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Resumo

Neste trabalho, formulamos uma teoria de cohomologia para ações
parciais de álgebras de Hopf cocomutativas sobre álgebras comutativas.
Ela generaliza tanto a teoria de cohomologia para álgebras de Hopf
introduzidas por M. E. Sweedler como também a teoria da cohomologia
para ações parciais de grupo, introduzidas por M. Dokuchaev e M.
Khrypchenko. Alguns exemplos não triviais, ou seja, não provenientes
de grupos, são construídos.

Ainda, dada uma ação parcial de uma álgebra Hopf cocomutativa
H sobre uma álgebra comutativa A, de�nimos uma nova estrutura,
nomeada Ã, que possui os mesmos grupos de cohomologia da álgebra
original A. Essa estrutura é interessante pois possui estrutura de ál-
gebra de Hopf sobre o anel comutativo E(A) e H permanece agindo
parcialmente sobre Ã. Por �m, veri�camos a relação do segundo grupo
de cohomologia, H2(H,A), com extensões cleft parciais de álgebras
comutativas por ações parciais de álgebras de Hopf cocomutativas e
provamos que extensões cleft parciais podem ser vistas como extensões
cleft de Hopf algebroides.

Palavras-chave Álgebras de Hopf; ações parciais; Cohomologia
parcial; produto cruzado parcial; extensões cleft parciais.
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Resumo Expandido

Introdução:

A história das álgebras de Hopf tem início no contexto da topologia
algébrica com o artigo de H. Hopf, publicado em 1941, descrevendo as
propriedades algébricas do anel de cohomologia de uma variedade de
grupo [23]. O assunto de cohomologia de grupo rapidamente se tornou
independente do seu contexto topológico, assumindo uma formulação
mais algébrica [1, 31]. A primeira formulação de uma teoria de coho-
mologia para álgebras de Hopf foi feita por M. Sweedler em 1968 [30],
em que o mesmo considerou álgebras de Hopf cocomutativas atuando
sobre álgebras comutativas. Este trabalho se tornou paradigmático
para desenvolvimentos futuros nessa área.

Neste trabalho a cohomologia foi de�nida por meio de um complexo
explícito que surge como um complexo de cocadeia e os grupos neste
complexo consistem no grupo multiplicativo de elementos invertíveis
em Hom(C,A), em que C é a coálgebra advinda da álgebra de Hopf,
tensorizada sobre si mesma um número de vezes.

Neste mesmo artigo, M. Sweedler dedicou-se também ao estudo da
classi�cação de extensões de álgebra por álgebras de Hopf. Uma exten-
são de álgebra por uma álgebra de Hopf, possui estrutura de álgebra e
outras propriedades. Assim, de�nindo o que são equivalência e produto
de extensões, foi possível a Sweedler demonstrar que a 2-cohomologia
H2(H,A), com A um H-módulo álgebra, é isomór�ca ao grupo das
classes de equivalência de extensões cleft. Parte desta teoria consiste
na de�nição de certas álgebras, denominadas produto cruzado.

Essa noção de produto cruzado foi generalizada, de forma inde-
pendente por Y. Doi e M. Takeuchi [15] e R. Blattner, M. Cohen, S.
Montgomery [28] em 1986. Eles também introduziram condições para
caracterizar produtos cruzados como extensões cleft. Então, S. Mont-
gomery em [28] introduziu um critério de equivalência para isomor�s-
mos entre produtos cruzados. Tal resultado tinha por expectativa obter
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uma teoria geral de cohomologia para álgebras sobre álgebras de Hopf,
mas até hoje ainda não foi possível.

A teoria de ações parciais de grupo teve início com o trabalho de R.
Exel na classi�cação de certas classes de C∗-álgebras que não podiam
ser descritas como um produto cruzado usual [21]. Uma formulação
mais algébrica para ações parciais foi feita por M. Dokuchaev e R. Exel
em [16] e então, ações parciais passaram a chamar a atenção de alge-
bristas, gerando desenvolvimento em diversas direções. Neste sentido,
para este trabalho é relevante a noção de ações parciais torcidas de um
grupo [17] e sua globalização [18]. Nelas, a noção de 2-cociclo parcial
é utilizada para se de�nir ações parciais torcidas e produtos cruzados
parciais, sugerindo assim a existência de uma teoria geral de cohomolo-
gia em que os 2-cociclos estariam inseridos. Esta teoria cohomológica
para ações parciais de grupo foi introduzida por M. Dokuchaev e M.
Khrypchenko em [19], e é construída em cima de ações parciais de gru-
pos sobre monóides comutativos. Ainda, em [20], os autores relacionam
sua teoria cohomológica para ações parciais de grupo com o contexto de
cohomologia de semigrupos inversos desenvolvida por H. Lausch [25],
uma vez que a noção de ação parcial de grupo está profundamente
relacionada com ações de semigrupos inversos [22],

Ações parciais entraram no contexto de álgebras de Hopf pelo tra-
balho de S. Caenepeel e K. Janssen em [14]. Este trabalho permitiu a
generalização de vários resultados clássicos na teoria de álgebra de Hopf
e de várias ideias desenvolvidas para ações parciais de grupo, como
o teorema de globalização [2], equivalência de Morita entre produto
smash parcial e a subalgebra dos invariantes [3], dualidade para ações
parciais [4], representações parciais [7], etc. Indicamos [8] para mais
detalhes sobre o desenvolvimento recente de ações parciais de grupos e
álgebras de Hopf.

Para esta tese, nosso interesse são as noções de ações parciais tor-
cidas de álgebras de Hopf. produtos cruzados parciais e extensões par-
cialmente cleft de álgebras por álgebras de Hopf introduzidas por M.
Alves, E. Batista, A. Paques e M. Dokuchaev em [5]. Neste trabalho,
em certo sentido, os autores generalizam as noções introduzidas em
[15] e [10] e demonstram um análogo do Teorema de Isomor�smo entre
produtos cruzados introduzido por S. Montgomery [28].

Objetivos:

Baseado nos artigos de M. Dokuchaev e M. Khrypchenko [19] e [20],
surge a seguinte questão: será que os resultados obtidos por eles para
ações parciais de grupo poderiam ser extendidos para ações parciais de
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álgebras de Hopf sobre uma álgebra? Quais caracterizações poderiam
ser obtidas?

Neste sentido, nosso objetivo com este trabalho é estabelecer uma
teoria cohomológica para ações parciais de álgebras de Hopf a partir da
cohomologia do algebróide de Hopf Hpar. E a partir disso, caracterizar
produtos cruzados parciais a partir de extensões.

Metodologia: Como citado anteriormente, a teoria de cohomolo-
gia para álgebras de Hopf surgiu com M. Sweedler em [30] no contexto
de álgebras de Hopf cocomutativas sobre álgebras comutativas. Desde
então, busca-se uma generalização para álgebras de Hopf arbitrárias,
porém, não houveram muitos avanços até então.

A partir do trabalho desenvolvido por M. Dokuchaev e M. Khryp
chenko em [19], em que os mesmos introduzem as noções de cohomolo-
gia para ações parciais de grupo, observamos que era possível extender
esses resultados para álgebras de Hopf, considerando as noções de ações
parcias de�nidas em [14].

Obtendo os resultados iniciais e avançando no entendimento de [19],
de�nimos uma �nova" álgebra de Hopf, denominada Ã e dada pelo
quociente da álgebra comutativa livre gerada pela imagem de todas
as cocadeias f ∈ C̃npar(H,A) (em que C̃npar(H,A) representa uma n-
cocadeia parcial reduzida, ou seja, o quociente de Cnpar(H,A) por A×).
Esta álgebra se torna importante pois possui os mesmos grupos de
cohomologia que os do complexo de cocadeia original Cnpar(H,A).

Por estarmos trabalhando com álgebras de Hopf cocomutativas e
álgebras comutativas, a teoria de ações parciais torcidas e produtos
cruzados parciais introduzidas em [5] se tornam importantes aqui e
conseguimos dar uma noção cohomológica para estes produtos cruzados
parciais, classi�cando-os pelo segundo grupo de cohomologia parcial
H2
par(H,A).

Ainda, se considerarmos o produto cruzado Ã#ωH, temos sobre o
mesmo uma estrutura de Hopf algebróide, sugerindo assim que nossa
teoria de cohomologia para ações parciais pode ser vista do ponto de
vista da teoria cohomologica para Hopf algebróides.

Por �m, em [30] é mostrado que produtos cruzados estão direta-
mente relacionados com extensões cleft, analogamente, ao considerar-
mos a teoria de extensões cleft parciais introduzidas em [5] conseguimos
resultados similares. E mais, devido a estrutura de Hopf algebróide
do produto cruzado parcial, conseguimos um resultado completamente
inesperado que consiste em relacionar extensões cleft parciais com ex-
tensões de álgebras sobre Hopf algebróides introduzidas em [12].
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Resultados Obtidos:
Apresentamos aqui os principais resultados obtidos neste trabalho.

No Capítulo 1 apresentamos a teoria de cohomologia para álgebras
de Hopf apresentada por Sweedler em [30], a teoria de cohomologia
parcial de grupos introduzida por Dokuchaev e Khrypchenko em [19]
e �nalizamos com as noções de ações parciais de álgebras de Hopf de
Caenepeel e Janssen em [14].

No Capítulo 2, após introduzirmos as noções sobre idempotentes,
de�nimos o complexo de cocadeias por:

De�nição 2.7 Sejam A uma álgebra comutativa, H uma biálgebra
cocomutativa, n um inteiro positivo e α : H ⊗ A → A uma ação par-
cial, então uma n-cocadeia �parcial" (cocadeia de ordem n) de H com
valores em A (Cnpar(H,A)) é uma aplicação invertível em um ideal de
Homk(H⊗n, A), ou seja,

Cnpar(H,A) = (I(H⊗n, A))×,

em que

I(H⊗n, A) = en ∗Homk(H⊗n, A)

= {en ∗ g : g ∈ Homk(H⊗n, A)} E Homk(H⊗n, A).

Por uma 0-cocadeia entendemos C0
par(H,A) = (I(H⊗0, A))× = A×,

com a multiplicação de A e e0 = 1A.
De�nimos então o operador cobordo parcial por:

De�nição 2.8 Para quaisquer f ∈ Cnpar(H,A), (h1⊗ · · · ⊗ hn+1) ∈
H⊗n+1, de�nimos

(δnf)(h1, . . . , hn+1) = (h1
(1) · f(h2

(1), . . . , h
n
(1))) ∗

∗
n∏
i=1

f (−1)i(h1
(i+1), . . . , h

i
(i+1)h

i+1
(i+1), . . . , h

n+1
(i+1)) ∗

∗ f (−1)n+1

(h1
(n+2), . . . , h

n
(n+2))

Se n = 0 e a é um elemento invertível de A, temos que

(δ0a)(h) = (h · a)a−1.

Após a demonstração de alguns resultados auxiliares, concluímos
que:
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Teorema 2.11/2.13 O operador cobordo δn de�nido acima é um
homomor�smo de Cnpar(H,A)→ Cn+1

par (H,A), tal que

δn+1 ◦ δn(f) = en+2

para qualquer f ∈ Cnpar(H,A).

De�nimos então os grupos abelianos dos n-cociclos parciais, n-co-
bordos parciais e n-cohomologias parciais de H com valores em A por
Zn(H,A)=ker δn, Bn(H,A)=Im δn−1 e Hn(H,A)=ker δn/Im δn−1,
respectivamente, n ≥ 1 (para n = 0, de�nimosH0(H,A) = Z0(H,A) =
ker δ0).

O Capítulo 3 é destinado ao estudo da álgebra de Hopf Ã e tem como

principais resultados, após a construção da álgebra Ã :=
Â

I
, em que Â

é uma álgebra comutativa livre unital, o fato de que as cohomologias
geradas anteriormente por uma álgebra A e as geradas por Ã são as
mesmas, ou seja, Hn

par(H, Ã) ∼= Hn
par(H,A) e também, que Ã tem

estrutura de álgebra de Hopf, conforme o Teorema 4.5.
No Capítulo 4 trabalhamos com a noção de produto cruzado torcido

dada em [5] e obtemos como principais resultados:

Teorema 4.7 Seja H uma álgebra de Hopf cocomutativa e A um
H-módulo álgebra parcial. Então, dados dois 2-cociclos parciais ω, σ ∈
Z2
par(H,A), os produtos cruzados parciais associados A#ωH e A#σH

são isomorfos se, e somente se, ω e σ são cohomólogos, ou seja, per-
tencem a mesma classe no grupo de cohomologia H2

par(H,A).

Ainda, provamos que toda classe de cociclos em H2
par(H,A) contém

um 2-cociclo normalizado, ou seja, dado um 2-cociclo ω ∈ Z2
par(H,A),

existe um 2-cociclo normalizado ω̃ ∈ Z2(H,A) que é cohomologo a
ω. Esses dois resultados nos permitem então concluir que o segundo
grupo parcial de cohomologia H2

par(H,A) classi�ca todas as classes de
isomor�smos de produtos cruzados parciais.

O segundo resultado importante deste capítulo e talvez um dos mais
surpreendentes desta tese consiste em conseguirmos determinar uma
estrutura de Hopf algebróide para este produto cruzado.

Teorema 4.10 Seja H uma álgebra de Hopf cocomutativa e A um
H-módulo álgebra parcial. Tomando a álgebra de Hopf comutativa e
cocomutativa Ã, construída no Teorema 4.5, sobre a álgebra comutativa
E(A), que é também um H-módulo álgebra parcial. Então, o produto
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cruzado Ã#ωH, em que ω é um 2-cociclo parcial em H2
par(H,A) ∼=

H2
par(H, Ã) é um Hopf algebróide sobre a álgebra base E(A).

O Capítulo 5 é dedicado ao estudo de extensões cleft parciais e é nele
que surge o resultado mais interessante desta tese, pois conseguimos
relacionar estas extensões com extensões cleft de álgebras por Hopf
algebróides, criando um paralelo entre estas duas teorias introduzidas
em [5] e [12].

Teorema 5.11 Seja H uma álgebra de Hopf cocomutativa agindo
parcialmente sobre uma álgebra de Hopf comutativa e cocomutativa Ã e
seja ω um 2-cociclo parcial em Hom2

par(H, Ã). Então o produto cruzado

parcial Ã#ωH é um H = E(A)#H-modulo álgebra à direita, com

Ã ∼= (Ã#ωH)coH. E mais, a extensão Ã ⊂ Ã#ωH é H-cleft no sentido
de [12].

Considerações Finais Como podemos ver, não só conseguimos
uma teoria de cohomologia parcial para álgebras de Hopf, estendendo
os resultados de [19], como também fomos capazes de dar uma noção
cohomológica para o produto cruzado parcial introduzido em [5], desde
que tenhamos H uma álgebra de Hopf cocomutativa e A uma álgebra
comutativa. Além disso, inesperadamente, demonstramos que a teoria
de extensões cleft parciais para álgebras de Hopf [5] pode ser entendida
no contexto da teoria de extensões cleft para Hopf algebróides em [12].
Observamos que toda a teoria de cohomologia aqui feita pode ser gene-
ralizada para objetos álgebra de Hopf cocomutativa e objetos álgebra
comutativa na categoria de monóides trançados.

Além disso, em associação com o professor J. Vercruysse (ULB),
buscamos investigar se haveria uma teoria cohomológica geral, com H
e A arbitrários, porém, assim como para a teoria cohomológica para
álgebras de Hopf, também aqui não obtivemos resultados.

Porém, ainda há muitas perguntas a serem solucionadas nessa área,
como estabelecer uma ponte entre a teoria desenvolvida aqui e a teoria
clássica desenvolvida por M. Sweedler. Também, por conta do último
teorema, talvez possamos entender toda a nossa teoria cohomológia
como uma teoria cohomologica para Hopf algebrídes. Um outro ponto
a ser explorado pode ser a teoria de obstruções para a existência de ex-
tensões cleft parciais e sua relação com o terceiro grupo de cohomologia,
na mesma direção de [29]

Palavras-chave álgebras de Hopf; ações parciais; cohomologia par-
cial; produto cruzado parcial; extensões cleft parciais.



Abstract

In this work, the cohomology theory for partial actions of co-commu-
tative Hopf algebras over commutative algebras is formulated. This
theory generalizes the cohomology theory for Hopf algebras introduced
by Sweedler and the cohomology theory for partial group actions, in-
troduced by Dokuchaev and Khrypchenko. Some nontrivial examples,
not coming from groups are constructed. Given a partial action of a co-
commutative Hopf algebra H over a commutative algebra A, we prove
that there exists a new Hopf algebra Ã, over a commutative ring E(A),
upon which H still acts partially and which gives rise to the same co-
homologies as the original algebra A. We also study the partially cleft
extensions of commutative algebras by partial actions of cocommuta-
tive Hopf algebras and prove that these partially cleft extensions can
be viewed as cleft extensions by Hopf algebroids.

Keywords Hopf algebras; partial action; partial cohomology; par-
tial crossed product; partial cleft extension.
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Chapter 1

Introduction

The history of Hopf algebras began within the context of algebraic
topology with the seminal paper by H. Hopf, published in 1941, des-
cribing the algebraic properties of the cohomology ring of a group ma-
nifold [23]. The subject of group cohomology soon became increasingly
more independent of its topological background assuming a more alge-
braic formulation [1, 31]. The �rst formulation of a cohomology theory
of cocommutative Hopf algebras acting over commutative algebras was
done by M. Sweedler in 1968 [30], which, in certain sense, became
paradigmatic for further developments in this area.

In his work, M. Sweedler extended the notions of group cohomology
for Hopf algebras by de�ning an explicit complex which arises as the
cochain complex and the groups in this complex consist of the mul-
tiplicative group of invertible elements in Hom(C,A), where C is the
underlying coalgebra of the Hopf algebra tensored with itself a num-
ber of times. In the same paper, M. Sweedler also devoted some time
the study of extensions and proved that H2(H,A), in which H is a
Hopf algebra and A an H-module algebra, is isomorphic to the group
of equivalence classes of extensions de�ning certain algebras which we
call crossed products.

This notion of crossed product was generalized, independently, by
Y. Doi and M. Takeuchi [15] and R. Blattner, M. Cohen, S. Montgomery
[28] in 1986. Conditions to characterize crossed products as cleft exten-
sions were estabilished in those works. Then, S. Montgomery in [28],
introduced an equivalence criteria for isomorphism between crossed pro-
duct, the hope was, with this result, to get a general cohomology theory
for algebras over Hopf algebras but, unfortunately, we are still looking
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for it.
The theory of partial group actions, in its turn, had its beginning

with the work of Ruy Exel in the classi�cation of certain class of C*-
algebras with an action of the unit circle but which cannot be described
as a usual crossed product [21]. A more algebraic formulation for par-
tial actions was done by Mikhailo Dokuchaev and Ruy Exel in [16]
and then, partial actions drew the attention of algebraists and allowed
further developments in several directions. One of the developments
particularly relevant for our discussion here is the notion of a twisted
partial actions of a group [17] and its globalization [18]. There, one can
see the de�nition of partial 2-cocycles in order to de�ne twisted actions
and partial crossed products, this suggested the existence of a general
cohomology theory in which these partial 2-cocycles could be placed.
This cohomological theory for partial group actions was achieved by
Mikhailo Dokuchaev and Mykola Khrypchenko in [19]. This theory is
constructed upon partial actions of groups over commutative monoid.
As the notion of a partial action of a group is itself deeply related with
actions of inverse semigroups [22], in reference [20], the authors could
place their cohomology theory for partial group actions within the con-
text of cohomology of inverse semigroups, developed by Hans Lausch
[25].

Partial actions came into the Hopf algebra context by the work of
Stefaan Caenepeel and Kris Janssen in [14]. This work allowed the
generalization of classical results in Hopf algebra theory and of several
ideas developed for partial group actions, as the globalization theo-
rem [2], Morita equivalence between the partial smash product and the
invariant subalgebra [3], duality for partial actions [4], partial represen-
tations [7], etc. For a more detailed account on recent developments
of partial actions of groups and Hopf algebras, see [8] and references
therein.

Of particular interest for the present thesis are the notions of twisted
partial actions of Hopf algebras, partial crossed products and partially
cleft extensions of algebras by Hopf algebras introduced by M. Alves,
E. Batista, A. Paques and M. Dokuchaev in [5]. There, the authors
generalized �in some sense" the notions introduced in [15] and [10] and
prove an analogous theorem of Montgomery [28] on isomorphic crossed
product.

The aim of this thesis, is exactly to formulate a cohomology theo-
ry for partial actions of Hopf algebras, in the same spirit of [19], such
that the partial 2-cocycles de�ned in [5] can be placed properly. This
cohomological theory is obtained for the case of partial actions of a
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cocommutative Hopf algebra H acting partially over a commutative
algebra A. Moreover, one can, without loss of generality, replace the
original algebra A by a commutative and cocommutative Hopf algebra
Ã over a base algebra E(A) ⊆ A and yet obtain the same cohomology
theory. This is a surprising result, we can replace the crossed pro-
duct A#ωH by the crossed product Ã#ωH, which has a a structure
of Hopf algebroid over the base algebra E(A), this leads to interesting
consequences in the analysis of cleft extensions.

As we have already learned in [7], the theory of partial actions of
Hopf algebras in fact is deeply related to the theory of representations
of Hopf algebroids. This opens a totally new landscape to be explored,
for example, in this work we prove that partially cleft extensions can
be understood as cleft extensions by Hopf algebroids in the sense of
Gabriella Böhm and Tomasz Brzezinski [12] and then one can raise new
questions on how to put this cohomological theory for partial actions
in the context of cohomology for Hopf algebroids [13, 24].

This thesis is organized in the following way:
In Chapter 1, we review the main results of the cohomology theory

for algebras over Hopf algebras developed by Sweedler in [30] and of the
theory of cohomology developed by M. Dokuchaev and M. Khrypchenko
[19]. We conclude this chapter recalling the notion of a partial action
of a Hopf algebra over a unital algebra and giving some examples of
such partial actions. Special attention is required for examples 2.22 and
2.23, which will serve as basis for our speci�c examples of cohomologies
given in Section 3.4.

Chapter 2 is dedicated to the construction of our cohomological
theory for partial actions of a cocommutative Hopf algebra H over a
commutative algebra A. We start with the study of a system of idem-
potents in the commutative convolution algebras Homk(H⊗n, A), for a
natural n. In Section 3.2 we de�ne the cochain complex, C•par(H,A)
associated to the partial action of H upon A. The involved ideas follow
the same principles of the classical construction due to M.E. Sweedler
[30] but in order to overcome the complexities coming from partial ac-
tions we de�ne some auxiliary operators which help us to prove that
the coboudary operator is a morphism of abelian groups (Theorem
3.10) and it is nilpotent in this context (Theorem 3.12). Example 3.15
considers the case of H = kG, for G a given group, in this case, we re-
cover the cohomology theory for partial group actions developed by M.
Dokuchaev and M. Khrypchenko in [19]. Other examples, such as the
cohomology theory for partial group actions and partial group gradings
over the base �eld are given in Section 3.4. More speci�cally, in Exam-
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ple 3.18 we calculate the �rst cohomology groups of a partial grading
of the base �eld by the Klein four group, this extends what has been
done in [6].

In Chapter 3, we de�ne a new Hopf algebra Ã given by a quotient of
the free commutative algebra generated by the images of all cochains
f ∈ C̃npar(H,A). This Hopf algebra is interesting because it has the
same cohomology groups as the original cochain complex Cnpar(H,A).
In fact, given a partial action of H on A, we de�ne the reduced cochain
complex C̃npar(H,A) ∼= Cnpar(H,A)/A× and this new cochain complex
produces the same cohomology groups as the original cochain complex
Cnpar(H,A). Next, we consider the algebra Ã, which is a quotient of
the free commutative algebra generated by the images of all cochains
f ∈ C̃npar(H,A). This de�nes a commutative and cocommutative Hopf
algebra over the commutative algebra E(A), which is the subalgebra of
A generated by elements of the form h·1A. One proves that Ã generates
the same cohomologies as the original algebra A, that is, for any n ∈ N
, we have the isomorphisms Hn

par(H, Ã) ∼= Hn
par(H,A). Then, without

loss of generality, one can consider only the cohomological theory for
partial actions of a cocommutative Hopf algebra H over a commutative
and cocommutative Hopf algebra Ã.

Chapter 4 is devoted an analysis of twisted partial actions and par-
tial crossed products [5]. For the case of a cocommutative Hopf algebra
H and a commutative algebra A, all twisted partial actions are indeed
partial actions. Nonetheless, we still can get nontrivial partial crossed
products by means of choosing a partial 2-cocycle. In fact, the partial
crossed products are classi�ed by the second partial cohomology group
H2
par(H,A). The new feature which appears in the context of partial

actions is that the crossed product Ã#ωH has a structure of a Hopf
algebroid over the same base algebra E(A) (Theorem 5.10). This sug-
gests that the cohomology theory for partial actions can be viewed as
a cohomological theory for Hopf algebroids.

Chapter 5 is devoted to study partially cleft extensions introduced
in [5]. The most interesting result in this chapter comes from the Hopf
algebroid structure of the crossed product Ã#ωH, because using this
fact, we are able to show that the theory of partially cleft extension is
related to the theory of cleft extensions of algebras by Hopf algebroids
developed in [12]. In fact, by Theorem 6.12 given a partially cleft
extension B of a commutative cocommutative Hopf algebra Ã by a
cocommutative Hopf algebra H, there exists a Hopf algebroid over the
base subalgebra E(A), namely, the partial smash product E(A)#H,
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such that B is an E(A)#H-cleft extension of Ã in the sense of G.
Böhm and T. Brzezinski [12].
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Chapter 2

Mathematical

preliminaries

In this chapter, we introduce some concepts that motivated this
work. We begin with the notion of cohomology for algebras which are
modules over a given Hopf algebra, as developed by M. E. Sweedler in
[30]. After, we present the initial results about cohomology theory of
groups based on partial actions, as developed by M. Dokuchaev and M.
Khrypchenko in [19]. Finally, we introduce the notion of partial action
of Hopf algebras on algebras, as introduced by S. Caenepeel and K.
Janssen in [14]. We suggest to the interested reader the works above
for further details.

2.1 Cohomology of algebras over Hopf al-

gebras

In 1967, M. E. Sweedler, in his paper entitled Cohomology of Alge-
bras over Hopf Algebras, presented a cohomology theory for algebras
which are modules over a given Hopf algebra. In that work, the Hopf
algebras are cocommutative and the module algebras are commutative.

He de�ned this cohomology by means of an explicit complex. The
groups in this complex are the multiplicative group of invertible e-
lements in Hom(C,A), where A is an algebra and C is the under-
lying coalgebra of the Hopf algebra tensored with itself a number of
times. The complex arises as the chain complex associated with a semi-
cosimplicial complex whose face operators are induced by the maps
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µi : ⊗n+1 → ⊗n, given by µi(h0⊗. . .⊗hn) = h0⊗. . .⊗hihi+1⊗. . .⊗hn.
Then, Sweedler used familiar examples of Hopf algebras, like the

group algebra kG and the universal enveloping algebra UL of the Lie
algebra L, to show that the Hopf algebra cohomologies Hi(kG,A) and
Hi(UL,A) are canonically isomorphic to group cohomology Hi(G,A)
and the Lie cohomology Hi(L,A+), provided that the commutative
algebra A is an admissible kG or UL-module respectively.

The last half of his paper, Sweedler devoted to study extensions
and proved the usual result that H2(H,A) is isomorphic to the group
of equivalence classes of extensions, where part of the theory involves
the de�nition of certain algebras which are called crossed products.

These results are generalized for non-commutative Hopf algebras
and non-commutative algebras by Susan Montgomery.

In the following, we present the most important results developed by
Sweedler and Montgomery. We indicate [30] and [28] for more details.

2.1.1 Cohomology De�nition

Let H be a cocommutative Hopf algebra and A a commutative
algebra. To construct a cochain complex, we must to dualize a chain
complex, whose objects are the H-module coalgebras {H⊗q+1}q≥0, the
face operators are

∂i : H⊗
q+1 −→H⊗

q

(x0 ⊗ . . .⊗ xi ⊗ xi+1 ⊗ . . .⊗ xq) 7→ x0 ⊗ . . .⊗ xixi+1 ⊗ . . .⊗ xq
,

for i = 0, 1, . . . , q − 1 and ∂q(x0 ⊗ . . .⊗ xq) = (x0 ⊗ . . .⊗ xq−1)ε(xq).
For i = 0, . . . , q the degeneracy operators are given by

si : H⊗
q+1 −→ H⊗

q+2

(x0 ⊗ . . .⊗ xq) 7→ x0 ⊗ . . .⊗ xi ⊗ 1H ⊗ xi+1 ⊗ . . .⊗ xq
.

It's easy to see that all face and degeneracy operators are H-module
coalgebra morphisms and satisfy the face-degeneracy operators identi-
ties.

Then, to obtain the cochain complex, suppose that A is an H-
module algebra and apply the contravariant functor HomH(_, A)×

(where HomH(_, A)× means the convolution-invertible-elements
in HomH(_, A)) from cocommutative H-module coalgebras to abelian
groups in the chain complex above.

In fact, we recall that given a �eld k, k-bialgebra or a Hopf algebra
H and a k-algebra A, for each n ≥ 0 we have the convolution algebras
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Homk(H⊗n, A), with convolution product given by

f ∗ g(h1 ⊗ · · · ⊗ hn) = f(h1
(1) ⊗ · · · ⊗ h

n
(1))g(h1

(2) ⊗ · · · ⊗ h
n
(2)),

and unit
1(h1 ⊗ · · · ⊗ hn) = εH(h1) . . . εH(hn)1A.

In particular, for n = 0, we have

Homk(H⊗0, A) = Homk(k,A) ∼= A.

The following result can be easily obtained, we leave the details of
the proof to the reader.

Proposition 2.1 Let H be a cocommutative bialgebra, or Hopf algebra
and A a commutative algebra. Then, for each n ≥ 0 the convolution
algebras Homk(H⊗n, A) are commutative.

�

So, the objects of cochain complex are {HomH(H⊗
q+1

, A)×}q≥0,
the coface operators, for i = 0, . . . , q, are denoted by ∂i and given by

∂i : HomH(H⊗
q

, A)× → HomH(H⊗
q+1

, A)×, for i = 0, . . . , q.

De�nition 2.2 The homology of the cochain complex is de�ned by
means of the di�erential dq−1: HomH(H⊗

q

, A)×→ HomH(H⊗
q+1

, A)×

where
dq−1 = (∂0) ∗ (∂1)−1 ∗ . . . ∗ (∂q)±1.

Thus, we have

HomH(H⊗
1

, A)×
d0→HomH(H⊗

2

, A)×
d1→ · · · d

n−1

→HomH(H⊗
n+1

, A)×
dn→ · · · .

Therefore, the cohomology of H in A is de�ned as the homology of
the above complex and the q-th group is given by

Hq(H,A) := ker dq/Im(dq−1),

for q > 0 and ker d0, for q = 0.

The theory introduced here comes from [27], where the homology of
a chain complex is de�ned. The Sweedler complex is obtained from a
contravariant functor applied to a chain complex, hence, it is a cochain
complex. Dualizing the theory in [27] one obtains the above homology
of {HomH(H⊗

q+1

, A)×}.
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Remark 2.3 There is a natural algebra isomorphism between
HomH(H⊗

q

, A) and HomH(H⊗
q−1

, A) induced by ⊗q−1→ ⊗q, x 7→ 1⊗x.
This induces an isomorphism

ι : HomH(H⊗
q

, A)× → HomH(H⊗
q−1

, A)×.

Let ψ : H ⊗ A → A, given by ψ(h ⊗ a) := h · a (remember that A
is an H-module algebra), then, with respect to ι, the coface operator
∂0 : HomH(H⊗

q

, A)× → HomH(H⊗
q+1

, A)× corresponds to the map

δ0 : HomH(H⊗
q−1

, A)× −→ HomH(H⊗
q

, A)×

f 7→ ψ(I ⊗ f)
,

where ψ(I ⊗ f)(h1 ⊗ . . .⊗ hq) = h1 · f(h2 ⊗ . . .⊗ hq)
For i = 1, . . . , q − 1, the coface operator ∂i corresponds to

δi : HomH(H⊗
q−1

, A)× −→ HomH(H⊗
q

, A)×

f 7→ f(I ⊗ . . .⊗ I ⊗m⊗ I ⊗ . . .⊗ I)
,

where m is the multiplication in the i− th position, which means

f(I⊗. . .⊗I⊗m⊗I⊗. . .⊗I)(h1⊗. . .⊗hq) = f(h1⊗. . .⊗hihi+1⊗. . .⊗hq).

And the coface operator ∂q corresponds to the map

δq : HomH(H⊗
q−1

, A)× −→ HomH(H⊗
q

, A)×

f 7→ f ⊗ ε ,

given by f ⊗ ε(h1 ⊗ . . .⊗ hq) = f(h1 ⊗ . . .⊗ hq−1)ε(hq).
Thus, if we de�ne the di�erential Dq−1 : HomH(H⊗

q−1

, A)× →
HomH(H⊗

q

, A)× by

Dq−1(f) = ψ(I ⊗ f)∗
q−1∏
i=1

δi(f (−1)i) ∗ δq(f (−1)q ),

the chain complex {HomH(H⊗
q

, A)×, Dq}q≥0 is isomorphic to the chain
complex {HomH(H⊗

q+1

, A)×, dq}q≥0 which de�nes the cohomology
Hq(H,A), q ≥ 0.

Let us look at the groups of cohomology Hi(H,A), for i = 0, 1.
In fact, for i = 0, HomH(H⊗

0

, A)× ' A× (A× means the invertible-
elements in A) and if a ∈ H0(H,A), then (h · a)a−1 = ε(h), for all
h ∈ H. Thus, h · a = ε(h)a.
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If we denote by AH the set of invariants { a ∈ A | h ·a = ε(h)a,
∀h ∈ H}, this is a subalgebra of A since A is an H-module algebra.

Suppose a ∈ A×
⋂
AH , for all h ∈ H,

ε(h) = h · 1 = h · (aa−1)

=
∑

(h(1) · a)(h(2) · a−1)

=
∑

ε(h(1))a(h(2) · a−1)

= a(h · a−1)

which implies a−1 ∈ A×
⋂
AH and then, H0(H,A) = A×.

For i = 1, if f : H → A is a 1-cocycle then

µ(ε⊗ ε) = D1(f) = ψ(I ⊗ f) ∗ (f−1 ◦m) ∗ (f ⊗ ε),

which implies for all g, h ∈ H, that

f(gh) =
∑

(g(1) · f(h(1)))(f(g(2))ε(h(2))) =
∑

(g(1) · f(h))f(g(2)).

Consider now A = AH , so, this reduces the equation above to

f(gh) = f(h)f(g)

and f is a homomorphism. In general f is a �crossed� homomorphism
and H1(H,A) is the group of regular crossed homomorphism modulo
the subgroup of regular inner crossed homomorphisms (that is, one of
the form D1(a) for a ∈ A).

One way to validate these ideas is to do a comparison with the
theory of group cohomology. Suppose G is a group and kG the co-
commutative group algebra of G. Let A be a kG-module algebra. The
elements of G act as automorphisms of A, so they carry A× into it-
self. By restricting the module action, the multiplicative abelian group
A× becomes a G-module and one can consider the group cohomology
Hq(G,A×). Then, Hq(kG,A) are canonically isomorphic toHq(G,A×)
for all q.

In fact, this isomorphism is induced by a canonical isomorphism
between the standard complex to compute Hq(kG,A) and the stan-
dard complex to compute Hq(G,A×). For g1, . . . , gq ∈ G, consider the
element δg1 ⊗ . . .⊗ δgq ∈ kG⊗ . . .⊗ kG such that

∆(δg1 ⊗ . . .⊗ δgq ) = (δg1 ⊗ . . .⊗ δgq )⊗ (δg1 ⊗ . . .⊗ δgq ).

Thus f−1(δg1⊗. . .⊗δgq )=(f(δg1⊗. . .⊗δgq ))−1 and f(δg1⊗. . .⊗δgq )∈A×
for all f ∈ HomkG(kG⊗

q

, A)×. Note that the map G × . . . × G →
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kG ⊗ . . . ⊗ kG given by g1 × . . . × gq 7→ δg1 ⊗ . . . ⊗ δgq induces the
group homomorphism HomkG(kG⊗

q

, A)× → Homset(G× . . .×G,A×),
because {δg1 ⊗ . . . ⊗ δgq |g1 × . . . × gq ∈ G × . . . × G} is a basis for
kG⊗ . . .⊗ kG.

When q = 0, HomkG(kG⊗
0

, A)× = Hom(k,A)× which is canoni-
cally isomorphic to A×, the 0-th group in the standard group cohomol-
ogy complex.

Then, the group morphismHomkG(kG⊗
q

,A)→Homset(G×. . .×G,A×)
and HomkG(kG⊗

0

, A) = Hom(k,A) form a morphism of complexes
and Hq(kG,A) ' Hq(G,A×).

2.1.2 Crossed products, equivalences classes of cleft

extensions and H2(H,A)

In [10], 1986, R. Blattner, M. Cohen e S. Montgomery extended
the notions of Crossed Product and Inner (weak) actions of arbitrary
Hopf algebras on noncommutative algebras. Then, in [28], 1992, S.
Montgomery characterized a Hopf crossed product as a cleft extension
and gave necessary and su�cient conditions for two crossed products
to be isomorphic.

First of all, we say that an arbitrary Hopf algebra H measures an
algebra A if there is a k-linear map H ⊗A→ A given by h⊗ a 7→ h · a,
such that h · 1A = ε(h)1A and h · (ab) =

∑
(h(1) · a)(h(2) · b), for all

h ∈ H, a, b ∈ A.

De�nition 2.4 Let H be a Hopf algebra and A an algebra. Assume
that H measures A and that σ is an invertible map in Homk(H⊗H,A).
The crossed product A#σH of A with H is the set A ⊗H as a vector
space, with multiplication

(a#h)(b#k) =
∑

a(h(1) · b)σ(h(2), k(1))#h(3)k(2)

for all h, k ∈ H, a, b ∈ A. Here we write a#h for the tensor a⊗ h.

Lemma 2.5 A#σH is an associative algebra with identity element
1#1 if and only if the following two conditions are satis�ed:

(1) A is a twisted H-module, that is, 1H · a = a, for all a ∈ A and

h · (k · a) =
∑

σ(h(1), k(1))(h(2)k(2) · a)σ−1(h(3), k(3)), (2.1)

all h, k ∈ H, a ∈ A.
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(2) σ is a cocycle, that is, σ(h, 1H) = σ(1H , h) = ε(h)1A, all h ∈ H,
and∑

(h(1) · σ(k(1), l(1)))σ(h(2), k(2)l(2))=
∑

σ(h(1), k(1))σ(h(2)k(2), l(2)) (2.2)

for all h, k, l ∈ H.
�

Note that A need not be an H-module and that σ does not necessar-
ily have values in the center of A. In the case where A is commutative
and H is cocommutative we always have that A is an H-module and
then, (2.1) is not needed. The next proposition gives a necessary and
su�cient condition for A to be anH-module whenH is cocommutative.

Proposition 2.6 Let H be cocommutative and A a twisted H-module
which is measured by H. Then, A is an H-module if, and only if,
σ(H ⊗H) ⊆ Z(A), the center of A.

�

To characterize crossed products B = A#σH as special kind of
extensions A ⊂ B, we recall

De�nition 2.7 Let A ⊂ B be k-algebras, and H a Hopf algebra.
(1) A ⊂ B is a (right) H-extension if B is a right H-comodule

algebra with BcoH = A.
(2) The H-extension A ⊂ B is H-cleft if there exists a right H-co-

module map γ : H → B which is (convolution) invertible.

Observe that we always can assume γ(1H) = 1B . In fact, if not, we
replace γ by γ = γ(1)

−1
γ.

To prove that cleft extensions are related with crossed products, we
need the follows results:

Proposition 2.8 Let A ⊂ B be a right H-extension, which is H-cleft
via γ : H → B such that γ(1H) = 1B. Then, there is an action of H
on A, given by

h · a =
∑

γ(h(1))aγ
−1(h(2)), ∀ a ∈ A, h ∈ H (2.3)

and a convolution invertible map σ : H ⊗H → A given by

σ(h, k) =
∑

γ(h(1))γ(k(1))γ
−1(h(2)k(2)), ∀ h, k ∈ H. (2.4)

This action endows B with a structure of an H-crossed product
over A. Moreover, the algebra isomorphism Φ : A#σH → B given
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by a#h 7→ aγ(h) is both a left A-module and right H-comodule map,
where A#σH is a right H-comodule via a#h 7→

∑
a#h(1) ⊗ h(2).

�

We require a technical lemma.

Lemma 2.9 Assume that A ⊂ B is a right H-extension, via ρ : B →
B ⊗H, and that A ⊂ B is H-cleft via γ with γ(1H) = 1B. Then,

(1) ρ ◦ γ−1 = (γ−1 ⊗ S) ◦ τ ◦∆;
(2) for any b ∈ B,

∑
b(0)γ

−1(b(1)) ∈ A = BcoH .
�

The lemma enables us to de�ne an inverse of Φ. In fact, we can
de�ne

Ψ : B → A#σH by b 7→
∑

b(0)γ
−1(b(1))#b(2).

Proposition 2.10 Let A#σH be a crossed product, and de�ne the map
γ : H → A#σH by γ(h) = 1A#h. Then, γ is convolution-invertible,
with inverse

γ−1(h) =
∑

σ−1(S(h(2)), h(3))#S(h(1)).

In particular, A ↪→ A#σH is H-cleft.
�

Then, we conclude

Theorem 2.11 An H-extension A ⊂ B is H-cleft if, and only
if, B ' A#σH.

�

Another important result about crossed products is to stablish nec-
essary and su�cient conditions for two crossed products to be isomor-
phic.

Theorem 2.12 Let A be an algebra and H be a Hopf algebra, with two
crossed product actions h⊗ a 7→ h · a, h⊗ a 7→ h • a with respect to two
cocycles σ, σ′ : H ⊗H → A, respectively. Assume that

φ : A#σH → A#•σ′H

is an algebra isomorphism, which is also a left A-module, right H-
comodule map. Then, there exists an invertible map u ∈ Hom(H,A)
such that, for all a ∈ A, h, k ∈ H,
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(i) φ(a#h) =
∑
au(h(1))#

•h(2);
(ii) h • a =

∑
u−1(h(1))(h(2) · a)u(h(3));

(iii) σ′(h, k) =
∑
u−1(h(1))(h(2) · u−1(k(1)))σ(h(3), k(2))u(h(4)k(3)).

Conversely given a map u ∈ Hom(H,A) such that (ii) and (iii) hold,
then, the map φ in (i) is an isomorphism.

�

The theorem above suggests the following de�nition:

De�nition 2.13 Let H be a Hopf algebra and A an algebra. Two
crossed products A#σH and A#•σ′H are equivalent if there exists an
algebra isomorphism φ : A#σH → A#•σ′H which is a left A-module,
right H-comodule morphism.

These ideas shown here were intended to generate a general coho-
mology theory for algebras over Hopf algebras, however, in the last two
decades it has not yet been possible to make much progress in this re-
gard. We recall that in [30], it was proved that for H cocommutative
and A commutative, there is a bijective correspondence between the
second cohomology group H2(H,A) and the equivalence classes of H-
cleft extensions B of A. Note that in this case A is an H-module, and
in addition all the crossed products in a given equivalence class have
the same H-action, by 2.12, (ii). Only the cocycle may be di�er.

2.2 Partial cohomology of groups

In this section, we present the begining of the theory developed
by M. Dokuchaev and M. Khrypchenko who inspirate us to think in
cohomology for partial actions of Hopf algebras. In their paper, they
introduced a new kind of cohomology theory of groups where partial
actions of groups over commutative monoids are considered. Their
ideas consisted to consider a unital twisted partial action of a group G
on a commutative ring A, then, they can derive the concept of a partial
2-cocycle (the twisting) whose values belong to groups of invertible
elements of appropriate ideals of A. By an equivalence of twisted partial
actions introduced in [18], the concept of a partial 2-coboundary follows
and then, replacing A by a commutative multiplicative monoid, the
second cohomology group H2(G,A) is de�ned. In a similar way, we are
able to de�ne the n-th groups cohomology Hn(G,A) with arbitrary n.
For more details, we suggest [19].
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Let G a group and A a semigroup. A partial action θ of G on A is
a collection of semigroup isomorphisms θx : Ax−1 → Ax, where Ax is
an ideal of A, x ∈ G, such that

(i) A1 = A and θ1 = IdA;
(ii) θx(Ax−1

⋂
Ay) = Ax

⋂
Axy;

(iii) θx ◦ θy = θxy on Ay−1

⋂
Ay−1x−1 .

When A is a commutative monoid and each ideal Ax is unital, i.e.,
Ax is generated by an idempotent 1x = 1Ax , which is central in A, we
shall say that θ is a unital partial action. Then Ax

⋂
Ay = AxAy, so

the properties (ii) and (iii) from the above de�nition can be replaced
by

(ii') θx(Ax−1Ay) = AxAxy;
(iii') θx ◦ θy = θxy on Ay−1Ay−1x−1 .
We observe that (ii') implies a more general equality

θx(Ax−1Ay1 . . . Ayn) = AxAxy1 . . . Axyn , (2.5)

which follows because Ax−1Ay1 . . . Ayn = (Ax−1Ay1) . . . (Ax−1Ayn).

De�nition 2.14 A commutative monoid A with a unital partial action
θ of G on A will be called a (unital) partial G-module.

A morphism of partial actions (A, θ) → (A′, θ′) of G is a homo-
morphism of semigroups φ : A → A′ such that φ(Ax) ⊆ A′x and
φ ◦ θx = θ′x ◦ φ on Ax−1 .

We denote by pMod(G) the category of (unital) partial G-modules
and their homomorphisms. Sometimes (A, θ) will be simpli�ed to A.

De�nition 2.15 Let A ∈ pMod(G) and n be a positive integer. An
n-cochain of G with values in A is a function f : Gn → A, such
that f(x1, . . . , xn) is an invertible element of the ideal A(x1,...,xn) =
Ax1Ax1x2 . . . Ax1...xn . By a 0-cochain we shall mean an invertible ele-
ment of A.

Denote the set of n-cochains by Cn(G,A). It is an abelian group
under the pointwise multiplication. Indeed, its identity is

en(x1, . . . , xn) = 1x11x1x2 . . . 1x1...xn

and the inverse of f ∈ Cn(G,A) is f−1(x1, . . . , xn) = f(x1, . . . , xn)−1,
where f(x1, . . . , xn)−1 means the inverse of f(x1, . . . , xn) in A(x1,...,xn).
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De�nition 2.16 Let (A, θ) ∈ pMod(G) and n be a positive integer.
For any f ∈ Cn(G,A) and x1, . . . , xn+1 ∈ G de�ne

(δnf)(x1, . . . , xn+1) = θx1
(1x−1

1
f(x2, . . . , xn+1))

n∏
i=1

f(x1, . . . , xixi+1, . . . , xn+1)(−1)i

f(x1, . . . , xn)(−1)n+1

. (2.6)

Here the inverse elements are taken in the corresponding ideals. If n= 0
and a is an invertible element of A, we set (δ0a)(x) = θx(1x−1a)a−1.

The next result shows us that δn is a homomorphism such that
δn+1δnf = en+2. We present the full prove for the reader to compare
with the results obtained later for partial cohomology of Hopf algebras.

Proposition 2.17 [19] The map δn : Cn(G,A) → Cn+1(G,A) is a
homomorphism such that

δn+1δnf = en+2 (2.7)

for any f ∈ Cn(G,A).

Proof: Let f ∈ Cn(G,A). We check �rst that δnf ∈ Cn+1(G,A).
Indeed, for x1, . . . , xn+1 ∈ G the element f(x2, . . . , xn+1) is invertible in
A(x2,...,xn+1). Then, being multiplied by 1x−1

1
, it becomes an invertible

element of Ax−1
1
A(x2,...,xn+1). Therefore, θx1(x−1

1 f(x2, . . . , xn+1)) is in-
vertible inA(x1,...,xn+1) because θx1

maps isomorphicallyAx−1
1
A(x2,...,xn+1)

onto A(x1,...,xn+1) by 2.5. Since the product of invertible elements of
some ideals is invertible in the product of these ideals, then by 2.6 the
image (δnf)(x1, . . . , xn+1) is invertible in

A(x1,...,xn+1)

(
n∏
i=1

A(x1,...,xixi+1),...,xn+1)

)
A(x1,...,xn) = A(x1,...,xn+1).

As A is a commutative, to see that δn is a homomorphism, it su�ces
to note that

θx1(1x−1
1
fg(x2, . . . , xn+1))

= θx1
(1x−1

1
f(x2, . . . , xn+1)1x−1

1
g(x2, . . . , xn+1)

= θx1
(1x−1

1
f(x2, . . . , xn+1))θx1

(1x−1
1
g(x2, . . . , xn+1))
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It remains to prove that δn+1δnf = en+2. Take arbitrary
x1, . . . , xn+2 ∈ G. The factors in the product (δn+1δnf)(x1, . . . , xn+2)
to which the partial actions is applied are as follows:

θx1
(1x−1

1
θx2

(1x−1
2
f(x3, . . . , xn+2))),

θx1x2
(1x−1

2 x−1
1
f(x3, . . . , xn+2)−1),

θx1
(1x−1

1
f(x2, . . . , xn+1)(−1)n+1

),

θx1(1x−1
1
f(x2, . . . , xn+1)(−1)n+2

),

θx1
(1x−1

1
f(x2, . . . , xixi+1, . . . , xn+2)(−1)i−1

), 2 ≥ i ≥ n+ 1,

θx1(1x−1
1
f(x2, . . . , xixi+1, . . . , xn+2)(−1)i), 2 ≥ i ≥ n+ 1.

The product of all the factors, except the �rst two, is en+2(x1, . . . , xn+2)
for n ≤ 1. For n = 0 the product is e1(x1). Furthermore,

θx1(1x−1
1
θx2(1x−1

2
f(x3, . . . , xn+2))) =

= θx1
(θx2

(1x−1
2

1x−1
2 x−1

1
f(x3, . . . , xn+2)))

= θx1x2
(1x−1

2
1x−1

2 x−1
1
f(x3, . . . , xn+2))

By the property (iii') from the de�nition of a partial action. After
multiplying this by the second factor we shall obtain

θx1x2
(1x−1

2
1x−1

2 x−1
1
en(x3, . . . , xn+2)) = 1x1

1x1x2
en(x1x2x3, x4, . . . , xn+2)

= en+2(x1, . . . , xn+2).

Any other factor in (δn+1δnf)(x1, . . . , xn+2) appears together with
its inverse, as in the classical case, and multiplying such a pair we
obtain a product of some of the idempotents 1x1

, 1x1x2
, . . .. Thus,

(δn+1δnf)(x1, . . . , xn+2) = en+2(x1, . . . , xn+2) as desired.
�

De�nition 2.18 The map δn is called a coboundary homomorphism.
As in the classical case, we de�ne the abelian grups Zn(G,A) = kerδn,
Bn(G,A) = Imδn−1 and Hn(G,A) = kerδn/Imδn−1 of partial n-
cocycles, n-coboundaries and n-cohomologies of G with values in A,
n ≤ 1 (H0(G,A) = Z0(G,A) = kerδ0).

For example,

H0(G,A) = Z0(G,A) = {a ∈ A×|θx(1x−1a) = 1xa,∀x ∈ G}
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B1(G,A) = {f ∈ C1(G,A)|f(x) = θx(1x−1aa−1), for some a ∈ A×}
(here and below A× denotes the group of invertible elements of A).

Notice that H0(G,A) is the subgroup of 0-invariants of A×. Further-
more, for f ∈ C1(G,A)

(δ1f)(x, y) = θx(1x−1f(y))f(xy)−1f(x),

so

Z1(G,A) = {f ∈ C1(G,A)|1xf(xy) = f(x)θx(1x−1f(y)),∀x, y ∈ G},

and, for some f ∈ C1(G,A)

B2(G,A) = {g ∈ C2(G,A)|g(x, y) = θx(1x−1f(y))f(xy)−1f(x)}

For n = 2 we have

δ2f(x, y, z) = θx(1x−1f(y, z))f(x, yz)−1f(x, y)−1,

with f ∈ C2(G,A), and ∀ x, y, z ∈ G,

Z2(G,A) = {f ∈ C2(G,A)|θx(1x−1f(y, z))f(x, yz) = f(xy, z)f(x, y)}.

Observe that if one takes a unital twisted partial action (see [[17],
Def. 2.1]) of G on a commutative ring A, then it is readily seen that the
twisting is a 2-cocycle with values in the partial G module A, and the
concept of equivalent unital twisted partial actions from [[18], Def 6.1]
is exactly the notion of cohomologous 2-cocycles from De�nition2.18.

2.3 Partial Actions of Hopf Algebras

The theory of partial actions appeared for the �rst time in [21],
where R. Exel introduced a new and successful method to study C∗-
algebras. In this paper, Exel de�ned the notion of partial action of
a group G on a set X to calculate the K-theory of some C∗-algebras
which have an action by automorphisms of the circle S1. In [16], M.
Dokuchaev e R. Exel de�ned partial group actions on algebras and
partial skew group algebras, giving an algebraic context for partial ac-
tions and arousing the interest of algebraists. The algebraic theory of
partial actions and partial representations of groups urderwent several
advances and one of interest consists to extend Galois theory for com-
mutative algebras. Them, S. Caenepeel and K. Janssen [14], de�ned a
partial Hopf-Galois theory and introduced what is a partial action of a
Hopf algebra H over an algebra A.
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De�nition 2.19 [14] A partial action of a Hopf algebra H over an
algebra A is a linear map · : H ⊗A→ A, such that, for every a, b ∈ A
and h, l ∈ H, we have

(PA1) 1H · a = a;
(PA2) h · (ab) = (h(1) · a)(h(2) · b);
(PA3) h · (l · a) = (h(1) · 1A)(h(2)l · a).
We say that the partial action is symmetric if, in addition, we have
(PA3') h · (l · a) = (h(1)l · a)(h(2) · 1A) .
The algebra A with a partial action of H on A is said to be a partial

H-module algebra.

Note that, if H is a cocommutative Hopf algebra and A is a com-
mutative algebra, then every partial action of H on A is automatically
symmetric.

Example 2.20 [2] Let G be a group, recall that a partial action of G
over an algebra A is a pair ({Ag}g∈G, {αg : Ag−1 → Ag}g∈G), where
Ag is an ideal of A for each g ∈ G and αg is an isomorphism of (not
necessarily unital) algebras. We say that the partial action of G on A
is unital if, for each g ∈ G, Ag = 1gA, where 1g is a central idempotent
in A and αg is a unital isomorphism between Ag−1 and Ag. For the
case where H = kG, the group algebra of G, symmetric partial actions
of kG are in one to one correspondence with unital partial actions of G.
This correspondence can be easily seen: Given a unital partial action
({Ag = 1gA}g∈G, {αg : Ag−1 → Ag}g∈G), one de�nes · : kG⊗ A→ A,
by δg · a = αg(1g−1a). Conversely, given a symmetric partial action
of kG over A, de�ne, for each g ∈ G, the idempotents 1g = δg · 1A,
by them, construct the ideals Ag = 1gA and the isomorphisms
αg = δg · |Ag−1 .

Example 2.21 [2] Given a Hopf algebra H, a left H-module algebra
B and a central idempotent e ∈ B, one can de�ne a partial action of H
on A = eB. Denoting by . the action of H over B, the induced partial
action is given by h · ea = e(h . (ea)), for every a ∈ B and h ∈ H.

The next two examples will be explored with more details through-
out this paper for giving examples of cohomologies.

Example 2.22 Consider a group G, let us see the partial actions of
the Hopf algebra H = kG over A = k, the base �eld. A partial action
· : kG ⊗ k → k, associates to each g ∈ G the linear transformation
δg · : K → k, this is the same as de�ning a linear functional
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λ : kG → k. Denoting λ(δg) simply by λg, one can write δg · a = λga,
for every a ∈ k. Using the functional λ, the axiom (PA1) says that
λe = 1, where e is the neutral element of the group G. Axiom (PA2),
in its turn, implies that λg = λgλg, for every g ∈ G, and consequently
λg = 1 or λg = 0. De�ne

H = {g ∈ G | λg = 1},

it is clear that e ∈ H. Axiom (PA3) says that λgλh = λgλgh, this
implies that for g, h ∈ H, we have gh ∈ H. Finally, putting h = g−1

in the previous identity, we conclude that g ∈ H implies that g−1 ∈ H,
therefore H is a subgroup of G. It is easy to see that the action is global
if, and only if H = G. Then, we can label the partial actions of kG
over k by the subgroups of G.

Example 2.23 Let G be a �nite abelian group and consider
H = (kG)∗ = 〈pg| g ∈ G〉, the dual of the group algebra, with bialgebra
structure given by

pgph = δg,hpg, 1 =
∑
g∈G

pg, ∆(pg) =
∑
g∈G

ph ⊗ ph−1g, ε(pg) = δg,e.

As in the previous example, partial actions of (kG)∗ over k are
associated to a linear functional λ : (kG)∗ → k de�ned by
λ(pg) = λpg = pg · 1. In this case, the axioms for a partial action
(PA1), (PA2) and (PA3) become, respectively∑
g∈G

λpg = 1; λpg =
∑
h∈G

λphλph−1g
; λpgλph = λpgh−1λph = λpgh−1λpg .

De�ning L = {g ∈ G| λpg 6= 0}, one can see that L is a subgroup
of G: First, as

∑
g∈G

λpg = 1 then there exists some g ∈ G such that

λpg 6= 0, and therefore L 6= ∅. Moreover, given g, h ∈ L, (PA3) says
that 0 6= λpgλph = λpgh−1λpg , which implies that λpgh−1 6= 0, and

therefore gh−1 ∈ L.
In order to analyse the possible values of λpg , for g ∈ L, take g = h

in the third equation, then λpgλpg = λpgg−1λpg = λpeλpg . This implies
that, λpg = λpe , ∀ g ∈ L. Finally, from the �rst equation,

1 =
∑
g∈G

λpg =
∑
g∈L

λpe = |L|λpe ,

and therefore λpg = λpe = 1
|L| , for all g ∈ L. We leave to the reader

the veri�cation that the action is global if, and only if, L = G.
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We conclude that the partial actions of (kG)∗ over the base �eld k
are classi�ed by subgroups of G and given by

λpg =

{ 1
|L| , g ∈ L
0 , otherwise.



Chapter 3

Cohomology for partial

actions

In his 1968's seminal article, M.E. Sweeder presented a cohomology
theory for commutative algebras which are modules over a given cocom-
mutative Hopf algebra. Basically, the cochain complexes Cn(H,A) are
de�ned as the abelian groups of the invertible elements of the commuta-
tive convolution algebras Homk(H⊗n, A). The main di�erence between
the cohomology theory of global and partial actions is that in the par-
tial case one needs to �nd appropriated unital ideals in the convolution
algebras in order to de�ne correctly the cochain complexes. These ide-
als are constructed upon a system of idempotents for the convolution
algebras.

Henceforth, for sake of simplicity, we will denote f(h1 ⊗ · · · ⊗ hn)
just by f(h1, . . . , hn) and H is always a cocommutative Hopf algebra
acting partially on a commutative algebra A.

3.1 A system of idempotents for the convo-

lution algebras

We start introducing some idempotent elements of Homk(H⊗n, A)
which are important throughout this thesis. As the convolution alge-
bras are commutative, for each n ≥ 0, an idempotent is automatically a
central idempotent. Moreover, the convolution product of a �nite num-
ber of idempotents is also an idempotent. In what follows, we introduce
a nested system of idempotents in the convolution algebra related to
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the partial action.

Proposition 3.1 For each n ≥ 1, the linear maps

ẽn : H⊗n −→ A
(h1 ⊗ · · · ⊗ hn) 7→ (h1 · · ·hn) · 1A

are idempotent in the corresponding convolution algebras Homk(H
⊗n,A).

Proof: Indeed, consider n ≥ 1 and (h1 ⊗ · · · ⊗ hn) ∈ H⊗n, then

ẽn ∗ ẽn(h1, . . . , hn) = ẽn(h1
(1), . . . , h

n
(1))ẽn(h1

(2), . . . , h
n
(2))

= ((h1
(1) · · ·h

n
(1)) · 1A)((h1

(2) · · ·h
n
(2)) · 1A)

= ((h1 · · ·hn)(1) · 1A)((h1 · · ·hn)(2) · 1A)

(PA2)
= (h1 · · ·hn) · 1A
= ẽn(h1, . . . , hn).

This proves our statement.
�

Proposition 3.2 Let n < m and e ∈ Homk(H⊗n, A) an idempotent,
then

en,m = e⊗ εH ⊗ · · · ⊗ εH︸ ︷︷ ︸
m−n

∈ Homk(H⊗m, A)

is an idempotent in Homk(H⊗m, A).

Proof: Take any n < m and (h1 ⊗ · · · ⊗ hm) ∈ H⊗m, then

en,m ∗ en,m(h1, . . . , hm) =

= en,m(h1
(1), . . . , h

m
(1))en,m(h1

(2), . . . , h
m
(2))

= e(h1
(1), . . . , h

n
(1))ε(h

n+1
(1) ) . . . ε(hm(1))e(h

1
(2), . . . , h

n
(2))ε(h

n+1
(2) ) · · · ε(hm(2))

= e(h1
(1), . . . , h

n
(1))e(h

1
(2), . . . , h

n
(2))ε(h

n+1
(1) ) · · · ε(hm(1))ε(h

n+1
(2) ) · · · ε(hm(2))

(∗)
= e ∗ e(h1, . . . , hn)ε(hn+1) · · · ε(hm)

= e(h1, . . . , hn)ε(hn+1) · · · ε(hm)

= en,m(h1, . . . , hm).

The identity (∗) follows from ε(h(1))ε(h(2)) = ε(h(1)ε(h(2))) = ε(h),
and therefore en,m is idempotent.

�
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De�nition 3.3 For arbitrary n ≥ 1 and 1 ≤ l ≤ n , we de�ne:

ẽl,n := (ẽl)l,n = ẽl ⊗ εH ⊗ · · · ⊗ εH︸ ︷︷ ︸
n−l

.

Note that, for l = n in the above de�nition ẽn,n = ẽn.

De�nition 3.4 For n ≥ 1, we de�ne

en := ẽ1,n ∗ ẽ2,n ∗ · · · ∗ ẽn ∈ Homk(H⊗n, A).

The next proposition gives us a useful characterization of the idem-
potents en ∈ Homk(H⊗n, A).

Proposition 3.5 For any (h1 ⊗ . . .⊗ hn) ∈ H⊗n we have that

en(h1, . . . , hn) = h1 · (h2 · (. . . · (hn · 1A) . . .)).

Proof: Take (h1 ⊗ . . .⊗ hn) ∈ H⊗n, then

en(h1, . . . , hn) = ẽ1,n ∗ ẽ2,n ∗ · · · ∗ ẽn(h1, . . . , hn)

= ẽ1,n(h1
(1), . . . , h

n
(1))ẽ2,n(h1

(2), . . . , h
n
(2)) · · · ẽn(h1

(n), . . . , h
n
(n))

= ẽ1(h1
(1))ε(h

2
(1)) · · · ε(h

n
(1))ẽ2(h1

(2), h
2
(2))ε(h

3
(2)) · · · ε(h

n
(2))

· · · ẽn−1(h1
(n−1), . . . , h

n−1
(n−1))ε(h

n
(n−1))ẽn(h1

(n), . . . , h
n
(n))

= (h1
(1) · 1A)ε(h2

(1)) · · · ε(h
n
(1))(h

1
(2)h

2
(2) · 1A)ε(h3

(2)) . . . ε(h
n
(2))

. . . (h1
(n) · · ·h

n
(n) · 1A)

= (h1
(1) · 1A)(h1

(2)h
2
(1) · 1A) . . . (h1

(n−1)h
2
(n−2) . . . h

n−1
(1) · 1A)

(h1
(n)h

2
(n−1) . . . h

n−1
(2) h

n · 1A)

= (h1
(1) · 1A)(h1

(2)h
2
(1) · 1A) . . . ((h1

(n−1)h
2
(n−2) . . . h

n−1)(1) · 1A)

((h1
(n−1)h

2
(n−2) . . . h

n−1)(2)h
n · 1A)

(PA3)
= (h1

(1) · 1A)(h1
(2)h

2
(1) · 1A) . . . ((h1

(n−1) . . . h
n−2
(2) h

n−1 · (hn · 1A))

= (h1
(1) · 1A)(h1

(2)h
2
(1) · 1A) . . . (h1

(n−2) . . . h
n−2
(1) · 1A)

(h1
(n−1) . . . h

n−2
(2) h

n−1 · (hn · 1A))

= (h1
(1) · 1A)(h1

(2)h
2
(1) · 1A) . . . ((h1

(n−2) . . . h
n−3
(1) h

n−2)(1) · 1A)

((h1
(n−2) . . . h

n−3
(2) h

n−2)(2)h
n−1 · (hn · 1A))

(PA3)
= (h1

(1) · 1A)(h1
(2)h

2
(1) · 1A) . . . (h1

(n−1) . . . h
n−3
(1) h

n−2 ·(hn−1 ·(hn · 1A)))

= · · · = h1 · (h2 · (. . . · (hn−1 · (hn · 1A)) . . .)).
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in which (· · · ) between the last two equalities means applying repeat-
edly the process using (PA3) until we obtain the result.

�

3.2 Cochain complexes

Based on the idempotents de�ned in the previous section, one can
de�ne the cochain complexes for the partial action of H on A. For each
n > 0 de�ne the following ideals of Homk(H⊗n, A):

I(H⊗n, A) = en ∗Homk(H⊗n, A) = {en ∗ g : g ∈ Homk(H⊗n, A)}.

As en is a central idempotent, the ideal I(H⊗n, A) can be considered
as a unital algebra with unit en. An element f ∈ I(H⊗n, A) is said
to be (convolution) invertible in this ideal if there is another element
g ∈ I(H⊗n, A) such that f ∗ g = g ∗ f = en.

De�nition 3.6 Let H be a cocommutative bialgebra and A be a partial
H-module algebra with partial action · : H ⊗ A → A. For n > 0 , a
�partial� n-cochain of H with values in A is an invertible element in the
ideal I(H⊗n, A). Denoting by Cnpar(H,A) the set of n-cochains, we have
that Cnpar(H,A) = (I(H⊗n, A))×. For n = 0 we say that a 0-cochain is
an invertible element in the agebra A, that is C0

par(H,A) = A×.

Note that Cnpar(H,A) is an abelian group with respect to the con-
volution product, while C0

par(H,A) = A×, is an abelian group with the
ordinary multiplication in A and the unit e0 = 1A.

De�nition 3.7 For an arbitrary f ∈ Cnpar(H,A), (h1 ⊗ · · · ⊗ hn+1) ∈
H⊗n+1, we de�ne the �partial� coboundary operator

(δnf)(h1, . . . , hn+1) = (h1
(1) · f(h2

(1), . . . , h
n+1
(1) )) ∗

∗
n∏
i=1

f (−1)i(h1
(i+1), . . . , h

i
(i+1)h

i+1
(i+1), . . . , h

n+1
(i+1))

∗f (−1)n+1

(h1
(n+2), . . . , h

n
(n+2)).

If n = 0 and a ∈ A×, we have (δ0a)(h) = (h · a)a−1.

The challenge is to prove that the coboundary operators are well
de�ned, that is, for every f ∈ Cnpar(H,A), the map δnf is indeed in
Cn+1
par (H,A). Moreover, one needs to prove that the sequence

C0
par(H,A)

δ0→C1
par(H,A)

δ1→ · · ·δn−1→ Cnpar(H,A)
δn→Cn+1

par (H,A)
δn+1→ · · ·
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is a cochain complex, that is, each δn is a homomorphism of abelian
groups between Cnpar(H,A) and Cn+1

par (H,A) satisfying δn+1◦δn(f)=en+2,
for each f ∈ Cnpar(H,A). For this purpose, we introduce some auxiliary
operators which will help us to describe the coboundary operators in
a more intrinsic way and whose properties will lead us to the desired
results.

De�nition 3.8 (1) For each n ≥ 0 de�ne the map En :Cnpar(H,A)→
Homk(H⊗n+1, A), given by

En(f)(h1, . . . , hn+1) := h1 · f(h2, . . . , hn+1).

(2) For n < m de�ne the map, in,m : Cnpar(H,A)→ Homk(H⊗m, A),
given by

in,m(f)(h1, . . . , hm) := f(h1, . . . , hn)ε(hn+1) . . . ε(hm).

(3) For i ∈ {1, . . . , n}, de�ne the map µi : H⊗n+1 → H⊗n, given by

µi(h
1 ⊗ . . .⊗ hn+1) = (h1 ⊗ . . .⊗ hihi+1 ⊗ . . .⊗ hn+1).

With these auxiliary operators, the coboundary operator can be
rewritten as

δn :Cnpar(H,A)→Cn+1
par (H,A)

f 7→ δn(f):= En(f)∗
(

n∏
i=1

f (−1)i◦ µi
)
∗ in,n+1(f (−1)n+1

)
,

and the properties of δn are based upon the properties of these opera-
tors.

Lemma 3.9 (i) For f, g∈Cnpar(H,A), we have En(f∗g)=En(f)∗En(g).
(ii) En(en) = en+1.
(iii) For n < m, we have in,m(f ∗ g) = in,m(f) ∗ in,m(g), for all

f, g ∈ Cnpar(H,A).
(iv) in,m(en) ∗ em = em.
(v) For f, g ∈ Cnpar(H,A), we have (f ∗ g) ◦ µi = (f ◦ µi) ∗ (g ◦ µi),

∀ i ∈ {1, . . . , n}.
(vi) (en ◦ µn) ∗ in,n+1(en) = en+1.
(vii) (en ◦ µi) ∗ en+1 = en+1, ∀ i ∈ {1, · · · , n− 1}.

Proof: Take (h1 ⊗ · · · ⊗ hn+1) ∈ H⊗n+1, then,
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(i) For f, g ∈ Cnpar(H,A),

En(f ∗ g)(h1, . . . , hn+1) = h1 · (f ∗ g(h2, . . . , hn+1))

= h1 · (f(h2
(1), . . . , h

n+1
(1) )g(h2

(2), . . . , h
n+1
(2) ))

= (h1
(1) · (f(h2

(1), . . . , h
n+1
(1) ))(h1

(2) · (g(h2
(2), . . . , h

n+1
(2) )))

= En(f)(h1
(1), . . . , h

n+1
(1) )En(g)(h1

(2), . . . , h
n+1
(2) ).

(ii)

En(en)(h1, . . . , hn+1) = h1 · en(h2, . . . , hn+1)

= h1 · (h2 · (. . . · (hn+1 · 1A) . . . ))

= en+1(h1, . . . , hn+1).

(iii) For n < m and f, g ∈ Cnpar(H,A).

in,n+1(f ∗ g)(h1, . . . , hn+1) = f ∗ g(h1, . . . , hn)ε(hn+1)

= f(h1
(1), . . . , h

n
(1))g(h1

(2), . . . , h
n
(2))ε(ε(h

n+1
(1) )hn+1

(2) )

= f(h1
(1), . . . , h

n
(1))ε(h

n+1
(1) )g(h1

(2), . . . , h
n
(2))ε(h

n+1
(2) )

= in,n+1(f)(h1
(1), . . . , h

n+1
(1) )in,n+1(g)(h1

(2), . . . , h
n+1
(2) )

= in,n+1(f) ∗ in,n+1(g)(h1, . . . , hn+1).

(iv) Take h1 ⊗ . . .⊗ hm ∈ H⊗m, then,

in,m(en) ∗ em(h1, . . . , hm) =

= in,m(en)(h1
(1), . . . , h

m
(1))em(h1

(2), . . . , h
m
(2))

= en(h
1
(1), . . . , h

n
(1))ε(h

n+1
(1) ) . . . ε(hm(1))(h

1
(2)·(. . . ·(h

n
(2)·(h

n+1
(2) ·(. . .

. . .·(hm(2)·1A). . .))). . .))

= (h1
(1) · (. . . · (h

n
(1) · 1A) . . . ))(h1

(2) · (. . . · (h
n
(2) · (h

n+1 · (. . .
. . . · (hm · 1A) . . . ))) . . . ))

(PA2)
= h1·[(h2

(1)·(. . . ·(h
n
(1)·1A) . . . ))(h2

(2)·(. . . ·(h
n
(2)·(h

n+1·(. . .
. . .·(hm·1A) . . . ))) . . . ))]

(PA2)
= h1 · (h2 · (. . . · (hn · (1A(hn+1 · (. . . · (hm · 1A) . . . )))) . . . )))

= h1 · (h2 · (. . . · (hn · (hn+1 · (. . . · (hm · 1A) . . . ))) . . . ))

= em(h1, . . . , hm).
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(v) For all i ∈ {1, . . . , n} and for f, g ∈ Cnpar(H,A)

(f ∗ g) ◦ µi(h1, . . . , hi, hi+1, . . . , hn+1) =

=(f ∗ g)(h1, . . . , hihi+1, . . . , hn+1)

=f(h1
(1), . . . , (h

ihi+1)(1), . . . , h
n+1
(1) )g(h1

(2), . . . , (h
ihi+1)(2), . . . , h

n+1
(2) )

=f(h1
(1), . . . , h

i
(1)h

i+1
(1) , . . . , h

n+1
(1) )g(h1

(2), . . . , h
i
(2)h

i+1
(2) , . . . , h

n+1
(2) )

=f◦µi(h1
(1), . . . ,h

i
(1),h

i+1
(1) , . . . , h

n+1
(1) )g◦µi(h1

(2), . . . ,h
i
(2),h

i+1
(2) , . . . , h

n+1
(2) )

=(f ◦ µi) ∗ (g ◦ µi)(h1, . . . , hi, hi+1, . . . , hn+1).

(vi)

(en ◦ µn) ∗ in,n+1(en)(h1, . . . , hn+1) =

= en ◦ µn(h1
(1), . . . , h

n
(1), h

n+1
(1) )in,n+1(en)(h1

(2), . . . , h
n
(2), h

n+1
(2) )

= en(h1
(1), . . . , h

n
(1)h

n+1
(1) )en(h1

(2), . . . , h
n
(2))ε(h

n+1
(2) )

= (h1
(1)·(h

2
(1)·(. . .·(h

n
(1)h

n+1·1A) . . .)))(h1
(2)·(h

2
(2)·(. . .·(h

n
(2)·1A). . .)))

(PA2)
= h1 · [(h2

(1) · (. . .· (h
n
(1)h

n+1 · 1A) . . . ))(h2
(2) · (. . .· (h

n
(2) · 1A) . . . ))]

= h1 · (h2 · (. . . · (hn−1 · [(hn(1)h
n+1 · 1A)(hn(2) · 1A)]) . . . ))

(PA3)
= h1 · (h2 · (. . . · (hn−1 · (hn · (hn+1 · 1A))) . . . ))

= en+1(h1, . . . , hn+1).

(vii)

(en ◦ µi) ∗ en+1(h1, . . . , hi, hi+1, . . . , hn+1) =

= en◦µi(h1
(1),. . .,h

i
(1),h

i+1
(1),. . .,h

n+1
(1) )en+1(h

1
(2), . . . ,h

i
(2),h

i+1
(2), . . . ,h

n+1
(2) )

= en(h1
(1), . . . , h

i
(1)h

i+1
(1) , . . . , h

n+1
(1) )(h1

(2) · (· · · · (h
i
(2) · (h

i+1
(2) · (. . .

. . . · (hn+1
(2) · 1A) . . . ))) . . . ))

= (h1
(1)·(. . .·(h

i
(1)h

i+1
(1) ·(. . .·(h

n+1
(1) ·1A) . . .)) . . .))(h1

(2)·(. . .·(h
i
(2)·(h

i+1
(2) ·(. . .

. . . · (hn+1
(2) ·1A) . . . ))) . . . ))

(PA2)
= h1·[(h2

(1)·(. . .·(h
i
(1)h

i+1
(1) ·(. . .·(h

n+1
(1) ·1A) . . .)) . . .))(h2

(2)·(. . .·(h
i
(2)·(h

i+1
(2) ·(. . .

. . . ·(hn+1
(2) ·1A) . . .))) . . .))]

= h1·(. . .·(hi−1·[(hi(1)h
i+1
(1) ·(h

i+2
(1) ·(. . .·(h

n+1
(1) ·1A) . . . )))(hi(2)·(h

i+1
(2) ·(. . .

. . . · (hn+1
(2) ·1A) . . .)))]) . . . )
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(PA3)
= h1 · (· · · · (hi−1 · [(hi(1)h

i+1
(1) · (h

i+2
(1) · (· · · · (h

n+1
(1) · 1A) . . . )))

(hi(2)h
i+1
(2) · (h

i+2
(2) · (· · · · (h

n+1
(2) · 1A) . . . )))(hi(3) · 1A)]) . . . )

(PA2)
= h1·(. . .·(hi−1·[(hi(1)h

i+1·[(hi+2
(1) ·(. . .·(h

n+1
(1) ·1A) . . .))(hi+2

(2) ·(. . .

. . . · (hn+1
(2) ·1A) . . .))])(hi(2)·1A)]) . . .)

(PA2)
= h1·(. . .· (hi−1· [(hi(1)h

i+1·[hi+2· (. . .· (hn+1·1A) . . . )])(hi(2)·1A)]) . . .)

(PA3)
= h1 · (· · · · (hi−1 · (hi · (hi+1 · (hi+2 · (· · · · (hn+1 · 1A) . . . ))))) . . . )

= en+1(h1, . . . , hn+1).

�

Theorem 3.10 For any n ≥ 0 and f ∈ Cnpar(H,A), the linear map
δn(f) : H⊗n+1 → A belongs to Cn+1

par (H,A). Moreover, the map
δn : Cnpar(H,A)→ Cn+1

par (H,A) is a morphism of abelian groups.

Proof: If f ∈ Cnpar(H,A), then, f = f ∗ en and it is invertible with
respect to the convolution. Consider the expression for δn(f),

δn(f) := En(f)∗
n∏
i=1

f (−1)i ◦ µi ∗ in,n+1(f (−1)n+1

).

Using items (i), (iii) and (v) of Lemma 3.9 and using the fact that
the convolution algebra Homk(H⊗n+1, A) is commutative, we conclude
that δn(f ∗ g) = δn(f) ∗ δn(g), in particular δn(f) = δn(f ∗ en) =
δn(f)∗δn(en). By item (ii), we know that En(en) = en+1 and by items
(iv), (vi) and (vii) we see that the unit en+1 absorbs the other factors,
leading to δn(en) = en+1. Then we have δn(f) = δn(f) ∗ en+1. A
straightforward calculation leads us to δn(f−1) = (δn(f))−1 Therefore,
we proved that δn is well de�ned and it is a morphism of abelian groups.

�
In order to prove that δn+1◦δn(f) = en+2, for every f ∈ Cnpar(H,A),

we need the following lemma.

Lemma 3.11 Let f ∈ Cn−1
par (H,A), then

(i) En(in−1,n(f)) = in,n+1(En−1(f)).

(ii) (en−1 ◦ µi ◦ µi+1) ∗ en+1 = en+1, for all i ∈ {1, · · · , n− 1}.
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(iii) (en−1 ◦ µi ◦ µi+j) ∗ en+1 = en+1, ∀ i ∈ {1, · · · , n − 1}, j ∈
{2, · · · , n− i}.

(iv) En(f ◦ µi) = En−1(f) ◦ µi+1, ∀ i ∈ {1, . . . , n− 1}.

(v) En ◦ En−1(f) = i1,n+1(ẽ1) ∗ (En−1(f) ◦ µ1).

(vi) in,n+1(f◦µi)∗in−1,n(f
−1)◦µi = in,n+1(en−1◦µi), ∀i∈{1, . . . ,n−1}.

(vii) (in−1,n(f) ◦ µn) ∗ in−1,n+1(f−1) = in−1,n+1(en−1).

(viii) (f ◦µi ◦µi)∗ (f−1 ◦µi ◦µi+1) = en−1 ◦µi ◦µi, ∀ i ∈ {1, . . . , n−1}.

(ix) (f ◦ µi ◦ µi+j) ∗ (f−1 ◦ µi+j−1 ◦ µi) = en−1 ◦ µi ◦ µi+j, for all
i ∈ {1, . . . , n− 2}, for all j ∈ {2, . . . , n− i}.

Proof: Let f ∈ Cn−1
par (H,A) and h1 ⊗ . . .⊗ hn+1 ∈ H⊗n+1, then

(i)

En(in−1,n(f))(h1, . . . , hn+1) = h1 · (in−1,n(f)(h2, . . . , hn+1))

= h1 · (f(h2, . . . , hn)ε(hn+1)) = (h1 hn))ε(hn+1)

= (En−1(f))(h1, . . . , hn)ε(hn+1) = in,n+1(En−1(f))(h1, . . . , hn+1).

(ii) For every i ∈ {1, . . . , n− 1},

(en−1 ◦ µi ◦ µi+1) ∗ en+1(h1, . . . , hn+1) =

= en−1(h1
(1), . . . , h

i
(1)h

i+1
(1) h

i+2
(1) , . . . , h

n+1
(1) )en+1(h1

(2), . . . , h
(n+1)
(2) )

= h1
(1) · (. . .· (h

i
(1)h

i+1
(1) h

i+2
(1) · (. . .· (h

n+1
(1) · 1A) . . .)) . . .)

(h1
(2) · (. . .· (h

i
(2) · (h

i+1
(2) · (h

i+2
(2) · (. . .· (h

n+1
(2) · 1A) . . .)))) . . .)

(PA2)
= h1 · (h2 · (. . .· [(hi(1)h

i+1
(1) h

i+2
(1) · (. . .· (h

n+1
(1) · 1A) . . .))

(hi(2) · (h
i+1
(2) · (h

i+2
(2) · (. . .· (h

n+1
(2) · 1A) . . .))))] . . .))

(PA3)
= h1 · (h2 · (. . .· [(hi(1)h

i+1
(1) h

i+2
(1) · (. . .· (h

n+1
(1) · 1A) . . .))

(hi(2)h
i+1
(2) · (h

i+2
(2) · (. . .· (h

n+1
(2) · 1A) . . .)))(hi(3) · 1A)] . . .))

(PA3)
= h1 · (h2 · (. . .· [(hi(1)h

i+1
(1) h

i+2
(1) · (. . .· (h

n+1
(1) · 1A) . . . ))

(hi(2)h
i+1
(2) h

i+2
(2) ·(. . .·(h

n+1
(2) ·1A) . . .))(hi(3)h

i+1
(3) ·1A)(hi(4)·1A)] . . .))

(PA3)
= h1· (h2· (. . .· [(hi(1)h

i+1
(1) h

i+2· (. . .· (hn+1 · 1A) . . . ))(hi(2)h
i+1
(2) · 1A)

(hi(3) · 1A)] . . . ))



32 Chapter 3. Cohomology for partial actions

(PA3)
= h1·(h2·(. . .·[(hi(1)h

i+1·(hi+2·(. . .·(hn+1 · 1A) . . . )))(hi(2)·1A)] . . . ))

= h1 · (h2 · (. . .· (hi · (hi+1 · (hi+2 · (. . .· (hn+1 · 1A) . . . )))) . . . ))

= en+1(h1, . . . , hn+1).

(iii) For i ∈ {1, · · · , n− 1}, j ∈ {2, · · · , n− i}, we have

(en−1 ◦ µi ◦ µi+j) ∗ en+1(h1, . . . , hn+1) =

= en−1(h1
(1), . . . , h

i
(1)h

i+1
(1) , . . . , h

i+j
(1) h

i+j+1
(1) , . . . , hn+1

(1) )

en+1(h1
(2), . . . , h

i
(2), h

i+1
(2) , . . . , h

i+j
(2) , h

i+j+1
(2) , . . . , hn+1

(2) )

= h1
(1)·(. . .·(h

i
(1)h

i+1
(1) ·(. . .·(h

i+j
(1) h

i+j+1
(1) ·(. . .·(hn+1

(1) ·1A) . . .)) . . .)) . . .)

h1
(2)·(. . .·(h

i
(2)·(h

i+1
(2) ·(. . .·(h

i+j
(2) ·(h

i+j+1
(2) ·(. . .·(hn+1

(2) ·1A). . .))). . .))). . .)

(PA2)
= h1·[(h2

(1)·(. . .·(h
i
(1)h

i+1
(1) ·(. . .·(h

i+j
(1) h

i+j+1
(1) ·(. . .·(hn+1

(1) ·1A). . .)). . .)) . . .))

(h2
(2)·(. . .·(h

i
(2)·(h

i+1
(2) ·(. . .·(h

i+j
(2) ·(h

i+j+1
(2) · (. . .·(hn+1

(2) ·1A). . .))). . .))). . .))]

= h1·(. . .·(hi−1·[(hi(1)h
i+1
(1) ·(. . .·(h

i+j
(1) h

i+j+1
(1) ·(. . .·(hn+1

(1) ·1A). . .)). . .))

(hi(2)·(h
i+1
(2) ·(. . .·(h

i+j
(2) ·(h

i+j+1
(2) ·(. . .·(hn+1

(2) ·1A). . .))). . .)))]). . .)

(PA3)
= h1·(. . .·(hi−1·[(hi(1)h

i+1
(1) ·(h

i+2
(1) ·(. . .·(h

i+j
(1) h

i+j+1
(1) ·(. . .·(hn+1

(1) ·1A). . .)). . .)))

(hi(2)h
i+1
(2) ·(h

i+2
(2) ·(. . .·(h

i+j
(2) ·(h

i+j+1
(2) ·(. . .·(hn+1

(2) ·1A). . .))). . .)))(hi(3)·1A)]). . .)

(PA2)
= h1·(. . .·(hi−1·[(hi(1)h

i+1·[(hi+2
(1) ·(. . .·(h

i+j
(1) h

i+j+1
(1) ·(. . .·(hn+1

(1) ·1A). . .)). . .))

(hi+2
(2) ·(. . .·(h

i+j
(2) ·(h

i+j+1
(2) ·(. . .·(hn+1

(2) ·1A). . .))) . . .))])(hi(2)·1A)]). . .)

(PA2)
= h1 ·(. . .·(hi−1 ·[(hi(1)h

i+1 ·[(hi+2 ·(. . .·(hi+j−1 ·[(hi+j(1) h
i+j+1
(1) ·(. . .

. . .·(hn+1
(1) ·1A). . .))(hi+j(2) ·(h

i+j+1
(2) ·(. . .·(hn+1

(2) ·1A). . .)))]). . .))])(hi(2)·1A)]) . . .)

(PA3)
= h1 ·(. . .·(hi−1 ·[(hi(1)h

i+1 ·[. . .·(hi+j−1 ·[(hi+j(1) h
i+j+1
(1) ·(hi+j+2

(1) ·(. . .

. . .·(hn+1
(1) ·1A) . . .)))(hi+j(2) h

i+j+1
(2) · (hi+j+2

(2) · (. . .· (hn+1
(2) · 1A) . . .)))

(hi+j(3) · 1A)]) . . .])(hi(2) · 1A)]) . . .)

(PA2)
= h1 ·(. . .·(hi−1 ·[(hi(1)h

i+1 ·[. . .·(hi+j−1 ·[(hi+j(1) h
i+j+1 ·[(hi+j+2

(1) ·(. . .

. . .·(hn+1
(1) ·1A). . .))(hi+j+2

(2) ·(. . .·(hn+1
(2) ·1A). . .))])(hi+j(2) ·1A)]). . .])(hi(2)·1A)]). . .)
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(PA2)
= h1 ·(. . .·(hi−1 ·[(hi(1)h

i+1 ·[. . .·(hi+j−1 ·[(hi+j(1) h
i+j+1 ·[(hi+j+2 ·(. . .

. . .·(hn+1 ·1A) . . .))])(hi+j(2) · 1A)] . . .])(hi(2) · 1A)]) . . .)

(PA3)
= h1 · (. . . · (hi−1 · [(hi(1)h

i+1 · [. . .· [(hi+j · (hi+j+1 · (hi+j+2 · (. . .

. . . · (hn+1 · 1A) . . .))))] . . .])(hi(2) · 1A)]) . . .)

(PA3)
= h1 · (. . . · (hi−1 · [(hi · (hi+1 · (. . . · (hi+j · (hi+j+1 · (hi+j+2 · (. . .
· · · · (hn+1 · 1A) . . . ))))) . . . )))]) . . . )

= en+1(h1, . . . , hn+1).

(iv) In fact, for every i ∈ {1, . . . , n− 1}, we have

En(f ◦ µi)(h1, . . . , hn+1) =

= h1·((f ◦ µi)(h2, . . . , hi, hi+1︸︷︷︸
i−th coord.

, hi+2, . . . , hn+1))

= h1 · (f(h2, . . . , hi, hi+1hi+2, . . . , hn+1)).

On the other hand,

En−1(f) ◦ µi+1(h1, . . . , hn+1) =

= En−1(f)(h1, . . . , hi, hi+1hi+2, . . . , hn+1)

= h1 · (f(h2, . . . , hi, hi+1hi+2, . . . , hn+1)).

So, we proved the equality.

(v)

i1,n+1(ẽ1) ∗ (En−1(f) ◦ µ1)(h1, . . . , hn+1) =

= i1,n+1(ẽ1)(h1
(1), . . . , h

n+1
(1) )En−1(f) ◦ µ1(h1

(2), . . . , h
n+1
(2) )

= ẽ1(h1
(1))ε(h

2
(1)) . . . ε(h

n+1
(1) )En−1(f)(h1

(2)h
2
(2), h

3
(2), . . . , h

n+1
(2) )

= (h1
(1) · 1A)ε(h2

(1)) . . . ε(h
n+1
(1) )(h1

(2)h
2
(2) · (f(h3

(2), . . . , h
n+1
(2) )))

= (h1
(1) · 1A)ε(h2

(1)) . . . ε(h
n+1
(1) )(h1

(2)h
2
(2) · (f(h3

(2), . . . , h
n+1
(2) )))

= (h1
(1) · 1A)(h1

(2)h
2 · (f(h3, . . . , hn+1)))

= h1 · (h2 · (f(h3, . . . , hn+1)))

= h1 · (En−1(f)(h2, h3, . . . , hn+1))

= En(En−1(f))(h1, . . . , hn+1)

= En ◦ En−1(f)(h1, . . . , hn+1).
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(vi) For i ∈ {1, . . . , n− 1}, we have

in,n+1(f ◦ µi) ∗ in−1,n(f−1) ◦ µi(h1, . . . , hn+1) =

=in,n+1(f ◦ µi)(h1
(1), . . . , h

n+1
(1) )in−1,n(f−1) ◦ µi(h1

(2), . . . , h
n+1
(2) )

=f ◦µi(h1
(1), . . . , h

n
(1))ε(h

n+1
(1) )in−1,n(f

−1)(h1
(2), . . . , h

i
(2)h

i+1
(2) , . . . , h

n+1
(2)︸ ︷︷ ︸

n−th coord

)

=f(h1
(1),. . .,h

i
(1)h

i+1
(1),. . .,h

n
(1))ε(h

n+1
(1) )f−1(h1

(2),. . .,h
i
(2)h

i+1
(2),. . .,h

n
(2))ε(h

n+1
(2) )

=f◦µi(h1
(1),. . .,h

i
(1),h

i+1
(1),. . .,h

n
(1))f

−1◦µi(h1
(2),. . .,h

i
(2),h

i+1
(2),. . .,h

n
(2))ε(h

n+1)

=(f ◦ µi) ∗ (f−1 ◦ µi)(h1, . . . , hn)ε(hn+1)

=(f ∗ f−1) ◦ µi(h1, . . . , hn)ε(hn+1)

=en−1 ◦ µi(h1, . . . , hn)ε(hn+1)

=in,n+1(en ◦ µi)(h1, . . . , hn+1).

(vii)

(in−1,n(f) ◦ µn) ∗ in−1,n+1(f−1)(h1, . . . , hn+1) =

= (in−1,n(f) ◦ µn)(h1
(1), . . . , h

n+1
(1) )in−1,n+1(f−1)(h1

(2), . . . , h
n+1
(2) )

= in−1,n(f)(h1
(1), . . . , h

n
(1)h

n+1
(1) )f−1(h1

(2), . . . , h
n−1
(2) )ε(hn(2))ε(h

n+1
(2) )

= f(h1
(1), . . . , h

n−1
(1) )ε(hn(1)h

n+1
(1) )f−1(h1

(2), . . . , h
n−1
(2) )ε(hn(2))ε(h

n+1
(2) )

= f(h1
(1), . . . , h

n−1
(1) )f−1(h1

(2), . . . , h
n−1
(2) )ε(hn(1)h

n+1
(1) )ε(hn(2))ε(h

n+1
(2) )

= (f ∗ f−1)(h1, . . . , hn−1)ε(hn)ε(hn+1)

= (en−1)(h1, . . . , hn−1)ε(hn)ε(hn+1)

= in−1,n+1(en−1)(h1, . . . , hn+1).

(viii) For i ∈ {1, . . . , n− 1}, we have

(f ◦ µi ◦ µi) ∗ (f−1 ◦ µi ◦ µi+1)(h1, . . . , hn+1) =

=f ◦ µi ◦ µi(h1
(1), . . . , h

n+1
(1) )f−1 ◦ µi ◦ µi+1(h1

(2), . . . , h
n+1
(2) )

=f◦µi(h1
(1),...,h

i
(1)h

i+1
(1),h

i+2
(1),...,h

n+1
(1) )f−1◦µi(h1

(2),...,h
i
(2),h

i+1
(2) h

i+2
(2),...,h

n+1
(2) )

=f(h1
(1),. . .,h

i
(1)h

i+1
(1) h

i+2
(1),. . .,h

n+1
(1) )f−1(h1

(2),. . .,h
i
(2)h

i+1
(2) h

i+2
(2),. . .,h

n+1
(2) )

=(f ∗ f−1)(h1, . . . , hihi+1hi+2, . . . , hn+1)

=en−1(h1, . . . , hihi+1hi+2, . . . , hn+1)

=en−1 ◦ µi ◦ µi(h1, . . . , hn+1).

(ix) For i ∈ {1, . . . , n− 2} e j ∈ {2, . . . , n− i}, we have
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(f ◦ µi ◦ µi+j) ∗ (f−1 ◦ µi+j−1 ◦ µi)(h1, . . . , hn+1) =

=f ◦ µi ◦ µi+j(h1
(1), . . . , h

n+1
(1) )f−1 ◦ µi+j−1 ◦ µi(h1

(2), . . . , h
n+1
(2) )

=f◦µi(h1
(1),. . .,h

i+j
(1) h

i+j+1
(1) ,. . .,h

n+1
(1) )f−1◦µi+j−1(h

1
(2),. . .,h

i
(2)h

i+1
(2),. . .,h

n+1
(2) )

=f(h1
(1), . . . , h

i
(1)h

i+1
(1) , . . . , h

i+j
(1) h

i+j+1
(1) , . . . , hn+1

(1) )

f−1 ◦ µi+j−1(h1
(2), . . . , h

i
(2)h

i+1
(2)︸ ︷︷ ︸

i−th coord

, hi+2
(2) , . . . , hi+j(2)︸︷︷︸

(i+j−1)−th coord

, . . . , hn+1
(2) )

=f(h1
(1), . . . , h

i
(1)h

i+1
(1) , . . . , h

i+j
(1) h

i+j+1
(1) , . . . , hn+1

(1) )

f−1(h1
(2), . . . , h

i
(2)h

i+1
(2) , . . . , h

i+j
(2) h

i+j+1
(2) , . . . , hn+1

(2) )

=(f ∗ f−1)(h1, . . . , hihi+1, . . . , hi+jhi+j+1, . . . , hn+1)

=en−1(h1, . . . , hihi+1, . . . , hi+jhi+j+1, . . . , hn+1)

=en−1 ◦ µi ◦ µi+j(h1, . . . , hn+1).

�
With this lemma, one can prove the following result.

Theorem 3.12 For any f∈Cnpar(H,A), we have that δn+1◦δn(f)=en+2.

Proof: Indeed, take any f ∈ Cnpar(H,A), then

δn+1(δn(f)) =

=En+1(δn(f))∗
n+1∏
i=1

(δn(f))(−1)i ◦ µi ∗ in+1,n+2((δn(f))(−1)n+2

)

=En+1(δn(f))∗
n+1∏
i=1

δn(f (−1)i) ◦ µi ∗ in+1,n+2(δn(f (−1)n+2

))

=En+1(En(f)∗
n∏
j=1

f (−1)j ◦ µj ∗ in,n+1(f (−1)n+1

))

∗
n+1∏
i=1

(En(f (−1)i)∗
n∏
j=1

f (−1)i+j

◦ µj ∗ in,n+1(f (−1)n+i+1

)) ◦ µi

∗in+1,n+2(En(f (−1)n+2

)∗
n∏
j=1

f (−1)n+j+2

◦ µj ∗ in,n+1(f (−1)2n+3

))
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=En+1(En(f))︸ ︷︷ ︸
Lemma 3.11 (v)

∗
n∏
j=1

En+1(f (−1)j ◦ µj)︸ ︷︷ ︸
Lemma 3.11 (iv)

∗ En+1(in,n+1(f (−1)n+1

))︸ ︷︷ ︸
Lemma 3.11 (i)

∗
n+1∏
i=1

En(f (−1)i) ◦ µi∗
n+1∏
i=1

n∏
j=1

f (−1)i+j

◦ µj ◦ µi

∗
n+1∏
i=1

in,n+1(f (−1)n+i+1

) ◦ µi ∗ in+1,n+2(En(f (−1)n+2

))

∗in+1,n+2(

n∏
j=1

f (−1)n+j+2

◦ µj) ∗ in+1,n+2(in,n+1(f (−1)2n+3

))

= i1,n+2(ẽ1)∗En(f)◦µ1∗
n∏
j=1

En(f (−1)j )◦µj+1∗in+1,n+2(En(f (−1)n+1

))

∗
n+1∏
i=1

En(f (−1)i) ◦ µi∗
n+1∏
i=1

n∏
j=1

f (−1)i+j

◦ µj ◦ µi

∗
n+1∏
i=1

in,n+1(f (−1)n+i+1

) ◦ µi ∗ in+1,n+2(En(f (−1)n+2

)

∗
n∏
j=1

in+1,n+2(f (−1)n+j+2

◦ µj) ∗ in,n+2(f (−1)2n+3

))

= i1,n+2(ẽ1)∗
n+1∏
j=1

En(f (−1)j+1

) ◦ µj∗
n+1∏
i=1

En(f (−1)i) ◦ µi ∗

∗in+1,n+2(En(f (−1)n+1

)) ∗ in+1,n+2(En(f (−1)n+2

)

∗
n+1∏
i=1

n∏
j=1

f (−1)i+j

◦ µj ◦ µi∗
n∏
j=1

in+1,n+2(f (−1)n+j+2

◦ µj)

∗
n∏
i=1

in,n+1(f (−1)n+i+1

) ◦ µi ∗ in,n+1(f (−1)2n+2

) ◦ µn+1

∗in,n+2(f (−1)2n+3

))

= i1,n+2(ẽ1)∗
n+1∏
j=1

En(f (−1)j+1

∗ f (−1)j ) ◦ µj

∗in+1,n+2(En(f (−1)n+1

∗ f (−1)n+2

))∗
n+1∏
i=1

n∏
j=1

f (−1)i+j

◦ µj ◦ µi
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∗
n∏
j=1

in+1,n+2(f (−1)n+j+2

◦ µj)∗
n∏
i=1

in,n+1(f (−1)n+i+1

) ◦ µi︸ ︷︷ ︸
Lemma 3.11 (vi)

∗in,n+1(f (−1)2n+2

) ◦ µn+1 ∗ in,n+2(f (−1)2n+3

))︸ ︷︷ ︸
Lemma 3.11 (vii)

= i1,n+2(ẽ1)∗
n+1∏
j=1

En(en)︸ ︷︷ ︸
Lemma 3.9 (i)

◦ µj ∗ in+1,n+2( En(en)︸ ︷︷ ︸
Lemma 3.9 (i)

)

∗
n+1∏
i=1

n∏
j=1

f (−1)i+j

◦ µj ◦ µi∗
n∏
j=1

in+1,n+2(en ◦ µj) ∗ in,n+2(en)

= i1,n+2(ẽ1)∗
n+1∏
j=1

en+1 ◦ µj ∗ in+1,n+2(en+1)∗
n+1∏
i=1

n∏
j=1

f (−1)i+j

◦ µj ◦ µi

∗
n∏
j=1

in+1,n+2(en ◦ µj) ∗ in+1,n+2(in,n+1(en))

= i1,n+2(ẽ1)∗
n+1∏
j=1

en+1 ◦ µj ∗ in+1,n+2(en+1)∗
n+1∏
i=1

n∏
j=1

f (−1)i+j

◦ µj ◦ µi

∗
n−1∏
j=1

in+1,n+2(en ◦ µj) ∗ in+1,n+2(en ◦ µn) ∗ in+1,n+2(in,n+1(en))︸ ︷︷ ︸
Lemma 3.9 (vi)

= i1,n+2(ẽ1)∗
n+1∏
j=1

en+1 ◦ µj ∗ in+1,n+2(en+1)∗
n+1∏
i=1

n∏
j=1

f (−1)i+j

◦ µj ◦ µi

∗
n−1∏
j=1

in+1,n+2(en ◦ µj) ∗ in+1,n+2(en+1)︸ ︷︷ ︸
Lemma 3.9 (vii)

= i1,n+2(ẽ1)∗
n+1∏
j=1

en+1 ◦ µj ∗ in+1,n+2(en+1)∗
n+1∏
i=1

n∏
j=1

f (−1)i+j

◦ µj ◦ µi

∗in+1,n+2(en+1)

= i1,n+2(ẽ1)∗
n∏
j=1

en+1 ◦ µj ∗ en+1 ◦ µn+1 ∗ in+1,n+2(en+1)︸ ︷︷ ︸
Lemma 3.9 (vi)
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∗
n+1∏
i=1

n∏
j=1

f (−1)i+j

◦ µj ◦ µi

= i1,n+2(ẽ1) ∗
n∏
j=1

en+1 ◦ µj ∗ en+2︸ ︷︷ ︸
Lemma 3.9 (vii)

∗
n+1∏
i=1

n∏
j=1

f (−1)i+j

◦ µj ◦ µi

= i1,n+2(ẽ1) ∗ en+2∗
n+1∏
i=1

n∏
j=1

f (−1)i+j

◦ µj ◦ µi

= en+2∗
n+1∏
i=1

n∏
j=1

f (−1)i+j

◦ µj ◦ µi

= en+2 ∗
n∏
i=1

f (−1)2i ◦ µi ◦ µi∗
n∏
i=1

f (−1)2i+1

◦ µi ◦ µi+1︸ ︷︷ ︸
Lemma 3.11 (viii)

∗

∗
n−1∏
i=1

n−i+1∏
j=2

f (−1)2i+j

◦ µi ◦ µi+j∗
n−1∏
i=1

n−i+1∏
j=2

f (−1)2i+j−1

◦ µi+j−1 ◦ µi︸ ︷︷ ︸
Lemma 3.11 (ix)

= en+2∗
n∏
i=1

en ◦ µi ◦ µi∗
n−1∏
i=1

n−i+1∏
j=2

en ◦ µi ◦ µi+j

= en+2.

Since en+2 absorbs en◦µi◦µi for all i ∈ {1, . . . , n} and en◦µi◦µi+j ,
for all i ∈ {1, . . . , n− 1}, j ∈ {2, . . . , n− i− 1}, by Lemma 3.11 (ii) and
(iii) respectively, we conclude that δn+1 ◦ δn(f) = en+2 as desired.

�

Therefore, we ended up with a cochain complex (Cnpar(H,A), δn)n∈N,
which allows us to de�ne a cohomology theory.

3.3 Cohomologies

De�nition 3.13 Let H be a cocommutative Hopf algebra acting par-
tially over a commutative algebra A and consider the cochain complex
(Cnpar(H,A), δn)n∈N as de�ned in the previous section. For n > 0, de-
�ne the groups of partial n-cocycles, partial n-coboundaries and partial
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n-cohomologies of H taking values in A , respectively, as the abelian
groups Zn(H,A) = ker δn, B

n(H,A) = Im δn−1 and Hn(H,A) =
ker δn/ Im δn−1. n ≥ 1. For n = 0, de�ne H0(H,A) = Z0(H,A) =
ker δ0.

Let us characterize the partial cocycles and the partial coboundaries
for n = 0, 1 and 2.

For n = 0, we have by de�nition

H0(H,A) = Z0(H,A) = {a ∈ A×|h · a = (h · 1A)a, ∀h ∈ H}.

Thus the partial 0-cocycles are the elements of A invariant under
the partial action as de�ned in [3].

For n = 1, the partial 1-coboundaries are

B1(H,A) = Im δ0 = {f ∈ C1
par(H,A)| ∃a ∈ A×, f(h) = δ0(a)(h)},

this means

B1(H,A) = {f ∈ C1
par(H,A) | ∃a ∈ A×, f(h) = (h · a)a−1}.

Also, for f ∈ C1
par(H,A), we have

δ1(f)(h, l) = E2(f)(h(1), l(1))f
−1(h(2)l(2))f(h(3))ε(l(3))

= (h(1) · f(l(1)))f
−1(h(2)l(2))f(h(3))ε(l(3)).

Then, for all h, l ∈ H, the partial 1-cocycles are

Z1(H,A) = {f ∈ C1
par(H,A)| δ1(f)(h, l) = e2(h, l)}

={f ∈C1
par(H,A)|(h(1) · f(l(1)))f

−1(h(2)l(2))f(h(3)) = h · (l · 1A)}
={f ∈C1

par(H,A)|(h(1) · f(l(1)))f(h(3))=(h(1) · (l(1) · 1A))f(h(2)l(2))}.

Due to the fact that for a 1-cocycle f we have f = e1 ∗ f , then the
condition of 1-cocycle can also be rewritten as

(h(1) · f(l(1)))f(h(3)) = (h(1) · 1A)f(h(2)l(2)),

For n = 2, we have the partial 2-coboundaries

B2(H,A)={g∈C2
par(H,A)|∃f ∈C1

par(H,A), δ1(f)(h, l)=g(h, l)}
= {g ∈ C2

par(H,A)| g(h, l) = (h(1) · f(l(1)))f
−1(h(2), l(2))f(h(3))}.
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Also, for f ∈ C2
par(H,A), we have

δ2(f)(h, l,m) = E2(f)∗
2∏
i=1

f (−1)i ◦ µi ∗ i2,3(f (−1)3)(h, l,m)

= (h(1)·f(l(1),m(1)))f
−1(h(2)l(2),m(2))f(h(3),l(3)m(3))f

−1(h(4),l(4))ε(m(4)).

Then, the partial 2 cocycles are

Z2(H,A)={f ∈C2
par(H,A)|δ2(f)(h, l,m)=e3(h, l,m),∀h, l,m∈H}

={f ∈C2
par(H,A)|(h(1) ·f(l(1),m(1)))f

−1(h(2)l(2),m(2))f(h(3), l(3)m(3))

f−1(h(4), l(4)) = h · (l · (m · 1A)), ∀ h, l,m ∈ H}
={f ∈ C2

par(H,A)|(h(1) · f(l(1),m(1)))f(h(2), l(2)m(2)) =

(h(1) · (l(1) · (m(1) · 1A)))f(h(2)l(2),m(2))f(h(3), l(3)), ∀ h, l,m ∈ H}.

Again by absorption of units, one can rewrite the condition of 2-
cocycle as

(h(1) ·f(l(1),m(1)))f(h(2), l(2)m(2))=(h(1) ·1A)f(h(2)l(2),m(2))f(h(3), l(3)),

which is the form presented in [5].

Example 3.14 In the case of a global action of H over A, which is
equivalent to say that h · 1A = ε(h)1A, ∀h ∈ H, the cochain complexes
are simply given by Cn(H,A) = Homk(H⊗n, A)×. Then we recover
exactly the cohomology theory obtained by Sweedler in [30].

Example 3.15 Let G be a group and H = kG, the group algebra of G.
Using the canonical basis {δg ∈ kG | g ∈ G}, the axioms (PA1), (PA2)
and (PA3) of partial action read

(PA1) δe · a = a, for every a ∈ A;

(PA2) δg · (ab) = (δg · a)(δg · b), for every g ∈ G and a, b ∈ A;

(PA3) δg · (δh · a) = (δg · 1A)(δgh · a), for every g, h ∈ G and a ∈ A.

In order to calculate the partial n-cocycles, partial n-coboundaries
and partial n-cohomologies, we denote the coboundary operator by ∂n
instead of δn to avoid confusion with the elements δg ∈ kG.

For n = 0, we have

H0(kG,A) = Z0(kG,A) = {a ∈ A×|(δg · a)a−1 = (δg · 1A), ∀δg ∈ kG},
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For n = 1, the 1-coboundaries are

B1(kG,A) ={f ∈ C1
par(kG,A)| ∃ a ∈ A× : f(δg) = ∂0(δg)(a)}

={f ∈ C1
par(kG,A)| f(δg) = (δg · a)a−1}.

Also, we have, for every f ∈ C1
par(kG,A),

∂1(f)(δg, δh) = (δg · f(δh))f−1(δgh)f(δg).

Then, for all δg, δh ∈ kG, we obtain the 1-cocycles

Z1(kG,A) ={f ∈C1
par(kG,A)|∂1(f)(δg, δh) = δg · (δh · 1A)}

={f ∈C1
par(kG,A)|(δg · f(δh))f(δg) = (δg · 1A)f(δgh)}.

For n = 2, the 2-coboundaries are

B2(kG,A) ={i∈C2
par(kG,A)|∃f∈C1

par(kG,A) : ∂1(f)(δg, δh)= i(δg, δh)}
={i∈C2

par(kG,A)|i(δg, δh)=(δg ·f(δh))f−1(δgh)f(δg)}.

Moreover, for f ∈ C2
par(kG,A)

∂2(f)(δg, δh, δl) = (δg · f(δh, δl))f
−1(δgh, δl)f(δg, δhl)f

−1(δg, δh).

Then, for all δg, δh, δl ∈ kG, the partial 2-cocycles are

Z2(kG,A) = {f ∈ C2
par(kG,A)| ∂2(f)(δg, δh, δl) = e3(δg, δh, δl)}

={f∈C2
par(kG,A)|(δg ·f(δh, δl))f(δg, δhl)=(δg ·1A)f(δgh, δl)f(δg, δh)}.

This cohomology for partial actions of the group algebra kG corre-
sponds to the cohomology for partial group actions described in [19].
Recall from Example 2.20 that there is a one-to-one correspondence be-
tween partial actions of kG and unital partial actions of the group G,
given by Ag = 1gA in which 1g = δg · 1A, and αg = (δg · )|Ag−1 . For
elements x1, . . . xn ∈ G we de�ne the ideals

A(x1,...,xn) := Ax1
Ax1x2

. . . Ax1...xn
,

where Axi = 1xiA. This expression for the ideals is natural, considering
the units

en(δx1 , . . . , δxn) = δx1 · (δx2 · (· · · (δxn · 1A))) = 1x11x1x2 . . . 1x1...xn .
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The set of these ideals forms a semilattice, because the product of two
ideals of this type is also an ideal of this type, this product is commuta-
tive and each ideal is idempotent, that is A(x1,...,xn)=A(x1,...,xn)A(x1,...,xn).
This can be viewed easily by the properties of the system of idempotents
presented before.

The correspondence between the cochain complexes presented here
and those presented in [19] can be viewed more exactly by the identi-
�cation of the convolution algebra Homk(kG⊗n, A) with the algebra of
functions Fun(Gn, A), moreover, the functions f : Gn → A can also
be viewed as collections of elements of A indexed by n-tuples in G, that
is f(g1, . . ., gn) = fg1,...gn ∈ 1(g1···gn)A. As the canonical basis elements
δg, for g ∈ G are group-like, the convolution product is in fact the point-
wise product, that is, for f1, f2 ∈ Fun(Gn, A) and g1, . . . , gn ∈ G, we
have

f1 ∗ f2(g1, . . ., gn) = f1(g1, . . ., gn)f2(g1, . . ., gn) = f1
g1,...,gnf

2
g1,...,gn .

Therefore, the n-cochains Cnpar(kG,A) coincide with the n-cochains
Cnpar(G,A).

The partial n-cocycles, partial n-coboundaries and partial n-cohomo-
logies in the group setting are written as.

H0(G,A) = Z0(G,A) = {a ∈ A×|(αg(1g−1a))a−1 = 1g, ∀g ∈ G},

For n = 1 the partial 1-coboudaries are

B1(G,A) ={f ∈ C1
par(G,A)| ∃a ∈ A×, f(g) = ∂0(g)(a)}

={f ∈ C1
par(G,A)| ∃a ∈ A×, f(g) = (αg(1g−1a))a−1}.

Moreover, for f ∈ C1
par(G,A) we have

∂1(f)(g, h) = (g · (1g−1f(h)))f−1(gh)f(g).

Then, the partial 1-cocycles are

Z1(G,A) ={f∈C1
par(G,A)| ∂1(f)(g, h) = e2(g, h), ∀ g, h ∈ G}

={f∈C1
par(G,A)| (αg(1g−1f(h)))f(g)=1gf(gh),∀g, h ∈ G}.

Note that δg · (δh · 1A) = (δg · 1A)(δgh · 1A) = 1g1gh, and 1gh is absorbed
by f(gh).

For n = 2, the partial 2-coboundaries are

B2(G,A) ={i ∈ C2
par(G,A)|∃f ∈ C1

par(G,A), ∂1(f)(g, h) = i(g, h)}
={i ∈ C2

par(G,A)| i(g, h) = (αg(1g−1f(h)))f−1(gh)f(g)}.
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For f ∈ C2
par(G,A), we have,

∂2(f)(g, h, l) = (g · (1g−1f(h, l)))f−1(gh, l)f(g, hl)f−1(g, h),

then,

Z2(G,A)={f ∈C2
par(G,A)| ∂2(f)(g, h, l)=e3(g, h, l),∀ g, h, l ∈ G}

={f∈C2
par(G,A)|(αg(1g−1f(h, l)))f(g, hl)=1gf(gh, l)f(g, h),∀g, h, l∈G}.

Again, the appearance only of 1g in the right hand side of the 2-
cocycle condition is due to absorption of units.

Therefore, the cohomology obtained here is the same as in [19].

In the next subsection we will give more speci�c examples of co-
homologies for partial actions in which the algebra A is the base �eld
k.

3.4 Cohomology for partial actions on the

base �eld

Example 3.16 (Partial group actions over the base �eld) Let G
be a group. We have already seen in Example 2.22 that partial actions
kG over k are in correspondence with subgroups L ≤ G by the linear
functional

λ : kG −→ k

δg 7→ λg = λ(δg) =

{
1 , g ∈ L
0 , otherwise

.

Fix the subgroup L of G which de�nes the partial action. Let us now
calculate the cohomologies Hn

par(kG, k) (we use the symbol ∂n for the
coboundary map to avoid confusion with the basis elements δg ∈ kG):

� For n = 0, C0
par(kG, k) = k× = k\{0}. Let a ∈ C0, then,

(∂0a)(δg) = (δg · a)a−1 = λgaa
−1 = λg =

{
1, g ∈ L
0, g 6∈ L .

Therefore, H0
par = Z0

par = C0
par = k×.

� For n = 1, let f ∈ Z1
par(kG, k). Then,

(∂1f)(δg, δh) = λgf(δh)f−1(δgh)f(δg) = λgλh.
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Denote f(δg) simply by f(g) using the identi�cation between the
convolution algebra and the algebras of functions f : G → k. If
g, h ∈ L, then the 1-cocycle condition can be rewritten as
f(gh) = f(g)f(h), which means that f|L : kG → k× is a char-
acter of the subgroup L. If g /∈ L then it is easy to see that for
a 1-cocycle f , we have f(g) = 0. As the partial 1-coboundaries
are given by λ : G → k such that λ(g) = 1 for any g ∈ L, we
have that H1 = Z1/B1 are given by the nontrivial 1-dimensional
representations of the subgroup L which determine the partial ac-
tion.

� For n = 2, let ω ∈ Z2
par(kG, k). Then, denoting ω(δg, δh) simply

by ωg,h, we have

(∂ω)(δg, δh, δl) = λgωh,lω
−1
gh,lωg,hlω

−1
g,h = λgλhλl.

It is easy to see from the identity above that, if (g, h) /∈ L × L
then ωg,h = 0. Then, de�ning ω : G×G→ k by

ω(g, h) =

{
0, (g, h) 6∈ L× L
ω(δg, δh), (g, h) ∈ L× L ,

we have that the partial 2-cocycles relative to G are in fact usual
2-cocycles of the subgroup L [1, 31], in other words

Z2
par(kG, k) = Z2(L, k).

Example 3.17 (Partial group gradings over the base �eld) Let
G be a �nite abelian group. In Example 2.23 we saw that the partial
actions of the Hopf algebra H = (kG)∗ = 〈pg | g ∈ G〉 over the base
�eld k are in one-to-one correspondence with subgroups L ≤ G, namely

λpg =

{ 1
|L| , g ∈ L
0 , otherwise.

.

Let us now calculate explicitly the partial cohomologies for (kG)∗.

For n = 0, recalling that δa(h) = (h · a)a−1, for every a ∈ k×, we
have δa(pg) = λpg , and this leads to Z0((kG)∗, k) = C0((kG)∗, k) =
H0((kG)∗, k) = k×. Moreover, the 1-coboundaries are basically given
by the functional λ.

For n = 1, let ω : (kG)∗ → k be a partial 1-cocycle, then
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λpgλph= δ(ω)(pg, ph) =
∑

l,m,i∈G

(pml−1 · ω(phi−1))ω(plpi)ω(pm−1g)

=
∑
l,m∈G

λml−1ω(phl−1))ω(pl)ω(pm−1g).

Recalling that e1 ∗ ω = ω = ω ∗ e1 and e1(pg) = λpg , we have

(e1∗ω)(pg)=
∑
h∈G

λphω(ph−1g)⇒
1

|L|
∑
h∈L

ω(pgh−1)=ω(pg)=
1

|L|
∑
h∈L

ω(ph−1g).

This means that

ω(pg) =
1

|L|
∑
h∈L

ω(phg) =
1

|L|
∑
h∈L

ω(pgh).

For any g ∈ L, we have ω(pg) =
1

|L|
∑
h∈L

ω(ph), which is an invari-

ance by translations in the subgroup. Furthermore, using the normal-
ization condition, ω(1) = 1, we have that

|L|ω(pe) =
∑
g∈L

ω(pg) = 1⇒ ω(pg) =
1

|L|
,∀ g ∈ L.

We don't have, a priori any further constraint for the values of
ω(pg), for g /∈ L. If we impose that, ω(pg) = 0, for g /∈ L, then
the only possible choice is the linear functional λ : (kG)∗ → k, which
de�nes the partial action. Therefore,

Z1
par((kG)∗, k) ={ω : kg → k, ω(pg) =

1

|L|
, g ∈ L},

B1
par((kG)∗, k) ={λ},

H1
par((kG)∗, k) ={ω : kg → k, ω(pg) =

1

|L|
, g ∈ L, ω(pg) 6= 0, g /∈ L}.

For n=2, �rst recall that e2 = ẽ2,1∗ẽ2,2, in which e2(h, l)=h ·(l ·1A),
ẽ2,1(h, l) = (h · 1A)ε(l) and ẽ2,2(h, l) = hl · 1A. Then, for g, h ∈ G, we
have

ω(pg, ph) = ẽ2,1 ∗ ω(pg, ph) =
∑
l∈G

λplω(pl−1g, ph) =
1

|L|
∑
l∈L

ω(pl−1g, ph).
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This leads to an invariance by translation on the left slot, that is
ω(plg, ph) = ω(pg, ph), for any g, h ∈ G and l ∈ L. On the other hand,

ω(pg, ph) = ẽ2,2 ∗ ω(pg, ph) =
∑
l,m∈L

λplpmω(pl−1g, pm−1h)

=
1

|L|
∑
l∈L

ω(pl−1g, pl−1h) =
1

|L|
∑
l∈L

ω(pg, pl−1h).

This gives an invariance by translation on the right slot, that is,
ω(pg, plh) = ω(pg, ph), for any g, h ∈ G and l ∈ L. As these invariances
are independent, we have �nally

ω(plg, pmh) = ω(pg, ph),

for any g, h ∈ G and l,m ∈ L [6]. This translation invariance is a useful
tool for searching solutions of partial 2-cocycles in speci�c cases. Be-
sides the translation invariance, we have the normalization constraint,
given by

ω(1, pg) = ω(pg, 1) = λpg ⇒
1

|L|
=
∑
h∈L

ω(pg, ph) =
∑
h∈L

ω(ph, pg), ∀ g ∈ L.

Finally, we have the cocycle condition. For g, h, i ∈ L, we have

1

|L|3
= λpgλphλpi = δω(pg, ph, pi)

=
∑

l,m,n,r,s,
t,x,y∈L

λplω(pr,px)ω(pl−1mpr−1s︸ ︷︷ ︸
⇒ l−1m=r−1s
⇒ l=rms−1

,px−1y)ω(pm−1n, ps−1tpy−1i︸ ︷︷ ︸
⇒s−1t=y−1i
⇒ t−1=i−1ys−1

)ω(pn−1g,pt−1h)

=
1

|L|
∑

m,n,r,s,
x,y∈L

ω(pr, px)ω(pr−1s, px−1y)ω(pm−1n, py−1i)ω(pn−1g, pi−1ys−1h)

=
1

|L|
∑

m,n,s,y∈L
λpsλpyω(pm−1n, py−1i)ω(pn−1g, pi−1ys−1h)

=
1

|L|2
∑

n,s,y∈L

(∑
m∈L

1

|L|
ω(pm−1n, py−1i)

)
ω(pn−1g, pi−1ys−1h)

=
1

|L|
∑

n,s,y∈L
ω(pn, py−1i)ω(pn−1g, ps−1yi−1h)

1

|L|
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=
1

|L|
∑
n,y∈L

ω(pn, py−1i)ω(pn−1g, pyi−1h)

(∗)
=

1

|L|
∑
n,x∈L

ω(pn, px)ω(pn−1g, px−1h),

in which (∗) is taken putting y−1i = x and i−1y = yi−1 = x−1. There-
fore,

1

|L|2
=
∑
n,x∈L

ω(pn, px)ω(pn−1g, px−1h).

The next example is a speci�c case of a partial grading of the base
�eld for a �xed group G and a �xed subgroup L ≤ G de�ning the
partial action.

Example 3.18 Fix G=〈a, b |a2=b2=e〉={e, a, b, ab} and L=〈a〉, then
|L|= 2. Let us calculate the partial 1-cocycles in this case. The invari-
ance by translations gives us ω(pe) =ω(pa) = x and ω(pb) =ω(pab) = y,
ω(pe) = ω(pa) = x and ω(pb) = ω(pab) = y.

By the normalization constraint
∑
g∈G

ω(pg) = 1 =
∑
g∈G

ω(pg), we have

x+ y =
1

2
. (3.1)

and

x+ y =
1

2
. (3.2)

Moreover, the condition ω ∗ ω = e, which can be written as∑
h∈G

ω(ph)ω(ph−1g) =

{ 1
|L| g ∈ L
0 g /∈ L ,

gives us two equations,

xx+ yy =
1

4
, (3.3)

xy + yx = 0. (3.4)

Finally, the cocycle condition,

λpgλph =
∑
m∈G

ω(pm)ω(pm−1h)ω(pmh−1g),

gives us:



48 Chapter 3. Cohomology for partial actions

� For g = h = e,

ω(pe)ω(pe)ω(pe)+ω(pa)ω(pa)ω(pa) +

+ω(pb)ω(pb)ω(pb)+ω(pab)ω(pab)ω(pab) =
1

4
.

⇒ 2x2x+ 2y2y =
1

4
⇒ x2x+ y2y =

1

8

⇒ x2x+ xyy − xyy + y2y =
1

8
xy=−yx⇒ x2x+ xyy + yyx+ y2y =

1

8

⇒ 1

8
= x2x+ xyy + yyx+ y2y = (x+ y)(xx+ yy).

This is the product of equations (3.1) and (3.3), therefore, no
new information is added. The same occurs for g = e and h = a,
g = a and h = e, and g = h = a.

� For g = e e h = b,

ω(pe)ω(pb)ω(pb) + ω(pa)ω(pab)ω(pab) +

+ω(pb)ω(pe)ω(pe) + ω(pab)ω(pa)ω(pa)=0.

⇒ xyy + xyy + xyx+ xyx = 0⇒ xyy + yxx = 0.

As x + y = 1
2 , then we have xy = 0. The same condition is

obtained for the cases g = e and h = ab, g = a and h = b, g = a
and h = ab, g = b and h = e, g = b and h = a, g = ab and h = e,
and g = ab and h = a.

� For g = b e h = b,

ω(pe)ω(pb)ω(pe) + ω(pa)ω(pab)ω(pa) +

+ω(pb)ω(pe)ω(pb) + ω(pab)ω(pa)ω(pab)=0.

⇒ x2y + x2y + y2x+ y2x = 0⇒ x2y + y2x = 0

⇒ x2y + xyy − xyy + y2x = 0
xyx=−xyy⇒ x2y + xyy + yxx+ y2x = 0

⇒ 0 = x2y + xyy + yxx+ y2x = (x+ y)(xy + yx).
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This equation is the product of (3.1) and (3.4), therefore, no new
information is added. The same occurs if we take g = b and
h = ab, g = ab and h = b, and g = h = ab.

Resuming, we have the following equations:

x+ y =
1

2
, x+ y =

1

2
, xx+ yy =

1

4
, xy + yx = 0, xy = 0,

whose unique possible solution is ω(pg) = λpg =

{ 1
|L| , g ∈ L
0 , g 6∈ L .

For n = 2, �rst note that ω(pg, ph) = ω(pag, ph) = ω(pg, pah) =
ω(pag, pah), for every g, h ∈ G, then,

� ω(pe, pe) = ω(pa, pe) = ω(pe, pa) = ω(pa, pa);

� ω(pb, pe) = ω(pab, pe) = ω(pb, pa) = ω(pab, pa);

� ω(pe, pb) = ω(pa, pb) = ω(pe, pab) = ω(pa, pab);

� ω(pb, pb) = ω(pab, pb) = ω(pb, pab) = ω(pab, pab).

The normalization constraint gives us∑
h∈G

ω(pg, ph) = λpg =
∑
h∈G

ω(ph, pg).

Applying the above normalization constraint respectively for
g = e, a, b, ab, we have

� For g = e (λpe = 1/2),

ω(pe, pe) + ω(pe, pa) + ω(pe, pb) + ω(pe, pab) =
1

2

ω(pe, pe) + ω(pa, pe) + ω(pb, pe) + ω(pab, pe) =
1

2
,

⇒ ω(pe, pe) + ω(pe, pb) =
1

4
and ω(pe, pb) = ω(pb, pe).

The same is obtained for g = a (λpa = 1
2).

� For g = b (λpb = 0),

ω(pb, pe) + ω(pb, pa) + ω(pb, pb) + ω(pb, pab) = 0

ω(pe, pb) + ω(pa, pb) + ω(pb, pb) + ω(pab, pb) = 0,

⇒ ω(pb, pb) = −ω(pe, pb) = −ω(pb, pe).

The same is obtained for g = ab (λpab
= 0).
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Therefore, the only remaining independent components are ω(pe, pe)
and ω(pe, pb). Moreover

ω(pe, pe) + ω(pe, pb) =
1

4
.

The cocycle condition

h(1) · ω(l(1),m(1))ω(h(2), l(2)m(2)) = (h(1) · 1)ω(h(2), l(1))ω(h(3)l(2),m),

can be written, in our case, as∑
s∈G

ω(pg, ps)ω(phs−1 , pls−1) =
∑
s∈G

ω(pgs−1 , phs−1)ω(ps, pl).

This condition gives us 64 equations which are, in fact redundant,
that is, every 2-cochain in this case is a 2-cocycle

Finally, from ω ∗ω = e2, taking x = ω(pe, pe) and y = ω(pe, pe), we
obtain the equation [6]

16xy − 3(x+ y) +
1

2
= 0.



Chapter 4

The associated Hopf

algebra of a partial action

In [19], for a partial action θ of a group G on a commutative algebra
A, the authors introduced the inverse semigroup Ã, given by the in-
vertible elements of all ideals of the form 1x1 . . . 1xnA, for x1, . . . , xn∈G
and n ∈ N. Once showed that θx(1x−1Ã) = 1xÃ, in other words, θ
restricted to Ã de�nes a partial action θ̃ of G on Ã such that their
cohomologies are the same, that is, Hn

par(G,A) ∼= Hn
par(G, Ã).

This construction brings advantages because Ã possesses a richer
structure than A and then one can study, for example, extension theory
by partial group actions from a wider perspective, namely, the theory
of extensions of inverse semigroups [20].

In our context, we can also have similar constructions, allowing
us to trade partial actions of a cocommutative Hopf algebra H on a
commutative algebra A by a partial action of H on a commutative and
cocommutative Hopf algebra Ã generating the same cohomology.

In order to proceed with the construction of this new Hopf algebra,
one has a technical obstruction concerning the invertible elements of the
algebra A. Indeed, the multiplicative abelian group A× embeds into the
abelian group Cnpar(H,A) for each n ∈ N by the group monomorphisms
φn : A× → Cnpar(H,A), given by φn(a) = aen. These morphisms φn
are coherent with the coboundary morphisms, that is, for each n ∈ N,
we have δn ◦ φn(a) = δn(aen) = aen+1 = φn+1(a). Therefore, one
can construct a new cochain complex which gets rid of these invertible
elements and yet de�ning the same cohomology.
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De�nition 4.1 Let H be a cocommutative Hopf algebra and A be a
commutative partial H-module algebra. We de�ne, for n ∈ N the n-th
reduced partial cochain group C̃npar(H,A) as the quotient abelian group
Cn

par(H,A)/A×.

Proposition 4.2 The reduced partial cochain complex C̃•par(H,A) ge-
nerates cohomology groups isomorphic to those relative to the cochain
complex C•par(H,A).

Proof: Indeed, denote, for each n ∈ N, the n-th reduced cohomology
group by H̃n

par(H,A) and de�ne the map

ψn : Hn
par(H,A)→ H̃n

par(H,A) by ψn([f ]) 7→ [fA×].

One can easily see that this map is well de�ned, surjective and it
is a morphism of abelian groups. The injectivity comes from the fact
that given a partial n-cochain f ∈ Cnpar(H,A) and a ∈ A×, we have
af ∗ f−1 = aen = δn−1(aen−1), then f and af are cohomologous.
Therefore the cohomology groups Hn

par(H,A) and H̃n
par(H,A) are iso-

morphic.
�

Remark 4.3 We will denote the reduced n-cochains again by f instead
of fA× in order to make the notation cleaner. It is clear also that at
level zero we have C̃0

par(H,A) = {1A}.

Now, de�ne the algebra Ã as the quotient Ã =
Â

I
, in which Â is the

free commutative unital algebra

Â = k[X1A
, Xf(h1,...,hn) | n ≥ 1, h1, . . . , hn ∈ H, f ∈ C̃npar(H,A)].

The set of variables runs over the distinct f ∈ C̃npar(H,A), that is, if
f and g are two partial n-cochains such that f = g, then, for every
h1 ⊗ · · · ⊗ hn ∈ H⊗n we have Xf(h1,...hn) = Xg(h1,...hn). The ideal I is
taken exactly to recover certain properties from the original algebra A
and from the partial action of H. This ideal is generated by elements
of the type

X1A
− 1; (4.1)

Xf(h1,...,
∑

i λih
j
i ,...,h

n) −
∑
i

λiXf(h1,...,hj
i ,...h

n), (4.2)
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for each f ∈ C̃npar(H,A), ∀n > 0;∑
i

λiXen1 (h1,1,...,h1,n1 ) · · ·Xenki
(hki,1,...,h

ki,nki )
, (4.3)

for each zero combination∑
i

λien1
(h1,1, . . . , h1,n1) . . . enki

(hki,1, . . . , hki,nki ) = 0 ∈ A;

Xf(h1
(1)
,...,hn

(1)
)Xg(h1

(2)
,...,hn

(2)
) −X(f∗g)(h1,...hn); (4.4)

X(h·(f1(h1,1,...,h1,n1 )+...+fm(lm,1,...,lm,nm ))) −
−
(
X(h·f1(h1,1,...,h1,n1 )) + . . .+X(h·fm(lm,1,...,lm,nm ))

)
; (4.5)

X(1H ·f(h1,...,hn)) −Xf(h1,...,hn); (4.6)

X(h·(f1(h1,1,...,h1,n1 )...fm(lm,1,...,lm,nm ))) −
−X(h(1)·f1(h1,1,...,h1,n1 )) · · ·X(h(m)·fm(lm,1,...,lm,nm )); (4.7)

and
X(h·(k·f(h1,...,hn))) −X(h(1)·1A)X(h(2)k·f(h1,...,hn)). (4.8)

Remark 4.4 1. Note that I is indeed an ideal of the algebra Â, for
example, an element h·(f1(h1,1, . . . , h1,n1) . . . fm(lm,1, . . . , lm,nm))
can be written as

En1+···nm
(
in1,n1+···+nm

(f1) ∗ (ε⊗n1 ⊗ in2,n2+···+nm
(f2)) ∗ · · ·

· · · ∗(ε⊗(n1+···+nm−1) ⊗ fm)
)

(h, h1,1, . . . , h1,n1, . . . , lm,1, . . . , lm,nm),

according to De�nition 3.8.

2. The condition (4.1) means that the unit of the algebra A will play

the role of the unit of the algebra Ã.

3. The condition (4.3) refers to every linear combination of mono-

mials involving the units of the cochain groups C̃•par(H,A) which
vanish in the algebra A. Of course, some of these relations are
in fact present among elements of the form (4.2), but there are
other vanishing linear combinations in A involving partial actions
of elements of H upon the unit 1A which needed to be ruled out
in order to remember the structure of A.
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4. Casting out elements of the form (4.2) is needed to remember

that the generators of Ã are linear maps between H⊗n and A. In
particular, in the quotient we have identities of the type
Xf(h1,...,hi,...,hn) =Xf(h1,...,hi

(1)
,...,hn)εH(hi(2)) = εH(hi(1))Xf(h1,...,hi

(2)
,...,hn),

for each i ∈ {1, ..., n}, for each f ∈ C̃npar(H,A) for all n > 0.

5. Casting out elements of the form (4.4) is needed in order to
make the relations coming from the convolution product between
cochains be still valid in Ã.

6. Finally, we need to mod out elements of the form (4.5), (4.6),
(4.7) and (4.8) in order to recover the linearity of the partial
action of H on A and the identities coming from axioms (PA1),
(PA2) and (PA3).

After taking the quotient, as far as it doesn't lead to a misunder-
standing, we are going to denote the classes Xf(h1,...,hn) + I ∈ Ã simply
by Xf(h1,...,hn)

De�ne also the subalgebra of A, E(A) = 〈h · 1A | h ∈ H〉 and the
unit map η : E(A)→ Ã given by

η((h1 · 1A) . . . (hn · 1A)) = Xe1(h1) . . . Xe1(hn).

This map is well de�ned, because among the generators of the ideal
I which de�nes the algebra Ã there are all linear combinations rep-
resenting null combinations in A involving the units of the cochain
complex. Also, by construction it is an algebra morphism (note that
η(1A) = X1A

= 1Ã ∈ Ã, consequently, Ã is a E(A) algebra. Moreover,
the unit map is injective. This can be easily seen considering the evalu-
ation map êv : Â→ A which simply associate to each element of â ∈ Â
its value at êv(â) ∈ A. It is easy to see that êv(I) = 0, then one can
de�ne a linear map ev : Ã → A with the same content. Therefore, if
η(a) = 0 in Ã, then a = ev(η(a)) = 0. By the injectivity of the unit
map, one can identify E(A) with its image in η(E(A)) ⊆ Ã.

Every element in the image of E(A) di�erent from 1Ã can be written
as a combination of variablesXe, in which is the image of an idempotent
in C̃npar(H,A) for some n > 0. In fact, what we are going to prove is
that one can rewrite an element of the form (h1 · 1A) . . . (hn · 1A) as a
linear combination of images of the idempotent en ∈ C̃npar(H,A). Let
us make induction on the number n of factors h · 1A involved. For
n = 1, we have h · 1A = e1(h).



55

Now, suppose that the result is valid for r ∈ N, 1 ≤ r < n, that is,

(h1 · 1A)(h2 · 1A) . . . (hr · 1A) =

s∑
i=1

er(l
1
i , . . . , l

r
i )

for some elements lji ∈ H, for i ∈ {1, . . . , s} and j ∈ {1, . . . r}. Take
h1, . . . , hn ∈ H, then

(h1 · 1A)(h2 · 1A) . . . (hn · 1A) = (h1 · 1A)[(h2 · 1A) . . . (hn · 1A)]

=
∑
i

(h1 · 1A)en−1(l1i , . . . , l
n−1
i )

=
∑
i

(h1 · 1A)(l1i · (l2i · (. . . · (ln−1
i · 1A) . . . )))

=
∑
i

(h1
(1) ·1A)(h1

(2)S(h1
(3))l

1
i · (l2i · (. . . · (ln−1

i · 1A) . . . )))

=
∑
i

h1
(1) · (S(h1

(2))l
1
i · (l2i · (. . . · (ln−1

i · 1A) . . . )))

=
∑
i

en(h1
(1), S(h(2))l

1
i , l

2
i , . . . , l

n−1
i ).

This proves our claim. Moreover, for each n > 0, we have
en(h1, . . . , hn) ∈ E(A). Indeed,

en(h1, . . . , hn) = h1 · (h2 · (. . . · (hn · 1A) . . . ))

= (h1
(1) · 1A)(h1

(2)h
2 · (. . . · (hn · 1A) . . . ))

= (h1
(1) · 1A)(h1

(2)h
2
(1) · 1A)(h1

(3)h
2
(2)h

3 · (. . . · (hn · 1A) . . . ))

= (h1
(1) · 1A)(h1

(2)h
2
(1) · 1A) . . . (h1

(n)h
2
(n−1) . . . h

n−1
(2) h

n · 1A) ∈ E(A).

Our construction will enable us to see a richer structure on the
algebra Ã with the advantage of getting the same cohomology theory
as the original algebra A.

Theorem 4.5 Let H be a cocommutative Hopf algebra H and A be
commutative partial H-module algebra A. Then the algebra Ã is a
commutative and cocommutative Hopf algebra which is also a partial
H-module algebra such that for only n ∈ N, the n-cohomology group
Hn
par(H, Ã) is isomorphic to the n-cohomology Hn

par(H,A).

Proof: We have already shown that Ã is a commutative algebra over
E(A). For the coalgebra structure, de�ne the map ∆̂ : Â→ Â⊗E(A) Â,
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given by,

∆̂(Xf1(h1,1,...,h1,n1 ) . . . Xfm(lm,1,...,lm,nm )) =

=X
f1(h

1,1
(1)
,...,h

1,n1
(1)

)
. . .Xfm(lm,1

(1)
,...,lm,nm

(1)
)⊗Xf1(h1,1

(2)
,...,h

1,n1
(2)

)
. . .Xfm(lm,1

(2)
,...,lm,nm

(2)
),

for f1 ∈ C̃n1(H,A), . . . , fm ∈ C̃nm(H,A). And the map ε̂ : Â→ E(A),
given by

ε̂(Xf1(h1,1,...,h1,n1 ) . . . Xfm(lm,1,...,lm,nm )) =

en1
(h1,1, . . . , h1,n1) . . . enm

(lm,1, . . . , lm,nm).

Finally, we de�ne the antipode Ŝ : Â→ Â as

Ŝ(Xf1(h1,1,...,h1,n1 ) . . . Xfm(lm,1,...,lm,nm )) =

= Xf−1
1 (h1,1,...,h1,n1 ) . . . Xf−1

m (lm,1,...,lm,nm ),

for f1 ∈ C̃n1(H,A), . . . , fm ∈ C̃nm(H,A).

One needs �rst to show that these maps can be well de�ned in Ã
that is, we must verify that I is a Hopf ideal. Most of the veri�cations
are long, but straightforward. Basically, for ε̂, as its image lies in
E(A) ⊆ A, where the relations are valid, then ε̂(I) = 0. For Ŝ, it is
also easy to see that Ŝ(I) ⊆ I. Therefore, one can de�ne algebra maps
ε : Ã → E(A) and S : Ã → Ã, (S is an algebra map because Ã is
commutative) in the same way.

The most involved ones are the veri�cations for ∆̂. For this task,
it is convenient to divide the process into two steps. First, we con-
sider the ideal J E Â generated only by elements of the form (4.1),
(4.2) and (4.3). For elements of the form (4.1) and (4.2), it is quite
straightforward, now take an element of the form (4.3) that is, a linear
combination

x =
∑
i

λiXen1 (h1,1,...,h1,n1 ) . . . Xenki
(hki,1,...,h

ki,nki )
∈ J.
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such that êv(x) = 0. Then, we have

∆̂(x)=

=
∑
i

λiXen1
(h1,1

(1)
,...,h

1,n1
(1)

)
. . .X

enki
(h

ki,1

(1)
,...,h

ki,nki
(1)

)
⊗X

en1
(h1,1

(2)
,...,h

1,n1
(2)

)
. . .

. . . X
enki

(h
ki,1

(2)
,...,h

ki,nki
(2)

)

=
∑
i

λiXen1
(h1,1

(1)
,...,h

1,n1
(1)

)
. . .X

enki
(h

ki,1

(1)
,...,h

ki,nki
(1)

)
X
en1

(h1,1
(2)
,...,h

1,n1
(2)

)
. . .

. . . X
enki

(h
ki,1

(2)
,...,h

ki,nki
(2)

)
⊗1

=
∑
i

λiXen1
(h1,1

(1)
,...,h

1,n1
(1)

)
X
en1

(h1,1
(2)
,...,h

1,n1
(2)

)
. . . X

enki
(h

ki,1

(1)
,...,h

ki,nki
(1)

)

X
enki

(h
ki,1

(2)
,...,h

ki,nki
(2)

)
⊗1

=
∑
i

λi

(((
X
en1

(h1,1
(1)
,...,h

1,n1
(1)

)
X
en1

(h1,1
(2)
,...,h

1,n1
(2)

)
−Xen1(h1,1,...,h1,n1 )

)
X
en2

(h2,1
(1)
,...,h

2,n2
(1)

)
X
en2

(h2,1
(2)
,...,h

2,n2
(2)

)
. . .X

enki
(h

ki,1

(1)
,...,h

ki,nki
(1)

)
X
enki

(h
ki,1

(2)
,...,h

ki,nki
(2)

)

)
⊗1

+

(
Xen1(h

1,1,...,h1,n1)

(
X
en2

(h2,1
(1)
,...,h

2,n2
(1)

)
X
en2

(h2,1
(2)
,...,h

2,n2
(2)

)
−Xen2(h

2,1,...,h2,n2)

)
Xen3

(h3,1,...,h3,n3 ) . . . X
enki

(h
ki,1

(1)
,...,h

ki,nki
(1)

)
X
enki

(h
ki,1

(2)
,...,h

ki,nki
(2)

)

)
⊗1+ . . .

. . .+

(
Xen1 (h1,1,...,h1,n1 )Xen2 (h2,1,...,h2,n2 ) . . . Xenki−1

(hki−1,1,...,h
ki−1,nki−1 )(

X
enki

(h
ki,1

(1)
,...,h

ki,nki
(1)

)
X
enki

(h
ki,1

(2)
,...,h

ki,nki
(2)

)
−X

enki
(hki,1,...,h

ki,nki)

))
⊗1

)
+
∑
i

λiXen1 (h1,1,...,h1,n1 ) . . . Xenki
(hki,1,...,h

ki,nki )
⊗ 1.

Therefore, ∆̂(x) ∈ Â⊗ J+ J⊗ Â. Then, one can de�ne a new linear
map

∆ : Â/J→
(
Â/J

)
⊗E(A)

(
Â/J

)
∼=

(
Â⊗E(A) Â

)
(
Â⊗E(A) J + J⊗E(A) Â

) .
with the same form. Recall that in Â/J we have identities of the form

Xf(h1,...,hn) = Xf(h1
(1)
,...,hn

(1)
)εH(h1

(2)) . . . εH(hn(2)).
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Now de�ne the ideal I′ E Â/J generated by the elements of the form
(4.4), (4.5), (4.6), (4.7) and (4.8). Take an element of the form (4.4),
x = Xf(h1

(1)
,...,hn

(1)
)Xg(h1

(2)
,...,hn

(2)
) −X(f∗g)(h1,...hn) ∈ I′, then,

∆(x) = Xf(h1
(1)
,...,hn

(1)
)Xg(h1

(3)
,...,hn

(3)
) ⊗Xf(h1

(2)
,...,hn

(2)
)Xg(h1

(4)
,...,hn

(4)
)

−X(f∗g)(h1
(1)
,...hn

(1)
) ⊗X(f∗g)(h1

(2)
,...hn

(2)
)

=Xf(h1
(1)
,...,hn

(1)
)Xg(h1

(2)
,...,hn

(2)
) ⊗Xf(h1

(3)
,...,hn

(3)
)Xg(h1

(4)
,...,hn

(4)
)

−X(f∗g)(h1
(1)
,...hn

(1)
) ⊗Xf(h1

(2)
,...,hn

(2)
)Xg(h1

(3)
,...,hn

(3)
)

+X(f∗g)(h1
(1)
,...hn

(1)
) ⊗Xf(h1

(2)
,...,hn

(2)
)Xg(h1

(3)
,...,hn

(3)
)

−X(f∗g)(h1
(1)
,...hn

(1)
) ⊗X(f∗g)(h1

(2)
,...hn

(2)
)

=Xf(h1
(1)
,...,hn

(1)
)Xg(h1

(2)
,...,hn

(2)
) ⊗Xf(h1

(3)
,...,hn

(3)
)Xg(h1

(4)
,...,hn

(4)
)

−X(f∗g)(h1
(1)
,...hn

(1)
)εH(h1

(2)) . . . εH(hn(2))⊗Xf(h1
(3)
,...,hn

(3)
)Xg(h1

(4)
,...,hn

(4)
)

+X(f∗g)(h1
(1)
,...hn

(1)
)⊗
(
Xf(h1

(2)
,...,hn

(2)
)Xg(h1

(3)
,...,hn

(3)
)−X(f∗g)(h1

(2)
,...hn

(2)
)

)
=
(
Xf(h1

(1)
,...,hn

(1)
)Xg(h1

(2)
,...,hn

(2)
)−X(f∗g)(h1

(1)
,...hn

(1)
)εH(h1

(2)) . . . εH(hn(2))
)

⊗Xf(h1
(3)
,...,hn

(3)
)Xg(h1

(4)
,...,hn

(4)
)

+X(f∗g)(h1
(1)
,...hn

(1)
)⊗
(
Xf(h1

(2)
,...,hn

(2)
)Xg(h1

(3)
,...,hn

(3)
)−X(f∗g)(h1

(2)
,...hn

(2)
)

)
.

Therefore ∆(x) ∈ I′⊗
(
Â/J

)
+
(
Â/J

)
⊗ I′. With similar strategies,

one can prove the same for elements of the form (4.5), (4.6), (4.7)
and (4.8). Therefore, there exists a well de�ned algebra map
∆ : Ã→ Ã⊗E(A) Ã with the same form on generators.

It is easy to see that (Ã, µ, η,∆, ε) gives a commutative and cocom-
mutative bialgebra over the base algebra E(A).

Let us verify the antipode axioms, (I ∗S) = (S ∗ I) = η ◦ ε. Indeed,
for f1 ∈ C̃n1(H,A), . . . fm ∈ C̃nm(H,A) we have

(S ∗ I)(Xf1(h1,1,...,h1,n1 ) . . . Xfm(lm,1,...,lm,nm ))

=µ(S ⊗ I) ◦∆(Xf1(h1,1,...,h1,n1 ) . . . Xfm(lm,1,...,lm,nm ))

=S(X
f1(h

1,1
(1)
,...,h

1,n1
(1)

)
. . . Xfm(lm,1

(1)
,...,lm,nm

(1)
))Xf1(h1,1

(2)
,...,h

1,n1
(2)

)
. . . Xfm(lm,1

(2)
,...,lm,nm

(2)
)

=X
f−1
1 (h1,1

(1)
,...,h

1,n1
(1)

)
. . .Xf−1

m (lm,1
(1)

,...,lm,nm
(1)

)Xf1(h1,1
(2)
,...,h

1,n1
(2)

)
. . .Xfm(lm,1

(2)
,...,lm,nm

(2)
)

=X(f−1
1 ∗f1)(h1,1,...,h1,n1 ) . . . X(f−1

m ∗fm)(lm,1,...,lm,nm )

=Xen1
(h1,1,...,h1,n1 ) . . . Xenm (lm,1,...,lm,nm )

=η ◦ ε(Xf1(h1,1,...,h1,n1 ) . . . Xfm(lm,1,...,lm,nm )).
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Analogously, we have the equality (I ∗ S) = η ◦ ε. Therefore, Ã is a
commutative and cocommutative Hopf algebra over E(A).

One can de�ne a partial action of H on Ã, • : H ⊗ Ã → Ã. First,
de�ne a linear map I: H ⊗ Â→ Â given by

h I (Xf1(h1,1,...,h1,n1 ) . . . Xfm(lm,1,...,lm,nm )) =

= X(h(1)·f1(h1,1,...,h1,n1 )) . . . X(h(m)·fm(lm,1,...,lm,nm )

For each h ∈ H, one can prove that h I I ⊆ I. For example, taking an
element

x = Xf(h1
(1)
,...,hn

(1)
)Xg(h1

(2)
,...,hn

(2)
) −X(f∗g)(h1,...hn),

we have

h I x = Xh(1)·f(h1
(1)
,...,hn

(1)
)Xh(2)·g(h1

(2)
,...,hn

(2)
) −Xh·(f∗g)(h1,...hn)

=Xh(1)·f(h1
(1)
,...,hn

(1)
)Xh(2)·g(h1

(2)
,...,hn

(2)
)−Xh·(f(h1

(1)
,...,hn

(1)
)g(h1

(2)
,...,hn

(2)
))∈I.

Then, there is a well de�ned map • : H ⊗ Ã→ Ã, again, given by.

h • (Xf1(h1,1,...,h1,n1 ) . . . Xfm(lm,1,...,lm,nm )) =

= X(h(1)·f1(h1,1,...,h1,n1 )) . . . X(h(m)·fm(lm,1,...,lm,nm )).

It is straightforward to show that • is a partial action of H on Ã. This
follows directly from the fact that · is a partial action of H on A.

Finally, it remains to verify that A and Ã generate the same coho-
mology groups, that is, for any n ∈ N we haveHn

par(H, Ã)∼=Hn
par(H,A).

In fact, what we are going to prove is that Hn
par(H, Ã) ∼= H̃n

par(H,A),
which implies our result.

First note that, for any n ∈ N and h1 ⊗ · · · ⊗ hn ∈ H⊗n we have

Xen(h1,...,hn) =Xh1·(...(hn·1A)...) =h1•(. . .(hn•X1A
) . . .)=h1•(. . .(hn•1Ã) . . .).

For each n ∈ N, a reduced partial n-cochain f ∈ C̃npar(H,A) generates a

partial n-cochain f̃ ∈ Cnpar(H, Ã) given by f̃(h1, . . . , hn) = Xf(h1,...,hn).

On the other hand, each n-cochain g ∈ Cnpar(H, Ã), in order to be
convolution invertible, must be of the form g(h1, . . . hn) = Xg(h1,...,hn),

for some g ∈ C̃npar(H,A), for each h1⊗ · · · ⊗hn ∈ H⊗n. Therefore, one
can de�ne, for each n ∈ N, two mutually inverse well de�ned morphisms
of abelian groups Φ : H̃n

par(H,A)→ Hn
par(H, Ã) given by Φ([f ]) 7→ [f̃ ]

and Ψ : Hn
par(H, Ã)→ H̃n

par(H,A) given by Ψ([g]) 7→ [g].
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These maps produce the isomorphism between the cohomology
groups Hn

par(H, Ã) and H̃n
par(H,A), and consequently between

Hn
par(H, Ã) and Hn

par(H,A). �

Remark 4.6 For the classical case of a global action of a cocommu-
tative Hopf algebra H on a commutative algebra A, [30], one can still

construct this Hopf algebra Ã, and in this case, as h · 1A = εH(h)1A,
the base subalgebra E(A) coincides with the base �eld. Therefore, the

Hopf algebra Ã is a commutative and cocommutative Hopf algebra over
k which gives the same classical cohomological theory as A. The proper-
ties of this Hopf algebra and its role in the classical cohomology theory
is still an interesting topic to be explored.



Chapter 5

Twisted partial actions

and crossed products

In reference [5], the authors introduced the notion of a twisted par-
tial action of a Hopf algebra H over an algebra A and described the
construction of the crossed product by a 2-cocycle. They introduced
also the notion of symmetric twisted partial Hopf actions and in this
context, they were able to decide whether two twisted partial actions
give rise to the same crossed product. Recall that, in the classical
case, two crossed products are isomorphic if, and only if, the associ-
ated twisted (global) actions can be transformed one into another by
some kind of coboundary (see [28], Theorem 7.3.4). So, it's analogue
the partial case takes the form: two crossed products are isomorphic if
their associated cocycles are related by a linear map which has proper-
ties similar to a convolution invertible 2-coboundary. Nevertheless, the
authors of [5] still did not have a cohomology theory underlying those
crossed products. In what follows, we shall see that in the case of co-
commutative Hopf algebras acting partially over commutative algebras
the crossed products are indeed classi�ed by the second cohomology
group,as de�ned before.

De�nition 5.1 [5] Let H be a Hopf algebra and A be a unital algebra
(with unit 1A). Let · : H ⊗ A → A and ω : H ⊗H → A be two linear
maps. The pair (·, ω) is called a twisted partial action of H over A if,

(TPA1) 1H · a = a, for every a ∈ A.

(TPA2) h · (ab) = (h(1) · a)(h(2) · b), for every h ∈ H and a, b ∈ A.
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(TPA3) (h(1) · (l(1) · a))ω(h(2), l(2)) = ω(h(1), l(1))(h(2)l(2) · a), for
every h, l ∈ H and a ∈ A.

(TPA4) ω(h, l) = ω(h(1), l(1))(h(2)l(2) · 1A), for every h, l ∈ H.
In this case, we say that (A, ·, ω) is a twisted partial H-module

algebra.

De�nition 5.2 [5] Let H be a Hopf algebra and (A, ·, ω) be a twisted
partial H-module algebra as above. De�ne over A⊗H a multiplication
given by

(a⊗ h)(b⊗ l) =
∑

a(h(1) · b)ω(h(2), l(1))⊗ h(3)l(2)

for every a, b ∈ A e h, l ∈ H. We de�ne the partial crossed product as
A#ωH = (A⊗H)(1A ⊗ 1H).

Proposition 5.3 [5] Given a Hopf algebra H and a twisted partial H-
module algebra (A, ·, ω), the partial crossed product A#ωH is unital if,
and only if,

ω(h, 1H) = ω(1H , h) = h · 1A, ∀h ∈ H. (5.1)

Moreover, the crossed product is associative if, and only if

(h(1) ·ω(l(1),m(1)))ω(h(2),l(2)m(2))=ω(h(1),l(1))ω(h(2)l(2),m),∀h, l,m∈H.
(5.2)
�

A linear map ω : H⊗2 → A satisfying (5.1) and (5.2) of the above
Proposition is called a normalized cocycle.

We denote by a#h the element

(a⊗ h)(1A ⊗ 1H) = a(h(1) · 1A)⊗ h(2) ∈ A#ωH.

One can easily deduce that

a#h = a(h(1) · 1A)#h(2).

There is an injective algebra morphism i : A → A#ωH, given by
i(a) = a#1, this endows the crossed product A#ωH with a left A-
module structure. Also one can show that the linear map

ρ : A#ωH → A#ωH ⊗H
a#h 7→ a#h(1) ⊗ h(2)
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de�nes a right H-comodule algebra structure on A#ωH. This left A-
module and rightH-comodule structures on the partial crossed product
will be important in order to relate crossed products with extensions
of A by H.

De�nition 5.4 [5] Let A = (A, ·, ω) be a twisted partial H-module
algebra. We say that the twisted partial action is symmetric if

(i) The linear maps ẽ1,2,ẽ2 :H⊗H→A, given by ẽ1,2(h,l) = (h ·1A)ε(l)
and ẽ2(h, l) = hl · 1A are central idempotents in the convolution
algebra Homk(H ⊗H,A);

(ii) The map ω satis�es the cocycle condition (5.2) and it is an in-
vertible element in the ideal 〈ẽ1,2 ∗ ẽ2〉 ⊂ Hom(H ⊗H,A).

(iii) For any h, l ∈ H, we have

e2(h, l) = (h·(l ·1A)) =
∑

(h(1) ·1A)(h(2)l ·1A) = (ẽ1,2 ∗ ẽ2)(h, l)

The algebra A is called, in this case, a symmetric twisted partial
H-module algebra.

For the case of a cocommutative Hopf algebraH and a commutative
algebra A, every symmetric twisted partial action of H over A is in fact
a partial action.

Proposition 5.5 Let H be a cocommutative Hopf algebra and A be a
commutative symmetric twisted partial H-module algebra, then A is a
partial H-module algebra.

Proof: Indeed, by axiom (TPA3) from De�nition 5.1,∑
(h(1) · (l(1) · a))ω(h(2), l(2)) =

∑
ω(h(1), l(1))(h(2)l(2) · a),

we conclude that∑
(h · (l · a)) =

∑
ω(h(1), l(1))(h(2)l(2) · a)ω−1(h(3), l(3))

=
∑

ω(h(1), l(1))ω
−1(h(2), l(2))(h(3)l(3) · a)

=
∑

(h(1) · (l(1) · 1A))(h(2)l(2) · a)

=
∑

(h(1) · 1A)(h(2)l(1) · 1A)(h(2)l(2) · a)

=
∑

(h(1) · 1A)(h(2)l · a).
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By the commutativity of the convolution algebra Hom(H ⊗H,A),
we also conclude that h · (l · a) = (h(1)l · a)(h(2) · 1A). Therefore, A is a
partial H-module algebra.

�
In the case of H being a cocommutative Hopf algebra and A being a

partial H-module algebra, we can still de�ne a partial crossed product
for each 2-cocycle ω ∈ Z2

par(H,A). In fact, all possible partial crossed
products which can be constructed in this case are classi�ed by the
second cohomology group H2

par(H,A).

5.1 Partial crossed products and H2
par(H,A)

Theorem 4.1 from reference [5] gives a necessary and su�cient con-
dition on two di�erent symmetric partial actions of a Hopf algebra H
over an algebra A to have isomorphic crossed products.

Theorem 5.6 [5] Let A be a unital algebra and H a Hopf algebra with
two symmetric twisted partial actions, h⊗ a 7→ h · a and h⊗ a 7→ h • a,
with cocycles ω and σ, respectively. Suppose that there is an isomor-
phism

Φ : A#ωH → A#σH

which is also a left A-module and a right H-comodule map. Then there
exist linear maps u, v ∈ Homk(H,A) such that for all h, k ∈ H, a ∈ A

(i) u ∗ v(h) = h · 1A;

(ii) u(h) = u(h(1))(h(2) · 1A) = (h(1) · 1A)u(h(2));

(iii) h • a = v(h(1))(h(2) · a)u(h(3))

(iv) σ(h, k) = v(h(1))(h(2) · v(h(2)))ω(h(3), k(2))u(h(4)k(3));

(v) Φ(a#ωh) = au(h(1))#σh(2).

Conversely, given maps u, v ∈ Homk(H,A), satisfying (i),(ii), (iii)
and (iv) and, in addition u(1H) = v(1H) = 1A, then the map Φ, as
presented in (v), is an isomorphism of algebras.

�

For the case of a cocommutative Hopf algebraH and a commutative
algebra A, items (i) and (ii) imply that u is the convolution inverse of
v in the ideal e1 ∗Homk(H,A). Item (iii), in its turn, implies that the
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two partial actions • and · are equal. Finally, item (iv) can be rewritten
as

σ ∗ ω−1(h, k) = (h(1) · v(k(1)))u(h(2)k(2))v(h(3)) = δ1(v)(h, k).

Therefore, one can rewrite Theorem 5.6 as:

Theorem 5.7 Let H be a cocommutative Hopf algebra and A be a
partial H-module algebra. Then, given two partial 2-cocycles ω, σ ∈
Z2
par(H,A), the associated partial crossed products A#ωH and A#σH

are isomorphic if, and only if, ω and σ are cohomologous, that is, they
belong to the same class in the cohomology group H2

par(H,A).

�

In order to conclude that the second partial cohomology fully clas-
si�es all the isomorphism classes of partial crossed products, it remains
to check that every class inH2

par(H,A) contains a normalized 2-cocycle.

Proposition 5.8 Given a partial 2-cocycle ω ∈ Z2
par(H,A), there ex-

ists a normalized 2-cocycle ω̃ ∈ Z2(H,A), which is cohomologous to
ω.

Proof: Indeed, take a 2-cocycle ω, then ω satis�es

(h(1) · ω(k(1), l(1)))ω(h(2), k(2)l(2)) = ω(h(1), k(1))ω(h(2)k(2), l).

Putting h = 1H in the expression above , we have

(1H · ω(k(1), l(1)))ω(1H , k(2)l(2)) = ω(1H , k(1))ω(1Hk(2), l)

⇒ ω(k(1), l(1))ω(1H , k(2)l(2)) = ω(1H , k(1))ω(k(2), l)

⇒ ω(k(1),l(1))ω(k(2),l(2))ω(1H ,k(3)l(3))=ω(1H ,k(1))ω(k(2),l(1))ω(k(3),l(2))

⇒ k(1) · (l(1) · 1A)ω(1H , k(2)l(2)) = ω(1H , k(1))(k(2) · (l(1) · 1A))

k=1H⇒ (l(1) · 1A)ω(1H , l(2)) = ω(1H , 1H) · (l · 1A).

As ω−1(1H,1H)ω(1H,1H)=1H ·1A=1A, we conclude that ω(1H,1H)∈A×.
Then, one can de�ne ω̃(h, k) = ω(h, k)(ω(1H , 1H))

−1. It is easy to see
that ω̃(1H , l) = (l · 1A).

On the other hand, putting l = 1H in the 2-cocycle condition, we
have
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(h(1) · ω(k(1), 1H))ω(h(2), k(2)) = ω(h(1), k(1))ω(h(2)k(2), 1H)

⇒ h(1) · ω(k(1), 1H))ω(h(2), k(2))ω(h(3), k(3))=

= ω(h(1), k(1))ω(h(2), k(2))ω(h(3)k(3), 1H)

⇒ (h(1) ·ω(k(1), 1H))(h(2) ·(k(2) ·1A))=(h(1) ·(k(1) ·1A))ω(h(2)k(2),1H)

⇒ (h(1) ·ω(k(1), 1H)(k(2) ·1A))=(h(1) ·1A)(h(2)k(1) ·1A)ω(h(3)k(2),1H)

⇒ (h · ω(k, 1H) = (h(1) · 1A)ω(h(2)k, 1H)

k=1H⇒ h · ω(1H , 1H) = (h(1) · 1A)ω(h(2), 1H)

⇒ h · ω(1H , 1H) = ω(h, 1H).

Therefore, h · ω̃(1H , 1H) = h · (1H · 1A) = h · 1A = ω̃(h, 1H).
Finally, let us verify that ω̃ is cohomologous to ω, that is, there

exists φ ∈ C1
par(H,A) such that ω̃ ∗ ω−1 = δ1φ. Indeed, on the one

hand, note that

ω̃(h(1), k(1))ω
−1(h(2), k(2)) = (h · (k · 1A))(ω(1H , 1H))

−1
.

On the other hand,

δφ(h, k) = (h(1) · φ(k(1)))φ
−1(h(2)k(2))φ(h(3)).

Then, if we de�ne φ(k) = (k · 1A)(ω(1H , 1H))
−1, we have

δφ(h, k)=h(1) · ((k(1) · 1A)(ω(1H , 1H))
−1

)(h(2)k(2) · 1A)(ω(1H , 1H))

(h(3) · 1A)(ω(1H , 1H))
−1

= (h(1) · (k(1) · 1A))(ω(1H , 1H))
−1

(h(2)k(2) · 1A)(h(3) · 1A)

= (h(1) · (k(1) · 1A))(ω(1H , 1H))
−1
.

This concludes our proof.
�

5.2 The Hopf algebroid structure of the par-

tial crossed product

We saw that the cohomology theory for a cocommutative Hopf al-
gebra H acting partially over a commutative algebra A is equivalent to
the cohomology theory of the same Hopf algebra H acting on a com-
mutative and cocommutative Hopf algebra Ã whose base ring is the
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commutative algebra E(A). This replacement gives us a deeper un-
derstanding about the structure of crossed products. In fact, we shall
see that the crossed product has a structure of a Hopf algebroid over
the base algebra E(A). Let us recall brie�y the de�nition of a Hopf
algebroid, for a detailed presentation, see the reference [11].

De�nition 5.9 [11] Given a k-algebra A, a left (resp. right) bialge-
broid over A is given by the data (H,A,sl,tl,∆l,εl) (resp. (H,A,sr,tr,∆r,εr))
such that:

1. H is a k-algebra.

2. The map sl (resp. sr) is a morphism of algebras between A and H,
and the map tl (resp. tr) is an anti-morphism of algebras between
A and H. Their images commute, that is, for every a, b ∈ A we
have sl(a)tl(b) = tl(b)sl(a) (resp. sr(a)tr(b) = tr(b)sr(a)). By
the maps sl, tl (resp. sr, tr) the algebra H inherits a structure of
A-bimodule given by a . h / b = sl(a)tl(b)h (resp. a I h J b =
hsr(b)tr(a)).

3. The triple (H,∆l, εl) (resp. (H,∆r, εr)) is an A-coring relative
to the structure of A-bimodule de�ned by sl and tl (resp. sr, and
tr).

4. The image of ∆l (resp. ∆r) lies in the Takeuchi subalgebra

HA ×H =

{∑
i

hi ⊗ ki ∈ H ⊗A,. / H |

∑
i

hitl(a)⊗ ki =
∑
i

hi ⊗ kisl(a) ∀a ∈ A

}
,

respectively,

H ×A H =

{∑
i

hi ⊗ ki ∈ H ⊗A,IJ H |

∑
i

sr(a)hi ⊗ ki =
∑
i

hi ⊗ tr(a)ki ∀a ∈ A

}
,

and it is an algebra morphism.

5. For every h, k ∈ H, we have εl(hk)=εl(hsl(εl(k)))=εl(htl(εl(k))),
respectively, εr(hk) = εr(sr(εr(h))k) = εr(tr(εr(h))k).
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Given two anti-isomorphic algebras Al and Ar (i.e., Al ∼= Aopr ), a
left Al-bialgebroid (H, Al, sl, tl,∆l, εl) and a right Ar-bialgebroid
(H, Ar, sr, tr,∆r, εr), a Hopf algebroid structure on H is given by an
antipode, that is, an algebra anti-homomorphism S : H→ H such that

(i) sl ◦ εl ◦ tr = tr, tl ◦ εl ◦ sr = sr, sr ◦ εr ◦ tl = tl and tr ◦ εr ◦ sl = sl;

(ii) (∆l⊗Ar
I)◦∆r = (I⊗Al

∆r)◦∆l and (I⊗Ar
∆l)◦∆r = (∆r⊗Al

I)◦∆l;

(iii) S(tl(a)htr(b
′)) = sr(b

′)S(h)sl(a), for all a ∈ Al, b
′ ∈ Ar and

h ∈ H;

(iv) µH ◦ (S⊗Al
I) ◦∆l = sr ◦ εr and µH ◦ (I ⊗Ar S) ◦∆r = s ◦ εl.

In our case, both algebras, Al and Ar, coincide with the commuta-
tive algebra E(A) and the crossed product Ã#ωH will play the role of
the Hopf algebroid H of the previous de�nition.

Theorem 5.10 Let H be a cocommutative Hopf algebra and A be a
commutative partial H-module algebra. Consider the commutative and
cocommutative Hopf algebra Ã, constructed in Theorem 4.5, over the
commutative algebra E(A), which is also a partial H-module algebra.

Then, the crossed product Ã#ωH, in which ω is a partial 2-cocycle from

H2
par(H,A) = H2

par(H, Ã), is a Hopf algebroid over the base algebra
E(A).

We note that in this demonstration we used an abuse of notations
by writing ω(h, k) to understand Xω(h,k) in the crossed product.

Proof: The source and target maps, both left and right, are de�ned by
the restriction to E(A) of the canonical inclusion of Ã into the crossed
product

sl, tl, sr, tr : E(A) −→ Ã#ωH
a 7→ a#1H

.

We have already seen that this inclusion is an algebra map and by
the commutativity of Ã, the images of source and target maps commute
among themselves. Note that, even though the left and right sources
and targets are equal, their associated bimodule structures are di�erent
nonetheless. Indeed, for a, a′ ∈ E(A) and b#h ∈ Ã#ωH we have

a . (b#h) / a′ = (a#1H)(a′#1H)(b#h) = aa′b#h,

and

a I (b#h) J a′ = (b#h)(a#1H)(a′#1H) = b(h(1) · aa′)#h(2).
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The left and right comultiplication maps are de�ned, respectively,
as

∆l : Ã#ωH −→ Ã#ωH ⊗ Ã#ωH
a#h 7→ a(1)#h(1) ⊗E(A),. / a(2)#h(2)

and
∆r : Ã#H −→ Ã#H ⊗ Ã#H

a#h 7→ a(1)#h(1) ⊗E(A),IJ a(2)#h(2)
,

in which the tensor product⊗E(A),. / (resp. ⊗E(A),IJ) is balanced with
respect to the E(A)-bimodule structure implemented by sl, tl (resp.
sr, tr). It is easy to see that

(∆l ⊗E(A),IJ I) ◦∆r = (I ⊗E(A),. / ∆r) ◦∆l

(I ⊗E(A),IJ ∆l) ◦∆r = (∆r ⊗E(A),. / I) ◦∆l.

One can see also that, for any a ∈ E(A),

∆l(sl(a)) = sl(a)⊗ (1A#1H), and ∆l(tl(a)) = (1A#1H)⊗ tl(a).

This is because any element of E(A) is a linear combination of
monomials of the form (h1 · 1A) . . . (hn · 1A), for h1, . . . , hn ∈ H, and
then

∆l(sl((h
1 · 1A) . . . (hn · 1A))) =

= (h1
(1) · 1A) . . . (hn(1) · 1A)#1H ⊗ (h1

(2) · 1A) . . . (hn(2) · 1A)#1H

= (h1
(1) ·1A). . .(hn(1) ·1A)#1H⊗((h1

(2) ·1A). . .(hn(2) ·1A)#1H)(1A#1H)

= (h1
(1) ·1A) . . . (hn(1) ·1A)#1H⊗sl((h1

(2) ·1A) . . . (hn(2) ·1A))(1A#1H)

= (h1
(1) ·1A) . . . (hn(1) ·1A)#1H ⊗ ((h1

(2) ·1A) . . . (hn(2) ·1A)) . (1A#1H)

= ((h1
(1) ·1A) . . . (hn(1) ·1A)#1H) / ((h1

(2) ·1A) . . . (hn(2) ·1A))⊗1A#1H

= tl((h
1
(2) ·1A) . . . (hn(2) ·1A))((h1

(1) ·1A) . . . (hn(1) ·1A)#1H)⊗1A#1H

= ((h1
(2) ·1A) . . . (hn(2) ·1A)#1H)((h1

(1) ·1A) . . . (hn(1) ·1A)#1H)⊗1A#1H

= ((h1
(1) ·1A) . . . (hn(1) ·1A)(h1

(2) ·1A) . . . (hn(2) ·1A)#1H)⊗1A#1H

= (h1 · 1A) . . . (hn · 1A)#1H ⊗ 1A#1H

= sl((h
1 · 1A) . . . (hn · 1A))⊗ 1A#1H .

From this we deduce that ∆l is a morphism of E(A)-bimodules with
the bimodule structure given by . and /.

The same occurs for ∆r, that is, for any a ∈ E(A), we have

∆r(tr(a)) = tr(a)⊗ (1A#1H), and ∆r(sr(a)) = (1A#1H)⊗ sr(a),
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and then ∆r is a morphism of E(A)-bimodules, with the bimodule
structure given by I and J.

The image of the left comultiplication ∆l lies in the left Takeuchi
product Ã#ωHE(A)×Ã#ωH. Indeed, for a#h ∈ Ã#ωH and b ∈ E(A),
we have

(a(1)#h(1))tl(b)⊗ a(2)#h(2) = (a(1)#h(1))(b#1H)⊗ a(2)#h(2)

= a(1)(h(1) · b)ω(h(2), 1H)#h(3) ⊗ a(2)#h(4)

= a(1)(h(1) · b)(h(2) · 1A)#h(3) ⊗ a(2)#h(4)

= (h(1) · b)a(1)#h(2) ⊗ a(2)#h(3)

= ((h(1) · b)#1H)(a(1)#h(2))⊗ a(2)#h(3)

= tl(h(1) · b)(a(1)#h(2))⊗ a(2)#h(3)

= a(1)#h(2) ⊗ sl(h(1) · b)(a(2)#h(3))

= a(1)#h(2) ⊗ ((h(1) · b)#1H)(a(2)#h(3))

= a(1)#h(1) ⊗ a(2)(h(2) · b)#h(3)

= a(1)#h(1) ⊗ (a(2)#h(2))(b#1H)

= a(1)#h(1) ⊗ (a(2)#h(2))sl(b).

Moreover, ∆l is a morphism of algebras. Take any a#h, b#l∈Ã#ωH,
then

∆l((a#h)(b#l)) = ∆l(a(h(1) · b)ω(h(2), l(1))#h(3)l(2))

=(a(h(1) ·b)ω(h(2),l(1)))(1)#(h(3)l(2))(1)⊗(a(h(1) ·b)ω(h(2),l(1)))(2)#(h(3)l(2))(2)

=a(1)(h(1) ·b(1))ω(h(3), l(1))#h(5)l(3)⊗a(2)(h(2) ·b(2))ω(h(4), l(2))#h(6)l(4).

On the other hand,

∆l(a#h)∆l(b#l) = (a(1)#h(1) ⊗ a(2)#h(2))(b(1)#l(1) ⊗ b(2)#l(2))

=(a(1)#h(1))(b(1)#l(1))⊗ (a(2)#h(2))(b(2)#l(2))

=a(1)(h(1) ·b(1))ω(h(2), l(1))#h(3)l(2)⊗a(2)(h(4) ·b(2))ω(h(5), l(3))#h(6)l(4).

The equality follows from the co-commutativity of H.
Analogously, one can prove that the image of the right comultipli-

cation lies in the right Takeuchi product Ã#ωH ×E(A) Ã#ωH, and it
is an algebra morphism.

The left and right counits are de�ned, respectively, as

εl : Ã#ωH −→ E(A)
a#h 7→ εl(a#h) := εÃ(a)(h · 1A)
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and
εr : Ã#ωH −→ E(A)

a#h 7→ εr(a#h) := S(h) · εÃ(a)
.

First, both are morphisms of E(A)-bimodules, with their respective
structures. Take a, a′ ∈ E(A) and b#h ∈ Ã#ωH, then

εl(a . (b#h) / a′) = εl((aa
′b#h)) = εÃ(aa′)εÃ(b)(h · 1A)

= aεÃ(b)(h · 1A)a′ = aεl(b#h)a′,

and

εl(a I (b#h) J a′) = εl(b(h(1) · aa′)#h(2))

=S(h(2)) · (εÃ(b)εÃ(h(1) · aa′)) = (S(h(3)) · εÃ(b))(S(h(2)) · (h(1) · aa′))
=(S(h(3)) · εÃ(b))(S(h(1))h(2) · aa′) = (S(h) · b)aa′ = aεr(b#h)a′.

One can easily verify the compatibility relations with the left and
right counits and the left and right source and targets, that is,
sl ◦ εl ◦ tr = tr, tl ◦ εl ◦ sr = sr, sr ◦ εr ◦ tl = tl and tr ◦ εr ◦ sl = sl.

Let us verify that (Ã#ωH,∆l, εl) and (Ã#ωH,∆r, εr) are corings
over E(A) with their respective bimodule structures. We have already
seen that ∆l, εl, ∆r and εr are morphisms of E(A) bimodules. It is
easy to see that the left and right comultiplications are coassociative.
It remains to verify the counit axiom for both structures. Take
a#h ∈ Ã#ωH, then

(εl ⊗E(A),./ I) ◦∆l(a#h) = εl(a(1)#h(1)) . (a(2)#h(2))

= (εÃ(a(1))(h(1) · 1A)#1H)(a(2)#h(2))

= εÃ(a(1))(a(2)(h(1) · 1A)#h(2))

= a(h(1) · 1A)#h(2))

= a#h.

Using the cocommutativity of H and the commutativity of A it is
also easy to see that

(I ⊗E(A),./ εl) ◦∆l(a#h) = a#h.

Therefore, (Ã#ωH,∆l, εl) is a coring over E(A). For the right

structure, for a#h ∈ Ã#ωH, we have
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(εr ⊗E(A),IJ I) ◦∆r(a#h) = εr(a(1)#h(1)) I (a(2)#h(2))

= (a(2)#h(2))((S(h(1)) · εÃ(a(1)))#1H)

= (a(2)#h(1))((S(h(2)) · εÃ(a(1)))#1H)

= a(2)(h(1) · (S(h(4)) · εÃ(a(1))))ω(h(2), 1H)#h(3)

= a(2)(h(1) · (S(h(4))· εÃ(a(1))))(h(2) · 1A)#h(3)

= a(2)(h(1)S(h(4)) · εÃ(a(1)))(h(2) · 1A)#h(3)

=a(2)(h(1)S(h(2))· εÃ(a(1)))(h(3) · 1A)#h(4)

= a(2)εÃ(a(1))(h(1) · 1A)#h(2)

= a(h(1) · 1A)#h(2))

= a#h.

Analogously, one can prove that

(I ⊗E(A),IJ εr) ◦∆r(a#h) = a#h.

Therefore, (Ã#ωH,∆r, εr) is a coring over E(A).
Let us verify now that

εl((a#h)(b#k)) = εl((a#h)sl(εl(b#k))) = εl((a#h)tl(εl(b#k))),

and

εr((a#h)(b#k)) = εr(sr(εr(a#h))(b#k)) = εr(tr(εr(a#h))(b#k)),

for any a#h, b#k ∈ Ã#ωH. For the left counit, on the one hand,

εl((a#h)(b#k)) = εl(a(h(1) · b)ω(h(2), k(1))#h(3)k(2))

= εÃ(a)εÃ(h(1) · b)εÃ(ω(h(2), k(1)))(h(3)k(2) · 1A)

= εÃ(a)(h(1) · εÃ(b))(h(2) · (k(1) · 1A))(h(3)k(2) · 1A)

= εÃ(a)(h(1) · εÃ(b))(h(2) · (k · 1A))

= εÃ(a)(h · (εÃ(b)(k · 1A))).

On the other hand

εl((a#h)sl(εl(b#k))) = εl((a#h)sl(εÃ(b)(k · 1A)))

= εl((a#h)(εÃ(b)(k · 1A)#1H))

= εl(a(h(1) · (εÃ(b)(k · 1A)))ω(h(2), 1H)#h(3))

= εl(a(h(1) · (εÃ(b)(k · 1A)))(h(2) · 1H)#h(3))

= εÃ(a(h(1) · (εÃ(b)(k · 1A))))(h(2) · 1A)

= εÃ(a)(h(1) · (εÃ(b)(k · 1A)))(h(2) · 1A)

= εÃ(a)(h · (εÃ(b)(k · 1A))).
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Therefore, εl((a#h)(b#k))=εl((a#h)sl(εl(b#k)))=εl((a#h)tl(εl(b#k))).
For the right counit, on the one hand

εr((a#h)(b#k)) = εr(a(h(1) · b)ω(h(2), k(1))#h(3)k(2))

= S(h(3)k(2)) · εÃ(a(h(1) · b)ω(h(2), k(1)))

= S(h(3)k(2)) · (εÃ(a)(h(1) · εÃ(b))(h(2) · (k(1) · 1A))

= (S(h(5)k(4))·εÃ(a))(S(h(4)k(3))·(h(1) ·εÃ(b)))(S(h(3)k(2))·(h(2) ·(k(1) ·1A)))

= (S(h(5)k(4))·εÃ(a))(S(h(4)k(3))h(1) ·εÃ(b))(S(h(3)k(2))h(2) ·(k(1) · 1A))

= (S(k(4))S(h(5)) · εÃ(a))(S(k(3))S(h(4))h(1) · εÃ(b))

(S(k(2))S(h(3))h(2) · (k(1) · 1A))

= (S(k(4))S(h(5)) · εÃ(a))(S(k(3))S(h(3))h(4) · εÃ(b))

(S(k(2))S(h(1))h(2) · (k(1) · 1A))

= (S(k(4))S(h) · εÃ(a))(S(k(3)) · εÃ(b))(S(k(2)) · (k(1) · 1A))

= (S(k(4))S(h) · εÃ(a))(S(k(3)) · εÃ(b))(S(k(2))k(1) · 1A))

= (S(k(4))S(h) · εÃ(a))(S(k(3)) · εÃ(b))(S(k(1))k(2) · 1A))

= (S(k(2))S(h) · εÃ(a))(S(k(1)) · εÃ(b))

= (S(k(2)) · (S(h) · εÃ(a)))(S(k(1)) · εÃ(b))

= S(k) · ((S(h) · εÃ(a))εÃ(b)).

On the other hand,

εr(sr(εr(a#h))(b#k)) = εr((S(h) · εÃ(a))#1H)(b#k))

= εr((S(h) · εÃ(a))b#k)

= S(k) · ((S(h) · εÃ(a))εÃ(b)).

Therefore,

εr((a#h)(b#k)) = εr(sr(εr(a#h))(b#k)) = εr(tr(εr(a#h))(b#k)).

Finally, we de�ne the antipode as

S : Ã#ωH −→ Ã#ωH
a#h 7→ (SH(h(3)) · SÃ(a))ω−1(SH(h(2)), h(4))#SH(h(1))

.

Take b, c ∈ E(A) and a#h ∈ Ã#ωH, then, one can prove that

S(t(b)(a#h)t(c)) = s(c)S(a#h)s(b).
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Indeed,

S(tl(b)(a#h)tr(c)) = S((b#1H)(a#h)(c#1H))

= S((ba#h)(c#1H))

= S(ba(h(1) · c)ω(h(2), 1H)#h(3))

= S(ba(h(1) · c)#h(2))

= (S(h(4)) · SÃ(ba(h(1) · c)))ω−1(S(h(3)), h(5))#S(h(2))

(∗)
= (S(h(4)) · ((h(1) · c)SÃ(a)b))ω−1(S(h(3)), h(5))#S(h(2))

in which the equality (∗) is valid because SÃ restricted to the base
algebra E(A) is equal to the identity. On the other hand.

sr(c)S(a#h)sl(b) =

= (c#1H)((S(h(3)) · SÃ(a))ω−1(S(h(2)), h(4))#S(h(1)))(b#1H)

= (c(S(h(4)) · SÃ(a))ω−1(S(h(3)), h(5))ω(1H , S(h(2)))#S(h(1)))(b#1H)

= (c(S(h(3)) · SÃ(a))ω−1(S(h(2)), h(4))#S(h(1)))(b#1H)

= c(S(h(4)) · SÃ(a))ω−1(S(h(3)), h(5))(S(h(2)) · b)#S(h(1))

= (S(h(6))·b)(S(h(5))·SÃ(a))(S(h(3))h(4) · c)ω−1(S(h(2)), h(7))#S(h(1))

= (S(h(6))· b)(S(h(5))·SÃ(a))(S(h(3))·(h(4) · c))ω−1(S(h(2)), h(7))#S(h(1))

= (S(h(6))·b)(S(h(5))·SÃ(a))(S(h(4))·(h(1) ·c))ω−1(S(h(3)), h(7))#S(h(2))

= (S(h(4)) · ((h(1) · c)SÃ(a)b))ω−1(S(h(3)), h(5))#S(h(2)).

It remains to check that

µ(S⊗E(A),./ Id) ◦∆l = sr ◦ εr

and
µ(Id⊗E(A),IJ S) ◦∆r = sl ◦ εl.

Take a#h ∈ Ã#ωH, then

µ(S⊗E(A),./ Id) ◦∆l(a#h) = S(a(1)#h(1))(a(2)#h(2))

= (S(h(3)) · SÃ(a(1))ω
−1(S(h(2)), h(4))#S(h(1)))(a(2)#h(5))

= (S(h(5))·SÃ(a(1)))ω
−1(S(h(4)),h(6))(S(h(3))·a(2))ω(S(h(2)),h(7))#S(h(1))h(8)

= (S(h(4))·SÃ(a(1)))(S(h(3)) ·a(2))ω
−1(S(h(2)),h(5))ω(S(h(1)),h(6))#S(h(7))h(8)
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= (S(h(3)) · SÃ(a(1)))(S(h(2)) · a(2))(S(h(1)) · (h(4) · 1A))#1H

= (S(h(3)) · SÃ(a(1)))(S(h(2)) · a(2))(S(h(1))h(4) · 1A)#1H

= (S(h(2)) · SÃ(a(1)))(S(h(1)) · a(2))#1H

= (S(h) · (SÃ(a(1))a(2)))#1H

= sr(S(h) · εÃ(a))

= s ◦ εr(a#h).

and

µ(Id⊗E(A),IJ S) ◦∆r(a#h) = (a(1)#h(1))S(a(2)#h(2))

=(a(1)#h(1))(S(h(4)) · SÃ(a(2))ω
−1(S(h(3)), h(5))#S(h(2)))

=(a(1)(h(1) ·(S(h(7))·SÃ(a(2))ω
−1(S(h(6)),h(8))))ω(h(2),S(h(5)))#h(3)S(h(4))

=(a(1)(h(1) ·(S(h(6)) ·SÃ(a(2))))(h(2) ·ω−1(S(h(5)),h(7)))ω(h(3),S(h(4)))#1H

=(a(1)(h(1) ·(S(h(2)) ·SÃ(a(2))))(h(3) ·ω−1(S(h(6)),h(7)))ω(h(4),S(h(5)))#1H

=(a(1)(h(1)S(h(2))·SÃ(a(2))))(h(3) ·ω−1(S(h(6)),h(7)))ω(h(4),S(h(5)))#1H

=a(1)SÃ(a(2))(h(1) · ω−1(S(h(4)), h(5)))ω(h(2), S(h(3)))#1H
(∗)
=εÃ(a)ω−1(h(1)S(h(8)),h(9))ω(h(2),S(h(7))h(10))ω

−1(h(3),S(h(6)))ω(h(4),S(h(5)))#1H

=εÃ(a)ω−1(h(1)S(h(6)), h(7))ω(h(2),S(h(5))h(8))(h(3) ·(S(h(4))·1A))#1H

=εÃ(a)ω−1(h(1)S(h(5)), h(6))ω(h(2), S(h(4))h(7))(h(3) · 1A)#1H

=εÃ(a)ω−1(h(1)S(h(2)), h(7))ω(h(3), S(h(5))h(6))(h(4) · 1A)#1H

=εÃ(a)ω−1(1H , h(3))ω(h(1), 1H)(h(2) · 1A)#1H

=εÃ(a)(h · 1A)#1H = sl ◦ εl(a#h).

The equality (∗) we used that, for any h, k, l ∈ H, we have

h · ω−1(k, l) = ω−1(h(1)k(1), l(1))ω(h(2), k(2)l(2))ω
−1(h(3), k(3)).

This follows easily from

h · (ω(k(1), l(1))ω
−1(k(2), l(2)) = h · (k · (l · 1A)),

and

h · ω(k, l) = ω(h(1), k(1))ω
−1(h(2), k(2)l(1))ω(h(3)k(3), l(2)),

which, in its turn is an immediate consequence of the 2-cocycle identity.
Therefore, (Ã#ωH, sl, tl, sr, tr,∆l,∆r, εl, εr, S) is a structure of a

Hopf algebroid over E(A).
�
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Chapter 6

Partially cleft extensions

and cleft extensions by

Hopf algebroids

In [5], the authors introduced the notion of a partially cleft exten-
sion of an algebra A by a Hopf algebra H, and proved that partially
cleft extensions are related with partial crossed product. In our case,
which means H cocommutative and A commutative, the results deve-
loped in [5] remain valid, so, using the Hopf algebroid structure of the
crossed product, one can rethink partially cleft extensions of commu-
tative algebras by cocommutative Hopf algebras in a broader scenario,
namely, the theory of cleft extensions of algebras by Hopf algebroids
developed by G. Böhm and T. Brzezinski [12].

De�nition 6.1 [5] Let H be a Hopf algebra, and A ⊂ B be an H-
extension, that is B is a right H-comodule algebra and A = BcoH . The
extension A ⊂ B is partially cleft if there exists a pair of linear maps
γ, γ : H → B such that:

(i) γ(1H) = 1B;

(ii) The following diagrams are commutative

H
γ //

∆

��

B

ρ

��

H
γ //

∆cop

��

B

ρ

��
H ⊗H

γ⊗IdH
// B ⊗H H ⊗H

γ⊗S
// B ⊗H
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(iii) (γ∗γ)◦µ is a central element in the convolution algebra Homk(H⊗
H,B), in which µ : H ⊗ H → H is the multiplication in H and
(γ ∗ γ)(h) commutes with every element of A, for each h ∈ H,
and, for all b ∈ B, h, l ∈ H, if we write eh = (γ ∗ γ)(h) and
ẽh = (γ ∗ γ)(h), then:

(iv)
∑
b(0)γ(b(1))γ(b(2)) = b;

(v) γ(h)el =
∑
eh(1)lγ(h(2));

(vi) γ(l)ẽh =
∑
ẽhl(1)γ(l(2));

(vii)
∑
γ(hl(1))ẽl(2) =

∑
eh(1)

γ(h(2)l).

Partially cleft extensions are related to partial crossed products, as
one can see in the next two results.

Proposition 6.2 [5] If (A, ·, (ω, ω−1)) is a symmetric twisted partial
H-module algebra with a 2-cocycle ω, then, A ⊂ A#ωH is a partially
cleft H-extension.

�

For the crossed product A#ωH, the cleaving maps γ, γ : H →
A#ωH are given by

γ(h) = 1A#h, and γ(h) = ω−1(S(h(2)), h(3))#S(h(1)). (6.1)

Theorem 6.3 [5] Let B be H-comodule algebra and A = BcoH . Then
the H-extension A ⊂ B is partially cleft if, and only if there is a
symmetric twisted partial action · : H ⊗ A → A with a 2-cocycle
ω : H⊗H → A such that B is isomorphic to the partial crossed product
A#ωH.

�

In the case of a cocommutative Hopf algebra H acting partially over
a commutative algebra A, we have already seen that we can replace A
by a commutative and cocommutative Hopf algebra Ã with the same
cohomology theory. Then, we observe that Hom(H ⊗H, Ã) is a com-
mutative algebra, so, (iii) in De�nition 6.1 becomes trivial and ẽh = eh.
By (iv), b(0)eb(1) = b and we conclude that γ = γ−1 in the ideal 〈e〉.

Moreover, the crossed product Ã#ωH has a structure of Hopf alge-
broid over the base algebra E(A). Then it is interesting to see whether
one can replace the crossed product A#ωH by the crossed product

Ã#ωH in the analysis of cleft extensions by the Hopf algebra H. First
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note that the H-comodule structure on both crossed products is the
same, namely ρ(a#h) = a#h(1) ⊗ h(2). Furthermore (A#ωH)coH ∼= A

and (Ã#ωH)coH ∼= Ã, then both crossed products are H-extensions of
their respectives algebras of coinvariants. Finally, the cleaving maps
γ, γ : H → A#ωH, given by (6.1), take their values actually in Ã#ωH.

In what follows, we shall see that there exists a Hopf algebroid H

such that the crossed product Ã#ωH can be viewed as a cleft extension

of Ã by H. For this purpose, it is important introduce some results
about the theory of cleft extensions for Hopf algebroids developed by
G. Böhn and T. Brzezinski in [12].

De�nition 6.4 [12] Let (H, L,R, sL, tL, sR, tR,∆L,∆R, εL, εR, S) be a
Hopf algebroid and A be a right H-comodule algebra. Denote
by ηR(r) = r · 1A = 1A · r the unit map of the corresponding R-ring
structure of A. Let B be the subalgebra of HR-coinvariants in A. The
extension B ⊂ A is called H-cleft if

(a) A is an L-ring (with unit ηL : L → A) and B is an L-subring of
A;

(b) there exists a convolution invertible left L-linear right H-
colinear morphism γ : H→ A.

A map γ satisfying condition (b) is called a cleaving map.

Remark 6.5 Some small remarks have to be made about this de�ni-
tion.

(1) First is that the structure of right H-comodule algebra on A is
related to the base ring R, that is ρ : A → A ⊗R H is a right
R − R-bilinear map in the sense that, for every a ∈ A and r ∈ R,
ρ(ηR(r)aηR(s)) = a(0) ⊗R sR(r)a(1)sR(s).

(2) The map γ : H → A being H-colinear implies that it is right R-
linear in the sense that γ(hsR(r)) = γ(h)ηR(r) and left R-linear in
the sense that γ(sR(r)h) = ηR(r)γ(h), for any a ∈ A and r ∈ R.

(3) The notion of a convolution invertible map γ : H→ A, in which A
is both L-ring and R-ring, means that there is a unique γ : H→ A
such that [12]

µA ◦ (γ ⊗R γ) ◦∆R = ηL ◦ εL
µA ◦ (γ ⊗L γ) ◦∆L = ηR ◦ εR.
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(4) The left L-linearity of the map γ in condition (b) of De�nition 6.4
means, that the cleaving map satis�es γ(sL(l)h) = ηL(l)γ(h), for
any a ∈ A and l ∈ L.

The lemmas below show us the behaviour of the convolution inverse
of a cleaving map (γ) with respect to (1) and (2) of Remark 6.5. We
suggest [12] for details of proofs.

Lemma 6.6 [12] Let H be a Hopf algebroid and B ⊆ A an H-cleft
extension, with a cleaving map γ. Then,

γ(tR(r)h) = γ(h)ηR(r), for all r ∈ R, h ∈ H. (6.2)

�

In the case of a Hopf algebra cleft extensions, the convolution inverse
of a cleaving map is a right colinear map, where the right coaction is
given by the coproduct followed by the antipode and a �ip. So, since we
have two coactions in the Hopf algebroid case, one for each constituent
bialgebroid, the next Lemma follows:

Lemma 6.7 [12] Let H be a Hopf algebroid and B ⊆ A an H-cleft
extension with a cleaving map γ. Then, for all h ∈ H,

ρA(γ(h)) = γ(h(2))⊗R S(h(1)), (6.3)

and

λA(γ(h)) = γ(h(2))⊗L S(h(1)), (6.4)

where ρA and γA are the right coactions of the constituent right and
left bialgebroids, respectivelly.

�

To conclude our preliminaries, we recall that Doi and Takeuchi,
in [15], characterized Cleft extensions as Galois extensions with the
normal basis property when H is a Hopf algebra. A similar result is
obtained in this context of Hopf algebroids. The main di�erence with
the regular case is that a Cleft H-extension is a Galois extension with
respect to the right bialgebroid HR but it has a normal basis property
with respect to the base algebra L of the left bialgebroidHL. By Galois
extension, we understand that,
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De�nition 6.8 [12] Let H be a Hopf algebroid, A be a right H-comodu-
le algebra and B be the subalgebra of HR-coinvariants in A. The ex-
tension B ⊂ A is called H-Galois if the canonical map

canH : A⊗B A −→ A⊗H H
a⊗B a′ 7→ aa′[0] ⊗H a′[1]

The next two lemmas give to us the idea of how to prove the result
mentioned above.

Lemma 6.9 [12] Let H be a Hopf algebroid and B ⊆ A an H-cleft
extension with a cleaving map γ. Then, for all a ∈ A, a(0)γ(a(1)) ∈ B.

�

Lemma 6.10 [12] Let H be a Hopf algebroid and B ⊆ A an H-cleft
extension. Then the inclusion B ⊆ A splits in the category of left
B-modules. If, in addition, the antipode of H is bijective, then the
inclusion B ⊆ A splits also in the category of right B-modules.

�

Theorem 6.11 [12] Let H be a Hopf algebroid and B ⊆ A a right
H-extension. Then the following statements are equivalent:

(1) B ⊆ A is an H-cleft extension.
(2) (a) The extension B ⊆ A is HR-Galois;

(b) A ' B⊗LH as left B-modules and right H-comodules.
�

In our case, for a cocommutative Hopf algebra H acting partially
upon a commutative and cocommutative Hopf algebra Ã, the base al-
gebras L and R will coincide with the commutative subalgebra E(A)

of Ã and then many distinctions between the left and right structures
will coalesce. The Hopf algebroid is given by the partial smash product
E(A)#H. For a proof that this partial smash product is in fact a Hopf
algebroid over E(A), see reference [9], Theorem 3.5. The extension
to be considered is the previously de�ned partially H-cleft extension
Ã ⊂ Ã#ωH. Then we have the following theorem.

Theorem 6.12 Let H be a cocommutative Hopf algebra acting par-
tially on a commutative and cocommutative Hopf algebra Ã and let ω
be a partial 2-cocycle in H2

par(H, Ã). Then the partial crossed product

Ã#ωH is a right H = E(A)#H-module algebra with Ã ∼= (Ã#ωH)coH.

Moreover, the extension Ã ⊂ Ã#ωH is H-cleft in the sense of De�ni-
tion 6.4.
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Proof: First, de�ne the linear map

ρ̃ : Ã#ωH −→ Ã#ωH ⊗E(A),IJ E(A)#H

a#h 7→ a#h(1) ⊗ (h(2) · 1A)#h(3)

Note that the expression of ρ̃(a#h) can also be written as

ρ̃(a#h) = a#h(1) ⊗ 1E(A)#h(2) = a#h(1) ⊗ 1A#h(2),

that is because

a#h(1) ⊗ (h(2) · 1A)#h(3) = a#h(1) ⊗ (1A#h(2))(1A#1H)

= a#h(1) ⊗ (1A#h(2)) J 1A = a#h(1) ⊗ (1A#h(2)).

It is easy to see that (ρ̃⊗E(A),IJ Id) ◦ ρ̃ = (Id⊗E(A),IJ ∆̃r) ◦ ρ̃, in
which ∆̃r is the right comultiplication in H, given by

∆̃r(r#h) = r#h(1) ⊗ 1A#h(2), ∀r ∈ E(A),∀h ∈ H.

Also, one can check that the map ρ̃ is E(A)-bilinear. Indeed, for
a#h ∈ Ã#ωH and r, s ∈ E(A) then

ρ̃((r#1H)(a#h)(s#1H)) = ρ̃(ra(h(1) · s)#h(2))

= ra(h(1) · s)#h(2) ⊗ 1A#h(3) = (ra#h(1)) J s⊗ 1A#h(2)

= ra#h(1) ⊗ s I (1A#h(2)) = ra#h(1) ⊗ (1A#h(2))(s#1H)

= a(h(1)S(h(2)) · r)#h(3) ⊗ (1A#h(4))(s#1H)

= a(h(1) · (S(h(3)) · r))#h(2) ⊗ (1A#h(4))(s#1H)

= (a#h(1)) J (S(h(2)) · r)⊗ (1A#h(3))(s#1H)

= a#h(1) ⊗ (S(h(2)) · r) I (1A#h(3))(s#1H)

= a#h(1) ⊗ (1A#h(2))((S(h(3)) · r)#1H)(s#1H)

= a#h(1) ⊗ ((h(2) · (S(h(4)) · r))#h(3))(s#1H)

= a#h(1) ⊗ ((h(2)S(h(4)) · r)#h(3))(s#1H)

= a#h(1) ⊗ (r#h(2))(s#1H)

= a#h(1) ⊗ (r#1H)(1A#h(2))(s#1H).

Denote by ε̃r : E(A)#H → E(A) the right counit of the partial
smash product E(A)#H, given by ε̃r(a#h) = S(h) ·1A. Then, we have

(Id⊗E(A),IJ ε̃r) ◦ ρ̃(a#h) = (a#h(1)) J ε̃r(1A#h(2))

= (a#h(1))((S(h(2)) · 1A)#1H) = a(h(1) · (S(h(3)) · 1A))#h(2)

= a(h(1)S(h(2)) · 1A)#h(3) = a#h.
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Finally, for a#h, b#k ∈ Ã#ωH, we have

ρ̃((a#h)(b#k)) = ρ̃(a(h(1) · b)ω(h(2), k(1))#h(3)k(2))

= a(h(1) · b)ω(h(2), k(1))#h(3)k(2) ⊗ 1A#h(4)k(3),

on the other hand,

ρ̃(a#h)ρ̃(b#k) = (a#h(1))(b#k(1))⊗ (1A#h(2))(1A#k(2))

=a(h(1) · b)ω(h(2), k(1))#h(3)k(2) ⊗ (h(4) · 1A)#h(5)k(3)

=a(h(1) · b)ω(h(2), k(1))#h(3)k(2) ⊗ (h(4)k(3)S(k(4)) · 1A)#h(5)k(5)

=a(h(1) · b)ω(h(2), k(1))#h(3)k(2) ⊗ (h(4)k(3) · (S(k(4)) · 1A))#h(5)k(4)

=a(h(1) · b)ω(h(2), k(1))#h(3)k(2) ⊗ (S(k(4)) · 1A) I (1A#h(4)k(3))

= (a(h(1) · b)ω(h(2), k(1))#h(3)k(2)) J (S(k(4)) · 1A)⊗ 1A#h(4)k(3)

=a(h(1) ·b)ω(h(2), k(1))(h(3)k(2) ·(S(k(5))·1A))#h(4)k(3)⊗1A#h(5)k(4)

= (a(h(1) ·b)ω(h(2), k(1))(h(3)k(2)S(k(3))·1A)#h(4)k(4))⊗1A#h(5)k(5)

=a(h(1) · b)ω(h(2), k(1))(h(3) · 1A)#h(4)k(2) ⊗ 1A#h(5)k(3)

=a(h(1) · b)ω(h(2), k(1))#h(3)k(2) ⊗ 1A#h(4)k(3).

Therefore, the crossed product Ã#ωH is a right H-comodule al-

gebra. It is obvious that i(Ã) ⊆ (Ã#ωH)coH, now take
∑
i ai#hi ∈

(Ã#ωH)coH, then∑
i

ai#hi(1)⊗1A#hi(2) =
∑
i

ai#hi⊗1A#1H ∈ Ã⊗H⊗E(A)E(A)⊗H.

Applying Id ⊗ εH ⊗ Id ⊗ Id to this identity and identifying
Ã⊗E(A) E(A) ∼= Ã, we obtain∑

i

ai#hi =
∑
i

aiεH(hi)#1H .

Therefore i(Ã) = (Ã#ωH)coH.
In order to see that theH-extension is cleft, one needs only to de�ne

the cleaving map, as item (a) of De�nition 6.4 is automatically satis�ed,
since L = R = E(A). De�ne the maps

γ̃ : E(A)#H → Ã#ωH

r#h 7→ r#h

and
γ̃ : E(A)#H → Ã#ωH

r#h 7→ rω−1(S(h(2)), h(3))#S(h(1))
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Note that a#h in the domain of γ̃ means something quite di�erent
from a#h in the image because the �rst is in the partial smash product,
while the second lies in the partial crossed product. It is easy to see
that γ̃ is left E(A)-linear. Indeed, for r ∈ E(A) and a#h ∈ E(A)#H,
we have

γ̃(sl(r)(a#h)) = γ̃((r#1H)(a#h)) = γ̃(ra#h)

= ra#h = (r#1H)(a#h).

Also, the cleaving map is a morphism of right H-comodules. Con-
sider a#h ∈ E(A)#H, then

ρ̃ ◦ γ̃(a#h) = ρ̃(a#h) = a#h(1) ⊗ 1A#h(2)

= γ̃(a#h(1) ⊗ 1A#h(2) = (γ̃ ⊗E(A),IJ Id) ◦ ρ̃(a#h).

Finally, let us check that the maps γ̃ and γ̃ are mutually inverse by
convolution in the sense that

µ ◦ (γ̃ ⊗E(A),IJ γ̃) ◦ ∆̃r = i ◦ ε̃l
µ ◦ (γ̃ ⊗E(A),./ γ̃) ◦ ∆̃l = i ◦ ε̃r.

Consider a#h ∈ E(A)#H, then

µ ◦ (γ ⊗E(A),IJ γ) ◦ ∆̃r(a#h) = γ̃(a#h(1))γ̃(1A#h(2))

= (a#h(1))(ω
−1(S(h(3)), h(4))#S(h(2)))

= a(h(1) · ω−1(S(h(6)), h(7)))ω(h(2), S(h(5)))#h(3)S(h(4))

= a(h(1) · ω−1(S(h(4)), h(5)))ω(h(2), S(h(3)))#1H

= aω−1(h(1)S(h(9)), h(10))ω(h(2), S(h(8))h(11))ω
−1(h(4), S(h(7)))

ω(h(5), S(h(6)))#1H

= aω−1(h(1)S(h(6)), h(7))ω(h(2), S(h(5))h(8))(h(3) · (S(h(4)) · 1A))#1H

= aω−1(h(1)S(h(2)), h(7))ω(h(3), S(h(5))h(6))(h(4) · 1A)#1H

= a(h · 1A)#1H

= i(ε̃l(a#h)).
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Also, we have

µ ◦ (γ̃ ⊗E(A),./ γ̃) ◦ ∆̃l(a#h) =

= µ ◦ (γ̃ ⊗E(A),./ γ̃)(a#h(1) ⊗ 1A#h(2))

= µ ◦ (γ̃ ⊗E(A),./ γ̃)((1A#h(1)) / a⊗ 1A#h(2))

= µ ◦ (γ̃ ⊗E(A),./ γ̃)(1A#h(1) ⊗ a . (1A#h(2)))

= µ ◦ (γ̃ ⊗E(A),./ γ̃)(1A#h(1) ⊗ a#h(2))

= γ̃(1A#h(1))γ̃(a#h(2))

= (ω−1(S(h(2)), h(3))#S(h(1)))(a#h(4))

= aω−1(S(h(4)), h(5))(S(h(3)) · a)ω(S(h(2)), h(6))#S(h(1))h(7)

= aω−1(S(h(5)), h(6))ω(S(h(4)), h(7))(S(h(3)) · a)#S(h(1))h(2)

= (S(h(2)) · (h(3) · 1A))(S(h(1)) · a)#1H

= (S(h) · a)#1H = i(ε̃r(a#h)).

Therefore, Ã ⊂ Ã#ωH is a E(A)#H-cleft extension.
�

The following is an immediate consequence of the last theorem and
Theorem 6.11, and show us that partially H-cleft extensions are related
with the theory of H-Galois extensions if H is a cocommutative Hopf
algebra and A is a commutative algebra.

Corollary 6.13 Let H = E(A)#H be the Hopf algebroid given above

and Ã ⊂ Ã#ωH a right H-extension. Then, the following statements
are equivalent:

1. Ã ⊂ Ã#ωH is an H-cleft extension;

2. (a) The extension Ã ⊂ Ã#ωH is H-Galois;

(b) Ã#ωH ' Ã ⊗E(A) E(A)#H as left Ã-modules and right H-
comodules.

�
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Chapter 7

Conclusions and outlook

In this work, we introduced a cohomology theory for partial ac-
tions of Hopf algebras, extending the results of [30] and [19]. Also we
are able to give a cohomological notion for the partial crossed product
introduced in [5], since that we considered H a cocommutative Hopf
algebra and A a commutative algebra. Furthermore, we have unexpect-
edly shown that the theory of partial cleft extensions for Hopf algebras
[5] can be understood in the context of cleft extensions theory for Hopf
algebroids in [12].

In addition, in association with Professor Joost Vercruisse (ULB),
we tried to investigate whether there would be a general cohomological
theory, with arbitrary H and A, but, as well as for the cohomological
theory for Hopf algebras, we did not obtain some results.

However, we observe that all the cohomology theory done in this
tesis was done over cocommutative Hopf algebras acting partially over
commutative algebras. This can be generalized for cocommutative Hopf
algebra objects and commutative algebra objects in braided monoidal
categories.

Lastly, we present some directions for next works:

- One topic of interest is to relate this cohomology for partial ac-
tions and the cohomology for its globalization, then constructing
a bridge between this theory and the classical Sweedler's theory.

- The last theorem placed the notion of a partially cleft exten-
sion within the context of cleft extensions for Hopf algebroids.
This suggests, perhaps, that this entire cohomological theory can
be understood properly as a cohomological theory of Hopf alge-
broids.
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- Another topic to be explored in further research can be the obs-
truction theory for the existence of partially cleft extensions and
its relation with the third cohomology group in the same spirit of
[29].
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