
Software toolkit to manage quality
reports in automotive industry

Report submitted to Federal University of Santa Catarina

as requisite to the approval of discipline:

DAS 5511: Final Project Work

Vinícius Heck Peiter

Dingolfing, December 16th, 2019

Software toolkit to manage quality reports in
automotive industry

Vinícius Heck Peiter

This monograph was corrected in the context of the discipline

DAS 5511: Final Project Work

and approved in its final form by

Control and Automation Engineering Course

Prof. Ricardo José Rabelo

Examination Board:

Stephan Görgens

Company Advisor

Prof. Ricardo José Rabelo

Professor Advisor

Prof. Marcelo de Lellis Costa de Oliveira

President of the Board

Prof. Hector Bessa Silveira

Evaluator

Nicholas Wagner

Student Debater

Ricardo Fileti Marcon

Student Debater

Acknowledgements

I would like to thank my family and friends for their support in this journey. Thanks

for my parents who have always supported me and believed in my potential.

Special thanks to my fiance Carol who not only encouraged me to pursue an

experience abroad for my personal and professional growth, but also came with me to

Germany and was always by my side when I needed. You are wonderful and I am really

lucky to have you.

Thanks to the team that welcomed me in BMW Group Plant Dingolfing, TG-300.

Thanks for the instruction, guidance and friendships. Each one of you was very important

to me throughout the last year and I am glad to have had the opportunity to be a part of

your team.

Thanks to the former intern Luiz Arthur, who started the research that was the

base for my work. Without your assistance I would not have gotten this far.

Thanks to my supervisor Stephan, who was always knowledgeable and did what he

could to help me improve myself and my work. You were always there to discuss technical

and theoretical aspects of my work, send me to training opportunities that were relevant

to my work and even make a book club to read and discuss a book that supports the

theoretical background of my work. You always make sure that interns should do relevant

work that will be interesting for them and teach them important skills for their professional

life, and I am thankful for that.

Thanks to my advisor Professor Ricardo, who helped me to ensure that this

opportunity would benefit my career both professionally and academically. Thank you for

being always available to give me your experienced insights first on the paperwork that

made this opportunity real, then on my work, making it more relevant.

When software is done right, it requires a fraction of the human resources to

create and maintain. Changes are simple and rapid. Defects are few and far

between. Effort is minimized, and functionality and flexibility are maximized.

—Robert C. Martin, Clean Architecture

Abstract

Within the data analysis tools used in BMW Group Quality IT, SAP BusinessObjects

Business Intelligence Suite is the most widely used, processing massive amounts of data

from eleven different BMW Group Plants and automatically generating tens of thousands of

quality reports every day. However, this tool was not designed to work in such a large scale

and lacks basic functionality to manage its platform, motivating the internal development

of extensions to customize its usage. In 2018 the Quality IT obtained access to the platform

through the RESTful API and started making script prototypes to explore its possibilities.

Although the results showed that this approach was promising, some issues in the API

required careful handling and the script prototypes were not flexible enough to be extended

or modified for different use cases. This project consists of a framework and a set of tools

that standardize the way the RESTful API of SAP BO can be used in BMW Group, solving

the common issues encountered in previous prototypes and using best practices of software

development and architecture in order to enable effortless extension and maintainability.

The framework was designed using SOLID principles for Object-Oriented Programming

and implemented using Scrum and Test-Driven Development in Python. Three prototype

tools were developed using this framework to perform platform management tasks saving

thousands of work hours from the Quality IT department.

Keywords: Software Architecture, SOLID Principles, RESTful API, Python, SAP BO,

Business Intelligence

Resumo

Dentro das ferramentas de análise de dados utilizadas no departamento de TI de Qualidade

do Grupo BMW, o SAP BusinessObjects Business Intelligence Suite é o mais utilizado,

processando grandes quantidades de dados de onze fábricas diferentes do Grupo BMW e

gerando automaticamente dezenas de milhares de relatórios de qualidade todos os dias. No

entanto, essa ferramenta não foi projetada para funcionar em tão grande escala e carece

de funcionalidades básicas para gerenciar sua plataforma, motivando o desenvolvimento

interno de extensões para customizar seu uso. Em 2018 o TI de Qualidade obteve acesso à

plataforma através da API RESTful e começou a fazer protótipos de scripts para explorar

suas possibilidades. Embora os resultados mostrassem que essa abordagem era promissora,

algumas questões na API exigiam um manuseio cuidadoso e os protótipos de script não

eram suficientemente flexíveis para serem estendidos ou modificados para diferentes casos de

uso. Este projeto consiste em um framework e um conjunto de ferramentas que padronizam

a forma como a API RESTful do SAP BO pode ser utilizada no Grupo BMW, resolvendo

os problemas comuns encontrados em protótipos anteriores e utilizando boas práticas

de desenvolvimento e arquitetura de software para permitir a extensão e a manutenção

descomplicada. O framework foi projetado usando princípios SOLID para Programação

Orientada a Objetos e implementado usando Scrum e Desenvolvimento Orientado a Testes

em Python. Três protótipos de ferramentas foram desenvolvidos utilizando este framework

para executar tarefas de gerenciamento da plataforma, economizando milhares de horas

de trabalho do departamento de TI de Qualidade.

Palavras-chave: Arquitetura de software, Princípios SOLID, API RESTful, Python, SAP

BO, Business Intelligence

List of Figures

Figure 1 – SAP BO Platforms in BMW Group . 27

Figure 2 – Instance statuses in SAP BO . 29

Figure 3 – The Cockpit home page of TLK Dingolfing 31

Figure 4 – KPI visualization in the Cockpit . 31

Figure 5 – The TDD Cycle . 38

Figure 6 – Component Diagram of SAP Toolkit Project 46

Figure 7 – First attempt to model the restful module 50

Figure 8 – Defining Request and Response data structures 51

Figure 9 – The RequestSenderBase interface . 52

Figure 10 – The RequestFactory class . 53

Figure 11 – Class diagram of the sap_framework component 57

Figure 12 – Git branching illustration . 61

Figure 13 – sap_status repository structure with sap_framework as submodule . . 63

Figure 14 – sap_framework directory structure . 65

Figure 15 – Implementation of data structure classes in Python 67

Figure 16 – Interface implementation with abstract class in Python 68

Figure 17 – The ColtrollerMaker class implementation 69

Figure 18 – Example facade method implemented in RequestColtroller class 70

Figure 19 – Example method implemented in RequestFactory class 71

Figure 20 – Example ResponseParserBase abstract class implementation 72

Figure 21 – How the script in sap_status uses the sap_framework 74

Figure 22 – JSON Configuration file to reschedule script 75

List of Tables

Table 1 – Statistics of the Painted Bodywork Quality IT department in Plant

Dingolfing . 29

Table 2 – Frequency which RWS 00008 error occurs 48

Table 3 – Statistics of the sap_framework component 79

Table 4 – Statistics of the sap_reschedule component during the NAS migration

in 2019 . 82

List of abbreviations and acronyms

SDK Software Development Kit

BMW Bayeriche Motoren Werke

IT Information Technology

REST Representational State Transfer

HTTP Hypertext Transfer Protocol

FTP File Transfer Protocol

API Application Programming Interface

HTML Hypertext Markup Language

XML Extensible Markup Language

JSON JavaScript Object Notation

TDD Test Driven Development

XP Extreme Programming

FIRST Fast, Independent, Repeatable, Self-Validating and Timely

SAP BO SAP BusinessObjects Business Intelligence Suite

PDF Portable Document Format

CSV Comma-Separated Values

OOP Object-Oriented Programming

SOLID SRP, OCP, LSP, ISP, ISP and DIP

SRP Single Responsibility Principle

OCP Open-Closed Principle

LSP Liskov Substitution Principle

ISP Interface Segregation Principle

DIP Dependency Inversion Principle

SQL Structured Query Language

NAS Network Attached Storage

KPI Key Performance Indicator

URL Uniform Resource Locator

IP Internet Protocol

IDE Integrated Development Environment

Contents

1 INTRODUCTION . 21

1.1 Objectives . 23

1.1.1 Main Objective . 23

1.1.2 Specific Objectives . 23

1.2 Structure of the document . 24

2 MOTIVATION AND PROBLEM DESCRIPTION 25

2.1 The Company . 25

2.2 Quality Information Management in BMW Group 25

2.3 SAP BO for Quality Control . 26

2.4 Key Performance Indicators and The Cockpit 30

3 THEORETICAL BACKGROUND 33

3.1 Object-Oriented Programming . 33

3.2 The SOLID Design Principles for OOP 34

3.3 Software Components . 35

3.3.1 Principles for Component Cohesion . 35

3.3.2 The Main Component . 36

3.4 Software Tests . 37

3.4.1 Test Driven Development . 37

3.5 RESTful API . 40

4 REQUIREMENTS AND DESIGN CONSIDERATIONS 43

4.1 General Requirements . 43

4.1.1 Functional Requirements . 43

4.1.2 Nonfunctional Requirements . 44

4.2 Architecture . 45

4.3 The sap_framework component and its modules 46

4.3.1 The restful module requirements . 46

4.3.2 The false unauthorized problem . 47

4.3.3 The false logoff problem . 48

4.3.4 The session expiring problem . 49

4.3.5 The first model restful module . 50

4.3.6 The problems and solutions of this first module 51

4.3.7 Entities Module . 53

4.3.8 The date_converter Module . 54

4.3.9 Conclusion . 54

4.4 Use Cases . 55

4.4.1 The sap_status component . 55

4.4.2 The sap_reschedule component . 56

4.4.3 The sap_backup component . 56

5 IMPLEMENTATION . 59

5.1 Scrum Methodology for Project Organization 59

5.2 Git Version Control System . 60

5.2.1 Workflow . 61

5.2.2 Git Submodules for Component Source Management 62

5.3 Python 3 . 63

5.3.1 Standard Libraries Limitation . 64

5.3.2 Components and Modules . 64

5.4 Test Driven Development . 64

5.5 The sap_framework Component . 66

5.5.1 Data Structures . 66

5.5.2 Interface Classes . 67

5.5.3 The Main Component of sap_framework 67

5.5.4 Information Flow . 68

5.5.5 Extensibility . 72

5.6 The sap_status Component . 73

5.7 The sap_reschedule Component . 74

5.8 The sap_backup Component . 78

6 RESULTS . 79

6.1 The sap_framework component . 79

6.2 The sap_status component . 80

6.3 The sap_reschedule component . 81

6.4 The sap_backup component . 82

7 CONCLUSIONS AND PERSPECTIVES 85

REFERENCES . 87

21

1 Introduction

The BMW Group takes quality control very seriously. Being an automotive manu-

facturer focused on the premium sector, it would be impossible not to. Every car in each

of the group’s brands, BMW, Mini and Rolls Royce, is manufactured using high precision

processes in each step of the production line to guarantee the best quality product.

However every manufacturing process may introduce defects, therefore the moni-

toring systems should be able to capture when a defect happens so that the parts affected

can be replaced or fixed. The quality control processes use these monitoring systems in

the production line to find the defects and decide how they should be handled.

To optimize the production processes, minimize the defects, rework times and

production costs while maximizing the overall quality it is necessary to understand what

caused the introduction of which defect. These analyses and decisions are done using

quality reports generated by Business Intelligence tools.

This is the task of the Quality IT team, which uses the data generated by the

monitoring systems with data analysis tools to develop quality reports that aim to map

the status of the production quality as well as find processes that can be optimized even

further.

The data analysis tool most widely used in BMW Group is the SAP BusinessObjects

Business Intelligence Suite (SAP BO), which is used to process massive amounts of data

from eleven different BMW Group Plants and automatically generate tens of thousands of

quality reports every day.

Although the thirteen SAP BO servers in BMW Group have been constantly

upgraded to handle all the processing power this application needs when used in this scale,

some of the functionality of the suite seems not to be designed to work with such a large

scale of data analyses.

The Quality IT teams develop the report templates in SAP BO and automate the

report generation using schedules. Each report schedule has customizable filters such as

the car model, which allow many variations of the same report to be scheduled using the

same report template. Thus each Quality IT team in each plant is responsible to manage

hundreds, sometimes thousands of report schedules.

Because SAP BO does not provide a tool in their suite that allows changing report

schedules in batch and it takes roughly 7 minutes for a team member to manually change

each report schedule, required changes to all schedules can lead to weeks of manual

labor to the Quality IT teams until the quality reports can be generated again, and this

22 Chapter 1. Introduction

is not acceptable. Such changes are required in situations like implementations of new

password policies (which for the technical users of SAP BO should happen once a year)

and migration of file servers.

Another problem faced in BMW Group is related to the stability of the SAP BO

platform. Since so many databases and systems are integrated into it there are many

things that can go wrong and make a scheduled report fail to be generated. In such

situations the Quality IT team must detect, diagnose and fix the problems as soon as

possible to make sure the affected quality reports will be available when the managers

and production supervisors need them. The functionality of the monitoring tools provided

with the SAP BO suite is limited though, which makes the monitoring and diagnosing

processes inefficient.

To fulfill some of the needs of the company, the Quality IT teams started to develop

some tools that extend the functionality of SAP BO. SAP provides some ways to extend

their product using language specific Software Development Kits (SDKs), however lately

their focus is increasingly moving towards the RESTful Web Services SDK.

In 2018 the Quality IT team got access to the RESTful Web Services SDK and

started to experiment with it and develop the first scripts. After a relatively short period

the results were analyzed and the team reached two conclusions: There was a big potential

for tools that access the SAP BO platform through this Application Programming Interface

(API) to cause a huge positive impact on the way the company uses this platform, and the

lack of documentation and support for this type of project within the custom installation

of SAP BO in the BMW Group servers were a big challenge that needed to be overcome.

The work that resulted in this undergraduate thesis was developed throughout

twelve months of internship in the Paintshop Quality IT department of BMW Group

Plant Dingolfing. During this period I have contacted people from over 13 Quality IT

Departments in BMW Group, from 8 different BMW, Mini and Rolls Royce plants in 5

countries. These people helped defining requirements for a system that could be used in

all BMW Group Plants, testing the tools that I developed and giving feedback, which was

essential to achieve good results with this project.

The tools developed within this project automated high demanding tasks to manage

the SAP BO Platforms in BMW Group which saved more than 100 thousand euros in

working hours throughout 2019 and have the potential to increase this impact in the years

to come.

1.1. Objectives 23

1.1 Objectives

The aim of this project is to build the foundations on which tools that use the

SAP BO RESTful Web Services SDK can be built upon.

1.1.1 Main Objective

Develop a framework that can handle session management and all different types

of requests needed from the SAP BO RESTful Web Services SDK. Provide solutions

in this framework to the most common problems found in directly using the SAP BO

RESTful Web Services SDK in BMW Group custom installations, to ensure stability to

the applications that are developed using this framework.

Develop a set of script applications (tools) that implement functionality needed by

BMW Group Quality IT teams using the developed framework, to manage the automation

of quality report generation (report schedules) and monitor the SAP BO platform stability.

1.1.2 Specific Objectives

• Design the architecture of the framework in a way that will allow future extension

and maintenance with least effort.

• Develop the session management functionality in the framework considering the

user authentication requirements and the sessions issues in BMW Group’s custom

installations of SAP BO.

• Provide in the framework the necessary data structures for managing the instances

of reports (report schedules and statuses) in the SAP BO platforms, such as folder,

report template, report schedule, statuses, platforms and environments of BMW

Group SAP BO installations.

• Develop functionality in the framework to deal with the many problems in the

SAP BO RESTful Web Services SDK in BMW Group SAP BO installations and

validate the responses for the implemented requests.

• Develop script application to monitor SAP BO platform status and stability using

the newly developed framework. This script should be integrated with other tools

developed by the team in this department to make the data available in web

dashboard.

• Develop script application to change parameters of automatically generated quality

reports (report schedules) in batch using the newly developed framework.

24 Chapter 1. Introduction

• Develop script application to backup and restore report schedules using the newly

developed framework.

1.2 Structure of the document

This document is organized in a structure where the contextualization of the

problem, the theoretical background necessary for the solution, the design, implementation

and results of the solution are presented gradually.

Chapter 2 briefly presents BMW Group as a company as well as the Quality IT

departments and how SAP BO is used to generate the quality reports. The problems faced

to manage SAP BO are described and the motivation of this project is contextualized.

Chapter 3 covers the theoretical background needed to design and develop the

proposed solutions, which will be referenced in the following chapters when they are used.

Chapter 4 exposes the requirements of this project and explains in detail the design

process of the proposed solutions. The model of the framework component to handle the

communication of the SAP BO Platforms in BMW Group through the Restful API is

explained as well as some of the problems in this API which the framework should be able

to handle.

Chapter 5 explains the methodologies used in the implementation of this project,

exposes the technologies used to implement the design and matching the requirements

from Chapter 4.

Chapter 6 exposes the results of the framework and the tools developed to use it

and automate some of the management tasks that SAP BO lacks, as well as how much

time and money this project has saved BMW Group.

Finally, Chapter 7 presents the conclusions and perspectives for future development

of this project in BMW Group.

25

2 Motivation and Problem Description

This chapter will describe the company and departments concerned in the scope of

this project, as well as the processes and problems that motivate it.

2.1 The Company

Bayeriche Motoren Werke AG, or BMW, is a company in the automotive industry

that manufactures cars for the luxury market sector nowadays. It was founded in 1917

with the union of two manufacturers of internal combustion engines for airplanes. (BMW

GROUP, 2019)

The name of the company in German reads "Engine Factory of Bavaria" and the

emblem displayed in all products since its foundation has the colors of the Bavarian flag.

BMW started producing motorcycles in 1923 and automobiles in 1928. During

the Second World War BMW was classified as an armament manufacturer due to the

production of airplane parts and had the production plants completely dismantled with

the end of the war in 1945. The first post-war motorcycle started being produced in 1948

and the first BMW car in 1952. The company struggled for some time until the launch of

a successful model in the early 1960s.

In the mid-1960s BMW Plant Munich reached maximum production capacity and

BMW purchased the company Hans Glas GmbH along with its facilities. BMW Plant

Dingolfing was created in 1967 to be the largest BMW Plant for decades.

Up to the present-day BMW Plant Dingolfing is still the largest BMW Plant in

Europe with 288 hectares. It is the only plant to produce the most premium models

because of its reference in production quality and capacity, producing 1600 vehicles a day.

(BMW GROUP, 2018)

2.2 Quality Information Management in BMW Group

Quality Control is a topic that is taken very seriously in BMW Group.

In all of the plants, there are many systems to measure and capture data from

the cars during production. Teams of Quality Specialists design quality control reports

based on this data to optimize production processes and provide an overview of the quality

standards of the production.

The Quality Information Management in BMW Group Plants, which manages the

26 Chapter 2. Motivation and Problem Description

Information Technologies (ITs) that support quality control, goal management, occupa-

tional safety and environmental management, is responsibility of two different departments

that are respectively concerned about two different steps of the production. The first one

is the Painted Bodywork, which concerns all the process chain from the Press Shop, Body

Shop and Paint Shop technologies. The second is the Assembly Shop, which concerns the

assembly of all parts of the car to its body.

Every plant has a Quality Information Management Plant Coordinator for each

Painted Body and Assembly, and for each of those technologies, there is one Technology

Coordinator, both of which work in Plant Dingolfing. For this reason, Plant Dingolfing

plays an important role in defining standards to be followed in all of the BMW Group

Plants.

The department where this work was developed, Quality Information Management

and Quality Control TG-300, is responsible for Quality Information Management for

Painted Bodywork of Plant Dingolfing, as well as for the development of some tools that

integrate and manage the information systems which will be explained in more detail in

Section 2.4.

2.3 SAP BO for Quality Control

The tool most widely used to monitor quality control in the production lines in

BMW Group is the SAP BusinessObjects Business Intelligence Suite, currently on version

4.2 SP5. This business intelligence tool is connected to most of the databases that store all

kinds of quality control information and is used by Quality Specialists to generate reports

about any type of defect that can happen in any part of the car. These reports are then

used by many departments to monitor, diagnose problems and guide the optimization of

the production processes.

The BMW Group Plants that use SAP BO for quality control on vehicle production

are listed in Figure 1. They are divided in five different Platforms, and each of them is

composed by three environments: development (DEV), integration (INT) and production

(PROD). Every environment has around thirty servers in each of the two server nodes, for

redundancy. For political reasons, the Chinese Plants do not exchange data with other

BMW Group Plants, and because of this, they are not going to be supported by this

project. The tools that I develop are going to be used in the German, United Kingdom,

South Africa and United States SAP BO platforms of BMW Group. It is noteworthy that

the Araquari Plant in Brazil and the San Luis Potosi Plant in Mexico do not have their

own platforms and use the German and United States platforms respectively, as illustrated

in Figure 1.

SAP BO provides the Web Intelligence tool, a web-based report creation tool that

28 Chapter 2. Motivation and Problem Description

relationship between instances of a Report Template is analogous to object instances of a

class. The main property of an Instance in SAP BO is the status, which can assume the

values (SAP, 2017a):

• Running

• Completed

• Recurring

• Failed

• Paused

• Pending

• Expired

• Warning

The Recurring, Paused and Expired statuses are related to schedules of the Report

Template. Recurring means that it is enabled to automatically generate reports, Paused

means that the schedule is temporarily disabled and Expired means that the end date of

the schedule has been reached and therefore it was suspended.

The remaining statuses are related to the status of a Report Template that was

triggered to run either manually or via a schedule. The meaning of each status and the

situations in which they can happen can be seen in Figure 2.

An instance which is a successfully generated quality report has the status Com-

pleted, however many situations can lead to other statuses which will not generate a report,

thus the importance of verifying the status of the instances and make necessary changes

in order to make them run again.

The flowchart in Figure 2 represents the possible statuses of a report instance in

SAP BO and the situations which make the status change. Once a report is triggered to

run, either by a schedule or by a platform user who manually triggers it, a new instance

is created with the status Pending. The blocks lightly colored in the flowchart show the

possible statuses that an instance can have in SAP BO. The statuses that are not present

in the flowchart are Recurring, Paused and Expired, which correspond to statuses of a

Report Schedule.

The SAP BO is a complete tool for data analysis and is the main tool being used

by Quality IT departments in BMW Group today. There are 89 production databases

connected to it that generate a massive amounts of data, most of which is already organized

into universes and can be used to create quality reports and optimize the production.

2.3. SAP BO for Quality Control 29

Figure 2 – Instance statuses in SAP BO

Source: made by the author.

Table 1 has some statistics of the Quality IT department responsible for the Painted

Bodywork technology in Plant Dingolfing to illustrate how much data the platform handles

considering the same structure is used in 11 Plants.

Table 1 – Statistics of the Painted Bodywork Quality IT department in Plant Dingolfing

Information type Amount

Defect Types 168
Defect Places 32
Cost Centers 375
Car Series 25
Cars produced daily 1600
Key Performance Indicators 1178
Report Schedules in SAP BO 1934

Source: made by the author.

30 Chapter 2. Motivation and Problem Description

2.4 Key Performance Indicators and The Cockpit

Most of the Report Schedules in the SAP BO Platform, besides the detailed report,

also calculate a Key Performance Indicator (KPI) defined by a set of rules. Each KPI has

an acceptable range of values which are the targets of the production managers.

Sometimes a manager is responsible for a large set of those KPIs and opening each

report file on the Network Attached Storage (NAS) to find the calculated KPI becomes a

high demanding task.

To provide a solution for this problem the Painted Bodywork Quality IT department

(where this project was developed) develops and supports a project which is used by most

of the Quality IT departments in BMW. The so called Cockpit is a web application

that uses the Oracle Apex Framework to provide the users of the reporting systems a

user friendly way to access the KPIs and reports, providing a dashboard overview of the

production in the plant.

Each Quality IT department that uses the Cockpit has a tool running in a server

called Wrapper Tool, also developed and maintained by our department, which scans

through the folders that contain their reports in the NAS, reads the report files and

finds the information related to the KPIs. This information is gathered and saved to the

Cockpit’s database hourly.

The Cockpit has general information pages, home pages with information of each

Quality IT department (Figure 3), and the dashboard pages that show the KPIs of a

specific category of report(Figure 4).

The KPI views show the current and last values of each KPI, colored green if the

KPI value is within the acceptable range and red otherwise. Clicking on a KPI opens the

report file from which the KPI was read by the Wrapper.

Both tools have many more functions that will not be covered here because are not

relevant to the work developed in this project.

The scope of the project developed in this internship is enabling the development

of plugin applications that extend the functionality of the SAP BO to better match the

requirements of BMW Group just like the Wrapper Application and the Cockpit do.

However these tools originally extend the functionality by reading the files in the NAS only,

and if for some reason the SAP BO platform was not able to add a file there (see figure 2)

they cannot give the user any information related to what happened inside SAP BO. This

project is going to use the RESTful SDK of SAP BO to access relevant information inside

the SAP BO Platform, as well as manage the Schedules of the Report Templates created

in SAP BO.

One of the tools developed within this project is also integrated with these systems

2.4. Key Performance Indicators and The Cockpit 31

to deliver information on the page in Figure 3. This tool will be explained in detail in

Sections 4.4.1 and 5.6, and the relationship with this image will be explained in Section 6.2.

Figure 3 – The Cockpit home page of TLK Dingolfing

Source: made by the author.

Figure 4 – KPI visualization in the Cockpit

Source: made by the author.

33

3 Theoretical Background

This chapter explains the theoretical backgrounds that guided the design processes,

the development and analyses of the results of this project.

3.1 Object-Oriented Programming

Object-Oriented Programming (OOP) is a programming paradigm based on the

concept of objects. Objects are usually models of things in the real world. They have data

fields (called attributes or properties) and procedures called methods.

Objects are generalized into Classes, which define a type of object and allow the

creation of multiple similar objects that reuse the same code. In other words, the classes

define a the data formats and methods available in a type of object and the objects are

the instances of a class.

However, OOP is more than just using classes and objects to organize code, it is a

programming paradigm based on classes an objects that enables a set of features:

• Encapsulation

• Inheritance

• Polymorphism

As previously stated, programming languages that support OOP provide an easy

and effective encapsulation of data an function into cohesive objects.

Inheritance is a way of redeclaration of a set of attributes and methods from a

base class into a subclass, which inherits from it. This is useful to define subtypes. For

example, both Employee and Customer are persons, so they have a set of information that

is common, thus the classes that represent them could inherit from a Person class that

define what is common to all types of persons.

The use of subtypes that have a different implementations overriding the same set

of methods, as in the definition of an interface, allows the usage of this subtypes to be

standardized. This is called Polymorphism.

As Robert C. Martin wrote on Clean Architecture: A Craftsman’s Guide to Software

Structure and Design (2017), these features are not entirely exclusive to OOP languages

but they are definitely made easier and more convenient in these languages. The real

advantage that OOP offers in a Software Architecture point-of-view, according to him,

34 Chapter 3. Theoretical Background

is the full control of dependencies and the possibility to use dependency inversion. This

aspect will be explained further in section 3.2.

3.2 The SOLID Design Principles for OOP

SOLID is a name created to help remembering the five principles of good OOP

design. Each letter corresponds to one of the following acronyms:

• SRP: Single Responsibility Principle

• OCP: Open-Closed Principle

• LSP: Liskov Substitution Principle

• ISP: Interface Segregation Principle

• DIP: Dependency Inversion Principle

According to (MARTIN, 2017, PART III Design Principles) the target of this

principles is to design modules that are easy to understand, tolerate change and serve as

basis for components that can be used in many systems.

The Single Responsibility Principle (SRP) states that each module should have one

single responsibility, or should be responsible to a single actor. If this principle is ignored,

one function or class may be used by different use cases or actors. If one actor requests a

functionality to be changed and this function or class needs to be changed for this purpose,

it might affect the other use cases that rely on it, leading to unexpected behavior.

The Open-Closed Principle (OCP) states that a class, module or component should

be open for extension but close for modification. This means that in order to extend

the functionality of the module, there should be no need to make big changes on source

code apart from adding the new functionality code. This is accomplished by partitioning

source code and managing dependencies to protect higher-level modules from changes in

lower-level modules.

The Liskov Substitution Principle (LSP) guides the use of Inheritance in OOP and

is based on the definition of subtypes by Barbara Liskov (LISKOV, 1988). This principle

states that inheritance should be avoided when the subclasses are not interchangeable like

real subtypes, or in other words, do not implement the same interface thus allowing other

classes to use the objects in the same way.

The Interface Segregation Principle (ISP) states that when a class A has a method

that is only used by a class B, this method should be segregated into an interface to

prevent class B from depending on the rest of class A’s source code, forcing recompilation

3.3. Software Components 35

and redeployment of class B whenever changes are made to class A. This principle is

mostly used is statically typed languages such as Java or C#, because dynamically typed

languages such as Ruby or Python have implied interfaces that are inferred at runtime, so

they do not force redeployment (and are not compiled either). In such cases the important

idea behind this principle is that a software artifact should not be forced to depend on

things it does not need.

The Dependency Inversion Principle (DIP) states that source code dependencies

should refer to abstractions instead of volatile concrete implementations that are sus-

ceptible to frequent changes. This means that the lower-level modules that contain the

implementation details should depend on the higher-level modules, despite the flow of con-

trol being in the opposite direction, which is the reason the principle is called Dependency

Inversion.

3.3 Software Components

Components are a set of modules that are deployed together. In compiled languages

they are an aggregation of binary files, while in interpreted languages they are aggregations

of source code files. Well designed components contain a cohesive set of classes and well

defined boundaries with dependency management that ensure they could be independently

deployable, therefore being independently developable as well. (MARTIN, 2017, Chapter

12)

3.3.1 Principles for Component Cohesion

Selecting which modules should be part of which component is a challenging and

important part of the application’s architecture. Well-designed components should follow

the three principles of component cohesion: (MARTIN, 2017, Chapter 13)

• The Reuse/Release Equivalence Principle

• The Common Closure Principle

• The Common Reuse Principle

The Reuse/Release Equivalence Principle states that "The granule of reuse is the

granule of release.". It means that classes and modules that are formed into a component

need to be a cohesive group. It also means that components should have a versioning

system with release numbers that will be referenced in other components for compatibility

purposes. The release process of a component should also include documentation of changes

in order to allow the developers of other components to make the necessary changes for

36 Chapter 3. Theoretical Background

interfaces with the new component or even ignore the new release and use the old version

instead.

The Common Closure Principle is the component version of the SRP (section 3.2).

It states that the classes and modules that change for the same reasons should be grouped

in the same component, and those which change for different reasons should not. This is

also important for maintainability of the application:

For most applications, maintainability is more important than reusability.
If the code in an application must change, you would rather that all of
the changes occur in one component, rather than being distributed across
many components.1 If changes are confined to a single component, then we
need to redeploy only the one changed component. Other components that
don’t depend on the changed component do not need to be revalidated
or redeployed. (MARTIN, 2017)

The Common Reuse Principle states that classes that are independent should not

be part of the same component, thus not enforcing other components that depend on it

to depend on classes within it that they would not need. It is the component of the ISP

(section 3.2).

While the first two component principles define which classes and modules should

be grouped in a component, the third defines which ones should not. It is not possible to

completely achieve all three principles in all components of an application, therefore the

architecture should focus on achieving a balance between the effort to reuse the component,

frequency of releases, and number of components that will require change in each release,

in order to fulfill the current development concerns.

3.3.2 The Main Component

When the principles in Sections 3.2 and 3.3.1 are used to implement a clean archi-

tecture and the dependency management is properly dealt with, higher-level components

such as those which implement the Business Rules or Use Cases should not be affected by

implementation details of lower-level components.

In practice, this means that the names of the lower-level classes should not be

mentioned in the higher-level ones that use them, although this information needs to be

available somehow. To solve this, dependency injection frameworks should be used or a

special kind of component should be developed that links everything, the Main component.

This component is responsible for instantiating the lower-level classes and giving

these objects to the higher-level modules. It injects the dependencies and builds component

structures of the application, thus is considered to be the dirty component of the clean

architecture. (MARTIN, 2017, Chapter 26)

3.4. Software Tests 37

3.4 Software Tests

Quality is determined by how a product matches the expectations set, and in case

of software, by the software requirements. In other words, in order to assure quality in

software production there need to be software tests that show if and how the software

product matches its requirements.

This tests can be done in different levels, manually or automatically. The three

levels of software tests are:

• Unit Tests

• Integration Tests

• Acceptance Tests

Unit Tests are done in the lowest level, covering the classes’s methods, while

Integration Tests cover the component level and component relations and Acceptance

Tests cover the application level and use cases.

Most of the languages today have a unit testing framework (or sometimes more

then one available) to write automated unit tests to the software being programmed.

3.4.1 Test Driven Development

Test Driven Development (TDD) is a software development technique that became

popular in the late 1990s as part of the Extreme Programming (XP) and was later adopted

by Scrum and other Agile methods. The so called "Test First Programming" has three

laws:

1. You are not allowed to write any production code until you have first written a

failing unit test.

2. You are not allowed to write more of a unit test than is sufficient to fail.

3. You are not allowed to write more production code that is sufficient to pass the

currently failing unit test.

This three laws define a cycle that should be followed during the software develop-

ment. The cycle is perhaps less than a minute long and ensures that tests and production

code grow together.

The cycle starts with the first lines of the unit test. At some point a name of a

class or method that was not yet declared will be mentioned and will make the test fail.

38 Chapter 3. Theoretical Background

This means that it is time to write the production code that declares this resource, but

not more, so that the unit test now passes. Then time to write more test code again.

Figure 5 – The TDD Cycle

Source: The Cycles of TDD (2014)

A visual representation of the TDD cycle can be found in figure 5. The first status

is represented by the word "red" and it refers to the step when the developer writes a

unit test that fails. The second status is represented by the word "green" and it refers to

the step when the developer writes production code that makes the failing unit test to

pass. Finally, the third status is represented by the word "refactor" and it refers to the

step when the developer cleans the production code just written to improve readability or

resource management. (MARTIN, 2014)

According to Robert C. Martin (MARTIN, 2011, Chapter 5) the benefits of using

TDD are:

• Certainty

• Defect injection Rate

• Courage

• Documentation

• Design

Dozens of new tests are written for each new module added to the application, that

can and will be run every time a change is made to production code. Whenever a change

is made in any line of any file, the unit tests will show with Certainty if the methods

that worked before still work. If however something broke, they are going to show where

so that it can be fixed right away, reducing the Defect injection Rate.

Developers that work in big projects sometimes encounter parts of code that are

not organized, hard to understand and hard to modify, and think that it should be fixed.

The problem is that this kinds of fixes have the potential to break other things, and the

developer who tried to fix the mess would be responsible for it. TDD makes it simpler to

3.4. Software Tests 39

change pieces of code and verify that everything still works as expected, so it gives the

developers the Courage to change what should be changed to improve the quality of the

product.

Code examples are the parts of the documentation of any library or framework

that is most appreciated by developers. The unit tests created with TDD have code

samples covering all the different ways each class was designed and developed, and that

can definitely be used as documentation by the developers in the team.

The difficulty of writing unit tests is that for a method to be tested correctly it

needs to be isolated from others. Writing the tests first forces the developer to consider

this things during development, which are characteristics of good design practices.

Although the unit tests are not part of the production code, the design and

organization in their code must be made with the same care and hold the same quality

standards that production code. Messy tests can indeed lead to more overhead when

requirements change or make production code that was designed to be volatile harder

to change because of their intrinsic dependency relationship. Tests always depend on

production code. (MARTIN, 2017, Chapter 28)

Well written tests should be Fast, Independent, Repeatable, Self-Validating and

Timely, which form the acronym FIRST.

Fast: Tests should be fast to execute. If they are slow, developers will not run them

as frequently, leading to more problems not being found in an early stage and therefore

harder to fix.

Independent: Tests should not depend on each other, they should be able to run

separately and on any order. If one test sets up the conditions for others, that leads to a

cascade of failures making the debugging process difficult.

Repeatable: Tests should be repeatable in any environment. They should not

depend on databases or internet connection or computer architecture. If the tests are not

repeatable in every environment, they are not able to run when the environment is not

available and there will always be doubts whether tests failed because of a problem in the

code or in the environment used to run them.

Self-Validating: Tests should have a boolean output. They can only be successful

or failed, and the evaluation should not depend on subjective analysis of logs or output

files.

Timely: Tests should be written in a timely fashion, seconds before the production

code they test. If they are written after the production code, it may be too hard to test

because the production code was not designed to be testable. (MARTIN, 2009, Chapter 9)

40 Chapter 3. Theoretical Background

3.5 RESTful API

Most of the software applications today are not stand alone and have features that

need a centralized database or some kind of integration with other agents over a network.

According to Enterprise Integration Patterns: Designing, Building, and Deploying

Messaging Solutions (2004), there are six different patterns of integration architecture,

which are:

• Information Portals

• Data Replication

• Shared Business Functions

• Distributed Business Processes

• Business-to-Business Direct Integration

• Service-Oriented Architecture

The Service-Oriented Architecture is the most advanced pattern used nowadays,

and its goal is to take advantage from new and old functionality in order to widely reuse the

business rules. This functionalities are developed in a decoupled way from the applications

and are accessed remotely as if they were local methods. This methods are generally called

web services. (HOHPE et al., 2004)

A web server is a computer or a piece of software running on a computer that pro-

vides other computers access to files or databases (MOZILLA DEVELOPER NETWORK,

2019b). A web server can be either static or dynamic. A static web server receives a request

for access to a file and sends the file "as is" and sends it to the client. This requests usually

use a protocol like Hypertext Transfer Protocol (HTTP) or File Transfer Protocol (FTP).

A dynamic web server, on the other hand, has some extra software to process data and is

commonly divided into an application server and a database. In this configuration, the

application server receives the HTTP request, processes the request, accesses the database

to read or write information, and sends a response to the client.

The HTTP is a stateless application-layer protocol that follows a classic client-

server model. It defines how the messages between client and server should be structured,

with predefined Uniform Resource Locator (URL), headers, the message body and the

HTTP Method, most commonly GET or POST (MOZILLA DEVELOPER NETWORK,

2019a). HTTP is the most used protocol on the internet, and it is used for example to

define how the internet browser in a computer communicates with web sites’ servers.

3.5. RESTful API 41

A software application that is built to be accessed by other applications should

implement the interface that allows this interaction. In software development, this is called

API.

One of the standard architectural styles for distributed hypermedia systems is the

Representational State Transfer (REST) pattern (RESTFULAPI.NET, 2019), which is an

implementation of the Remote Procedure Invoking integration approach. REST defines 6

guiding constraints that must be satisfied by an API in order to be called RESTful, which

are:

• Client–server

• Stateless

• Cacheable

• Uniform interface

• Layered system

• Code on demand (optional)

A RESTful API is implemented through the HTTP protocol to give client appli-

cations access to the server’s resources. REST uses a resource identifier to identify the

particular resource requested. The state of a resource is called resource representation

and its data format is some kind of hypermedia, usually HTML, Extensible Markup

Language (XML) or JavaScript Object Notation (JSON).

HTTP Response Status Codes are also used to identify whether the request was

successful, if the response has a body, what kind of error might have occurred and if the

error was on the client-side or server-side (FIELDING et al., 1999).

43

4 Requirements and Design Considerations

The four SAP BusinessObjects Platforms in BMW GROUP and their dozen en-

vironments in total, constitute a massive infrastructure that is crucial for the Quality

Reporting in the entire company, as discussed in Chapter 2. In order to keep this infras-

tructure running healthily, there are some management tasks required. Some of these

crucial tasks require a huge collective effort from the Quality Reporting teams in all BMW

GROUP Plants due to the extensive scale.

Although developers have created automated solutions for some tasks in the past

using the RESTful API, those solutions were usually to a specific use case which solved a

specific problem of one of the departments described in section 2.2. Other technologies

and other Plants with similar problems would not be able to use the same script because

the changes in requirements that were necessary were too hard to be implemented in a

non-modular project that was not designed to allow changes.

The main goal of this project is to provide a software framework that enables devel-

opers to make automated solutions for this platform management tasks, in form of scripts,

services or applications, without being concerned with the lower-level implementation

details related to the use of the different APIs available. This chapter is going to explain

the design process that enabled this goal to be achieved.

4.1 General Requirements

This project will contain the SAP BO platform management framework and script

solutions that use this framework to perform platform management tasks.

The definition of a framework helps us to understand some of the requirements of

this project:

A framework, or software framework, is a platform for developing soft-
ware applications. It provides a foundation on which software developers
can build programs for a specific platform. For example, a framework
may include predefined classes and functions that can be used to process
input, manage hardware devices, and interact with system software. This
streamlines the development process since programmers don’t need to
reinvent the wheel each time they develop a new application. (CHRIS-
TENSSON, 2013)

4.1.1 Functional Requirements

1. Connect to any environment of any BMW SAP Platform

2. Manage sessions for different users

44 Chapter 4. Requirements and Design Considerations

3. Detect expired session and reconnect

4. Have persistence of sessions for manual logoff in case of crashes

5. Retrieve data with different APIs available in the platform

6. Parse the responses and return the relevant information

7. Provide necessary data structures to represent the requested data

The first requirement is to connect to any SAP BO environment in BMW because

the tools that are going to be developed using this framework should be able to access

Development, Integration and Production environments within the four Platforms in

different countries, as explained in Section 2.3.

Requirements 3 to 5 are related to problems the RESTful API of SAP BO has

which the framework should be able to handle. These problems will be further explained

in Sections 4.3.2, 4.3.3 and 4.3.4.

Finally, requirements 6 and 7 are related to converting the text based response

of the RESTful API into data structure objects which can be read by the tools. This is

necessary to ensure not only that the tools will be able to access the information they

need, but also that the integrity of the responses is validated within the framework. More

information in Section 4.3.

4.1.2 Nonfunctional Requirements

1. Version control

2. Independently developable and deployable components

3. Testability

4. Documentation

5. Extensibility

6. Internationalization and Localization

7. Maintainability

8. Portability

9. Readability

4.2. Architecture 45

The first two nonfunctional requirements are related to the versioning of the

framework and the tools that use it. The tools and the framework component need to be

independently developable so that changes made in the framework component to fulfill

new requirements of one of the tools do not enforce changes in the other tools components

to keep them compatible. With version control, each tool component can use a different

Release of the framework component, according to the Common Reuse/Release Principle

of Component Cohesion explained in Section 3.3.1. For more details see Sections 4.2 and

5.2.2.

The requirements 3, 4, 5, 7 and 9 are related to the use of good practices of Software

Engineering that will enable other developers to maintain the tools that I create and

develop new ones after the period of my internship is over. These requirements were defined

with the Quality IT team that would be responsible for this project in the future, since

they explained that it is normally hard to continue the work of a former intern and usually

the new interns have to start new projects from the beginning.

Requirement 6 about Internationalization and Localization refers to SAP BO in

BMW Group being used in Platforms in multiple countries, with different languages, which

affect the operation of these Platforms through the RESTful API, mostly but not limited

to, in the formats of date strings. This problem is detailed in Section 4.3.8.

Finally, requirement 8 about Portability refers to the problem that in a big company

such as BMW Group there are many IT rules and the employees usually do not have

administrator rights in all computers and servers that are going to use the tools developed

in this project, which means that no additional installations should be required.

4.2 Architecture

The software architecture is essential in the development of this project since it

will contain many tools that, with good software architecture techniques, will use the same

modules to implement the commonly needed resources.

These common resources will be part of a component called sap_framework, as

illustrated in Figure 6. The other components that use it represent the tools developed.

These tools will implement the main applications, Use Cases, GUIs, inputs and outputs,

while the sap_framework component will implement the entities (main data structures),

the module that handles the RESTful requests, the necessary converters and other common

pieces of software.

These components, specially the sap_framework which is depended on by the

others, will have a release process following the Reuse/Release Equivalence Principle

discussed in section 3.3.1.

46 Chapter 4. Requirements and Design Considerations

Figure 6 – Component Diagram of SAP Toolkit Project

Source: made by the author.

Figure 6 shows some of the software components that will be part of this project,

although the project itself is not limited to them. The architecture should allow new

tools to be added at any given time. The block on the right called BMW Group SAP

BusinessObjects Platforms correspond to the platforms of SAP BO in BMW Group as

explained in section 2.3. The block on the left called SAP Toolkit Project shows the project

developed by me during this internship, with its software components.

The sap_framework component may also be updated to support new features, thus

requiring that the components are source code independent and use a version control system

that allow components to use different versions of the framework, enabling independent

development.

This means that each of the tool components should use a release of the

sap_framework, and every time there is a new release the developers of the tools can have

the option to upgrade the tool to use the new release of the framework, and plan the next

release of the tool accordingly. The implementation of this process will be described in

section 5.2.2.

4.3 The sap_framework component and its modules

4.3.1 The restful module requirements

This is going to be the module that handles the communication with the SAP BO

environment through the RESTful API, and it should hide the lower-level communication

details of the API and the HTTP Requests that it uses.

To design this module it is necessary to understand how the APIs work using both

the documentation provided by SAP and the situations that are not documented and had

4.3. The sap_framework component and its modules 47

to be reverse-engineered in our specific installation of SAP BO.

As explained in section 3.5, to communicate with a RESTful API, a module needs

to be able to create HTTP requests, send the requests, receive the responses, decode and

parse the responses, and give the requested information back to the module that called it.

In the SAP BO platform specifically, the first request should be a logon request

that sends in the body the username and password of the user, as well as the authentication

method. The body of the response for this request will contain a logonToken string which

will be used in the remaining requests as part of the headers.

There are at least three APIs in the SAP platform that use this same kind of

interface Raylight, Infostore and CMSQuery. Basically the first is the main API that SAP

provides to connect tools to their platform, the second gives access to some limited data

on Infostore objects such as folders, documents and instances (see section 2.3), and the

third enables the usage of Structured Query Language (SQL) queries to the platform’s

databases.

After the requests are over, a logoff request with the logonToken must be sent to

the platform in order to release the session currently being used.

Each time this logon request is processed by the SAP BO platform it generates a

session for this user. Each user has a maximum of ten sessions available independently of

the client type used (API or other applications from the SAP BO Suite), which means

that whenever the maximum number of sessions for a user is reached, this user is blocked

until the open sessions are closed. According to the SAP BO documentation the opens

sessions should expire and be deleted after one hour, which is not always the case in the

BMW Group installation of SAP BO as my tests monitoring the open sessions using an

administrator account have showed.

Because of this problem with the management of the sessions it is necessary that

the restful module manages the sessions it creates, making sure that every session opened

by it should be reused as many times as necessary and then properly closed afterwards.

The session management in this module should also detect when a session has been expired

and reconnect this user.

4.3.2 The false unauthorized problem

One of the most common problems that happens with this APIs is that most of

the requests are not responded properly. Most of the requests through any of the APIs

mentioned get a response with HTTP Status 401 (Unauthorized) and message "No logon

token provided in the X-SAP LogonToken HTTP header or query parameter. (RWS 00008)",

even though there was a logon token in the headers with this exact tag. In this cases we

send the same request again until the response does not have this error anymore. This

48 Chapter 4. Requirements and Design Considerations

happens randomly for every kind of request tested. See Table 2 to see how often this error

occurs in some tests I have made on October 10th in the Integration environment of the

German Platform of SAP BO.

Table 2 – Frequency which RWS 00008 error occurs

Number of requests
made

Number of responses
with RWS 00008 error

Average errors per
request

40 38 0.95
40 39 0.975
40 37 0.925
40 37 0.925
40 1 0.025
40 40 1

TOTAL AVERAGE 0.8
Source: made by the author.

The workaround used to this problem is to ignore a response like this and send the

same request again until the client-side receives a response considered to be valid.

4.3.3 The false logoff problem

Although the API documentation states that to release a session a logoff request

should be sent and answered with HTTP Status 200 (OK) (SAP, 2017b), that response

does not always mean that the session was indeed closed.

To test this, an account with full administrator rights was used in a controlled

environment of SAP BO, with which it was possible to monitor the open sessions of a

specific user. Sessions were opened through the RESTful API and it was observed that

after a logoff request through the API the session would still be blocked in SAP BO, even

though the response through the API was HTTP Status 200 (OK).

This problem was a known issue which caused users to be blocked by having

ten sessions open indefinitely, until someone in the SAP BO Operation Team, from a

supplier company, would manually clear the sessions for that user. SAP has provided us

with a private fix for this problem which would supposedly make inactive sessions to be

automatically cleared after one hour.

The tests described earlier showed, however, that this fix does not always work

properly, and still sometimes leaves sessions open indefinitely. This problem was reported

to the SAP BO Operation Team with test results and a solution was never found.

The workaround that we use to ensure that the session was properly closed was

discovered by a former intern in the department (SILVA PRAZERES, 2018). He realized

that after the logoff request was properly processed, following requests using the same

token are responded to with HTTP Status 401 (Unauthorized) and message "Not a valid

4.3. The sap_framework component and its modules 49

logon token. (FWB 00003)" and proposed the method of sending the logoff request multiple

times until this response is received.

My tests show that, although the converse in not true and this response does not

always mean that the session is disconnected, this method can be used to check whether a

logoff attempt was successful.

4.3.4 The session expiring problem

Another problem in the SAP BO RESTful API that was not documented is related

to the expiration of sessions.

After some time a session token can be disconnected by the server-side, which

would then require the client to send a new login request and get a new token. The SAP

BO Operations Team tried to support this project and conducted an investigation to

determine the reason of sessions being closed by the server-side but it was inconclusive.

The problem is that when this happens there is no clear message to the client-side

stating that the token should be renewed. There are two error messages related the token,

both of which have their own problems explained in Sections 4.3.2 and 4.3.3.

By reading this description of the two error messages, one would assume that when

a session is closed in the server-side, the response sent would have HTTP Status 401

(Unauthorized) and message "Not a valid logon token. (FWB 00003)", as explained in

section 4.3.3, but this is not true.

Most of the times a session is closed by the server-side, the following requests

containing the same token are actually responded with HTTP Status 401 (Unauthorized)

and message "No logon token provided in the X-SAP LogonToken HTTP header or query

parameter. (RWS 00008)", which, because of the problem explained in Section 4.3.2, is an

ambiguous message that usually has no real meaning.

This could be tested using an account with full administrator rights in a controlled

environment of SAP BO and manually closing, on the server-side, the session being used

on the RESTful API on the client-side.

A consequence of this problem is that the workaround suggested for the problem in

section 4.3.2 is not always valid. Repeating requests that are responded with this message

will usually eventually result in a valid response, but if this process is repeated too many

times and no valid response is detected, it probably means that the session disconnected

and the user needs a new token.

50 Chapter 4. Requirements and Design Considerations

4.3.5 The first model restful module

Based on this few requirements I planned a first version of the module’s structure

as can be seen in the class diagram on Figure 7.

The main class here is the RequestController, which is composed by one Environment

object and a list of Session objects. It has methods to execute the requests managing the

sessions automatically, creating a session for a user if it is not available and disconnecting

all sessions at the end (upon deletion).

Each different request method of the RequestController class uses the _request pri-

vate method with a different implementation of the RequestBase class to make the Request

object, verify if the response received is valid and parse the response dictionary finding the

information that should be returned to the higher-level module. This _request method

uses the RequestSender class and retries the request some times until the implementation

of RequestBase.valid_response method returns true. This is meant to avoid the problem

with the RWS 00008 error described in section 4.3.2.

In Figure 7 there are two of these RequestBase implementations, RequestLogin and

RequestLogoff, and the idea was that more implementations of RequestBase could be added

for each type of request that the framework would support.

Figure 7 – First attempt to model the restful module

Source: made by the author.

4.3. The sap_framework component and its modules 51

4.3.6 The problems and solutions of this first module

This first model has some advantages but many problems as well. This section will

discuss the problems from a software architecture point of view applying the principles

from section 3.2.

The first problem is that although the RequestSender class is the only one that

actually use an external library to handle the communication with the platform, the

Request object used by many of the classes in this structure is part of the same library,

Python’s urllib, that handles HTTP requests. If in the future someone decides to reuse this

structure with a different library such as urllib2, urllib3 or requests, many of the classes

will have to be changed, which would require a huge effort.

The second problem is that instead of defining a Response class, the response is

only a dictionary that contains the body of the response. This is a problem because some

of the errors that may happen in the platform such as HTTP Error 503 Service Unavailable

have no body, so the response would be an empty dictionary with no information of which

problem happened.

To address this first two problems I modeled two classes: Request and Response,

illustrated in Figure 8. The first has the basic HTTP request properties discussed earlier

as attributes along with the Session object used to make the request, which is relevant

because if the module detects that a session has expired during a request, it has all the

necessary information to reconnect and update the request with a new token to try again,

as discussed earlier in this section. The second is composed of http_status and body, so

that the error type is still available in case the error has no body.

Figure 8 – Defining Request and Response data structures

Source: made by the author.

In order to make the rest of the module independent from the library that han-

dles the HTTP requests we can use the Dependency Inversion Principle and hide the

RequestSender class behind an interface as shown in Figure 9. After this change, the

restful module depends only on the interface RequestSenderBase which does not have

dependencies on external libraries. The class which contains the implementation using the

52 Chapter 4. Requirements and Design Considerations

urllib is now RequestSenderUrllib, which is one implementation of the RequestSenderBase

interface. In case someone decides in the future that the framework should use other

library to handle the HTTP requests, another class can be created inheriting from the

same interface and implement the send_request method with the other library. Therefore

this model also makes the module open for extension but closed for modification, following

the Open-Closed Principle.

Figure 9 – The RequestSenderBase interface

Source: made by the author.

The third problem is the RequestBase class and its many implementations. The

methods of RequestBase, as well of its implementations, have the responsibility of making

the Request object and reading the Response. This violates the Single Responsibility

Principle because the RequestBase class has more than one reason to change. In this case

this problem is aggravated due to RequestBase behaving like an interface which will have

many different implementations, therefore requiring change in all of the implementations

as well.

The make_request method of RequestBase has different parameters depending on

the type of the request. All the requests require parameters that will be attached either to

4.3. The sap_framework component and its modules 53

the url, the headers or the body, depending on which API and resource is being requested,

as well as the method. In this first model these parameters were hidden, as a dictionary

argument called parameters, to enable the use of the interface. Although this would work

to some extent, the fact that the dictionary’s keys are not defined and will be different for

each kind of request shows that it is only being used to hide that the implementations of

this method are not interchangeable and do not satisfy the Liskov Substitution Principle,

therefore this method should not be part of the same interface.

To solve this issue with the I modeled the RequestFactory class that is responsible

for making the Request objects, seen on Figure 10. It has different methods that make

the different types of requests supported taking the necessary arguments directly, without

the use of an ambiguous dictionary. It also has private methods that are used internally

implementing functions that will be used for more than one request type.

Figure 10 – The RequestFactory class

Source: made by the author.

The public methods of RequestFactory have their names starting with make_request

prefix before the descriptive name that relates to the API and resource type used. Some

of this methods were added to Figure 10 to illustrate how the different methods can take

different parameters, but to improve readability the remaining methods were omitted.

Another noteworthy change is that the make_headers that before was a part of the

standalone HeaderMaker class was incorporated here as a private method since it is

unnecessary outside this class.

4.3.7 Entities Module

The entities module contains the higher-level data structure classes, which are

used to communicate information between the sap_framework component and the tool

components. These data structures do not contain any lower-level implementation details.

One of the data structures defined here, for example, is an Enumeration of all

the environments of SAP BO platforms in BMW Group. It defines the names of each

54 Chapter 4. Requirements and Design Considerations

environment so that both the sap_framework component and the tool components know

which names are defined. Then inside the restful module the lower-level implementation

details such as base URL and server Internet Protocol (IP) addresses are defined for each

environment name defined in this Enumeration.

4.3.8 The date_converter Module

The date_converter module is used for internationalization of the date and time

representations. One of the biggest problems that this project faced is that BMW Group

has multiple SAP BO platforms in multiple countries, as explained in section 2.3, which

are set to different default locales.

Normally a system like this would be implemented using datetime objects in the

database and back-end services, which would be then converted to string representations

in the user defined locale to be presented in the front-end applications.

The implementation of the SAP BO RESTful API, however, is a back-end service

and uses dates and times in string representations which are formatted to either the user’s

or the platform’s locale settings.

Another problem that was faced to enable this project to be used in all BMW Group

SAP BO platforms is that the Report Templates and Instances objects are also saved with

locale information from the last user who edited it. When creating a new schedule with

the RESTful API, dates and times filled in the parameters need to be converted from

the string representations of these locales to the generic string representation which the

RESTful API supports.

This problems inspired the creation of the date_converter module, which is used

by the restful module to convert the string representations to date objects and back, which

falls into the Internationalization and Localization requirement in section 4.1.2.

4.3.9 Conclusion

The sap_framework component includes the entities, date_converter, and restful

modules.

The complete class diagram of the framework component can be seen in figure 11.

The date_converter was omitted from this class diagram because since the last upgrade

patch was installed in BMW Group SAP BO environments the problems described in

Section 4.3.8 that made it necessary have been fixed. Finally the environments module,

which fulfills the functional requirement of Section 4.1.1 to "Connect to any environment

of any BMW SAP Platform", was also omitted because it contains sensitive information

related to the BMW Group servers configuration which I cannot share.

4.4. Use Cases 55

4.4 Use Cases

As previously explained in Section 4.2, the use cases will be implemented in separate

components that use the sap_framework component to implement the communication to

the SAP BO platforms in BMW Group.

4.4.1 The sap_status component

Each Quality IT department has their own folder in the SAP BO platform where

all the report templates are saved. This report templates are scheduled to automatically

generate quality reports. Most of the times a report template will have multiple schedules

which have different filters selected, such as Car Series or Cost Center, or different

recurrence information, such as hourly, daily or monthly.

It is responsibility of the Plant Coordinator in the Quality IT team to make sure

that the quality reports are properly generated and available to the end users. If one of the

systems used by a report template is not available such as a database, the NAS server or

the authentication server, or if there is some other problem with the analysis, the schedule

may not generate an output report. The output report is only generated when the new

report instance reaches status Completed in figure 2, which may not happen for many

reasons.

Every morning the Plant Coordinator should check the report instances in the

three environments, Development, Integration and Production, verify if the reports are

generated as expected and, when reports have generated Failed instances, verify why they

have failed.
To automate this task with a script, it must use the framework to do the following steps:

1. Receive configuration via parameters

2. Connect to one of the SAP BO Environments

3. Given a folder, navigate through the inner folders and get the report templates,

recursively

4. Count the total number of instances from these report templates

5. Count the number of instances with status Recurring from these report templates

6. Count the number of instances with status Paused from these report templates

7. Get information from the instances with status Failed from these report templates

8. Organize information in JSON format to be exported and read by external tool

The first and last steps are related to the integration with an external tool that

56 Chapter 4. Requirements and Design Considerations

runs in the server of the Wrapper Application. This external tool will use this script with

different configurations to read the status of the Report Schedules in the SAP BO Platform

in folders of multiple departments and in the DEV, INT and PROD environments (see

Section 2.3). This external tool will also read the output files generated by this script

and save the information in the Apex Database of the Cockpit to be displayed in the web

dashboard to all users (see Section 2.4).

4.4.2 The sap_reschedule component

The automation of report generation is done in the SAP BO platforms of BMW

group using Schedules, and since the SAP BusinessObjects Business Intelligence Suite

does not provide a tool that support editing schedules in batch, managing them manually

in the scale that they are used in BMW Group becomes a high effort task.

To automate this task and save thousands of work hours per year across BMW

Group, the sap_reschedule component will implement a script which can select all schedules

of the Report Templates within a specific folder in SAP BO, alter parameters predefined

in a configuration file and post them back into the SAP BO platform.

4.4.3 The sap_backup component

The sap_backup component will implement two configurable scripts, one of them

should be able to select select all schedules of the Report Templates within a specific folder

in SAP BO, and back them up into a file in JSON format, while the other should be able

to read the backup file and restore the schedules into the SAP BO Platform.

The implementation of both scripts will be similar to the sap_reschedule script,

except that the schedules should not have their parameters altered, allowing the restored

schedules to produce the exact same reports that the backed up schedules would.

4.4. Use Cases 57

Figure 11 – Class diagram of the sap_framework component

Source: made by the author.

59

5 Implementation

This chapter will expose the details about the implementation of the project, along

with the technologies, processes and techniques chosen to support the requirements and

design choices discussed in Chapter 4.

Some sections in this chapter that explain project management processes will often

refer to a collective term such as development team, simply because that is the proper

technical term. Since I am the only developer in this project by the time of writing this

document, these terms will usually be referring to myself only, unless otherwise noted.

5.1 Scrum Methodology for Project Organization

The chosen project management methodology to be used in this project was the

Scrum (SUTHERLAND, 2015). It consists of a framework to organize the tasks of the

project and plan their execution. The time of the project is divided into fixed periods called

Sprints that normally are between one week and four weeks depending on the project.

New tasks are added to the Project Backlog. In the beginning of each sprint there

is a meeting called sprint planning where the Scrum Team decides which tasks from the

backlog should be assigned to the next sprint. All members vote for the number of points

each task deserves according to difficulty and time estimate to complete it. This points

can follow the Fibonacci sequence in order to represent clearly the difference in each

step, although because this measurement is subjective, at the end of the sprint the team

counts the number of points accomplished which is the team’s speed. The speed is taken in

consideration in the sprint planning when choosing how many and which tasks are going

to be assigned to the sprint.

During the sprint the team has meetings called daily stand up, which as the name

suggests, happen daily and with the members standing in a circle. This meeting is supposed

to take very little time, around fifteen minutes considering a team as big as eight people.

Each team member should report on what she worked the day before, what is planned for

the current day, and which difficulty they might be having. This is important to let the

leader (Scrum Master) or other teammates know when help is needed to remove obstacles

to the productivity.

When a sprint ends, the team meets again for sprint retrospective, when the work

done in the sprint is analyzed and the team thinks about what can be improved for the

next sprint.

Since I work on the same project full time, it was decided that a period of one

60 Chapter 5. Implementation

week only would be enough for each Sprint.

The tasks scheduled in this project fall into the following categories: research,

development, operations and documentation. Research tasks are related to research on

how different tasks can be developed, which include learning how to use the RESTful APIs,

using the documentation and tests designed for reverse engineer what is not documented.

Development include tasks of development of new functionality in either component on the

project. Operations include tasks related to configuring and running the tools that were

developed in the project. Finally, documentation tasks include tasks related to documenting

the findings of research tasks, the development made, how to use the tools and what

was done with them in the operation tasks, as well as the topics that are written in this

document.

The stakeholders of this project are the Plant Coordinators, responsible for quality

reporting in all BMW, Mini and Rolls Royce plants, as explained in 2.2. Together they

represent all the users of SAP BO in BMW Group who will be benefited from this project,

and have helped set the requirements for most of the tools developed up to now.

Finally, the roles of Scrum Master and Product Owner, who respectively lead the

team and decide what should go in the backlog and in each order of priority, were shared

between my supervisor and I since we did not have a regular sized, five to eight people,

Scrum Team.

The tools used in BMW Group for project management and documentation are part

of the so called Agile Tool-chain, supplied by the Australian enterprise software company

Atlassian Corporation. The Scrum project management described in this session was

implemented in a web tool contained in this package called Jira. The internal documentation

for the tools developed was written in another web based tool from this package called

Confluence.

5.2 Git Version Control System

To fulfill the Version Control and Independently developable and deployable compo-

nents nonfunctional requirements (see Section 4.1.2) it was decided to use Git. Git is the

most widely used version control system today, which is reliable, offers high performance

and is fully distributed. In BMW Group the enterprise solution used to manage Git

repositories is Atlassian Bitbucket. (ATLASSIAN CORPORATION, 2019b)

Git records and organizes the project’s source code time line. When a change

is saved onto Git, it is called commit. Every commit has date, time, user, and message

information, and represents a specific version of the source code. Git also supports branching

and merging to enable parallel time lines, enabling the developers to work in different

62 Chapter 5. Implementation

with the tag of the Jira Issue that it is related to, which helps to keep the repositories

organized.

The commit message’s subject line also starts with the Jira Issue tag, this way

after the branch is merged and deleted, the changes in the all commits can still be related

to the original Jira Issue. Additionally, this reduces the need for long commit messages,

with separate subject line and body, since the context of the reason for the change can be

accessed in the linked Jira Issue.

With these simple process rules, every task in the scrum board in Jira also shows

the number of branches and commits there are related to it in Bitbucket.

Another important part of the workflow is the Pull Request. Both master and

develop branches in all repositories in this projects are blocked for changes without a

Pull Request. When some change is ready to be merged, the developer will open a Pull

Request in Bitbucket, explain the changes and add other development team members and

supervisors as reviewers. The reviewers must approve the pull request for it to be merged

automatically within Bitbucket, and they might request changes before approval.

Another benefit is that the Pull Request detects when merge conflicts are present

and disables the merge button. The reason for merge conflicts in this stage is usually

that the feature branch has outdated base code, and the conflicts are responsibility of the

developer, the assignee of the Jira Issue and creator of the Pull Request, to fix. In order

to approve the Pull Request the reviewers should require the conflicts to be solved by the

developer, and since the developer has no change rights on the destination branch, the

changes should be done with a Rebase procedure of the feature branch, updating the base

code for it.

The procedures and guidelines described in this document have been fully docu-

mented in the project’s Confluence page to help future team members to follow the same

structure, with tutorials and examples.

5.2.2 Git Submodules for Component Source Management

In Section 4.2 it was explained that the project will be composed by one frame-

work component and other components that will use it to implement different use cases.

Additionally, each component would need to use a version control system that would

allow them to be independent of each other and use different versions of the framework

component if necessary.

To implement this architecture, each of the components in Figure 6 will have their

own Git repository in Bitbucket. The functionality of Git that allows a repository to be

used by others is called submodule (GIT SCM, 2019b).

5.3. Python 3 63

Whenever a new tool repository is set up, the sap_framework repository should

be initialized as a submodule. This process is similar to cloning the sap_framework

repository inside the other repository, however with the key difference that the changes in

the submodule will not be tracked as source code changes. Instead, the sap_framework

directory inside the root repository will be tracked as a commit from the sap_framework

repository.

Figure 13 shows the folder structure of sap_status repository which uses the

sap_framework as a submodule, and in this case the submodule is referencing the commit

4a9fe33b6f8 in this repository.

Figure 13 – sap_status repository structure with sap_framework as submodule

{ sap_status
} output

6 . g i t i g n o r e
{ sap_framework @ 4a9fe33b6f8
6 . g i t i g n o r e
6 . g i tmodules
1 sap_status . py
q README.md

Source: made by the author.

With this configuration, each of the repositories of the remaining components

in figure 6 will be linked to the sap_framework repository and have the hash of the

commit which corresponds to the version of the sap_framework component they are using.

Furthermore the submodule command in Git has many features to manage which commit

is tracked, fetch source code and run other Git commands in the submodule’s repository.

5.3 Python 3

Python is an open-source programming language that in the last decade has grown

to be one of the most important in many areas of computer science. It was decided by

the department that this should be the language used by this project since it is relatively

simple to learn and one of the most important aspects of this project is that it should be

easily maintained by people who are new to this subject.

Python is a dynamically typed, interpreted, language, which meas that the Python

interpreter reads the source code and interprets it in real time and there is no compilation

required. It also means that the Python interpreter with the right version should be

installed in the environment which will run the application.

BMW Group has an IT System which has custom builds of applications to be

installed in the company’s machines, and regular users must use the applications available

64 Chapter 5. Implementation

in this system. The Python interpreter version used for this project is therefore the

most recent version that was available in this system when the project started, which is

Python 3.7.

The source code in this project was developed following the Style Guide for

Python Code (2001), also known as PEP-8. This code style standardizes the code layout

style, naming conventions for variables, functions, classes and modules, comments and

annotations in general. It was first created in 2001 but has been updated over the years,

with the latest changes been made in 2013.

5.3.1 Standard Libraries Limitation

Because of this software installation constraints it was decided that this project

should only use standard Python packages, that are included with the interpreter available

for internal use, in order to allow the internal deployment to be done with no additional

rights needed. This fulfills the Portability requirement from section 4.1.2.

5.3.2 Components and Modules

In Chapter 3 the names component and module were introduced as software

engineering terms referring to different levels of functional parts of a software application.

However, the term module in Python usually refers to a file containing Python

source code. When source code organized in more than one Python file in the same

directory is to be used by modules outside this directory, the directory is called a Python

package. (PYTHON SOFTWARE FOUNDATION, 2019, Section 6. Modules)

Therefore, to implement the structures described in section 4.2 with the term

software component in Python, packages and modules will be developed.

5.4 Test Driven Development

TDD is a programming process that helps improve the software quality, as explained

in Section 3.4.1. The software components in this project are supposed to be independently

developed and different approaches can be used in the development of each application

component though the core component, the sap_framework, used and relied on by all

the tools in this project, must have its quality assured at all times, and will therefore

be developed using TDD. It is also is deeply related to Testability and Documentation

nonfunctional requirements of Section 4.1.2.

The unit test framework used is Python’s unittest since it is the one that is included

in the standard modules in this python version (see Section 5.3).

5.4. Test Driven Development 65

It was decided to use a tests directory inside the sap_framework’s repository root

directory, mirroring the source code directory structure, and with a test module for each

source code module on the repository. Test modules are named following the pattern

"test_*.py" following the unittest standards, and using the original source code module

name in place of the wildcard *. See Figure 14.

After the unit tests and source code classes are created following the TDD, the

code is refactored so that for each class in the original source code module, there will be a

test class (subclassing unittest.TestCase) with the same name prefixed by Test.

This structure facilitates the localization of test and implementation modules,

which is good since they must always be edited together when using TDD.

Figure 14 – sap_framework directory structure

} sap_framework
} r e s t f u l

1 __init__ . py
1 c o n t r o l l e r . py
1 contro l l e r_maker . py
1 data_structures . py
1 datet ime_converter . py
1 environments . py
1 r eques t_fac to ry . py
1 request_sender . py
1 response_checkers . py
1 re sponse_parser s . py

} s c r i p t s
1 d i sconnect_logged_ses s ions . py

} t e s t s
} i n t e g r a t i o n _ t e s t s

1 connect ing_test . py
} r e s t f u l

1 __init__ . py
1 te s t_data_structures . py
1 test_datet ime_converter . py
1 t e s t_reques t_fac to ry . py
1 tes t_response_checkers . py
1 te s t_response_parse r s . py

6 . g i t i g n o r e
1 __init__ . py
1 t e s t _ e n t i t i e s . py

6 . g i t i g n o r e
1 __init__ . py
1 e n t i t i e s . py
q README.md

Source: made by the author.

66 Chapter 5. Implementation

5.5 The sap_framework Component

The core component in this project is the sap_framework component, which

implements the module with the highest level of abstraction data structures, called entities,

and the restful package, described in Section 4.3. This component is used by all the tool

components as shown in Figure 6.

This component was implemented prioritizing maintainability and reusability

following the Component Cohesion Principles described in Section 3.3.1.

The restful package was implemented following the described design from section 4.3.

Although I am not allowed to share the source code for this project, some implementation

option details are still worth mentioning, and I am authorized to share some parts that

help illustrating the descriptions.

5.5.1 Data Structures

One of the functional requirements of the framework in section 4.1.1 is to "Provide

necessary data structures to represent the requested data". This section is going to explain

how this was implemented in Python.

The way the data structure classes were implemented both on the entities module

and on the restful package is the same. A class is created and all the properties are added

to the __init__ magic method as a constructor. Usually getters and setters are not

implemented since Python allows direct access to an object’s properties. All the data

structures also override Python’s __repr__ magic method, which is used to define a

representation of the object that can be used to rebuild it with the eval function just like

the standard types.

The example code in Figure 15 shows the implementation of the PagingInfo data

structure in Python. The two attributes are loaded in the constructor, as well as the

documentation in the default docstring format so that any developer can check it in within

the Integrated Development Environment (IDE). Docstrings like these are used in most

of the classes and methods to fulfill the Documentation, Readability and Mainteinability

nonfunctional requirements from section 4.1.2.

The only data structure class that does not follow the this pattern completely is

the User class, which hides the password attribute in the representation by replacing the

characters of the representation with the character "*". This means that the representation

of the object can still be used to recreate it with the eval method, but the password will

not be restored. This is important to prevent a User object, or even a Session object

which contains a User object by a composition relationship, to be logged with sensitive

information (see class diagram in Figure 11).

5.5. The sap_framework Component 67

Figure 15 – Implementation of data structure classes in Python

class PagingInfo :
def __init__(s e l f , pages : int , page_size : int) :

" " "
This c l a s s con ta ins the paging in format ion o f a the
Response o f a r e que s t which i s paged .

: param i n t pages : Number o f pages .
: param i n t page_size : S i z e o f page .
" " "
s e l f . pages = pages
s e l f . page_size = page_size

def __repr__(s e l f) :
return " PagingInfo (pages=%r , page_size=%r) " % (

s e l f . pages , s e l f . page_size)

Source: made by the author.

5.5.2 Interface Classes

Python does not have interfaces defined like other languages such as Java or C#

because it is not necessary since it is dynamically typed and every object has implicit

interfaces that can be used with duck typing. However it supports abstract classes that

can be used with abstract methods that define the interface of its subclasses, which will

be required to override all abstract methods and implement them.

This type of class is very important to implement the Dependency Inversion Prin-

ciple (DIP) described in section 3.2 and fulfill the Extensibility nonfunctional requirement

from Section 4.1.2.

In python, the abc module (which stands for Abstract Base Class) is used to create

such abstract classes. The implementation for the interface in figure 9 can be seen in

Figure 16.

The abstract class in Figure 16 is a class that inherits from the Abstract Base Class

and the abstract method uses the abstractmethod decorator, both from the abc module.

There is no implementation of any method in this class, it contains only the docstrings

shown. To implement this interface, a class must be created which inherits from it, and all

the abstract methods should be overwritten, otherwise Python will raise an error.

5.5.3 The Main Component of sap_framework

The Main Component is the component which takes care of the dependency injection

process, making instances of the lower-level classes that will be used by the higher-level

ones, as explained in Section 3.3.2.

68 Chapter 5. Implementation

Figure 16 – Interface implementation with abstract class in Python

import abc

class RequestSenderBase (abc .ABC) :
" " "
Def ines the i n t e r f a c e to be implemented by a
RequestSender p l u g in us ing any l i b r a r y
" " "

@abc . abstractmethod
def send_request (s e l f , r eque s t : Request) −> Response :

" " "
Makes the HTTP reque s t and g e t s the response

: param reque s t : Request o b j e c t to be sen t

: re turn : Response o b j e c t wi th i n f o o f the response o f
the r e que s t
" " "

Source: made by the author.

In the sap_framework the higher-level module which contains the business rules

is the controller. The constructor of the RequestController class receives as parameters

instances of lower-level classes using the dependency injection technique, as well as ad-

ditional settings. To enable other components that use the sap_framework to make an

instance of this class without depending directly on those lower-level classes within the

framework, a Main Component was implemented called controller_maker.

The class in Figure 17 has two methods, one public and one private. The make

method configures the package logger according to the parameters by calling the private

method _config_logger, validates the string with the name of the environment which is to

be connected, instantiates and Environment object with the correct name and base URL,

instantiates the RequestSenderUrllib and RequestFactory implementation classes, and then

uses these to instantiate the RequestController class.

The dependency injection process is also very important to fulfill the Testability

nonfunctional requirement from section 4.1.2, as it allows for mock classes to be used in

unit tests and test the behavior of one module isolated.

5.5.4 Information Flow

The sap_framework component exposes the functionality of the SAP BO RESTful

API using a facade design pattern in the RequestController class. This class implements

public methods to every kind of request implemented in the framework. These methods

5.5. The sap_framework Component 69

Figure 17 – The ColtrollerMaker class implementation

class Control lerMaker :
@classmethod
def make(c l s , environment_name : str , l o g g e r _ l e v e l=" i n f o " ,

stream_logger=Fal se) −> Reques tContro l l e r :
" " "
Makes a pr oper l y con f i gured ins tance o f Reques tContro l l e r .
: param s t r environment_name : Name of SAP BO Environment in BMW.
: param s t r l o g g e r _ l e v e l : l e v e l o f the package ’ s l o g g e r .
: param boo l stream_logger : Send l o g g e r output to s t d o u t stream .
: re turn : Reques tContro l l e r
" " "
c l s . _conf ig_logger (" r e s t f u l . l og " , l o g g e r _ l e v e l , stream_logger)
try :

sap_env = EnvironmentNames [environment_name]
except KeyError :

env_error = " Environment {} not r ecogn i z ed . " \
" Please check {} .{} " . format (environment_name ,

EnvironmentNames . __module__ ,
EnvironmentNames .__name__)

l o g g i n g . e r r o r (env_error)
raise ValueError (env_error)

environment = Environment (name=sap_env . name ,
base_url=ENVIRONMENTS[sap_env] [" u r l "])

request_sender = RequestSenderUr l l ib ()
r eques t_fac to ry = RequestFactory ()
c o n t r o l l e r = Reques tContro l l e r (environment ,

request_sender ,
r eques t_fac to ry)

return c o n t r o l l e r

@classmethod
def _conf ig_logger (c l s , f i le_name , l o g g e r _ l e v e l , stream_logger=False) :

numer ic_leve l = getattr (logg ing , l o g g e r _ l e v e l . upper () , None)
i f not isinstance (numeric_level , int) :

raise ValueError (’ I n v a l i d l og l e v e l : %s ’ % l o g g e r _ l e v e l)
handler = l o g g i n g . F i l eHandle r (fi le_name , "w" , " ut f −8")
hand le r s = [handler]
i f stream_logger :

handler = l o g g i n g . StreamHandler (sys . s tdout)
hand le r s . append (handler)

l o g g i n g . bas i cCon f i g (hand le r s=handlers , l e v e l=numeric_level ,
format=" [%(asct ime) s %(levelname) s %(f i l ename) s :%(l i n e n o) s | "

"%(funcName)20 s ()] %(message) s " ,
datefmt=’%H:%M:%S ’)

Source: made by the author.

control the information flow in the modules of the framework and return the requested

information to the tool component who called them.

The implementation of this methods follows a similar pattern in most of the cases,

which can be summarized into these steps:

1. Get a session for the user

2. Use one method of the RequestFactory class to make a Request object

3. Send the request using the _request private method

4. Use the right ResponseParserBase implementation to parse the response

5. Return the parsed data

70 Chapter 5. Implementation

Please refer to Figure 11 for a visual representation of the modules and classes

described in this section.

The information flow between the modules of the sap_framework component will

be illustrated with an example which reads the error message from a report that failed

to run (report instance with status failed, as explained in Section 2.3). This function

is implemented in the method request_error_message_from_failed_instance shown in

figure 18.

Figure 18 – Example facade method implemented in RequestColtroller class

def request_error_message_from_fai led_instance (s e l f , use r : e n t i t i e s . User , doc_id : int ,
ins tance_id : int) −> str :

" " "
Gets the error message from a f a i l e d ins tance .

: param User user : SAB BO user to be used in the r e q u e s t s .
: param i n t doc_id : ID of the parent document in the p la t form .
: param i n t instance_id : ID of the ins tance in the p la t form .
: re turn : Error message .
: r t ype : s t r
" " "
l o g g i n g . i n f o (" Request ing e r r o r message f o r i n s t a n c e {} " . format (ins tance_id))
s e s s i o n = s e l f . _get_sess ion (user)
r e qu e s t = s e l f . r eques t_fac to ry . make_request_rayl ight_schedule (s e s s i o n , doc_id ,

ins tance_id)
re sponse = s e l f . _request (r e q u e s t)
message = ResponseParserRayl ightScheduleErrorMessage . parse_response (re sponse)
return message

Source: made by the author.

In step number 1, a the private method RequestController._get_session is used to

get a Session object for the user.

One thing that is worth noting is that the public methods that implement the

requests using the framework such as the one in Figure 18 do not use a authentication

token as parameter, they require only the User object that should be used in the request.

This is because all the session management is dealt with inside the framework. The

private method RequestController._get_session checks if there is already a session open

for this user to reuse the authentication token, otherwise it creates a new session by

sending a login request, and stores this session for future uses. To properly disconnect

all sessions in use the public method RequestController.disconnect_all_sessions can be

called manually, but it is also called automatically in the routine that destroys the

RequestController instance (Python’s magic method __dell__). The representations of

the Session objects (see section 5.5.1) created are also logged, and can be recreated to be

disconnected by RequestController.disconnect_all_logged_sessions, which is also available

as a standalone script found in sap_framework/scripts/disconnect_logged_sessions.py (see

project structure in figure 14). Note that this fulfills the three functional requirements

from Section 4.1.1 related to session management.

In step number 2, a Request object is made by the RequestFactory class. Each of

5.5. The sap_framework Component 71

the public methods in this class implement a different type of request supported by the

SAP BO RESTful API along with the necessary parameters and builds the Request object

accordingly, as described in Section 4.3.6. The method used in the example in Figure 18 is

the RequestFactory.make_request_raylight_schedule and its implementation can be seen

in Figure 19.

Figure 19 – Example method implemented in RequestFactory class

def make_request_rayl ight_schedule (s e l f , s e s s i o n : Sess ion , doc_id : int ,
schedule_id : int) −> Request :

" " "
Makes a Request o b j e c t f o r the d e t a i l s o f a schedu l e (document ins tance) with the
r a y l i g h t API .

: param Sess ion s e s s i o n : Sess ion o b j e c t to be used f o r the r e qu e s t .
: param i n t doc_id : id o f the parent document o f the d e s i r e d schedu l e .
: param i n t schedule_id : id o f the schedu le .
: re turn : Request o b j e c t .
" " "
s e l f . _raise_if_no_token (s e s s i o n)
u r l = " { base_url }/ r a y l i g h t /v1/documents /{ doc_id }/ s c h e d u l e s /{ schedule_id } " . format (

base_url=s e s s i o n . environment . base_url , doc_id=doc_id , schedule_id=schedule_id)
body = {}
headers = s e l f . _make_headers (s e s s i o n . token)
method = "GET"
return Request (ur l , headers , body , method , s e s s i o n)

Source: made by the author.

In step number 3, the RequestController._request method is used to send the

Request object.

The _request private method of the RequestController class is the only place

the RequestSenderBase implementation (see Figure 9) is used to send the request to

the SAP BO Platform, and since this implementation is dependency injected into the

RequestController class, a mock implementation can be used to replace this integration in

unit tests. This private method also uses one of the ResponseCheckerBase implementations

to verify if the response of the platform is proper, otherwise the request is sent again,

solving the problems described in Sections 4.3.2 and 4.3.3. It also verifies if the session has

expired and reconnects before retrying, fixing the problem described in Section 4.3.4.

In step number 4, one of the parsers that implement the ResponseParserBase

abstract class is used to parse the Response object and get the relevant information or data

structure that should be returned, which in this example is the error message of the Failed

report. The implementation of the parser used in this example can be seen in Figure 20.

The body attribute of Response object in this example contains many information

about the Failed report, such as scheduling information, destination and parameters, none

of which is going to be read by this parser, since the only information relevant in this

request is the error message. Other parsers may be implemented to read other information

from the same type of Response.

The classes that implement the ResponseParserBase abstract class fulfill the

72 Chapter 5. Implementation

functional requirement "Parse the responses and terurn the relevant information" from

Section 4.1.1.

Figure 20 – Example ResponseParserBase abstract class implementation

class ResponseParserRayl ightScheduleErrorMessage (ResponseParserBase) :
" " "
This c l a s s implements the ResponseParserBase i n t e r f a c e f or reading the error message
o f a f a i l e d schedu l e in the response o f the r a y l i g h t schedu l e r e q u e s t .
" " "

@staticmethod
def parse_response (re sponse : Response) −> str :

try :
return re sponse . body [" schedu le "] [" e r r o r "] [" message "]

except KeyError :
return " "

Source: made by the author.

Finally, in step number 5, the data read by the parser is returned.

The framework was designed to access information using different APIs from SAP

BO to fulfill the requirement "Retrieve data with different APIs available in the platform"

from Section 4.1.1. Most of the documentation for the SAP BO RESTful Web Services

SDK cover the Raylight API, which does not require additional features such as page

navigation. These features had to be developed by reverse engineering the responses.

Some of the supported requests in Infostore and CMSQuery RESTful APIs for

SAP BO may have a list of entries in their responses and those responses may have

multiple pages, requiring multiple requests using paging parameters. To deal with this

multiple page requests, the ResponseParserPagination was developed, which implements

the ResponseParserBase abstract class and returns the data structure seen in figure 15.

To use pagination, the RequestController._request may be replaced with Request-

Controller._request_all_pages, which will iterate through the pages and return a list of

Response objects. However, if the number of entries only is required, the RequestCon-

troller._request_number_of_entries_in_paged_response can be used instead, since it

overwrites the Request object setting the maximum number of entries per page to 1,

sends it with RequestController._request, uses the ResponseParserPagination to access

the number of pages, which is much faster than having to request all pages and count the

entries in the responses.

5.5.5 Extensibility

The architecture implemented as described in the previous sections can be easily

extended to increase support to other functions that can be accessed via the he SAP BO

RESTful Web Services SDK, which fulfills the Extensibility nonfunctional requirement

from section 4.1.1.

5.6. The sap_status Component 73

In Section 5.5.4 it was explained that each function that the sap_framework gives

access through the RequestController class uses (at least) one request maker method

from RequestFactory to create the Request object and one parser which implements the

ResponseParserBase abstract class. The example also shows that multiple parsers can be

used for the same response (from the same request made by RequestFactory) to access

different information.

If the framework needs to return other information from the same Response object,

a parser may be added implementing the same abstract class, along with the addition of a

new public method to the RequestControler facade. If the information to be returned is

more complex than the error message of type string as showed in the example, however, a

data structure can be added to the entities module so that the parser can instantiate it.

However, if a new type of request is necessary, besides additions mentioned above,

the method that makes this new request type should be added to RequestFactory class.

Notice that the changes mentioned above are all additions. This is a clue that the

architecture implemented follows the Open-Closed Principle (OCP) described in section 3.2

and therefore is open to extension.

5.6 The sap_status Component

This component contains a script which uses the sap_framework to read information

related to instances of report templates in the SAP BO Platform.

The script uses the following parameters:

• user name of SAP BO user

• password of SAP BO user

• Folder in SAP BO

• Platform country

• Environment

• Path to output folder

• Output file name prefix

It validates the input parameters, creates a User object and uses the Controler-

Maker constructor to to create a RequestController object, which will give access to the

framework’s methods.

It requests the IDs of the document templates inside the folder, recurrently. Then,

with this list of IDs, it requests to count the instances of this report templates, in total

74 Chapter 5. Implementation

and filtered by status: Recurring and Paused, and to read the information of the instances

with status Failed.

This is all it takes to read the necessary status information from the platform using

the sap_framework: four function calls. The way the script in the sap_status component

uses the sap_framework component is illustrated in Figure 21.

Figure 21 – How the script in sap_status uses the sap_framework

c o n t r o l l e r = sap_framework . Control lerMaker . make(environment ,
l o g g e r _ l e v e l="DEBUG" , stream_logger=False)

user = sap_framework . User (username , password)

documents_l ist = c o n t r o l l e r . request_documents_in_folder (user , f o l d e r _ i d)

number_total_instances = c o n t r o l l e r . request_count_instances_from_documents_list (user ,
documents_list , None)

number_recurr ing_instances = c o n t r o l l e r . request_count_instances_from_documents_list (user ,
documents_list ,
sap_framework . Schedu leStatuse s .RECURRING)

number_paused_instances = c o n t r o l l e r . request_count_instances_from_documents_list (user ,
documents_list ,
sap_framework . Schedu leStatuse s .PAUSED)

f a i l e d _ i n s t a n c e s = c o n t r o l l e r . request_instances_info_from_documents_l ist (user ,
documents_list ,
sap_framework . Schedu leStatuse s .FAILED)

Source: made by the author.

The rest of the script prepares the JSON output with the platform information,

run time of the script, number of Recurring, Paused and Failed instances, and the details

of each failed instances.

The prototype of this script is run multiple times with a set of configurations for

different folders and environments by another service in the same server of the Wrapper

Application, and the output is stored in a set of tables in the Cockpit’s database in order

to show the status information on the Cockpit (see section 2.4).

5.7 The sap_reschedule Component

This component contains a script that uses the sap_framework to read all the

schedules from a specific folder in SAP BO, select the ones whose parameters match a

rescheduling criteria, and reschedule the reports.

This script uses a configuration file in JSON where the user specifies the folder in

SAP BO, the environment, the users that authenticate in the SAP BO platform and in the

NAS, whether this users should be overwritten, whether the Completed instances should

be kept in the report template’s history, possible paths for destination NAS changes, etc.

5.7. The sap_reschedule Component 75

Figure 22 – JSON Configuration file to reschedule script

{
" environment " : "QRP_GER_PROD" ,
" f o lde r_ id " : "12345" ,
" name_prefix " : "TEST_" ,
" planning_mode " : true ,
" sap_bo_users " : {

" user1 " : " password1 " ,
" user2 " : " password2 "

} ,
" overwr ite_schedule_user " : true ,
" nas_users " : {

" user2 " : " password2 " ,
" user3 " : " password3 "

} ,
" overwrite_nas_user " : f a l s e ,
" c l ea r_o ld_ins tance s_succe s s fu l l y_re s chedu l ed " : f a l s e ,
" overwrite_keep_instance_in_history " : true ,
" keep_instance_in_history " : true ,
" f i lesystem_path_changes " : {

"// s e rv e r1 / folderName1 " : "// s e rv e r3 / folderName1 " ,
"// s e rv e r2 / folderName2 " : "// s e rv e r4 / folderName2 " ,

} ,
" ignore_schedules_with_di f f e rent_f i l e system_path " : true ,
" f i l t e r " : " Recurr ing " ,
" run_limit " : 20 ,
" wait_time " : 1

}

Source: made by the author.

Figure 22 shows the JSON structure of the configuration file used by this script.

The parameters of the script can give an idea of the features that were implemented into

it.

1. "environment": This parameter is the name of the environment of SAP BO that

will be used and it is used to set the URL for all RESTful API requests.

2. "folder_id": This is the ID in SAP BO of the folder in which the script will look

for folders, reports and schedules.

When the script starts running it prompts the user to chose one or all folders inside

this folder, in case it is required reschedule the subfolders one by one. Then it shows

the user all the documents found in the selected folder(s) and prompts to choose

one or all.

3. "name_prefix": This defines the prefix that will be added to the name of the

resulting instances and its output files. Normally it is defined as "TEST_" when

76 Chapter 5. Implementation

testing rescheduling reports with the script and "" when rescheduling productive

instances.

4. "planning_mode": This parameter defines whether the script is going to actually

reschedule the instances or just check for how many instances are there which match

the criteria given in the configuration file. This is helpful to check beforehand if there

are users missing in the configuration file for example.

5. "sap_bo_users": This is the usernames and passwords of the users that will be

used to login into SAP BO. It can be used with one or more users.

The first user listed is going to be used to read all folders, documents and instances,

the other ones will only be used to save the new schedules to SAP BO.

6. "overwrite_schedule_user": If this parameter is false, the script will not change

the owner of any schedule, therefore ignoring schedules that have owners not listed

in sap_bo_users.

If overwrite_schedule_user is true however, the script will use the first user in

sap_bo_users to post all new schedules, so they will always have the same owner

and no schedule will be ignored for this reason.

7. "nas_users": This are the usernames and passwords for the users that will be used

to save the reports to the NAS. It can be used with one or more users.

8. "overwrite_nas_user": If this parameter is false the script will not change the

user used for NAS authentication, therefore ignoring schedules that have NAS users

not listed in nas_users.

If overwrite_schedule_user is true however, the script will use the first user in

nas_users to post all new schedules, so they will always have the same NAS user

and no schedule will be ignored for this reason.

9. "clear_old_instances_successfully_rescheduled": If this parameter is false

the script will not delete the original schedules after creating the old ones. This

is a common use case for tests, where you just want to create a duplicate of the

schedules.

If clear_old_instances_successfully_rescheduled is true however, the script will

delete the old schedules after creating the new schedules successfully.

10. "overwrite_keep_instance_in_history" and "keep_instance_in_history":

If overwrite_keep_instance_in_history is false the script will read this configuration

from all the original schedules and keep the same in the new schedules.

5.7. The sap_reschedule Component 77

If overwrite_keep_instance_in_history is true however, the script will not read this

configuration from the original schedules and will write the value of keep_instance_in_history

to all new schedules.

11. "filesystem_path_changes": This describes the changes of paths in the file

system output. This was designed to migrate the NAS server or change the alias, but

this configuration may also be useful to send the output of new test schedules to a

different location so they do not overwrite the production reports in the production

NAS.

12. "ignore_schedules_with_different_filesystem_path": This configuration is

set to true when the script is running to change the NAS directory/alias. If set to

true, the script will ignore the instances which the original destination does not

match the original alias (keys) in "filesystem_path_changes".

13. "filter": This filter determines what kind of schedules is going to be rescheduled. It

can be "Recurring" or "Paused".

Please notice that although we can create new schedules based on "Paused" schedules,

we cannot change the status of an instance via the API and the default status for a

schedule is "Recurring", thus the schedules generated with the script will always be

"Recurring".

14. "run_limit": Most of the schedules start running right after they are created, but

the SAP BO platform cannot handle many running instances at the same time. The

script uses run_limit to try not overloading the platform.

run_limit is the maximum amount of running instances from the reports that the

script is rescheduling. The script uses this number to check how many schedules can

be created in each time slot. It counts the number of running instances and if it

is less than run_limit it calculates the number of schedules to create in the next

window as run_limit - running_instances.

The default value of "run_limit": 20 has been tested and is recommended that it is

only changed in case of problems.

15. "wait_time": This is the time in seconds the script waits between each scheduling

window. This is necessary to wait for the running instances to be processed and can

be increased if facing problems.

After the script reads the schedules from the platform and selects which of them

match the criteria in the configuration file, if goes through all of the selected ones, gets

the schedule body, reads the parameters of their parent Report templates to combine

the parameter structure with the answers of the schedule to create a new schedule body,

78 Chapter 5. Implementation

changes the parameters that should be changed according to the configuration file and

creates the new schedule.

If the new schedules are successfully generated, a copy of the old ones is saved into

a backup file and the old ones are removed from the platform if the option to clear old

instances successfully rescheduled is checked in the configuration file.

To test this script I manually created multiple schedules of different Report Tem-

plates in a test folder in the DEV environment of the German Platform, with a wide variety

of parameters and schedule types which would represent all the possible requirements then

manually set the script to reschedule these schedules and verified the results. Once the

results were approved, I contacted colleagues that work in the other platforms to let me

repeat the tests on their environments and verify whether the requested functionality

could be validated.

5.8 The sap_backup Component

This component contains two scripts. The first one uses the sap_framework to read

all the schedules from a specific folder in SAP BO and save them in a file in JSON format.

The second one restores the previously backed up instances to the SAP BO Platform.

The approach to read schedules from SAP BO reports and to post schedules back

into SAP BO is similar to the one used in sap_reschedule, except that all schedules are

saved and their parameters are left untouched.

The script that restores backups can also be used to restore a backup made by the

sap_reschedule, which was actually the first functionality that was implemented in this

component.

79

6 Results

This chapter will discuss the results from the implementations of this project and

its components.

The implementation described in Chapter 5 fulfills all functional and nonfunctional

requirements from Sections 4.1.1 and 4.1.2, as pointed out in the each section of this

chapter.

The project was well received by the company and the results were considered

successful. During the time of this internship there were frequent opportunities to receive

insights and feedback by many colleagues that work in Quality IT departments throughout

BMW Group (the project’s Stakeholders, mentioned in Section 5.1), as well as colleagues

from the supplier company responsible for operation of BMW Group’s SAP Business

Objects Platforms, environments and production databases. This opportunities were

extremely valuable to make this project useful and versatile and better fit the company’s

needs.

6.1 The sap_framework component

The framework is the main component of this project and contains the necessary

pieces of software needed by the projects tools to use the SAP BO RESTful Web Services.

It was designed following standardized software architecture principles (section 4.2)

and implemented using the best practices in software development (sections 5.1, 5.2.1, 5.3,

5.4 and 5.5).

Table 3 – Statistics of the sap_framework component

Property Amount

Lines of Code 1048
Lines of documentation 448
Classes 29
Modules 10
Unit tests 87

Source: made by the author.

The implementation with TDD helped not only to have a resulting component

with a high test coverage, as can be seen by the number of unit tests in table 3, but also to

ensure better design choices, which was one of the benefits described in Section 3.4.1. This

was expected since the literature commonly mentions this as a consequence of applying

TDD, but since this was the first time I have implemented it in a project from the beginning

80 Chapter 6. Results

it was a very good experience. By programming for testability, the developer is forced to

make small and modular pieces of code that have well defined interfaces to fit together in

a software component.

Along with the application of the SOLID Design Principles (see Section 3.2), this

can explain why the resulting component has as many modules and classes as can be seen

in table 3 or Figure 11.

The implementation details shared in Section 5.5 show how flexible and extensible

the architecture of this component is.

However, even with the use of good practices such as illustrated in Figure 9 aiming

to make it as decoupled as possible, it is still strongly coupled to the implementation of the

RESTful API by SAP. This is not a problem of the architecture itself, though, since the

objective of this project is to provide ways to automate the management of the SAP BO

Platforms in BMW Group, there would be no point in trying to decouple it from SAP BO.

6.2 The sap_status component

This component contains a script that can be configured to check the status of the

platform, by requesting relevant information from instances inside a specific folder in SAP

BO, that otherwise would require manual searching in the tool Instance Manager available

in the Central Management Console web application provided by SAP.

The process, when done manually, requires the plant Coordinator to login to each

of the Production, Integration and Development environments and search for the instances

of the reports that belong to the folder which he is responsible for. This process takes an

average of 45 minutes and should be executed at least once daily.

The script developed in this component can be configured with a set of parameters

and gets the same required information between two and four minutes depending on the

amount of instances and the load on the platform itself.

This script is integrated in a prototype of another tool developed in this department

that runs it in a server multiple times with different configurations to read the status of

the folders of different Technologies (and folders) in all environments. This information is

then written on our web server database from which the dashboard web application reads

and shows it to the users of the platform. This prototype is currently running daily in a

test environment and it is planned to go on production soon.

A view of this web dashboard can be seen in Figure 3, which is the homepage of the

Paintshop’s Quality IT department of Plant Dingolfing in the Cockpit (see Section 2.4).

The status bar on the top right of the image shows the percentage of failed reports in

each environment within the quality reports that this department is responsible for. The

6.3. The sap_reschedule component 81

buttons labeled "Details" open a pop-up window with the detailed information of the failed

report instances of that environment.

6.3 The sap_reschedule component

The script that reschedules instances from a specific folder in SAP BO was the one

which had most impact in the company.

Most of the quality reports generated in the BMW Group SAP BO platform are

saved in a NAS, see Section 2.3. The NAS server is configured with folder specific user

permissions and requires user authentication to save the reports, so scheduling a report in

SAP BO to a file system destination requires filling the user data for authentication.

All employees are required to change their passwords monthly, so if the employees

use their personal users to schedule reports in SAP BO, these schedules will fail after the

password change, as can be seen in Figure 2. For this reason, the Report Schedules are

created with Technical Users, which ideally would have password changes yearly.

The development of this script was first requested to support this password change

for Technical Users, because some of this users were used in thousand or report schedules.

Since each recurring instance takes around 7 minutes to be rescheduled manually, this

process would take weeks to to be completed, leading to a huge downtime in the quality

reporting systems. The script in this component was created for this task but it has not

been used for it yet, since the IT department has postponed the date for the password

change of the technical users.

Once a script to reschedule report instances was available, more use cases started

to be requested. The IT department needed to deactivate the NAS server that was in use

and requested the Quality IT Plant Coordinators (section 2.2) to reschedule the recurring

instances of reports in SAP BO to save the reports to the new NAS server, which if not

done before the deadline would cause all the reports to fail similarly to the password

change use case mentioned above.

Eleven of the Plant Coordinators from seven different BMW, Mini and Rolls Royce

Plants in four countries contacted me for support with the NAS migration using this tool.

In a period of two weeks I rescheduled 8849 recurring instances for these departments,

saving roughly 1100 hours of work from these colleagues, with estimated costs of around

100 thousand Euros. These statistics can be seen in table 4.

Since this script is still going to be used at least once a year when the passwords

for all Technical Users of SAP BO are changed, it is expected that the similar gains to

the ones shown in Table 4 are going to be obtained this frequently.

Responding to requests of the project’s stakeholders (section 5.1), this tool was

82 Chapter 6. Results

Table 4 – Statistics of the sap_reschedule component during the NAS migration in 2019

Property Amount

Schedules changed in PROD 8849
Departments benefited 11
BMW Group Plants 7
Countries 4
Work hours saved 1100
Estimated costs saved 100,000.00 Euros

Source: made by the author.

also modified to support changes of different schedule parameters as well, such as whether

a successfully generated instance should be kept in the report’s history, allowing them to

reschedule instances in batch and standardize the report generation parameters the way

they wish. The tool was used this way a handful of times as well.

6.4 The sap_backup component

The sap_backup component is meant to be able to backup schedules from a specific

folder in SAP BO and to restore the schedules from a backup to the platform.

Since the SAP BO operations team in BMW Group has a backup functionality

in all of the databases, this tool was not one of the initially planned use cases of this

project. However, a series events happened and exposed a malfunction of one of this

team’s systems, which accidentally deleted schedules in the production environment of the

German SAP BO Platform in BMW Group. When this problem happened, the operations

team had no solution to it and it motivated us to develop this tool within our department.

The sequence of events which caused the schedules to be accidentally deleted will be

exposed in the next paragraphs.

Firstly, the rights to access the platform for the Technical User used to schedule

all the reports in the Paint Shop in Plant Dingolfing expired, even though there was no

expiration dates set. Secondly, because Technical Users have no e-mail address, the system

did not generate any kind of notification to the responsible people.

This would normally not be considered a big problem because in the next production

day someone would see that the reports were not been generated as expected, except that

this problem happened during Plant Dingolfing’s production break, which means that the

report schedules were paused and the entire department was on vacation.

Sixteen days passed until the production break ended and the Quality IT team

noticed that the schedules were deleted from the platform and opened a ticket for the

IT department to rollback the instances from this folder. This was not possible, though,

because the folder specific backups that they offer are deleted after fourteen days. Older

6.4. The sap_backup component 83

backups are only available for the entire platform, and since all the BMW Group Plants in

Germany and Brazil use the same platform, a rollback of the entire platform would have

bigger consequences and our only option, as it was decided, was to reschedule the 1700

report instances manually.

There were no plans of a backup tool within the scope of this project until then,

but luckily this episode happened after we used the sap_reschedule tool to make the

NAS migration described in Section 6.3. I had made a backup functionality to save the

information of the old schedules to a file before deleting them from the platform in the

sap_reschedule tool, in case something went wrong, and this backup could be used to

recreate the deleted schedules.

For this reason the first script prototype related to the sap_backup tool was actually

a script that allowed this backup made by the sap_reschedule tool to be used to restore

the deleted report schedules to the platform. It was used to restore about 1700 schedules

to the platform and saved around 198 hours of work as opposed to manually scheduling

the reports.

This tool’s prototype is not yet in a stage where it runs daily to make backups of

multiple folders, although that is planned to be implemented in the near future.

85

7 Conclusions and Perspectives

The project was considered successful by the Quality IT departments that were

involved and the direct manager. I have received many e-mails from the stakeholders (see

Section 5.1) from the BMW Group Plants that I have helped during this internship with

positive feedback. The final presentation of the project and its results that I have made

for the management was also well received and responded with very positive feedback.

The first goal of this project was to build the foundations that would enable further

development in the future and contain the knowledge acquired from documentation and

reverse engineering. This was important for the department because they always hire

students with software development skills but it is always a problem when they need a

new student to continue the work of another that already left, which in most of the cases

means that a new project is started from scratch.

Most of the functional and nonfunctional requirements from Sections 4.1.1 and

4.1.1 are related to the maintainability and extension of the project by other developers,

as well as sharing of all the knowledge I have learned during this year with future team

members after my internship ends. These requirements were fulfilled by applying the right

design principles from Sections 3.2 and 3.3.1 and implementation described in Chapter 5.

One aspect that was important to overcome this problem was setting up the project

management tools and processes. I was the first student in this department that proposed

a project workflow like the one described in Section 5.2.1, asked to use Git, set up Jira

Scrum boards and Bitbucket repositories. I proposed this workflow to be followed by a

development team, and requested by my supervisor, wrote articles and tutorials about it

for the next students that come here for internships.

Many problems of the SAP BO RESTful API that are not in the API documentation

took a long time to solve in the framework.

The session management in the SAP BO RESTful API is a problem that was

much more complex than expected. The API documentation (SAP, 2017a,b) explains

that to receive a token, the client needs to send a login request and to release it, send a

logoff request. The problems described in sessions 4.3.2, 4.3.3 and 4.3.4, though, were not

documented anywhere in the API documentation and showed that session management is

not as simple. These problems had to be reverse engineered, requiring tests design and

execution, documentation and reporting to the SAP BO Operations team.

Another problem that is not documented is which requests require pagination of the

response and how many items per page can each request type handle. This problem also

86 Chapter 7. Conclusions and Perspectives

required many reverse engineering tests and inconclusive meetings with the responsible

people in the SAP BO Operations team.

Both these problems were a huge obstacle for any work developed with the SAP

BO RESTful API, however much thought and work was put into the framework in order

to handle both of them the best way possible. Thanks to this, future developers working

on the SAP BO Restful API in BMW Group can use the solutions provided and do not

need to reinvent the wheel.

In terms of future perspectives, we have learned that when the SAP BO platform

needs to be upgraded there are big changes in the RESTful API which may require changes

in the framework. These changes are also unknown to the SAP BO team in BMW Group

and not documented anywhere. For this reason, it is planned in future development of the

framework to have enhanced integration tests that can show if the core functionality will

still work after a platform version upgrade as well as show which functionality will require

changes.

87

REFERENCES

ATLASSIAN CORPORATION. Gitflow Workflow. 2019. Available from: <https:

//www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow>.

Visited on: 10 Oct. 2019. Cit. on p. 61.

ATLASSIAN CORPORATION. What is Git. 2019. Available from:

<https://www.atlassian.com/git/tutorials/what-is-git>. Visited on: 10 Oct.

2019. Cit. on p. 60.

BMW GROUP. BMW Group Plant Dingolfing. 2018. Available from:

<https://www.bmwgroup-plants.com/dingolfing/en.html>. Visited on: 4 July 2019.

Cit. on p. 25.

BMW GROUP. History: Difining Moments in The History of the BMW Group. 2019.

Available from: <https://www.bmwgroup.com/en/company/history.html>. Visited on:

4 July 2019. Cit. on p. 25.

CHACON, Scott; STRAUB, Ben. Pro Git: Everything you need to know about Git.

[S.l.]: Apress Berkely, 2014. ISBN 9781484200773. Available from:

<https://git-scm.com/book/en/v2>. Cit. on p. 61.

CHRISTENSSON, Per. Framework Definition. 2013. Available from:

<https://techterms.com/definition/framework>. Visited on: 10 Oct. 2019. Cit. on

p. 43.

FIELDING, R. et al. Hypertext Transfer Protocol (HTTP/1.1). The Internet

Society. June 1999. Available from: <https://www.ietf.org/rfc/rfc2616.txt>.

Visited on: 25 July 2019. Cit. on p. 41.

GIT SCM. About Git. 2019. Available from: <https://git-scm.com/about>. Visited

on: 10 Oct. 2019. Cit. on p. 61.

GIT SCM. git-submodule - Initialize, update or inspect submodules. 2019.

Available from: <https://git-scm.com/docs/git-submodule>. Visited on: 10 Oct.

2019. Cit. on p. 62.

HOHPE, G. et al. Enterprise Integration Patterns: Designing, Building, and

Deploying Messaging Solutions. [S.l.]: Addison-Wesley, 2004. ISBN 9780321200686.

Cit. on p. 40.

LISKOV, Barbara. Data abstraction and hierarchy. SIGPLAN notices, v. 23, n. 5,

p. 17–34, 1988. Cit. on p. 34.

88 REFERENCES

MARTIN, Robert C. Clean Architecture: A Craftsman’s Guide to Software

Structure and Design. Boston, MA: Prentice Hall, 2017. ISBN 978-0-13-449416-6.

Cit. on pp. 33–36, 39.

MARTIN, Robert C. Clean Code: A Handbook of Agile Software

Craftsmanship. 1. ed. [S.l.]: Prentice Hall, 2009. ISBN 978-0-13-235088-4. Cit. on p. 39.

MARTIN, Robert C. The Clean Coder: A Code of Conduct for Professional

Programmers. 1. ed. [S.l.]: Prentice Hall, 2011. ISBN 978-0-13-708107-3. Cit. on p. 38.

MARTIN, Robert C. The Cycles of TDD. 2014. Available from:

<https://blog.cleancoder.com/uncle-bob/2014/12/17/TheCyclesOfTDD.html>.

Visited on: 12 Nov. 2019. Cit. on p. 38.

MOZILLA DEVELOPER NETWORK. HTTP. 2019. Available from:

<https://developer.mozilla.org/en-US/docs/Web/HTTP>. Visited on: 24 July 2019.

Cit. on p. 40.

MOZILLA DEVELOPER NETWORK. What is a web server? 2019. Available from:

<https://developer.mozilla.org/en-

US/docs/Learn/Common_questions/What_is_a_web_server>. Visited on: 24 July 2019.

Cit. on p. 40.

PEKELMAN, Carol Jedwab. REPORT OF SUPERVISED PROFESSIONAL

PRACTICE: UI and UX improvement of BMW’s Quality Report dashboard

environment. [S.l.], 2019. Cit. on p. 27.

PYTHON SOFTWARE FOUNDATION. The Python Tutorial. 2019. Available from:

<https://docs.python.org/3/tutorial/index.html>. Visited on: 4 Sept. 2019.

Cit. on p. 64.

RESTFULAPI.NET. What is REST. 2019. Available from:

<https://restfulapi.net>. Visited on: 24 July 2019. Cit. on p. 41.

ROSSUM, Guido van; WARSAW, Barry; COGHLAN, Nick. Style Guide for Python

Code. Python Software Foundation. 2001. Available from:

<https://www.python.org/dev/peps/pep-0008/>. Visited on: 4 Sept. 2019. Cit. on

p. 64.

SAP. SAP BusinessObjects RESTful Web Service SDK User Guide for Web

Intelligence and the BI Semantic Layer. Version 4.2 Support Package 5 –

2017-12-15. 2017. Available from:

<https://help.sap.com/doc/89ebd24bb71c4e82b47a44b7ad368bf5/4.2.5/en-

US/webi42sp5_restful_web_service_sdk.pdf>. Visited on: 30 Aug. 2019. Cit. on

pp. 28, 85.

REFERENCES 89

SAP. SAP Crystal Reports RESTful Web Services Developer Guide.

Version 4.2 Support Package 03 – 2017-05-12. 2017. Available from:

<https://help.sap.com/doc/8f2e87893e944ec98a9c378aefdbbdd2/4.2.4/en-

US/sbo42sp4_cr_restws_en.pdf>. Visited on: 30 Aug. 2019. Cit. on pp. 48, 85.

SILVA PRAZERES, Luiz Arthur d’Avila da. Automation of the supervision process

and analytic reports generation for the quality management of painted body

shop production lines. 2018. Undergraduate thesis – Universidade Federal de Santa

Catarina. Cit. on p. 48.

SUTHERLAND, Jeff. Scrum: The Art of Doing Twice the Work in Half the

Time. [S.l.]: Random House Business Books, 2015. ISBN 9781847941107. Cit. on p. 59.

	Approval
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	Introduction
	Objectives
	Main Objective
	Specific Objectives

	Structure of the document

	Motivation and Problem Description
	The Company
	Quality Information Management in BMW Group
	SAP BO for Quality Control
	Key Performance Indicators and The Cockpit

	Theoretical Background
	Object-Oriented Programming
	The SOLID Design Principles for OOP
	Software Components
	Principles for Component Cohesion
	The Main Component

	Software Tests
	Test Driven Development

	RESTful API

	Requirements and Design Considerations
	General Requirements
	Functional Requirements
	Nonfunctional Requirements

	Architecture
	The sap_framework component and its modules
	The restful module requirements
	The false unauthorized problem
	The false logoff problem
	The session expiring problem
	The first model restful module
	The problems and solutions of this first module
	Entities Module
	The date_converter Module
	Conclusion

	Use Cases
	The sap_status component
	The sap_reschedule component
	The sap_backup component

	Implementation
	Scrum Methodology for Project Organization
	Git Version Control System
	Workflow
	Git Submodules for Component Source Management

	Python 3
	Standard Libraries Limitation
	Components and Modules

	Test Driven Development
	The sap_framework Component
	Data Structures
	Interface Classes
	The Main Component of sap_framework
	Information Flow
	Extensibility

	The sap_status Component
	The sap_reschedule Component
	The sap_backup Component

	Results
	The sap_framework component
	The sap_status component
	The sap_reschedule component
	The sap_backup component

	Conclusions and Perspectives
	REFERENCES

