receives two lists (params and id) and zips the first
element of each list into a tuple, which goes on until one of the lists reaches its end and a
list is returned with all combined tuples.

In this case, both lists will always have the same length. That list of tuples is piped
into the Enum.map/2 higher-order function, where each {params, id} tuple in the list is
run though a function that holds the update operation, then the updated specimens are
returned in a list.

Listing 5.26 – Function to update a specimen batch.
1 Repo . t r a n s a c t i o n (fn −>
2 {
3 : ok ,
4 params
5 |> Enum. z ip (id)
6 |> Enum. map(fn {params , id } −>
7 with specimen = %Specimen{ id : _specimen_id} <− Specimens . get_specimen (id) do
8 case Specimens . update_specimen (specimen , params) do
9 { : ok , updated_specimen} −> updated_specimen

10 { : e r ro r , changeset } −> Repo . r o l l b a c k (changeset)
11 end
12 else
13 ni l −> Repo . r o l l b a c k ({ : e r ro r , " no specimen found with id [#{ id }] " })
14 end
15 end)
16 }
17 end)

5.4.3 Collections

When a specimen is collected, the flow can follow two distinct paths: its situation
is updated to :observation in case anything happens to specimen, otherwise it changes to
:na_matriz. Both create and update functions must go through the update_specimen_situation/2
to ascertain that the situation attribute is always up-to-date with the actual specimen
location.

The pipeline section where the nil_to_error/36 function is called transforms a
nil value in an {:error, message} tuple if an error is raised during the update operation.
When update_specimen_situation/2 is called from the update function, it passes a

6 Generated by the Crudry library macro Resolver.generate_functions/3.

72 Chapter 5. Implementation and Testing

tuple {:ok, schema} and thus a second definition to update the specimen situation was
implemented (not shown here) to pattern-match that tuple and return it in the end of
execution.

Listing 5.27 – Function to register a collection batch.
1 Repo . t r a n s a c t i o n (fn −>
2 {
3 : ok ,
4 for co l l ect ion_params <− params do
5 case C o l l e c t i o n s . c r e a t e _ c o l l e c t i o n (co l l ect ion_params) do
6 { : ok , c o l l e c t i o n } −>
7 update_specimen_situation (c o l l e c t i o n , co l l ec t ion_params . specimen_id)
8 { : e r ro r , e r r o r } −>
9 Repo . r o l l b a c k (e r r o r)

10 end
11 end
12 }
13 end)

Listing 5.28 – Function to update a collection.
1 def update_co l l e c t i on (%{ id : id , params : params } , _info) do
2 id
3 |> C o l l e c t i o n s . g e t _ c o l l e c t i o n ()
4 |> ni l_to_error (" c o l l e c t i o n " , fn r ecord −>
5 C o l l e c t i o n s . update_co l l e c t i on (record , Map. d e l e t e (params , : specimen_id))
6 end)
7 |> update_specimen_situation (params . specimen_id)
8 end

Listing 5.29 – Collection resolver private fuction to update the specimen situation.
1 defp update_specimen_situation (schema , specimen_id) do
2 specimen = %Specimen {} = Specimens . get_specimen (specimen_id)
3 case i s _ n i l (schema . obse rvat i on) do
4 true −>
5 { : ok , %Specimen {}} =
6 Specimens . update_specimen (specimen , %{s i t u a t i o n : : na_matriz })
7 fa l se −>
8 { : ok , %Specimen {}} =
9 Specimens . update_specimen (specimen , %{s i t u a t i o n : : obse rvat i on })

10 end
11
12 schema
13 end

5.4.4 Ruptures

The update_rupture/2 function is analogous to the one shown in the previous sub-
section and also uses the update_specimen_situation/2, only it modifies the situation
with :concluido, for that reason it will not be shown.

A compression test machine outputs the maximum load applied (in newtons) to

5.5. Testing 73

the specimen until it ruptures, and that value persists in the database through the force
attribute. The maximum load will be used in the function fck_calculation/2 to obtain
the fck value in megapapascals.

The values used for default settings are defined with the decimal type and the fck

is obtained by using Decimal library functions, which performs arbitrary precision decimal
arithmetic7.

Listing 5.30 – Function to register a rupture.
1 def create_rupture (%{params : params } , _info) do
2 case c o l l e c t e d ?(params . specimen_id) do
3 %{specimen_id : specimen_id } −>
4 f ck = f c k _ c a l c u l a t i o n (params . f o r c e , Specimens . get_specimen (specimen_id))
5 case Ruptures . create_rupture (Map. put (params , : fck , f ck)) do
6 { : ok , rupture } −> { : ok , update_specimen_situation (rupture , specimen_id) }
7 { : e r ro r , e r r o r } −> { : e r ro r , e r r o r }
8 end
9

10 { : e r ro r , e r r o r } −> { : e r ro r , e r r o r }
11 ni l −> { : e r ro r , " specimen with id [#{params . specimen_id }] not c o l l e c t e d yet " }
12 end
13 end

Listing 5.31 – Collection verifier function.
1 defp c o l l e c t e d ?(specimen_id) do
2 case Specimens . get_specimen (specimen_id) do
3 ni l −> { : e r ro r , " specimen with id [#{ specimen_id }] doesn ’ t e x i s t " }
4 %Specimen{ id : id } −> Repo . get_by (C o l l e c t i o n , specimen_id : id)
5 end
6 end

Listing 5.32 – fck calculation function.
1 def f c k _ c a l c u l a t i o n (fo r ce , %{diameter : diameter }) do
2 # f c k = 4∗F/(p i ∗D^2) =
3 D. round (
4 D. div (D. mult (4 , f o r c e) , D. mult (D. f rom_float (: math . p i ()) ,D. mult (diameter , diameter))) ,
5 1
6)
7 end

5.5 Testing

5.5.1 Unit Tests

A test for each API resolver mentioned in the past section was designed to asses
the CRUD queries and mutations that are passed to them. The tests intended to reach
most of the clauses inside a resolver function, in order to increase overall test coverage.
7 Arbitrary Precision: the precision of any calculation is limited by the largest number that can be stored

in one of the processor’s registers.

74 Chapter 5. Implementation and Testing

All tests will follow both examples below, differing only in specific logic assertion.
Codes 5.33 and 5.34 will suffice for explanation purposes. A rupture can be registered only
if the specified specimen actually exists and was previously collected, generating an error
message informing what went wrong when it does. The first test evaluates the case of a
non-existent specimen being ruptured.

The second test simulates a non-collected specimen being ruptured. After asserting
that it does not succeeds, a collection is inserted in the same test using the factory
library ExMachina and the specimen is ruptured. Two cases were covered in this testing
of application-level behaviour.

Listing 5.33 – Asserting that creating a rupture with invalid data generates an error.
1 t e s t " c r e a t e a rupture with non−e x i s t e n t specimen " do
2 v a r i a b l e s =
3 %{
4 params :
5 %{
6 capping_type : : r e t i f i c a c a o ,
7 f o r c e : 786000 ,
8 ruptured_at : " 2019−09−18T11 : 2 7 : 2 4 Z" ,
9 specimen_id : 8001 ,

10 test_machine_class : : c lass_1 ,
11 t e s t e r _ i d : 12
12 }
13 }
14 r e s u l t = RuptureResolver . create_rupture (v a r i a b l e s , %{})
15
16 a s s e r t r e s u l t == { : e r ror , " specimen with id [8 0 0 1] doesn ’ t e x i s t " }
17 end

5.5. Testing 75

Listing 5.34 – Rupture creation unit test to assert that valid data creates a rupture.
1 t e s t " c r e a t e a rupture with non−c o l l e c t e d specimen , then c o l l e c t s and ruptures i t " do
2 { : ok , shipment } = create_concrete_shipment ()
3
4 %Specimen{ id : specimen_id } = i n s e r t (: specimen , concrete_shipment_id : shipment . id)
5
6 v a r i a b l e s =
7 %{
8 params :
9 %{

10 capping_type : : r e t i f i c a c a o ,
11 f o r c e : 786000 ,
12 rupture_type : : type_A ,
13 ruptured_at : " 2019−09−18T11 : 2 7 : 2 4 Z" ,
14 specimen_id : specimen_id ,
15 test_machine_class : : c lass_1 ,
16 t e s t e r _ i d : 12
17 }
18 }
19 r e s u l t = RuptureResolver . create_rupture (v a r i a b l e s , %{})
20
21 a s s e r t r e s u l t == { : e r ro r , " specimen with id [#{ specimen_id }] not c o l l e c t e d yet " }
22
23 # c o l l e c t i o n occurs
24 i n s e r t (: c o l l e c t i o n , specimen_id : specimen_id)
25 { : ok , r e s u l t } = RuptureResolver . create_rupture (v a r i a b l e s , %{})
26
27 a s s e r t r e s u l t . capping_type == : r e t i f i c a c a o
28 a s s e r t r e s u l t . f o r c e == Decimal . new (786000)
29 a s s e r t r e s u l t . rupture_type == : type_A
30 a s s e r t r e s u l t . specimen_id == specimen_id
31 a s s e r t r e s u l t . test_machine_class == : c lass_1
32 a s s e r t r e s u l t . t e s t e r _ i d == 12
33 end

5.5.2 Integration End-to-end Tests

The frontend will be based on GraphQL queries that interact with the application,
therefore were performed integration tests in the GraphQL API interface. Essentially
there are three main ways to perform queries and mutations using Absinthe: Triggering a
request to the GraphQL endpoint; Calling Absinthe.run/3 to execute the query/mutation
directly; Unit testing resolver modules. Each one has its optimal suitability, considering
that the objective is to make sure that different flows of the application run smoothly,
end-to-end resolver tests were run to secure that.

To simulate all specimen life cycle stages, the flow presented in Figure 9 was
implemented with an automated test that asserts the main data after mostly all resolver
functions. The ERP database is not available for testing and thus the automated end-to-end
resolver test was designed. Code 5.35 shows a possible implementation of the connection
between GraphQL and backend for a simple query to obtain the ages from all specimens
in the database.

76 Chapter 5. Implementation and Testing

To set up a new connection with the GraphQL endpoint when each test is run, the
ConnCase module was used. To assess the authentication layer that handles the access
points of queries and mutations, a valid token was cached in the connection. A post request
containing the query and variables is sent to the API and its response checked for status
code 200 (OK), which indicates that the request has been processed successfully on server
and it has a response body with correct data. Some tests were implemented based in the
examples from Williams e Wilson 2018.

Listing 5.35 – Possible testi to assess the integration between modules.
1 d e s c r i b e " l i s t specimens " do
2 t e s t " l i s t a l l specimens " , context do
3 { : ok , shipment } = create_concrete_shipment ()
4 %Specimen{ id : specimen_id , age : age , code : code } =
5 i n s e r t (: specimen , concrete_shipment_id : shipment . id)
6
7 response =
8 context . conn |> post (" / graphql " , query : query , v a r i a b l e s : %{})
9

10 a s s e r t j son_response (response , 200) == %{
11 " data " => %{" a l lSpec imens " => [
12 %{
13 " id " => specimen_id ,
14 " age " => age ,
15 " code " => code ,
16 " concreteShipmentId " => shipment . id
17 }
18]
19 }
20 }
21 end
22 end

5.5.3 Code Coverage Statistics

Conforming to what was mentioned in Section 3.4, code coverage is a type of
white-box testing, for it is a measure of how efficient is the application. It outputs a
quantitative measure of code coverage, reflecting the application’s quality. Several test
cases should be implemented so as to simulate a greater number of system’s states, which
helps to understand which sections of the tested modules are not being executed.

Although it has many advantages, it measures the percentage of lines that are
executed, if any specification is not yet implemented, the coverage might still be 100%.
It also does not aid in determining whether all possible values of a module are tested.
White-box techniques analyses the structure, not specified requirements. The ExMachina
library was chosen to obtain the aforementioned metrics.

77

6 Development Analysis and Results

With the objective of implementing a working backend functionality achieved, the
developed application allows specimens to be registered, updated and collected in batches,
and have its compressive strength factor calculated based on an inputted force from the
test machine.

Analysing from the quality perspective, the specified objectives were pursued
following a methodological approach and achieved with the desired level of confidence.
Multiple unit tests were designed to avoid flawed logic paths in the program’s core and, in
addition to that, an end-to-end test was implemented to integrate the backend modules
and assure a smooth usability of the application. The following section comprises the
statistical results from ExCoveralls test library.

6.1 Test Coverage

The backend components tests were evaluated via the ExCoveralls library $ mix
coveralls command. When executed, it outputs via terminal the code coverage results
shown in 6.1.

Listing 6.1 – Test coverage result.
1 .
2
3 Fin i shed in 1 .2 seconds
4 21 t e s t s , 0 f a i l u r e s
5
6 Randomized with seed 947683
7 −−−−−−−−−−−−−−−−
8 COV FILE LINES RELEVANT MISSED
9 89.5% (. . .) / r e s o l v e r s / l a b o r a t o r y / c o l l e c t i o n _ r e s o l v e r . ex 66 19 2

10 80.0% (. . .) / r e s o l v e r s / l a b o r a t o r y / c o r p o r a t i o n _ r e s o l v e r . ex 70 20 4
11 71.4% (. . .) / r e s o l v e r s / l a b o r a t o r y / rupture_re so lve r . ex 72 14 4
12 90.3% (. . .) / r e s o l v e r s / l a b o r a t o r y / spec imen_reso lver . ex 120 31 3
13 100.0% l i b / kartrak_laboratory / c o l l e c t i o n s / c o l l e c t i o n . ex 26 2 0
14 100.0% l i b / kartrak_laboratory / c o r p o r a t i o n s / spec imen_sett ings . ex 24 2 0
15 100.0% l i b / kartrak_laboratory / kartrak_laboratory_enums . ex 28 5 0
16 100.0% l i b / kartrak_laboratory / ruptures / rupture . ex 49 2 0
17 100.0% l i b / kartrak_laboratory / specimens / specimen . ex 64 6 0
18 [TOTAL] 87.1%
19 −−−−−−−−−−−−−−−−

The 21 implemented automated tests succeeded the assertions, increasing the
system’s level of confidence. With more than 87.1% of the code covered, calculated by

78 Chapter 6. Development Analysis and Results

means of the Equation 6.1, the specifications are being met.

COV (TOTAL) = 100 · (1−
∑n

i=1 MLi∑n
i=1 RLi

) = 100 · (1− 13
101) = 87.13%, (6.1)

where COV is the code coverage; MLi is the i-th missed line; and RLi is the i-th
executed relevant line. A line is executed if it contains an Erlang expression such as a
matching or a function call. A blank line or a line containing a comment, function head or
pattern in a case statement is not executable [Erlang 1986].

For a more data-oriented coverage approach, where the input and output parameters
were emphasised, a spectrum of possible values were tested. Figure 13 presents all queries
and mutations included in the end-to-end test. After the automated specimen life cycle
flow test succeded, a few more cases were evaluated and the total COV increased to 92.0%.

Since there was no ERP database in the testing environment, automatic integration
tests could’t be performed. Manual testing was executed directly in the GraphQL API,
where the HTTP request header contains a string "authorization" and an encoded token
– in the form Bearer token – to authenticate requests.

Figure 13 – End-to-end queries, from the GraphiQL interface, used for the integration
testing.

Source: Author.

79

7 Considerations and Perspectives

With all backend functionalities regarding the specimen supervision throughout its
life cycle implemented, this new feature can provide clear and useful specimen management.
Every unit testing made sure that each phase of the specimen operations are correctly
executed and generate consistent data.

During the development were applied software quality assurance techniques and a
quality control plan was plotted, where product goals and requirements of the application
were exposed. Along with that, the ABNT defined Standards were always kept in mind to
avoid rework. A Kartrak Laboratory development plan was discussed and followed in order
to clarify the application’s specifications.

Coding best practices and conventions were pursued so as to ensure maintainability
and readability for the developers who’ll continue this project. The designed tests were
able to assure a great code coverage and contemplate as many use cases as possible. A few
achievements obtained in this project are:

• Overall quality of the application secured by applying SQC techniques;

• Maintainability, usability and portability were ensured by utilising modern software
technologies and techniques;

• Specimen supervision operations made available;

• Solid ground for the application provided by testing routines.

The code coverage of the backend modules is 92.0%, which is higher than the
product goal defined in Chapter 4. The end-to-end test going through all the specimen life
cycle stages accounted for many use cases of the application.

A tight deadline and a non-existent previous experience in web-development and
functional programming made this project a personal challenge for the author. Agile
and test-driven-development methodologies were useful tools to prevent the developer
becoming adrift while the application progressed.

As the application was built with flexibility in mind, many adjustments and new
functionalities can be introduced in the Laboratory application, such as:

• Implement queries to provide overview pages for data visualisation;

• Include constraints and warnings to aid the user in abiding by the strict Standards;

• Develop a frontend to integrate the implemented GraphQL queries and mutations
with the rest of the automation platform;

80 Chapter 7. Considerations and Perspectives

• Create the ERP database in the testing environment, so as to test the connection
between front and backend;

81

Bibliography

ABSINTHE. The GraphQL toolkit for Elixir. 2017. <https://absinthe-graphql.org/>.
Accessed: 2019-11-11. Cited on page 39.

AIELLO, R.; SACHS, L. Configuration Management Best Practices: Practical Methods
that Work in the Real World. 1. ed. [S.l.]: Addison-Wesley Professional, 2010. ISBN
9780321685865,0321685865. Cited on page 35.

CHA, S.; TAYLOR, R. N.; KANG, K. Handbook of Software Engineering. [S.l.]: Springer,
2019. ISBN 3030002616. Cited on page 36.

COMMITTEE, A. ACI 363.2R-11 - Guide to Quality Control and Assurance of
High-Strength Concrete. [S.l.]: American Concrete Institute (ACI), 2011. ISBN
9780870317033, 0870317032. Cited on page 41.

DAY, K. W.; ALDRED, J.; HUDSON, B. Concrete Mix Design, Quality
Control and Specification, Fourth Edition. 4. ed. [S.l.]: CRC Press, 2013. ISBN
0415504996,9780415504997. Cited on page 40.

DEISSENBOECK, F. et al. Tool support for continuous quality control. IEEE Software,
Institute of Electrical and Electronics Engineers (IEEE), v. 25, n. 5, p. 60–67, set. 2008.
Disponível em: <https://doi.org/10.1109/ms.2008.129>. Cited on page 33.

ELIXIR. Functional language. 2011. <https://elixir-lang.org/>. Accessed: 2019-09-18.
Cited on page 38.

ERLANG. Cover module. 1986. <http://erlang.org/doc/man/cover.html>. Accessed:
2019-11-21. Cited on page 78.

GIT. Version control system. 2005. <https://git-scm.com/book/en/v2/
Getting-Started-About-Version-Control>. Accessed: 2019-11-12. Cited on
page 39.

GITLAB. Code collaboration software. 2014. <https://about.gitlab.com/>. Accessed:
2019-11-12. Cited on page 40.

GRAPHQL. Query and manipulation language. 2015. <https://graphql.github.io/>.
Accessed: 2019-08-23. Cited on page 39.

HALVORSEN, L. Functional Web Development with Elixir, OTP, and Phoenix: Rethink
the Modern Web App. [S.l.]: Pragmatic Bookshelf, 2018. ISBN 1680502433. Cited on page
38.

IAN, S. Software Engineering, Global Edition. [S.l.]: PEARSON EDUCACION, 2015.
ISBN 9781292096131. Cited 4 times on pages 27, 28, 29, and 35.

IEEE. IEEE Standard Glossary of Software Engineering Terminology. pub-IEEE-STD:adr:
pub-IEEE-STD, 1990. 84 p. Cited on page 27.

https://absinthe-graphql.org/
https://doi.org/10.1109/ms.2008.129
https://elixir-lang.org/
http://erlang.org/doc/man/cover.html
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://about.gitlab.com/
https://graphql.github.io/

82 Bibliography

ISO 9001:2015. Quality management systems — Requirements. pub-ISO-std:adr: ISO,
2015. 29 p. Cited on page 31.

ISO/IEC 25010:2011. Systems and software engineering — Systems and software
Quality Requirements and Evaluation (SQuaRE) — System and software quality models.
pub-ISO-std:adr: ISO, 2011. 34 p. Cited on page 29.

JEFFRIES, R.; MELNIK, G. Guest editors’ introduction: Tdd–the art of fearless
programming. Software, IEEE, v. 24, p. 24 – 30, 06 2007. Cited on page 37.

KARTRAK. Kartrak Automation Concrete. 2015. <https://www.kartrak.app/business>.
Accessed: 2019-11-24. Cited on page 25.

KARTRAK. Kartrak Automation platform. 2015. <https://www.kartrak.app/
automation>. Accessed: 2019-11-17. Cited on page 44.

KARTRAK. Kartrak Enterprise Resource Planning platform. 2015. <https:
//www.kartrak.app/erp>. Accessed: 2019-11-17. Cited on page 44.

LAURENT, S. S.; EISENBERG, J. D. Introducing Elixir Getting Started in Functional
Programming. 2nd edition. ed. [S.l.]: O’Reilly, 2016. Cited on page 55.

LEWIS, W. E. Software Testing and Continuous Quality Improvement. 2nd ed. ed. [S.l.]:
Auerbach Publications, 2005. ISBN 9780849325243,0-8493-2524-2. Cited 2 times on pages
32 and 34.

MCCALL, J. A.; RICHARDS, P. K.; WALTERS, G. F. Factors in software quality assur-
ance. <https://pdfs.semanticscholar.org/82a9/18fd83f1c0addb890ef313ff892807a10a11.
pdf>, 1977. Cited on page 49.

PFLEEGER, S. L.; ATLEE, J. M. Software Engineering: Theory and Practice. 4. ed. [S.l.]:
Prentice Hall, 2009. ISBN 0136061699,9780136061694. Cited on page 35.

PHOENIX. A productive web framework that does not compromise speed or maintainability.
2016. <https://phoenixframework.org/>. Accessed: 2019-09-18. Cited on page 38.

POSTGRESQL. Database management system. 1996. <https://www.postgresql.org/
about/>. Accessed: 2019-11-02. Cited on page 38.

QUORA. What is the ideal value of slump?. 2018. <https://www.quora.com/
What-is-the-ideal-value-of-slump>. Accessed: 2019-11-23. Cited on page 41.

ROTHWELL, D. M. An Introduction to Relational Database Theory. First edition, first
printing. [S.l.]: McGraw-Hill Companies, 1992. ISBN 0077074823. Cited on page 39.

RUMBAUGH, J. The Unified Modeling Language Reference Manual (2nd Edition) (The
Addison-Wesley Object Technology Series). [S.l.]: Addison-Wesley Professional, 2004. ISBN
0321245628. Cited 2 times on pages 28 and 29.

SCHULMEYER, G. G. Handbook of Software Quality Assurance, Fourth Edition. [S.l.]:
Artech House, 2007. ISBN 1596931868. Cited on page 29.

THOMAS, D. Programming Elixir: Functional, Concurrent, Pragmatic, Fun. 1. ed. [S.l.]:
Pragmatic Bookshelf, 2018. (The Pragmatic Programmers). ISBN 9781680502992. Cited
on page 38.

https://www.kartrak.app/business
https://www.kartrak.app/automation
https://www.kartrak.app/automation
https://www.kartrak.app/erp
https://www.kartrak.app/erp
https://pdfs.semanticscholar.org/82a9/18fd83f1c0addb890ef313ff892807a10a11.pdf
https://pdfs.semanticscholar.org/82a9/18fd83f1c0addb890ef313ff892807a10a11.pdf
https://phoenixframework.org/
https://www.postgresql.org/about/
https://www.postgresql.org/about/
https://www.quora.com/What-is-the-ideal-value-of-slump
https://www.quora.com/What-is-the-ideal-value-of-slump

Bibliography 83

WAGNER, S. Engineering and Managing Software Requirements. [S.l.]: Springer, 2005.
ISBN 3540250433. Cited 3 times on pages 28, 32, and 33.

WILLIAMS, B.; WILSON, B. Craft GraphQL APIs in Elixir with Absinthe: Flexible,
Robust Services for Queries, Mutations, and Subscriptions. 1. ed. [S.l.]: Pragmatic
Bookshelf, 2018. ISBN 1680502557,9781680502558. Cited on page 76.

Annex

87

ANNEX A – Overview pages

Figure 14 – Screen holding general information about shipments and collections.

Source: Kartrak.

88 ANNEX A. Overview pages

Figure 15 – Screen containing information about the total percentage of shipments with
specimens moulded.

Source: Kartrak.

Figure 16 – Screen with information about ruptures scheduling.

Source: Kartrak.

	Approval
	Acknowledgements
	Resumo
	Abstract
	List of Figures
	Listings
	Listings
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Motivation
	General Objectives
	Specific Objectives

	Monograph's Structure

	Jungsoft & Kartrak
	Jungsoft
	Kartrak

	Theoretical Background Review
	Requirements Engineering
	System Modelling
	Quality Management
	Software Quality
	Software Quality Assurance & Control

	Software Testing
	Configuration Management
	Methodology
	Agile software development
	Test-driven development

	Technologies
	Phoenix
	Elixir
	Functional Programming

	PostgreSQL
	GraphQL
	Absinthe

	Git
	GitLab

	Quality Control of Concrete
	Slump Test
	Compressive Strength Test
	Standardisation Review
	NBR 12655:2015
	NBR 5738:2015
	NBR 5739:2019

	Project Approach
	Current State
	Kartrak's Web Platform

	Planned Solutions
	Software Modelling
	Requirements
	Database
	Tech stack

	Quality Management
	Kartrak Laboratory development plan
	Create, Read, Update and Delete zones
	Default Settings
	Specimens
	Collection
	Ruptures

	Queries

	Methodology

	Implementation and Testing
	Development environment
	Database tables and model creation
	Migrations
	Context & Schema

	GraphQL API
	Queries & Mutations

	CRUD Zones
	Corporation and Specimen default settings
	Specimens
	Collections
	Ruptures

	Testing
	Unit Tests
	Integration End-to-end Tests
	Code Coverage Statistics

	Development Analysis and Results
	Test Coverage

	Considerations and Perspectives
	Bibliography
	Annex
	Overview pages

