
UNIVERSIDADE FEDERAL DE SANTA CATARINA

CAMPUS FLORIANÓPOLIS
CENTRO TECNOLÓGICO

DEPARTAMENTO DE AUTOMAÇÃO E SISTEMAS

Márcio Sumariva Nandi

Tool Wear Prediction System Using Deep-
Learning Techniques on High Precision Milling

Process

Florianópolis
2020

Márcio Sumariva Nandi

Tool Wear Prediction System Using Deep-Learning

Techniques on High Precision Milling Process

Relatório submetido à Universidade
Federal de Santa Catarina como requisito
para a aprovação na disciplina DAS 5511:
Projeto de Fim de Curso do curso de
Graduação em Engenharia de Controle e
Automação.
Orientador(a): Prof. Marcelo Ricardo
Stemmer

Florianópolis
2020

Márcio Sumariva Nandi

Tool Wear Prediction System Using Deep-Learning
Techniques on High Precision Milling Process

Esta monografia foi julgada no contexto da disciplina DAS5511: Projeto de Fim de
Curso e aprovada na sua forma final pelo Curso de Engenharia de Controle e

Automação.

Florianópolis, 02 de Março de 2020

Banca Examinadora:

Zhen Zhen
Orientadora na Empresa

Fraunhofer IPT

Prof. Marcelo Ricardo Stemmer
Orientador no Curso

Universidade Federal de Santa Catarina

Prof. Nestor Roqueiro
Avaliador

Universidade Federal de Santa Catarina

Henrique Morales Busiquia
Debatedor

Universidade Federal de Santa Catarina

Igor de Oliveira Silvestre
Debatedor

Universidade Federal de Santa Catarina

AGRADECIMENTOS

Gostaria de expressar minha gratidão aqui por todas as pessoas que
estiveram presentes comigo durante o percurso deste curso de graduação, em
especial aos meus colegas e amigos de curso que sempre expressaram união em
busca dos melhores caminhos para resolver os problemas que todos enfrentamos em
nosso percurso profissional até aqui. E por oferecer e compartilhar visões e
oportunidades que não conseguimos a princípio ver sozinhos.

Gostaria de agradecer também às instituições que me propiciaram
oportunidades de crescer, primeiramente à UFSC que apesar dos recursos limitados
e impasses políticos me propiciou formação acadêmica, profissional e ética com
respeito e qualidade. Gostaria muito que todas as pessoas que à atacam com
argumentos vagos tivessem a oportunidade de formação semelhante à que tive, para
então poder debater com clareza e seriedade.

Em segundo lugar ao Instituto Fraunhofer por propiciar esses valiosos anos
de aprendizado profissional e aplicado. E que me auxiliaram na realização desse
documento e de todas as atividades relacionadas a ele. Agradecimentos especiais à
minha orientadora Zhen Zhen, e ao meu colega e líder de departamento Tae Hun Lee.

Meus agradecimentos especiais à minha segunda família: a todos os
integrantes e ex-integrantes da República Matagal. Apesar da distância, vocês sempre
farão parte viva e vibrante da minha vida. O que vivemos e compartilhamos durante
os anos que estive lá ficarão marcados para sempre. Muito obrigado pelo apoio, e
pela amizade que com certeza continuará.

Por fim, gostaria de expressar minha profunda e imensa gratidão por minha
família. Não poderia deixar de dedicar parte especial desse texto a vocês, pai e mãe.
Que durante todo esse período de luta sempre estiveram do meu lado me apoiando
no que fosse possível, mesmo que as condições parecessem dizer o contrário. Espero
do fundo do coração que esse texto seja apenas um símbolo de tudo que gostaria de
retribuir pelo que me fizeram durante todo esse período. Vocês são minha motivação,
meu exemplo e meu objetivo. De coração, meu muito obrigado.

RESUMO

O projeto visa implementar um sistema para predição de desgaste de ferramenta em

processos de fresamento de alta precisão. A abordagem escolhida utiliza dados de

sensores obtidos de testes reais realizados em uma fresadora CNC de alta precisão

combinado com medições de desgaste no flanco da ferramenta realizadas via

microscópio. Com objetivo de selecionar as melhores metodologias para o

desenvolvimento do projeto, uma cuidadosa pesquisa do estado da arte foi realizada.

Nesta fase, as arquiteturas de deep-learning e estudos envolvendo do fenômeno de

desgaste foram revisadas no intuito de selecionar a abordagem mais apropriada para

a resolução do problema. O sistema de aquisição implementado grava dados de:

potência consumida pelo eixo-árvore, emissão acústica e hipersônica, forças

aplicadas na ponta da ferramenta e vibração no corpo do eixo-árvore. Portanto, o

documento aborda o setup de hardware e software para o sistema de aquisição

utilizado na máquina, planejamento dos parâmetros do processo e análise dos dados

coletados. Além disso, o projeto e implementação do sistema de aquisição é descrito.

Depois disso, o projeto e implementação do módulo de pré-processamento é relatado.

Depois que os dados dos experimentos são adquiridos, os arquivos são processados

por este módulo, que extrai informação de emissão acústica, ultrassônica, e vibração

para gerar os datasets. Nessa etapa, todos os datasets são gerados utilizando

transformada de Fourier, considerando que um dos objetivos do projeto é comparar o

desempenho de diferentes sensores no problema de predição de desgaste de flanco.

Ao final, o módulo de predição é descrito. O documento discute o uso de diferentes

arquiteturas de redes neurais, técnicas para extração de features e optimização do

treinamento. Para o projeto, três diferentes arquiteturas de deep-learning foram

escolhidas para a tarefa de predição. O projeto compara o desempenho de cada

arquitetura e cada sinal usado. Os resultados mostraram uma performance superior

para os dados de vibração em combinação com as redes LSTMs, alcançando 81% de

precisão no modo de classificação, e 176 µm de erro quadrático médio no modo de

regressão.

Palavras-chave: Predição de Desgaste de Ferramenta. Redes Neurais Artificiais.

Deep-Learning. Fresamento de Alta Precisão. Sistema de Aquisição.

ABSTRACT

The project is aimed to implement a system for tool wear prediction for high precision

milling process. The approach chosen uses sensor data gathered from real test

performed in a CNC machine center for precision milling combined with microscope

measurement of tool flank wear. In order to select the best methodologies for the

project development, a careful state of the art research was carried out. On this step,

the deep-learning architectures and researches involving tool wear phenomena were

revised in order to select the most appropriate approach to solve the problem. The

acquisition software system implemented records data coming from: the spindle power

consumption, acoustic and ultra-sonic emission, forces applied in the tool tip and

vibration of the spindle body. Therefore, the document englobes the hardware and

software setup for the acquisition system on the machine, process parameters

planning and analysis of the data collected. Besides that, the project and

implementation of the acquisition software is described. After that, the pre-processing

module project and implementation is reported. After the experiment data is gathered,

the data files are processed by the pre-processing module, which firstly extracts

information from the acoustic, ultra-sonic emission, and vibration files in order to

generate the datasets. On this steps, all datasets are generated using fast Fourier

transformation, once one of the goals of this work is to compare the performance of

different sensors in the flank wear prediction task. At last, the prediction module is

described. The document discuss the use of different neural network architectures,

feature extraction and training optimization techniques. For the project, three different

deep-learning architectures were chosen for the prediction task. The project compares

the performance between each architecture and each used signal. The results showed

a superior performance for the vibration data in combination with LSTMs achieving

81% of accuracy on the classification approach and a mean squared error of 176 µm

on the regression approach.

Key-words: Tool Wear Prediction. Artificial Neural Networks. Deep-Learning. High

Precision Milling. Acquisition System.

LIST OF FIGURES

Figure 1 – Fraunhofer Institute for Production Technology. 18

Figure 2 – Simple model of an Artificial Neuron. ... 24

Figure 3 – Example of an ANN. ... 25

Figure 4 – Representation of back-propagation algorithm. .. 26

Figure 5 – Examples of activation functions. ... 28

Figure 6 – Schematic of a Recurrent Neural Network. .. 30

Figure 7 - Schematic of a LSTM network. ... 31

Figure 8 – Representation of information flow in LSTM network. 31

Figure 9 – Steps taken from BPTT algorithm for weight updating. 32

Figure 10 – Representation of a simple auto-encoder. .. 33

Figure 11 – Types of tool wear in milling tools... 35

Figure 12 – Tool edge showing allowed flank wear (a) and exceeded crater wear (b).

 .. 36

Figure 13 – Force signal on a fresh and worn tool. ... 38

Figure 14 – Methods recently reported for TCM systems on Milling. 40

Figure 15 – Project Steps. ... 41

Figure 16 – DMG MORI HSC55 linear CNC Machine. .. 43

Figure 17 – Sensory tool holder Spike 1.2 and recorded signals. 45

Figure 18 – MBS XCTB 31.35 transformer and its installation on the machine. 46

Figure 19 – Twin-Cat Power Monitor terminal and its installation. 47

Figure 20 - PCB 356B21 Accelerometer and its installation. 48

Figure 21 – AE sensor installation on workpiece. .. 49

Figure 22 – Acoustic Emission Sensor and its response curve. 50

Figure 23 – PCB a30A24 microphone and its installation. .. 50

Figure 24 – Heidenhain LC483 encoder. ... 51

Figure 25 – Fraunhofer V-Box. .. 52

Figure 26 – High speed data processing representation on V-BOX. 53

Figure 27 – Different perspectives for accessing the flank wear surface. 54

Figure 28 – Tool on microscope and measurement positions. 54

Figure 29 – Pachymeter method for finding measurement position. 55

Figure 30 – Flank wear measurement and light positioning. 55

Figure 31 – Complete Hardware setup of the experiment... 57

Figure 32 – Superior view of the process path planning. .. 59

Figure 33 - Example of Trialink network with 5 devices connected. 62

Figure 34 - Class Diagram for Tama Client Software. .. 64

Figure 35 – Representation of data processed in the pipeline. 65

Figure 36 – PC resource consumption in old and new version of the Client. 67

Figure 37 – HDF file generated by Tama Client with 13 registers. 67

Figure 38 – Representation of grooves and levels machined on the experiments. ... 69

Figure 39 – Graph of operation sequence for data pre-processing. 70

Figure 40 – Flank wear curve and presentation of different stages of tool wear. 71

Figure 41 – Flank wear curves of the gathered experiments. 72

Figure 42 – Algorithm for flank wear extraction. .. 73

Figure 43 – Polynomial Interpolation on flank wear for tool 1 and 3 respectively. 74

Figure 44 – Algorithm for data Reading and FFT extraction. 75

Figure 45 - Algorithm for computing the FFT on time sires arrays. 76

Figure 46 – Representation of the parameters used to calculate the FFTs. 76

Figure 47 – Sample data gathered from AE workpiece sensor. 77

Figure 48 – Sample data gathered from AE spindle sensor...................................... 77

Figure 49 – AE-signal workpiece, air-cut visualization. ... 78

Figure 50 – Accelerometer sample data (X axis). ... 78

Figure 51 – Vibration X: samples of a fresh and worn tool.. 79

Figure 52 – Microphone sample data. .. 79

Figure 53 – Algorithm for air-cut and persistency step. ... 80

Figure 54 – Sum of spectrum amplitudes for one acquisition file. 81

Figure 55 – Representation of the air-cut removal and dataset persistency. 82

Figure 56 – Representation of some DL techniques for supervised learning. 84

Figure 57 – Algorithm for the Prediction Module. .. 85

Figure 58 – Example of augmentation on image classification. 87

Figure 59 – Augmentation methods for image classification problems. 87

Figure 60 – Augmentation algorithm representation. .. 88

Figure 61 – Different timesteps used for slicing the input spectrogram..................... 89

Figure 62 – Optimizer algorithms for Back-propagation. ... 92

Figure 63 – Adam Optimization algorithm. .. 92

Figure 64 – Auto-encoder training curve for Network 13... 95

Figure 65 - Auto-encoder signal/reconstructed/code for Network 11. 95

Figure 66 - Auto-encoder signal/reconstructed/code for Network 13. 96

Figure 67 – ANN training curves for Networks 1. .. 98

Figure 68 – Confusion matrix for ANN Regression (networks 6-10). 99

Figure 69 – WME curve over entire datasets for Networks 6 to 10. 100

Figure 70 – WME for Network 2 – test-set. ... 101

Figure 71 – Predictions generated by Network 2 – test-set. 101

Figure 72 – Confusion Matrix for test-set on Networks 6 and 16. 103

Figure 73 – WME curve over entire datasets for Networks 16 to 20. 103

Figure 74 – Confusion Matrixes for LSTM classifiers (Networks 26-30) on test-set.105

Figure 75 – Training curve for LSTM, Network 27. .. 106

Figure 76 – Confusion Matrixes for LSTM Regression (Networks 21-25) on test-set.

 .. 107

Figure 77 – WME curve over entire datasets for Networks 21 to 25. 108

Figure 78 – LSTM Regression trained with and without weights for Vibration(summed)

dataset. ... 109

Figure 79 - WME for LSTM regression comparing the usage of weighting............. 109

Figure 80 – Confusion Matrixes (test-set) of all Prediction Models trained in the project.

 .. 111

Figure 81 – Tama Client class diagram, final version. ... 127

Figure 82 – Data Pipeline instances of the Tama Client class diagram. 131

Figure 83 – Acquisition Setup tab of Tama Client Software. 132

Figure 84 – Program Configuration tab of Tama Client Software. 133

Figure 85 – Tama Client Process Monitoring tab with ongoing acquisition. 133

LIST OF TABLES

Table 1 – CNC machine Technical information. .. 44

Table 2 – Spike Tool Holder Technical Information. ... 45

Table 3 – MBS XCTB 31.35 transformer technical Information. 46

Table 4 – Beckhoff EL3783 Terminal Technical Information. 47

Table 5 - PCB 356B21 accelerometer technical Information. 49

Table 6 – Vallen VS150K3 Technical Information. .. 50

Table 7 – PCB 130A24 microphone technical information. 51

Table 8 - Heidenhain LC483 encoder technical information. 52

Table 9 –Flank Wear Test Measurement Results (in 𝜇𝑚). 56

Table 10 – Sensors connected to the V-Boxes. .. 57

Table 11 – Solid Carbide HPC 8mm tool technical description. 58

Table 12 – Trial Experiments for process parameter determination. 59

Table 13 – Experiment Plan. ... 59

Table 14 – Polynomial interpolation results. ... 74

Table 15 – List of resulting datasets. .. 82

Table 16 – Auto-Encoder Network Configurations. ... 94

Table 17 – ANN Regression Model Configurations. ... 97

Table 18 – ANN + Auto-Encoder Regression Model Configurations....................... 102

Table 19 – Classes addressed to each flank wear interval. 104

Table 20 – LSTM Classifier Model Configurations. ... 104

Table 21 – LSTM Regression Model Configurations. ... 107

ABREVIATIONS AND ACRONYMS

AE Acoustic Emission

AI Artificial Intelligence

ANN Artificial Neural Network

BPTT Back Propagation Through Time

CNC Computerized Numeric Control

DAQ Data Acquisition module

DNN Deep Neural Network

DL Deep Learning

DoE Design of Experiments

FIFO First In First Out

FFT Fast Fourier Transform

GUI Graphical User Interface

HDF Hierarchical Data Format

HMM Hidden Markov Model

IPT Institute for Production Technology

LSTM Long Short-Term Memory

ML Machine Learning

MSE Mean Squared Error

NN Neural Network

PC Personal Computer

PLC Programmable Logic Controller

ReLU Rectified Linear Unit

RMS Root Mean Square

RNN Recurrent Neural Network

RPM Rotations Per Minute

SGD Stochastic Gradient Descent

SVM Support Vector Machine

TBPTT Truncated Back Propagation Through Time

TCM Tool Condition Monitoring

TCP Tool Center Point

WME Window Mean Error

ZMQ Zero M Queue communication framework

SYMBOLS AND NOTATIONS

𝜔𝑘 k-esian weight of neuron

𝑓(∙) activation function

𝑥 input vector

𝑦 output label vector

𝑦̅ predicted output

𝑋 inputs of a dataset

𝑌 output labels of a dataset

𝑌̅ prediction values over a dataset

𝐿(𝑦, 𝑦̅) Loss function

𝑛𝑒𝑡𝑗 activation input signal of neuron j

𝛿𝑗 gradient value for a single neuron

∇ gradient vector

𝜇 learning rate

∆𝜔 weight correction

𝐸(𝑥) error function

𝑜𝑖 output of neuron i

𝜎(∙) sigmoid function

tanh⁡(∙) hyperbolic tangent

ℎ hidden state of the neural network

𝑐 cell vector of Long Short-Term Memory networks

𝑓𝑟𝑒𝑞 frequency

𝑉𝐵 flank wear

𝑔𝑟 groove number

𝑃𝑘 kth degree Polynomial function

𝑁𝑁𝑘 neural network at epoch k

𝑊 training weights for a dataset

𝜖 epsilon: very small value, around 10−8

SUMMARY

1. INTRODUCTION ... 17

1.1. Motivation .. 17

1.2. Fraunhofer IPT ... 18

1.3. Problem Description ... 19

1.4. Objective .. 20

1.5. Monography Structure .. 21

2. LITERATURE REVIEW .. 23

2.1. Artificial Intelligence ... 23

2.1.1. Artificial Neural Networks .. 24

2.2. Deep Learning ... 28

2.2.1. Long Short-Term Memory ... 29

2.2.2. Auto-Encoders .. 33

2.3. Tool Wear Prediction and Tool Condition Monitoring 34

2.4. Solution Approach .. 40

3. EXPERIMENT SETUP .. 43

3.1. CNC Machine ... 43

3.2. Sensors .. 44

3.2.1. Cutting Force .. 44

3.2.2. Spindle Power Consumption ... 46

3.2.3. Vibration .. 48

3.2.4. Acoustic Emission ... 49

3.2.5. Ultra-sonic Acoustic Emission ... 50

3.2.6. Encoder Position ... 51

3.3. Fraunhofer V-Box .. 52

3.4. Tool Wear Measurement ... 53

3.5. Hardware Setup ... 56

3.6. Process Setup .. 57

4. ACQUISITION SYSTEM PROGRAMMING... 61

4.1. Trialink Network ... 61

4.2. System Requirements and Software Project......................... 63

4.3. Implementation .. 64

4.4. Performance ... 66

5. DATA PRE-PROCESSING ... 69

5.1. Flank Wear Measurement and Extraction 71

5.2. Sensor Data Extraction ... 74

5.3. Air-Cut Removal and Dataset Persistence 80

5.1. Pre-Processing Results .. 81

6. Prediction Models .. 84

6.1. Training Algorithm ... 85

6.1.1. Training Weights .. 86

6.1.2. Data Augmentation and Input Slicing 86

6.1.3. Losses and Metrics .. 89

6.1.4. Optimizer Algorithm ... 91

6.2. Architectures and Training ... 93

6.2.1. Auto-encoders ... 93

6.2.2. Artificial Neural Networks ... 97

6.2.3. ANN & Auto-encoder ... 102

6.2.4. LSTM Classifier ... 104

6.2.5. LSTM Regression .. 106

6.2.6. Prediction Results .. 110

7. CONCLUSION ... 113

8. REFERENCES .. 116

9. APPENDIX A – TAMA CLIENT FUNCTIONALITY DESCRIPTION ... 121

10. APPENDIX B – TAMA CLIENT SOFTWARE PROJECT 126

10.1. Interface Package .. 126

10.2. Main Package .. 126

10.3. Tama Handler Package ... 128

10.4. File Handler Package .. 130

10.5. Data Pipeline .. 130

10.6. User Interface .. 131

11. APPENDIX C – PREDICTION MODELS: TABLE OF RESULTS 134

17

1. INTRODUCTION

1.1. Motivation

The metal cutting industry is one of the oldest and most important

manufacturing processes of our society. It is present in almost any sector of the market

over almost all production systems nowadays. Inside metal cutting, milling is one of

the most relevant machining processes, not only because of its power to produce

complex workpiece profiles, but also because of its flexibility in manufacturing different

types of goods with the same equipment [3].

The increasing demand for customized and flexible production has led the

machining industry to new challenges at the same time as increasing precision is

demanded [5]. Furthermore, even though this field of production exists for decades, it

still pursues methods to decrease downtime and production cost, preventing accidents

and equipment damage. Besides that, themes like chattering control, tool condition

monitoring and tool breakage detection are still addressed as unsolved questions.

In order to attend the mentioned new and old demands, the metal cutting

industry is moving gradually towards the complete integration of the shop floor. Big

equipment providers are migrating to open communication frameworks; the presence

of smart components is increasing every year; open frameworks have been developed

for acquisition, monitoring and control [5].

Allied with those resources, the Big-Data age also came as a handy tool in

order to provide new solutions for the machining process. In the context of integrated

manufacture, acquired data now can be stored and used as elements for new powerful

tools to monitor and optimize such processes. The usage of Big-Data with Machine

Learning (ML) is causing recently a revolution in the industry [37]. Once the integration

of the shop-floor is implemented and data is available, a new range of solutions

becomes possible.

All these trends can be perceived as small steps towards a new way of

producing. However, there is still work required in order to combine technologies like

smart-sensors, big data-sets and smart systems. Furthermore, system for position

error compensation, tool condition monitoring, tool breakage detection and thermal

compensation present limitations or need adjustments in order to be transported to

industrial environment [5].

18

1.2. Fraunhofer IPT

Allying the upcoming equipment and systems produced in the market with new

key technologies like ML and Big Data is the main goal of Fraunhofer Institut für

Produktionstechnologie (Institute for Production Technology – IPT) – see Figure 1. The

institute is known for providing technology systems for production all around the world.

Figure 1 – Fraunhofer Institute for Production Technology.

Source: [1]

Fraunhofer is widely spread across the world with more than 80 working units,

most of them located in Germany. It has partnership with big companies in the fields

of machining, automobilists and aero-space industry.

The IPT Institute has the task of transporting technology from the academic

environment directly into industrial practice as itself defines [1]. The focus is to provide

reliable tools for the specific tasks required from customers. In other words, the projects

use updated state of the art together with high technology equipment in order to

develop innovative systems for the industrial environment.

The goal of the Precision Technology and Automation Department – the place

where this project was developed – is to provide solution for high precision machining.

As the name suggests, this branch demands smaller tolerance levels and better

positioning control to maintain the desired precision. So, error sources like thermal

19

deflection, chattering, tool wear and positioning offset are more harmful to those

processes in comparison to conventional operations.

In order to study those entities, it is necessary to acquire information from

sensors and the machine PLC system. Therefore, works regarding high frequency data

acquisition are also carried out in the department.

1.3. Problem Description

The present work is aimed to develop a system using ML or more precisely

Deep Learning (DL) – which is going to be defined afterwards – in order to generate

models for tool flank wear prediction.

Flank wear can be defined as the loss of material on the edge of the cutting

tool, caused by the constant contact between the tool and the workpiece. As described

by [2] the reasons behind tool wear can be the shock between tool and workpiece,

abfraction on the cutting edge and imperfections on the tool composition. Usually it

increases gradually during the working time of the tool.

In high precision milling process, the effects of tool wear are intensified due to

the small tolerance level required – in the order of micrometers. Since the tool wear

affects the shape and sharpen of the tool, the side effect is transferred to the

workpiece. That is, deterioration of the tool may provoke undesired vibration on the

system and poor surface quality. Resulting in rework or even rejection of the

manufactured product.

Besides that, the tool cutting power decreases with the increase of tool wear,

consequently increasing the load on the machine. Which can also damage the

equipment.

By monitoring the tool wear phenomena, it is possible to determine the exact

moment for the tool change. However, measuring directly this entity in the industrial

environment is a very costly procedure, which requires interrupting the process,

removing the tool and using special equipment to check its status. Such procedures

are undesired in those environments.

In practice, an expert operator replaces the machine tool after a given lifetime

threshold. This method is low accurate and can cause problems. On one hand,

overusing a tool can damage workpiece and machine as previously described. On the

other hand, underusing it will generate extra direct and undirect (setup time) costs [3].

20

Studies reported that 6-20% of the downtime in milling is caused by tool wear

and tool breakage [3, 4]. Some authors ranked such factors as the biggest barrier in

the actual manufacture industry. In [5], the author presented the concept of smart

spindles, which is a new generation of rotary spindles developed to fulfill the most

important tasks for the Industry 4.0 incoming requirements of flexibility and quality. In

the third chapter, when approaching the key technologies required on those new

devices, the author first mentioned the importance of Tool Condition Monitoring (TCM).

The text highlighted it as one of the critical factors in order to achieve high accuracy

and efficiency in milling, once it is directly related to the performance of the machine.

Also related to the topic, according to [4], a good TCM system integrated to

the milling machine can increase the lifetime of the cutting tool on 10-50%, shorting

the downtime and cutting costs in the order of 10-40%.

Zhou and Xue [3] pointed out that studies involving TCM have been developed

for more than 30 years. Although there is still not a consensus about which is the best

way to measure and control the tool wear progress on milling processes. As direct

measurement for the issue is out of hand, the indirect measurement is then

recommended.

1.4. Objective

In order to build the referred prediction module, deep learning techniques will

be studied and employed in the project. However, in order to use such data driven

technique, It is mandatory to possess data related to the process. Therefore, a set of

experiments was designed in order to generate this data for the training step. The

experiments employed on the machine gather information from multiple sensors

simultaneously.

The goal of this work is to implement prediction models using different DL

architectures. On this way, each combination of sensor data and DL architecture will

be tested. Finally, by analyzing the performance of each model trained for the task, the

most deterministic sensor data and also the most suitable technique can be identified.

Furthermore, the presented results provide further understanding about the signal

behavior for the studied phenomena.

21

As a result, this project will present the following elements:

• A sensor system installation for studying the tool wear phenomena

during milling operation;

• The project and implementation of the acquisition system responsible

for the end-point sensors data acquisition;

• A dataset containing all information gathered during the experiments

performed on the milling machine;

• And finally, a software programmed to train the prediction models. This

system pre-processes the data, extracts the relevant features, and

trains the final models using different approaches.

1.5. Monography Structure

Chapter 2 presents a literature review about the relevant knowledge fields

applied in this work, including machine learning, deep-learning, TCM and tool wear

prediction.

On Chapter 3 the experiment step is reported, giving details about the

hardware and software setup. The chapter also presents the component description

for all employed sensors.

Chapter 4 talks about the Acquisition software project and implementation, as

well as the results achieved by the system.

Chapter 5 presents a signal analysis of the sensor data gathered on the

experiments. Following by the pre-processing strategy for extracting information from

them.

Chapter 6 presents the AI modules. Listing the algorithms, methods used and

training results providing a detailed comparison between each trained prediction

model.

The text is concluded in chapter 7, which gives the results and limitations of

the work. The author finishes the document by listing suggestions for future works.

22

23

2. LITERATURE REVIEW

2.1. Artificial Intelligence

Throughout history Artificial Intelligence (AI) has received different definitions.

Russel and Norvig [6] classified AI into 4 different categories: systems that thinks like

humans, system that act like humans, system that thinks rationally and systems that

act rationally. Between the given definitions, one of the most implied is “The branch of

computer science that is concerned with the automation of intelligent behavior.”

Or in other words, it is the field of study that aims to program computers to perform

actions which demand human intelligence.

Machine Learning (ML), as described by Arthur Samuel [7], is the “Field of

study that gives computer the ability to learn without being explicitly programmed.” On

[8] the author also defined it as “A Computer program is said to learn from an

experience E with respect to some task T and some performance measure P, if its

performance on T, as measured by P, improves with experience E.” In general terms,

the second definition is a formalization of the first one.

[9] explained better the process of learning when saying the ML algorithms use

sample data called “training data” in order to generate knowledge models. In order to

generalize the observed examples, the algorithm uses statistical tools for regression

and decision making instead of arithmetic rules.

ML is divided into mainly two categories [9][10]: supervised and unsupervised

learning:

• Supervised learning: On this mode the reference data is available to the

algorithm. So, the computer has a dataset containing inputs and target

outputs. The process of learning happens by presenting the dataset to

the model multiple times. The number of samples mapped correctly

from input to output determine the accuracy of the model. The main

examples of this method are classification and regression.

• Unsupervised learning: on this mode, the reference data is not available

to the algorithm. Therefore, the task consists in observing and finding

patterns between different inputs. By using this inference mechanism,

it is possible to discover structures common to each group on the

dataset. Clustering is the most typical example of this approach.

24

2.1.1. Artificial Neural Networks

The most popular approach for supervised learning is the Artificial Neural

Network (ANN) [11]. Those networks have been used in a wide variety of problems

with success due to its capacity of generalization in presence of noisy input data [3].

Because of its massive parallelization, the mechanism is powerful in representing

strong non-linear functions [10]. By doing so, ANNs can interpret problems and perform

decisions without any assumption of the data’s structure [12].

An ANN, as explained in [13], uses a representation of human brain in order

to process information. For this task, it has a model of an artificial neuron containing

input weights, an activation function and an output, see Figure 2. Primarily, the inputs

of the neuron are multiplied by their respective weights. Then, the result is summed up

and passed through the activation function. This simple representation can also be

translated into equation 1.

Figure 2 – Simple model of an Artificial Neuron.

Source: [13]

𝑦 = ⁡𝑓 (∑𝑥𝑖

𝑛

𝑖=0

. 𝜔𝑖)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1)

So, a neural network is nothing but a pool of neurons, grouped in a certain

number of layers determined by the expert. Each node receives the output of all nodes

of the preceding layer and its output will feed all the neurons in the following layer.

Figure 3 presents an example of such. Therefore, the information flows through three

different types of layers: the input layers, which receive the input vector; the hidden

25

layers located in the middle of the network; and the output layer, which determines the

prediction value.

Figure 3 – Example of an ANN.

Source: [13]

In general terms, the input and output layer are fixed in the algorithm´s

architecture, since they process the input and target output vectors respectively.

Therefore, by raising the size and depth of the hidden layers it is possible to increase

the representation power of a network as a total [14]. On the other hand, a bigger

network enlarges the time and dataset size required to train it. As a result, projecting

an ANN or any of its variants becomes an intuitive and context specific task [3].

The procedure for training ANNs consists of presenting the training examples

to the network 𝑛 times – called epochs – and using the back-propagation algorithm to

adjust the weights 𝜔𝑖,𝑗 of the artificial neurons. [15] revised the back-propagation

algorithm and its popular variants since they are widely used in ML models. The author

explained the algorithm for training neural networks in the following steps as shown in

Figure 4. The 2 most important steps performed in such algorithm consists of:

• Forward step: a data example is presented and the output is calculated

by the network;

• Backward step: an error signal is calculated from the difference

between desired and predicted outputs. This signal, calculated by the

loss function is back-propagated using a gradient-descent algorithm

through the network until the input layer.

26

Figure 4 – Representation of back-propagation algorithm.

Source: [6]

So, considering 𝐿(.) a loss function to calculate an error value between the

network output 𝑦̅ and the target values 𝑦 as defined by Equation 2.

𝐸 = 𝐿(𝑡, 𝑦)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2)

Given 𝜔 the weights of a neuron 𝑗 with 𝑛 inputs, 𝑛𝑒𝑡𝑗 is defined as the input of

the activation function of the referred neuron 𝑗 as described in Equation 3.

𝑛𝑒𝑡𝑗 =⁡∑𝜔𝑘𝑗

𝑛

𝑘=0

⁡⁡⁡⁡⁡⁡(3)

27

The 𝛿(.) function calculates the gradient function of the error signal. The value

calculated by Equation 4 will be further used to apply the correction on the weights of

the network.

𝛿𝑗 =
𝜕𝐸

𝜕𝑜𝑗

𝜕𝑜𝑗

𝜕𝑛𝑒𝑡𝑗
=

{

 𝜕𝐿(𝑜𝑗 , 𝑦)

𝜕𝑜𝑗

𝑑𝑓(𝑛𝑒𝑡𝑗)

𝑑𝑛𝑒𝑡𝑗
, 𝑖𝑓⁡𝑗⁡𝑖𝑠⁡𝑎𝑛⁡𝑜𝑢𝑡𝑝𝑢𝑡⁡𝑛𝑒𝑢𝑟𝑜𝑛

(∑ 𝜔𝑗𝑙𝛿𝑙
𝑙⁡∈⁡𝐿

)
𝑑𝑓(𝑛𝑒𝑡𝑗)

𝑑𝑛𝑒𝑡𝑗
, 𝑖𝑓⁡𝑗⁡𝑖𝑠⁡𝑎𝑛⁡𝑖𝑛𝑛𝑒𝑟⁡𝑛𝑒𝑢𝑟𝑜𝑛

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4)

In Equation 4 the derivative of the error is calculated from the derivative of the

loss function for output neurons. When determining 𝛿 for the inner neurons, the error

is calculated by multiplying the weights and 𝛿 values of the following layer 𝐿. On this

way, the network is corrected from the output to the input layer. The term⁡
𝑑𝑓(𝑛𝑒𝑡𝑗)

𝑑𝑛𝑒𝑡𝑗
 is the

derivative of the chosen activation function related to its input 𝑛𝑒𝑡𝑗.

The correction value ∆𝜔𝑖𝑗 is then calculated multiplying a value 𝜇

corresponding to the learning rate. By changing the value of this factor, the network

will present a more aggressive or soft behavior along the time. See Equation 5.

∆𝜔𝑖𝑗 = −𝜇
𝜕𝐸

𝜕𝜔𝑖𝑗
= −𝜇⁡𝑜𝑖𝛿𝑗 ⁡⁡⁡⁡⁡(5)

For the back-propagation algorithm to work, the activation function 𝑓(∗) must

be differentiable in all its extent. This property will guarantee a smooth correction vector

applied to the weights of the network throughout the training epochs.

In the literature, we can find different functions used for activating the neurons.

Their performance depends on the required application, output format and numeric

cost in computing the forward and backward steps. Figure 5 shows some common

examples of such functions.

It is common to find in the scientific and industrial world other procedures to

modify the conventional back propagation algorithm. These changes are aimed to

optimize its performance. Examples are batching the input data processed in each

forward and backward steps; using momentum or any other not-fixed learning rate on

the back-propagation step; and removing dead neurons to speed up convergence.

28

Figure 5 – Examples of activation functions.

(a) sigmoid; (b) tanh; (c) Rectified Linear Unit; (d) linear.

Source: [6]

2.2. Deep Learning

On the literature review done in [16], the author listed five different definitions

for this field of knowledge. From which, some of them are:

I. “A class of machine learning techniques that exploit many layers of non-

linear information processing for supervised or unsupervised feature

extraction and transformation, and for pattern analysis and

classification.”

II. “Deep Learning is a set of algorithms in machine learning that attempt

to learn in multiple levels, corresponding to different levels of

abstraction. It typically uses artificial neural networks. The levels in

these learned statistical models correspond to distinct levels of concept,

where higher-level concepts are defined from lower-level ones, and the

29

same lower-level concepts can help to define many higher-level

concepts.”

In [17] the author defined Deep Learning (DL) as “a class of machine learning

algorithms that uses multiple layers to progressively extract higher level features from

the raw input. For example, in image processing, lower layers may identify edges, while

higher layers may identify the concepts relevant to a human such as digits or letters or

faces.”

In other words, DL can be perceived as a set of tools which usually employ

neural networks in their core mechanism. Therefore, their advanced structures are

capable to interpret superior classes of complex data. By using multiple levels of

abstraction, deep neural networks (DNN) are able to succeed in handling problems

where simple neural networks have failed [8].

In face of highly noisy and complex data, simple ANNs must have a higher

number of layers and neurons in order to interpret the data features. However, the

training algorithm cannot fit the model in such cases, sometimes because of the

unbearable dataset size, or most likely because the gradient-descent gets trapped into

a local minimum point.

DNNs proved to outperform ANNs in problems like: image classification,

pattern recognition, speech recognition and natural language processing [8, 17].

Recently those algorithms were successfully applied to signal processing. So, in the

following sub-sessions it will be explained some DNN algorithms which will be used in

the scope of this project.

2.2.1. Long Short-Term Memory

Long Short-Term Memory (LSTM) is a special type of Recurrent Neural

Network (RNN). RNNs are neural networks projected to interpret sequential data.

Normal ANNs calculate output values based only on the data fed into the network, so

these networks have problems when the past inputs are also important to determine

the current output.

In RNNs, the current input and the hidden state are used in order to generate

the output. So, the architecture of the RNN is very similar to the so-called vanilla ANNs.

The difference is that now, the network must train also to keep a hidden state in

memory. By using the past hidden state combined with the actual input value, the

module can determine the next output and hidden state [18]. Figure 6 shows a

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Algorithm

30

schematic of an RNN, the Network 𝑁 processes the input 𝑥 producing the output 𝑦 and

the hidden state ℎ, which will be used together with the next input to calculate the new

output.

Figure 6 – Schematic of a Recurrent Neural Network.

The RNNs are particularly interesting when processing sequential data. An

example which is suitable for RNNs is machine translation. Once a sentence is

processed sequentially by feeding into the network the chars of the expression.

Although, [19] showed the difficulties in learning long-term relations through

Gradient-descent algorithms in RNNs. In short, the neurons responsible for

maintaining the hidden state of the RNN are trained using one-step back-propagation.

Therefore, it is easy to lose information from the hidden state when a task requires

long-term memory once the network weights will be updated and the hidden state will

be calculated a couple times.

The LSTM architecture is aimed to solve the lack of mechanisms to store long-

term information. See Figure 7. The LSTM is a variation of the RNN, therefore it also

process data sequentially. The upper line of the network corresponds to what’s called

cells (𝐶). It is responsible for storing long-term information. As defined by [20], the

LSTM possess three gates incorporated in its architecture, which actually are NN

layers with Sigmoid activation.

The first gate 𝜎1 is responsible for selecting the information on the cell to be

excluded, or possibly replaced. The second gate 𝜎2 selects the data which will be

included on the cell. All gates use for their tasks the concatenated vectors 𝑥𝑘|ℎ𝑘−1.

31

Figure 7 - Schematic of a LSTM network.

Source: [20]

The third network processes the information from the state and input in order

to determine the new values which will be added to the cell. The output of this network

is then multiplied by the second gate output vector and then added to the cell vector.

The prediction value of the LSTM will then be calculated from the cell value, now

updated with the new input. But, before selecting the output from the cell, the vector

will be filtered out using a single 𝑡𝑎𝑛ℎ⁡layer in order to bound the values −1 < 𝑐𝑘𝑖 < 1.

Finally, the third gate selects the new output and hidden state vectors.

Therefore, the information is processed in an LSTM using a chain mechanism.

That is, short-term information navigates in the hidden state line, while long term

relations on the dataset are stored and recovered from the cell line. See Figure 8.

Figure 8 – Representation of information flow in LSTM network.

Source: [20]

32

Training the LSTM consists in training the four previously described networks

together. In order to predict correctly, the LSTM gates must learn when to edit values

on the cell. One important thing to pay attention to is the fact that the network now have

to consider past computations, instead of one single back-propagation step as usually

applied in simple ANNs. In this sense, [20] developed the Back-Propagation-Through-

Time (BPTT) algorithm. Which apply the error gradients backward in time.

The BPTT algorithm can be perceived as an application of the Calculus chain

rule when back propagating the error values in time. Theoretically, the BPTT works by

unrolling all processed steps. Each step back in time holds one fed input, one copy of

the network and one output. Errors are then calculated and accumulated for each step.

The network weights are then updated with the accumulated error.

In other words, each step back in time taken by the BPTT may be seen as an

additional layer, and the hidden state signal of the last step is taken as an input on the

subsequent step. Figure 9 summarizes the working principle of the BPTT algorithm.

Figure 9 – Steps taken from BPTT algorithm for weight updating.

Source: [20]

Computing the BPTT algorithm for n steps requires n weight correction

updates and the algorithm must calculate the gradient n times for the network. On one

33

hand, the computation of this algorithm is numerically expensive. On the other hand,

computing multiple gradients can cause weights to vanish or explode. And make slow

learning and model skill noisy.

Therefore, a variation of this algorithm called Truncated Back Propagation

Through Time (TBPTT) is used. The new variation requires 2 parameters: 𝑘1, the

number of computing steps per update; and 𝑘2, the number of timesteps to compute

the BPTT. The new algorithm then compute the forward step for 𝑘1 steps. After this,

the BPTT is calculated for the last 𝑘2 computations of the NN.

The LSTMs have proved to be efficient in memorizing sequential features and

producing good results in fields like image generation, speech recognition and natural

language processing. Their memory capacity have been a handy tool for a wide variety

of problems.

2.2.2. Auto-Encoders

Auto-encoder is a Neural-Network architecture which tries to reproduce the

same values from the input on the output [21]. Although it looks useless to have a tool

to replicate values on the output, auto-encoders are a powerful unsupervised-learning

tool for dimensionality reduction and feature extraction. This is because when it comes

to this NN architecture, we are not interested in the network output layer. Instead, the

interest resides entirely on the middle layer of the network. See Figure 10.

Auto-encoders are typically divided into 2 regions: the encoder, responsible for

mapping the input to the so-called code – output of the middle layer in Figure 10; and

decoder, responsible for interpreting the code and reconstructing the input vector.

Figure 10 – Representation of a simple auto-encoder.

Source: [21]

34

As the reader can notice, the encoder’s output has (always) a lower

dimensionality when compared to the input size. This fact is particularly important to

auto-encoders because the main goal is not to reproduce perfectly the input. Instead,

the size of the code is kept smaller so the auto-encoder can only replicate

approximately the input vectors.

Through this process, the encoder must learn a consistent way to compress

the input vector, losing a minimum amount of information. Furthermore, the encoder

ends up learning how to give priority to certain features on the input, providing valuable

data interpretation.

The resulting logic is simple. If the decoder can create similar input vectors

looking only at the code, this means the generated code has the most relevant

information about the data.

One common application of Auto-encoder in Deep learning consists of its use

for feature selection. So, an input is compressed by an encoder before it is presented

to the prediction network. On this way, the prediction model must learn how to interpret

the code and perform its task, while the auto-encoder is responsible for dimensionality

reduction, feature extraction and noise suppression of the dataset.

2.3. Tool Wear Prediction and Tool Condition Monitoring

When approaching the tool wear problem, [2] described some effects of the

tool wear in the milling. According to the author, the flank wear is the prevalent wear

type suffered by cutting tools on this type of process. Flank wear is defined as the loss

of material in the relief face of the tool, caused mainly by the rubbing effect of this with

the workpiece material.

[31] described some tool wear types which can be observed during the usable

lifetime of a cutting tool. See Figure 11. When approaching the tool wear problem in

High Speed Milling, the author pointed out that the flank wear and central wear (in

spherical tools) are the most influencing types of wear in the progress of tool

deterioration.

35

Figure 11 – Types of tool wear in milling tools.

Also, when describing the tool wear progress characteristics [31], the

document explained that on the beginning of the lifetime, the tool presents a first wear

on the top of the cutting edge by a deformation on the cutter edge material. This

deformation develops intensively for the first 30 minutes of operation. After this point,

it can be observed a time interval when the wear stabilizes, and the surface quality

even improves.

The flank wear continues to develop gradually until the protective coating of

the tool surface is damaged. As a consequence, heavy material losses on the tool

edge allied with an increasing wear surface provoke a rapid increase on the cutter load.

This effect also results in increasing friction between tool and workpiece and high tool

temperature. The result of this process is a fast development of the tool wear, the high

edge temperature provokes other types of wear like crater and chipping. The

degradation of the tool develops fast until it must finally be replaced. See Figure 12.

As properties like workpiece surface quality and process efficiency are strongly

related to the tool condition, and this is strictly related to the tool wear progress, the

study of TCM systems recently earned high attention on the field of metal cutting. As

mentioned before, determining the right time for tool replacement plays an important

role in order to minimize downtime and production costs. Furthermore, an accurate tool

monitor can help operators to avoid possible damages on the equipment.

As methods for direct measurement of flank wear are usually expensive, and

time inefficient, researches have been moving towards indirect measurement

techniques. However, accessing this phenomena by indirect methods brings the

challenge of dealing with the problem of noisy data.

36

Figure 12 – Tool edge showing allowed flank wear (a) and exceeded crater wear (b).

(a) (b)

Source: [31]

On the review done by [4], the author approached the main methods for

indirect sensing of tool wear. The first method involved cutting force measurement,

usually performed through the use of table dynamometers. The paper emphasizes the

problem of variability of the force signal related to the spindle position, once the signal

has peaks on the entry and exit of each tooth on the material. This behavior can easily

lead to false alarms when employing conventional methods like using a threshold

criteria for the tool condition estimation.

Another reported method is the usage of acoustic emission (AE) sensing. As

the flank wear develops, studies have reported an increase on the energy emitted by

the AE signal, making it a handy tool for detecting tool wear and breakage. It was also

explained that the prevalent frequency of those signals got higher on the end of tool

life. On this case, mechanisms involving RMS, skew and fast Fourier transform (FFT)

of such signals are usually applied in order to evaluate the output presented by those

sensors.

Another source of information reported in [4] is the vibration sensing. This was

usually carried out by installing accelerometers on a single tooth of the milling tool.

Therefore, features can be identified when analyzing the behavior of the signal in some

different frequency bands.

Other methodologies can be presented. However, the main point is to observe

that analyzing those sensor outputs mostly requires developing complex methods for

37

interpreting their information. Therefore, when coming to tool wear in milling, there is a

high prevalence of statistical and smart system development for decision making. Even

when mentioning a review published in 2003.

[5] raised another problem when approaching TCM using threshold criteria.

The paper pointed to the fact that this methodology is highly dependent on the CNC

process parameters. So, in order to produce a robust TCM system, the thresholds must

have a high variety of parameters and complex programmed rules, otherwise their

accuracy is heavily damaged.

The author proceeds by mentioning a strong trend in using machine learning

to overcome this barrier, mainly because of its high generalization capacity. The paper

reported an increasing usage of ANNs, support vector machines (SVM) and Hidden

Markov Models (HMM) for the issue.

On [2] the author used Design of Experiments (DoE) – a statistic method for

optimization developed by Genichi Taguchi – in order to design a dataset of 20 different

process parameter combinations. The experiment plan was developed using 3 factors

and 5 levels. The research used this dataset to train an ANN and fit a polynomial

function for tool wear prediction using the process parameters as input. For labeling

the data, a microscope measured the tool condition. The results presented 94%

accuracy on the polynomial regression, although no test-set was used, which can be

misleading.

A similar method was implemented by [35] where also 20 experiments were

raised using DoE and AE sensing. The author applied ANOVA method in order to

optimize the cutting parameters aiming to maximize tool life. Similarly, the training did

not separate a test-set for network performance evaluation.

Faleh et al. [22] used the spindle power consumption to develop a TCM system

for drilling. On this method, the stand-still power consumption is decremented when

the spindle is moving towards the workpiece. On this way, the recorded signal can be

interpreted as containing only the cutting power consumption. The experiment plan

and signal analysis was also done using DoE.

[23] presented a method for TCM which uses an Adaptative Fuzzy Inference

System for predicting tool wear values based on force indicators. After that, an ANN

classifies them into two states: fresh or worn. The Fuzzy system looks at the peak force

of each tooth in order to estimate the wear. The method reported relies on the fact that

38

a broken tooth will not receive load in the milling process while the next tooth will

receive extra-load.

The reports in [23] and [24] showed how the forces applied to the table

dynamometer are strongly related to the spindle position during the cutting process

(see Figure 13). It is clear in Figure 13 how the signal changes as the tool gets worn.

Figure 13 – Force signal on a fresh and worn tool.

Source: [23]

The method developed by [25] uses an impedance layer printed on the tool

surface in order to identify the wear state. The mechanism consists of measuring the

impedance of the layer during machine operation. Once the wear level progresses, the

paths printed in the tool edge are wiped out, changing its impedance value. Therefore,

by measuring this entity it is possible to estimate the tool condition in real time.

However, such method involves special tool manufacturing and delicate process setup,

resulting in poor applicability for the industrial environment.

The tool wear prediction system for drilling developed in [26] employed a set

of ANNs for the task. The data is distributed between the ANNs by addressing to a

39

second network the samples which generated poor premature predictions on the first

one. After addressing and training each model, a third model developed using

Gaussian Distributions selects the target network based on the input under evaluation.

So, the author claims that such method does not require tuning the network hyper-

parameters. On this way, the procedure for training a dataset becomes simpler from

an operator perspective.

[27] used a Bayesian system in order to produce a tool wear estimator through

cutting force sensing. The paper examined multiple approaches to preprocess the

data. A superior performance was achieved by using only the relevant features on the

training step. Besides that, the paper also shows a superior performance of SVM in

comparison to vanilla ANNs.

[28] and [14] applied a combination of fuzzy logic and ANNs for monitoring the

tool condition. [28] applied AE on drilling while [14] applied cutting force on turning.

The resulting system in both papers presented accuracy close to 100%.

The algorithms proposed on [29] and [30] use Hidden Markov Models in order

to predict tool wear in milling process using force measurement. The force signal is

pre-processed using wavelet transform. On [30], the approach also post-process the

results of the HMM using a Gaussian distribution in order to estimate the remaining

useful life of the tool. On this way, this system gives higher priority to the useful

remaining time instead of the actual state of the cutters.

On the review presented in [3], the author listed the recent works regarding

TCM for milling processes. It reports a drastic increase in methods using ML, mainly

ANNs as shown in Figure 14.

One of the reasons pointed out by the author is the simplicity of ANNs when

compared to other methods. The black-box perspective about the ANNs reduces the

theoretical knowledge required for the task while simultaneously provides suitable

generalization power. When concluding the text, the author states deep-learning

techniques as one of the potential technologies for future works in the field of TCM for

milling.

40

Figure 14 – Methods recently reported for TCM systems on Milling.

Source: [3]

2.4. Solution Approach

The project goal is to develop a system for tool wear prediction for high

precision milling. As previously described, the flank wear is the most observed type of

wear in such processes. Furthermore, other types of wear usually occur only on final

stages of flank wear – under normal cutting conditions. On this way, crater wear,

chipping or any other wear type can be perceived as consequences of the flank wear

development. Therefore, flank wear measurement will be adopted for tool wear

estimation on this project.

The presented study uses DL techniques in order to interpret the acquired

sensor signals. As the literature does not present massive information about the

applicability of such models on tool wear prediction, multiple architectures were tested.

ANNs, ANNs with auto-encoders, and LSTMs for classification and regression were

employed. So, the project provides a comparison between those different approaches.

A set of experiments using different process parameter and direct

measurement of tool flank wear were carried out in order to generate data for training

the DL models. Once there is not a consensus about the best measurement strategy

for the task, a multi-sensor system was installed in the CNC machine. Figure 15 lists

the project steps for the proposed methodology.

41

Figure 15 – Project Steps.

In order to compare the performance of each sensor employed on the

experiments, all sensor signals were pre-processed using FFT. The generated

spectrograms will serve as input for the prediction models. Each prediction model was

trained using only one sensor data as input.

The study here presented explores all possible combinations between the

chosen DL approaches and the pre-processed signals. So, by analyzing the

performance of the trained models, it is possible identify the most suitable combination

for the tool wear prediction task.

42

43

3. EXPERIMENT SETUP

Physical experiments like the ones reported in the scope of this project

consume time and resources like machine tools and material. Therefore, the

experiments were designed to also provide information for studying other phenomena.

So the data acquired from the experiment will be used for – besides tool wear

prediction – tool breakage detection, chattering control, power consumption

optimization, etc. Therefore, the experiment plan employs sensors which will not be

further used for the prediction models. However, they are important for studying the

mentioned problems.

 The acquisition system records data provided from the following sensors:

spindle force, spindle power consumption, acoustic emission, vibration, ultra-sonic

emission and encoder position. Furthermore, the acquisition system must be projected

to acquire all signals together. The following sub-chapters provide details about the

resources applied on the experiments.

3.1. CNC Machine

The machine chosen for the scope of this work is the DMG MORI HSC 55

linear (see Figure 16), designed for high precision milling. It possesses a Heidenhain

CNC system with 3 axes. The 10kW spindle rotates up to 28000 RPM, making it

appropriate for steel cutting. The encoders responsible for the positioning system have

5𝜇𝑚 accuracy. Table 1 exposes additional information about the machine.

Figure 16 – DMG MORI HSC55 linear CNC Machine.

Source: https://www.dmgmori.co.jp/en/top2/

44

Table 1 – CNC machine Technical information.

DMG MORI HSC 55 linear

Component Description Unit

Axes 3 (X, Y, Z) -

Working area (X, Y Z) = (450, 350, 400) mm

Max. Spindle Speed 28000 RPM

Max. Spindle Power 28 kW

Max. Spindle Torque 33 Nm

CNC system HEIDENHAIN iTNC 530 -

Axes Encoders HEIDENHAIN LC483 -

Axes Encoder accuracy ±5 μm

Axes Encoder measuring step 100 nm

Source: https://www.dmgmori.co.jp/en/top2/

3.2. Sensors

3.2.1. Cutting Force

In order to measure the cutting force regardless the tool center position (TCP),

a device installed on the spindle is more appropriate than devices installed on the

workpiece table. This is due to the fact that signals recorded from the spindle present

more accurate information about the tool once they watch the process from a short and

constant distance to the cutting point. Therefore, the Spike 1.2 tool holder was chosen

for recording the cutting forces applied on the tool.

The Spike is a wireless smart tool holder which records flection, pressure and

torsion applied to the tool (See Figure 17). Table 2 transcribes the main information

about this device.

Although this tool holder can present important information about the process,

its usage is undesired on the industrial environment. The main reasons are its cost,

downtime on charging the remote unit and component force constraints. However, its

usage is important once entities like shock and tool breakage can be better evaluated

through force measurement.

45

Figure 17 – Sensory tool holder Spike 1.2 and recorded signals.

Source: https://www.pro-micron.de/spike/?lang=en

Table 2 – Spike Tool Holder Technical Information.

Spike Sensory Tool Holder 1.2

Component Description Unit

Signals

Axial Force N

Torque Nm

Bending moment in X/Y Nm

Temperature °C

Frequency response 1600 Hz

Axial Force measuring range 60 kN

Torque measuring range 400 Nm

Bending Moment measuring range 400 Nm

Axial Force resolution <5 N

Torque resolution <0,03 Nm

Bending Moment resolution <0,03 Nm

Source: https://www.pro-micron.de/spike/?lang=en

46

3.2.2. Spindle Power Consumption

Another factor directly correlated to the cutting force is the spindle power

consumption. Once it is responsible for providing the required energy to the spindle

and consequently to the tool, the electrical power consumed by the spindle is directly

correlated to the cutting forces related to the machining process. Furthermore, power

consumption measurement does not present most of the inconveniences caused by

the direct force measurement like the ones listed in last section.

Due to high electrical current flow on the PLC cables, it is preferable to use a

non-invasive method for the task. Therefore, the system uses 2 components. Primarily,

a transformer reduces the amplitude of the electrical current of the cable (see Figure

18 and Table 3).

Figure 18 – MBS XCTB 31.35 transformer and its installation on the machine.

Source: https://mbs-ag.com/en/shop/xctb-31-35/

Table 3 – MBS XCTB 31.35 transformer technical Information.

MBS XCTB 31.35 Current Transformer

Component Description Unit

Max. Operating Voltage (Ueff) 1,2 kV

Current Input range (Ieff) 0-150 A

Current Output range (Ieff) 0-5 A

Amplitude error (0,05-10kHz) ≤ 2 %

Amplitude error (10-20kHz) ≤ 3 %

Phase error (0,05-10kHz) ≤ 2° -

Phase error (10-20kHz) ≤ 3° -

Source: https://mbs-ag.com/en/shop/xctb-31-35/

47

After the current reduction, data is recorded using the Beckhoff EL3783

terminal. This device reads the three phase voltage and current, and records the power

consumption. In order to communicate to the terminal, a Twin-cat client software is

required for handling the communication with the device. The Twin-Cat terminal and

its installation can be seen in Figure 19. The technical description is found in Table 4.

Figure 19 – Twin-Cat Power Monitor terminal and its installation.

Source:
https://infosys.beckhoff.com/english.php?content=../content/1033/el3783/2628174603.html&id=

Table 4 – Beckhoff EL3783 Terminal Technical Information.

Beckhoff EL3783 Power Monitor

Component Description Unit

Number of inputs 3 x current, 3 x voltage -

Measuring error < ±0.2% -

Nominal Voltage Range 690 Vrms

Voltage Resolution 22.5 mV

Input Resistance Voltage circuit 1,5 MΩ

Nominal Current Range 5 Arms

Current Resolution 281 μA

Max. permitted Overvoltage ±1270 V

Max. permitted Overcurrent ±10A peak or 7Arms

Source:
https://infosys.beckhoff.com/english.php?content=../content/1033/el3783/2628174603.html&id=

48

3.2.3. Vibration

The microscopical events provoked by removing material from the workpiece

– shock, rubbing, abfraction, etc. – also generates vibration and noise. With the

progress of tool deterioration, the behavior of those entities changes. So the

experiments also observed the process vibration.

Unlike conventional methods, the accelerometer was installed in the spindle

body instead of the workpiece. Besides the setup time, another reason for this choice,

as previously mentioned in section 3.2.1, is the constant distance to the TCP. Sensors

installed on the workpiece present more intense signals when the tool cuts material

close to them. Fact which can be translated as measurement noise.

Table 5 presents the technical description of the accelerometer chosen for the

experiment. The sensor designed for industrial operation (Figure 20) records the

vibration on 3 axes (X, Y and Z) separately. The placement of the component can be

seen in Figure 20(b).

Figure 20 - PCB 356B21 Accelerometer and its installation.

(a) (b)

Source: https://www.pcb.com/products?model=356b21

49

Table 5 - PCB 356B21 accelerometer technical Information.

PCB 356B21 Accelerometer

Component Description Unit

Axes 3 (X, Y, Z) -

Frequency range (Y and Z) 2-10000 Hz

Frequency range (X) 2-7000 Hz

Measurement Range ±4905 m/s2

Sensitivity 1,02 mV/(m/s2)

Broadband Resolution 0,04 m/s2

Output impedance ≤ 200 Ω

Source: https://www.pcb.com/products?model=356b21

3.2.4. Acoustic Emission

Along with vibration, acoustic emission (AE) is also generated during the

cutting process. Past projects carried out the AE sensing on the workpiece side. In the

referred project the acoustic emission will be measured in both workpiece clamp

(Figure 21), and spindle body (see Figure 20). With the aim of correlating and

comparing signals gathered from both of them during the process.

Figure 21 – AE sensor installation on workpiece.

The AE sensor chosen is the Vallen VS150K3. The sensor presents a strong

non-linear behavior and high frequency response (Figure 22). Therefore, the data

processing units must record information with a frequency 𝑓𝑟𝑒𝑞 ≥ 450𝐾𝐻𝑧 (see Table

6).

50

Figure 22 – Acoustic Emission Sensor and its response curve.

Source: https://www.vallen.de/sensors/watertight-sensors/vs150-k3/

Table 6 – Vallen VS150K3 Technical Information.

Vallen VS150K3 AE sensor

Component Description Unit

Frequency Range 100-450 kHz

Capacity 450 pF

Source: https://www.vallen.de/sensors/watertight-sensors/vs150-k3/

3.2.5. Ultra-sonic Acoustic Emission

An ultra-sonic sensor was also installed in the machine in order to record the

ultra-sonic emission generated in the process (Figure 23). The PCB 130A24 is an

electret array microphone and its description is found in Table 7.

Figure 23 – PCB a30A24 microphone and its installation.

Source: https://www.pcb.com/products?m=130a24

51

Table 7 – PCB 130A24 microphone technical information.

PCB 130A24 microphone

Component Description Unit

Frequency response (±3dB) 20-16000 Hz

Sensitivity (±3dB) 1 V/Pa

Inherent Noise 20 μPa

Output impedance < 52 Ω

Source: https://www.pcb.com/products?m=130a24

3.2.6. Encoder Position

Another important source of information on the project is the Encoder positions

of the machine. The actual position can present information about the speed, and

positioning errors presented in the process. It is also a good source of information for

filtering out the air-cut time of the path plan, i.e., the time when the machine is moving,

but not cutting material.

The machine tool position encoders will be used in order to gather the axes

positions. The signals are obtained by using a signal splitter on the encoder cables

plugged on the machine PLCs. The DMG machine has an LC483 absolute positioning

encoder. The acquisition system will record information from the 3 orthogonal axes and

the spindle. See Figure 24 and Table 8.

Figure 24 – Heidenhain LC483 encoder.

Source: https://www.heidenhain.de/de_EN/products/linear-encoders/sealed-linear-encoders/for-
numerically-controlled-machine-tools/lc-400-series/

52

Table 8 - Heidenhain LC483 encoder technical information.

Heidenhain LC483 linear Encoder

Component Description Unit

Calculation time ≤ 5 μs

Encoder accuracy ±5 μm

Encoder measuring step 100 nm

Source: https://www.heidenhain.de/de_EN/products/linear-encoders/sealed-linear-encoders/for-
numerically-controlled-machine-tools/lc-400-series/

3.3. Fraunhofer V-Box

The V-Box is a DAQ developed by Fraunhofer for high frequency data

acquisition. It is aimed to provide support for the usage of multiple sensors. Although,

until the realization of this project, this hardware did not have a stable Client software.

Therefore, the acquisition software for V-Box was also developed in this project as it

will be reported in Chapter 4.

The V-BOX (Figure 25) has 10 voltage analog inputs. From those, 8 channels

are tuned for 80kHz while 2 channels for high speed data acquisition up to 5MHz. This

last – called High Speed Analog Input (AIHS) – records data by using an integrated

FFT hardware followed by an Analog-Digital converter. On this way, the data provided

from this channel is encrypted in a 32 bits integer where the first 16 bits represent the

amplitude and the last 16 bits represent the frequency coefficient.

Figure 25 – Fraunhofer V-Box.

Source: https://www.ipt.fraunhofer.de/de/kompetenzen/Produktionsmaschinen/praezisionstechnik-
und-kunststoffreplikation/vbox.html

53

So, data coming from the sensor feeds the FFT units, which will present on its

output the analog band amplitude of the signal. This amplitude bus is then converted

and encrypted with its corresponding band as explained above. After that, an algorithm

loops through this new generated values and sends them to the network sequentially

at 100kHz. See Figure 26.

Figure 26 – High speed data processing representation on V-BOX.

3.4. Tool Wear Measurement

As explained in [31], the flank wear is one of the most appropriate wear types

to indicate the actual state of the tool. Firstly, because it presents a gradual progress

along the usage of the milling tool. Secondly because other types of wear like crater

and chipping can be understood as consequences of flank wear progress under normal

cutting conditions. In other words, crater and chipping happen on the tool only after the

cutter edge achieves an advanced level of deterioration.

Therefore, the flank wear measurement will be adopted in order to assess the

actual condition of the milling tool. The procedure adopted observes the wear surface

length on the edge of the tool parallel to the cutting surface. See Figure 27. The main

reason for such choice resides on the fact that it is possible to determine precisely the

measurement positions and edge loss when accessing the parallel view of the surface.

Furthermore, the external surface of the tool has extra marks which helps the

measurement procedure once the tool edge starts to lose material.

54

Figure 27 – Different perspectives for accessing the flank wear surface.

For labeling the data, tool flank wear was measured using Keyence VHX-500F

electronic microscope. As it will be presented in section 3.6, the employed tool has an

helicoidal geometry (see Figure 28). Therefore, the procedure involves some additional

steps in order to determine the measurement position.

Figure 28 – Tool on microscope and measurement positions.

On each tooth, 3 measurement points are accessed: the first one close to the

tool tip (called Head or H), approximately 0,6mm from the visible tooth tip; the second

at a distance of 3mm from the tip (Middle or M); and the third at 6mm (Base or B). See

Figure 28. On this way, if a tool has 3 tooth, the flank wear is measured in 9 points at

total. As the literature recommends, the adopted tool wear is the maximum value from

those 9 measurement points.

For determining the two last positions, a pachymeter is used in order to

measure the distance from the tool tip to the stablished measurement points (See

55

Figure 29). This step guarantees that the flank wear will always be accessed on the

same position of the tool during all its lifetime.

Figure 29 – Pachymeter method for finding measurement position.

At last, the flank wear is measured by looking at the worn surface length.

Another important element is the light reflection on the measurement point. Every time

when accessing the required position, the light emitted from the microscope must

reflect besides the referred position. This adjustment has the purpose of fixing the tool

angle for all measurements, once a different angles can distort the worn surface length.

See Figure 30.

To validate the described procedure, 5 test measurements were carried out in

a trashed 3 teeth helicoidal tool similar to the ones used on this project. Table 9 shows

the resulting measurement values and metrics.

Figure 30 – Flank wear measurement and light positioning.

56

Table 9 –Flank Wear Test Measurement Results (in 𝜇𝑚).

Meas. Nr. T1B T2B T3B T1M T2M T3M T1H T2H T3H Max

1 86 149 105 78 114 119 62 127 121 149

2 81 124 88 80 130 110 77 137 149 149

3 84 110 92 73 120 132 66 113 135 135

4 98 96 87 78 134 122 89 139 139 139

5 85 102 89 63 143 123 67 140 126 143

Mean 86.8 116.2 92.2 74.4 128.2 121.2 72.2 131.2 134 143

Std. Dev. 5.84 18.89 6.62 6.15 10.24 7.08 9.74 10.21 9.84 5.51

The estimated measurement deviation is ±6μm. Given the maximum allowable

flank wear as VB=110μm, the error corresponds to 5,46% of the tool wear range. From

now on, this value will be adopted as the standard error for the described measurement

procedure.

3.5. Hardware Setup

Once all sensors cannot be processed by a single unit due to hardware

property limitations – different signal transmission, proprietary architectures – the

sensors will be handled by 3 different data frameworks. These frameworks will run in

parallel and time synchronization will be handled afterwards. Once the goal of this

project is to analyze each signal separately, the time synchronization does not

represent a problem.

Therefore, Spike hardware and software solutions will record the force signals

gathered by the tool holder. The Power Monitor signals will be processed using a Twin-

Cat client software. The remaining sensor signals will be handled using 2 V-Boxes,

once only one device cannot stand all data flow in the required frequency.

Figure 31 shows the complete hardware setup for the experiments. Table 10

lists the connection to each V-Box, once they cannot be distinguished on Figure 31. In

order to acquire all relevant information generated by the listed sensors, the AE signals

will be recorded using the high speed channels of the V-Box. The configuration chosen

records data up to 500kHz. The remaining sensors are recorded at 50kHz.

57

Figure 31 – Complete Hardware setup of the experiment.

Table 10 – Sensors connected to the V-Boxes.

Source Amplifier Destination

AE-Spindle DCPL2 + AEP5H (Vallen) AIHS1-VBOX1

AE-Workpiece DCPL2 + AEP5H (Vallen) AIHS1-VBOX2

Accelerometer X 482C (Piezotronics) AI1-VBOX1

Accelerometer Y 482C (Piezotronics) AI2-VBOX1

Accelerometer Z 482C (Piezotronics) AI3-VBOX1

Microphone 482C (Piezotronics) AI4-VBOX1

Encoder X Enc1-VBOX1

Encoder Y Enc2-VBOX1

Encoder Z Enc3-VBOX1

Encoder Spindle Enc4-VBOX1

3.6. Process Setup

Once the hardware configuration for the experiments is set up, it is necessary

to define the process characteristics of the experiments. The mechanical aspects of

this project will be handled in a similar way as presented in [32].

In [32], a simpler hardware and software layout was used for the milling

experiments. The main goal was to create a dataset for future studying the tool flank

wear phenomena. So, the project was focused on studying the mechanical properties

58

of the tool wear in order to determine the best process parameters for a plane overview

of the phenomena.

Therefore, the project provides valuable information about the CNC parameter

determination, path planning and material used to approach the problem. Serving as a

reference guide for the experiment plan performed on this work.

The tool chosen for the experiments is the Pro-Steel solid carbide roughing

end mill HPC 8mm. Further information about the tool is presented in Table 11. The

tool has 3 teeth and it is designed for rough or finishing milling using high spindle

speed. The workpiece block is a steel plastic mold 40CrMnNiMo8-6-4.

Table 11 – Solid Carbide HPC 8mm tool technical description.

Tool Description

Name Pro-Steel solid carbide roughing end mill

Article Nr. 2024148

Cutter Diameter 8mm

Cutting Length 19mm

Overall Length 63mm

Number of Teeth 3

The path planning consists of successive groove making. The cutting width

used is 5mm and the cutting depth is 8mm as recommended by the tool manufacturer.

Considering the workpiece size, 20 grooves can be produced in each depth level (see

Figure 32). After milling 2 complete levels – 40 grooves – the tool is taken to the

microscope for the measurement of the flank wear (VB) according to the procedure

described in section 3.4.

In order to determine the optimum process parameters, [32] performed a

battery of trial experiments. Starting from the recommended parameters, those tests

consisted in completely use a tool in order to determine the flank wear curve for the

tested configuration. Then, the parameters were tune until a good combination for tool

wear progress was found. The trial tests performed for the referred tool are presented

in Table 12.

59

Figure 32 – Superior view of the process path planning.

Table 12 – Trial Experiments for process parameter determination.

Trial Nr.

Spindle

speed

[1/min]

Feed rate

[mm/min]

Cutting

width[mm]

Cutting

depth[mm]

Life time

[s]

VB [𝝁𝒎]

(flank

wear)

1 7440 1300 6 8 185 Broken

2 7440 1160 6 8 83 Broken

3 7440 1160 5 8 >3818 96

4 6760 1160 4 8 >7055 90

Source: [32]

Based in the trial experiments presented in Table 12, the experiment plan will

consist of using 4 tools and 2 different parameter combinations. The process

parameter plan for the experiments is shown in Table 13.

Table 13 – Experiment Plan.

Ex. ID
Spindle speed

[1/min]

Feed rate

[mm/min]

Cutting

width[mm]

Cutting

depth[mm]
𝑽𝑩𝒎𝒂𝒙[𝝁𝒎]

11 6760 1160 5 8 110

12 6760 1160 5 8 110

21 7440 1160 5 8 110

22 7440 1160 5 8 110

60

61

4. ACQUISITION SYSTEM PROGRAMMING

For recording data coming from the sensor system listed in Chapter 3, an

acquisition system must be programmed. Once Fraunhofer V-Box, the Beckhoff Twin-

cat and Spike communicate using different architectures, the approach consists in

running those 3 acquisition modules in parallel.

The main element of this system is the Tama Client – as named by the author.

This system is responsible for communicating and storing the signals coming from the

Fraunhofer V-Box. Once most of the sensors are connected to the V-Box, this device

has higher priority for the reported experiment plan.

On the following sub-chapters it will be explained the project and

implementation of the Tama Client system using C# programming language. The

remaining modules required for the experiments were programmed by other team

members. So they will not be reported in the scope of this document.

4.1. Trialink Network

Tama Client is a Software Solution to perform data acquisition on Trialink

Networks. Even though it was initially projected to connect to Fraunhofer V-BOX, the

system is able to connect and acquire real-time data from any device which can

communicate via the Trialink Network schema [33].

Once the client software does not know the devices connected to the network

beforehand, the client software must be able to identify the device configuration of the

accessed network automatically. On this way, the operation avoids reprogramming the

software every time a new set of components must be accessed.

As explained in [33] the Trialink network is a ring network designed for real

time communication (see Figure 33). It is mainly used for synchronizing operation

between drives like axis motion control units in a CNC machine. Therefore, the protocol

is extensively used in order to program software systems for metal cutting machines

mainly in high precision field.

62

Figure 33 - Example of Trialink network with 5 devices connected.

All the devices on this type of network have 2 Ethernet entries: a link-in, and a

link-out. Therefore, the link-out of a device k is connected to the link-in of the device

k+1, the link-out of device k+1 to the link-in of device k+2, and so on. Until the last

device is reached, which is connected to the link-in of the first device closing the ring.

Once all messages have time constraints to reach their destination, it is

impossible to prevent data loss. Therefore, there are situations when overloads on the

communication flow of data bottlenecks the system causing Queue Overflows, or

simply communication timeouts on the network.

Each device on the ring behaves like a station node, receiving and sending

data as requested. Internally, the hierarchy of a device is organized in a tree

perspective, where the root node corresponds to the device and all the leaf nodes

correspond to readable/writable registers. The structure on the middle of this tree is

strongly dependent on the type of device and cannot be determined beforehand.

For example, a DAQ system like V-Box will have an internal tree consisting of

Analog-Inputs, Encoders, etc. and under each node, the exact number of inputs or

outputs the DAQ offers. On the other hand, a Motor Drive for Motion control will

possess a node which points to Writable controller parameters, and other register

providing the readable position, speed, acceleration, positioning error, etc.

Each readable register inside this tree can be acquired using a

Subscription/Publisher schema, which is used on the Tama Client system in order to

63

acquire data from the devices. All the Subscription Mechanism is abstracted to the

user and implemented internally on the client module.

So, once the system connects to the Trialink Network, it requests all the

devices on the link for their respective Register Tree, listing all the readable registers

of the system. On the GUI, the devices are also organized in a tree perspective, so the

user must have a basic knowledge about the internal structure of the target devices in

order to select the right registers for the acquisition.

4.2. System Requirements and Software Project

In order to assist the software implementation, a software project was

developed. At first, a document specifying the functionalities of the software was

produced. This document includes functional and not-functional requirements. The

purpose of this first step was to develop a guideline to further planning of the class

diagram to be implemented in the Tama Client software. The document can be seen

in Appendix A.

Based on this document, a class diagram was developed. The resulting project

paid attention to fulfill all mandatory functionalities while preserving important

properties like:

• Modularity: the tasks on the project were distributed between classes

with specific functionalities. So, for instance, if a change in how the

module saves data is required, only a specific region of the code must

be edited;

• Scalability: The software ensures high performance in simple and

complex tasks, allowing a fast way of programming improvements or

new functionalities;

• Robustness: the project controls a wide variety of possible problems

which can happen during operation. Therefore, it possesses protective

mechanisms to assure resilience and minimize losses while keeping the

operation active.

Figure 34 shows the resulting class diagram of the Tama Client. The attributes

and methods were ignored in order to make the diagram visualization clear. A more

detailed explanation about its components, interface appearance and implementation

steps can be accessed in Appendix B.

64

Figure 34 - Class Diagram for Tama Client Software.

4.3. Implementation

This sub-chapter will explain some of the functionalities of the software. The

overall software implementation was initially separated in steps, and coded partially.

Starting from the Main package.

The module is projected to acquire in the maximum frequency of the V-BOX,

which is 100kHz. Therefore, if the quantity of registers is too big, the network cannot

stand all incoming flow of data. In order to avoid this problem, the system was

implemented to support multiple acquisition sampling rates.

By doing so, high frequency sensors can be processed on maximum frequency

while sensors with lower dynamic will be recorded using smaller frequency rates. This

approach releases the network flow of data, minimizing the chances of data loss during

acquisition.

Therefore, the back-end and front-end were programmed to stand multiple

acquisition. Although each acquisition has a different sampling rate, all register data is

synchronized using the same reference timestamp system.

Once the communication on the networks follows a real time standard, the

processes (threads) on the Tama Client have short time constraint to process the data.

65

The system was implemented in order to maintain the minimum amount of buffered

values possible.

This is another reason why the network readers and file writers work in parallel.

On the same meaning, the system has a different data processing unit – readers and

writers, also called data pipeline – working independently for each register recorded.

In order to accomplish the task of minimum data type conversion (NF5.2 in

Appendix A), the pipeline was kept generic. On this way, each register is processed

using the specific variable type which comes from the ring network. Figure 35 presents

a representation of the data pipeline.

Figure 35 – Representation of data processed in the pipeline.

In order to synchronize the start, stop and normal operation, all the threaded

instances possess state machines. The function of the state machines is to: provide a

status control mechanism; ease data exchange between different threads; synchronize

the timestamp on the beginning and end of acquisition file; and provide information to

the GUI.

Another important task of the state machines is to provide status information

to the Controller (NF5.3 on Appendix A). So during operation, the controller accesses

all threaded instances and check if the system is running without problems. In the

cases when some failure happens, the Controller is notified. After that, the Controller

thread forces all machine states to go to failure state, preventing overflows and

minimizing information loss. When possible, the Controller tries to restart the

acquisition.

For saving the data, Tama Client uses the Deflate Stream C# library. Therefore

all files are saved in zip format. Each zip file contains an array for one register. In order

66

to identify the files, an XML header file is generated detailing the information saved in

each deflate file.

However, those files cannot be read immediately after saved as requested by

F9 (Appendix A). In order to fulfill this functionality, after a file is closed, the Tama Client

invokes a process to convert all zip files to one HDF file [34]. This process runs

independently from the acquisition and does not damage the software performance.

After the conversion is finished, the file can be accessed and read normally using – for

instance – HDF Viewer software.

This approach was chosen mainly because the C# library for HDF is unstable.

In past versions of the Trialink client software, the system suffered frequent crashes

due to lack of performance of the referred library. Dealing with deflate stream in runtime

proved to be more efficient in comparison with directly persisting data using HDF

format.

4.4. Performance

As a result, the software can achieve all listed requirements when performing

acquisition on the ring network. A wide battery of tests was employed in order to prove

the performance of the software, which fulfilled the stablished functionalities listed in

Appendix A. Those tests will not be reported since they are not the aim of the incurrent

document.

On Figure 36, it is shown the memory and process resource consumption of

the Tama Client performing an acquisition on 9 registers at a frequency of 100kHz. It

can be noticed that the number of data enqueued is fewer when compared to the old

version of the software. This result was achieved by the parallel pipeline procedure to

process each register on the acquisition.

By using multiple sampling rates, it was possible to increase the number of

registers gathered in the acquisition. Figure 37 shows an acquisition file with 13

registers gathered from 2 V-Boxes using the Tama Client. By decreasing the sampling

rate it is possible to increase even more the number of registers selected.

67

Figure 36 – PC resource consumption in old and new version of the Client.

Figure 37 – HDF file generated by Tama Client with 13 registers.

68

69

5. DATA PRE-PROCESSING

This section is destined to explain the data information extraction from the

acquisition files. The experiments were performed such that each file contains

information about the material removed from one level of the workpiece, summing 20

grooves per file. See Figure 38. After 2 complete levels of material were removed, the

tool was taken to the microscope for the flank wear measurement.

Figure 38 – Representation of grooves and levels machined on the experiments.

Therefore, the pre-processing module is responsible for extracting information

gathered from the signals recorded during acquisition, as well as extracting information

about the flank wear measurements performed in the microscope in order to label the

data.

On Figure 39 it is presented the sequence of operations performed in the pre-

processing module in order to extract information from the acquisition signals and flank

wear (VB) measurement files. The result of the module is the datasets which will be

used for training the prediction models in the next step of the project.

Besides that, the algorithm processes information from each signal separately.

Therefore, the procedure shown in Figure 39 is repeated for each of the signals

gathered on the experiments.

At first, the algorithm analyzes the flank wear measurement files for one tool.

Then, from the flank wear measurement points acquired along the usage of the tool,

70

the algorithm can estimate the flank wear curve for the referred tool. In order to do so,

a polynomial interpolation is employed.

Figure 39 – Graph of operation sequence for data pre-processing.

After this step, the target signals are read from the acquisition files in order to

extract the input array for the dataset. As previously mentioned, each dataset contains

one sensor signal as inputs, and all signals are extracted using FFT. Therefore, the

algorithm must extract the FFT coefficients from AE-signals – once these signals are

recorded using the fast acquisition mechanism of V-Box – or calculate the FFT for the

remaining signals.

On the following step, the air-cut process time is removed using a combination

of two methods. The signal intensity and encoder positions are analyzed. The signal

interval gathered when the machine tool is far from the workpiece is then deleted, as

well as the intervals when the energy of the signal is below the threshold – which

means the tool was not cutting material.

From the resulting spectrogram containing the sensor signal for one tool, the

system combines the interpolated tool wear curve. On this way, there will be one label

value – VB calculated from the interpolation – for each time instant of the extracted

signal.

This procedure is repeated for the 4 tools, resulting in one dataset for the

referred signal. Furthermore, the procedure is repeated for each one of the recorded

signals: AE, vibration and microphone. So, the process results in multiple datasets,

each one containing the input vector extracted from one of the sensor signals gathered

in the experiments.

71

On the next sub-chapters, the implementation of each one of the transcribed

steps of the pre-processing will be explained in details. The last sub-chapter presents

an overview of results achieved in this step of the project.

5.1. Flank Wear Measurement and Extraction

As explained in section 3.4, the measurement procedure chosen for the project

assesses 3 different regions of the tool for each tooth of the tool. Resulting 9

measurement points.

By performing the experiments, it is possible to confirm the pattern reported by

[31] for the flank wear development. On early stages – until 50µm – the wear increases

rapidly due to material loss on the top of the tool. After this stage, the curve stabilizes,

and the flank wear develops gradually until it reaches around 70µm. On this stage, the

tool starts to present chipping, and therefore, the surface starts to present faster

degradation.

When VB passes 80µm, the tool starts losing material on the edge, chipping

and crater wear phenomena is intensified. As a result, the wear develops fast again. It

is possible to notice an increase in the noise produced by the process and machine

loses efficiency. See Figure 40.

Figure 40 – Flank wear curve and presentation of different stages of tool wear.

72

The losses presented by the tool on the last stages of its use increase the

difficulty of measuring the wear. As presented in Figure 40, when the tool edge is

heavily deteriorated mainly by chipping, the edge lines used as reference for the worn

surface assessment are lost. Excepting the region close to the tool tip, this damages

the reliability of the measured values once the guide-line is not visible anymore.

To overcome this problem, not only additional lights but also other reference

mechanisms are used to try capturing the right values for the entity. The commonly

used method consists in observing the chamfer localized 1mm from the tool edge when

the tool is new, so the lost edge can then still be indirectly accessed.

Figure 41 present the tool flank wear curves of the 4 tools. During the lifespan

of the tool it is possible to notice 3 distinct regions. At the beginning of curve the wear

develops very fast until it reaches approximately 50µm. After this point, there is a region

presenting a gradual progress until the VB reaches 80µm. After this point, the effects

previously described are responsible for speeding up the deterioration of the tool.

Figure 41 – Flank wear curves of the gathered experiments.

The first step performed by the pre-processing module is to obtain the flank

wear curve of each tool. As previously described, from the 9 measurement points

performed in each measurement procedure, the chosen value is the maximum

0

20

40

60

80

100

120

140

160

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600

V
B

(µ
m

)

Grooves Produced

ID11

ID12

ID21

ID22

73

between those. Therefore, the first step is to read and calculate the maximum flank

wear from the 9 measured values. The complete algorithm for the flank wear extraction

is presented in Figure 42.

Figure 42 – Algorithm for flank wear extraction.

As previously mentioned, there are 40 grooves produced between each

microscope measurement. However, the output dataset must contain VB values for all

operation time of the tool. Therefore, processing the tool wear measurements requires

an interpolation method for the VB curve. The usual procedure is to use a “holder”

approach, i.e., the variable is maintained constant between each 2 measurement

points.

The approach chosen for this project uses a polynomial interpolation to

generate a smooth curve for the tool wear progress. Such technique, which produces

a smooth curve during the tool lifetime is a closer representation of the physical

phenomena. Furthermore, the interpolation helps filtering errors inserted by the

microscope measurement procedure.

Based on the typical behavior of the wear curve – rapid increase, gradual

increase and finally rapid increase – an odd degree must be chosen for the polynomial

74

function. Since the 1st degree interpolation does not capture the required smooth

behavior, the 3rd degree was employed, however the resulting curve did not

approximate to all measurement points. On this way, the pre-processing program uses

a 5th degree polynomial. Figure 43 presents the polynomial regression for Tool 1 and

3 respectively. The polynomial results are presented in Table 14.

Figure 43 – Polynomial Interpolation on flank wear for tool 1 and 3 respectively.

Table 14 – Polynomial interpolation results.

Interpolation Results

Tool ID
coefficients: 𝑽𝑩 = 𝒂𝟏𝒙𝟓 + 𝒂𝟐𝒙𝟒 + 𝒂𝟑𝒙𝟑 + 𝒂𝟒𝒙𝟐 + 𝒂𝟓𝒙 + 𝒂𝟔 Mean Squared

Residual [µm²] 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

1 11 1.598 ∙ 10−11 −2.63 ∙ 10−8 2.164 ∙ 10−5 −0.00492 0.793 2.113 6,55

2 12 3.296 ∙ 10−11 −4.409 ∙ 10−8 2.165 ∙ 10−5 −0.00498 0.736 −1.594 13,09

3 21 2.712 ∙ 10−11 −3.388 ∙ 10−8 1,64 ∙ 10−5 −0.00402 0.679 1.036 12,83

4 22 3.562 ∙ 10−11 −5.187 ∙ 10−8 3.032 ∙ 10−5 −0.00836 1.159 −1.373 7,98

5.2. Sensor Data Extraction

After this step, as previously described, the sensor signal must be extracted.

When reading the AE-signal, which is already recorded using FFT units, the algorithm

needs to separate frequency from amplitude on the encrypted values sent by V-Box.

The complete algorithm for signal extraction is described in Figure 44.

75

Figure 44 – Algorithm for data Reading and FFT extraction.

The AE-signal acquired using the V-Box fast acquisition channels records 100

coefficients of the raw signal. Each encrypted value has 16 bits corresponding to the

frequency and 16 bits corresponding to the amplitude. The frequency band for

recording the AE signal is 0 < 𝑓𝑟𝑒𝑞 < 500𝑘𝐻𝑧. Therefore, the spectrogram for such

signal is extracted by using Boolean operations over the encrypted values. From the

100 recorded coefficients, no emission was recorded on the higher frequency band

(𝑓𝑟𝑒𝑞 > 320𝑘𝐻𝑧), i.e., the values were zero. Therefore, all coefficients above 64th

position were deleted from the dataset.

On the other hand, the spectrograms from the accelerometer and microphone

must be calculated since those variables are recorded as time-series arrays. This

procedure is performed by using a discrete Fourier Transform recursively on the time-

series data. Figure 45 presents the algorithm for the computation of the FFT on the

time-series arrays. Figure 46 shows a representation of the parameters used for

computing the FFTs.

The raw signals were acquired at a frequency of 50kHz. The window size for

the FFT chosen is 1024 samples (20,48ms). Between each computed harmonics,

there are 500 values (10ms). Therefore, the resulting spectrogram possesses 50

76

coefficient values on the frequency band 0 < 𝑓𝑟𝑒𝑞 < 25𝑘𝐻𝑧 sampled at a frequency of

100Hz.

Figure 45 - Algorithm for computing the FFT on time sires arrays.

Figure 46 – Representation of the parameters used to calculate the FFTs.

Using the maximum speed of the Trialink network (100kHz), the V-Box

hardware FFT unit provided one complete spectrum each 1ms (1kHz). Figure 47

presents the signal gathered from the EA-sensor on the workpiece clamp. Figure 48

presents the signal gathered from the EA-sensor on the spindle body. On the figures,

it can be observed when 5 complete grooves are removed by the tool.

77

Figure 47 – Sample data gathered from AE workpiece sensor.

Figure 48 – Sample data gathered from AE spindle sensor.

In both spectrums the signal captured around 5kHz has the strongest emission

among the spectrogram bands. Such behavior is observed in all stages of the

experiment.

Another aspect to observe is the difference in the signal dynamics when the

tool is machining, or it is in air-cut. See Figure 49. As expected, the AE captured in air-

cut presents a weaker intensity for the sensor installed in the workpiece clamp. Unlike

78

the first, but still distinguishable, the emission found in AE-signal from the spindle body

is stronger when air-cutting. Such behavior suggests the spindle has stronger vibration

when out of process.

Figure 49 – AE-signal workpiece, air-cut visualization.

The accelerometer data presents a similar but clearer difference in the 2

different stages of the process (Figure 50). Considering that the spindle speed on all

experiments is 6760 𝑚𝑖𝑛−1, the emissions captured by the sensor are related to the

natural frequency of the spindle during air-cut. Once the cutters start removing material

from the workpiece, the peak frequency rapidly switches to the process frequency,

figured around 25kHz.

Figure 50 – Accelerometer sample data (X axis).

79

Figure 51 shows two spectrums from the beginning and end of a tool life. As

reported in the literature, a worn tool vibrates in higher frequencies when compared to

a fresh one. On a fresh tool, the signal presented higher intensity around 17kHz,

changing to 25kHz when the tool is worn. On the other hand, not significant changes

were observed in the amplitude.

Figure 51 – Vibration X: samples of a fresh and worn tool.

Finally, on the microphone data, the regions of process and air-cut are also

visible. However, differences between signal and noise are weaker when compared to

other sensor data presented above. See Figure 52.

Figure 52 – Microphone sample data.

80

5.3. Air-Cut Removal and Dataset Persistence

Before the dataset is ready for the prediction module, 2 additional steps must

be performed. The algorithm for this steps is presented in Figure 53.

Figure 53 – Algorithm for air-cut and persistency step.

Firstly, the air-cut time interval must be removed from the spectrogram. This is

done in 2 steps:

• The encoder positions are checked, and the time interval of the

spectrogram acquired when the machine is far away from the workpiece

is removed;

• The module sums up the frequency coefficients which present higher

distinction between in and out of process. From the resulting array of

sums, a threshold criteria is used in order to identify and remove air-cut.

See Figure 54.

81

Figure 54 – Sum of spectrum amplitudes for one acquisition file.

The result of such operation is the clean spectrogram, containing only

information gathered on the cutting process for all 4 tools. This spectrogram, will be

used in order to generate the inputs for the further prediction models.

The last operation is to create an additional array, which will contain the labels

of the datasets. For this purpose, the 4 interpolated flank wear curves are included in

an array of the same size as the spectrogram. Once the algorithm knows how many

grooves were removed, it can find the corresponding VB values on the interpolated

curve. See Figure 55.

5.1. Pre-Processing Results

The experiments gathered from the 4 tools resulted in 5,71 hours of data,

summing 4,52 hours of active operation (tool cutting material). Then, the raw

acquisition files contain approximately 28,3 GB. From which, Around 7 workpieces

were used in the process.

82

The module saved two datasets for the vibration sensor. On the first one, the

axes amplitudes were summed up, resulting in 50 coefficients containing the summed

amplitudes for the three axes of the sensor – X, Y and Z. On the second one, the axes

were appended, resulting in a 150 coefficients. Both datasets will be used for the

training step. The resulting datasets are shown in Table 15.

Figure 55 – Representation of the air-cut removal and dataset persistency.

Table 15 – List of resulting datasets.

Pre-Processing Datasets

Name Sensor Columns (frequency

coefficients)

vib_sum Accelerometer (axes summed) 50

vib_x3 Accelerometer (axes appended) 150

mic Microphone 50

ae_workpiece AE (sensor on workpiece clamp) 64

ae_spindle AE (sensor on spindle body) 64

83

84

6. Prediction Models

The last step for the tool flank wear prediction system involves the project and

implementation of the prediction module. This module has the goal of creating and

training the prediction models based on the datasets obtained on the pre-processing

step. Therefore, The target prediction models must be able to interpret the FFT

spectrograms presented by the sensor and infer the actual state of the tool wear.

Based on those characteristics, the prediction module will train 3 different

network architectures for the spectrogram interpretation task. See Figure 56. For

comparison reasons, the first chosen architecture for the prediction model are the

ANNs, due to its popular use on tool wear prediction [3]. For the second approach, the

technique chosen is aimed to select appropriate features from the spectrogram which

represent the most deterministic information about the signal. Therefore, in order to

select this feature and consequently discard the less relevant regions of the

spectrogram, the second architecture uses a combination of auto-encoders for feature

selection followed by an ANN responsible for predicting the flank wear values.

Figure 56 – Representation of some DL techniques for supervised learning.

The last approach chosen for solving the problem consider the tool wear

prediction as a sequence of indicators or events presented by the spectrogram

regarding the signal behavior. Therefore, the prediction models should possess some

long-term memory structure in order to identify such indicators and infer the tool

condition. Therefore, the model should be able to memorize features found in the

85

spectrogram in such a way that these features can help determining the state of the

tool. So, the last approach uses an LSTM for classification and regression.

6.1. Training Algorithm

The tasks entrusted to the prediction model are: read the pre-processed

dataset and prepare the data for training and evaluation; select, build and initialize the

prediction model (architecture); and train/evaluate the model according to the dataset.

Figure 57 shows the algorithm for training one prediction model. Initially, the

system loads and reads the dataset, then split the dataset into train and test-set. 10%

of the dataset is selected for the test-set.

The training loop comes right after this step. It is important to remind that the

pre-processing step does not save each input on the datasets. It saves one big array

containing the information of the entire dataset. So, in order to fit the model, the inputs

and targets are generated in runtime.

This approach was chosen so it is possible to perform data augmentation

between each training epoch, as it will be explained afterwards.

Figure 57 – Algorithm for the Prediction Module.

86

6.1.1. Training Weights

As described in section 5.2, the flank wear develops faster in the beginning

and end of the tool life. Therefore, those regions have fewer samples when compared

to the rest of the dataset.

Consequently, when training the prediction models, the algorithm tends to give

higher priority on learning the regions with bigger number of samples. This behavior

logically presents a better overall accuracy, firstly by the higher portion of explained

data, and secondly by the fact that the networks will know those regions better once

they have been presented with more samples.

However, those points are particularly important to the aim of the project.

Mainly when considering the highest flank-wear samples, there is a higher demand for

accuracy once the predictions will determine if the tool has to be replaced.

In order to overcome the problem, one solution is to improve the priority of

those regions on the train-set. This is the goal of the weight array on the module. When

programmed to, the algorithm creates an additional array of weights. All weights are

set to 0,05, excepting the ones which 30 > 𝑉𝐵 > 100, receiving 1 instead. On this way,

data located on this region will compute 20 times higher loss values, forcing the

gradient to move towards the direction of a better performance for this samples.

6.1.2. Data Augmentation and Input Slicing

It is important to remind that the pre-processing module saves data for the

training as one spectrogram containing all inputs concatenated – all processing time

of the 4 used tools – and one array of labels. So the chosen dataset must be sliced in

order to generate data for the training step.

The first important method for model training optimization performed by the

algorithm is data augmentation. It consists of performing small changes in the input

vectors in order to raise dataset variability.

This method is popular in image classification problems, where the algorithms

must interpret data on matrixes of pixels presented. Augmentation in such case

perform rotation and inclination of the images, changing bright and color of the inputs

[38]. See Figure 58.

87

Figure 58 – Example of augmentation on image classification.

Source: [38]

This process guarantees the network will always receive different inputs on

each epoch. Helping the algorithm to attenuate overfit or underfit. Figure 59 list the

main methods for image augmentation recently reported in the literature.

Figure 59 – Augmentation methods for image classification problems.

Source: [38]

Considering the nature of the problem studied in this project, the spectrograms

cannot be augmented using the standard approaches for image classification.

However, the method developed is somewhat similar to a traditional transformation.

The procedure consists of – after each epoch – sliding the input limits on a random

number of timesteps.

So, before generating the model input values used in the current training

epoch, a random interval of the data is deleted from the beginning of the training

spectrogram. After this step, the dataset is sliced according to the programmed number

of timesteps. See Figure 60.

88

Figure 60 – Augmentation algorithm representation.

When generating the input vectors, the data reader looks firstly at the original

dataset array. Once it is known that one training pair consists of one spectrogram –

small slice of original spectrogram containing (for instance) 10ms of data – and one

flank wear value, after “deleting” the first 3ms of data, each input will receive a small

portion of what would be part of the next input.

To better explain the data slicing procedure. The number of timesteps is

considered as a programmable parameter, and it can therefore be ordinarily changed.

So, changing the number of timesteps changes the input size, which consequently

changes the amount of data received by the model. See Figure 61. This value must be

accurately tuned so that neither the network will receive too few information and

therefore it will not be able to learn the signal relation to the labels resulting in

underfitting, nor it will have too much information resulting in overfitting.

In order to perform such changes on the dataset, the batches generated for

training are produced by the algorithm at runtime. Therefore, between each epoch, the

augmentation is re-applied and the spectrogram is re-sliced. As a result, the procedure

provides always a different set of inputs to the network, using the same source data.

The label and (when using) weight for each input are obtained from the values sampled

in the middle of each spectrogram input as shown in Figure 60.

89

Figure 61 – Different timesteps used for slicing the input spectrogram.

Another optimization method used in the project is the Dropouts. In this

method, a random portion of the neuron connections on some layers of the NN are set

to zero. The motivation for this method is the same as the proposed left-shifting

augmentation: the small variations provoked by dropping values push the training

algorithm to find critical properties on the data instead of memorizing inputs,

attenuating the overfit effect. Each NN architecture performs dropouts on a different

way. Therefore, such configuration is customized for each architecture.

6.1.3. Losses and Metrics

Regarding the prediction model training, it is important to explain the usage of

loss and metric functions. On the training algorithm, the loss function is used in the

forward step of the back-propagation algorithm in order to generate the error signal of

the predicted value in comparison with the ground true value as also seen in Equation

2 and 4. The value generated by this loss function will be back-propagated in order to

calculate the gradient values and apply the corrections on the weights of the network.

Therefore, selecting the right loss function is critical for the performance of the

training algorithm. So, 2 functions were used as loss functions on the prediction

module. The mean squared error (MSE) for the regression models. And categorical

cross entropy for the classification approach. This last is transcribed in Equation 6.

90

𝐿𝑐𝑐𝑒(𝑦, 𝑦̅) = −∑∑(𝑦𝑖𝑗⁡. log(𝑦̅𝑖𝑗))⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6)

𝑁

𝑖=0

𝑀

𝑗=0

So, categorical cross-entropy will compare the distribution of the predictions

with the true distribution, where the probability of the true class is set to 1 and 0 for the

other classes. In other words, as closest the algorithm gets to the binary hot code of

the label, smaller will be the loss.

The accuracy metric function is a function which aims to measure the accuracy

of the model. The main difference between the accuracy metric and the loss function

is that the accuracy not necessarily needs to be related to the error function. Therefore,

it can be a percentage measure of the explained data as it is the accuracy measure.

For the regression algorithm, the MSE is also used as metric function.

Excepting for the auto-encoder training, where the accuracy function was employed.

The mentioned accuracy measures the deviation to the true value. See Equation 7.

𝑀𝑎𝑐𝑐(𝑦, 𝑦̅) =
1

𝑁
∑

√(𝑦𝑖 −⁡ 𝑦̅𝑖)²

𝑦𝑖 + 𝜖

𝑁

𝑖=0

⁡⁡(7)

For the classification algorithm, the categorical accuracy function was

employed. So, again considering the outputs of a classification network and labels as

binary hot codes. The accuracy is calculated as shown in equation (8).

𝑀𝑐𝑎𝑐(𝑦, 𝑦̅) = 1⁡𝑖𝑓 (arg𝑚𝑎𝑥(𝑦) = arg𝑚𝑎𝑥(𝑦̅))⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8)

So, this measure considers the maximum value between the prediction outputs

as the chosen class for the example, and compares this class to the label, returning

100% if they match, or 0% otherwise. When evaluating a batch, the metric will return

the percentage corresponding to the amount of data correctly predicted by the model.

The loss and metric functions calculate an error or accuracy value for a given

dataset. However, when evaluating the dataset after the training step, it may be useful

to have a tool in order to measure the model performance locally.

In order to generate local error values, an additional metric was created. The

Windowed Mean Error, despite the fact that it cannot be used as a metric or loss

function, computes the mean error between the predicted and true values considering

all data from the dataset included in a window region defined for the target values.

This algorithm processes the output error as shown in Equation 9.

91

𝑊𝑀𝐸(𝑉𝐵) =
∑ √(𝑦̅𝑘 −⁡𝑦𝑘)2
𝑛
𝑘=0

𝑛
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9)

So, the WME first selects the vectors included in the window interval w. See

Equations 10 and 11.

𝑁 = (𝑦̅𝑘, 𝑦𝑘)⁡∀⁡|𝑦𝑘 − 𝑉𝐵| ⁡≤ 𝑤⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(10)

𝑛 = dimension(𝑁)⁡⁡⁡(11)

In resume, the algorithm first looks for all dataset pairs which the true value

𝑦𝑘⁡is close to the target 𝑉𝐵 by at most 𝑤. After this, it extract the mean error between

the true and predicted values.

The proposed error metric, when running over all the flank wear curve,

provides a local error estimation over the entire curve. By analyzing those values, it is

possible to determine the accuracy now based on the regions under observation.

6.1.4. Optimizer Algorithm

Another important element of the model kernel is the optimizer algorithm.

When dealing with big datasets, normal gradient-descent algorithms cannot be used.

The first reason regards the time required to compute the forward and backward stages

for each individual input and output. The second reason is the efficiency of this method,

which usually is not able to find good global solutions.

In order to overcome this problem, the Stochastic Gradient Descent algorithm

(SGD) was created. Which consists of a variant of the same algorithm shown in chapter

2, however it computes the gradient and weight corrections for a batch instead of a

single input.

Researches proved that this approach was not the most suitable for highly

complex problems like the ones studied in deep-learning [36]. Therefore, numerous

variants of the SGD algorithm were created and proved in the literature afterwards.

Figure 62 shows the mainly used optimizer algorithms.

92

Figure 62 – Optimizer algorithms for Back-propagation.

Source: [36]

The Adam is one of the most popular variants of the SGD strongly implied in

ML problems as reported in [36]. It is a combination of 2 other techniques: the Adagrad,

which maintains a per-parameter learning rate that improves performance on problems

with sparse gradients as encountered in natural language processing and computer

vision scenarios; and a Root Mean Square Propagation (RMS-Prop), that also maintain

per-parameter coefficients, however it focuses on adapting weights based in all recent

gradient values, being particularly useful with noisy data. Figure 63 presents the

algorithm for the Adam optimizer.

Figure 63 – Adam Optimization algorithm.

93

The Adam receives 4 parameters, which are: 𝛼, the learning rate; 𝛽1, the

exponential decay rate for the first order moment estimation; 𝛽2, the exponential decay

for the second-moment estimation and; 𝜖, a small number to prevent division for zero.

Besides that, the algorithm needs an objective function 𝑓 which is our loss function for

the output layer or the error back-propagation signal for our hidden layers in order to

compute the next optimum parameters 𝜃𝑘, which corresponds to the weights of the

NN.

The algorithm is also known as an exponential moving variant of Adagrad,

showing smaller step sizes when the gradient moves closer to the solution. It is a

popular alternative widely spread in deep-learning to solve highly noisy and sparse

problems like image classification and speech recognition.

6.2. Architectures and Training

This sub-section is aimed to describe in detail the network architectures used

for the prediction models, as well as presenting the results achieved for each one of

the employed datasets.

As mentioned in the beginning of the chapter, 3 different architecture

approaches were chosen for the prediction task: ANNs, ANN + Auto-encoders and

LSTM for regression and classification. Each model presented was trained using only

one sensor data as input. On this way, the project is able to present a comparison

between different sensors and architectures for the flank wear prediction problem.

Appendix C lists the configuration and results of all different networks trained

by the prediction module. The following sub-sections explain the details for each

architecture employed, as well as the training results achieved.

6.2.1. Auto-encoders

The auto-encoders train a network to reproduce the input on the output through

a compressed layer. On this sense, the dataset labels (flank wear) are not required on

its training.

The chosen approach uses only the frequency bands for encoding. Therefore,

the encoders must learn how to reduce or combine information of different harmonics

of the signals FFT. This process eliminates redundancies between different

coefficients of the spectrogram. However, it maintain redundancies in time.

94

Interpreting temporal relation of the sensors will then be a task for the

prediction models. This approach was also chosen in order to maintain the number of

samples and consequently the number of inputs, once the datasets are already

relatively small.

The codes are generated by sigmoid activators on the output layer of the

encoder. Therefore, all codes are normalized: 0 ≤ 𝑜𝑗 ≤ 1. The remaining units use

ReLU activation. The output layers process data through linear activation in order to

reconstruct the inputs on the outputs as explained in chapter 2. At last, the networks

were tuned so that they can only reach accuracies around 90%. On this way, the auto-

encoders attenuate data noise and perform feature selection.

As the AE data demanded higher processing power, 2 different sizes were

designed for the auto-encoders: a simple auto-encoder with one layer encoder and

decoder for the vibration and microphone datasets; for AE, a deep auto-encoder with

3 layer encoder and decoder was employed. All configuration used to encode each

sensor signal is described in Table 16.

Table 16 – Auto-Encoder Network Configurations.

Auto-Encoder Network Configurations

ID Dataset Layers Input shape Code shape

11 vib_sum 50-10-50 50 10

12 vib_x3 150-10-150 150 10

13 mic 50-10-50 50 10

14 ae_workpiece 64-32-16-4-16-32-64 64 4

15 ae_spindle 64-32-16-5-16-32-64 64 5

Another factor tuned for controlling the model accuracy was the code size of

the networks. Even after reducing the code size, the training did not require more than

10 epochs in order to interpret and compress the datasets. Figure 64 shows the training

progress for the microphone dataset (network 13). Figure 65 shows the results of the

Auto-Encoder network trained for the vibration-sum dataset (network 11).

95

Figure 64 – Auto-encoder training curve for Network 13.

Figure 65 - Auto-encoder signal/reconstructed/code for Network 11.

96

The auto-encoder training results present some interesting properties of the

datasets. The first element to pay attention to is the noise ratio of the sensor signals.

A general behavior observed was that “clean” signals are interpreted easily by the auto-

encoder. On the other hand, noisy signals make the process slowwe, once those

networks must select strategically the most important features for the compression and

reconstruction of the inputs afterwards.

This property can be noticed clearly in the raw signals (Figure 51 and Figure

52) in comparison with the signals reconstructed on network 11 (Figure 65) and

network 13 (Figure 66). By analyzing the reconstructed signal presented in Figure 66,

it is clear the algorithm prioritized the lower frequency band (𝑓 < 7𝑘𝐻𝑧) of the sensor

when compressing the data.

Figure 66 - Auto-encoder signal/reconstructed/code for Network 13.

As a last point, the network achieved unusual results for the AE(spindle) signal.

The resulting model has high accuracy, however, it also present very high loss. In other

words, the model is accurate but the gradient does not stabilize.

97

Two different diagnoses can be addressed to such behavior: the first possibility

is a poor adjustment of the network hyperparameters, so the gradient is not moving in

the right direction or; the referred dataset has the behavior of a random noise unit,

where most of the frequency bands are constant, but the noise is intense in some

specific regions.

Unfortunately, this point to some problem with the auto-encoder on spindle AE-

signal. Once the similar or simpler networks were able to process the information

coming from the other signals with reasonable precision.

6.2.2. Artificial Neural Networks

The first presented prediction model approach is a vanilla ANN. The network

is composed by successive Dense layers fully inter-connected. The neurons on input

and hidden layers of the network use ReLU activation. On the other hand, the output

units have linear activation in order to reach the target values, as assigned to

regression model approaches.

In order to better understand the representation power of this architecture, 2

different network sizes were tested. The configuration of each network employed is

shown in Table 17.

Table 17 – ANN Regression Model Configurations.

ANN Regression Model Configurations

ID Dataset Layers input shape MSE test-set

1 vib_sum (10,50)-(10,8)-flat*-8-4-2-1 (10,50) 505.6175

2 vib_x3 (10,150)- (10,8)-flat-8-4-2-1 (10,150) 471.5322

3 ae_workpiece (16,64)- (16,8)-flat-8-4-2-1 (16,64) 463.9799

4 ae_spindle (16,64)- (16,8)-flat-8-4-2-1 (16,64) 305.8719

5 mic (10,50)- (10,8)-flat-8-4-2-1 (10,50) 805.3639

6 vib_sum (10,50)- (10,16)-flat-8-8-4-1 (10,50) 468.42054

7 vib_x3 (10,150)- (10,16)-flat-8-8-4-1 (10,150) 488.3767

8 ae_workpiece (16,64)- (10,16)-flat-8-8-4-1 (16,64) 293.165

9 ae_spindle (16,64)- (10,16)-flat-8-8-4-1 (16,64) 313.7809

10 mic (10,50)- (10,16)-flat-8-8-4-1 (10,50) 822.6655

98

By analyzing the results presented in Table 17, the bigger networks (networks

6 to 10) present a considerable overfitting effect. This can be confirmed by looking at

the training curve presented in Figure 67. However, the results collected from the

smaller networks (networks 1 to 5) achieved poor accuracy rate while still overfitting.

Figure 67 – ANN training curves for Networks 1.

Through the use of pure ANNs, the best accuracy was achieved on the

Vibration signal. See Figure 68. As the Figure shows, the model cannot predict well

the extreme labels of the dataset. Performing better on the middle region, where a

higher number of inputs are located.

The reasons for the range failure of the model can be better understood when

analyzing the most noisy dataset used: the microphone signal. The result suggests

that all the predictions done by the algorithm are biased to the mean flank wear of the

train-set. Which indicates a lack of representation power of the prediction model. In

other words, when the algorithm is not capable of interpreting the input spectrogram,

its only choice is to average the predictions to the mean flank wear value on the dataset

in order to minimize the mean value of the loss. This phenomena can also be confirmed

when presenting the WME curve for the ANN models (Figure 69).

The general conclusion is that ANNs by their own are not able to generate

good models for the flank wear prediction task, mainly on the beginning and end of tool

lifespan. The models trained with the Vibration data were capable to distinguish

different values of tool wear in the middle of the tool lifespan presenting a mean error

99

constrained under 10𝜇𝑚 on the interval (20 < 𝑉𝐵 < 100)⁡𝜇𝑚 (Figure 69). On the other

hand, the error rapidly increases outside this interval.

Figure 68 – Confusion matrix for ANN Regression (networks 6-10).

Datasets with lesser information or higher noise ratio presented smaller

accurate prediction intervals. On this sense, after the Vibration, the AE sensor

presented a better performance. The poorest performance, closer to averaging the

predictions, was presented by the model trained with the microphone signal.

100

Figure 69 – WME curve over entire datasets for Networks 6 to 10.

Between both datasets generated from the vibration signal, the concatenated

dataset presented a slightly better performance. So, summing the axes amplitudes –

which could be seen as a feature selection mechanism – instead of maintaining them

separated on the spectrogram caused small information loss.

Besides that, the AE signal from the workpiece clamp presented a better

performance in comparison with the sensor installed on the spindle. However, for the

advanced stages of flank wear, the curves presented in Figure 69 show the error curve

for the spindle sensor more stable and accurate on the interval 100 < 𝑉𝐵 < 125⁡𝜇𝑚.

If the MSE on test-set (presented in Table 17) was used as the performance

criteria for the model, the AE- sensors could be chosen as the best source of

information for the problem. As the random error related to the flank wear

measurement is ±6𝜇𝑚 (section 3.4), and the square root of the loss for Network 8 –

for instance – is approximately 17𝜇𝑚, this ANN result could be considered a good

achievement. However, the accuracy value by its own does not present enough

information about the performance of the model. The mean squared error, as shown

in Figure 68 and Figure 69, has a performance biased to the mean flank wear value,

which in resume is not the most important interval under observation.

101

This fact raised a big question mark related to the accuracy metric on this

project. Reinforcing the importance of using the WME metric for evaluating the models.

Figure 70 shows the Error curve and Figure 71 and predictions for the test-set using

Network 2.

Figure 70 – WME for Network 2 – test-set.

Figure 71 – Predictions generated by Network 2 – test-set.

102

By analyzing those figures, the performance bias of the algorithm becomes

clear. Therefore, through the usage of WME, it is possible to evaluate the error in a

more accurate way than only observing the resulting accuracy metric for the model.

6.2.3. ANN & Auto-encoder

Another architecture for the prediction models uses the encoded values

generated from the networks presented in section 6.2.1. The architecture configuration

is similar to the ANNs described on the previous section. However, the network now

will receive the codes as inputs for the prediction task instead of the raw-spectrograms.

Table 18 shows the network configurations employed to each dataset.

Table 18 – ANN + Auto-Encoder Regression Model Configurations.

ANN + Auto-Encoder Regression Model Configurations

ID Dataset Layers
input

shape
MSE test-set

16 vib_sum codes (10,50)-(10,16)-flat-drop0.5-16-8-4-1 (10,10) 509.45907

17 vib_x3 codes (10,50)-(10,16)-flat-drop0.5-16-8-4-1 (10,10) 560

18 mic codes (10,50)-(10,16)-flat-drop0.5-16-8-4-1 (10,10) 818.04535

19 ae_workpiece codes (16,64)-(16,16)-flat-drop0.5-16-8-4-1 (16, 4) 461.7848

20 ae_spindle codes (16,64)-(16,16)-flat-drop0.5-16-8-4-1 (16, 5) 742.36844

Once the auto-encoders already pre-select the potential features of the data,

such ANNs are willing to overfit. In order to avoid such problem, a dropout layer was

added to all networks.

However, the trained networks did not outperform the ANNs reported in the

previous section. Figure 72 shows the comparison between the results gathered from

the ANN and ANN + Auto-encoder for the vibration summed dataset (Networks 6 and

16).

Due to the problem reported in the end of Section 6.2.1, the model which

presented the poorest accuracy rate was the spindle sensor data. The error curve

(Figure 73) shows that the input codes does not present enough information for the

neural network to predict the tool condition. Besides that, the best accuracy was

achieved by the network trained on the Vibration (Summed) dataset. The remaining

datasets presented a similar performance as the pure ANN models.

103

Figure 72 – Confusion Matrix for test-set on Networks 6 and 16.

Figure 73 – WME curve over entire datasets for Networks 16 to 20.

Therefore, the auto-encoders may not be a good solution for improving

performance at least on the scope of this project. On the other hand, they may be an

useful tool when dealing with higher complex data formats or bigger datasets.

104

6.2.4. LSTM Classifier

The LSTMs are the last described architecture for the prediction modules. The

method used two different approaches. The first one uses a classifier in order to predict

the tool condition. Therefore, the network output layer possesses 6 sigmoid units

mapping each of the assigned classes. See Table 19.

Table 19 – Classes addressed to each flank wear interval.

Flank Wear Interval (µm) Label Binary Hot Code

0 – 20 [1, 0, 0, 0, 0, 0]

20 – 40 [0, 1, 0, 0, 0, 0]

40 – 60 [0, 0, 1, 0, 0, 0]

60 – 80 [0, 0, 0, 1, 0, 0]

80 – 100 [0, 0, 0, 0, 1, 0]

> 100 (tool failure) [0, 0, 0, 0, 0, 1]

The architecture of the networks contain 2 LSTM layers as presented in

chapter 2. In order to avoid overfitting, both those layers implement dropouts of 50%.

The complete configuration for the LSTM classifiers is shown in Table 20.

Table 20 – LSTM Classifier Model Configurations.

LSTM Classifier Model Configurations

ID Dataset Layers
input

shape

Categorical

Accuracy (test-set)

26 vib_sum (15,50)-64-drop0.5-64-drop0.5-32-16-6 (15,50) 0.78038

27 vib_x3 (15,50)-64-drop0.5-64-drop0.5-32-16-6 (15,150) 0.81738

28 mic (15,50)-64-drop0.5-64-drop0.5-32-16-6 (15,50) 0.13881

29 ae_workpiece (16,64)-64-drop0.5-64-drop0.5-32-16-6 (16,64) 0.65988

30 ae_spindle (16,64)-64-drop0.5-64-drop0.5-32-16-6 (16,64) 0.56453

The confusion matrixes shown in Figure 74 present superior performance of

the LSTM classifiers in comparison with all the previous presented regression models.

The 6 different classes used, each one 20𝜇𝑚 spaced, provided a way smaller error

rate if compared to the regression networks. This fact proves that this approach is more

suitable for an industrial TCM system than any of the previously presented models.

105

As observed in Figure 74, the performance pattern between the datasets

repeated. Firstly, the models trained on vibration data provided again the best

accuracy. Furthermore, the model trained on the Vibration(appended) dataset was the

most accurate between all LSTM models. Unlike the regression models presented until

now, the 2 classifiers trained on the vibration signal predicted well in all the stages of

the tool lifespan. Which is a very important result, since the accuracy in predicting the

last stages of tool wear is critical for the goals stablished for the project.

Figure 74 – Confusion Matrixes for LSTM classifiers (Networks 26-30) on test-set.

106

Although the AE models presented a better performance in this approach, they

still present problems reaching all the flank wear range. As well as the previously

reported approaches, the workpiece signal model presented a superior accuracy in

comparison with the model trained with the spindle signal.

Figure 75 shows the training progress for network 27. The system accuracy

develops well until the 25th epoch. After this epoch, the model starts to present overfit.

Figure 75 – Training curve for LSTM, Network 27.

6.2.5. LSTM Regression

The second approach is a regression model which, as the previously described

ANNs, predicts the flank wear values through a linear output layer with one neuron.

The remaining network configurations are similar to the ones presented for the

Classifier approach. Table 21 shows each network configuration employed.

Figure 76 presents the results for the regression models trained. The charts

show that the regression models are not as precise as the classification models.

However, the LSTMs achieved a superior performance in comparison with the

approaches using vanilla ANN and ANNs + Auto-encoders.

107

Table 21 – LSTM Regression Model Configurations.

LSTM Regression Model Configurations

ID Dataset Layers input shape MSE (test-set)

21 vib_sum (15,50)-32-drop0.5-32-drop0.5-16-8-1 (15,50) 284.29948

22 vib_x3 (15,50)-32-drop0.5-32-drop0.5-16-8-1 (15,150) 176.15272

23 mic (15,50)-32-drop0.5-32-drop0.5-16-8-1 (15,50) 771.1928

24 ae_workpiece (16,64)-32-drop0.5-32-drop0.5-16-8-1 (16,64) 420.97011

25 ae_spindle (16,64)-32-drop0.5-32-drop0.5-16-8-1 (16,64) 441.0024

Figure 76 – Confusion Matrixes for LSTM Regression (Networks 21-25) on test-set.

108

The pattern among the signals repeated once more. From which, it can be

concluded that the signal which presents the most relevant amount of information for

predicting tool wear comes from the vibration sensor. However, as the other regression

models, these networks does not present high accuracy on the extremities of the flank

wear curve.

The models trained with the AE signal also presented some problem on

predicting values on the beginning and end of the flank wear curve, as it can be seen

in Figure 77. On the other hand, the error curve for the model trained on the

microphone data followed the error curve of the AE models. Such behavior was not

observed in the ANN models, where the error was bigger for the microphone signal.

Such fact suggests that the LSTMs can better interpret noisy data, when compared to

the other reported approaches.

Figure 77 – WME curve over entire datasets for Networks 21 to 25.

Despite the fact that the LSTM regression models presented a superior

performance, by analyzing Figure 77 it is clear how the performance of the network is

still biased to the mean flank wear. In order to overcome this problem, as explained in

section 6.1.4, a network model was trained with weights giving higher priorities to the

109

beginning and end of the tool flank wear curve. Figure 78 presents the comparison

between two models, one trained with weights and one without.

Figure 78 shows that, by addressing higher priority to the extremities of the

tool lifespan, the resulting network has a better performance on those regions. On the

other hand, the overall accuracy – on the middle region – is slightly damaged.

Figure 78 – LSTM Regression trained with and without weights for
Vibration(summed) dataset.

The results show an improvement of more than 50% accuracy on the

extremities of the curve for the analyzed dataset. Figure 79 shows the error curve for

the entire dataset for both the approaches.

Figure 79 - WME for LSTM regression comparing the usage of weighting.

110

6.2.6. Prediction Results

Although the spindle vibrates and produces a high amount of noise, the

sensors installed on the spindle body proved to show good amount of information about

the process condition. Such fact is even more clear if we consider that the best

prediction models used the input from the accelerometer sensor.

By saying so, positioning the sensors on the spindle body is not only more

flexible when analyzed from the production perspective, but it is also a powerful tool in

order to capture the flank wear progress as well as it may be useful for studying other

phenomena too.

Still related to the sensors, training the neural networks helped interpreting the

performance of each of those signals on the studied problem. Firstly, the vibration

signal provided by the accelerometer was the most reliable source for understanding

the flank wear development. Unlike reported in the recent literature, it outperformed

AE-sensors and ultra-sonic emission for capturing the flank wear. This result suggests

such signals can be further studied in future works on the field.

After this, the microphone data provided a very noisy behavior and not much

relevant information. At least not in the current position where the sensor was installed.

As a suggestion, one option could be repositioning such sensor in a way that it can

capture more information about the process.

By looking at the resulting confusion matrixes, the performance of the LSTMs

are clearly superior in comparison with the vanilla or encoded ANN prediction models.

See Figure 80. Once those networks can memorize features found in the input vectors,

they achieved – mainly on the extremities of the flank wear curve – a more accurate

prediction of the cutters´ condition.

Besides this fact, the LSTM classification approach achieved the best result

between all prediction models analyzed on the project. Regarding the regression

approach, Figure 80 proves that the performance bias of the network can be tackled

using weights in order to train the regression models. This weight training result has

shown that the LSTM regression can present similar performance as the LSTM

classifiers achieved. After all, both approaches can be considered suitable for an online

TCM system.

111

Figure 80 – Confusion Matrixes (test-set) of all Prediction Models trained in the project.

112

113

7. CONCLUSION

This document presented a complete system for tool wear prediction in high

precision milling process. The project englobed sensor setup, parameter

determination, experiments and signal analysis. Through the experiments performed

on the machine, various properties of the tool wear development in milling were

observed.

Firstly, the acquisition program developed and reported in chapter 4 proved to

be a new powerful resource available in order to capture information of processes

using high spindle speed. Furthermore, milling processes on the industrial environment

usually employ tools with multiple cutters and high spindle speed machine tools,

reinforcing the importance of acquisition systems capable of recording high frequency

signals.

The reported experiments gathered data from different sources: two AE-

sensors, one installed in the workpiece clamp and the other on the spindle body; one

vibration sensor installed in the spindle body; one ultra-sonic microphone installed on

the machining chamber; 4 encoder position readers: X, Y, Z, spindle; the spindle power

consumption; and the Spike tool holder, which recorded the Forces applied to the tool.

Related to the AE-sensors, the NN could interpret better the signals recorded

from the workpiece clamp sensor in comparison with the spindle sensor. One possible

reason is that such sensor does not get high influence from the spindle vibration, so it

can better capture the process emission. However, both sensors achieved poor

performance on the tool wear prediction task.

On the preprocessing, all sensor data was extracted using FFT. The tool flank

was directly measured via microscope by accessing 3 different regions of each tooth.

Once the employed tool has 3 teeth, the procedure measured the flank wear length on

9 different regions. From which, the maximum value among those 9 points was

adopted for labeling the data.

In order to determine the best architecture and sensor for the problem, the

system tested 3 different approaches for the prediction models: a vanilla Neural

Network; a combination of ANN with Auto-encoder and LSTM architecture. The results

showed the ANN and ANN with Auto-encoder did not have enough representation

power for the prediction task.

114

A last approach used LSTM networks. On the classifier approach, the models

were tuned to classify the inputs into 6 different states of tool wear divided in the range

of 0 to 120𝜇𝑚. Such method presented a high performance on the vibration data. The

accuracy was higher than 80% in almost all the classes for this dataset.

On the other hand, the approach using LSTM for regression presented

accuracy problem in the beginning and end of the tool wear curve, once the amount of

data available to the model is smaller in this interval. Therefore, the training algorithm

tends to give higher priority to the middle interval of the tool.

In order to overcome this problem on the regression networks, an approach

used weights in order to raise the priority of the pairs where the flank wear 30⁡ > 𝑉𝐵⁡ >

100. This procedure forced the networks to improve the performance on the referred

interval. The accuracy on those regions improved more than 50% in the tested dataset.

As a result, both approaches using LSTMs could be considered for a further

implementation of a TCM system. This fact shows the potential of deep-learning in

analyzing sensor data. However, further researches involving new techniques must

still be performed in order to improve the reported results.

For future works, a first factor to mention is the small dataset size. On the

current project, 4 tools and 2 different process parameter configurations were

employed. In order to better generalize this result, further works must test a higher

volume of different parameters, tool paths, tool types, etc.

Besides that, other networks like convolutional networks and fuzzy networks

can be explored in order to improve the achieved results. Furthermore, other

techniques like training models using a combination of multiple signals can also

present improvements. At least, the results here presented can serve as a guideline

for future studies on the field. After all, the dataset are still not fully explored, as some

signals recorded in the experiments were not used.

115

116

8. REFERENCES

[1] Institut für Produktionstechnologie - Fraunhofer IPT. (2020, January
6). Retrieved from https://www.ipt.fraunhofer.de/

[2] Palanisamy, P., Rajendran, I. & Shanmugasundaram, S. Prediction of
tool wear using regression and ANN models in end-milling operation.
Int J Adv Manuf Technol 37, 29–41 (2008).
https://doi.org/10.1007/s00170-007-0948-5

[3] Zhou, Y., Xue, W. Review of tool condition monitoring methods in
milling processes. Int J Adv Manuf Technol 96, 2509–2523 (2018).
https://doi.org/10.1007/s00170-018-1768-5

[4] Rehorn, A., Jiang, J. & Orban, P. State-of-the-art methods and results
in tool condition monitoring: a review. Int J Adv Manuf Technol 26,
693–710 (2005). https://doi.org/10.1007/s00170-004-2038-2

[5] Cao, H., Zhang, X., & Chen, X. (2017). The concept and progress of
intelligent spindles: A review. International Journal of Machine Tools
and Manufacture, 112, 21–52. doi: 10.1016/j.ijmachtools.2016.10.005

[6] Russell, S. J. (1995). Artificial intelligence: a modern approach.
Prentice Hall.

[7] Samuel, A. L. (1988). Some Studies in Machine Learning Using the
Game of Checkers. I. Computer Games I, 335–365. doi: 10.1007/978-
1-4613-8716-9_14

[8] U. S. Shanthamallu, A. Spanias, C. Tepedelenlioglu and M. Stanley,
"A brief survey of machine learning methods and their sensor and IoT
applications," 2017 8th International Conference on Information,
Intelligence, Systems & Applications (IISA), Larnaca, 2017, pp. 1-8.
doi: 10.1109/IISA.2017.8316459

[9] Machine learning. (2020, January 23). Retrieved from
https://en.wikipedia.org/wiki/Machine_learning

[10] Al-Zubaidi, S., Ghani, J. A., & Haron, C. H. C. (2011). Application of
ANN in Milling Process: A Review. Modelling and Simulation in
Engineering, 2011, 1–7. doi: 10.1155/2011/696275

[11] Kilickap, E., Yardimeden, A., & Çelik, Y. H. (2017). Mathematical
Modelling and Optimization of Cutting Force, Tool Wear and Surface
Roughness by Using Artificial Neural Network and Response Surface
Methodology in Milling of Ti-6242S. Applied Sciences, 7(10), 1064.
doi: 10.3390/app7101064

https://www.ipt.fraunhofer.de/
https://doi.org/10.1007/s00170-007-0948-5
https://doi.org/10.1007/s00170-018-1768-5
https://doi.org/10.1007/s00170-004-2038-2
https://en.wikipedia.org/wiki/Machine_learning

117

[12] O. Abdel-Hamid, A. Mohamed, H. Jiang, L. Deng, G. Penn and D. Yu,
"Convolutional Neural Networks for Speech Recognition," in
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 22, no. 10, pp. 1533-1545, Oct. 2014.
doi: 10.1109/TASLP.2014.2339736

[13] Chen, J., Chen, J. An artificial-neural-networks-based in-process tool
wear prediction system in milling operations. Int J Adv Manuf Technol
25, 427–434 (2005). https://doi.org/10.1007/s00170-003-1848-y

[14] Başccedil F. “On-line prediction of tool wears by using methods of
artificial neural networks and fuzzy logic” [J]. Scientific Research and
Essays, 2010, 5(19): 2883-2888.

[15] Ruder, & Sebastian. (2017, June 15). An overview of gradient descent
optimization algorithms. Retrieved from
https://arxiv.org/abs/1609.04747

[16] Li Deng and Dong Yu (2014), "Deep Learning: Methods and
Applications", Foundations and Trends® in Signal Processing: Vol. 7:
No. 3–4, pp 197-387. http://dx.doi.org/10.1561/2000000039

[17] Deep learning. (2020, January 23). Retrieved from
https://en.wikipedia.org/wiki/Deep_learning

[18] Yin, Wenpeng, Kann, Katharina, Yu, & Hinrich. (2017, February 7).
Comparative Study of CNN and RNN for Natural Language
Processing. Retrieved from https://arxiv.org/abs/1702.01923

[19] Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term
dependencies with gradient descent is difficult. IEEE Transactions on
Neural Networks, 5(2), 157–166. doi: 10.1109/72.279181

[20] Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory.
Neural Computation, 9(8), 1735–1780. doi:
10.1162/neco.1997.9.8.1735

[21] Goodfellow, I., Bengio, Y., & Courville, A. (2017). Deep learning.
Cambridge, MA: The MIT Press.

[22] Al-Sulaiman, F. A., Baseer, M. A., & Sheikh, A. K. (2005). Use of
electrical power for online monitoring of tool condition. Journal of
Materials Processing Technology, 166(3), 364–371. doi:
10.1016/j.jmatprotec.2004.07.104

https://doi.org/10.1007/s00170-003-1848-y
https://arxiv.org/abs/1609.04747
http://dx.doi.org/10.1561/2000000039
https://en.wikipedia.org/wiki/Deep_learning
https://arxiv.org/abs/1702.01923

118

[23] Čuš, F., & Župerl, U. (2011). Real-Time Cutting Tool Condition
Monitoring in Milling. Strojniški Vestnik – Journal of Mechanical
Engineering, 57(2), 142–150. doi: 10.5545/sv-jme.2010.079

[24] Girardin, F., Rémond, D. & Rigal, J. A new method for detecting tool
wear and breakage in milling. Int J Mater Form 3, 463–466 (2010).
https://doi.org/10.1007/s12289-010-0807-z

[25] Sadilek, M, Kratochvil, J, Petru, J. Cutting tool wear monitoring with
the use of impedance layers. Tehnički Vjesnik [Tech Gaz] 2014; 21:
639–644.

[26] Yu, J. Online tool wear prediction in drilling operations using selective
artificial neural network ensemble model. Neural Comput & Applic 20,
473–485 (2011). https://doi.org/10.1007/s00521-011-0539-0

[27] Dong, J., Subrahmanyam, K.V.R., Wong, Y.S. et al. Bayesian-
inference-based neural networks for tool wear estimation. Int J Adv
Manuf Technol 30, 797–807 (2006). https://doi.org/10.1007/s00170-
005-0124-8

[28] XIAOLI , L., YINGXUE , Y. & ZHEJUN , Y. On-line tool condition
monitoring system with wavelet fuzzy neural network. Journal of
Intelligent Manufacturing 8, 271–276 (1997).
https://doi.org/10.1023/A:1018585527465

[29] O. Geramifard, J. Xu, J. Zhou and X. Li, "Multimodal Hidden Markov
Model-Based Approach for Tool Wear Monitoring," in IEEE
Transactions on Industrial Electronics, vol. 61, no. 6, pp. 2900-2911,
June 2014.
doi: 10.1109/TIE.2013.2274422

[30] Wang, M., Wang, J. CHMM for tool condition monitoring and remaining
useful life prediction. Int J Adv Manuf Technol 59, 463–471 (2012).
https://doi.org/10.1007/s00170-011-3536-7

[31] S. Dolinšek, Mechanism and types of tool wear; particularities in
advanced cutting materials, Journal of Achievements in
Materials and Manufacturing Engineering, vol. 19, 2006,pp.11-18.

[32] Yu Y.: “Untersuchungen zur Entwicklung einer parametrierbaren
eingebetteten Datenaus-wertung für Smart Components”. RWTH
Aachen. Aachen. 2018

[33] High Performance Motion Solutions. (2020, January 26). Retrieved
from https://www.triamec.com/de/TAM-SDK.html

[34] The HDF5® Library & File Format. (2020, January 13). Retrieved from
https://www.hdfgroup.org/solutions/hdf5/

https://doi.org/10.1007/s12289-010-0807-z
https://doi.org/10.1007/s00521-011-0539-0
https://doi.org/10.1007/s00170-005-0124-8
https://doi.org/10.1007/s00170-005-0124-8
https://doi.org/10.1023/A:1018585527465
https://doi.org/10.1007/s00170-011-3536-7
https://www.triamec.com/de/TAM-SDK.html
https://www.hdfgroup.org/solutions/hdf5/

119

[35] Giriraj, B., V. P. Raja, R. Gandhinadhan, and R. Ganeshkumar. 2006.
“Prediction of Tool Wear in High Speed Machining Using Acoustic
Emission Technique and Neural Network.” Journal of Engineering and
Materials Sciences 13 (4): 275–280.

[36] Kingma, P., D., Jimmy, & Ba. (2017, January 30). Adam: A Method for
Stochastic Optimization. Retrieved from
https://arxiv.org/abs/1412.6980

[37] Yan, J., Meng, Y., Lu, L., & Li, L. (2017). Industrial Big Data in an
Industry 4.0 Environment: Challenges, Schemes, and Applications for
Predictive Maintenance. IEEE Access, 5, 23484–23491. doi:
10.1109/access.2017.2765544

[38] A. Mikołajczyk and M. Grochowski, "Data augmentation for improving
deep learning in image classification problem," 2018 International
Interdisciplinary PhD Workshop (IIPhDW), Swinoujście, 2018, pp. 117-
122.
doi: 10.1109/IIPHDW.2018.8388338

https://arxiv.org/abs/1412.6980

120

121

9. APPENDIX A – TAMA CLIENT FUNCTIONALITY DESCRIPTION

This document lists the desired functionalities to be incorporated on the Tama

Client software programming for real-time acquisition. On the table below, all desired

functional and performance requirements raised for the software project are described.

The functions here presented were generated by the author together with other

team members who also require the use of this acquisition program on their projects.

F1: Connect to Trialink

Description: the system must be able to connect to the main Trialink adapter (TLC-
Card) in order to access the information available inside the ring network.

Not-Functioning Requirements

Name Constraint Category Mandatory

NF1.1: Connection
status

the system must show the user the status of the
connection with the network.

interface (X)

NF1.2: Release
connection

Once the system finishes the tasks, or shuts down
for any reason, it must – with all its effort – release
the connection with the link, freeing the network to
connect to another software.

performance (X)

F2: Show Parameter Tree

Description: Once the system accessed the link, it must show the user all the devices
connected in the ring, and all the readable parameters contained inside each one of
the devices found.

Not-Functioning Requirements

Name Constraint Category Mandatory

NF2.1: Tree interface the devices, categories and parameters must be
organized in a tree mode, starting with the devices
on the ring and going until the end-point parameters
of the tree.

interface (X)

NF2.2: Read-only The system must show the user only readable
parameters of a device. That is, it must find a way to
eliminate all unreadable parameters and dead
nodes of the device tree in order to simplify the view.

Performance (X)

122

F3: Acquisition Programing

Description: the user will be able to set one or multiple simultaneous acquisitions to
be performed by the system. Using the interface tools provided in F2, the user will
select a group of variables and the sampling rate for each of those groups.

Not-Functioning Requirements

Name Constraint Category Mandatory

NF3.1: Show
acquisitions

The system must show to the user a list of selected
registers for each acquisition, specifying the
sampling rate.

interface ()

NF3.2:
Inclusion/exclusion
policy

The system must allow one option where - with at
maximum - two clicks, the user selects the desired
registers to be included or excluded from the
acquisition group list

interface ()

NF3.3: reset
programming

The user will be able to reset the entire acquisition
programing via interface, and restart selecting the
channels for acquisition

interface (X)

F4: Save Acquisition Setup

Description: the user has the option to save and load the acquisition programing
done on F3. With this, repeated acquisitions with same setup must be programmed
only once and then they can be loaded back on the system multiple times.

Not-Functioning Requirements

Name Constraint Category Mandatory

NF4.1: Loading last
program

The system will always try to load the preferences
programmed in the last time the software was used

performance ()

NF4.2: External
edition

The format used for the setup must allow external
editions. On this way some file type like Jason or
XML must be adopted for the task.

performance (X)

123

F5: Acquire data on Trialink

Description: The system will configure and perform the programmed data acquisition
in the ring network. And load on software all required information

Not-Functioning Requirements

Name Constraint Category Mandatory

NF5.1: Real Time
Constraint

The ring real-time flow of data must be preserved.
This implies that the mechanism to acquire data
needs to work under real-time constraints.

performance (X)

NF5.2: Data handling The system will preserve the types of each data
received, i.e., there will be no data conversion inside
the software unless critically required. On this way,
avoiding overheads and performance problems due
to data conversion.

performance (X)

NF5.3: Acquisition
Status

The user will receive constantly information about
the status of the in-process acquisition via interface.
Problems on the link or software will need to be
reported as soon as possible.

interface (X)

NF 5.4: Show
acquired Values

The user, via interface, will be able to see the last
values acquired from the link.

interface (X)

F6: Save Acquired data

Description: the system must be able to create files, handle buffered values in RAM,
and save all the acquired data locally.

Not-Functioning Requirements

Name Constraint Category Mandatory

NF6.1: Avoiding
Overflow

The system must have protection mechanisms to
handle data overflow on RAM memory, i.e., the
system will prevent the failure by exceeding in-
memory data.

interface (X)

NF6.2: Data
Conservancy

The system must avoid the loss of data due to the
lack of performance on this functionality preserving,
in this way, the programmed acquisition sampling
rate provided by the user.

performance ()

NF 6.3: In memory
data register

The user will receive information in the interface
regarding the current amount of data stored in
memory.

interface ()

NF6.4: Data handling The system will preserve the types of each data
received, i.e., there will be no data conversion inside
the software unless critically required. This will avoid
overhead and performance problems when saving
data locally.

performance (X)

124

F7: Constraint Program Insertion

Description: The system will reserve a specific area on the code which may be used
by future programmers to insert specific desired behaviors, where it is possible to
observe data and perform some specific actions automatically, which could be only
possible via manual operation. Ex.: stop once 10 minutes of data were recorded.

Not-Functioning Requirements

Name Constraint Category Mandatory

F8: Log data maintenance

Description: The system will show and save, a log file containing all events which
happened during the acquisition.

Not-Functioning Requirements

Name Constraint Category Mandatory

NF 8.1: In-process
check-up

The user will be able to open the log file during the
process to check the past events that happened on
the incurrent acquisition

(performance) (X)

NF 8.2: Interface
Events

The system will maintain on the interface only the
most recent events which happened on the system.
(the rest will be available on the log file)

(interface) (X)

F9: Output Data Type

Description: The output files must be saved in a format which allows the immediate
visualization by the user after the files are closed.

Not-Functioning Requirements

Name Constraint Category Mandatory

125

126

10. APPENDIX B – TAMA CLIENT SOFTWARE PROJECT

This document is aimed to provide details about the software project

developed based on the Functionality description presented in Appendix A. As

described in Chapter 4, the project tried to accomplish all listed functionalities while

keeping track of some important properties the software must maintain. The final

version of the class diagram can be seen in Figure 81.

In order to accomplish the acquisition task, the software is multithreaded. This

decision also helps avoiding interchanging problems and bottlenecks on the system.

By splitting the tasks, the processes responsible for keeping control of the system

status can also analyze each software module independently, easing error diagnoses

and speeding up correction mechanisms.

Therefore, the acquisition software was separated into 4 modules. Each one

of them is responsible for a limited number of tasks. In other words, there is no

redundancy on the system functions between each of those modules.

10.1. Interface Package

This package is responsible for handling all operations involving the user. On

this package, the window and all graphical items are located. As it can be seen, the

project implementation was carried out such a way that the back-end and front-end

were completely separated from each other. Therefore, all requests and commands

from the GUI go to the Controller class, which then access further classes and gets the

required data. This allow not only the complete replacement of the GUI – if needed –

but also ensures the code will not be “over-nested”.

10.2. Main Package

The Controller class is located in this package, this entity commands and

synchronizes all actions on the software, therefore it is the main thread of the system.

Excepting the data pipeline (DataBuffer-RegisterLogger classes), all information flow

inside the packages is done through the Controller. So the controller has the task to:

• Execute user commands and provide data to the interface;

• Manage all thread instances are working during acquisition;

127

Figure 81 – Tama Client class diagram, final version.

128

• Instantiate and start all procedures on the sub-instances located in other

packages;

• Handle failure in the system insuring minimum loss and maximum robustness;

• Keep track of all events which happened on the system;

The ConditionControl class can also be found on the package. This class is

responsible for checking the automatic conditions programmed by the user on the

“Program config” tab. Each programmed action is an implementation of the

“ConditionAction” interface, which basically needs to instantiate a firing condition and

a subsequent action. All possible automatic actions are then checked regularly by the

ConditionControl thread, and actions are taken if the condition is achieved.

Both user via interface and the actions performed by ConditionControl thread

act by calling methods on the Controller. Therefore, the system can be perceived as

being commanded by two concurrent entities, performing manual and automatic

actions simultaneously. So, in order to guarantee consistency on the program

behaviour, the controller commands are protected with special lockers.

10.3. Tama Handler Package

This package is responsible for all actions related to the Trialink network. It is

also the only package which uses the Tama libraries in order to communicate with the

ring.

When the program is initialized, only TrialinkConnection is instantiated by the

Controller. As the procedures go on, further classes are instantiated in the program.

This eases the maintenance of runtime instances by deleting unnecessary objects

when back-stepping.

Following the program execution sequence: primarily, when the software is

started, the Controller instantiates the TrialinkConnection class. When commanded to

connect, this class accessess the network and requests the device tree using the Tama

API for the task.

After this step, the program navigates through the device tree in recursive

mode identifying all nodes on the accessed network. At the same time, the program

creates an internal representation of the device tree using the IPTNode class, which

contains basic tree attributes and registers describing ID, name and data type. On this

way, the system has a tree representation containing only the relevant information

129

about the register tree of the Trialink network. The register IDs are unique strings

organized like directory paths

This node tree is forwarded to the Controller, and then to the interface. When

the acquisition program is selected by the user, the controller sends a list containing

each acquisition sampling rate and the register list (IDs) of all registers selected by the

user. This information is then stored in the AcquisitionConfig class.

When the Acquisition is about to start, the TrialinkConnection instantiates

multiple objects of the Acquisition class. Each Acquisition instance synchronizes one

register group according to its programmed sampling rate.

Each of the Acquisition instances will then instantiate the Subscribers. The

Subscriber on Tama Client has the task of communicating with the Subscription

mechanism of the ring network. Devices on the ring send data to each other using

packages containing up to 5 register values. Configuration regarding this

communication schema is set between devices using the Subscription mechanism. In

other words, a subscriber device requests information from the publisher by sending a

Subscription request. Therefore, The Subscriber task is to identify the right subscription

type and package size. After that, it sends the request to the devices on the network

and receives the data packages.

Although, the Subscriber instances receive the data packages during the

acquisition, they do not check their content. Each Subscription, after receiving a list of

packages, forwards those to the RegisterLoggers (instances of

RegisterAbstractLogger), when then the package content will be read and checked.

Each RegisterLogger is responsible for processing information from One

Register. Once they are threaded, all data registers are processed in parallel. The

loggers are also responsible for checking two conditions:

• Each package has a corresponding Timestamp, and all packages are

transported in the ring in a FIFO order. Once the loggers know the

sampling rate, by checking sequentially the timestamp of each package,

they can diagnose if data was lost on the ring. Raising the “Overload”

flag to the controller immediately;

• The loggers also check data consistency, if a register bounded to some

interval (value −1 < 𝑣 < 1) or it has a certain behavior (a timestamp is

always an increasing value) and the received value has some anomaly,

a “Failure” flag is raised.

130

It worth noticing that the Logger instances are generic classes. They are the

first element of – what is called in Tama Client – the Data Pipelines. So, each Logger

is instantiated with the type of the variable it will process. This type is identified when

first accessing the register tree of the network on the identification step.

After reading and converting the binary packages to typed values, the Loggers

then forward the data to the DataBuffers, when they will be enqueued before flushed

to disk by instances of the File Handler package.

10.4. File Handler Package

This package has all the tasks regarding archiving and loading files. It is

responsible for checking paths, save and load configurations, open zip deflate files,

write data during acquisition, buffering, buffer overflow control, streaming data for

online visualization using ZMQ and invoking the converter to finally convert the zip to

HDF files. This package also writes the record of all the events which happened on the

system. In resume, the package handles all I/O operations with the local disk.

The ZMQStreamer is a class which uses Zero MQ protocol to stream data to

another software for online visualization purpose. It is also a Thread which tries

sending data using string messages. In order to access the data on the generic

pipeline, the ZipAbstractStreamer has an abstract method implemented by its children

which goes to the DataBuffer, dequeues the streaming values, convert them to a string

array and return them.

The ZMQStreamer passes one by one all the ZipStreamers, gets all the data,

builds the string message and send it to the programmed port in a constant loop.

10.5. Data Pipeline

The Data Pipeline here corresponds to the Generic region of the software

where the acquisition data is processed (see Figure 82). There is one pipeline for each

variable acquired. Each pipe has one instance of a Logger (depending on the

subscriptin type, it can be any of both), one DataBuffer and one ZipStreamer.

In order to avoid overheads related to converting data to a common type like

double, this pipeline was implemented in a Generic way. So if the variable of the

131

pipeline is a double, it is going to be processed as a double, if it is a Boolean, Boolean,

if Float40, it is reduced to float and then forwarded, and so on.

Figure 82 – Data Pipeline instances of the Tama Client class diagram.

So, another task of the Loggers is to convert the Tama data type to struct (raw

C# type). As well as the ZipStreamer converts this structs at the end to bytes and write

them down on disk.

Since the Loggers and ZipStreamers are parallel instances, we need a way to

pool data between them, and at the same time, allow both instances to add and get

data concurrently. So, this is the tasks of the DataBuffer on the system: it has mainly

one Queue, concurrent methods (using Mutex) to add and remove values from the

Queue, counters used to control and synchronize data between different pipes, and

memory overflow control – constraining queue size. This is the only place on the entire

system where data is pooled.

10.6. User Interface

As previously mentioned, the user operates the system using the program

interface. The acquisition is configured and monitored by the usage of 3 tabs in the

main window sequentially:

1. Acquisition Setup: corresponds to selecting all desired registers and sampling

rates for the acquisition

2. Program Config: programs general system behavior, output folders, max file

sizes, etc.

3. Process Monitoring: where user can see the status of the acquisition, diagnose

errors, see current values acquired and command the acquisition.

Figure 83, Figure 84 and Figure 85 presents the screenshots of each of those

tabs.

132

Figure 83 – Acquisition Setup tab of Tama Client Software.

133

Figure 84 – Program Configuration tab of Tama Client Software.

Figure 85 – Tama Client Process Monitoring tab with ongoing acquisition.

134

11. APPENDIX C – PREDICTION MODELS: TABLE OF RESULTS

ID Network layers Dataset input shape

1 ANN Regression (10,50)-(10,8)-flat*-8-4-2-1 vib_sum 10, 50

2 ANN Regression (10,150)- (10,8)-flat-8-4-2-1 vib_x3 10, 150

3 ANN Regression (16,64)- (16,8)-flat-8-4-2-1 ae_workpiece 16, 64

4 ANN Regression (16,64)- (16,8)-flat-8-4-2-1 ae_spindle 16, 64

5 ANN Regression (10,50)- (10,8)-flat-8-4-2-1 mic 10, 50

6 ANN Regression (10,50)- (10,16)-flat-8-8-4-1 vib_sum 10, 50

7 ANN Regression (10,150)- (10,16)--flat-8-8-4-1 vib_x3 10, 150

8 ANN Regression (16,64)- (10,16)--flat-8-8-4-1 ae_workpiece 16, 64

9 ANN Regression (16,64)- (10,16)--flat-8-8-4-1 ae_spindle 16, 64

10 ANN Regression (10,50)- (10,16)--flat-8-8-4-1 mic 10, 50

11 Auto-Encoder 50-10-50 vib_sum 1, 50

12 Auto-Encoder 150-10-150 vib_x3 1, 150

13 Auto-Encoder 50-10-50 mic 1, 50

14 Auto-Encoder 64-32-16-4-16-32-64 ae_workpiece 1, 64

15 Auto-Encoder 64-32-16-5-16-32-64 ae_spindle 1, 64

16 ANN Regression (10,50)-(10,16)-flat-drop0.5**-16-8-4-1 auto_vib_sum 10,10

17 ANN Regression (10,50)-(10,16)-flat-drop0.5-16-8-4-1 auto_vib_x3 10,10

18 ANN Regression (10,50)-(10,16)-flat-drop0.5-16-8-4-1 auto_mic 10,10

19 ANN Regression (16,64)-(16,16)-flat-drop0.5-16-8-4-1 auto_workpiece 16, 4

20 ANN Regression (16,64)-(16,16)-flat-drop0.5-16-8-4-1 auto_spindle 16, 5

21 LSTM Regression (15,50)-32-drop0.5-32-drop0.5-16-8-1 vib_sum 15, 50

22 LSTM Regression (15,50)-32-drop0.5-32-drop0.5-16-8-1 vib_x3 15, 50

23 LSTM Regression (15,50)-32-drop0.5-32-drop0.5-16-8-1 mic 15, 50

24 LSTM Regression (16,64)-32-drop0.5-32-drop0.5-16-8-1 ae_workpiece 16, 64

25 LSTM Regression (16,64)-32-drop0.5-32-drop0.5-16-8-1 ae_spindle 16, 64

26 LSTM Classifier (15,50)-64-drop0.5-64-drop0.5-32-16-6 vib_sum 15, 50

27 LSTM Classifier (15,50)-64-drop0.5-64-drop0.5-32-16-6 vib_x3 15, 50

28 LSTM Classifier (15,50)-64-drop0.5-64-drop0.5-32-16-6 mic 15, 50

29 LSTM Classifier (16,64)-64-drop0.5-64-drop0.5-32-16-6 ae_workpiece 16, 64

30 LSTM Classifier (16,64)-64-drop0.5-64-drop0.5-32-16-6 ae_spindle 16, 64

31 LSTM Regression (15,50)-32-drop0.5-32-drop0.5-16-8-1 vib_sum 15, 50

32 LSTM Regression (15,50)-32-drop0.5-32-drop0.5-16-8-1 vib_sum 15, 50

* : flat represents dimensionality reduction from a 2-D layer to a 1-D layer.

**: dropout portion of the preceding layer

***: left-shifting augmentation

****: auto-encoder architecture

*****: Keras Functions - mse: mean squared error; acc: accuracy estimation or deviation from true
value; cce: categorical cross-entropy; cac: categorical accuracy, or portion of prediction max values
which matches the true value.

135

ID extras epochs batch-size loss-function accuracy-function

1 aug*** 50 1024 mse***** mse

2 aug 50 1024 mse mse

3 aug 50 1024 mse mse

4 aug 50 1024 mse mse

5 aug 50 1024 mse mse

6 aug 50 1024 mse mse

7 aug 50 1024 mse mse

8 aug 50 1024 mse mse

9 aug 50 1024 mse mse

10 aug 50 1024 mse mse

11 simple**** 10 1024 mse acc

12 simple 10 1024 mse acc

13 simple 10 1024 mse acc

14 deep 10 1024 mse acc

15 deep 10 1024 mse acc

16 aug 50 128 mse mse

17 aug 50 128 mse mse

18 aug 50 128 mse mse

19 aug 50 128 mse mse

20 aug 50 128 mse mse

21 aug 50 512 mse mse

22 aug 50 256 mse mse

23 aug 50 256 mse mse

24 aug 50 512 mse mse

25 aug 50 512 mse mse

26 aug 50 256 cce cac

27 aug 50 256 cce cac

28 aug 50 256 cce cac

29 aug 50 256 cce cac

30 aug 50 256 cce cac

31 aug+ weights 50 128 mse mse

32 aug 50 128 mse mse

136

ID acc loss val-acc val-loss best val-acc

1 267.8612 267.8612 538.7658 538.7658 505.6175

2 225.3065 225.3065 475.1323 475.1323 471.5322

3 575.0486 575.0486 466.0967 466.0967 463.9799

4 531.1392 531.1392 316.1533 316.1533 305.8719

5 624.0636 624.0636 853.4193 853.4193 805.3639

6 243.8391 243.8391 483.3451 483.3451 468.42054

7 212.6319 212.6319 488.3767 488.3767 488.3767

8 430.6961 430.6961 303.6426 303.6426 293.165

9 526.6828 526.6828 313.7809 313.7809 313.7809

10 597.2996 597.2996 886.4907 886.4907 822.6655

11 0.9401 0.0673 0.9215 0.1235 0.9215

12 0.9425 0.0172 0.9257 0.028 0.92737

13 0.9317 0.003 0.9323 0.0031 0.9323

14 0.9024 483.5302 0.9183 403.732 0.92032

15 0.9815 3982.7846 0.9783 3975.0151 0.97831

16 313.439 313.439 583.2678 583.2678 509.45907

17 324.1524 324.1524 640.1625 640.1625 560

18 671.3022 671.3022 853.2402 853.2402 818.04535

19 599.0172 599.0172 470.7251 470.7251 461.7848

20 766.4859 766.4859 742.4829 742.4829 742.36844

21 210.4981 210.4981 421.2085 421.2085 284.29948

22 136.7346 136.7346 524.6397 524.6397 176.15272

23 614.9895 614.9895 846.2655 846.2655 771.1928

24 485.4925 485.4925 721.6194 721.6194 420.97011

25 589.6677 589.6677 978.1514 978.1514 441.0024

26 0.8153 0.4458 0.7176 0.6596 0.78038

27 0.8518 0.3654 0.791 0.4726 0.81738

28 0.445 1.3327 0.1152 1.8604 0.13881

29 0.6709 0.8197 0.5924 1.0481 0.65988

30 0.4646 1.26 0.4624 1.2604 0.56453

31 277.7136 145.0843 364.6487 364.6487 260.5499

32 189.8475 189.8475 544.6927 544.6927 192.73205

