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RESUMO 

 

O projeto visa implementar um sistema para predição de desgaste de ferramenta em 

processos de fresamento de alta precisão.  A abordagem escolhida utiliza dados de 

sensores obtidos de testes reais realizados em uma fresadora CNC de alta precisão 

combinado com medições de desgaste no flanco da ferramenta realizadas via 

microscópio. Com objetivo de selecionar as melhores metodologias para o 

desenvolvimento do projeto, uma cuidadosa pesquisa do estado da arte foi realizada. 

Nesta fase, as arquiteturas de deep-learning e estudos envolvendo do fenômeno de 

desgaste foram revisadas no intuito de selecionar a abordagem mais apropriada para 

a resolução do problema. O sistema de aquisição implementado grava dados de: 

potência consumida pelo eixo-árvore, emissão acústica e hipersônica, forças 

aplicadas na ponta da ferramenta e vibração no corpo do eixo-árvore. Portanto, o 

documento aborda o setup de hardware e software para o sistema de aquisição 

utilizado na máquina, planejamento dos parâmetros do processo e análise dos dados 

coletados. Além disso, o projeto e implementação do sistema de aquisição é descrito. 

Depois disso, o projeto e implementação do módulo de pré-processamento é relatado. 

Depois que os dados dos experimentos são adquiridos, os arquivos são processados 

por este módulo, que extrai informação de emissão acústica, ultrassônica, e vibração 

para gerar os datasets. Nessa etapa, todos os datasets são gerados utilizando 

transformada de Fourier, considerando que um dos objetivos do projeto é comparar o 

desempenho de diferentes sensores no problema de predição de desgaste de flanco. 

Ao final, o módulo de predição é descrito. O documento discute o uso de diferentes 

arquiteturas de redes neurais, técnicas para extração de features e optimização do 

treinamento. Para o projeto, três diferentes arquiteturas de deep-learning foram 

escolhidas para a tarefa de predição. O projeto compara o desempenho de cada 

arquitetura e cada sinal usado. Os resultados mostraram uma performance superior 

para os dados de vibração em combinação com as redes LSTMs, alcançando 81% de 

precisão no modo de classificação, e 176 µm de erro quadrático médio no modo de 

regressão. 

 

Palavras-chave: Predição de Desgaste de Ferramenta. Redes Neurais Artificiais. 

Deep-Learning. Fresamento de Alta Precisão. Sistema de Aquisição. 



 

ABSTRACT 

 

The project is aimed to implement a system for tool wear prediction for high precision 

milling process. The approach chosen uses sensor data gathered from real test 

performed in a CNC machine center for precision milling combined with microscope 

measurement of tool flank wear. In order to select the best methodologies for the 

project development, a careful state of the art research was carried out. On this step, 

the deep-learning architectures and researches involving tool wear phenomena were 

revised in order to select the most appropriate approach to solve the problem. The 

acquisition software system implemented records data coming from: the spindle power 

consumption, acoustic and ultra-sonic emission, forces applied in the tool tip and 

vibration of the spindle body. Therefore, the document englobes the hardware and 

software setup for the acquisition system on the machine, process parameters 

planning and analysis of the data collected. Besides that, the project and 

implementation of the acquisition software is described. After that, the pre-processing 

module project and implementation is reported. After the experiment data is gathered, 

the data files are processed by the pre-processing module, which firstly extracts 

information from the acoustic, ultra-sonic emission, and vibration files in order to 

generate the datasets. On this steps, all datasets are generated using fast Fourier 

transformation, once one of the goals of this work is to compare the performance of 

different sensors in the flank wear prediction task. At last, the prediction module is 

described. The document discuss the use of different neural network architectures, 

feature extraction and training optimization techniques. For the project, three different 

deep-learning architectures were chosen for the prediction task. The project compares 

the performance between each architecture and each used signal. The results showed 

a superior performance for the vibration data in combination with LSTMs achieving 

81% of accuracy on the classification approach and a mean squared error of 176 µm 

on the regression approach. 

 

Key-words: Tool Wear Prediction. Artificial Neural Networks. Deep-Learning. High 

Precision Milling. Acquisition System. 
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1. INTRODUCTION 

1.1. Motivation 

The metal cutting industry is one of the oldest and most important 

manufacturing processes of our society. It is present in almost any sector of the market 

over almost all production systems nowadays. Inside metal cutting, milling is one of 

the most relevant machining processes, not only because of its power to produce 

complex workpiece profiles, but also because of its flexibility in manufacturing different 

types of goods with the same equipment [3]. 

The increasing demand for customized and flexible production has led the 

machining industry to new challenges at the same time as increasing precision is 

demanded [5]. Furthermore, even though this field of production exists for decades, it 

still pursues methods to decrease downtime and production cost, preventing accidents 

and equipment damage. Besides that, themes like chattering control, tool condition 

monitoring and tool breakage detection are still addressed as unsolved questions. 

In order to attend the mentioned new and old demands, the metal cutting 

industry is moving gradually towards the complete integration of the shop floor. Big 

equipment providers are migrating to open communication frameworks; the presence 

of smart components is increasing every year; open frameworks have been developed 

for acquisition, monitoring and control [5]. 

Allied with those resources, the Big-Data age also came as a handy tool in 

order to provide new solutions for the machining process. In the context of integrated 

manufacture, acquired data now can be stored and used as elements for new powerful 

tools to monitor and optimize such processes. The usage of Big-Data with Machine 

Learning (ML) is causing recently a revolution in the industry [37]. Once the integration 

of the shop-floor is implemented and data is available, a new range of solutions 

becomes possible.  

All these trends can be perceived as small steps towards a new way of 

producing. However, there is still work required in order to combine technologies like 

smart-sensors, big data-sets and smart systems. Furthermore, system for position 

error compensation, tool condition monitoring, tool breakage detection and thermal 

compensation present limitations or need adjustments in order to be transported to 

industrial environment [5].  
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1.2. Fraunhofer IPT 

Allying the upcoming equipment and systems produced in the market with new 

key technologies like ML and Big Data is the main goal of Fraunhofer Institut für 

Produktionstechnologie (Institute for Production Technology – IPT) – see Figure 1. The 

institute is known for providing technology systems for production all around the world. 

Figure 1 – Fraunhofer Institute for Production Technology. 

 

Source: [1] 

Fraunhofer is widely spread across the world with more than 80 working units, 

most of them located in Germany. It has partnership with big companies in the fields 

of machining, automobilists and aero-space industry. 

The IPT Institute has the task of transporting technology from the academic 

environment directly into industrial practice as itself defines [1]. The focus is to provide 

reliable tools for the specific tasks required from customers. In other words, the projects 

use updated state of the art together with high technology equipment in order to 

develop innovative systems for the industrial environment.  

The goal of the Precision Technology and Automation Department – the place 

where this project was developed – is to provide solution for high precision machining. 

As the name suggests, this branch demands smaller tolerance levels and better 

positioning control to maintain the desired precision. So, error sources like thermal 
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deflection, chattering, tool wear and positioning offset are more harmful to those 

processes in comparison to conventional operations. 

In order to study those entities, it is necessary to acquire information from 

sensors and the machine PLC system. Therefore, works regarding high frequency data 

acquisition are also carried out in the department.  

 

1.3. Problem Description 

The present work is aimed to develop a system using ML or more precisely 

Deep Learning (DL) – which is going to be defined afterwards – in order to generate 

models for tool flank wear prediction. 

Flank wear can be defined as the loss of material on the edge of the cutting 

tool, caused by the constant contact between the tool and the workpiece. As described 

by [2] the reasons behind tool wear can be the shock between tool and workpiece, 

abfraction on the cutting edge and imperfections on the tool composition. Usually it 

increases gradually during the working time of the tool. 

In high precision milling process, the effects of tool wear are intensified due to 

the small tolerance level required – in the order of micrometers. Since the tool wear 

affects the shape and sharpen of the tool, the side effect is transferred to the 

workpiece. That is, deterioration of the tool may provoke undesired vibration on the 

system and poor surface quality. Resulting in rework or even rejection of the 

manufactured product. 

Besides that, the tool cutting power decreases with the increase of tool wear, 

consequently increasing the load on the machine. Which can also damage the 

equipment. 

By monitoring the tool wear phenomena, it is possible to determine the exact 

moment for the tool change. However, measuring directly this entity in the industrial 

environment is a very costly procedure, which requires interrupting the process, 

removing the tool and using special equipment to check its status. Such procedures 

are undesired in those environments. 

In practice, an expert operator replaces the machine tool after a given lifetime 

threshold. This method is low accurate and can cause problems. On one hand, 

overusing a tool can damage workpiece and machine as previously described. On the 

other hand, underusing it will generate extra direct and undirect (setup time) costs [3]. 
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Studies reported that 6-20% of the downtime in milling is caused by tool wear 

and tool breakage [3, 4]. Some authors ranked such factors as the biggest barrier in 

the actual manufacture industry. In [5], the author presented the concept of smart 

spindles, which is a new generation of rotary spindles developed to fulfill the most 

important tasks for the Industry 4.0 incoming requirements of flexibility and quality. In 

the third chapter, when approaching the key technologies required on those new 

devices, the author first mentioned the importance of Tool Condition Monitoring (TCM). 

The text highlighted it as one of the critical factors in order to achieve high accuracy 

and efficiency in milling, once it is directly related to the performance of the machine. 

Also related to the topic, according to [4], a good TCM system integrated to 

the milling machine can increase the lifetime of the cutting tool on 10-50%, shorting 

the downtime and cutting costs in the order of 10-40%. 

Zhou and Xue [3] pointed out that studies involving TCM have been developed 

for more than 30 years. Although there is still not a consensus about which is the best 

way to measure and control the tool wear progress on milling processes. As direct 

measurement for the issue is out of hand, the indirect measurement is then 

recommended. 

1.4. Objective 

In order to build the referred prediction module, deep learning techniques will 

be studied and employed in the project. However, in order to use such data driven 

technique, It is mandatory to possess data related to the process. Therefore, a set of 

experiments was designed in order to generate this data for the training step. The 

experiments employed on the machine gather information from multiple sensors 

simultaneously. 

The goal of this work is to implement prediction models using different DL 

architectures. On this way, each combination of sensor data and DL architecture will 

be tested. Finally, by analyzing the performance of each model trained for the task, the 

most deterministic sensor data and also the most suitable technique can be identified. 

Furthermore, the presented results provide further understanding about the signal 

behavior for the studied phenomena. 
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As a result, this project will present the following elements: 

• A sensor system installation for studying the tool wear phenomena 

during milling operation; 

• The project and implementation of the acquisition system responsible 

for the end-point sensors data acquisition; 

• A dataset containing all information gathered during the experiments 

performed on the milling machine; 

• And finally, a software programmed to train the prediction models. This 

system pre-processes the data, extracts the relevant features, and 

trains the final models using different approaches.  

1.5. Monography Structure 

Chapter 2 presents a literature review about the relevant knowledge fields 

applied in this work, including machine learning, deep-learning, TCM and tool wear 

prediction.  

On Chapter 3 the experiment step is reported, giving details about the 

hardware and software setup. The chapter also presents the component description 

for all employed sensors.  

Chapter 4 talks about the Acquisition software project and implementation, as 

well as the results achieved by the system. 

Chapter 5 presents a signal analysis of the sensor data gathered on the 

experiments. Following by the pre-processing strategy for extracting information from 

them. 

Chapter 6 presents the AI modules. Listing the algorithms, methods used and 

training results providing a detailed comparison between each trained prediction 

model. 

The text is concluded in chapter 7, which gives the results and limitations of 

the work. The author finishes the document by listing suggestions for future works. 
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2. LITERATURE REVIEW 

2.1. Artificial Intelligence 

Throughout history Artificial Intelligence (AI) has received different definitions. 

Russel and Norvig [6] classified AI into 4 different categories: systems that thinks like 

humans, system that act like humans, system that thinks rationally and systems that 

act rationally. Between the given definitions, one of the most implied is “The branch of 

computer science that is concerned with the automation of intelligent behavior.” 

Or in other words, it is the field of study that aims to program computers to perform 

actions which demand human intelligence. 

Machine Learning (ML), as described by Arthur Samuel [7], is the “Field of 

study that gives computer the ability to learn without being explicitly programmed.” On 

[8] the author also defined it as “A Computer program is said to learn from an 

experience E with respect to some task T and some performance measure P, if its 

performance on T, as measured by P, improves with experience E.” In general terms, 

the second definition is a formalization of the first one.  

[9] explained better the process of learning when saying the ML algorithms use 

sample data called “training data” in order to generate knowledge models. In order to 

generalize the observed examples, the algorithm uses statistical tools for regression 

and decision making instead of arithmetic rules. 

ML is divided into mainly two categories [9][10]: supervised and unsupervised 

learning: 

• Supervised learning: On this mode the reference data is available to the 

algorithm. So, the computer has a dataset containing inputs and target 

outputs. The process of learning happens by presenting the dataset to 

the model multiple times. The number of samples mapped correctly 

from input to output determine the accuracy of the model. The main 

examples of this method are classification and regression. 

• Unsupervised learning: on this mode, the reference data is not available 

to the algorithm. Therefore, the task consists in observing and finding 

patterns between different inputs. By using this inference mechanism, 

it is possible to discover structures common to each group on the 

dataset. Clustering is the most typical example of this approach. 
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2.1.1. Artificial Neural Networks 

The most popular approach for supervised learning is the Artificial Neural 

Network (ANN) [11]. Those networks have been used in a wide variety of problems 

with success due to its capacity of generalization in presence of noisy input data [3]. 

Because of its massive parallelization, the mechanism is powerful in representing 

strong non-linear functions [10]. By doing so, ANNs can interpret problems and perform 

decisions without any assumption of the data’s structure [12]. 

An ANN, as explained in [13], uses a representation of human brain in order 

to process information. For this task, it has a model of an artificial neuron containing 

input weights, an activation function and an output, see Figure 2. Primarily, the inputs 

of the neuron are multiplied by their respective weights. Then, the result is summed up 

and passed through the activation function. This simple representation can also be 

translated into equation 1. 

Figure 2 – Simple model of an Artificial Neuron. 

 

Source: [13] 

𝑦 = ⁡𝑓 (∑𝑥𝑖

𝑛

𝑖=0

. 𝜔𝑖)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 

 

So, a neural network is nothing but a pool of neurons, grouped in a certain 

number of layers determined by the expert. Each node receives the output of all nodes 

of the preceding layer and its output will feed all the neurons in the following layer. 

Figure 3 presents an example of such. Therefore, the information flows through three 

different types of layers: the input layers, which receive the input vector; the hidden 
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layers located in the middle of the network; and the output layer, which determines the 

prediction value. 

Figure 3 – Example of an ANN. 

 

Source: [13] 

In general terms, the input and output layer are fixed in the algorithm´s 

architecture, since they process the input and target output vectors respectively. 

Therefore, by raising the size and depth of the hidden layers it is possible to increase 

the representation power of a network as a total [14]. On the other hand, a bigger 

network enlarges the time and dataset size required to train it. As a result, projecting 

an ANN or any of its variants becomes an intuitive and context specific task [3]. 

The procedure for training ANNs consists of presenting the training examples 

to the network 𝑛 times – called epochs – and using the back-propagation algorithm to 

adjust the weights 𝜔𝑖,𝑗 of the artificial neurons. [15] revised the back-propagation 

algorithm and its popular variants since they are widely used in ML models. The author 

explained the algorithm for training neural networks in the following steps as shown in 

Figure 4. The 2 most important steps performed in such algorithm consists of: 

• Forward step: a data example is presented and the output is calculated 

by the network; 

• Backward step: an error signal is calculated from the difference 

between desired and predicted outputs. This signal, calculated by the 

loss function is back-propagated using a gradient-descent algorithm 

through the network until the input layer. 
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Figure 4 – Representation of back-propagation algorithm. 

 

Source: [6] 

So, considering 𝐿(. ) a loss function to calculate an error value between the 

network output 𝑦̅ and the target values 𝑦 as defined by Equation 2. 

𝐸 = 𝐿(𝑡, 𝑦)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 

Given 𝜔 the weights of a neuron 𝑗 with 𝑛 inputs, 𝑛𝑒𝑡𝑗 is defined as the input of 

the activation function of the referred neuron 𝑗 as described in Equation 3. 

𝑛𝑒𝑡𝑗 =⁡∑𝜔𝑘𝑗

𝑛

𝑘=0

⁡⁡⁡⁡⁡⁡(3) 
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The 𝛿(. ) function calculates the gradient function of the error signal. The value 

calculated by Equation 4 will be further used to apply the correction on the weights of 

the network. 

𝛿𝑗 =
𝜕𝐸

𝜕𝑜𝑗

𝜕𝑜𝑗

𝜕𝑛𝑒𝑡𝑗
=

{
 
 

 
 𝜕𝐿(𝑜𝑗 , 𝑦)

𝜕𝑜𝑗

𝑑𝑓(𝑛𝑒𝑡𝑗)

𝑑𝑛𝑒𝑡𝑗
, 𝑖𝑓⁡𝑗⁡𝑖𝑠⁡𝑎𝑛⁡𝑜𝑢𝑡𝑝𝑢𝑡⁡𝑛𝑒𝑢𝑟𝑜𝑛

(∑ 𝜔𝑗𝑙𝛿𝑙
𝑙⁡∈⁡𝐿

)
𝑑𝑓(𝑛𝑒𝑡𝑗)

𝑑𝑛𝑒𝑡𝑗
, 𝑖𝑓⁡𝑗⁡𝑖𝑠⁡𝑎𝑛⁡𝑖𝑛𝑛𝑒𝑟⁡𝑛𝑒𝑢𝑟𝑜𝑛

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

In Equation 4 the derivative of the error is calculated from the derivative of the 

loss function for output neurons. When determining 𝛿 for the inner neurons, the error 

is calculated by multiplying the weights and 𝛿 values of the following layer 𝐿. On this 

way, the network is corrected from the output to the input layer. The term⁡
𝑑𝑓(𝑛𝑒𝑡𝑗)

𝑑𝑛𝑒𝑡𝑗
 is the 

derivative of the chosen activation function related to its input 𝑛𝑒𝑡𝑗. 

The correction value ∆𝜔𝑖𝑗 is then calculated multiplying a value 𝜇 

corresponding to the learning rate. By changing the value of this factor, the network 

will present a more aggressive or soft behavior along the time. See Equation 5. 

∆𝜔𝑖𝑗 = −𝜇
𝜕𝐸

𝜕𝜔𝑖𝑗
= −𝜇⁡𝑜𝑖𝛿𝑗 ⁡⁡⁡⁡⁡(5) 

 

For the back-propagation algorithm to work, the activation function 𝑓(∗) must 

be differentiable in all its extent. This property will guarantee a smooth correction vector 

applied to the weights of the network throughout the training epochs.  

In the literature, we can find different functions used for activating the neurons. 

Their performance depends on the required application, output format and numeric 

cost in computing the forward and backward steps. Figure 5 shows some common 

examples of such functions. 

It is common to find in the scientific and industrial world other procedures to 

modify the conventional back propagation algorithm. These changes are aimed to 

optimize its performance. Examples are batching the input data processed in each 

forward and backward steps; using momentum or any other not-fixed learning rate on 

the back-propagation step; and removing dead neurons to speed up convergence. 
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Figure 5 – Examples of activation functions. 

(a) sigmoid; (b) tanh; (c) Rectified Linear Unit; (d) linear. 

 

Source: [6] 

2.2. Deep Learning 

On the literature review done in [16], the author listed five different definitions 

for this field of knowledge. From which, some of them are: 

I. “A class of machine learning techniques that exploit many layers of non-

linear information processing for supervised or unsupervised feature 

extraction and transformation, and for pattern analysis and 

classification.” 

II. “Deep Learning is a set of algorithms in machine learning that attempt 

to learn in multiple levels, corresponding to different levels of 

abstraction. It typically uses artificial neural networks. The levels in 

these learned statistical models correspond to distinct levels of concept, 

where higher-level concepts are defined from lower-level ones, and the 
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same lower-level concepts can help to define many higher-level 

concepts.” 

In [17] the author defined Deep Learning (DL) as “a class of machine learning 

algorithms that uses multiple layers to progressively extract higher level features from 

the raw input. For example, in image processing, lower layers may identify edges, while 

higher layers may identify the concepts relevant to a human such as digits or letters or 

faces.” 

In other words, DL can be perceived as a set of tools which usually employ 

neural networks in their core mechanism. Therefore, their advanced structures are 

capable to interpret superior classes of complex data. By using multiple levels of 

abstraction, deep neural networks (DNN) are able to succeed in handling problems 

where simple neural networks have failed [8].  

In face of highly noisy and complex data, simple ANNs must have a higher 

number of layers and neurons in order to interpret the data features. However, the 

training algorithm cannot fit the model in such cases, sometimes because of the 

unbearable dataset size, or most likely because the gradient-descent gets trapped into 

a local minimum point. 

DNNs proved to outperform ANNs in problems like: image classification, 

pattern recognition, speech recognition and natural language processing [8, 17]. 

Recently those algorithms were successfully applied to signal processing. So, in the 

following sub-sessions it will be explained some DNN algorithms which will be used in 

the scope of this project. 

2.2.1. Long Short-Term Memory  

Long Short-Term Memory (LSTM) is a special type of Recurrent Neural 

Network (RNN). RNNs are neural networks projected to interpret sequential data. 

Normal ANNs calculate output values based only on the data fed into the network, so 

these networks have problems when the past inputs are also important to determine 

the current output.  

In RNNs, the current input and the hidden state are used in order to generate 

the output. So, the architecture of the RNN is very similar to the so-called vanilla ANNs. 

The difference is that now, the network must train also to keep a hidden state in 

memory. By using the past hidden state combined with the actual input value, the 

module can determine the next output and hidden state [18]. Figure 6 shows a 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Algorithm
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schematic of an RNN, the Network 𝑁 processes the input 𝑥 producing the output 𝑦 and 

the hidden state ℎ, which will be used together with the next input to calculate the new 

output. 

Figure 6 – Schematic of a Recurrent Neural Network.  

  

 

The RNNs are particularly interesting when processing sequential data. An 

example which is suitable for RNNs is machine translation. Once a sentence is 

processed sequentially by feeding into the network the chars of the expression. 

Although, [19] showed the difficulties in learning long-term relations through 

Gradient-descent algorithms in RNNs. In short, the neurons responsible for 

maintaining the hidden state of the RNN are trained using one-step back-propagation. 

Therefore, it is easy to lose information from the hidden state when a task requires 

long-term memory once the network weights will be updated and the hidden state will 

be calculated a couple times. 

The LSTM architecture is aimed to solve the lack of mechanisms to store long-

term information. See Figure 7. The LSTM is a variation of the RNN, therefore it also 

process data sequentially. The upper line of the network corresponds to what’s called 

cells (𝐶). It is responsible for storing long-term information. As defined by [20], the 

LSTM possess three gates incorporated in its architecture, which actually are NN 

layers with Sigmoid activation.  

The first gate 𝜎1 is responsible for selecting the information on  the cell to be 

excluded, or possibly replaced. The second gate 𝜎2 selects the data which will be 

included on the cell. All gates use for their tasks the concatenated vectors 𝑥𝑘|ℎ𝑘−1.  
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Figure 7 - Schematic of a LSTM network.  

 

Source: [20] 

The third network processes the information from the state and input in order 

to determine the new values which will be added to the cell. The output of this network 

is then multiplied by the second gate output vector and then added to the cell vector. 

The prediction value of the LSTM will then be calculated from the cell value, now 

updated with the new input. But, before selecting the output from the cell, the vector 

will be filtered out using a single 𝑡𝑎𝑛ℎ⁡layer in order to bound the values −1 < 𝑐𝑘𝑖 < 1. 

Finally, the third gate selects the new output and hidden state vectors. 

Therefore, the information is processed in an LSTM using a chain mechanism. 

That is, short-term information navigates in the hidden state line, while long term 

relations on the dataset are stored and recovered from the cell line. See Figure 8. 

Figure 8 – Representation of information flow in LSTM network. 

 

Source: [20] 
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Training the LSTM consists in training the four previously described networks 

together. In order to predict correctly, the LSTM gates must learn when to edit values 

on the cell. One important thing to pay attention to is the fact that the network now have 

to consider past computations, instead of one single back-propagation step as usually 

applied in simple ANNs. In this sense, [20] developed the Back-Propagation-Through-

Time (BPTT) algorithm. Which apply the error gradients backward in time. 

The BPTT algorithm can be perceived as an application of the Calculus chain 

rule when back propagating the error values in time. Theoretically, the BPTT works by 

unrolling all processed steps. Each step back in time holds one fed input, one copy of 

the network and one output. Errors are then calculated and accumulated for each step. 

The network weights are then updated with the accumulated error.  

In other words, each step back in time taken by the BPTT may be seen as an 

additional layer, and the hidden state signal of the last step is taken as an input on the 

subsequent step. Figure 9 summarizes the working principle of the BPTT algorithm. 

Figure 9 – Steps taken from BPTT algorithm for weight updating. 

 

Source: [20] 

Computing the BPTT algorithm for n steps requires n weight correction 

updates and the algorithm must calculate the gradient n times for the network. On one 
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hand, the computation of this algorithm is numerically expensive. On the other hand, 

computing multiple gradients can cause weights to vanish or explode. And make slow 

learning and model skill noisy. 

Therefore, a variation of this algorithm called Truncated Back Propagation 

Through Time (TBPTT) is used. The new variation requires 2 parameters: 𝑘1, the 

number of computing steps per update; and 𝑘2, the number of timesteps to compute 

the BPTT. The new algorithm then compute the forward step for 𝑘1 steps. After this, 

the BPTT is calculated for the last 𝑘2 computations of the NN. 

The LSTMs have proved to be efficient in memorizing sequential features and 

producing good results in fields like image generation, speech recognition and natural 

language processing. Their memory capacity have been a handy tool for a wide variety 

of problems. 

2.2.2. Auto-Encoders 

Auto-encoder is a Neural-Network architecture which tries to reproduce the 

same values from the input on the output [21]. Although it looks useless to have a tool 

to replicate values on the output, auto-encoders are a powerful unsupervised-learning 

tool for dimensionality reduction and feature extraction. This is because when it comes 

to this NN architecture, we are not interested in the network output layer. Instead, the 

interest resides entirely on the middle layer of the network. See Figure 10. 

Auto-encoders are typically divided into 2 regions: the encoder, responsible for 

mapping the input to the so-called code – output of the middle layer in Figure 10; and 

decoder, responsible for interpreting the code and reconstructing the input vector. 

Figure 10 – Representation of a simple auto-encoder. 

 

Source: [21] 
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As the reader can notice, the encoder’s output has (always) a lower 

dimensionality when compared to the input size. This fact is particularly important to 

auto-encoders because the main goal is not to reproduce perfectly the input. Instead, 

the size of the code is kept smaller so the auto-encoder can only replicate 

approximately the input vectors.  

Through this process, the encoder must learn a consistent way to compress 

the input vector, losing a minimum amount of information. Furthermore, the encoder 

ends up learning how to give priority to certain features on the input, providing valuable 

data interpretation. 

The resulting logic is simple. If the decoder can create similar input vectors 

looking only at the code, this means the generated code has the most relevant 

information about the data. 

One common application of Auto-encoder in Deep learning consists of its use 

for feature selection. So, an input is compressed by an encoder before it is presented 

to the prediction network. On this way, the prediction model must learn how to interpret 

the code and perform its task, while the auto-encoder is responsible for dimensionality 

reduction, feature extraction and noise suppression of the dataset. 

2.3. Tool Wear Prediction and Tool Condition Monitoring 

When approaching the tool wear problem, [2] described some effects of the 

tool wear in the milling. According to the author, the flank wear is the prevalent wear 

type suffered by cutting tools on this type of process. Flank wear is defined as the loss 

of material in the relief face of the tool, caused mainly by the rubbing effect of this with 

the workpiece material.  

[31] described some tool wear types which can be observed during the usable 

lifetime of a cutting tool. See Figure 11. When approaching the tool wear problem in 

High Speed Milling, the author pointed out that the flank wear and central wear (in 

spherical tools) are the most influencing types of wear in the progress of tool 

deterioration. 
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Figure 11 – Types of tool wear in milling tools. 

 

Also, when describing the tool wear progress characteristics [31], the 

document explained that on the beginning of the lifetime, the tool presents a first wear 

on the top of the cutting edge by a deformation on the cutter edge material. This 

deformation develops intensively for the first 30 minutes of operation. After this point, 

it can be observed a time interval when the wear stabilizes, and the surface quality 

even improves.  

The flank wear continues to develop gradually until the protective coating of 

the tool surface is damaged. As a consequence, heavy material losses on the tool 

edge allied with an increasing wear surface provoke a rapid increase on the cutter load. 

This effect also results in increasing friction between tool and workpiece and high tool 

temperature. The result of this process is a fast development of the tool wear, the high 

edge temperature provokes other types of wear like crater and chipping. The 

degradation of the tool develops fast until it must finally be replaced. See Figure 12. 

As properties like workpiece surface quality and process efficiency are strongly 

related to the tool condition, and this is strictly related to the tool wear progress, the 

study of TCM systems recently earned high attention on the field of metal cutting. As 

mentioned before, determining the right time for tool replacement plays an important 

role in order to minimize downtime and production costs. Furthermore, an accurate tool 

monitor can help operators to avoid possible damages on the equipment. 

As methods for direct measurement of flank wear are usually expensive, and 

time inefficient, researches have been moving towards indirect measurement 

techniques. However, accessing this phenomena by indirect methods brings the 

challenge of dealing with the problem of noisy data. 
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Figure 12 – Tool edge showing allowed flank wear (a) and exceeded crater wear (b). 

(a)       (b) 

Source: [31] 

On the review done by [4], the author approached the main methods for 

indirect sensing of tool wear. The first method involved cutting force measurement, 

usually performed through the use of table dynamometers. The paper emphasizes the 

problem of variability of the force signal related to the spindle position, once the signal 

has peaks on the entry and exit of each tooth on the material. This behavior can easily 

lead to false alarms when employing conventional methods like using a threshold 

criteria for the tool condition estimation. 

Another reported method is the usage of acoustic emission (AE) sensing. As 

the flank wear develops, studies have reported an increase on the energy emitted by 

the AE signal, making it a handy tool for detecting tool wear and breakage. It was also 

explained that the prevalent frequency of those signals got higher on the end of tool 

life. On this case, mechanisms involving RMS, skew and fast Fourier transform (FFT) 

of such signals are usually applied in order to evaluate the output presented by those 

sensors. 

Another source of information reported in [4] is the vibration sensing. This was 

usually carried out by installing accelerometers on a single tooth of the milling tool. 

Therefore, features can be identified when analyzing the behavior of the signal in some 

different frequency bands. 

Other methodologies can be presented. However, the main point is to observe 

that analyzing those sensor outputs mostly requires developing complex methods for 
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interpreting their information. Therefore, when coming to tool wear in milling, there is a 

high prevalence of statistical and smart system development for decision making. Even 

when mentioning a review published in 2003. 

[5] raised another problem when approaching TCM using threshold criteria. 

The paper pointed to the fact that this methodology is highly dependent on the CNC 

process parameters. So, in order to produce a robust TCM system, the thresholds must 

have a high variety of parameters and complex programmed rules, otherwise their 

accuracy is heavily damaged.  

The author proceeds by mentioning a strong trend in using machine learning 

to overcome this barrier, mainly because of its high generalization capacity. The paper 

reported an increasing usage of ANNs, support vector machines (SVM) and Hidden 

Markov Models (HMM) for the issue. 

On [2] the author used Design of Experiments (DoE) – a statistic method for 

optimization developed by Genichi Taguchi – in order to design a dataset of 20 different 

process parameter combinations. The experiment plan was developed using 3 factors 

and 5 levels. The research used this dataset to train an ANN and fit a polynomial 

function for tool wear prediction using the process parameters as input. For labeling 

the data, a microscope measured the tool condition. The results presented 94% 

accuracy on the polynomial regression, although no test-set was used, which can be 

misleading. 

A similar method was implemented by [35] where also 20 experiments were 

raised using DoE and AE sensing. The author applied ANOVA method in order to 

optimize the cutting parameters aiming to maximize tool life. Similarly, the training did 

not separate a test-set for network performance evaluation. 

Faleh et al. [22] used the spindle power consumption to develop a TCM system 

for drilling. On this method, the stand-still power consumption is decremented when 

the spindle is moving towards the workpiece. On this way, the recorded signal can be 

interpreted as containing only the cutting power consumption. The experiment plan 

and signal analysis was also done using DoE. 

[23] presented a method for TCM which uses an Adaptative Fuzzy Inference 

System for predicting tool wear values based on force indicators. After that, an ANN 

classifies them into two states: fresh or worn. The Fuzzy system looks at the peak force 

of each tooth in order to estimate the wear. The method reported relies on the fact that 
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a broken tooth will not receive load in the milling process while the next tooth will 

receive extra-load.  

The reports in [23] and [24] showed how the forces applied to the table 

dynamometer are strongly related to the spindle position during the cutting process 

(see Figure 13). It is clear in Figure 13 how the signal changes as the tool gets worn. 

Figure 13 – Force signal on a fresh and worn tool. 

 

Source: [23] 

The method developed by [25] uses an impedance layer printed on the tool 

surface in order to identify the wear state. The mechanism consists of measuring the 

impedance of the layer during machine operation. Once the wear level progresses, the 

paths printed in the tool edge are wiped out, changing its impedance value. Therefore, 

by measuring this entity it is possible to estimate the tool condition in real time. 

However, such method involves special tool manufacturing and delicate process setup, 

resulting in poor applicability for the industrial environment. 

The tool wear prediction system for drilling developed in [26] employed a set 

of ANNs for the task. The data is distributed between the ANNs by addressing to a 
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second network the samples which generated poor premature predictions on the first 

one. After addressing and training each model, a third model developed using 

Gaussian Distributions selects the target network based on the input under evaluation. 

So, the author claims that such method does not require tuning the network hyper-

parameters. On this way, the procedure for training a dataset becomes simpler from 

an operator perspective.  

[27] used a Bayesian system in order to produce a tool wear estimator through 

cutting force sensing. The paper examined multiple approaches to preprocess the 

data. A superior performance was achieved by using only the relevant features on the 

training step. Besides that, the paper also shows a superior performance of SVM in 

comparison to vanilla ANNs. 

[28] and [14] applied a combination of fuzzy logic and ANNs for monitoring the 

tool condition. [28] applied AE on drilling while [14] applied cutting force on turning. 

The resulting system in both papers presented accuracy close to 100%. 

The algorithms proposed on [29] and [30] use Hidden Markov Models in order 

to predict tool wear in milling process using force measurement. The force signal is 

pre-processed using wavelet transform. On [30], the approach also post-process the 

results of the HMM using a Gaussian distribution in order to estimate the remaining 

useful life of the tool. On this way, this system gives higher priority to the useful 

remaining time instead of the actual state of the cutters. 

On the review presented in [3], the author listed the recent works regarding 

TCM for milling processes. It reports a drastic increase in methods using ML, mainly 

ANNs as shown in Figure 14.  

One of the reasons pointed out by the author is the simplicity of ANNs when 

compared to other methods. The black-box perspective about the ANNs reduces the 

theoretical knowledge required for the task while simultaneously provides suitable 

generalization power. When concluding the text, the author states deep-learning 

techniques as one of the potential technologies for future works in the field of TCM for 

milling. 
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Figure 14 – Methods recently reported for TCM systems on Milling. 

 

Source: [3]  

2.4. Solution Approach 

The project goal is to develop a system for tool wear prediction for high 

precision milling. As previously described, the flank wear is the most observed type of 

wear in such processes. Furthermore, other types of wear usually occur only on final 

stages of flank wear – under normal cutting conditions. On this way, crater wear, 

chipping or any other wear type can be perceived as consequences of the flank wear 

development. Therefore, flank wear measurement will be adopted for tool wear 

estimation on this project. 

The presented study uses DL techniques in order to interpret the acquired 

sensor signals. As the literature does not present massive information about the 

applicability of such models on tool wear prediction, multiple architectures were tested. 

ANNs, ANNs with auto-encoders, and LSTMs for classification and regression were 

employed. So, the project provides a comparison between those different approaches.  

A set of experiments using different process parameter and direct 

measurement of tool flank wear were carried out in order to generate data for training 

the DL models. Once there is not a consensus about the best measurement strategy 

for the task, a multi-sensor system was installed in the CNC machine. Figure 15 lists 

the project steps for the proposed methodology. 
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Figure 15 – Project Steps. 

 

In order to compare the performance of each sensor employed on the 

experiments, all sensor signals were pre-processed using FFT. The generated 

spectrograms will serve as input for the prediction models. Each prediction model was 

trained using only one sensor data as input. 

The study here presented explores all possible combinations between the 

chosen DL approaches and the pre-processed signals. So, by analyzing the 

performance of the trained models, it is possible identify the most suitable combination 

for the tool wear prediction task.  
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3. EXPERIMENT SETUP 

Physical experiments like the ones reported in the scope of this project 

consume time and resources like machine tools and material. Therefore, the 

experiments were designed to also provide information for studying other phenomena. 

So the data acquired from the experiment will be used for – besides tool wear 

prediction – tool breakage detection, chattering control, power consumption 

optimization, etc. Therefore, the experiment plan employs sensors which will not be 

further used for the prediction models. However, they are important for studying the 

mentioned problems. 

 The acquisition system records data provided from the following sensors: 

spindle force, spindle power consumption, acoustic emission, vibration, ultra-sonic 

emission and encoder position. Furthermore, the acquisition system must be projected 

to acquire all signals together. The following sub-chapters provide details about the 

resources applied on the experiments. 

3.1. CNC Machine 

The machine chosen for the scope of this work is the DMG MORI HSC 55 

linear (see Figure 16), designed for high precision milling. It possesses a Heidenhain 

CNC system with 3 axes. The 10kW spindle rotates up to 28000 RPM,  making it 

appropriate for steel cutting. The encoders responsible for the positioning system have 

5𝜇𝑚 accuracy. Table 1 exposes additional information about the machine. 

Figure 16 – DMG MORI HSC55 linear CNC Machine. 

 

Source: https://www.dmgmori.co.jp/en/top2/ 
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Table 1 – CNC machine Technical information. 

DMG MORI HSC 55 linear 

Component Description Unit 

Axes 3 (X, Y, Z) - 

Working area (X, Y Z) = (450, 350, 400) mm 

Max. Spindle Speed 28000 RPM 

Max. Spindle Power 28 kW 

Max. Spindle Torque 33 Nm 

CNC system HEIDENHAIN iTNC 530 - 

Axes Encoders HEIDENHAIN LC483 - 

Axes Encoder accuracy ±5 μm 

Axes Encoder  measuring step 100 nm 

Source: https://www.dmgmori.co.jp/en/top2/ 

3.2. Sensors 

3.2.1. Cutting Force 

In order to measure the cutting force regardless the tool center position (TCP), 

a device installed on the spindle is more appropriate than devices installed on the 

workpiece table. This is due to the fact that signals recorded from the spindle present 

more accurate information about the tool once they watch the process from a short and 

constant distance to the cutting point. Therefore, the Spike 1.2 tool holder was chosen 

for recording the cutting forces applied on the tool. 

The Spike is a wireless smart tool holder which records flection, pressure and 

torsion applied to the tool (See Figure 17). Table 2 transcribes the main information 

about this device. 

Although this tool holder can present important information about the process, 

its usage is undesired on the industrial environment. The main reasons are its cost, 

downtime on charging the remote unit and component force constraints. However, its 

usage is important once entities like shock and tool breakage can be better evaluated 

through force measurement. 
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Figure 17 – Sensory tool holder Spike 1.2 and recorded signals. 

    

Source: https://www.pro-micron.de/spike/?lang=en 

Table 2 – Spike Tool Holder Technical Information. 

Spike Sensory Tool Holder 1.2 

Component Description Unit 

Signals 

Axial Force N 

Torque Nm 

Bending moment in X/Y Nm 

Temperature °C 

Frequency response 1600 Hz 

Axial Force measuring range 60 kN 

Torque measuring range 400 Nm 

Bending Moment measuring range 400 Nm 

Axial Force resolution <5 N 

Torque resolution <0,03 Nm 

Bending Moment resolution <0,03 Nm 

Source: https://www.pro-micron.de/spike/?lang=en 
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3.2.2. Spindle Power Consumption 

Another factor directly correlated to the cutting force is the spindle power 

consumption. Once it is responsible for providing the required energy to the spindle 

and consequently to the tool, the electrical power consumed by the spindle is directly 

correlated to the cutting forces related to the machining process. Furthermore, power 

consumption measurement does not present most of the inconveniences caused by 

the direct force measurement like the ones listed in last section. 

Due to high electrical current flow on the PLC cables, it is preferable to use a 

non-invasive method for the task. Therefore, the system uses 2 components. Primarily, 

a transformer reduces the amplitude of the electrical current of the cable (see Figure 

18 and Table 3). 

Figure 18 – MBS XCTB 31.35 transformer and its installation on the machine. 

 

Source: https://mbs-ag.com/en/shop/xctb-31-35/ 

Table 3 – MBS XCTB 31.35 transformer technical Information. 

MBS XCTB 31.35  Current Transformer 

Component Description Unit 

Max. Operating Voltage (Ueff) 1,2 kV 

Current Input range (Ieff) 0-150 A 

Current Output range (Ieff) 0-5 A 

Amplitude error (0,05-10kHz) ≤ 2 % 

Amplitude error (10-20kHz) ≤ 3 % 

Phase error (0,05-10kHz) ≤ 2° - 

Phase error (10-20kHz) ≤ 3° - 

Source: https://mbs-ag.com/en/shop/xctb-31-35/ 
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After the current reduction, data is recorded using the Beckhoff EL3783 

terminal. This device reads the three phase voltage and current, and records the power 

consumption. In order to communicate to the terminal, a Twin-cat client software is 

required for handling the communication with the device. The Twin-Cat terminal and 

its installation can be seen in Figure 19. The technical description is found in Table 4. 

Figure 19 – Twin-Cat Power Monitor terminal and its installation. 

 

Source: 
https://infosys.beckhoff.com/english.php?content=../content/1033/el3783/2628174603.html&id= 

Table 4 – Beckhoff EL3783 Terminal Technical Information. 

Beckhoff EL3783 Power Monitor 

Component Description Unit 

Number of inputs 3 x current, 3 x voltage - 

Measuring error < ±0.2% - 

Nominal Voltage Range 690 Vrms 

Voltage Resolution 22.5 mV 

Input Resistance Voltage circuit 1,5 MΩ 

Nominal Current Range 5 Arms 

Current Resolution 281 μA 

Max. permitted Overvoltage ±1270 V 

Max. permitted Overcurrent ±10A peak or 7Arms 

Source: 
https://infosys.beckhoff.com/english.php?content=../content/1033/el3783/2628174603.html&id= 
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3.2.3. Vibration 

The microscopical events provoked by removing material from the workpiece 

– shock, rubbing, abfraction, etc. – also generates vibration and noise. With the 

progress of tool deterioration, the behavior of those entities changes. So the 

experiments also observed the process vibration. 

Unlike conventional methods, the accelerometer was installed in the spindle 

body instead of the workpiece. Besides the setup time, another reason for this choice, 

as previously mentioned in section 3.2.1, is the constant distance to the TCP. Sensors 

installed on the workpiece present more intense signals when the tool cuts material 

close to them. Fact which can be translated as measurement noise. 

Table 5 presents the technical description of the accelerometer chosen for the 

experiment. The sensor designed for industrial operation (Figure 20) records the 

vibration on 3 axes (X, Y and Z) separately. The placement of the component can be 

seen in Figure 20(b). 

Figure 20 - PCB 356B21 Accelerometer and its installation. 

(a) (b) 

Source: https://www.pcb.com/products?model=356b21 
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Table 5 - PCB 356B21 accelerometer technical Information. 

PCB 356B21 Accelerometer 

Component Description Unit 

Axes 3 (X, Y, Z) - 

Frequency range (Y and Z) 2-10000 Hz 

Frequency range (X) 2-7000 Hz 

Measurement Range ±4905 m/s2 

Sensitivity 1,02 mV/(m/s2) 

Broadband Resolution 0,04 m/s2 

Output impedance ≤ 200 Ω 

Source: https://www.pcb.com/products?model=356b21 

3.2.4. Acoustic Emission 

Along with vibration, acoustic emission (AE) is also generated during the 

cutting process. Past projects carried out the AE sensing on the workpiece side. In the 

referred project the acoustic emission will be measured in both workpiece clamp 

(Figure 21), and spindle body (see Figure 20). With the aim of correlating and 

comparing signals gathered from both of them during the process. 

Figure 21 – AE sensor installation on workpiece. 

 

The AE sensor chosen is the Vallen VS150K3. The sensor presents a strong 

non-linear behavior and high frequency response (Figure 22). Therefore, the data 

processing units must record information with a frequency 𝑓𝑟𝑒𝑞 ≥ 450𝐾𝐻𝑧 (see Table 

6). 
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Figure 22 – Acoustic Emission Sensor and its response curve. 

 

Source: https://www.vallen.de/sensors/watertight-sensors/vs150-k3/ 

Table 6 – Vallen VS150K3 Technical Information. 

Vallen VS150K3 AE sensor 

Component Description Unit 

Frequency Range 100-450 kHz 

Capacity 450 pF 

Source: https://www.vallen.de/sensors/watertight-sensors/vs150-k3/ 

3.2.5. Ultra-sonic Acoustic Emission 

An ultra-sonic sensor was also installed in the machine in order to record the 

ultra-sonic emission generated in the process (Figure 23). The PCB 130A24 is an 

electret array microphone and its description is found in Table 7. 

Figure 23 – PCB a30A24 microphone and its installation. 

 

Source: https://www.pcb.com/products?m=130a24 
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Table 7 – PCB 130A24 microphone technical information. 

PCB 130A24 microphone 

Component Description Unit 

Frequency response (±3dB) 20-16000 Hz 

Sensitivity (±3dB) 1 V/Pa 

Inherent Noise 20 μPa 

Output impedance < 52 Ω 

Source: https://www.pcb.com/products?m=130a24 

3.2.6. Encoder Position 

Another important source of information on the project is the Encoder positions 

of the machine. The actual position can present information about the speed, and 

positioning errors presented in the process. It is also a good source of information for 

filtering out the air-cut time of the path plan, i.e., the time when the machine is moving, 

but not cutting material.  

The machine tool position encoders will be used in order to gather the axes 

positions. The signals are obtained by using a signal splitter on the encoder cables 

plugged on the machine PLCs.  The DMG machine has an LC483 absolute positioning 

encoder. The acquisition system will record information from the 3 orthogonal axes and 

the spindle. See Figure 24 and Table 8. 

Figure 24 – Heidenhain LC483 encoder. 

 

Source: https://www.heidenhain.de/de_EN/products/linear-encoders/sealed-linear-encoders/for-
numerically-controlled-machine-tools/lc-400-series/ 
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Table 8 - Heidenhain LC483 encoder technical information. 

Heidenhain LC483 linear Encoder 

Component Description Unit 

Calculation time ≤ 5 μs 

Encoder accuracy ±5 μm 

Encoder  measuring step 100 nm 

Source: https://www.heidenhain.de/de_EN/products/linear-encoders/sealed-linear-encoders/for-
numerically-controlled-machine-tools/lc-400-series/ 

3.3. Fraunhofer V-Box 

The V-Box is a DAQ developed by Fraunhofer for high frequency data 

acquisition. It is aimed to provide support for the usage of multiple sensors. Although, 

until the realization of this project, this hardware did not have a stable Client software. 

Therefore, the acquisition software for V-Box was also developed in this project as it 

will be reported in Chapter 4. 

The V-BOX (Figure 25) has 10 voltage analog inputs. From those, 8 channels 

are tuned for 80kHz while 2 channels for high speed data acquisition up to 5MHz. This 

last – called High Speed Analog Input (AIHS) – records data by using an integrated 

FFT hardware followed by an Analog-Digital converter. On this way, the data provided 

from this channel is encrypted in a 32 bits integer where the first 16 bits represent  the 

amplitude and the last 16 bits represent the frequency coefficient. 

Figure 25 – Fraunhofer V-Box. 

 

Source: https://www.ipt.fraunhofer.de/de/kompetenzen/Produktionsmaschinen/praezisionstechnik-
und-kunststoffreplikation/vbox.html 
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So, data coming from the sensor feeds the FFT units, which will present on its 

output the analog band amplitude of the signal. This amplitude bus is then converted 

and encrypted with its corresponding band as explained above. After that, an algorithm 

loops through this new generated values and sends them to the network sequentially 

at 100kHz. See Figure 26. 

Figure 26 – High speed data processing representation on V-BOX. 

 

3.4. Tool Wear Measurement 

As explained in [31], the flank wear is one of the most appropriate wear types 

to indicate the actual state of the tool. Firstly, because it presents a gradual progress 

along the usage of the milling tool. Secondly because other types of wear like crater 

and chipping can be understood as consequences of flank wear progress under normal 

cutting conditions. In other words, crater and chipping happen on the tool only after the 

cutter edge achieves an advanced level of deterioration. 

Therefore, the flank wear measurement will be adopted in order to assess the 

actual condition of the milling tool. The procedure adopted observes the wear surface 

length on the edge of the tool parallel to the cutting surface. See Figure 27. The main 

reason for such choice resides on the fact that it is possible to determine precisely the 

measurement positions and edge loss when accessing the parallel view of the surface. 

Furthermore, the external surface of the tool has extra marks which helps the 

measurement procedure once the tool edge starts to lose material. 
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Figure 27 – Different perspectives for accessing the flank wear surface. 

 

For labeling the data, tool flank wear was measured using Keyence VHX-500F 

electronic microscope. As it will be presented in section 3.6, the employed tool has an 

helicoidal geometry (see Figure 28). Therefore, the procedure involves some additional 

steps in order to determine the measurement position. 

Figure 28 – Tool on microscope and measurement positions. 

   

On each tooth, 3 measurement points are accessed: the first one close to the 

tool tip (called Head or H), approximately 0,6mm from the visible tooth tip; the second 

at a distance of 3mm from the tip (Middle or M); and the third  at 6mm (Base or B). See 

Figure 28. On this way, if a tool has 3 tooth, the flank wear is measured in 9 points at 

total. As the literature recommends, the adopted tool wear is the maximum value from 

those 9 measurement points. 

For determining the two last positions, a pachymeter is used in order to 

measure the distance from the tool tip to the stablished measurement points (See 
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Figure 29). This step guarantees that the flank wear will always be accessed on the 

same position of the tool during all its lifetime. 

Figure 29 – Pachymeter method for finding measurement position. 

 

At last, the flank wear is measured by looking at the worn surface length. 

Another important element is the light reflection on the measurement point. Every time 

when accessing the required position, the light emitted from the microscope must 

reflect besides the referred position. This adjustment has the purpose of fixing the tool 

angle for all measurements, once a different angles can distort the worn surface length. 

See Figure 30. 

To validate the described procedure, 5 test measurements were carried out in 

a trashed 3 teeth helicoidal tool similar to the ones used on this project. Table 9 shows 

the resulting measurement values and metrics. 

Figure 30 – Flank wear measurement and light positioning. 
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Table 9 –Flank Wear Test Measurement Results (in 𝜇𝑚). 

Meas. Nr. T1B T2B T3B T1M T2M T3M T1H T2H T3H Max 

1 86 149 105 78 114 119 62 127 121 149 

2 81 124 88 80 130 110 77 137 149 149 

3 84 110 92 73 120 132 66 113 135 135 

4 98 96 87 78 134 122 89 139 139 139 

5 85 102 89 63 143 123 67 140 126 143 

Mean 86.8 116.2 92.2 74.4 128.2 121.2 72.2 131.2 134 143 

Std. Dev. 5.84 18.89 6.62 6.15 10.24 7.08 9.74 10.21 9.84 5.51 

 

The estimated measurement deviation is ±6μm. Given the maximum allowable 

flank wear as VB=110μm, the error corresponds to 5,46% of the tool wear range. From 

now on, this value will be adopted as the standard error for the described measurement 

procedure. 

3.5.  Hardware Setup 

Once all sensors cannot be processed by a single unit due to hardware 

property limitations – different signal transmission, proprietary architectures – the 

sensors will be handled by 3 different data frameworks. These frameworks will run in 

parallel and time synchronization will be handled afterwards. Once the goal of this 

project is to analyze each signal separately, the time synchronization does not 

represent a problem. 

Therefore, Spike hardware and software solutions will record the force signals 

gathered by the tool holder. The Power Monitor signals will be processed using a Twin-

Cat client software. The remaining sensor signals will be handled using 2 V-Boxes, 

once only one device cannot stand all data flow in the required frequency.  

Figure 31 shows the complete hardware setup for the experiments. Table 10 

lists the connection to each V-Box, once they cannot be distinguished on Figure 31. In 

order to acquire all relevant information generated by the listed sensors, the AE signals 

will be recorded using the high speed channels of the V-Box. The configuration chosen 

records data up to 500kHz. The remaining sensors are recorded at 50kHz. 
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Figure 31 – Complete Hardware setup of the experiment. 

 

Table 10 – Sensors connected to the V-Boxes. 

Source Amplifier Destination 

AE-Spindle DCPL2 + AEP5H (Vallen) AIHS1-VBOX1 

AE-Workpiece DCPL2 + AEP5H (Vallen) AIHS1-VBOX2 

Accelerometer X 482C (Piezotronics) AI1-VBOX1 

Accelerometer Y 482C (Piezotronics) AI2-VBOX1 

Accelerometer Z 482C (Piezotronics) AI3-VBOX1 

Microphone 482C (Piezotronics) AI4-VBOX1 

Encoder X  Enc1-VBOX1 

Encoder Y  Enc2-VBOX1 

Encoder Z  Enc3-VBOX1 

Encoder Spindle  Enc4-VBOX1 

 

3.6. Process Setup 

Once the hardware configuration for the experiments is set up, it is necessary 

to define the process characteristics of the experiments. The mechanical aspects of 

this project will be handled in a similar way as presented in [32].  

In [32], a simpler hardware and software layout was used for the milling 

experiments. The main goal was to create a dataset for future studying the tool flank 

wear phenomena. So, the project was focused on studying the mechanical properties 
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of the tool wear in order to determine the best process parameters for a plane overview 

of the phenomena. 

Therefore, the project provides valuable information about the CNC parameter 

determination, path planning and material used to approach the problem. Serving as a 

reference guide for the experiment plan performed on this work. 

The tool chosen for the experiments is the Pro-Steel solid carbide roughing 

end mill HPC 8mm. Further information about the tool is presented in Table 11. The 

tool has 3 teeth and it is designed for rough or finishing milling using high spindle 

speed. The workpiece block is a steel plastic mold 40CrMnNiMo8-6-4. 

Table 11 – Solid Carbide HPC 8mm tool technical description. 

Tool Description 

Name Pro-Steel solid carbide roughing end mill 

Article Nr. 2024148 

Cutter Diameter 8mm 

Cutting Length 19mm 

Overall Length 63mm 

Number of Teeth 3 

 

The path planning consists of successive groove making. The cutting width 

used is 5mm and the cutting depth is 8mm as recommended by the tool manufacturer. 

Considering the workpiece size, 20 grooves can be produced in each depth level (see 

Figure 32). After milling 2 complete levels – 40 grooves – the tool is taken to the 

microscope for the measurement of the flank wear (VB) according to the procedure 

described in section 3.4. 

In order to determine the optimum process parameters, [32] performed a 

battery of trial experiments. Starting from the recommended parameters, those tests 

consisted in completely use a tool in order to determine the flank wear curve for the 

tested configuration. Then, the parameters were tune until a good combination for tool 

wear progress was found. The trial tests performed for the referred tool are presented 

in Table 12. 

 



59 

Figure 32 – Superior view of the process path planning. 

 

Table 12 – Trial Experiments for process parameter determination. 

Trial Nr. 

Spindle 

speed 

[1/min] 

Feed rate 

[mm/min] 

Cutting 

width[mm] 

Cutting 

depth[mm] 

Life time 

[s] 

VB [𝝁𝒎] 

(flank 

wear) 

1 7440 1300 6 8 185 Broken 

2 7440 1160 6 8 83 Broken 

3 7440 1160 5 8 >3818 96 

4 6760 1160 4 8 >7055 90 

Source: [32] 

Based in the trial experiments presented in Table 12, the experiment plan will 

consist of using 4 tools and 2 different parameter combinations. The process 

parameter plan for the experiments is shown in Table 13. 

Table 13 – Experiment Plan. 

Ex. ID 
Spindle speed 

[1/min] 

Feed rate 

[mm/min] 

Cutting 

width[mm] 

Cutting 

depth[mm] 
𝑽𝑩𝒎𝒂𝒙[𝝁𝒎] 

11 6760 1160 5 8 110 

12 6760 1160 5 8 110 

21 7440 1160 5 8 110 

22 7440 1160 5 8 110 
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4. ACQUISITION SYSTEM PROGRAMMING 

For recording data coming from the sensor system listed in Chapter 3, an 

acquisition system must be programmed. Once Fraunhofer V-Box, the Beckhoff Twin-

cat and Spike communicate using different architectures, the approach consists in 

running those 3 acquisition modules in parallel. 

The main element of this system is the Tama Client – as named by the author. 

This system is responsible for communicating and storing the signals coming from the 

Fraunhofer V-Box. Once most of the sensors are connected to the V-Box, this device 

has higher priority for the reported experiment plan. 

On the following sub-chapters it will be explained the project and 

implementation of the Tama Client system using C# programming language. The 

remaining modules required for the experiments were programmed by other team 

members. So they will not be reported in the scope of this document. 

4.1.  Trialink Network 

Tama Client is a Software Solution to perform data acquisition on Trialink 

Networks. Even though it was initially projected to connect to Fraunhofer V-BOX, the 

system is able to connect and acquire real-time data from any device which can 

communicate via the Trialink Network schema [33].  

Once the client software does not know the devices connected to the network 

beforehand, the client software must be able to identify the device configuration of the 

accessed network automatically. On this way, the operation avoids reprogramming the 

software every time a new set of components must be accessed. 

As explained in [33] the Trialink network is a ring network designed for real 

time communication (see Figure 33). It is mainly used for synchronizing operation 

between drives like axis motion control units in a CNC machine. Therefore, the protocol 

is extensively used in order to program software systems for metal cutting machines 

mainly in high precision field. 
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Figure 33 - Example of Trialink network with 5 devices connected. 

 

 

All the devices on this type of network have 2 Ethernet entries: a link-in, and a 

link-out. Therefore, the link-out of a device k is connected to the link-in of the device 

k+1, the link-out of device k+1 to the link-in of device k+2, and so on. Until the last 

device is reached, which is connected to the link-in of the first device closing the ring.  

Once all messages have time constraints to reach their destination, it is 

impossible to prevent data loss. Therefore, there are situations when overloads on the 

communication flow of data bottlenecks the system causing Queue Overflows, or 

simply communication timeouts on the network. 

Each device on the ring behaves like a station node, receiving and sending 

data as requested. Internally, the hierarchy of a device is organized in a tree 

perspective, where the root node corresponds to the device and all the leaf nodes 

correspond to readable/writable registers. The structure on the middle of this tree is 

strongly dependent on the type of device and cannot be determined beforehand.  

For example, a DAQ system like V-Box will have an internal tree consisting of 

Analog-Inputs, Encoders, etc. and under each node, the exact number of inputs or 

outputs the DAQ offers. On the other hand, a  Motor Drive for Motion control will 

possess a node which points to Writable controller parameters, and other register 

providing the readable position, speed, acceleration, positioning error, etc.  

Each readable register inside this tree can be acquired using a 

Subscription/Publisher schema, which is used on the Tama Client system in order to 
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acquire data from the devices.  All the Subscription Mechanism is abstracted to the 

user and implemented internally on the client module. 

So, once the system connects to the Trialink Network, it requests all the 

devices on the link for their respective Register Tree, listing all the readable registers 

of the system. On the GUI, the devices are also organized in a tree perspective, so the 

user must have a basic knowledge about the internal structure of the target devices in 

order to select the right registers for the acquisition. 

4.2. System Requirements and Software Project 

In order to assist the software implementation, a software project was 

developed. At first, a document specifying the functionalities of the software was 

produced. This document includes functional and not-functional requirements. The 

purpose of this first step was to develop a guideline to further planning of the class 

diagram to be implemented in the Tama Client software. The document can be seen 

in Appendix A. 

Based on this document, a class diagram was developed. The resulting project 

paid attention to fulfill all mandatory functionalities while preserving important 

properties like: 

• Modularity: the tasks on the project were distributed between classes 

with specific functionalities. So, for instance, if a change in how the 

module saves data is required, only a specific region of the code must 

be edited; 

• Scalability: The software ensures high performance in simple and 

complex tasks, allowing a fast way of programming improvements or 

new functionalities; 

• Robustness: the project controls a wide variety of possible problems 

which can happen during operation. Therefore, it possesses protective 

mechanisms to assure resilience and minimize losses while keeping the 

operation active. 

Figure 34 shows the resulting class diagram of the Tama Client. The attributes 

and methods were ignored in order to make the diagram visualization clear. A more 

detailed explanation about its components, interface appearance and implementation 

steps can be accessed in Appendix B.  
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Figure 34 - Class Diagram for Tama Client Software. 

 

4.3. Implementation 

This sub-chapter will explain some of the functionalities of the software. The 

overall software implementation was initially separated in steps, and coded partially. 

Starting from the Main package. 

The module is projected to acquire in the maximum frequency of the V-BOX, 

which is 100kHz. Therefore, if the quantity of registers is too big, the network cannot 

stand all incoming flow of data. In order to avoid this problem, the system was 

implemented to support multiple acquisition sampling rates.  

By doing so, high frequency sensors can be processed on maximum frequency 

while sensors with lower dynamic will be recorded using smaller frequency rates. This 

approach releases the network flow of data, minimizing the chances of data loss during 

acquisition. 

Therefore, the back-end and front-end were programmed to stand multiple 

acquisition. Although each acquisition has a different sampling rate, all register data is 

synchronized using the same reference timestamp system. 

Once the communication on the networks follows a real time standard, the 

processes (threads) on the Tama Client have short time constraint to process the data. 



65 

The system was implemented in order to maintain the minimum amount of buffered 

values possible.  

This is another reason why the network readers and file writers work in parallel. 

On the same meaning, the system has a different data processing unit – readers and 

writers, also called data pipeline – working independently for each register recorded. 

In order to accomplish the task of minimum data type conversion (NF5.2 in 

Appendix A), the pipeline was kept generic. On this way, each register is processed 

using the specific variable type which comes from the ring network. Figure 35 presents 

a representation of the data pipeline. 

Figure 35 – Representation of data processed in the pipeline. 

 

In order to synchronize the start, stop and normal operation, all the threaded 

instances possess state machines. The function of the state machines is to: provide a 

status control mechanism; ease data exchange between different threads; synchronize 

the timestamp on the beginning and end of acquisition file; and provide information to 

the GUI. 

Another important task of the state machines is to provide status information 

to the Controller (NF5.3 on Appendix A). So during operation, the controller accesses 

all threaded instances and check if the system is running without problems. In the 

cases when some failure happens, the Controller is notified. After that, the Controller 

thread forces all machine states to go to failure state, preventing overflows and 

minimizing information loss. When possible, the Controller tries to restart the 

acquisition. 

For saving the data, Tama Client uses the Deflate Stream C# library. Therefore 

all files are saved in zip format. Each zip file contains an array for one register. In order 
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to identify the files, an XML header file is generated detailing the information saved in 

each deflate file.  

However, those files cannot be read immediately after saved as requested by 

F9 (Appendix A). In order to fulfill this functionality, after a file is closed, the Tama Client 

invokes a process to convert all zip files to one HDF file [34]. This process runs 

independently from the acquisition and does not damage the software performance. 

After the conversion is finished, the file can be accessed and read normally using – for 

instance – HDF Viewer software. 

This approach was chosen mainly because the C# library for HDF is unstable. 

In past versions of the Trialink client software, the system suffered frequent crashes 

due to lack of performance of the referred library. Dealing with deflate stream in runtime 

proved to be more efficient in comparison with directly persisting data using HDF 

format. 

4.4. Performance 

As a result, the software can achieve all listed requirements when performing 

acquisition on the ring network. A wide battery of tests was employed in order to prove 

the performance of the software, which fulfilled the stablished functionalities listed in 

Appendix A. Those tests will not be reported since they are not the aim of the incurrent 

document. 

On Figure 36, it is shown the memory and process resource consumption of 

the Tama Client performing an acquisition on 9 registers at a frequency of 100kHz. It 

can be noticed that the number of data enqueued is fewer when compared to the old 

version of the software. This result was achieved by the parallel pipeline procedure to 

process each register on the acquisition. 

By using multiple sampling rates, it was possible to increase the number of 

registers gathered in the acquisition. Figure 37 shows an acquisition file with 13 

registers gathered from 2 V-Boxes using the Tama Client. By decreasing the sampling 

rate it is possible to increase even more the number of registers selected. 
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Figure 36 – PC resource consumption in old and new version of the Client. 

 

 

Figure 37 – HDF file generated by Tama Client with 13 registers. 
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5. DATA PRE-PROCESSING 

This section is destined to explain the data information extraction from the 

acquisition files.  The experiments were performed such that each file contains 

information about the material removed from one level of the workpiece, summing 20 

grooves per file. See Figure 38. After 2 complete levels of material were removed, the 

tool was taken to the microscope for the flank wear measurement. 

Figure 38 – Representation of grooves and levels machined on the experiments. 

 

 

Therefore, the pre-processing module is responsible for extracting information 

gathered from the signals recorded during acquisition, as well as extracting information 

about the flank wear measurements performed in the microscope in order to label the 

data. 

On Figure 39 it is presented the sequence of operations performed in the pre-

processing module in order to extract information from the acquisition signals and flank 

wear (VB) measurement files. The result of the module is the datasets which will be 

used for training the prediction models in the next step of the project.  

Besides that, the algorithm processes information from each signal separately. 

Therefore, the procedure shown in Figure 39 is repeated for each of the signals 

gathered on the experiments. 

At first, the algorithm analyzes the flank wear measurement files for one tool. 

Then, from the flank wear measurement points acquired along the usage of the tool, 
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the algorithm can estimate the flank wear curve for the referred tool. In order to do so, 

a polynomial interpolation is employed. 

Figure 39 – Graph of operation sequence for data pre-processing. 

 

 

After this step, the target signals are read from the acquisition files in order to 

extract the input array for the dataset. As previously mentioned, each dataset contains 

one sensor signal as inputs, and all signals are extracted using FFT. Therefore, the 

algorithm must extract the FFT coefficients from AE-signals – once these signals are 

recorded using the fast acquisition mechanism of V-Box – or calculate the FFT for the 

remaining signals.  

On the following step, the air-cut process time is removed using a combination 

of two methods. The signal intensity and encoder positions are analyzed. The signal 

interval gathered when the machine tool is far from the workpiece is then deleted, as 

well as the intervals when the energy of the signal is below the threshold – which 

means the tool was not cutting material. 

From the resulting spectrogram containing the sensor signal for one tool, the 

system combines the interpolated tool wear curve. On this way, there will be one label 

value – VB calculated from the interpolation – for each time instant of the extracted 

signal. 

This procedure is repeated for the 4 tools, resulting in one dataset for the 

referred signal. Furthermore, the procedure is repeated for each one of the recorded 

signals: AE, vibration and microphone. So, the process results in multiple datasets, 

each one containing the input vector extracted from one of the sensor signals gathered 

in the experiments. 
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On the next sub-chapters, the implementation of each one of the transcribed 

steps of the pre-processing will be explained in details. The last sub-chapter presents 

an overview of results achieved in this step of the project. 

5.1. Flank Wear Measurement and Extraction 

As explained in section 3.4, the measurement procedure chosen for the project 

assesses 3 different regions of the tool for each tooth of the tool. Resulting 9 

measurement points.  

By performing the experiments, it is possible to confirm the pattern reported by 

[31] for the flank wear development. On early stages – until 50µm – the wear increases 

rapidly due to material loss on the top of the tool. After this stage, the curve stabilizes, 

and the flank wear develops gradually until it reaches around 70µm. On this stage, the 

tool starts to present chipping, and therefore, the surface starts to present faster 

degradation. 

When VB passes 80µm, the tool starts losing material on the edge, chipping 

and crater wear phenomena is intensified. As a result, the wear develops fast again. It 

is possible to notice an increase in the noise produced by the process and machine 

loses efficiency. See Figure 40. 

Figure 40 – Flank wear curve and presentation of different stages of tool wear. 
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The losses presented by the tool on the last stages of its use increase the 

difficulty of measuring the wear. As presented in Figure 40, when the tool edge is 

heavily deteriorated mainly by chipping, the edge lines used as reference for the worn 

surface assessment are lost. Excepting the region close to the tool tip, this damages 

the reliability of the measured values once the guide-line is not visible anymore.  

To overcome this problem, not only additional lights but also other reference 

mechanisms are used to try capturing the right values for the entity. The commonly 

used method consists in observing the chamfer localized 1mm from the tool edge when 

the tool is new, so the lost edge can then still be indirectly accessed. 

Figure 41 present the tool flank wear curves of the 4 tools. During the lifespan 

of the tool it is possible to notice 3 distinct regions. At the beginning of curve the wear 

develops very fast until it reaches approximately 50µm. After this point, there is a region 

presenting a gradual progress until the VB reaches 80µm. After this point, the effects 

previously described are responsible for speeding up the deterioration of the tool. 

Figure 41 – Flank wear curves of the gathered experiments. 

 

The first step performed by the pre-processing module is to obtain the flank 

wear curve of each tool. As previously described, from the 9 measurement points 

performed in each measurement procedure, the chosen value is the maximum 
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between those. Therefore, the first step is to read and calculate the maximum flank 

wear from the 9 measured values. The complete algorithm for the flank wear extraction 

is presented in Figure 42. 

Figure 42 – Algorithm for flank wear extraction. 

 

As previously mentioned, there are 40 grooves produced between each 

microscope measurement. However, the output dataset must contain VB values for all 

operation time of the tool. Therefore, processing the tool wear measurements requires 

an interpolation method for the VB curve. The usual procedure is to use a “holder” 

approach, i.e., the variable is maintained constant between each 2 measurement 

points. 

The approach chosen for this project uses a polynomial interpolation to 

generate a smooth curve for the tool wear progress. Such technique, which produces 

a smooth curve during the tool lifetime is a closer representation of the physical 

phenomena. Furthermore, the interpolation helps filtering errors inserted by the 

microscope measurement procedure.  

Based on the typical behavior of the wear curve – rapid increase, gradual 

increase and finally rapid increase – an odd degree must be chosen for the polynomial 
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function. Since the 1st degree interpolation does not capture the required smooth 

behavior, the 3rd degree was employed, however the resulting curve did not 

approximate to all measurement points. On this way, the pre-processing program uses 

a 5th degree polynomial. Figure 43 presents the polynomial regression for Tool 1 and 

3 respectively. The polynomial results are presented in Table 14. 

Figure 43 – Polynomial Interpolation on flank wear for tool 1 and 3 respectively. 

 

Table 14 – Polynomial interpolation results. 

Interpolation Results 

Tool ID 
coefficients: 𝑽𝑩 = 𝒂𝟏𝒙𝟓 + 𝒂𝟐𝒙𝟒 + 𝒂𝟑𝒙𝟑 + 𝒂𝟒𝒙𝟐 + 𝒂𝟓𝒙 + 𝒂𝟔 Mean Squared 

Residual [µm²] 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 

1 11 1.598 ∙ 10−11 −2.63 ∙ 10−8 2.164 ∙ 10−5 −0.00492 0.793 2.113 6,55 

2 12 3.296 ∙ 10−11 −4.409 ∙ 10−8 2.165 ∙ 10−5 −0.00498 0.736 −1.594 13,09 

3 21 2.712 ∙ 10−11 −3.388 ∙ 10−8 1,64 ∙ 10−5 −0.00402 0.679 1.036 12,83 

4 22 3.562 ∙ 10−11 −5.187 ∙ 10−8 3.032 ∙ 10−5 −0.00836 1.159 −1.373 7,98 

 

5.2. Sensor Data Extraction 

After this step, as previously described, the sensor signal must be extracted. 

When reading the AE-signal, which is already recorded using FFT units, the algorithm 

needs to separate frequency from amplitude on the encrypted values sent by V-Box. 

The complete algorithm for signal extraction is described in Figure 44. 
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Figure 44 – Algorithm for data Reading and FFT extraction. 

 

The AE-signal acquired using the V-Box fast acquisition channels records 100 

coefficients of the raw signal. Each encrypted value has 16 bits corresponding to the 

frequency and 16 bits corresponding to the amplitude. The frequency band for 

recording the AE signal is 0 < 𝑓𝑟𝑒𝑞 < 500𝑘𝐻𝑧. Therefore, the spectrogram for such 

signal is extracted by using Boolean operations over the encrypted values. From the 

100 recorded coefficients, no emission was recorded on the higher frequency band 

(𝑓𝑟𝑒𝑞 > 320𝑘𝐻𝑧), i.e., the values were zero. Therefore, all coefficients above 64th 

position were deleted from the dataset. 

On the other hand, the spectrograms from the accelerometer and microphone 

must be calculated since those variables are recorded as time-series arrays. This 

procedure is performed by using a discrete Fourier Transform recursively on the time-

series data. Figure 45 presents the algorithm for the computation of the FFT on the 

time-series arrays. Figure 46 shows a representation of the parameters used for 

computing the FFTs.  

The raw signals were acquired at a frequency of 50kHz. The window size for 

the FFT chosen is 1024 samples (20,48ms). Between each computed harmonics, 

there are 500 values (10ms). Therefore, the resulting spectrogram possesses 50 
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coefficient values on the frequency band 0 < 𝑓𝑟𝑒𝑞 < 25𝑘𝐻𝑧 sampled at a frequency of 

100Hz. 

Figure 45 - Algorithm for computing the FFT on time sires arrays. 

 

Figure 46 – Representation of the parameters used to calculate the FFTs. 

 

Using the maximum speed of the Trialink network (100kHz), the V-Box 

hardware FFT unit provided one complete spectrum each 1ms (1kHz). Figure 47 

presents the signal gathered from the EA-sensor on the workpiece clamp. Figure 48 

presents the signal gathered from the EA-sensor on the spindle body. On the figures, 

it can be observed when 5 complete grooves are removed by the tool.  
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Figure 47 – Sample data gathered from AE workpiece sensor. 

 

Figure 48 – Sample data gathered from AE spindle sensor. 

 

In both spectrums the signal captured around 5kHz has the strongest emission 

among the spectrogram bands. Such behavior is observed in all stages of the 

experiment.  

Another aspect to observe is the difference in the signal dynamics when the 

tool is machining, or it is in air-cut. See Figure 49. As expected, the AE captured in air-

cut presents a weaker intensity for the sensor installed in the workpiece clamp. Unlike 
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the first, but still distinguishable, the emission found in AE-signal from the spindle body 

is stronger when air-cutting. Such behavior suggests the spindle has stronger vibration 

when out of process. 

Figure 49 – AE-signal workpiece, air-cut visualization. 

 

The accelerometer data presents a similar but clearer difference in the 2 

different stages of the process (Figure 50). Considering that the spindle speed on all 

experiments is 6760 𝑚𝑖𝑛−1, the emissions captured by the sensor are related to the 

natural frequency of the spindle during air-cut. Once the cutters start removing material 

from the workpiece, the peak frequency rapidly switches to the process frequency, 

figured around 25kHz.  

Figure 50 – Accelerometer sample data (X axis). 
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Figure 51 shows two spectrums from the beginning and end of a tool life. As 

reported in the literature, a worn tool vibrates in higher frequencies when compared to 

a fresh one. On a fresh tool, the signal presented higher intensity around 17kHz, 

changing to 25kHz when the tool is worn. On the other hand, not significant changes 

were observed in the amplitude. 

Figure 51 – Vibration X: samples of a fresh and worn tool. 

 

Finally, on the microphone data, the regions of process and air-cut are also 

visible. However, differences between signal and noise are weaker when compared to 

other sensor data presented above. See Figure 52. 

Figure 52 – Microphone sample data. 
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5.3. Air-Cut Removal and Dataset Persistence 

Before the dataset is ready for the prediction module, 2 additional steps must 

be performed. The algorithm for this steps is presented in Figure 53. 

Figure 53 – Algorithm for air-cut and persistency step. 

 

Firstly, the air-cut time interval must be removed from the spectrogram. This is 

done in 2 steps: 

• The encoder positions are checked, and the time interval of the 

spectrogram acquired when the machine is far away from the workpiece 

is removed; 

• The module sums up the frequency coefficients which present higher 

distinction between in and out of process. From the resulting array of 

sums, a threshold criteria is used in order to identify and remove air-cut. 

See Figure 54. 
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Figure 54 – Sum of spectrum amplitudes for one acquisition file. 

 

The result of such operation is the clean spectrogram, containing only 

information gathered on the cutting process for all 4 tools. This spectrogram, will be 

used in order to generate the inputs for the further prediction models.  

The last operation is to create an additional array, which will contain the labels 

of the datasets. For this purpose, the 4 interpolated flank wear curves are included in 

an array of the same size as the spectrogram. Once the algorithm knows how many 

grooves were removed, it can find the corresponding VB values on the interpolated 

curve. See Figure 55. 

5.1. Pre-Processing Results 

The experiments gathered from the 4 tools resulted in 5,71 hours of data, 

summing 4,52 hours of active operation (tool cutting material). Then, the raw 

acquisition files contain approximately 28,3 GB. From which, Around 7 workpieces 

were used in the process. 
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The module saved two datasets for the vibration sensor. On the first one, the 

axes amplitudes were summed up, resulting in 50 coefficients containing the summed 

amplitudes for the three axes of the sensor – X, Y and Z. On the second one, the axes 

were appended, resulting in a 150 coefficients. Both datasets will be used for the 

training step. The resulting datasets  are shown in Table 15. 

Figure 55 – Representation of the air-cut removal and dataset persistency. 

 

Table 15 – List of resulting datasets. 

Pre-Processing Datasets 

Name Sensor Columns (frequency 

coefficients) 

vib_sum Accelerometer (axes summed) 50 

vib_x3 Accelerometer (axes appended) 150 

mic Microphone 50 

ae_workpiece AE (sensor on workpiece clamp) 64 

ae_spindle AE (sensor on spindle body) 64 
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6. Prediction Models  

The last step for the tool flank wear prediction system involves the project and 

implementation of the prediction module. This module has the goal of creating and 

training the prediction models based on the datasets obtained on the pre-processing 

step. Therefore, The target prediction models must be able to interpret the FFT 

spectrograms presented by the sensor and infer the actual state of the tool wear.  

Based on those characteristics, the prediction module will train 3 different 

network architectures for the spectrogram interpretation task. See Figure 56. For 

comparison reasons, the first chosen architecture for the prediction model are the 

ANNs, due to its popular use on tool wear prediction [3]. For the second approach, the 

technique chosen is aimed to select appropriate features from the spectrogram which 

represent the most deterministic information about the signal. Therefore, in order to 

select this feature and consequently discard the less relevant regions of the 

spectrogram, the second architecture uses a combination of auto-encoders for feature 

selection followed by an ANN responsible for predicting the flank wear values. 

Figure 56 – Representation of some DL techniques for supervised learning. 

 

 

The last approach chosen for solving the problem consider the tool wear 

prediction as a sequence of indicators or events presented by the spectrogram 

regarding the signal behavior. Therefore, the prediction models should possess some 

long-term memory structure in order to identify such indicators and infer the tool 

condition. Therefore, the model should be able to memorize features found in the 
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spectrogram in such a way that these features can help determining the state of the 

tool. So, the last approach uses an LSTM for classification and regression.  

6.1. Training Algorithm 

The tasks entrusted to the prediction model are: read the pre-processed 

dataset and prepare the data for training and evaluation; select, build and initialize the 

prediction model (architecture); and train/evaluate the model according to the dataset. 

Figure 57 shows the algorithm for training one prediction model. Initially, the 

system loads and reads the dataset, then split the dataset into train and test-set. 10% 

of the dataset is selected for the test-set.  

The training loop comes right after this step. It is important to remind that the 

pre-processing step does not save each input on the datasets. It saves one big array 

containing the information of the entire dataset. So, in order to fit the model, the inputs 

and targets are generated in runtime.  

This approach was chosen so it is possible to perform data augmentation 

between each training epoch, as it will be explained afterwards. 

Figure 57 – Algorithm for the Prediction Module. 
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6.1.1. Training Weights 

As described in section 5.2, the flank wear develops faster in the beginning 

and end of the tool life. Therefore, those regions have fewer samples when compared 

to the rest of the dataset. 

Consequently, when training the prediction models, the algorithm tends to give 

higher priority on learning the regions with bigger number of samples. This behavior 

logically presents a better overall accuracy, firstly by the higher portion of explained 

data, and secondly by the fact that the networks will know those regions better once 

they have been presented with more samples. 

However, those points are particularly important to the aim of the project. 

Mainly when considering the highest flank-wear samples, there is a higher demand for 

accuracy once the predictions will determine if the tool has to be replaced. 

In order to overcome the problem, one solution is to improve the priority of 

those regions on the train-set. This is the goal of the weight array on the module. When 

programmed to, the algorithm creates an additional array of weights. All weights are 

set to 0,05, excepting the ones which 30 > 𝑉𝐵 > 100, receiving 1 instead. On this way, 

data located on this region will compute 20 times higher loss values, forcing the 

gradient to move towards the direction of a better performance for this samples. 

6.1.2. Data Augmentation and Input Slicing 

It is important to remind that the pre-processing module saves data for the 

training as one spectrogram containing all inputs concatenated – all processing time 

of the 4 used tools – and one array of labels. So the chosen dataset must be sliced in 

order to generate data for the training step.  

The first important method for model training optimization performed by the 

algorithm is data augmentation. It consists of performing small changes in the input 

vectors in order to raise dataset variability.  

This method is popular in image classification problems, where the algorithms 

must interpret data on matrixes of pixels presented. Augmentation in such case 

perform rotation and inclination of the images, changing bright and color of the inputs 

[38]. See Figure 58. 
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Figure 58 – Example of augmentation on image classification. 

 

 

Source: [38] 

This process guarantees the network will always receive different inputs on 

each epoch. Helping the algorithm to attenuate overfit or underfit. Figure 59 list the 

main methods for image augmentation recently reported in the literature. 

Figure 59 – Augmentation methods for image classification problems. 

 

Source: [38] 

Considering the nature of the problem studied in this project, the spectrograms 

cannot be augmented using the standard approaches for image classification. 

However, the method developed is somewhat similar to a traditional transformation. 

The procedure consists of – after each epoch – sliding the input limits on a random 

number of timesteps.  

So, before generating the model input values used in the current training 

epoch, a random interval of the data is deleted from the beginning of the training 

spectrogram. After this step, the dataset is sliced according to the programmed number 

of timesteps. See Figure 60. 
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Figure 60 – Augmentation algorithm representation. 

 

When generating the input vectors, the data reader looks firstly at the original 

dataset array. Once it is known that one training pair consists of one spectrogram – 

small slice of original spectrogram containing (for instance) 10ms of data – and one 

flank wear value, after “deleting” the first 3ms of data, each input will receive a small 

portion of what would be part of the next input. 

To better explain the data slicing procedure. The number of timesteps is 

considered as a programmable parameter, and it can therefore be ordinarily changed. 

So, changing the number of timesteps changes the input size, which consequently 

changes the amount of data received by the model. See Figure 61. This value must be 

accurately tuned so that neither the network will receive too few information and 

therefore it will not be able to learn the signal relation to the labels resulting in 

underfitting, nor it will have too much information resulting in overfitting. 

In order to perform such changes on the dataset, the batches generated for 

training are produced by the algorithm at runtime. Therefore, between each epoch, the 

augmentation is re-applied and the spectrogram is re-sliced. As a result, the procedure 

provides always a different set of inputs to the network, using the same source data. 

The label and (when using) weight for each input are obtained from the values sampled 

in the middle of each spectrogram input as shown in Figure 60. 
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Figure 61 – Different timesteps used for slicing the input spectrogram. 

 

Another optimization method used in the project is the Dropouts. In this 

method, a random portion of the neuron connections on some layers of the NN are set 

to zero. The motivation for this method is the same as the proposed left-shifting 

augmentation: the  small variations provoked by dropping values push the training 

algorithm to find critical properties on the data instead of memorizing inputs, 

attenuating the overfit effect. Each NN architecture performs dropouts on a different 

way. Therefore, such configuration is customized for each architecture. 

6.1.3. Losses and Metrics 

Regarding the prediction model training, it is important to explain the usage of 

loss and metric functions. On the training algorithm, the loss function is used in the 

forward step of the back-propagation algorithm in order to generate the error signal of 

the predicted value in comparison with the ground true value as also seen in Equation 

2 and 4. The value generated by this loss function will be back-propagated in order to 

calculate the gradient values and apply the corrections on the weights of the network. 

Therefore, selecting the right loss function is critical for the performance of the 

training algorithm. So, 2 functions were used as loss functions on the prediction 

module. The mean squared error (MSE) for the regression models. And categorical 

cross entropy for the classification approach. This last is transcribed in Equation 6. 
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𝐿𝑐𝑐𝑒(𝑦, 𝑦̅) = −∑∑(𝑦𝑖𝑗⁡. log(𝑦̅𝑖𝑗))⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6)

𝑁

𝑖=0

𝑀

𝑗=0

 

So, categorical cross-entropy will compare the distribution of the predictions 

with the true distribution, where the probability of the true class is set to 1 and 0 for the 

other classes. In other words, as closest the algorithm gets to the binary hot code of 

the label, smaller will be the loss. 

The accuracy metric function is a function which aims to measure the accuracy 

of the model. The main difference between the accuracy metric and the loss function 

is that the accuracy not necessarily needs to be related to the error function. Therefore, 

it can be a percentage measure of the explained data as it is the accuracy measure. 

For the regression algorithm, the MSE is also used as metric function. 

Excepting for the auto-encoder training, where the accuracy function was employed. 

The mentioned accuracy measures the deviation to the true value. See Equation 7. 

𝑀𝑎𝑐𝑐(𝑦, 𝑦̅) =
1

𝑁
∑

√(𝑦𝑖 −⁡ 𝑦̅𝑖)²

𝑦𝑖 + 𝜖

𝑁

𝑖=0

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 

For the classification algorithm, the categorical accuracy function was 

employed. So, again considering the outputs of a classification network and labels as 

binary hot codes. The accuracy is calculated as shown in equation (8). 

𝑀𝑐𝑎𝑐(𝑦, 𝑦̅) = 1⁡𝑖𝑓 (arg𝑚𝑎𝑥(𝑦) = arg𝑚𝑎𝑥(𝑦̅))⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8) 

So, this measure considers the maximum value between the prediction outputs 

as the chosen class for the example, and compares this class to the label, returning 

100% if they match, or 0% otherwise. When evaluating a batch, the metric will return 

the percentage corresponding to the amount of data correctly predicted by the model. 

The loss and metric functions calculate an error or accuracy value for a given 

dataset. However, when evaluating the dataset after the training step, it may be useful 

to have a tool in order to measure the model performance locally. 

In order to generate local error values, an additional metric was created. The 

Windowed Mean Error, despite the fact that it cannot be used as a metric or loss 

function, computes the mean error between the predicted and true values considering 

all data from the dataset included in a window region defined for the target values. 

This algorithm processes the output error as shown in Equation 9. 
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𝑊𝑀𝐸(𝑉𝐵) =
∑ √(𝑦̅𝑘 −⁡𝑦𝑘)2
𝑛
𝑘=0

𝑛
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9) 

So, the WME first selects the vectors included in the window interval w. See 

Equations 10 and 11. 

𝑁 = (𝑦̅𝑘, 𝑦𝑘)⁡∀⁡|𝑦𝑘 − 𝑉𝐵| ⁡≤ 𝑤⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(10) 

𝑛 = dimension(𝑁)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(11) 

In resume, the algorithm first looks for all dataset pairs which the true value 

𝑦𝑘⁡is close to the target 𝑉𝐵 by at most 𝑤. After this, it extract the mean error between 

the true and predicted values. 

The proposed error metric, when running over all the flank wear curve, 

provides a local error estimation over the entire curve. By analyzing those values, it is 

possible to determine the accuracy now based on the regions under observation. 

6.1.4. Optimizer Algorithm 

Another important element of the model kernel is the optimizer algorithm. 

When dealing with big datasets, normal gradient-descent algorithms cannot be used. 

The first reason regards the time required to compute the forward and backward stages 

for each individual input and output. The second reason is the efficiency of this method, 

which usually is not able to find good global solutions. 

In order to overcome this problem, the Stochastic Gradient Descent algorithm 

(SGD) was created. Which consists of a variant of the same algorithm shown in chapter 

2, however it computes the gradient and weight corrections for a batch instead of a 

single input. 

Researches proved that this approach was not the most suitable for highly 

complex problems like the ones studied in deep-learning [36]. Therefore, numerous 

variants of the SGD algorithm were created and proved in the literature afterwards. 

Figure 62 shows the mainly used optimizer algorithms. 
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Figure 62 – Optimizer algorithms for Back-propagation. 

 

Source: [36] 

The Adam is one of the most popular variants of the SGD strongly implied in 

ML problems as reported in [36]. It is a combination of 2 other techniques: the Adagrad, 

which maintains a per-parameter learning rate that improves performance on problems 

with sparse gradients as encountered in  natural language processing and computer 

vision scenarios; and a Root Mean Square Propagation (RMS-Prop), that also maintain 

per-parameter coefficients, however it focuses on adapting weights based in all recent 

gradient values, being particularly useful with noisy data. Figure 63 presents the 

algorithm for the Adam optimizer. 

Figure 63 – Adam Optimization algorithm. 
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The Adam receives 4 parameters, which are: 𝛼, the learning rate; 𝛽1, the 

exponential decay rate for the first order moment estimation;  𝛽2, the exponential decay 

for the second-moment estimation and; 𝜖, a small number to prevent division for zero. 

Besides that, the algorithm needs an objective function 𝑓 which is our loss function for 

the output layer or the error back-propagation signal for our hidden layers in order to 

compute the next optimum parameters 𝜃𝑘, which corresponds to the weights of the 

NN. 

The algorithm is also known as an exponential moving variant of Adagrad, 

showing smaller step sizes when the gradient moves closer to the solution. It is a 

popular alternative widely spread in deep-learning to solve highly noisy and sparse 

problems like image classification and speech recognition. 

6.2. Architectures and Training 

This sub-section is aimed to describe in detail the network architectures used 

for the prediction models, as well as presenting the results achieved for each one of 

the employed datasets. 

As mentioned in the beginning of the chapter, 3 different architecture 

approaches were chosen for the prediction task: ANNs, ANN + Auto-encoders and 

LSTM for regression and classification. Each model presented was trained using only 

one sensor data as input. On this way, the project is able to present a comparison 

between different sensors and architectures for the flank wear prediction problem. 

Appendix C lists the configuration and results of all different networks trained 

by the prediction module. The following sub-sections explain the details for each 

architecture employed, as well as the training results achieved. 

6.2.1. Auto-encoders 

The auto-encoders train a network to reproduce the input on the output through 

a compressed layer. On this sense, the dataset labels (flank wear) are not required on 

its training.  

The chosen approach uses only the frequency bands for encoding. Therefore, 

the encoders must learn how to reduce or combine information of different harmonics 

of the signals FFT. This process eliminates redundancies between different 

coefficients of the spectrogram. However, it maintain redundancies in time.  
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Interpreting temporal relation of the sensors will then be a task for the 

prediction models. This approach was also chosen in order to maintain the number of 

samples and consequently the number of inputs, once the datasets are already 

relatively small.  

The codes are generated by sigmoid activators on the output layer of the 

encoder. Therefore, all codes are normalized: 0 ≤ 𝑜𝑗 ≤ 1. The remaining units use 

ReLU activation. The output layers process data through linear activation in order to 

reconstruct the inputs on the outputs as explained in chapter 2. At last, the networks 

were tuned so that they can only reach accuracies around 90%. On this way, the auto-

encoders attenuate data noise and perform feature selection. 

As the AE data demanded higher processing power, 2 different sizes were 

designed for the auto-encoders: a simple auto-encoder with one layer encoder and 

decoder for the vibration and microphone datasets; for AE, a deep auto-encoder with 

3 layer encoder and decoder was employed. All configuration used to encode each 

sensor signal is described in Table 16. 

Table 16 – Auto-Encoder Network Configurations. 

Auto-Encoder Network Configurations 

ID Dataset Layers Input shape Code shape 

11 vib_sum 50-10-50 50 10 

12 vib_x3 150-10-150 150 10 

13 mic 50-10-50 50 10 

14 ae_workpiece 64-32-16-4-16-32-64 64 4 

15 ae_spindle 64-32-16-5-16-32-64 64 5 

 

Another factor tuned for controlling the model accuracy was the code size of 

the networks. Even after reducing the code size, the training did not require more than 

10 epochs in order to interpret and compress the datasets. Figure 64 shows the training 

progress for the microphone dataset (network 13). Figure 65 shows the results of the 

Auto-Encoder network trained for the vibration-sum dataset (network 11). 
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Figure 64 – Auto-encoder training curve for Network 13. 

 

Figure 65 - Auto-encoder signal/reconstructed/code for Network 11. 
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The auto-encoder training results present some interesting properties of the 

datasets. The first element to pay attention to is the noise ratio of the sensor signals. 

A general behavior observed was that “clean” signals are interpreted easily by the auto-

encoder. On the other hand, noisy signals make the process slowwe, once those 

networks must select strategically the most important features for the compression and 

reconstruction of the inputs afterwards.  

This property can be noticed clearly in the raw signals (Figure 51 and Figure 

52) in comparison with the signals reconstructed on network 11 (Figure 65) and 

network 13 (Figure 66). By analyzing the reconstructed signal presented in Figure 66, 

it is clear the algorithm prioritized the lower frequency band (𝑓 < 7𝑘𝐻𝑧) of the sensor 

when compressing the data. 

Figure 66 - Auto-encoder signal/reconstructed/code for Network 13. 

 

As a last point, the network achieved unusual results for the AE(spindle) signal. 

The resulting model has high accuracy, however, it also present very high loss. In other 

words, the model is accurate but the gradient does not stabilize.  
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Two different diagnoses can be addressed to such behavior: the first possibility 

is a poor adjustment of the network hyperparameters, so the gradient is not moving in 

the right direction or; the referred dataset has the behavior of a random noise unit, 

where most of the frequency bands are constant, but the noise is intense in some 

specific regions. 

Unfortunately, this point to some problem with the auto-encoder on spindle AE-

signal. Once the similar or simpler networks were able to process the information 

coming from the other signals with reasonable precision.  

6.2.2. Artificial Neural Networks 

The first presented prediction model approach is a vanilla ANN. The network 

is composed by successive Dense layers fully inter-connected. The neurons on input 

and hidden layers of the network use ReLU activation. On the other hand, the output 

units have linear activation in order to reach the target values, as assigned to 

regression model approaches. 

In order to better understand the representation power of this architecture, 2 

different network sizes were tested. The configuration of each network employed is 

shown in Table 17. 

Table 17 – ANN Regression Model Configurations.  

ANN Regression Model Configurations 

ID Dataset Layers input shape MSE test-set 

1 vib_sum (10,50)-(10,8)-flat*-8-4-2-1 (10,50) 505.6175 

2 vib_x3 (10,150)- (10,8)-flat-8-4-2-1 (10,150) 471.5322 

3 ae_workpiece (16,64)- (16,8)-flat-8-4-2-1 (16,64) 463.9799 

4 ae_spindle (16,64)- (16,8)-flat-8-4-2-1 (16,64) 305.8719 

5 mic (10,50)- (10,8)-flat-8-4-2-1 (10,50) 805.3639 

6 vib_sum (10,50)- (10,16)-flat-8-8-4-1 (10,50) 468.42054 

7 vib_x3 (10,150)- (10,16)-flat-8-8-4-1 (10,150) 488.3767 

8 ae_workpiece (16,64)- (10,16)-flat-8-8-4-1 (16,64) 293.165 

9 ae_spindle (16,64)- (10,16)-flat-8-8-4-1 (16,64) 313.7809 

10 mic (10,50)- (10,16)-flat-8-8-4-1 (10,50) 822.6655 
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By analyzing the results presented in Table 17, the bigger networks (networks 

6 to 10) present a considerable overfitting effect. This can be confirmed by looking at 

the training curve presented in Figure 67. However, the results collected from the 

smaller networks (networks 1 to 5) achieved poor accuracy rate while still overfitting. 

Figure 67 – ANN training curves for Networks 1. 

 

Through the use of pure ANNs, the best accuracy was achieved on the 

Vibration signal. See Figure 68. As the Figure shows, the model cannot predict well 

the extreme labels of the dataset. Performing better on the middle region, where a 

higher number of inputs are located.  

The reasons for the range failure of the model can be better understood when 

analyzing the most noisy dataset used: the microphone signal. The result suggests 

that all the predictions done by the algorithm are biased to the mean flank wear of the 

train-set. Which indicates a lack of representation power of the prediction model. In 

other words, when the algorithm is not capable of interpreting the input spectrogram, 

its only choice is to average the predictions to the mean flank wear value on the dataset 

in order to minimize the mean value of the loss. This phenomena can also be confirmed 

when presenting the WME curve for the ANN models (Figure 69). 

The general conclusion is that ANNs by their own are not able to generate 

good models for the flank wear prediction task, mainly on the beginning and end of tool 

lifespan. The models trained with the Vibration data were capable to distinguish 

different values of tool wear in the middle of the tool lifespan presenting a mean error 
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constrained under 10𝜇𝑚 on the interval (20 < 𝑉𝐵 < 100)⁡𝜇𝑚 (Figure 69). On the other 

hand, the error rapidly increases outside this interval. 

Figure 68 – Confusion matrix for ANN Regression (networks 6-10). 

 

Datasets with lesser information or higher noise ratio presented smaller 

accurate prediction intervals. On this sense, after the Vibration, the AE sensor 

presented a better performance. The poorest performance, closer to averaging the 

predictions, was presented by the model trained with the microphone signal. 
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Figure 69 – WME curve over entire datasets for Networks 6 to 10. 

 

 

Between both datasets generated from the vibration signal, the concatenated 

dataset presented a slightly better performance. So, summing the axes amplitudes – 

which could be seen as a feature selection mechanism – instead of maintaining them 

separated on the spectrogram caused small information loss. 

Besides that, the AE signal from the workpiece clamp presented a better 

performance in comparison with the sensor installed on the spindle. However, for the 

advanced stages of flank wear, the curves presented in Figure 69 show the error curve 

for the spindle sensor more stable and accurate on the interval 100 < 𝑉𝐵 < 125⁡𝜇𝑚. 

If the MSE on test-set (presented in Table 17) was used as the performance 

criteria for the model, the AE- sensors could be chosen as the best source of 

information for the problem. As the random error related to the flank wear 

measurement is ±6𝜇𝑚 (section 3.4), and the square root of the loss for Network 8 – 

for instance – is approximately 17𝜇𝑚, this ANN result could be considered a good 

achievement. However, the accuracy value by its own does not present enough 

information about the performance of the model. The mean squared error, as shown 

in Figure 68 and Figure 69, has a performance biased to the mean flank wear value, 

which in resume is not the most important interval under observation. 
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This fact raised a big question mark related to the accuracy metric on this 

project. Reinforcing the importance of using the WME metric for evaluating the models. 

Figure 70 shows the Error curve and Figure 71 and predictions for the test-set using 

Network 2. 

Figure 70 – WME for Network 2 – test-set. 

 

Figure 71 – Predictions generated by Network 2 – test-set. 
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By analyzing those figures, the performance bias of the algorithm becomes 

clear. Therefore, through the usage of WME, it is possible to evaluate the error in a 

more accurate way than only observing the resulting accuracy metric for the model.  

6.2.3. ANN & Auto-encoder 

Another architecture for the prediction models uses the encoded values 

generated from the networks presented in section 6.2.1. The architecture configuration 

is similar to the ANNs described on the previous section. However, the network now 

will receive the codes as inputs for the prediction task instead of the raw-spectrograms. 

Table 18 shows the network configurations employed to each dataset. 

Table 18 – ANN + Auto-Encoder Regression Model Configurations. 

ANN + Auto-Encoder Regression Model Configurations 

ID Dataset Layers 
input 

shape 
MSE test-set 

16 vib_sum codes (10,50)-(10,16)-flat-drop0.5-16-8-4-1 (10,10) 509.45907 

17 vib_x3 codes (10,50)-(10,16)-flat-drop0.5-16-8-4-1 (10,10) 560 

18 mic codes (10,50)-(10,16)-flat-drop0.5-16-8-4-1 (10,10) 818.04535 

19 ae_workpiece codes (16,64)-(16,16)-flat-drop0.5-16-8-4-1 (16, 4) 461.7848 

20 ae_spindle codes (16,64)-(16,16)-flat-drop0.5-16-8-4-1 (16, 5) 742.36844 

 

Once the auto-encoders already pre-select the potential features of the data, 

such ANNs are willing to overfit. In order to avoid such problem, a dropout layer was 

added to all networks. 

However, the trained networks did not outperform the ANNs reported in the 

previous section. Figure 72 shows the comparison between the results gathered from 

the ANN and ANN + Auto-encoder for the vibration summed dataset (Networks 6 and 

16).  

Due to the problem reported in the end of Section 6.2.1, the model which 

presented the poorest accuracy rate was the spindle sensor data. The error curve  

(Figure 73) shows that the input codes does not present enough information for the 

neural network to predict the tool condition. Besides that, the best accuracy was 

achieved by the network trained on the Vibration (Summed) dataset. The remaining 

datasets presented a similar performance as the pure ANN models. 
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Figure 72 – Confusion Matrix for test-set on Networks 6 and 16. 

 

Figure 73 – WME curve over entire datasets for Networks 16 to 20. 

 

 

Therefore, the auto-encoders may not be a good solution for improving 

performance at least on the scope of this project. On the other hand, they may be an 

useful tool when dealing with higher complex data formats or bigger datasets. 
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6.2.4. LSTM Classifier 

The LSTMs are the last described architecture for the prediction modules. The 

method used two different approaches. The first one uses a classifier in order to predict 

the tool condition. Therefore, the network output layer possesses 6 sigmoid units 

mapping each of the assigned classes. See Table 19. 

Table 19 – Classes addressed to each flank wear interval. 

Flank Wear Interval (µm) Label Binary Hot Code 

0 – 20 [1, 0, 0, 0, 0, 0] 

20 – 40 [0, 1, 0, 0, 0, 0] 

40 – 60 [0, 0, 1, 0, 0, 0] 

60 – 80 [0, 0, 0, 1, 0, 0] 

80 – 100 [0, 0, 0, 0, 1, 0] 

> 100 (tool failure) [0, 0, 0, 0, 0, 1] 

 

The architecture of the networks contain 2 LSTM  layers as presented in 

chapter 2. In order to avoid overfitting, both those layers implement dropouts of 50%. 

The complete configuration for the LSTM classifiers is shown in Table 20. 

Table 20 – LSTM Classifier Model Configurations. 

LSTM Classifier Model Configurations 

ID Dataset Layers 
input 

shape 

Categorical 

Accuracy (test-set) 

26 vib_sum (15,50)-64-drop0.5-64-drop0.5-32-16-6 (15,50) 0.78038 

27 vib_x3 (15,50)-64-drop0.5-64-drop0.5-32-16-6 (15,150) 0.81738 

28 mic (15,50)-64-drop0.5-64-drop0.5-32-16-6 (15,50) 0.13881 

29 ae_workpiece (16,64)-64-drop0.5-64-drop0.5-32-16-6 (16,64) 0.65988 

30 ae_spindle (16,64)-64-drop0.5-64-drop0.5-32-16-6 (16,64) 0.56453 

 

The confusion matrixes shown in Figure 74 present superior performance of 

the LSTM classifiers in comparison with all the previous presented regression models. 

The 6 different classes used, each one 20𝜇𝑚 spaced, provided a way smaller error 

rate if compared to the regression networks. This fact proves that this approach is more 

suitable for an industrial TCM system than any of the previously presented models. 
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As observed in Figure 74, the performance pattern between the datasets 

repeated. Firstly, the models trained on vibration data provided again the best 

accuracy. Furthermore, the model trained on the Vibration(appended) dataset was the 

most accurate between all LSTM models. Unlike the regression models presented until 

now, the  2 classifiers trained on the vibration signal predicted well in all the stages of 

the tool lifespan. Which is a very important result, since the accuracy in predicting the 

last stages of tool wear is critical for the goals stablished for the project. 

Figure 74 – Confusion Matrixes for LSTM classifiers (Networks 26-30) on test-set. 
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Although the AE models presented a better performance in this approach, they 

still present problems reaching all the flank wear range. As well as the previously 

reported approaches, the workpiece signal model presented a superior accuracy in 

comparison with the model trained with the spindle signal. 

Figure 75 shows the training progress for network 27. The system accuracy 

develops well until the 25th epoch. After this epoch, the model starts to present overfit.  

Figure 75 – Training curve for LSTM, Network 27. 

 

6.2.5. LSTM Regression 

The second approach is a regression model which, as the previously described 

ANNs, predicts the flank wear values through a linear output layer with one neuron.  

The remaining network configurations are similar to the ones presented for the 

Classifier approach. Table 21 shows each network configuration employed. 

Figure 76 presents the results for the regression models trained. The charts 

show that the regression models are not as precise as the classification models. 

However, the LSTMs achieved a superior performance in comparison with the 

approaches using vanilla ANN and ANNs + Auto-encoders. 
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Table 21 – LSTM Regression Model Configurations. 

LSTM Regression Model Configurations 

ID Dataset Layers input shape MSE (test-set) 

21 vib_sum (15,50)-32-drop0.5-32-drop0.5-16-8-1 (15,50) 284.29948 

22 vib_x3 (15,50)-32-drop0.5-32-drop0.5-16-8-1 (15,150) 176.15272 

23 mic (15,50)-32-drop0.5-32-drop0.5-16-8-1 (15,50) 771.1928 

24 ae_workpiece (16,64)-32-drop0.5-32-drop0.5-16-8-1 (16,64) 420.97011 

25 ae_spindle (16,64)-32-drop0.5-32-drop0.5-16-8-1 (16,64) 441.0024 

Figure 76 – Confusion Matrixes for LSTM Regression (Networks 21-25) on test-set. 
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The pattern among the signals repeated once more. From which, it can be 

concluded that the signal which presents the most relevant amount of information for 

predicting tool wear comes from the vibration sensor. However, as the other regression 

models, these networks does not present high accuracy on the extremities of the flank 

wear curve. 

The models trained with the AE signal also presented some problem on 

predicting values on the beginning and end of the flank wear curve, as it can be seen 

in Figure 77. On the other hand, the error curve for the model trained on the 

microphone data followed the error curve of the AE models. Such behavior was not 

observed in the ANN models, where the error was bigger for the microphone signal. 

Such fact suggests that the LSTMs can better interpret noisy data, when compared to 

the other reported approaches. 

Figure 77 – WME curve over entire datasets for Networks 21 to 25. 

 

Despite the fact that the LSTM regression models presented a superior 

performance, by analyzing Figure 77 it is clear how the performance of the network is 

still biased to the mean flank wear. In order to overcome this problem, as explained in 

section 6.1.4, a network model was trained with weights giving higher priorities to the 
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beginning and end of the tool flank wear curve. Figure 78 presents the comparison 

between two models, one trained with weights and one without.  

Figure 78 shows that, by addressing higher priority to the extremities of the 

tool lifespan, the resulting network has a better performance on those regions. On the 

other hand, the overall accuracy – on the middle region – is slightly damaged.  

Figure 78 – LSTM Regression trained with and without weights for 
Vibration(summed) dataset. 

 

The results show an improvement of more than 50% accuracy on the 

extremities of the curve for the analyzed dataset. Figure 79 shows the error curve for 

the entire dataset for both the approaches. 

Figure 79 -  WME for LSTM regression comparing the usage of weighting. 
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6.2.6. Prediction Results 

Although the spindle vibrates and produces a high amount of noise, the 

sensors installed on the spindle body proved to show good amount of information about 

the process condition. Such fact is even more clear if we consider that the best 

prediction models used the input from the accelerometer sensor.  

By saying so, positioning the sensors on the spindle body is not only more 

flexible when analyzed from the production perspective, but it is also a powerful tool in 

order to capture the flank wear progress as well as it may be useful for studying other 

phenomena too. 

Still related to the sensors, training the neural networks helped interpreting the 

performance of each of those signals on the studied problem. Firstly, the vibration 

signal provided by the accelerometer was the most reliable source for understanding 

the flank wear development. Unlike reported in the recent literature, it outperformed 

AE-sensors and ultra-sonic emission for capturing the flank wear. This result suggests 

such signals can be further studied in future works on the field. 

After this, the microphone data provided a very noisy behavior and not much 

relevant information. At least not in the current position where the sensor was installed. 

As a suggestion, one option could be repositioning such sensor in a way that it can 

capture more information about the process.  

By looking at the resulting confusion matrixes, the performance of the LSTMs 

are clearly superior in comparison with the vanilla or encoded ANN prediction models. 

See Figure 80. Once those networks can memorize features found in the input vectors, 

they achieved – mainly on the extremities of the flank wear curve – a more accurate 

prediction of the cutters´ condition.  

Besides this fact, the  LSTM classification approach achieved the best result 

between all prediction models analyzed on the project. Regarding the regression 

approach, Figure 80 proves that the performance bias of the network can be tackled 

using weights in order to train the regression models. This weight training result has 

shown that the LSTM regression can present similar performance as the LSTM 

classifiers achieved. After all, both approaches can be considered suitable for an online 

TCM system. 
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Figure 80 – Confusion Matrixes (test-set) of all Prediction Models trained in the project. 
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7. CONCLUSION 

This document presented a complete system for tool wear prediction in high 

precision milling process. The project englobed sensor setup, parameter 

determination, experiments and signal analysis. Through the experiments performed 

on the machine, various properties of the tool wear development in milling were 

observed. 

Firstly, the acquisition program developed and reported in chapter 4 proved to 

be a new powerful resource available in order to capture information of processes 

using high spindle speed. Furthermore, milling processes on the industrial environment 

usually employ tools with multiple cutters and high spindle speed machine tools, 

reinforcing the importance of acquisition systems capable of recording high frequency 

signals. 

The reported experiments gathered data from different sources: two AE-

sensors, one installed in the workpiece clamp and the other on the spindle body; one 

vibration sensor installed in the spindle body; one ultra-sonic microphone installed on 

the machining chamber; 4 encoder position readers: X, Y, Z, spindle; the spindle power 

consumption; and the Spike tool holder, which recorded the Forces applied to the tool. 

Related to the AE-sensors, the NN could interpret better the signals recorded 

from the workpiece clamp sensor in comparison with the spindle sensor. One possible 

reason is that such sensor does not get high influence from the spindle vibration, so it 

can better capture the process emission. However, both sensors achieved poor 

performance on the tool wear prediction task. 

On the preprocessing, all sensor data was extracted using FFT. The tool flank 

was directly measured via microscope by accessing 3 different regions of each tooth. 

Once the employed tool has 3 teeth, the procedure measured the flank wear length on 

9 different regions. From which, the maximum value among those 9 points was 

adopted for labeling the data. 

In order to determine the best architecture and sensor for the problem, the 

system tested 3 different approaches for the prediction models: a vanilla Neural 

Network; a combination of ANN with Auto-encoder and LSTM architecture. The results 

showed the ANN and ANN with Auto-encoder did not have enough representation 

power for the prediction task.  
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A last approach used LSTM networks. On the classifier approach, the models 

were tuned to classify the inputs into 6 different states of tool wear divided in the range 

of 0 to 120𝜇𝑚. Such method presented a high performance on the vibration data. The 

accuracy was higher than 80% in almost all the classes for this dataset.  

On the other hand, the approach using LSTM for regression presented 

accuracy problem in the beginning and end of the tool wear curve, once the amount of 

data available to the model is smaller in this interval. Therefore, the training algorithm 

tends to give higher priority to the middle interval of the tool.  

In order to overcome this problem on the regression networks, an approach 

used weights in order to raise the priority of the pairs where the flank wear 30⁡ > 𝑉𝐵⁡ >

100. This procedure forced the networks to improve the performance on the referred 

interval. The accuracy on those regions improved more than 50% in the tested dataset. 

As a result, both approaches using LSTMs could be considered for a further 

implementation of a TCM system. This fact shows the potential of deep-learning in 

analyzing sensor data. However, further researches involving new techniques must 

still be performed in order to improve the reported results. 

For future works, a first factor to mention is the small dataset size. On the 

current project, 4 tools and 2 different process parameter configurations were 

employed. In order to better generalize this result, further works must test a higher 

volume of different parameters, tool paths, tool types, etc. 

Besides that, other networks like convolutional networks and fuzzy networks 

can be explored in order to improve the achieved results. Furthermore, other 

techniques like training models using a combination of multiple signals can also 

present improvements. At least, the results here presented can serve as a guideline 

for future studies on the field. After all, the dataset are still not fully explored, as some 

signals recorded in the experiments were not used. 
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9. APPENDIX A – TAMA CLIENT FUNCTIONALITY DESCRIPTION 

This document lists the desired functionalities to be incorporated on the Tama 

Client software programming for real-time acquisition. On the table below, all desired 

functional and performance requirements raised for the software project are described. 

The functions here presented were generated by the author together with other 

team members who also require the use of this acquisition program on their projects. 

 

F1: Connect to Trialink 

Description: the system must be able to connect to the main Trialink adapter (TLC-
Card) in order to access the information available inside the ring network. 

Not-Functioning Requirements 

Name Constraint Category Mandatory 

NF1.1:  Connection 
status 

the system must show the user the status of the 
connection with the network. 

interface (X) 

NF1.2: Release 
connection 

Once the system finishes the tasks, or shuts down 
for any reason, it must – with all its effort – release 
the connection with the link, freeing the network to 
connect to another software. 

performance (X) 

 

F2: Show Parameter Tree 

Description: Once the system accessed the link, it must show the user all the devices 
connected in the ring, and all the readable parameters contained inside each one of 
the devices found. 

Not-Functioning Requirements 

Name Constraint Category Mandatory 

NF2.1:  Tree interface the devices, categories and parameters must be 
organized in a tree mode, starting with the devices 
on the ring and going until the end-point parameters 
of the tree. 

interface (X) 

NF2.2: Read-only The system must show the user only readable 
parameters of a device. That is, it must find a way to 
eliminate all unreadable parameters and dead 
nodes of the device tree in order to simplify the view. 

Performance (X) 
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F3: Acquisition Programing 

Description: the user will be able to set one or multiple simultaneous acquisitions to 
be performed by the system. Using the interface tools provided in F2, the user will 
select a group of variables and the sampling rate for each of those groups. 

Not-Functioning Requirements 

Name Constraint Category Mandatory 

NF3.1:  Show 
acquisitions 

The system must show to the user a list of selected 
registers for each acquisition, specifying the 
sampling rate. 

interface (   ) 

NF3.2: 
Inclusion/exclusion 
policy 

The system must allow one option where - with at 
maximum - two clicks, the user selects the desired 
registers to be included or excluded from the 
acquisition group list 

interface (    ) 

NF3.3: reset 
programming 

The user will be able to reset the entire acquisition 
programing via interface, and restart selecting the 
channels for acquisition 

interface (X) 

 

F4: Save Acquisition Setup 

Description: the user has the option to save and load the acquisition programing 
done on F3. With this, repeated acquisitions with same setup must be programmed 
only once and then they can be loaded back on the system multiple times. 

Not-Functioning Requirements 

Name Constraint Category Mandatory 

NF4.1:  Loading last  
program 

The system will always try to load the preferences 
programmed in the last time the software was used 

performance (  ) 

NF4.2: External 
edition 

The format used for the setup must allow external 
editions. On this way some file type like Jason or 
XML must be adopted for the task. 

performance (X) 
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F5: Acquire data on Trialink 

Description: The system will configure and perform the programmed data acquisition 
in the ring network. And load on software all required information 

Not-Functioning Requirements 

Name Constraint Category Mandatory 

NF5.1:  Real Time 
Constraint 

The ring real-time flow of data must be preserved. 
This implies that the mechanism to acquire data 
needs to work under real-time constraints. 

performance (X) 

NF5.2: Data handling The system will preserve the types of each data 
received, i.e., there will be no data conversion inside 
the software unless critically required. On this way, 
avoiding overheads and performance problems due 
to data conversion. 

performance (X) 

NF5.3: Acquisition 
Status 

The user will receive constantly information about 
the status of the in-process acquisition via interface. 
Problems on the link or software will need to be 
reported as soon as possible. 

interface (X) 

NF 5.4: Show 
acquired Values 

The user, via interface, will be able to see the last 
values acquired from the link. 

interface (X) 

 

F6: Save Acquired data 

Description: the system must be able to create files, handle buffered values in RAM, 
and save all the acquired data locally.  

Not-Functioning Requirements 

Name Constraint Category Mandatory 

NF6.1:  Avoiding 
Overflow 

The system must have protection mechanisms to 
handle data overflow on RAM memory, i.e., the 
system will prevent the failure by exceeding in-
memory data. 

interface (X) 

NF6.2: Data 
Conservancy 

The system must avoid the loss of data due to the 
lack of performance on this functionality preserving, 
in this way, the programmed acquisition sampling 
rate provided by the user. 

performance (   ) 

NF 6.3: In memory 
data register 

The user will receive information in the interface 
regarding the current amount of data stored in 
memory. 

interface (   ) 

NF6.4: Data handling The system will preserve the types of each data 
received, i.e., there will be no data conversion inside 
the software unless critically required. This will avoid 
overhead and performance problems when saving 
data locally. 

performance (X) 
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F7: Constraint Program Insertion 

Description: The system will reserve a specific area on the code which may be used 
by future programmers to insert specific desired behaviors, where it is possible to 
observe data and perform some specific actions automatically, which could be only 
possible via manual operation. Ex.: stop once 10 minutes of data were recorded. 

Not-Functioning Requirements 

Name Constraint Category Mandatory 

 

F8: Log data maintenance 

Description: The system will show and save, a log file containing all events which 
happened during the acquisition. 

Not-Functioning Requirements 

Name Constraint Category Mandatory 

NF 8.1: In-process 
check-up 

The user will be able to open the log file during the 
process to check the past events that happened on 
the incurrent acquisition 

(performance) (X) 

NF 8.2: Interface 
Events 

The system will maintain on the interface only the 
most recent events which happened on the system. 
(the rest will be available on the log file) 

(interface) (X) 

 

F9: Output Data Type 

Description: The output files must be saved in a format which allows the immediate 
visualization by the user after the files are closed.  

Not-Functioning Requirements 

Name Constraint Category Mandatory 
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10. APPENDIX B – TAMA CLIENT SOFTWARE PROJECT 

This document is aimed to provide details about the software project 

developed based on the Functionality description  presented in Appendix A. As 

described in Chapter 4, the project tried to accomplish all listed functionalities while 

keeping track of some important properties the software must maintain. The final 

version of the class diagram can be seen in Figure 81. 

In order to accomplish the acquisition task, the software is multithreaded. This 

decision also helps avoiding interchanging problems and bottlenecks on the system. 

By splitting the tasks, the processes responsible for keeping control of the system 

status can also analyze each software module independently, easing error diagnoses 

and speeding up correction mechanisms. 

Therefore, the acquisition software was separated into 4 modules. Each one 

of them is responsible for a limited number of tasks. In other words, there is no 

redundancy on the system functions between each of those modules. 

10.1. Interface Package 

This package is responsible for handling all operations involving the user. On 

this package, the window and all graphical items are located. As it can be seen, the 

project implementation was carried out such a way that the back-end and front-end 

were completely separated from each other. Therefore, all requests and commands 

from the GUI go to the Controller class, which then access further classes and gets the 

required data. This allow not only the complete replacement of the GUI – if needed – 

but also ensures the code will not be “over-nested”. 

10.2. Main Package 

The Controller class is located in this package, this entity commands and 

synchronizes all actions on the software, therefore it is the main thread of the system. 

Excepting the data pipeline (DataBuffer-RegisterLogger classes), all information flow  

inside the packages is done through the Controller. So the controller has the task to: 

• Execute user commands and provide data to the interface; 

• Manage all thread instances are working during acquisition; 
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Figure 81 – Tama Client class diagram, final version. 
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• Instantiate and start all procedures on the sub-instances located in other 

packages; 

• Handle failure in the system insuring minimum loss and maximum robustness; 

• Keep track of all events which happened on the system; 

The ConditionControl class can also be found on the package. This class is 

responsible for checking the automatic conditions programmed by the user on the 

“Program config” tab. Each programmed action is an implementation of the 

“ConditionAction” interface, which basically needs to instantiate a firing condition and 

a subsequent action. All possible automatic actions are then checked regularly by the 

ConditionControl thread, and actions are taken if the condition is achieved.  

Both user via interface and the actions performed by ConditionControl thread 

act by calling methods on the Controller. Therefore, the system can be perceived as 

being commanded by two concurrent entities, performing manual and automatic 

actions simultaneously. So, in order to guarantee consistency on the program 

behaviour, the controller commands are protected with special lockers. 

10.3. Tama Handler Package 

This package is responsible for all actions related to the Trialink network. It is 

also the only package which uses the Tama libraries in order to communicate with the 

ring. 

When the program is initialized, only TrialinkConnection is instantiated by the 

Controller. As the procedures go on, further classes are instantiated in the program. 

This eases the maintenance of runtime instances by deleting unnecessary objects 

when back-stepping. 

Following the program execution sequence: primarily, when the software is 

started, the Controller instantiates the TrialinkConnection class. When commanded to 

connect, this class accessess the network and requests the device tree using the Tama 

API for the task. 

After this step, the program navigates through the device tree in recursive 

mode identifying all nodes on the accessed network. At the same time, the program 

creates an internal representation of the device tree using the IPTNode class, which 

contains basic tree attributes and registers describing ID, name and data type. On this 

way, the system has a tree representation containing only the relevant information 
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about the register tree of the Trialink network. The register IDs are unique strings 

organized like directory paths 

This node tree is forwarded to the Controller, and then to the interface. When 

the acquisition program is selected by the user, the controller sends a list containing 

each acquisition sampling rate and the register list (IDs) of all registers selected by the 

user. This information is then stored in the AcquisitionConfig class. 

When the Acquisition is about to start, the TrialinkConnection instantiates 

multiple objects of the Acquisition class. Each Acquisition instance synchronizes one 

register group according to its programmed sampling rate.  

Each of the Acquisition instances will then instantiate the Subscribers. The 

Subscriber on Tama Client has the task of communicating with the Subscription 

mechanism of the ring network. Devices on the ring send data to each other using 

packages containing up to 5 register values. Configuration regarding this 

communication schema is set between devices using the Subscription mechanism. In 

other words, a subscriber device requests information from the publisher by sending a 

Subscription request. Therefore, The Subscriber task is to identify the right subscription 

type and package size. After that, it sends the request to the devices on the network 

and receives the data packages. 

Although, the Subscriber instances receive the data packages during the 

acquisition, they do not check their content. Each Subscription, after receiving a list of 

packages, forwards those to the RegisterLoggers (instances of 

RegisterAbstractLogger), when then the package content will be read and checked. 

Each RegisterLogger is responsible for processing information from One 

Register. Once they are threaded, all data registers are processed in parallel. The 

loggers are also responsible for checking two conditions: 

• Each package has a corresponding Timestamp, and all packages are 

transported in the ring in a FIFO order. Once the loggers know the 

sampling rate, by checking sequentially the timestamp of each package, 

they can diagnose if data was lost on the ring. Raising the “Overload” 

flag to the controller immediately; 

• The loggers also check data consistency, if a register bounded to some 

interval (value −1 < 𝑣 < 1) or it has a certain behavior (a timestamp is 

always an increasing value) and the received value has some anomaly, 

a “Failure” flag is raised. 
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It worth noticing that the Logger instances are generic classes. They are the 

first element of – what is called in Tama Client – the Data Pipelines. So, each Logger 

is instantiated with the type of the variable it will process. This type is identified when 

first accessing the register tree of the network on the identification step. 

After reading and converting the binary packages to typed values, the Loggers 

then forward the data to the DataBuffers, when they will be enqueued before flushed 

to disk by instances of the File Handler package. 

10.4. File Handler Package 

This package has all the tasks regarding archiving and loading files. It is 

responsible for checking paths, save and load configurations, open zip deflate files, 

write data during acquisition, buffering, buffer overflow control, streaming data for 

online visualization using ZMQ and invoking the converter to finally convert the zip to 

HDF files. This package also writes the record of all the events which happened on the 

system. In resume, the package handles all I/O operations with the local disk. 

The ZMQStreamer is a class which uses Zero MQ protocol to stream data to 

another software for online visualization purpose. It is also a Thread which tries 

sending data using string messages. In order to access the data on the generic 

pipeline, the ZipAbstractStreamer has an abstract method implemented by its children  

which goes to the DataBuffer, dequeues the streaming values, convert them to a string 

array and return them. 

The ZMQStreamer passes one by one all the ZipStreamers, gets all the data, 

builds the string message and send it to the programmed port in a constant loop. 

10.5. Data Pipeline 

The Data Pipeline here corresponds to the Generic region of the software 

where the acquisition data is processed (see Figure 82). There is one pipeline for each 

variable acquired. Each pipe has one instance of a Logger (depending on the 

subscriptin type, it can be any of both), one DataBuffer and one ZipStreamer. 

In order to avoid overheads related to converting data to a common type like 

double, this pipeline was implemented in a Generic way. So if the variable of the 
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pipeline is a double, it is going to be processed as a double, if it is a Boolean, Boolean, 

if Float40, it is reduced to float and then forwarded, and so on.  

Figure 82 – Data Pipeline instances of the Tama Client class diagram. 

  

 

So, another task of the Loggers is to convert the Tama data type to struct (raw 

C# type). As well as the ZipStreamer converts this structs at the end to bytes and write 

them down on disk. 

Since the Loggers and ZipStreamers are parallel instances, we need a way to 

pool data between them, and at the same time, allow both instances to add and get 

data concurrently. So, this is the tasks of the DataBuffer on the system: it has mainly 

one Queue, concurrent methods (using Mutex) to add and remove values from the 

Queue, counters used to control and synchronize data between different pipes, and 

memory overflow control – constraining queue size. This is the only place on the entire 

system where data is pooled. 

10.6.  User Interface 

As previously mentioned, the user operates the system using the program 

interface. The acquisition is configured and monitored by the usage of 3 tabs in the 

main window sequentially: 

1. Acquisition Setup: corresponds to selecting all desired registers and sampling 

rates for the acquisition 

2. Program Config: programs general system behavior, output folders, max file 

sizes, etc. 

3. Process Monitoring: where user can see the status of the acquisition, diagnose 

errors, see current values acquired and command the acquisition.  

Figure 83, Figure 84 and Figure 85 presents the screenshots of each of those 

tabs. 
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Figure 83 – Acquisition Setup tab of Tama Client Software. 
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Figure 84 – Program Configuration tab of Tama Client Software. 

 

Figure 85 – Tama Client Process Monitoring tab with ongoing acquisition. 

 

  



134 

 

11. APPENDIX C – PREDICTION MODELS: TABLE OF RESULTS 

ID Network layers Dataset input shape 

1 ANN Regression (10,50)-(10,8)-flat*-8-4-2-1 vib_sum 10, 50 

2 ANN Regression (10,150)- (10,8)-flat-8-4-2-1 vib_x3 10, 150 

3 ANN Regression (16,64)- (16,8)-flat-8-4-2-1 ae_workpiece 16, 64 

4 ANN Regression (16,64)- (16,8)-flat-8-4-2-1 ae_spindle 16, 64 

5 ANN Regression (10,50)- (10,8)-flat-8-4-2-1 mic 10, 50 

6 ANN Regression (10,50)- (10,16)-flat-8-8-4-1 vib_sum 10, 50 

7 ANN Regression (10,150)- (10,16)--flat-8-8-4-1 vib_x3 10, 150 

8 ANN Regression (16,64)- (10,16)--flat-8-8-4-1 ae_workpiece 16, 64 

9 ANN Regression (16,64)- (10,16)--flat-8-8-4-1 ae_spindle 16, 64 

10 ANN Regression (10,50)- (10,16)--flat-8-8-4-1 mic 10, 50 

11 Auto-Encoder 50-10-50 vib_sum 1, 50 

12 Auto-Encoder 150-10-150 vib_x3 1, 150 

13 Auto-Encoder 50-10-50 mic 1, 50 

14 Auto-Encoder 64-32-16-4-16-32-64 ae_workpiece 1, 64 

15 Auto-Encoder 64-32-16-5-16-32-64 ae_spindle 1, 64 

16 ANN Regression (10,50)-(10,16)-flat-drop0.5**-16-8-4-1 auto_vib_sum 10,10 

17 ANN Regression (10,50)-(10,16)-flat-drop0.5-16-8-4-1 auto_vib_x3 10,10 

18 ANN Regression (10,50)-(10,16)-flat-drop0.5-16-8-4-1 auto_mic 10,10 

19 ANN Regression (16,64)-(16,16)-flat-drop0.5-16-8-4-1 auto_workpiece 16, 4 

20 ANN Regression (16,64)-(16,16)-flat-drop0.5-16-8-4-1 auto_spindle 16, 5 

21 LSTM Regression (15,50)-32-drop0.5-32-drop0.5-16-8-1 vib_sum 15, 50 

22 LSTM Regression (15,50)-32-drop0.5-32-drop0.5-16-8-1 vib_x3 15, 50 

23 LSTM Regression (15,50)-32-drop0.5-32-drop0.5-16-8-1 mic 15, 50 

24 LSTM Regression (16,64)-32-drop0.5-32-drop0.5-16-8-1 ae_workpiece 16, 64 

25 LSTM Regression (16,64)-32-drop0.5-32-drop0.5-16-8-1 ae_spindle 16, 64 

26 LSTM Classifier (15,50)-64-drop0.5-64-drop0.5-32-16-6 vib_sum 15, 50 

27 LSTM Classifier (15,50)-64-drop0.5-64-drop0.5-32-16-6 vib_x3 15, 50 

28 LSTM Classifier (15,50)-64-drop0.5-64-drop0.5-32-16-6 mic 15, 50 

29 LSTM Classifier (16,64)-64-drop0.5-64-drop0.5-32-16-6 ae_workpiece 16, 64 

30 LSTM Classifier (16,64)-64-drop0.5-64-drop0.5-32-16-6 ae_spindle 16, 64 

31 LSTM Regression (15,50)-32-drop0.5-32-drop0.5-16-8-1 vib_sum 15, 50 

32 LSTM Regression (15,50)-32-drop0.5-32-drop0.5-16-8-1 vib_sum 15, 50 

 

* : flat represents dimensionality reduction from a 2-D layer to a 1-D layer.    

**: dropout portion of the preceding layer      

***: left-shifting augmentation      

****: auto-encoder architecture      

*****: Keras Functions - mse: mean squared error; acc: accuracy estimation or deviation from true 
value; cce: categorical cross-entropy; cac: categorical accuracy, or portion of prediction max values 
which matches the true value.          



135 

ID extras epochs batch-size loss-function accuracy-function 

1 aug*** 50 1024 mse***** mse 

2 aug 50 1024 mse mse 

3 aug 50 1024 mse mse 

4 aug 50 1024 mse mse 

5 aug 50 1024 mse mse 

6 aug 50 1024 mse mse 

7 aug 50 1024 mse mse 

8 aug 50 1024 mse mse 

9 aug 50 1024 mse mse 

10 aug 50 1024 mse mse 

11 simple**** 10 1024 mse acc 

12 simple 10 1024 mse acc 

13 simple 10 1024 mse acc 

14 deep 10 1024 mse acc 

15 deep 10 1024 mse acc 

16 aug 50 128 mse mse 

17 aug 50 128 mse mse 

18 aug 50 128 mse mse 

19 aug 50 128 mse mse 

20 aug 50 128 mse mse 

21 aug 50 512 mse mse 

22 aug 50 256 mse mse 

23 aug 50 256 mse mse 

24 aug 50 512 mse mse 

25 aug 50 512 mse mse 

26 aug 50 256 cce cac 

27 aug 50 256 cce cac 

28 aug 50 256 cce cac 

29 aug 50 256 cce cac 

30 aug 50 256 cce cac 

31 aug+ weights 50 128 mse mse 

32 aug 50 128 mse mse 
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ID acc loss val-acc val-loss best val-acc 

1 267.8612 267.8612 538.7658 538.7658 505.6175 

2 225.3065 225.3065 475.1323 475.1323 471.5322 

3 575.0486 575.0486 466.0967 466.0967 463.9799 

4 531.1392 531.1392 316.1533 316.1533 305.8719 

5 624.0636 624.0636 853.4193 853.4193 805.3639 

6 243.8391 243.8391 483.3451 483.3451 468.42054 

7 212.6319 212.6319 488.3767 488.3767 488.3767 

8 430.6961 430.6961 303.6426 303.6426 293.165 

9 526.6828 526.6828 313.7809 313.7809 313.7809 

10 597.2996 597.2996 886.4907 886.4907 822.6655 

11 0.9401 0.0673 0.9215 0.1235 0.9215 

12 0.9425 0.0172 0.9257 0.028 0.92737 

13 0.9317 0.003 0.9323 0.0031 0.9323 

14 0.9024 483.5302 0.9183 403.732 0.92032 

15 0.9815 3982.7846 0.9783 3975.0151 0.97831 

16 313.439 313.439 583.2678 583.2678 509.45907 

17 324.1524 324.1524 640.1625 640.1625 560 

18 671.3022 671.3022 853.2402 853.2402 818.04535 

19 599.0172 599.0172 470.7251 470.7251 461.7848 

20 766.4859 766.4859 742.4829 742.4829 742.36844 

21 210.4981 210.4981 421.2085 421.2085 284.29948 

22 136.7346 136.7346 524.6397 524.6397 176.15272 

23 614.9895 614.9895 846.2655 846.2655 771.1928 

24 485.4925 485.4925 721.6194 721.6194 420.97011 

25 589.6677 589.6677 978.1514 978.1514 441.0024 

26 0.8153 0.4458 0.7176 0.6596 0.78038 

27 0.8518 0.3654 0.791 0.4726 0.81738 

28 0.445 1.3327 0.1152 1.8604 0.13881 

29 0.6709 0.8197 0.5924 1.0481 0.65988 

30 0.4646 1.26 0.4624 1.2604 0.56453 

31 277.7136 145.0843 364.6487 364.6487 260.5499 

32 189.8475 189.8475 544.6927 544.6927 192.73205 

 


