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Resumo

Neste trabalho, formulamos uma teoria de cohomologia para ac¢oes
parciais de algebras de Hopf cocomutativas sobre algebras comutativas.
Ela generaliza tanto a teoria de cohomologia para algebras de Hopf
introduzidas por M. E. Sweedler como também a teoria da cohomologia
para acgoes parciais de grupo, introduzidas por M. Dokuchaev e M.
Khrypchenko. Alguns exemplos ndo triviais, ou seja, ndo provenientes
de grupos, sao construidos.

Ainda, dada uma acéo parcial de uma &lgebra Hopf cocomutativa
H sobre uma algebra comutativa A, definimos uma nova estrutura,
nomeada A, que possui os mesmos grupos de cohomologia da algebra
original A. Essa estrutura é interessante pois possui estrutura de &l-
gebra de Hopf sobre o anel comutativo E(A) e H permanece agindo
parcialmente sobre A. Por fim, verificamos a rela¢do do segundo grupo
de cohomologia, H?(H, A), com extensoes cleft parciais de algebras
comutativas por acoes parciais de algebras de Hopf cocomutativas e
provamos que extensoes cleft parciais podem ser vistas como extensoes
cleft de Hopf algebroides.

Palavras-chave Algebras de Hopf; acdes parciais; Cohomologia
parcial; produto cruzado parcial; extensoes cleft parciais.






Resumo Expandido

Introdugao:

A historia das algebras de Hopf tem inicio no contexto da topologia
algébrica com o artigo de H. Hopf, publicado em 1941, descrevendo as
propriedades algébricas do anel de cohomologia de uma variedade de
grupo [23]. O assunto de cohomologia de grupo rapidamente se tornou
independente do seu contexto topologico, assumindo uma formulagao
mais algébrica [1, 31]. A primeira formulagdo de uma teoria de coho-
mologia para élgebras de Hopf foi feita por M. Sweedler em 1968 [30],
em que o mesmo considerou algebras de Hopf cocomutativas atuando
sobre &lgebras comutativas. Este trabalho se tornou paradigmaético
para desenvolvimentos futuros nessa area.

Neste trabalho a cohomologia foi definida por meio de um complexo
explicito que surge como um complexo de cocadeia e os grupos neste
complexo consistem no grupo multiplicativo de elementos invertiveis
em Hom(C, A), em que C é a coalgebra advinda da algebra de Hopf,
tensorizada sobre si mesma um nimero de vezes.

Neste mesmo artigo, M. Sweedler dedicou-se também ao estudo da
classificagdo de extensoes de algebra por algebras de Hopf. Uma exten-
sdo de élgebra por uma algebra de Hopf, possui estrutura de algebra e
outras propriedades. Assim, definindo o que sdo equivaléncia e produto
de extensoes, foi possivel a Sweedler demonstrar que a 2-cohomologia
H?(H,A), com A um H-moédulo algebra, é isomoérfica ao grupo das
classes de equivaléncia de extensoes cleft. Parte desta teoria consiste
na defini¢do de certas dlgebras, denominadas produto cruzado.

Essa nocao de produto cruzado foi generalizada, de forma inde-
pendente por Y. Doi e M. Takeuchi [15] e R. Blattner, M. Cohen, S.
Montgomery [28] em 1986. Eles também introduziram condigoes para
caracterizar produtos cruzados como extensoes cleft. Entdo, S. Mont-
gomery em [28] introduziu um critério de equivaléncia para isomorfis-
mos entre produtos cruzados. Tal resultado tinha por expectativa obter
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uma teoria geral de cohomologia para élgebras sobre algebras de Hopf,
mas até hoje ainda nao foi possivel.

A teoria de agoes parciais de grupo teve inicio com o trabalho de R.
Exel na classificacao de certas classes de C*-dlgebras que ndo podiam
ser descritas como um produto cruzado usual [21]. Uma formulaco
mais algébrica para ac¢oes parciais foi feita por M. Dokuchaev e R. Exel
em [16] e entdo, agdes parciais passaram a chamar a atencao de alge-
bristas, gerando desenvolvimento em diversas direcoes. Neste sentido,
para este trabalho é relevante a nocao de acoes parciais torcidas de um
grupo [17] e sua globalizagao [18]. Nelas, a nogao de 2-cociclo parcial
é utilizada para se definir acoes parciais torcidas e produtos cruzados
parciais, sugerindo assim a existéncia de uma teoria geral de cohomolo-
gia em que 0s 2-cociclos estariam inseridos. Esta teoria cohomolégica
para agoOes parciais de grupo foi introduzida por M. Dokuchaev e M.
Khrypchenko em [19], e é construida em cima de agdes parciais de gru-
pos sobre mondides comutativos. Ainda, em [20], os autores relacionam
sua teoria cohomolbgica para acoes parciais de grupo com o contexto de
cohomologia de semigrupos inversos desenvolvida por H. Lausch [25],
uma vez que a noc¢do de agdo parcial de grupo estd profundamente
relacionada com agbes de semigrupos inversos [22],

Acoes parciais entraram no contexto de algebras de Hopf pelo tra-
balho de S. Caenepeel e K. Janssen em [14]. Este trabalho permitiu a
generalizagdo de varios resultados classicos na teoria de algebra de Hopf
e de vérias ideias desenvolvidas para acOes parciais de grupo, como
o teorema de globalizacdo [2], equivaléncia de Morita entre produto
smash parcial e a subalgebra dos invariantes [3], dualidade para agoes
parciais [4], representagbes parciais [7], etc. Indicamos [8] para mais
detalhes sobre o desenvolvimento recente de agoes parciais de grupos e
algebras de Hopf.

Para esta tese, nosso interesse sao as nogoes de acoes parciais tor-
cidas de élgebras de Hopf. produtos cruzados parciais e extensoes par-
cialmente cleft de algebras por algebras de Hopf introduzidas por M.
Alves, E. Batista, A. Paques e M. Dokuchaev em [5]. Neste trabalho,
em certo sentido, os autores generalizam as nogoes introduzidas em
[15] e [10] e demonstram um analogo do Teorema de Isomorfismo entre
produtos cruzados introduzido por S. Montgomery [28].

Objetivos:

Baseado nos artigos de M. Dokuchaev e M. Khrypchenko [19] e [20],
surge a seguinte questao: serd que os resultados obtidos por eles para
agoes parciais de grupo poderiam ser extendidos para agoes parciais de
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dlgebras de Hopf sobre uma dlgebra? Quais caracterizagoes poderiam
ser obtidas?

Neste sentido, nosso objetivo com este trabalho é estabelecer uma
teoria cohomolégica para agoes parciais de algebras de Hopf a partir da
cohomologia do algebréide de Hopf H,,,. E a partir disso, caracterizar
produtos cruzados parciais a partir de extensoes.

Metodologia: Como citado anteriormente, a teoria de cohomolo-
gia para élgebras de Hopf surgiu com M. Sweedler em [30] no contexto
de algebras de Hopf cocomutativas sobre dlgebras comutativas. Desde
entdo, busca-se uma generalizagdo para algebras de Hopf arbitrarias,
porém, nao houveram muitos avancos até entao.

A partir do trabalho desenvolvido por M. Dokuchaev e M. Khryp
chenko em [19], em que os mesmos introduzem as nogoes de cohomolo-
gia para agoes parciais de grupo, observamos que era possivel extender
esses resultados para algebras de Hopf, considerando as nogoes de acoes
parcias definidas em [14].

Obtendo os resultados iniciais e avan¢ando no entendimento de [19],
definimos uma “nova" algebra de Hopf, denominada A e dada pelo
quociente da algebra comutativa livre gerada pela imagem de todas
as cocadeias f € Cp,.(H,A) (em que C},, (H,A) representa uma n-

ar
cocadeia parcial reduzida, ou seja, o quocfente de C}.,.(H, A) por A*).
Esta algebra se torna importante pois possui os mesmos grupos de
cohomologia que os do complexo de cocadeia original C},,,.(H, A).

Por estarmos trabalhando com &algebras de Hopf cocomutativas e
algebras comutativas, a teoria de acOes parciais torcidas e produtos
cruzados parciais introduzidas em [5] se tornam importantes aqui e
conseguimos dar uma nogao cohomolégica para estes produtos cruzados
parciais, classificando-os pelo segundo grupo de cohomologia parcial
HZ,,(H, A).

Ainda, se considerarmos o produto cruzado g#wH , temos sobre o
mesmo uma estrutura de Hopf algebroéide, sugerindo assim que nossa
teoria de cohomologia para agdes parciais pode ser vista do ponto de
vista da teoria cohomologica para Hopf algebroides.

Por fim, em [30] é mostrado que produtos cruzados estdo direta-
mente relacionados com extensoes cleft, analogamente, ao considerar-
mos a teoria de extensdes cleft parciais introduzidas em [5] conseguimos
resultados similares. E mais, devido a estrutura de Hopf algebroide
do produto cruzado parcial, conseguimos um resultado completamente
inesperado que consiste em relacionar extensoes cleft parciais com ex-
tensoes de algebras sobre Hopf algebroides introduzidas em [12].
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Resultados Obtidos:

Apresentamos aqui os principais resultados obtidos neste trabalho.
No Capitulo 1 apresentamos a teoria de cohomologia para &lgebras
de Hopf apresentada por Sweedler em [30], a teoria de cohomologia
parcial de grupos introduzida por Dokuchaev e Khrypchenko em [19]
e finalizamos com as nogdes de agdes parciais de algebras de Hopf de
Caenepeel e Janssen em [14].

No Capitulo 2, apés introduzirmos as nocoes sobre idempotentes,
definimos o complexo de cocadeias por:

Definigao 2.7 Sejam A uma dlgebra comutativa, H uma bidlgebra
cocomutativa, n um inteiro positivo e o : H @ A — A uwma acdo par-
cial, entdo uma n-cocadeia “parcial” (cocadeia de ordem n) de H com
valores em A (C}., (H,A)) é uma aplicagdo invertivel em um ideal de
Homy(H®", A), ou seja,

Crar(H, A) = (I(H®", A))*,

par

em que

I(H®*™ A) = e,x Hom(H®" A)
= {e,*g:9€ Homp(H®™, A)} < Homy,(H®", A).

Por uma 0-cocadeia entendemos C2,. (H,A) = (I(H®% A))* = A%,

par
com a multiplicagdo de A e eg = 14.

Definimos entao o operador cobordo parcial por:

Definigao 2.8 Para quaisquer [ € CJ., (H, A), (h' ®@---@h") e
He" 1 definimos

(6nf)(hla .. -ahn+1) = (hél) : f(h%l)v .. 7h?1))) *
* H f(fl)l(h(liﬂ),,.,,hzi+1)h§jjl),...,h2111)) *
=1
_1\n+1 n
x fOVT (Blayays 0 Mgy

Sen =0 ea éum elemento invertivel de A, temos que

(60a)(h) = (h-a)a™".

Apos a demonstracdo de alguns resultados auxiliares, concluimos
que:
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Teorema 2.11/2.13 O operador cobordo §,, definido acima é um
homomorfismo de CJ,.(H, A) — Cputb1(H, A), tal que
6n+1 o 6n(f) = €n+2
para qualquer f € C, . (H, A).

Definimos entao os grupos abelianos dos mn-cociclos parciais, n-co-
bordos parciais e n-cohomologias parciais de H com valores em A por
Z™(H,A)=kerd,, B"(H,A)=Im 0,1 ¢ H"(H, A)=ker 6, /Im 0,1,
respectivamente, n > 1 (paran = 0, definimos H°(H, A) = Z°(H, A) =
ker dp).

O Capitulo 3 é destinado ao estudo da algebra de Hopf A e tem como

. ~ A -~
principais resultados, apos a construcdo da algebra A := —, em que A

¢ uma élgebra comutativa livre unital, o fato de que as cohomologias
geradas anteriormente por uma dlgebra A e as geradas por A sao as

mesmas, ou seja, H,, (H,A) = HJ, (H,A) e também, que A tem
estrutura de algebra de Hopf, conforme o Teorema 4.5.
No Capitulo 4 trabalhamos com a no¢ao de produto cruzado torcido

dada em [5] e obtemos como principais resultados:

Teorema 4.7 Seja H uma dlgebra de Hopf cocomutativa e A um
H-maodulo dlgebra parcial. Entao, dados dois 2-cociclos parciais w, o €
ZEGT(H, A), os produtos cruzados parciais associados A#,H e A#,H
sao isomorfos se, e somente se, w e o sGo cohomdlogos, ou seja, per-

tencem a mesma classe no grupo de cohomologia Hgar(H, A).

Ainda, provamos que toda classe de cociclos em Hgar(H, A) contém
um 2-cociclo normalizado, ou seja, dado um 2-cociclo w € Z2,,.(H, A),
existe um 2-cociclo normalizado @ € Z2(H, A) que é cohomologo a
w. Esses dois resultados nos permitem entao concluir que o segundo
grupo parcial de cohomologia HgaT(H , A) classifica todas as classes de
isomorfismos de produtos cruzados parciais.

O segundo resultado importante deste capitulo e talvez um dos mais
surpreendentes desta tese consiste em conseguirmos determinar uma

estrutura de Hopf algebroide para este produto cruzado.

Teorema 4.10 Seja H uma dlgebra de Hopf cocomutativa e A um
H-mddulo dlgebra parcial. Tomando a dlgebra de Hopf comutativa e
cocomutativa A, construida no Teorema 4.5, sobre a dlgebra comutativa
E(A), que € também um H-mddulo dlgebra parcial. Entdo, o produto
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cruzado /Nl#wH, em que w € um 2-cociclo parcial em Hgar(H, A) &

H2, (H,A) é um Hopf algebréide sobre a dlgebra base E(A).

par

O Capitulo 5 é dedicado ao estudo de extensoes cleft parciais e é nele
que surge o resultado mais interessante desta tese, pois conseguimos
relacionar estas extensdes com extensoes cleft de algebras por Hopf
algebroides, criando um paralelo entre estas duas teorias introduzidas
em [5] e [12].

Teorema 5.11 Seja H uma dlgebra de Hopf cocomutativa agindo
parcialmente sobre uma dlgebra de Hopf comutativa e cocomutativa A e

seja w um 2-cociclo parcial em Homfmr(H, /T) Entao o produto cruzado

parcial A#,H é um H = E(A)#H-modulo dlgebra o direita, com
Az (Z#wH)wj{. E mais, a extensao Ac g#wH é H-cleft no sentido
de [12].

Consideragoes Finais Como podemos ver, ndo s6 conseguimos
uma teoria de cohomologia parcial para algebras de Hopf, estendendo
os resultados de [19], como também fomos capazes de dar uma nocao
cohomoldgica para o produto cruzado parcial introduzido em [5], desde
que tenhamos H uma élgebra de Hopf cocomutativa e A uma élgebra
comutativa. Além disso, inesperadamente, demonstramos que a teoria
de extensodes cleft parciais para algebras de Hopf [5] pode ser entendida
no contexto da teoria de extensoes cleft para Hopf algebroides em [12].
Observamos que toda a teoria de cohomologia aqui feita pode ser gene-
ralizada para objetos algebra de Hopf cocomutativa e objetos algebra
comutativa na categoria de monoéides trancados.

Além disso, em associagdo com o professor J. Vercruysse (ULB),
buscamos investigar se haveria uma teoria cohomolégica geral, com H
e A arbitrarios, porém, assim como para a teoria cohomoldgica para
algebras de Hopf, também aqui nao obtivemos resultados.

Porém, ainda h& muitas perguntas a serem solucionadas nessa area,
como estabelecer uma ponte entre a teoria desenvolvida aqui e a teoria
classica desenvolvida por M. Sweedler. Também, por conta do dltimo
teorema, talvez possamos entender toda a nossa teoria cohomolégia
como uma teoria cohomologica para Hopf algebrides. Um outro ponto
a ser explorado pode ser a teoria de obstrugoes para a existéncia de ex-
tensoes cleft parciais e sua relacdo com o terceiro grupo de cohomologia,
na mesma direcdo de [29]

Palavras-chave algebras de Hopf; a¢des parciais; cohomologia par-
cial; produto cruzado parcial; extensoes cleft parciais.



Abstract

In this work, the cohomology theory for partial actions of co-commu-
tative Hopf algebras over commutative algebras is formulated. This
theory generalizes the cohomology theory for Hopf algebras introduced
by Sweedler and the cohomology theory for partial group actions, in-
troduced by Dokuchaev and Khrypchenko. Some nontrivial examples,
not coming from groups are constructed. Given a partial action of a co-
commutative Hopf algebra H over a commutative algebra A, we prove
that there exists a new Hopf algebra A, over a commutative ring E(A),
upon which H still acts partially and which gives rise to the same co-
homologies as the original algebra A. We also study the partially cleft
extensions of commutative algebras by partial actions of cocommuta-
tive Hopf algebras and prove that these partially cleft extensions can
be viewed as cleft extensions by Hopf algebroids.

Keywords Hopf algebras; partial action; partial cohomology; par-
tial crossed product; partial cleft extension.
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Chapter 1

Introduction

The history of Hopf algebras began within the context of algebraic
topology with the seminal paper by H. Hopf, published in 1941, des-
cribing the algebraic properties of the cohomology ring of a group ma-
nifold [23]. The subject of group cohomology soon became increasingly
more independent of its topological background assuming a more alge-
braic formulation [1, 31]. The first formulation of a cohomology theory
of cocommutative Hopf algebras acting over commutative algebras was
done by M. Sweedler in 1968 [30], which, in certain sense, became
paradigmatic for further developments in this area.

In his work, M. Sweedler extended the notions of group cohomology
for Hopf algebras by defining an explicit complex which arises as the
cochain complex and the groups in this complex consist of the mul-
tiplicative group of invertible elements in Hom(C, A), where C is the
underlying coalgebra of the Hopf algebra tensored with itself a num-
ber of times. In the same paper, M. Sweedler also devoted some time
the study of extensions and proved that H?(H, A), in which H is a
Hopf algebra and A an H-module algebra, is isomorphic to the group
of equivalence classes of extensions defining certain algebras which we
call crossed products.

This notion of crossed product was generalized, independently, by
Y. Doi and M. Takeuchi [15] and R. Blattner, M. Cohen, S. Montgomery
[28] in 1986. Conditions to characterize crossed products as cleft exten-
sions were estabilished in those works. Then, S. Montgomery in [28],
introduced an equivalence criteria for isomorphism between crossed pro-
duct, the hope was, with this result, to get a general cohomology theory
for algebras over Hopf algebras but, unfortunately, we are still looking
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for it.

The theory of partial group actions, in its turn, had its beginning
with the work of Ruy Exel in the classification of certain class of C*-
algebras with an action of the unit circle but which cannot be described
as a usual crossed product [21]. A more algebraic formulation for par-
tial actions was done by Mikhailo Dokuchaev and Ruy Exel in [16]
and then, partial actions drew the attention of algebraists and allowed
further developments in several directions. One of the developments
particularly relevant for our discussion here is the notion of a twisted
partial actions of a group [17] and its globalization [18]. There, one can
see the definition of partial 2-cocycles in order to define twisted actions
and partial crossed products, this suggested the existence of a general
cohomology theory in which these partial 2-cocycles could be placed.
This cohomological theory for partial group actions was achieved by
Mikhailo Dokuchaev and Mykola Khrypchenko in [19]. This theory is
constructed upon partial actions of groups over commutative monoid.
As the notion of a partial action of a group is itself deeply related with
actions of inverse semigroups [22], in reference [20], the authors could
place their cohomology theory for partial group actions within the con-
text of cohomology of inverse semigroups, developed by Hans Lausch
[25].

Partial actions came into the Hopf algebra context by the work of
Stefaan Caenepeel and Kris Janssen in [14]. This work allowed the
generalization of classical results in Hopf algebra theory and of several
ideas developed for partial group actions, as the globalization theo-
rem [2], Morita equivalence between the partial smash product and the
invariant subalgebra [3], duality for partial actions [4], partial represen-
tations [7], etc. For a more detailed account on recent developments
of partial actions of groups and Hopf algebras, see [8] and references
therein.

Of particular interest for the present thesis are the notions of twisted
partial actions of Hopf algebras, partial crossed products and partially
cleft extensions of algebras by Hopf algebras introduced by M. Alves,
E. Batista, A. Paques and M. Dokuchaev in [5]. There, the authors
generalized “in some sense" the notions introduced in [15] and [10] and
prove an analogous theorem of Montgomery [28] on isomorphic crossed
product.

The aim of this thesis, is exactly to formulate a cohomology theo-
ry for partial actions of Hopf algebras, in the same spirit of [19], such
that the partial 2-cocycles defined in [5] can be placed properly. This
cohomological theory is obtained for the case of partial actions of a



cocommutative Hopf algebra H acting partially over a commutative
algebra A. Moreover, one can, without loss of generality, replace the
original algebra A by a commutative and cocommutative Hopf algebra
A over a base algebra E(A) C A and yet obtain the same cohomology
theory. This is a surprising result, we can replace the crossed pro-
duct A#,H by the crossed product A#.,H, which has a a structure
of Hopf algebroid over the base algebra F(A), this leads to interesting
consequences in the analysis of cleft extensions.

As we have already learned in [7], the theory of partial actions of
Hopf algebras in fact is deeply related to the theory of representations
of Hopf algebroids. This opens a totally new landscape to be explored,
for example, in this work we prove that partially cleft extensions can
be understood as cleft extensions by Hopf algebroids in the sense of
Gabriella Bohm and Tomasz Brzezinski [12] and then one can raise new
questions on how to put this cohomological theory for partial actions
in the context of cohomology for Hopf algebroids [13, 24].

This thesis is organized in the following way:

In Chapter 1, we review the main results of the cohomology theory
for algebras over Hopf algebras developed by Sweedler in [30] and of the
theory of cohomology developed by M. Dokuchaev and M. Khrypchenko
[19]. We conclude this chapter recalling the notion of a partial action
of a Hopf algebra over a unital algebra and giving some examples of
such partial actions. Special attention is required for examples 2.22 and
2.23, which will serve as basis for our specific examples of cohomologies
given in Section 3.4.

Chapter 2 is dedicated to the construction of our cohomological
theory for partial actions of a cocommutative Hopf algebra H over a
commutative algebra A. We start with the study of a system of idem-
potents in the commutative convolution algebras Homy(H®™, A), for a
natural n. In Section 3.2 we define the cochain complex, C},,.(H, A)
associated to the partial action of H upon A. The involved ideas follow
the same principles of the classical construction due to M.E. Sweedler
[30] but in order to overcome the complexities coming from partial ac-
tions we define some auxiliary operators which help us to prove that
the coboudary operator is a morphism of abelian groups (Theorem
3.10) and it is nilpotent in this context (Theorem 3.12). Example 3.15
considers the case of H = kG, for G a given group, in this case, we re-
cover the cohomology theory for partial group actions developed by M.
Dokuchaev and M. Khrypchenko in [19]. Other examples, such as the
cohomology theory for partial group actions and partial group gradings
over the base field are given in Section 3.4. More specifically, in Exam-
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ple 3.18 we calculate the first cohomology groups of a partial grading
of the base field by the Klein four group, this extends what has been
done in [6].

In Chapter 3, we define a new Hopf algebra A given by a quotient of
the free commutative algebra generated by the images of all cochains
f € Cp,.(H,A). This Hopf algebra is interesting because it has the
same cohomology groups as the original cochain complex C’;}ar(H ,A).
In fact, given a partial action of H on A, we define the reduced cochain
complex Cp.(H,A) = C,,.(H, A)/A* and this new cochain complex
produces the same cohomology groups as the original cochain complex
Cp.r(H, A). Next, we consider the algebra A, which is a quotient of
the free commutative algebra generated by the images of all cochains
f € Cp,.(H, A). This defines a commutative and cocommutative Hopf
algebra over the commutative algebra E(A), which is the subalgebra of
A generated by elements of the form h-14. One proves that A generates
the same cohomologies as the original algebra A, that is, for any n € N
, we have the isomorphisms H, (H, A) = H}, (H, A). Then, without
loss of generality, one can consider only the cohomological theory for
partial actions of a cocommutative Hopf algebra H over a commutative

and cocommutative Hopf algebra A.

Chapter 4 is devoted an analysis of twisted partial actions and par-
tial crossed products [5]. For the case of a cocommutative Hopf algebra
H and a commutative algebra A, all twisted partial actions are indeed
partial actions. Nonetheless, we still can get nontrivial partial crossed
products by means of choosing a partial 2-cocycle. In fact, the partial
crossed products are classified by the second partial cohomology group
H2, (H,A). The new feature which appears in the context of partial

par
actions is that the crossed product Z#wH has a structure of a Hopf
algebroid over the same base algebra E(A) (Theorem 5.10). This sug-
gests that the cohomology theory for partial actions can be viewed as
a cohomological theory for Hopf algebroids.

Chapter 5 is devoted to study partially cleft extensions introduced
in [5]. The most interesting result in this chapter comes from the Hopf
algebroid structure of the crossed product E#MH , because using this
fact, we are able to show that the theory of partially cleft extension is
related to the theory of cleft extensions of algebras by Hopf algebroids
developed in [12]. In fact, by Theorem 6.12 given a partially cleft
extension B of a commutative cocommutative Hopf algebra A by a
cocommutative Hopf algebra H, there exists a Hopf algebroid over the
base subalgebra E(A), namely, the partial smash product E(A)#H,




such that B is an E(A)#H-cleft extension of A in the sense of G.
Bo6hm and T. Brzezinski [12].



Chapter 1. Introduction




Chapter 2

Mathematical
preliminaries

In this chapter, we introduce some concepts that motivated this
work. We begin with the notion of cohomology for algebras which are
modules over a given Hopf algebra, as developed by M. E. Sweedler in
[30]. After, we present the initial results about cohomology theory of
groups based on partial actions, as developed by M. Dokuchaev and M.
Khrypchenko in [19]. Finally, we introduce the notion of partial action
of Hopf algebras on algebras, as introduced by S. Caenepeel and K.
Janssen in [14]. We suggest to the interested reader the works above
for further details.

2.1 Cohomology of algebras over Hopf al-
gebras

In 1967, M. E. Sweedler, in his paper entitled Cohomology of Alge-
bras over Hopf Algebras, presented a cohomology theory for algebras
which are modules over a given Hopf algebra. In that work, the Hopf
algebras are cocommutative and the module algebras are commutative.

He defined this cohomology by means of an explicit complex. The
groups in this complex are the multiplicative group of invertible e-
lements in Hom(C, A), where A is an algebra and C is the under-
lying coalgebra of the Hopf algebra tensored with itself a number of
times. The complex arises as the chain complex associated with a semi-
cosimplicial complex whose face operators are induced by the maps



8 Chapter 2. Mathematical preliminaries

pi s @ — @, given by 1 (h°®...®h") = h°®.. . @hRTH .. .QR".

Then, Sweedler used familiar examples of Hopf algebras, like the
group algebra kG and the universal enveloping algebra UL of the Lie
algebra L, to show that the Hopf algebra cohomologies H*(kG, A) and
HY(UL, A) are canonically isomorphic to group cohomology H*(G, A)
and the Lie cohomology H!(L, A*), provided that the commutative
algebra A is an admissible kG or U L-module respectively.

The last half of his paper, Sweedler devoted to study extensions
and proved the usual result that H?(H, A) is isomorphic to the group
of equivalence classes of extensions, where part of the theory involves
the definition of certain algebras which are called crossed products.

These results are generalized for non-commutative Hopf algebras
and non-commutative algebras by Susan Montgomery.

In the following, we present the most important results developed by
Sweedler and Montgomery. We indicate [30] and [28] for more details.

2.1.1 Cohomology Definition

Let H be a cocommutative Hopf algebra and A a commutative
algebra. To construct a cochain complex, we must to dualize a chain
complex, whose objects are the H-module coalgebras {H®q+1}q20, the
face operators are

d; : e — H®"
(0 ®..0T,QTi41®...0%Ty) — To Q... L;Tiy1 ® ... Ty
fori=0,1,...,¢g—1land Oy(z0 ®...@zy) = (X0 ® ... Q@ Tq—1)e(Tq)-
For i =0,...,q the degeneracy operators are given by

5 - e ., ge't?
(o ®...Q0xq) = 90®...07;QlpQrit1Q...Q0xy

It’s easy to see that all face and degeneracy operators are H-module
coalgebra morphisms and satisfy the face-degeneracy operators identi-
ties.

Then, to obtain the cochain complex, suppose that A is an H-
module algebra and apply the contravariant functor Hompg( , A)*
(where Homp(_,A)* means the convolution-invertible-elements
in Hompg(_, A)) from cocommutative H-module coalgebras to abelian
groups in the chain complex above.

In fact, we recall that given a field k, k-bialgebra or a Hopf algebra
H and a k-algebra A, for each n > 0 we have the convolution algebras
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Homy, (H®", A), with convolution product given by
frght @ @) = f(hp) @ @hiy))g(hiz @ @ hiy),
and unit
1(h1 [N hn) = e’:‘H(hl) .. .5H(hn)1A.

In particular, for n = 0, we have
Homy (H®?, A) = Homy(k, A) = A.

The following result can be easily obtained, we leave the details of
the proof to the reader.

Proposition 2.1 Let H be a cocommutative bialgebra, or Hopf algebra
and A a commutative algebra. Then, for each n > 0 the convolution
algebras Homy(H®™, A) are commutative.

|

So, the objects of cochain complex are {HomH(H®q+1,A)X}qZO,
the coface operators, for ¢ =0, ..., q, are denoted by 9* and given by

9" : Hompy(H®, A)* — HomH(H®q+1,A)X, fori=0,...,q.

Definition 2.2 The homology of the cochain complex is deﬁnled by
means of the differential d~": Homy(H®") A)*— HO?’TLH(H®Q+,A)X
where

di7 = (%) % (8Y) L« .. % (09)FL
Thus, we have

0 1 n—1 . n
Homy (HE A * S Hompy (HEA)* S -+ "5 Hompy (H" 4)* %
Therefore, the cohomology of H in A is defined as the homology of
the above complex and the q-th group is given by

HY(H,A) := ker d?/Im(d?™"),
for ¢ > 0 and ker d°, for ¢ =0.

The theory introduced here comes from [27], where the homology of
a chain complex is defined. The Sweedler complex is obtained from a
contravariant functor applied to a chain complex, hence, it is a cochain
complex. Dualizing the theory in [27] one obtains the above homology
of {Hompy (H®"", A)*}.
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Remark 2.3 There is a nat?ml algebra isomorphism  between
Homy (H®'A) and Homy (H®" | A) induced by @9~ '—= @, 2 — 1@z,
This induces an isomorphism

v: Hompg(H®, A)* — HomH(H®q71,A)X.

Let v : H® A — A, given by ¥(h ® a) := h - a (remember that A
is an H-module algebra), then, with respect to ¢, the coface operator
9 : Homy (H®", A)* — HomH(H(X’q“,A)X corresponds to the map

59 : HomH(H(X’CFlJl)X — Hompg(H®", A)*

f = V(I f) ’
where (I @ f)(M' ®...®@h%) =h'- f(R? ®...® h?)
Fori=1,...,q — 1, the coface operator §* corresponds to

§': Homy(H® ', A)* — Homy(H®" A)*
f = fI®..Iemel®...®I)

where m is the multiplication in the ¢ — th position, which means
fI®.. . 0lomel®...0I)(he...0h) = f(h'®.. . @h'h T .. .h).
And the coface operator 97 corresponds to the map

89 HOTrLH(H‘X’rl,A)X — Hompg(H®", A)*
f — [f®e ’

given by f@e(h! ®...@h?) = f(h' ®...® h?1)e(h9).
Thus, if we define the differential DI=! : Hompg(H®" " A)* —
Homy (H®", A)* by

g—1 ‘
DT f) =y ® f)x H FI(FEDY 5 gD,
=1

the chain complex { Hom g (H®", A)*, D},>¢ is isomorphic to the chain
complex {HomH(H®q+l,A)X,dq}q20 which defines the cohomology
Hi(H,A), q>0.

Let us look at the groups of cohomology H'(H, A), for i = 0, 1.
In fact, for ¢ = 0, .T1T07rLH(1ET‘X’O7A)X ~ A* (A* means the invertible-
elements in A) and if a € H°(H, A), then (h-a)a™! = &(h), for all
h € H. Thus, h-a=¢e(h)a.
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If we denote by A the set of invariants {a € A| h-a= ¢(h)a,
Vh € H}, this is a subalgebra of A since A is an H-module algebra.
Suppose a € AX (" AH for all h € H,

e(h) = h-1=h-(aa™")
= Z(h(l) -a)(h) -a”t)

= ZE(h(l))a(h@) ah)
= a(h-a™)

which implies a=! € AX (N A and then, HY(H, A) = A%,
Fori=1,if f: H— Ais a l-cocycle then

pe@e)=D'(f)=vI @ f)*(fTlom)*(f®e),
which implies for all g, h € H, that

Flgh) = (9a) - F(ha))(F(9@)elh) =D _(9a) - F() F(gc2))-
Consider now A = AH | so, this reduces the equation above to

f(gh) = f(h)f(g)

and f is a homomorphism. In general f is a “crossed” homomorphism
and H'(H, A) is the group of regular crossed homomorphism modulo
the subgroup of regular inner crossed homomorphisms (that is, one of
the form D!(a) for a € A).

One way to validate these ideas is to do a comparison with the
theory of group cohomology. Suppose G is a group and kG the co-
commutative group algebra of G. Let A be a kG-module algebra. The
elements of G act as automorphisms of A, so they carry A* into it-
self. By restricting the module action, the multiplicative abelian group
A* becomes a G-module and one can consider the group cohomology
H(G,A*). Then, H1(kG, A) are canonically isomorphic to H(G, A*)
for all q.

In fact, this isomorphism is induced by a canonical isomorphism
between the standard complex to compute H?(kG, A) and the stan-
dard complex to compute H?(G, A*). For ¢1,...,g, € G, consider the
element 6y, ®...®d,, € kG ®...® kG such that

A(dy, ®...®0y,) = (0g, @...®0dg,) @ (0g, ®...® dg,).

Thus f~1(0g, ®...®d,)=(f(0g,®...®d,,)) " and f(dg, ®...®5,, )€ A*
for all f € Hompg(kG®", A)*. Note that the map G x ... x G —
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kG ® ... ® kG given by g1 X ... X g4 = 0y, @ ... ® §,y, induces the
group homomorphism Homyg(EG®", A)* — Homee (G x...x G, A%),
because {dg, ® ... ® dg,l91 X ... X g4 € G x ... x G} is a basis for
kG ®...QkG.

When ¢ = 0, Homge(kG®”, A)* = Hom(k, A)* which is canoni-
cally isomorphic to A*, the 0-th group in the standard group cohomol-
ogy complex.

Then, the group morphism Hompg (kGEA)—=Hom e, (GX. . XG,AX)
and Hom;gg(k'G@O,A) = Hom(k, A) form a morphism of complexes
and H1(kG, A) ~ H1(G, A*).

2.1.2 Crossed products, equivalences classes of cleft
extensions and H?(H, A)

In [10], 1986, R. Blattner, M. Cohen e S. Montgomery extended
the notions of Crossed Product and Inner (weak) actions of arbitrary
Hopf algebras on noncommutative algebras. Then, in [28], 1992, S.
Montgomery characterized a Hopf crossed product as a cleft extension
and gave necessary and sufficient conditions for two crossed products
to be isomorphic.

First of all, we say that an arbitrary Hopf algebra H measures an
algebra A if there is a k-linear map H ® A — A given by h®a — h-a,
such that h-14 = (h)14 and h - (ab) = > (h(1) - a)(h(g) - b), for all
he H,a, be A

Definition 2.4 Let H be a Hopf algebra and A an algebra. Assume
that H measures A and that o is an invertible map in Hom(H®H, A).
The crossed product A#,H of A with H is the set A® H as a vector
space, with multiplication

(a#th)(b#k) = D alhqy - b)o(he), k) #his ke
forallh, k€ H, a, b€ A. Here we write a#h for the tensor a @ h.
Lemma 2.5 A#,H is an associative algebra with identity element

1#1 if and only if the following two conditions are satisfied:
(1) A is a twisted H-module, that is, 15 - a = a, for all a« € A and

he(k-a) =Y o(hay k) (hake) - a)o~" (hs), k), (2.1)

all h, k€ H, a € A.



2.1 Cohomology of algebras over Hopf algebras 13

(2) o is a cocycle, that is, o(h,1g) = o(1g,h) =e(h)la, all h € H,
and

> (- ok L))o (b kele)=_olba), ka)oteke)lz) (2.2)

for all h, k, l € H.
O

Note that A need not be an H-module and that o does not necessar-
ily have values in the center of A. In the case where A is commutative
and H is cocommutative we always have that A is an H-module and
then, (2.1) is not needed. The next proposition gives a necessary and
sufficient condition for A to be an H-module when H is cocommutative.

Proposition 2.6 Let H be cocommutative and A a twisted H-module
which is measured by H. Then, A is an H-module if, and only if,
o(H® H) C Z(A), the center of A.

O

To characterize crossed products B = A#,H as special kind of
extensions A C B, we recall

Definition 2.7 Let A C B be k-algebras, and H a Hopf algebra.

(1) A C B is a (right) H-extension if B is a right H-comodule
algebra with B = A.

(2) The H-extension A C B is H-cleft if there exists a right H-co-
module map v : H — B which is (convolution) invertible.

Observe that we always can assume y(1gy) = 1. In fact, if not, we

replace v by 7 = 7(1)_17.
To prove that cleft extensions are related with crossed products, we
need the follows results:

Proposition 2.8 Let A C B be a right H-extension, which is H-cleft
via v : H — B such that v(1y) = 1. Then, there is an action of H
on A, given by

h-a=> y(hw)ay '(he), VacAheH (2.3)
and a convolution invertible map o : H @ H — A given by
a(h k) =Y yhaykay)y  (hake),  Vh ke H  (24)

This action endows B with a structure of an H-crossed product
over A. Moreover, the algebra isomorphism ® : A#,H — B given
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by a#th — avy(h) is both a left A-module and right H-comodule map,
where A4, H is a right H-comodule via a#th — ) a#hn) @ hg).

We require a technical lemma.

Lemma 2.9 Assume that A C B is a right H-extension, via p : B —
B® H, and that A C B is H-cleft via v with v(1g) = 15. Then,
(1) poyt=(7'®8)oToA;
(2) for any b € B, > byy ' (ba)) € A = BH,
O

The lemma enables us to define an inverse of ®. In fact, we can
define

U:B = A#,H by b— Z boyy~ b(l) #b(2)-

Proposition 2.10 Let A#,H be a crossed product, and define the map
v: H — A#,H by v(h) = 1a#h. Then, v is convolution-invertible,
with inverse

=D 0 (S(h2), h))#S (b))
In particular, A — A#,H is H-cleft.

Then, we conclude

Theorem 2.11 An H-extension A C B is H-cleft if, and only
if, B~ A#,H
O

Another important result about crossed products is to stablish nec-
essary and sufficient conditions for two crossed products to be isomor-
phic.

Theorem 2.12 Let A be an algebra and H be a Hopf algebra, with two
crossed product actions h®@a — h-a, h® a— hea with respect to two
cocycles o, o' : H® H — A, respectively. Assume that

¢ A# H — A#SH

is an algebra isomorphism, which is also a left A-module, right H-
comodule map. Then, there exists an invertible map v € Hom(H, A)
such that, for alla € A, h, k € H,
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(1) ¢(a#th) = > au(h))#° hea);
(ii) hea =Y u"(ha))(he) - a)u(hgs));
(iil) o’ (h, k) = 2o u™ (k) (h2) - u™ (kq)))o(he), ki) ) ulhayks))-
Conversely given a map u € Hom(H, A) such that (ii) and (iii) hold,
then, the map ¢ in (i) is an isomorphism.
O

The theorem above suggests the following definition:

Definition 2.13 Let H be a Hopf algebra and A an algebra. Two
crossed products A#,H and A#5 H are equivalent if there ezxists an
algebra isomorphism ¢ : A#,H — A#>, H which is a left A-module,
right H-comodule morphism.

These ideas shown here were intended to generate a general coho-
mology theory for algebras over Hopf algebras, however, in the last two
decades it has not yet been possible to make much progress in this re-
gard. We recall that in [30], it was proved that for H cocommutative
and A commutative, there is a bijective correspondence between the
second cohomology group H?(H, A) and the equivalence classes of H-
cleft extensions B of A. Note that in this case A is an H-module, and
in addition all the crossed products in a given equivalence class have
the same H-action, by 2.12, (ii). Only the cocycle may be differ.

2.2 Partial cohomology of groups

In this section, we present the begining of the theory developed
by M. Dokuchaev and M. Khrypchenko who inspirate us to think in
cohomology for partial actions of Hopf algebras. In their paper, they
introduced a new kind of cohomology theory of groups where partial
actions of groups over commutative monoids are considered. Their
ideas consisted to consider a unital twisted partial action of a group G
on a commutative ring A, then, they can derive the concept of a partial
2-cocycle (the twisting) whose values belong to groups of invertible
elements of appropriate ideals of A. By an equivalence of twisted partial
actions introduced in [18], the concept of a partial 2-coboundary follows
and then, replacing A by a commutative multiplicative monoid, the
second cohomology group H?(G, A) is defined. In a similar way, we are
able to define the n-th groups cohomology H™ (G, A) with arbitrary n.
For more details, we suggest [19].
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Let G a group and A a semigroup. A partial action 6 of G on A is
a collection of semigroup isomorphisms 6, : A,-1 — A, where A, is
an ideal of A, z € GG, such that

(i) A; = A and 6, = Idu;

(iii) 6y 00y = Oy o0 Ay-1 [V Ay-1,-1.

When A is a commutative monoid and each ideal A, is unital, i.e.,
A, is generated by an idempotent 1, = 14, which is central in A, we
shall say that 6 is a unital partial action. Then A, (A, = A, A4,, so
the properties (ii) and (iii) from the above definition can be replaced
by

(i) O,(Ap-1Ay) = Az Agy;

(1117) 93; ] 9y = ny on Ay71Ay71z71.

We observe that (ii’) implies a more general equality

0p(Ay-1Ay, .. Ay) = AgAyy, ... Auy. | (2.5)

which follows because A,-14,, ... A, = (A;-14,,)...(Az-14,,).

Definition 2.14 A commutative monoid A with a unital partial action
0 of G on A will be called a (unital) partial G-module.

A morphism of partial actions (A,0) — (A’,6) of G is a homo-
morphism of semigroups ¢ : A — A’ such that ¢(A,) C A’ and
po0b,=0_0¢pon A,-1.

We denote by pMod(G) the category of (unital) partial G-modules
and their homomorphisms. Sometimes (A, #) will be simplified to A.

Definition 2.15 Let A € pMod(G) and n be a positive integer. An
n-cochain of G with values in A is a function f : G* — A, such
that f(xy,...,2,) is an invertible element of the ideal A¢,, . ..y =
Ag Asizy - Az 3, - By a 0-cochain we shall mean an invertible ele-
ment of A.

Denote the set of n-cochains by C"(G, A). It is an abelian group
under the pointwise multiplication. Indeed, its identity is

en(®1, . xn) = 1o Loyag oo lay oz

and the inverse of f € C"(G, A)is f~Y(x1,...,2n) = f(1,..., 7)1,
where f(21,...,2,)"" means the inverse of f(x1,...,2n)in Ay, 2.)-
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Definition 2.16 Let (A,0) € pMod(G) and n be a positive integer.
For any f € C™"(G,A) and z1,...,z,41 € G define

0" )@y, xpp1) = Gwl(lw;lf(gc27...,xn+1))

n
H Flay,. . mmig, o ag) Y
i=1

n41

f(xla"~7zn)(71) (26)

Here the inverse elements are taken in the corresponding ideals. If n =20

and a is an invertible element of A, we set (8°a)(x) = 0,(1,-1a)a™".

The next result shows us that 6™ is a homomorphism such that
o167 f = e, 12. We present the full prove for the reader to compare
with the results obtained later for partial cohomology of Hopf algebras.

Proposition 2.17 [19] The map 6" : C"(G,A) — C"TY(G,A) is a
homomorphism such that

"M f = epyn (2.7)
for any f € C™(G, A).

Proof: Let f € C"(G, A). We check first that 5" f € C"T1(G, A).
Indeed, for z1, ..., 2,1 € G the element f(xa,...,zp41) is invertible in
Algs,.. y- Then, being multiplied by 1x;1, it becomes an invertible

element of A 1A, .
: :

s Tn+1
.ans1)- Lherefore, 0, (x7 ' f(way ..., Tpy)) is in-
vertiblein Ay, . ., ) because 6, maps isomorphically AzlflA(Iz,__wn“)
onto Ay, .. «,.,) by 2.5. Since the product of invertible elements of
some ideals is invertible in the product of these ideals, then by 2.6 the
image (0" f)(x1,...,%n+1) is invertible in

A(Il ..... :l?n+1) <H A(Il ..... :Ei:Ei+1) ..... mn+1)> A(Il ..... In) = A(Il ..... In+1)‘

As A is a commutative, to see that ™ is a homomorphism, it suffices
to note that

0, (135;1 fo(za, ..., xny1))
9351(1%71 f(za,... ,xn+1)1x;1g(x2, e Tp1)
0$1(1m;1f(x27 s 7xn+1))9$1(1xflg($27 e 7In+1))
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It remains to prove that &6"T16"f = e,4o. Take arbitrary
T1,...,Tnio € G. The factors in the product (6" 16" f)(z1,. .., Tni2)
to which the partial actions is applied are as follows:

o (L 100y (L1 f (@5, @s2)),
E1I2(1x;11;1f(x37 s >$n+2)71)a

_qyn+1
T lmflf I23-~'axn+1)( 2 )7

_ n+2
=D

)

0

0

0z, (
93;1(196;1f(x2,...,xn+1)
0 (1x;1f(x2,...,xixi+1,...,mm_g)(_l)iil), 2>i>n+1,
O, ( (

—1)¢ .
T 1I;1f $2,.~.,xi$i+17...,$n+2)( ))7 2>12>2n+1.

The product of all the factors, except the first two, is ep42(z1, . . ., Tny2)
for n < 1. For n = 0 the product is e;(z1). Furthermore,

0931 (1I1_1912 (19}2—1]0(:637 ey $n+2))) =
= 6961 (awz(lxgllxglelf(x?n cee 7xn+2)>)
= 93;13;2 (lmgl 1127195171 f(aig, ey xn+2))
By the property (iii’) from the definition of a partial action. After
multiplying this by the second factor we shall obtain
9351352 (1x;1 1x;1$;1€n($3, ceey l‘n+2)) = 1351 11112(8”(371.132333, T4y, acn+2)
=ent2(T15- .-, Tnta).
Any other factor in (616" f)(x1,...,7,12) appears together with
its inverse, as in the classical case, and multiplying such a pair we
obtain a product of some of the idempotents 1,,, 1y 5,,.... Thus,

("6 f) (21, .+, Tna2) = enaa(®1, ..., Tnyo) as desired.
[ |

Definition 2.18 The map 0™ is called a coboundary homomorphism.
As in the classical case, we define the abelian grups Z™(G, A) = kerd™,
B™"(G,A) = Imé"~ ! and H"(G,A) = kerd™/Imé"~' of partial n-
cocycles, n-coboundaries and n-cohomologies of G with values in A,
n<1 (H°G,A)=2°G,A) = kerd®).

For example,

HY(G,A)=Z°(G,A) = {a € A*|0,(1,-1a) = 1,a,Vx € G}
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BYG,A) = {f € CHG, A)|f(z) = 0,(1,-1aa" "), for some a € A*}

(here and below A* denotes the group of invertible elements of A).
Notice that H°(G, A) is the subgroup of 0-invariants of A*. Further-
more, for f € C1(G, A)

(0" f)(@,y) = 0u (1o f()) f(zy) " f (=),
Zl(GvA) = {f € CI(G’ A)|1If(xy) = f(z)e”ﬂ(lelf(y)%vxvy € G}a
and, for some f € C1(G, A)
B*(G,A) ={g € C*(G, A)|g(x,y) = 0. (151 f(y)) f(zy) " f(2)}

For n = 2 we have

8 f(2,y,2) = O (L1 f(y, 2)) f (2, y2) " f (2, y) 7,
with f € C*(G, A), and V z,y,z € G,

ZQ(G’ A) = {f € CZ(G’A)lew(lzflf(:% z))f(x,yz) = f(xy, Z)f(xvy)}

Observe that if one takes a unital twisted partial action (see [[17],
Def. 2.1]) of G on a commutative ring A, then it is readily seen that the
twisting is a 2-cocycle with values in the partial G module A, and the
concept, of equivalent unital twisted partial actions from [[18], Def 6.1]
is exactly the notion of cohomologous 2-cocycles from Definition2.18.

2.3 Partial Actions of Hopf Algebras

The theory of partial actions appeared for the first time in [21],
where R. Exel introduced a new and successful method to study C*-
algebras. In this paper, Exel defined the notion of partial action of
a group G on a set X to calculate the K-theory of some C*-algebras
which have an action by automorphisms of the circle 8!. In [16], M.
Dokuchaev e R. Exel defined partial group actions on algebras and
partial skew group algebras, giving an algebraic context for partial ac-
tions and arousing the interest of algebraists. The algebraic theory of
partial actions and partial representations of groups urderwent several
advances and one of interest consists to extend Galois theory for com-
mutative algebras. Them, S. Caenepeel and K. Janssen [14], defined a
partial Hopf-Galois theory and introduced what is a partial action of a
Hopf algebra H over an algebra A.
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Definition 2.19 [14] A partial action of a Hopf algebra H over an
algebra A is a linear map - : H ® A — A, such that, for every a,b € A
and h,l € H, we have

(PA1) 1y - a = q;

(PA2) 1 - (ab) = (hq) - a)(hz) - b);

(PA3) h-(1-a) = (hay - 1a)(hl - a).

We say that the partial action is symmetric if, in addition, we have

(PA3’) h-(1-a) = (hyl - a)(he) - 1a) -

The algebra A with a partial action of H on A is said to be a partial
H-module algebra.

Note that, if H is a cocommutative Hopf algebra and A is a com-
mutative algebra, then every partial action of H on A is automatically
symmetric.

Example 2.20 [2] Let G be a group, recall that a partial action of G
over an algebra A is a pair ({Agtgea,{ag : Ag-1 = Aglgec), where
Ay is an ideal of A for each g € G and oy is an isomorphism of (not
necessarily unital) algebras. We say that the partial action of G on A
is unital if, for each g € G, Ay = 1,A, where 1, is a central idempotent
in A and oy is a unital isomorphism between Ay, and Ay. For the
case where H = kG, the group algebra of G, symmetric partial actions
of kG are in one to one correspondence with unital partial actions of G.
This correspondence can be easily seen: Given a unital partial action
({Ag = 14A geq, {ay : Ag-1 — Aglgea), one defines - : kKGR A — A,
by 64 - a = ag(1,-1a). Conversely, given a symmetric partial action
of kG over A, define, for each g € G, the idempotents 1, = d, - 14,
by them, construct the ideals A, = 1,A and the isomorphisms
Qg = dg '7|Ag_1-

Example 2.21 [2] Given a Hopf algebra H, a left H-module algebra
B and a central idempotent e € B, one can define a partial action of H
on A = eB. Denoting by > the action of H over B, the induced partial
action is given by h - ea = e(h> (ea)), for every a € B and h € H.

The next two examples will be explored with more details through-
out this paper for giving examples of cohomologies.

Example 2.22 Consider a group G, let us see the partial actions of
the Hopf algebra H = kG over A = k, the base field. A partial action
- kG ® k — k, associates to each g € G the linear transformation
0g-__ K =k, this is the same as defining a linear functional
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A1 kG — k. Denoting \(dy) simply by Ay, one can write §4 - a = A\ga,
for every a € k. Using the functional X\, the aziom (PA1) says that
Ae = 1, where e is the neutral element of the group G. Axiom (PA2),
in its turn, implies that Ay = A\gAg, for every g € G, and consequently
Ag =1 or Ay =0. Define

H:{QEG‘Agzl},

it is clear that e € H. Aziom (PA3) says that A\gAp = AgAgn, this
implies that for g,h € H, we have gh € H. Finally, putting h = g~*
in the previous identity, we conclude that g € H implies that g~' € H,
therefore H is a subgroup of G. It is easy to see that the action is global
if, and only if H = G. Then, we can label the partial actions of kG
over k by the subgroups of G.

Example 2.23 Let G be a finite abelian group and consider
H = (kG)* = (pg| g € G), the dual of the group algebra, with bialgebra
structure given by

Poph = OgnPgs 1= 1y Alpg) =D ph@purg, e(pg) = Ige.
9€G geG

As in the previous example, partial actions of (kG)* over k are
associated to a linear functional X\ : (kG)* — k defined by
Apg) = Ap, = pg - 1. In this case, the axzioms for a partial action
(PA1), (PA2) and (PA3) become, respectively

D=1 A= Mo e = Ao, Ao = Ao, Ay
geG heG

Defining L = {g € G| \p, # 0}, one can see that L is a subgroup
of G: First, as ) \p, = 1 then there exists some g € G such that
geG
Ap, # 0, and therefore L # (. Moreover, given g, h € L, (PA3) says
that 0 # Apg Apn = )\pghfl)\pg, which implies that )\pgrl # 0, and
therefore gh~! € L.
In order to analyse the possible values of A\, , for g € L, take g = h
in the third equation, then A\, A\, = A, Ay, = Ap Ay, . This implies
that, \,, = A,., Vg€ L. Flnally, from the ﬁrst equation,

1= Z)‘pg = Z/\pe = |L|/\pev
geG geL

and therefore A, = Ay, = ; L‘ for all g € L. We leave to the reader
the verification that the action is global if, and only if, L = G.
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We conclude that the partial actions of (kG)* over the base field k&
are classified by subgroups of G and given by

1
v - Jm 9el
P 0 ,otherwise.



Chapter 3

Cohomology for partial
actions

In his 1968’s seminal article, M.E. Sweeder presented a cohomology
theory for commutative algebras which are modules over a given cocom-
mutative Hopf algebra. Basically, the cochain complexes C"(H, A) are
defined as the abelian groups of the invertible elements of the commuta-
tive convolution algebras Homy(H®", A). The main difference between
the cohomology theory of global and partial actions is that in the par-
tial case one needs to find appropriated unital ideals in the convolution
algebras in order to define correctly the cochain complexes. These ide-
als are constructed upon a system of idempotents for the convolution
algebras.

Henceforth, for sake of simplicity, we will denote f(h! ® --- ® h")
just by f(hl... h™) and H is always a cocommutative Hopf algebra
acting partially on a commutative algebra A.

3.1 A system of idempotents for the convo-
lution algebras

We start introducing some idempotent elements of Homy(H®", A)
which are important throughout this thesis. As the convolution alge-
bras are commutative, for each n > 0, an idempotent is automatically a
central idempotent. Moreover, the convolution product of a finite num-
ber of idempotents is also an idempotent. In what follows, we introduce
a nested system of idempotents in the convolution algebra related to
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the partial action.

Proposition 3.1 For each n > 1, the linear maps

€n: aen — A
(M@ ---@h™) — (At h") 14

are idempotent in the corresponding convolution algebras Homy(H®™ A).

Proof: Indeed, consider n > 1 and (h! ® --- ® h") € H®", then

Enxen(ht, .. ") = ,én(h%l),.“ 1))€n(h(2 s hiy)
= ((hgy---hiyy) -1 )((h(z) hisy) - 1a)
= ((B' By 1a) (A W) ) - 1a)
P22 () 1y
= eu(ht, ... A",

This proves our statement.
[

Proposition 3.2 Let n < m and e € Homy(H®™, A) an idempotent,
then
epm =€REFR - Qe € Homk(H@’m,A)
\—,—/

m—n

is an idempotent in Homy(H®™, A).
Proof: Take any n < m and (h! ® --- ® k™) € H®™, then

En,m * €n m(hla hm) =

= emm(h%l), ey h?{))en m(h%2)7 ey hzg))

:6(h%1)7.. h(l))E( ) .6(h7(7ll))6(h%2), h?Z))a(h/?z)l)..-E( Eg))
:e(h%l)w"? )e(h (2)r le))f(h?1+)1) &( (1))5(h?;)rl)"'5( ?21))

e e(h', ..., h™)e(h™ ). e(h™)

=e(h',...,h™)e(h"TY) - e(h™)
= emm(hl, cey BT

The identity (x) follows from e(h(1))e(h2)) = e(ha)e(h@))) = e(h),
and therefore e, ., is idempotent.
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Definition 3.3 For arbitraryn > 1 and 1 <1 <n , we define:
€l 1= (el)ln*el®€H® Qeq.
n—l
Note that, for [ = n in the above definition €, ,, = €,.
Definition 3.4 For n > 1, we define
€n = €1y * Cop ¥k €y € Homyp(H®™, A).

The next proposition gives us a useful characterization of the idem-
potents e,, € Homy(H®", A).

Proposition 3.5 For any (h' ® ... ® k") € H®™ we have that
en(ht, .. Ry =R (B2 (.. - (h™-14)..).
Proof: Take (h! ®...® h™) € H®", then
en(h's. .. h™) = €1k oy x -k en(ht, ... A™)
= Enlh(rys- - h(y)e2n(hisys - hiay) - En(Riyy, - i)
= 51@%1)) (htyy) -+ e(hiyy)ea(ha), Blay)e(hlyy) - - € (h?z))
“en1(hy1) NN 11)) e(h(_1y))en(hinys - - b))
= (h(1)'1A) (h(1))"' (h )(h(z)h(z) 1a)e (h(g)) (h(z))
< (h{py iy - 1a)
(htyy - La)(higyhtyy - 1a) - (A(u_1yhfu_sy - Bt - 1a)
(R 1y - - hiy A" - 1a)
(hiyy - 1A)(h(2)h(1) 14)... ((h%n Whin_oy - D" ) - 1a)
(Rl iy k2, gy - B o)A - 1)
="ty - La)(higy by - 1a) - (Alyy - R 2R (R - 14))
( )
(
(
(
(

hiyy - 1a)(higyhtyy < 1a) - (A ) h?l)2 La)

iy - higy 2" (R™ - 14))

hiy) - 1A)(h(2)h(1) 1a) . ((hiy_g - h?1)3h" ) 1a)
(h{n—2) - 1z h" ") h" ™1 (W 14))

="(hiy) - 1a)(higyhtyy - La) - (b - AR 72 (BT (A" - 1))
S SRR T (1)) ).
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in which (---) between the last two equalities means applying repeat-
edly the process using (PA3) until we obtain the result.
|

3.2 Cochain complexes

Based on the idempotents defined in the previous section, one can
define the cochain complexes for the partial action of H on A. For each
n > 0 define the following ideals of Homy(H®", A):

I(H®", A) = e, * Homg(H®", A) = {e,, x g : g € Homy(H®", A)}.

As e, is a central idempotent, the ideal I(H®", A) can be considered
as a unital algebra with unit e,. An element f € I(H®" A) is said
to be (convolution) invertible in this ideal if there is another element
g € I(H®" A) such that fxg=gx* [ = e,.

Definition 3.6 Let H be a cocommutative bialgebra and A be a partial
H-module algebra with partial action - : H® A — A. Forn >0, a
“partial” n-cochain of H with values in A is an invertible element in the
ideal I(H®™, A). Denoting by C}.,.(H, A) the set of n-cochains, we have
that C' (H, A) = (I(H®™, A))*. For n =0 we say that a 0-cochain is

an invertible element in the agebra A, that is C2, (H, A) = A*.

par

Note that C? .(H,A) is an abelian group with respect to the con-

par

volution product, while C%, (H, A) = A*, is an abelian group with the

par
ordinary multiplication in A and the unit eg = 1 4.

Definition 3.7 For an arbitrary f € Cy, (H,A), (h' ®@--- @ h"t1) €
HO®" 1 we define the “partial” coboundary operator

Buf) (R Y = (B - f(hEy, - HESY) *
~1)i,g1 i i+1 n+1
% H =D (h(m),...,h(Hl)h(M),...,h(M))
=1

_ n+1 n
*f( 1) (h%n+2)’ ey (TL+2))'
If n=0 and a € A*, we have (§pa)(h) = (h-a)a?!.

The challenge is to prove that the coboundary operators are well
defined, that is, for every f € C}., (H, A), the map 0, f is indeed in
C;ﬁ;;l (H, A). Moreover, one needs to prove that the sequence

OO (H,A) %l (H,A) s on (1, A) S oL, A) 0

par par par par
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is a cochain complex, that is, each ¢, is a homomorphism of abelian
groups between C, (H, A) and C™FY(H, A) satisfying 6,4 106,(f) = ent2,

par par
for each f € ), (H, A). For this purpose, we introduce some auxiliary
operators which will help us to describe the coboundary operators in
a more intrinsic way and whose properties will lead us to the desired
results.

Definition 3.8 (1) For each n > 0 define the map E":C}, (H, A) =
Homy, (H®"+1 A), given by

E™(f)(hY, ... b =R f(R%, . AT,

(2) For n. < m define the map, in,m : C},,.(H, A) — Homy (H®™, A),
given by

inm(f) (R R™) = f(RY, .. R™M)e(h™Th) LLe(R™).
(3) For i € {1,...,n}, define the map p,; : H®"+t1 — H®" given by
pwilh'®... o) =rhe...erhr M e.. @ h").

With these auxiliary operators, the coboundary operator can be
rewritten as

8,:CT (H, A)—C7HL(H, A)

par par

f = 0 (f):= E"(f)* (ﬁlf(_l)io Mz) * in,n+1(f(_1)”+1) ;

and the properties of §,, are based upon the properties of these opera-
tors.

Lemma 3.9 (i) For f,g9eCyp,, (H, A), we have E"(fxg)=E"(f)«E"(g).

(ii) E™(en) = €nt1-

(iii) For n < m, we have iy o (f * g) = tnm(f) * in,m(g), for all
fy g€ Cp,.(H,A).

(iV) inm(en) * em = €.

(v) For f, g € Cp,.(H, A), we have (fg)ou; = (fopi)*(gop),
vVie{l,...,n}

(Vi) (en © Nn) * Z.n,n-i-l(en) = €n+1-

(vii) (en 0 ;) * €ny1 = €pt1, Vi € {l,--- ,n—1}

Proof: Take (h! ® --- @ h"t1) € H®" L then,
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(i) For f, g € Cp,,.(H, A),

E"(f * g)(hlv ceey hn+1) =h'. (f = g(h27 el hn-i-l))
= W (fGy - B h hi )
= (htny - (FBays o BT gy - (9o 5))

= E"(N)(htrys-- s BESHE™ (@) (Al -5 ).

E™(en)(RY, ... h" ) =Rl e, (B2, ..., R
R (R (. (BT 1))
= €n+1(h17...,hn+1).

(iii) For n <m and f, g € C7,.(H, A).

par

()L R = Fag(B ()
= f(h(ll), . h?l))g(h%z), e h"(g))g(g(h?l-‘y)-l)h?;)_l)
Pty e gy By (A )
= inner (DG, B innsr (9) (), - By )
= dpr1(f) % g1 (9)(hY, . A7),

(iv) Take h! ®@...® h™ € H®™ then,

inom(en) * em (R, ... B™) =

= dnm(en)(hirys -5 B em(Blay, - - hi3)

= enllays - Mo o) (g (- (yy (B (-
o (hBya). . ))). )

= (bl (oo (Bl 1) D)) (g (oo (Rl - (1 (L
(R 14 ) )

(Péz)hl-[(hfl)-(. (i La) D)) (WG (o (Bl (A (.

ce(R™14)00)) )]

YR (o (R (La(R™ T (B 1)) )
= At (RE (0 (R (BT (B 1)) )
= en(ht, ..., A™).

(PA2)
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(v) For alli € {1,...,n} and for f, g € C},.(H, A)

(fxg)ous(h, ... Bt RFY . hT) =
=(fxg)(R', ... WRTY . AmHY
=f(hirys - (BB ), g (Rys ooy (RTRTH) 9, RS
=f(hirys - hinyh(h s B9 (hGays -- Pigy iy - A
=foui(hyy:-- - él)ﬁﬁr)lv---vh?ﬂl)goui(hé),..., 22),hz';“)1,...,h?2§1)
=(fou)*(gou)ht,. .. B, KT . R"TY),

(vi)

(n © tin) *in i1 (en) (R, ... W) =

= en o tin(hlrys -y S innra(en) (hizys - By, BT

= enlhfay:-- Ay b Den(hlay. - b e(hiy]")

= (Al (B2 (c o (B 1) ) (hlyy (B2 (. (Bl 1a) - )
(PA2),y (B2 (oo (R R 1) ) (B - (o (Bl - 1a) )]

= Bl. (B2 (.. - (h”—l . [(h?l)hn-i-l “14)( ?2) 1)) ..0)

(PA3) n— n n
=Rt (RE (o (R (A (AT 1)) )
= 6n+1(h1,...,hn+1).
(vii)
(€n o p1i) * enir (b, ... A RITE AT =
= en0ilhlyys- - Py ity B Denti(Blays - - igy gy - s )
= en(h%l), cee zl)hﬁr)l, ey h?f)rl)(h%z) (e (hb) . (hg)l (...
(A A) e ))) )
= (hiry (B b (BEE1A) ) ) (o (- (Al (R (-
(bt a) ) )
(PA2) i opi n i i
=TRN(Gy (BB M) ) D (g (- () (R (-
o (B LAY ) )
= (e (R (R (B 1a) - D) (Bl (R (-
o (hE LA D) )
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PR i R (W2 - (o (R 1) 1))
(higylgy - (g - (o (Rt 1a) o)) (Bisy - 1a))) )
B O (N KaaR (e R s WY O [ O
- (A La) - DRy La)) - )

LD (B (i W (B2 (e (R 1) )] (Bl 1)) )

LI e (0 (B (B (W2 (e (B 1)) )

= €n+1<h1, .. .,hn+1).
|

Theorem 3.10 For any n > 0 and f € C}, (H,A), the linear map
Su(f) : HE™ L — A belongs to CTIY(H,A). Moreover, the map

par

Op 1 C" (H,A) — C™ Y (H,A) is a morphism of abelian groups.

par par

Proof: If f € C},,.(H,A), then, f = f *e, and it is invertible with
respect to the convolution. Consider the expression for d,,(f),

n

onlf) = B () H FV 0 i ki (FCVT).

i=1

Using items (i), (iii) and (v) of Lemma 3.9 and using the fact that
the convolution algebra Homy (H®"*1, A) is commutative, we conclude
that 0,(f * g) = 0n(f) * 0,(g), in particular 0,(f) = d,(f *xen) =
On(f)*0n(en). By item (ii), we know that E™(e,,) = en4+1 and by items
(iv), (vi) and (vii) we see that the unit e, absorbs the other factors,
leading to d0,(e,) = ent+1. Then we have 6,(f) = 0,(f) * epnt1. A
straightforward calculation leads us to 6, (f %) = (6,(f))~! Therefore,
we proved that d,, is well defined and it is a morphism of abelian groups.

|

In order to prove that §,,1100,(f) = ent2, forevery f € Cp,.(H, A),
we need the following lemma.

Lemma 3.11 Let f € C",1(H, A), then

(Z) En(in—l,n(f)) - Z‘n,n—&-l(Enil(f))'

(7) (€n—10 p; O fhit1) * €ny1 = €pt1, for alli e {1,--- ,n—1}.
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(i4) (en—1 0 f1i © fliyj) * €nt1 = epy1, Vi € {1,--- ,n—1}, j €
(2 on—i}.

(i) E™(fou)=E""'(f)opir, Vie{l,...,n—1}.
(v) E" o E"'(f) = i1ny1(€1) ¥ (E"1(f) 0 ).

(Vi) in 1 (fori) kin—1.n(f 1) opi =inni1(en—101;), Vie{l,...,n—1}.

(vii) (in—1,n(f) © pn) *in—1,n41(f ") = dn—1,n41(€n—1)-

(viii) (fopiop)*(f~ opiopisr) = enropiop, Vie{l,...,n—1}.

(iz) (f o pi o pivg) * (71 0 piyj1 0 i) = en—10 i 0 piyj, for all

ie{l,....,n—2}, forallj€{2,...,n—i}.
Proof: Let f € C" 1(H,A) and h!' ® ... @ h"Tt € H®" 1 then

(i)
En(in—l,n(f))(h17 IR thrl) =h'. (in—l,n(f)(h27 R thrl))
= B (f(R®,... RM)e(R™TY) = (B h™))e(h™HT)
(B™ YN, W) e(B™ ) = i (B (F) (RY, ... A,

(ii) For every i € {1,...,n — 1},

(En—10 Hi © fiy1) * €n+1(h1, R hnH) =

_ 1 i i+l i42 n+1 1 (n+1)
= enfl(h(l),...,hil)h(i‘r) h(i‘r) ,...7h(1<")> >€n+1(h(2),...7h(2) )

= Dy o (bR G (R 14) ) )

(hig) - (- (hiy - (hl(';)1 : (hgf (s (h?;)l “14). ) -.)

R (B2 (e [y R R - e (RESY 1a) )

(Riay - (higy - (g - (oo (R 1a) 2 9)))]- )

R (R (o (R R R - e (RS 14) )

(higyligy - (g - (o (Bt 1a) - ) (hizy - 1a)] )

R (R (e (R R R - (o (RS 1a) )

(Rioyhidy hay (oo (R 1) - D (g hid - 1a) (hlgy-14)] - )
R (B2 (e (R b R (e (B 1) ) (B his) - 1a)

' (1)
(hiz) - 1a)]-..))

(PA2)

(PA3)

(PA3)

(PA3)
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LD P2 By W2 (B 1) ) (L)) )
— RU (B2 (e (R (R (R (1)) )

= eppi(ht, ... BT,

(iii) Fori € {1,--- ,n—1}, j € {2,--- ,n — i}, we have

(€n—1 0 i © prigs) * engr(h', ... B T1) =
= en1(hfy), - (Dhg{;, el hz;ﬂhgj)ﬂ“, s hgl)
en+1( (2> (2),hg)1,...,hgf h?*f“,...,hgl)
= iy G (Al b (BETRET () 2 2)) ) )
h(g)( <(hig (hgf( (hig - (hig) (R L)) ) )
(PA2)

=
N
=
N
=

RA[(BGy (e (By R (AT R (R 1a) )
(hé)-(.---(hb)-(h’“-( (higy (i ™ (g La). ). ) )
= WM (R (TR TG (B L)) )

(Rl (B (oo (- (1), ). D))

2)
UL i R R T L), ). ))
(g MBI BB (0. ). D)l L))
FADpL (. .-(th iy 2 (R R 1)) )
(2 BB 1) 0) o D (B L))
CEIR 0 (R B (2 (e (R (R R (L
o L) ) g i T (B D D (BlayTa)) )
(PA3)h1 ( (hz 1 [(hzl)hH—l [ (hz-H 1 [(hz-l‘r)JhE-‘r)J-i-l (hz-i-)]-ﬂ.(.“
(R 1) »xmgh”ﬁl<w§+2< 1))
<m§ A< Dby - 1))

(€0)

(BT DB TG (B L) DR LA Dy La))- )

(PA2) i— % i i+j— 1+7 11475 [
OB (T (B L (R (TR (TR
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(PA2) i i
ZRL (W[

(PA3)

hl

(€0)

SR L .))])(hgf 14)]- - D) (hizy - 1)) -.)
e (R [(RG R  [(R (R (R (L

(" 1) D) D(hig) 1)) )

pitl N (hiJrjfl . [(hl('-l‘r)jhiJerrl . [(hi+j+2 (...

PP (W (W (- (0 (R (R

SR (CARER VIRISS)))) FESS))) SOy

= enp1(ht, ... A"Th).

(iv) In fact, for every i € {1,...,n — 1}, we have

E"(f o i) (B, ..., h"+Y) =

1, . 2 % 1+1 142 n+1

h((fop)(h% ....,h", h SRR LR
i—th coord.

= R (f(R3,... AL, RITIRIT2 R,

On the other hand,

En_l(f) O Mi+1(h17 ey hn+1) =
= E" YA, .. R R Rt
R (f(h2, .. b RITIRITZ L pmL)),

So, we proved the equality.

i1na1(€r) x (B"7H(f) o) (A, ..., h"HY) =
i1,n41(€1 (h(1)7 .- hn+1)En 1(f) © .Ul(h(12)a - h?;)_l)

ex(hi)e(htyy) (b E" () (hiayhiays hizys - b )

)
(
(hiyy - La)e(hty) - (i ) (higyhlay - (F(Byys - EETH)))
(h(1 1A)5( ) (h?1+)1)(h(2)h%2)‘(f(h(2) ~ah?2J)rl)))
( 1A)(h12)h2 (F(A®,... h" 1))

(f

( (h%,....h" 1))

( E" 1( )(h2 h3 7thrl))
(E" Lt --,h"“)

"o Bn- 1(f)(h1, L AL,
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(vi) For i € {1,...,n — 1}, we have

in,n-‘rl( OMZ)*ZTL ln(fil)O,U«z(hl,...,thrl):

=it (f 0 i) (hfy ...,h?g Vip— ln(f—l)oui(h}g),...,h?2+)1)
=Fopulhtyy, - h) et in-1n(F ) iays - by gl Bt )
——
n—th coord
el i1 n+1 i Z+1 "+1
=flblyy e i R gy By hiEE R e(hTY)

:fo,uz'(h(ll),--- (1)7hz—51 ,h(l))f Oui( (2)r+ (2),}12;)17 . (2)) (hnﬂ)

=(fom)* (f~ op)(R', ... K" )e(h"H1)

:(f * fﬁl) © :ui(h17 B hn)g(hn+1)

=en_1opi(RY, ... h™)e(h™Th)

=inn+1(€n 0 ,ui)(hla ceey hn+1)'
(vii)

(in—l n(f) 0 tn) *in—1 71+1(f71)(h1v ) thrl) =

= (infl n(f) © ﬂn)( (1)r-- > h?l) )anl n+1<f )(h%z), HR) h?2+)1)
= it () By BRI F By B D) (e (BT
= f(hq, -~-’h?1)1) ( R (s - hisy De(hly) e(his) )
= f(h(l) "vh?l)l)f (h@), cel h&)l) e (1)hn+1)5(hn2)) (h?;)*l)
= (fx SO0 R (e (R
= (e )b, AP (A

= in—l,n+1(en—1)(h17 ceey hn+1).
(viii) For ¢ € {1,...,n — 1}, we have

(f o piop)* (f~ o piopipa)(hts ..., h" ) =
:foﬂioﬂi(h%l)r" hn+1)f71°ﬂioﬂi+1(h%2)v~- h?;)rl)
=foptihiyy oo i3y Py B F oty e i By By P )
=fhgy- - h R BT gy b3 R b))
=(f* f (Y. RRTTRITZ R
=e,_1(RY, ... RIRITIRITZ pnth)

=€p—10M; 0 /u‘i(hla ) hn+1)'

(ix) Forie {l,...,n—2} eje{2,...,n— i}, we have
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(f o piopuity)* (f7'o Mitj—1© wi) (R, R =
=fomio MiJrj(h%l)’ Y h?ﬁ)l)f_l © Hitj—10° Mi(hé)v S h?;)rl)
:fo:ui(h%l)" PRI .,h”+1)f_1o/~ti+jf1(h%2),. ) .,hfz)hgyl' . ~7h?2+)1)

(1) (@) (1)
_ 1 i gitl i+jpiti+l n+1
,f(h(l), e h(1)h(1) e vh(1) h(1) s ’h(1) )
-1 1 i i+l pi42 i+j n+1
F o mivjoi(hyy s Mgph!  hG .  hig) e hE
—— N~~~
i—th coord (i+j—1)—th coord
— 1 i g+l i+jpiti+l n+1
_f(h(l), ey h(1)h(1) e 7h(1) h(1) S ’h(1) )
—1/71 4 i+1 it+jpiti+l n+1
f (h(2),..., (Q)h@),...,h@) h(z) ,...,h(z) )

=(f* fH(AY, ... BRI R R gt
—e,_1(RY, .. RERITL LRI pntly
—€n—190 WU; © ui+j(hl, ceey hn+1).

With this lemma, one can prove the following result.

Theorem 3.12 For any feCy,,(H,A), we have that §,,+106n(f) =en+2.

Proof: Indeed, take any f € Cp,,.(H, A), then

Ont1(0n(f)) =
n+1 ) ,
=BG [T Gu) ™ 0 w20 (D))
n+1

=B o) ] S (FED) 0 iy # ing1mra (@ (FCDTY)
=B E" () []
j=1
n+1 n

« [T E )11 FED™ o g i (P

i=1 j=1

=1
i _1)J . _1\yn+1
FOV o g i (FDT))

ntit1

) © i

n

. n _1)nt+2 —
*2n+1,n+2(E (f( o )* H f( D

j=1

n+it2 . _1y2n+3
O [y * Zn,n+1(f( b )
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n n & En n -1t
= BB () [ B 0 ) % B (i aa (FOV)
Lemma 3.11 (v) =1 Lemma 3.11 (iv) Lemma 3.11 (i)

n+1 n+l n N

n i+J

HE (P Yo TTTT £ j O i

1=175=1

n+1

. _qyntitl . n _qyn+2
# T inann (PO 0 i st g (B (D))

i=1

. . _qyn+it+2 . . _ \2n43
*Zn+1,n+2(H f( b O,Ufj) *Zn+1,n+2(ln,n+1(f( D ))

=1
. ~ - _1)i , _qyn+1
=i1mp2(@)*E"(fopr [ [E"(FV ) opjta*intimiaE" (V)
j=1
n+1 n+l n .
JI B o [ITT A0 oo

i=1 i=1j=1

n+1 vt 42
# [T inntr PO ) 0 s % i (B(F7D7)

=1

1 2n+3

* H in+1,n+2(f(71)n+j+2 o ) * in,n+2(f(7 )

)

n+1 - n+1 )
. ~ n —1)7 n —-1)°
=11 nt2(€1)* H E™(FD7 ) o gk H E™(fV) oy
j=1 i=1
. n( p(—1)"t1 R nyg(—1)"+2
*Zn+1,n+2(E (f )) *Zn-&-l,n+2(E (f )
n+l n n
it . _1yntit2
* HH f( 2 oujoﬂi*HszanJrQ(f( 2 OMj)
i=1j=1 =1
n . _qyn+itl . _1)2n+2
* H Zn,n+1(f( b ) o pi * @n,n+1(f( 2 ) © tnt1
1=1
X _1\2n+3
*Zn,n+2(f( 2 )
n+1

i’Ll n+2 61 H En 1)j+1 *k f(fl)j) e} ‘LLJ

n+l n

. nt1 n+2 itj
*Zn+1,n+2( (f( D HHf -1 j O M

1=175=1
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o _qynti+2 o _qyntitl
*H int 12 (fCY Oﬂj)*HZn,nH(f( 2 ) © i

j=1 i=1

Lemma 3.11 (vi)

2n42 2n+43

)

) O HPn+1 * in,n+2(f(71)

Lemma 3.11 (vii)

*in,n+1 (f(il)

n+1
=itnr2@)x [[ E"(en)  opy*insinta( E'(en) )
i —— ——
Lemma 3.9 (i) Lemma 3.9 (i)
n+l n n
_1)¢td . .
* HH f( D™ g O Hi* H Zn+1,n+2(en © Nj) * Zn,n+2(en)
i=1j=1 j=1
n+1 n+l n
. ~ . _1)itd
:Z1,n+2(61)*H €En41 O Wy * Zn+1,n+2(6n+1)*H H f( D™ Hj O i
j=1 i=1j=1
n
* H Z‘n—i-l,n—Q—Q(en o NJ) * Z-n—}-l,n—i-Z(in,n—o—l(en))
j=1
n+1 n+1l n
. ~ . (,1)71+j
211,n+2(61)*H €En41 O Wy * Zn+1,n+2(6n+1)*H H f O g O Mg
j=1 i=1j=1
n—1
* H in-&—l,n—i—?(e’n © ,uj) * in-i—l,n-&-?(en o ,un) * in+1,7L+2(7;n,n+1(€n))
=1 Lemma 3.9 (vi)
n+1 n+1l n
. ~ . 1)+
=Z1,n+2(€1)*H€n+1 O py * Zn+1,n+2(en+1)*H Hf( D™, M O phy
j=1 i=1j=1
n—1
*H in+1,n+2(en o //4]) * in+1,n+2(en+1)
j=1
Lemma 3.9 (viz)
n+1 n+l n
. ~ . _1)it3
=i1np2(€1)* [ [ entr 0 1 % insrmra(ent)x [[ T[T £ 0y o
j=1 i=1j=1

*in+1,n+2 (en—i-l)
n
=11 nt2(€1)* H €nt1 O [j * €nt1 O Unt1 * Int1nt2(€nt1)
j=1

Lemma 3.9 (vi)
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n+1l n
_1yiti
LI /0 omom
i=1j=1
n n+l n N
itj
=irnya(@)  [] ent1omyxeniox [TT] £ j O Hi
j=1 i=1j5=1
Lemma 3.9 (vit)
n+l n "
. ~ —_ K
=ivn2(@) #enpor [[T] /Y omjom
i=1j=1
n+l n "
— T
=enor [[TT /7 omjom
i=1j=1
n 24 n 2i+1
=enpox [[ £ opiopx [T FOV 0 pio pisa +
i=1 i=1
Lemma 3.11 (viii)
n—1ln—i+1 - n—Iln—i+1 vits
i 1]
H Hf( 2 O [ O Hjtj* H Hf( 2 Oﬂz+j 10 Mg
=1 j=2 =1 j=2
Lemma 3.11 (iz)
n n—1ln—i+1
=E€p42% H €n O [i O [hi* H H €n O Wi O ity
i=1 i=1 j=2
=€n+2-
Since e,,42 absorbs e, op;op; foralli € {1,...,n} and e, op;0 4,
forallie{l,...,n—1},j€{2,...,n—i—1}, by Lemma 3.11 (ii) and

(iii) respectively, we conclude that 6n+1 00n(f) = ento as desired.
]

Therefore, we ended up with a cochain complex (C}.,,.(H, A), 0n)nen,
which allows us to define a cohomology theory.

3.3 Cohomologies

Definition 3.13 Let H be a cocommutative Hopf algebra acting par-
tially over a commutative algebra A and consider the cochain complex
(Cpor(H, A),6n)nen as defined in the previous section. For n > 0, de-
fine the groups of partial n-cocycles, partial n-coboundaries and partial
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n-cohomologies of H taking values in A , respectively, as the abelian
groups Z™(H,A) = kerd,, B"(H,A) = Im §,—1 and H"(H,A) =
ker 8,/ Im 8,-1. n > 1. For n =0, define H°(H, A) = Z°(H,A) =
ker dg.

Let us characterize the partial cocycles and the partial coboundaries
for n =0, 1 and 2.

For n = 0, we have by definition
H(H,A)=Z°H,A) ={a€ AX|h-a= (h-1a)a, Yh € H}.

Thus the partial O-cocycles are the elements of A invariant under
the partial action as defined in [3].
For n = 1, the partial 1-coboundaries are

B'(H,A) =Tm 6y = {f € Cp, (H, A)| 3a € A, f(h) = do(a)(h)},

this means
B'(H,A) = {f € Cpop(H,A) | Ja € A*,  f(h) = (h-a)a"'}.
Also, for f € CL, (H, A), we have
S = E*(f)hay, i) f~ (hayle) flhe))e(s)

= (hay - FUa))FHh@l@) f(he)els)-
Then, for all h, [ € H, the partial 1-cocycles are
( ) {f € par(H A)| 51( )(h7l) = eQ(hvl)}

={f€Cpor(H, A)|(h1y - FU)) S (hayli) f(hez)) = h-(1-14)}
={f€Cpor(H, A)|(h1y - fFUa))f (b)) = (hay - (L) - 1a)) f (A=)}

Due to the fact that for a 1-cocycle f we have f = ey x f, then the
condition of 1-cocycle can also be rewritten as

(hay - fU)) f(ha)) = (hay - 1a) f(h)l2)),
For n = 2, we have the partial 2-coboundaries

BZ(H A) {ge par(H A)Elfe par(H A) 51(f)(hal):g(hvl)}
= {g€Cl.(H A) ghl) = (hay fU))  (he) ) f(he))}-
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Also, for f € C2,.(H, A), we have

2

52(f)<h’ lvm) = Ez(f)* H f(_l)i O Mg * i2,3(f(_1)3)(h’ l’m)

i=1

= (hay fUay, ma)f ™ (heayli)me)f (e Lisyma)f ™ (hiay, lay)e(may).

Then, the partial 2 cocycles are

Z*(H,A)={f€C},.(H,A)|62(f)(h,l,m)=e3(h,l,m),Vh,l,m € H}
={feCl..(H,A)(hqy- fUay, m)f " (hylay m@)f (he), Lz ms)
7 ey lwy) =h-(L-(m-14)), V h,l,m € H}
={f € Cpo,(H, A)|(h1y - f(1y, m1))) f (h2y l2ymz) =
(hay - Uy - (may - La)) f (hylzy, mi2)) f(hs)s L)), ¥ hol,m € HY.

Again by absorption of units, one can rewrite the condition of 2-
cocycle as

(hay - f(Lay, m))f (heys Liymz) = (1) - La)f ()l 2y, m2)f (hz), L3)),

which is the form presented in [5].

Example 3.14 In the case of a global action of H over A, which is
equivalent to say that h-14 = e(h)14, Yh € H, the cochain complexes
are simply given by C™(H,A) = Homy(H®™", A)*. Then we recover
exactly the cohomology theory obtained by Sweedler in [30].

Example 3.15 Let G be a group and H = kG, the group algebra of G.
Using the canonical basis {6, € kG | g € G}, the azioms (PA1), (PA2)
and (PA3) of partial action read

(PA1) 6. -a=a, for every a € A;
(PA2) 4, - (ab) = (84 - a)(6g - D), for every g € G and a,b € A;
(PA3) 04 (0n -a) = (04 - 14)(0gn - @), for every g,h € G and a € A.

In order to calculate the partial n-cocycles, partial n-coboundaries
and partial n-cohomologies, we denote the coboundary operator by 9,
instead of 0y, to avoid confusion with the elements §, € kG.

For n =0, we have

HO(G, A) = Z°(kG, A) = {a € AX|(S, - a)a=" = (5, - 14), V0, € kG},
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For n =1, the 1-coboundaries are

B'(kG,A) ={f € Cpop(kG, A)| Ta € A% : f(3,) = Do(6,)(a)}
={f € Cpur(kG, A)| f(8y) = (J - a)a™"}.
Also, we have, for every f € C},,(kG, A),

O1(f)(8g,0n) = (85 - F(On)) " (84n) £ (3g).

Then, for all oy,6; € kG, we obtain the 1-cocycles

Z'(kG, A) ={f € Cpyp(kG, A)|01(£)(8g,0) =3¢ - (O - 14)}
={f € Cpar(kG, A)|(Jg - F(01))f(84) = (65 - 1a) f (Jgn)}-

For n = 2, the 2-coboundaries are

B?(kG, A) = {i€ Cpop (G, A)|3f € Cpoy (G, A) : 01(f )0y, 01) = (84, 0n)}
={i € Cpop (kG A)[i(0,01) = (85~ F (1)) f " (4n) F(34)}-

Moreover, for f € kG, A)

par(

B2(f)(8g,6ns61) = (64 - f (O, 01))f " (Bgn> 60) f (8, 6m) f " (895 On)-
Then, for all 64,0p,0; € kG, the partial 2-cocycles are

Z2(kG, A) = {f € Cpar(kG, A)| 02(f)(3g: 01, 01) = €3(0g, 0, 01) }
={f€Cpa, (kG A)| (55~ f (h, 0)) f (3g+ 6n1) = (8- La)f (Ogns 81)f (39 n)}-

This cohomology for partial actions of the group algebra kG corre-
sponds to the cohomology for partial group actions described in [19].
Recall from Exzample 2.20 that there is a one-to-one correspondence be-
tween partial actions of kG and unital partial actions of the group G,
given by Ag =14A in which 15 =04 - 14, and ag = (3g- _)[a _,. For
elements x1,...x, € G we define the ideals

j4(z = f1m114mlmz -'-fizlu‘zn7

Lyeees T )

where A,, = 1,,A. This expression for the ideals is natural, considering
the units

en(0uys--0z,) = 0uy + (0zy - (- (02, - 14))) = Luy Layay - Liy -
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The set of these ideals forms a semilattice, because the product of two
ideals of this type is also an ideal of this type, this product is commuta-
tive and each ideal is idempotent, that is Ay, .. 2 =A@y,...en)A (@, z0)-
This can be viewed easily by the properties of the system of idempotents
presented before.

The correspondence between the cochain complexes presented here
and those presented in [19] can be viewed more exactly by the identi-
fication of the convolution algebra Homy(kG®™, A) with the algebra of
functions Fun(G™, A), moreover, the functions f : G — A can also
be viewed as collections of elements of A indexed by n-tuples in G, that
i (91, 9n) = fo1...90 € L(g1.-g,)A- As the canonical basis elements
dg, for g € G are group-like, the convolution product is in fact the point-
wise product, that is, for f1, f?> € Fun(G"™, A) and g1,...,9, € G, we
have

fl * f2(gl, cgn) = f1(917 i "gn)fQ(gl, ceGn) = gll,...,gn 31,...,gn'
Therefore, the n-cochains Cp,,.(kG, A) coincide with the n-cochains
cr (G A).

par
The partial n-cocycles, partial n-coboundaries and partial n-cohomo-

logies in the group setting are written as.
HY(G,A)=Z2°(G,A) = {a € A|(ay(1,-1a))a™ ! =14, Vg € G},
For n =1 the partial 1-coboudaries are
BY(G,A) ={f € Cpur(G, A)| Fa € A%, f(g) = o(9)(a)}
={f € Cpur(G, A)| Ba € A*,  [f(g) = (ag(1g-1a))a™"}.
Moreover, for f € C},.(G,A) we have

O (f)(g.h) = (g Ag=1f(R) S (gh)f(9)-

Then, the partial 1-cocycles are

ZNG,A) ={f€Cpur(G, A)| 01(f)(9,h) = e2(g,h), ¥ g,h € G}
={f€Char(G, A)| (ag(1y-1 f(1))) f(9) =14 (gh), Vg, h € G}.

Note that §g- (0, -14) = (04-14)(6gn-14) = 141gn, and 1y, is absorbed
by f(gh).
For n = 2, the partial 2-coboundaries are
B*(G,A) ={i € C},.(G,A)3f € Cpy, (G, A),01(f)(g,h) = i(g,h)}
={i € Cpo (G, A)] ilg, h) = (ag(14-1 () f 1 (gh) F(9)}-
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For f € C2,,.(G, A), we have,

() (g, b 1) = (g (Lg=r f (R, 1)) f (gh, 1) f (g, WD) f~ (g, h),
then,

Z*(G,A)={fe€C2,.(G,A)| 02(f)(g,h,1)=es3(g,h,1),¥ g,h,l € G}
={feCL (G, Dl(ag(ly—1 f(h, D) f (g, hl) = 14f(gh, D f(g. h),Yg, h, 1€ G}.

Again, the appearance only of 1, in the right hand side of the 2-
cocycle condition is due to absorption of units.
Therefore, the cohomology obtained here is the same as in [19].

In the next subsection we will give more specific examples of co-
homologies for partial actions in which the algebra A is the base field
k.

3.4 Cohomology for partial actions on the
base field

Example 3.16 (Partial group actions over the base field) Let G
be a group. We have already seen in Example 2.22 that partial actions
kG over k are in correspondence with subgroups L < G by the linear
functional

A EG — k
1 , g€l
6g = Ag=A(dg) = { 0 , otherwise

Fix the subgroup L of G which defines the partial action. Let us now
calculate the cohomologies Hy, (kG,k) (we use the symbol Oy, for the
coboundary map to avoid confusion with the basis elements 0, € kG):

e Forn=0,C% (kG,k)=k* =k\{0}. Let a € C°, then,

par

1, gelL

(000)(3g) = (8 - a)a™" = Agaa™" =2y = { 0. g¢L

Therefore, HC . =70 =C0 =kX.

par par par

(kG, k). Then,

ar

(011)(8g:0n) = Mg f (0r) " (0gn) f(8g) = AgAn.

e Forn=1, lethZ;
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Denote f(04) simply by f(g) using the identification between the
convolution algebra and the algebras of functions f : G — k. If
g,h € L, then the 1-cocycle condition can be rewritten as
f(gh) = f(g)f(h), which means that f|, : kG — k* is a char-
acter of the subgroup L. If g ¢ L then it is easy to see that for
a 1-cocycle f, we have f(g) = 0. As the partial 1-coboundaries
are given by A : G — k such that A(g) = 1 for any g € L, we
have that H' = Z' /B! are given by the nontrivial 1-dimensional
representations of the subgroup L which determine the partial ac-
tion.

e Forn =2, letwe Z2, (kG,k). Then, denoting w(dg,dy) simply
by wy.n, we have

(Gw)(ég, 5}“ 5[) A gWh lwgh lo.)g hlwg h = A >\h)\l

It is easy to see from the identity above that, if (g,h) ¢ L x L
then wy ;, = 0. Then, definingw : G x G — k by

(o, (9.h) € L x L
“(g’h)—{ W(5g,5n), (g.h) €L XL

we have that the partial 2-cocycles relative to G are in fact usual
2-cocycles of the subgroup L [1, 81], in other words

Z}, (kG k) = Z*(L, k).

Example 3.17 (Partial group gradings over the base field) Let
G be a finite abelian group. In Example 2.23 we saw that the partial
actions of the Hopf algebra H = (kG)* = (py | g € G) over the base
field k are in one-to-one correspondence with subgroups L < G, namely

1
A _ m , g€ L
P 0 , otherwise.

Let us now calculate explicitly the partial cohomologies for (kG)*.

For n = 0, recalling that 6,(h) = (h-a)a™!, for every a € k>, we
have 0,(pg) = Ap,, and this leads to Z°((kG)*, k) = C°((kG)*, k) =
HO((kG)*,k) = k*. Moreover, the 1-coboundaries are basically given
by the functional \.

Forn =1, let w: (kG)* — k be a partial 1-cocycle, then



3.4 Cohomology for partial actions on the base field 45

Ay A, =0(w)(Pg:on) = Y (D1 - W(Pni-1))@(pi1pi)w(Prm-1)
I,m,ieG

= Z )\ml,lw(phl71))w(p[)w(pm—lg)-

l,meG

Recalling that e; ¥ w = w = w * ey and e1(py) = Ap,, we have

(61 *w)(pg):Z)\phw(ph—l |L| Z(JJ pqh pg ‘L|Z(JJ Pn- g

heG heL heL
This means that
pg |L|Z phg |L|Zw pgh
heL heL

For any g € L, we have w(p,) = \L| E (pr), which is an invari-

ance by translations in the subgroup. Furthermore, using the normal-
ization condition, w(1) = 1, we have that

1
| L|w(pe) Zw (pg) =1=w(py) = m,v g€ L.
g€l

We don’t have, a priori any further constraint for the values of
w(pg), for g ¢ L. If we impose that, w(p,) = 0, for g ¢ L, then
the only possible choice is the linear functional A : (kG)* — k, which
defines the partial action. Therefore,
ZE(RGY k) ={w kg —k, w(p,) =

par

B (kG)* k) ={A},
HY (KG)* k) ={w:kg —k, w(pg) =

par

1
mv gEL}a

El‘v g S va(pg) ?é 0’ g ¢ L}

Forn=2, first recall that eo = €5 1%€3 2, in which ez(h,1)=h-(1-14),
€2.1(h,1) = (h-14)e(l) and €22(h,1) = hl-14. Then, for g,h € G, we
have

W(pg:pn) = 21 *w(Dg:Pn) = Y _Apw(pi-19,Pn) |L|Zw Pi-1g:Ph)-
leG leL
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This leads to an invariance by translation on the left slot, that is
w(pig, pr) = w(pg, ), for any g,h € G and l € L. On the other hand,

W(pg,ph) = €2%w(PgPh) = O Apipnw(Pi-1g:Pm-11)
I,meL
= |L|Zw Pi-1g,P1-1h) |L|ZW DgsP1-1h)-
leL leL

This gives an invariance by translation on the right slot, that is,
w(pg, pin) = w(pg,pn), for any g,h € G and | € L. As these invariances
are independent, we have finally

wW(pigs Pmn) = W(Pg, Ph)s

foranyg,h € G andl,m € L [6]. This translation invariance is a useful
tool for searching solutions of partial 2-cocycles in specific cases. Be-
sides the translation invariance, we have the normalization constraint,
given by

w(l,pg) =w(pg,1) = == _w(pg,pn) =Y _w(pn,py), Vg€ L.
hel heL

Finally, we have the cocycle condition. For g,h,i € L, we have

1
|LJ3 = Apy Api Ap, = 0w (Pg, Phs Pi)
:Z)\plw(pr’pﬁw(plilmprfls ’pafly)w(pm*lm Ps—1Py-14 )w(p’rflgaptflh)
— N—

l,m,n,r,s,

t,x,yeL = I"im=r—1s =s lt=y—14

— s—1
= l=rms = t—1l=j—1ys—1

Zw pmpa: p7—157p$_1 ) (an_ln?py_li)w(pn_lgapi_lys_lh)

mnrs,
z,yeL

Z )‘Ps pm_lnapy_l) (pn_lgvpi_lys_lh)
m n,s,yeL

:|L| 2 (

n,s,yeL

Z ‘ pm 1ny Py— 1i)> w(pnflgapiflysfli)

meL

1 1
=17 w(pn, p —114)@(])”71 JDs—1yi=1h) T
|L| Z Y g y |L|

n,s,yeL
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1 _
= m Z W(pnvpyfli)w(pnflmpyi*lh)
n,yeL
| > @, p2)@(Pr-1g:Pa1h);

n, €L

—

1

in which () is taken putting y~'i = x and i~y = yi~' = 2. There-

fore,

1
TE > w(Pn P)@(Pr-1g,Pa-10)-
n,c€L
The next example is a specific case of a partial grading of the base
field for a fixed group G and a fixed subgroup L < G defining the
partial action.

Example 3.18 Fiz G=(a,b |a®>=b*=c)={e,a,b,ab} and L={(a), then
|L|=2. Let us calculate the partial 1-cocycles in this case. The invari-
ance by translations gives us w(p.) = w(pa) = and w(ps) = w(Pap) =y,
W(pe) =w(pa) =T and W(py) = W(pap) = Y-

By the normalization constraint > w(py) =1= > wW(py), we have

geG geG
1
r+y=—. (3.1)
2
and
_ 1
T+Y= 3 (3.2)
Moreover, the condition w xw = e, which can be written as
1
_ -1 g€L
Sty ={ 1057
heG g
gives us two equations,
1
TT Yy = 7, (3.3)
zy +yz = 0. (3.4)

Finally, the cocycle condition,
)\pg)\ph, = Zw(pm)w(pm_lh)w(pmh_lg)v
meG

gives us:
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e Forg=h=e,

W(Pe)w(pe)w (Pe) +w(Pa)@(pa)w(pa) +
+(pe)@(pe)w(pe) + w(Pab)@(Pab)w(Pas) = i

1 1
= 22%7 + 2%y = 1 = 2?7+ Y’y = 3

2— — — o 1
= Tty -y tyy=g
S 1
YST et eyt yym 'Y = g
1_ 2= o — 2— _ __
= 8—93x+xyy+yyw+yy—(ﬂs+y)(m+yy)-

This is the product of equations (8.1) and (8.3), therefore, no
new information is added. The same occurs for g =e and h = a,
g=aandh=ce, and g=h = a.

e Forg=eeh=",

w(pe)w(py)w(pp) + w(pa)w(pab)w(pab) +
+w (pb)w(pe)w(pe) + w(pab)w(pa)w(pa) =0.

= zyy + 2yy + 2y + 2yx = 0 = zyy + yzx = 0.

AsT+7y = %, then we have ry = 0. The same condition is
obtained for the cases g=e and h=ab, g=a and h="0, g=a
andh=ab,g=bandh=e,g=band h=a, g=ab and h = e,
and g = ab and h = a.

e Forg=beh=0,

w(pe)w(pb)w(pe) + w(pa)w(pab)w(pa) +
—H’u(pb)w(pe)w(pb) + w(pab)w(pa)w(pab) =0.

= PG+ 2P+ T+ T=0= 22T+ 4°T=0
= x2y+a:yy—xyy+y2f:()

wﬁgmyy :172@ + xyy + yxT + yzf =0

= 0 = 2%9 + 2yy + yaT + y°T = (x + y) (27 + yT).
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This equation is the product of (3.1) and (8.4), therefore, no new
information is added. The same occurs if we take g = b and
h=ab, g=ab and h =10, and g = h = ab.

Resuming, we have the following equations:

1
x+y=§, f""y:i’ xT+yy:Z’ zy+yxr =0, xy=0,
1
4 eL
h : ible solution i =Ny, =1 Y
whose unique possible solution zsw(pg) Pg { 0 ,9¢L

For n = 2, first note that w(pg,pn) = wW(Pag,Pr) = W(Pg,Pan) =
W(Pag>Pah), for every g,h € G, then,

® W(pe,pe) = w(Paspe) = W(Pe; Pa) = W(Pa; Pa);
e w(py,pe) = w(Pab, Pe) = W(Pb, Pa) = W(Pabs Pa);
o w(pe,pv) = w(Pa,Pv) = W(Pe, Pab) = W(Pas Pab);
w(py; o) = w(Pab, Pb) = W(Py, Pab) = W(Pab, Pab)-
The normalization constraint gives us
Zw(pgvph) = >‘pg = Zw(ph,pg)-
heG heG
Applying the above mnormalization constraint respectively for
g =e,a,b,ab, we have

o Forg=ce (A\,, =1/2),

1
W(PesPe) + W(Pes Pa) + wW(Des D) + W(Pe, Pab) = 3
1
W(Pe, Pe) + wW(Pa, Pe) + wW(Dps Pe) + wW(Pab, Pe) 2
1
W(pe,pe) +w(pe,pp) = 7 o W(pes py) = w(py, Pe)-
The same is obtained for g =a (\,, = 3).
o Forg=>5 (A, =0),
W(pp; pe) + wW(Pps Pa) + w(Pb, P6) + W(Pb; Pab) 0
W(pe, ) + W(Pa> ) + WPy, Pb) + W(Pab, ) = 0,

= w(pb’pb) = 7w(peapb) = 7w(pbape)-
The same is obtained for g = ab (\,,, =0).
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Therefore, the only remaining independent components are w(pe, Pe)
and w(pe,py). Moreover

1
W (pe, pe) +w(pe, pp) = 7.
The cocycle condition

hay - w(lny, meuy)w(h), lieyme)) = (hay - Dw(hey, [1)w(h@)le), m),

can be written, in our case, as

Zw(pga ps)w(phs*1 aplsfl) = Zw(pgs*l y Phs—1 )w(psvpl)-
seG SEG

This condition gives us 64 equations which are, in fact redundant,
that is, every 2-cochain in this case is a 2-cocycle

Finally, from w*W = eq, taking * = w(pe, Pe) and y = W(pe, pe), we
obtain the equation [6]

1
16xy—3(x+y)+§:0.



Chapter 4

The associated Hopf
algebra of a partial action

In [19], for a partial action 0 of a group G on a commutative algebra
A, the authors introduced the inverse semigroup g, given by the in-
vertible elements of all ideals of the form 1‘7,;1 1A, for xy, ... 2, €G
and n € N. Once showed that 6,(1,- 1A) =1, A in other Words 0

restricted to A defines a partial action 0 of Gon A such _that their
cohomologies are the same, that is, G,A) = G, A).

This construction brings advantages because A possesses a richer
structure than A and then one can study, for example, extension theory
by partial group actions from a wider perspective, namely, the theory
of extensions of inverse semigroups [20].

In our context, we can also have similar constructions, allowing
us to trade partial actions of a cocommutative Hopf algebra H on a
commutative algebra A by a partial action of H on a commutative and
cocommutative Hopf algebra A generating the same cohomology.

In order to proceed with the construction of this new Hopf algebra,
one has a technical obstruction concerning the invertible elements of the
algebra A. Indeed, the multiplicative abelian group A* embeds into the
abelian group C”..(H, A) for each n € N by the group monomorphisms

ar
Gp : A — Cgai(H A), given by ¢,(a) = ae,. These morphisms ¢,
are coherent with the coboundary morphisms, that is, for each n € N,
we have 4, o ¢,(a) = d,(ae,) = aent1 = ény1(a). Therefore, one
can construct a new cochain complex which gets rid of these invertible

elements and yet defining the same cohomology.

par( par(
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Definition 4.1 Let H be a cocommutative Hopf algebra and A be a
commutative partial H-module_algebra. We define, for n € N the n-th

reduced partial cochain group C;LQT(H, A) as the quotient abelian group
Cpar(H, A) 4

Proposition 4.2 The reduced partial cochain complex ézm(H, A) ge-
nerates cohomology groups isomorphic to those relative to the cochain

complex Cp,,.(H, A).

Proof: Indeed, denote, for each n € N, the n-th reduced cohomology
group by Hp,.(H, A) and define the map

" c Hy (H, A) = Hyy, (H,A) by 9" ([f]) = [fA7).
One can easily see that this map is well defined, surjective and it
is a morphism of abelian groups. The injectivity comes from the fact
that given a partial n-cochain f € C},,.(H,A) and a € A, we have
af * f~' = ae, = 0,_1(ae,_1), then f and af are cohomologous.
Therefore the cohomology groups H,,,,.(H, A) and H},,.(H, A) are iso-
morphic.
[ |

Remark 4.3 We will denote the reduced n-cochains again by f instead
of fA* in order to_make the notation cleaner. It is clear also that at
level zero we have CO, (H,A) = {14}.

par

Now, define the algebra A as the quotient A= , in which Ais the

free commutative unital algebra

<l sy

A=k[X1, Xpg, gy |n>1, hY . k" € H, f e Cl, (H,A)).

The set of variables runs over the distinct f € @?m(H ,A), that is, if
f and ¢ are two partial n-cochains such that f = ¢, then, for every
h'@---@h™ € H®™ we have X1, pny = Xgnr,. ). The ideal T is
taken exactly to recover certain properties from the original algebra A
and from the partial action of H. This ideal is generated by elements
of the type

Xl -1

b

(4.1)

A

X (4.2)

F(RY S0 Ashd k) T Z )‘in(hl,..i,h{,...h")’
7
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for each f € égar(H, A), Vn > 0;

.....

Z Y VTSR IETIEED SRR (4.3)

for each zero combination

> Aien, (WU REMY e, (RFUT L REO) = 0 € A

X p(hbyy ook ) X g(hly) oy ) — X (frg) (b1 hn) (4.4)

X(he(Fr (B I fyn (I Imenm )
— (X(h~f1(h1’1,‘“,h1‘"1)) + . + X(h‘fm(l””l 7777 lvn,nm))) ] (45)

X(lH.f(hl’“.’hn)) _Xf(hl"“’hn); (46)

X(h_(fl(hl,l 7777 hl’”l)...fm(lmJ ..... lm,nm))) -
~Xnay fr (a2, )y Xy fr (01t ); - (47)

and
X(he(e (b)) = Xy 1) X (hayke f (B, .hm))- (4.8)

Remark 4.4 1. Note that J is indeed an ideal of the algebra A\, for
example, an element h-(fi (R, ... hb™) o f (I L menm))
can be written as

prtetm (im,n1+--~+nm(f1) * (5®"1 ® iy ngttng, (f2)) 0

. *(E@(nl+-<-+nm,—1) ® fm)) (h, hl,l7 s hl’nl, s lm,l7 o 7lrn,nm)7

according to Definition 3.8.

2. The condition (4.1) means that the unit of the algebra A will play
the role of the unit of the algebra A.

3. The condition (4.3) refers to every linear combination of mono-
mials involving the units of the cochain groups 6;(" (H, A) which
vanish in the algebra A. Of course, some of these relations are
in fact present among elements of the form (4.2), but there are
other vanishing linear combinations in A involving partial actions
of elements of H upon the unit 14 which needed to be ruled out

in order to remember the structure of A.
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4. Casting out elements of the form (4.2) is needed to remember
that the generators of A are linear maps between H®™ and A. In
particular, in the quotient we have identities of the type

Xf(h17“7hi7_“,hn) = Xf(h1 hi hn)EH (hb)) =EH (hE ))X F(RL. R b))

2y
for each i € {1,...,n}, for each f € C? (H,A) for all n > 0.

par

5. Casting out elements of the form (4.4) is needed in order to
make the relations coming from the convolution product between
cochains be still valid in A.

6. Finally, we need to mod out elements of the form (4.5), (4.6),
(4.7) and (4.8) in order to recover the linearity of the partial
action of H on A and the identities coming from azioms (PA1),
(PA2) and (PAS3).

After taking the quotient, as far as it doesn’t lead to a misunder-
standing, we are going to denote the classes Xy,1, . pn)+J € A simply
by X¢mni,.. nn)

Define also the subalgebra of A, E(A) = (h-14 | h € H) and the
unit map 7 : E(A) — A given by

n((h' - 14) .. (A" 14)) = Xey (1) - - - Xey (hn)-

This map is well defined, because among the generators of the ideal
J which defines the algebra A there are all linear combinations rep-
resenting null combinations in A involving the units of the cochain
complex. Also, by construction it is an algebra morphism (note that

n(la) =X1, =15¢€ A, consequently, A is a E(A) algebra. Moreover,
the unit map is }\njectlve This can be easily seen considering the evalu-
ation map év : A — A which simply associate to each element of @ € A
its value at év(a) € A. Tt is easy to see that év(J) = 0, then one can
define a linear map ev : A — A with the same content. Therefore, if
n(a) = 0 in A, then a = ev(n(a)) = 0. By the injectivity of the unit
map, one can identify F(A) with its image in n(E(A)) C A.

Every element in the image of E(A) different from 1 3 can be written
as a combination of variables X, in which is the image of an idempotent
in Cz’}ar(H A) for some n > 0. In fact, what we are going to prove is
that one can rewrite an element of the form (h'-14)...(h"-14) as a
linear combination of images of the idempotent e,, € C;}ar( A). Let
us make induction on the number n of factors h - 14 1nv01ved. For
n =1, we have h-14 = ey (h).
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Now, suppose that the result is valid for r € N, 1 < r < n, that is,
(R 14) (B 1a) .. (B 1a) = en(l],
i=1

for some elements I/ € H, for i € {1,...,s} and j € {1,...7}. Take
Rt ... A" € H, then
(RY 1) (A% -14) ... (A" 14) = (RY - 1)[(R* - 14) ... (R" - 14)]
= D (W 1a)ena (.. 1Y)

i

= S @ (1))

%

= Z(h%n ) iy S(a) It - (2 - (- (177 1a) )
Zhl (@@ 1))

= Zen(h(l)vs(h( ))lzlal?, '-vlzn_l)'

%

This proves our claim. Moreover, for each n > 0, we have
en(ht, ... h") € E(A). Indeed,

en(ht, ... Ry =Rt (B2 (... - (R"-14)...))
(hyy - 1a)(higyh? - (... - (W™ -1a)...))
= (h(1) lA)(h(z)h(l) 1A)(h(3)h(2)hd (oo (A" 14).00)
= (hry 1a)(hipyhtyy - 1a) - (higyhyy - Ry R 1) € B(A).

Our construction will enable us to see a richer structure on the
algebra A with the advantage of getting the same cohomology theory
as the original algebra A.

Theorem 4.5 Let H be a cocommutative Hopf algebra H and_ A be
commutative partial H-module algebra A. Then the algebra A is a
commutative and cocommutative Hopf algebra which is also a partial
H-module_algebra such that for only n € N, the n-cohomology group
Hp..(H,A) is isomorphic to the n-cohomology H,,.(H, A).

Proof: We have already shown that Ais a commutative algebra over
E(A). For the coalgebra structure, define the map A : A — A®pga) A4,
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given by,

A(Xfl(hl,l ..... RLnLY) - - Xfm(l'rn,l ,,,,, 1m, nm)) =

=X 11 pln X, oma mynm QX L1 pln m,1 ™ nm)
Frh gy shy D T m @) T R s b sy ) X}m(l(z) """ Ly ™)

for fy € C™(H, A),...,f™ € C™ (H,A). And the map £: A — E(A),
given by

g(Xfl(hl’lpn,hl’"l) e Xfm(lm,l,_”)lm,nm)) =

€n, (hl,l7 .. .7h1,7n) . ~enm(lm’17 B .’lm,nm).

Finally, we define the antipode S:A— Aas

S(Xfl(hl 1. hl nl) “e Xfm(lm,l7.”711,L,1Lm)) =
*X (h11 . ’hl,n1)~~~Xf;L1(l7n,1

m>nm )
,,,,,

for f € C™(H, A), ..., f™ e C"(H,A).

One needs first to show that these maps can be well defined in A
that is, we must verify that J is a Hopf ideal. Most of the verifications
are long, but straightforward. Basically, for €, as its image lies in
E(A) C A, where the relations are valid, then £(J) = 0. For S, it is
also easy to see that §( J) € J. Therefore, one can define algebra maps
e:A— E(A) and S: A — A, (S is an algebra map because A is
commutative) in the same way.

The most involved ones are the verifications for A. For this task,
it is convenient to divide the process into two steps. First, we con-
sider the ideal J < A generated only by elements of the form (4.1),
(4.2) and (4.3). For elements of the form (4.1) and (4.2), it is quite
straightforward, now take an element of the form (4.3) that is, a linear
combination

xr = Z )\»L'Xenl(hl,lv_th,nl) ¢ (h”’ivl,...,hki’n"’i) €d.

an‘
i
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such that év(z) = 0. Then, we have

Az)=
= iX plm X kyng, QX 1,nqy ...
Z eny(hiy b eny,. (h<1)’ e iy ey (h sy shis) )
X ki,mp .
€ny, . (h(2)7 h(g) 1)
=) X 1,1 T, ¢ kin, X L1l
- enyhiy by’ eny,, (il seeshgy )T ema (gl 1)
;s ki, ®1
ey, Mgy oohigy )

_§ X X by X,
eny (ggy e (31 ey Uz s ) eny, (hiy veeshy) ™)

Kyl k Mk ®1
eny, (hgy sshigy )

=) \; X nyy — X, ) 1,
Z ! enl(h‘(l)) h(ll? ) €7L1(h(12;7 hgzy;l) eny (h1:1,.. A7)
1

X 2,1 2,no X 2,1 2.mp X k1 kimg X ®1
O i e e L B S ) IR S

+ (Xe’"l(hl’}'"7h1)n1)<Xen2(h?1’;a (217)12)Xen2( (2;7 ?2;12) XE"Z(h2”1"'7h2’n2>

Xe (n3. psmsy ... X P kpng, X ks 1 kjomp. )®1+
) en(hiysohay ) en (bl )

. +<Xen1(h1=1,.“,h17"1)Xen2 (h2:4.. . ,AZn2) - - - )(;nk_71(]1’“1771’17,,.,hkiilynkifl)
T

X kil k'j,nk_X kil ki,mnp. _X ki1 k',i,nk.>>®].>
( eng, (A ey ) ey (i gy )T e (AR h TR

Y NXe it ptony - X ey @ 1

Therefore, ﬁ(x) € A®J+J® A. Then, one can define a new linear
map

(2 RPE(A) j)
(2 ®pa)d +3d @B E) .

A A/g_>(A/3) Dpa (A/;J)%

with the same form. Recall that in /Al/ J we have identities of the form

Xf(hl,...,h") = Xf(h(ll),...,h?l))EH(h(12)) N EH( ?2))
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Now define the ideal J' < /T/ d generated by the elements of the form
(4.4), (4.5), (4.6), (4.7) and (4.8). Take an element of the form (4.4),

T = Xf(h(l)v (1))Xg(h%2);‘-~7h?2)) o X(f*g)(hlr”hn) € J/’ then’
Alw) = Xpnt, oo )X g(nly eotry) © Xty oy )X g(hdy b))

—X(frg)(hly b)) X(f*y)( By oenhl)

= X p i) Koy i) © Xp ity o) Kothty hgy))
X0 b)) O K gy i) Kahly oty
T prg iy hpsy) @ X phiy i) Xothly i)
—X(frg)(htyy b)) @ X(fFrg)(hly b))

= X gty Kl i) © X phily oy ) Koty ohiy)

7X(f*g)(h<11)7 A7) H(h(2)) sH(h(Q))®Xf(h

e X g(Rl n
&) ()7 Ns)) F 9(hgy s hlly)

FX gty ) (X0l oy Koty ) = X0 0,)

1 n
_(Xf(h}w,-~7h?’l))Xg(h§2>,---,h&))_X(f*g)(h(lly h7)E H(h@))--fH(h@)))

X W X n
QX f(hly e hfy )N g (Bl ook

+X(f*9)(h<11)""h?1>)®(Xf(hé) ----- hio) Kl e hzw*X<f*g><h%2y~-h&>>)~

Therefore A(z) € I/ ® (2/3) + (X/H) ®J'. With similar strategies,
one can prove the same for elements of the form (4.5), (4.6), (4.7)
and (4.8). Therefore, there exists a well defined algebra map

A:A— A ®p(A) A with the same form on generators.
It is easy to see that (;1, w,m, A, €) gives a commutative and cocom-
mutative bialgebra over the base algebra F(A).
Let us verify the antipode axioms, (I *.S) = (S*I) =noe. Indeed,
for f1 e C™(H,A),... f™ e C™ (H, A) we have
(S* I)(Xg (1, prnay - Xp qmor,gmimm))
=pu(S®I)o A(Xf1(h1 1 hLmay Xfm(lm 1o wm,)>

S( fl(hl 1 1 nl) fm( (1) . lm snm )Xfl(hl 1 1 nl) Xfm(lzg;17 ,lm nm)

(1 (1) (1) 2y (2) (2)
:X71 1,1 ln X mnmX 1,1 ln m, gy
fl (h(1)7 (1)1) fm ( (1) . 7l(1) fl(h(2)7 (2)1) fm(l(Q) 7l(2)

:X(f_l*fl)(hl’l hl,nl) oo X(f;L *fm)(lm’l,...,lm’"m)
:Xenl (hl 1 L hl m1) . Xenm (lm’l,...,lm!"m)

=no 5(Xf1(h1v1,...,h17"1) . Xfm(lm,,l,“.7lm,n,7n)).
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Analogously, we have the equality (I *.S) = noe. Therefore, Aisa
commutative and cocommutative Hopf algebra over E (A)

One can define a partial action of H on A o H® A — A. First,
define a linear map »: H ® A — A given by

h» (Xfl(hl,lpnvhl,nl) R Xfm(lm,17_“7lm,nm)) =
= X(h(l)‘f1(h1=1,...,h1’"1)) . X(h(m)~fm(lmvl,4..,lm‘"m)

For each h € H, one can prove that A » J C J. For example, taking an
element

T = Xf(hly b)) Xl b)) ~ X(feg) (B, hm);
we have
how = X p(hd e )Xoy gl ooihity)) — X (frg) (i1, )
= Xy F(hy)veeesh )Xoy g(hly ook ) ™ Kb (F (Y by (B by ) €T
Then, there is a well defined map e : H ® A ;1, again, given by.
he(Xg g, gy Xg, qmi,. imnm)) =

= X(h(1)'fl(h1’1 ,,,, R1:m1)) "'X(h(m>-fm(lm 1))

It is straightforward to show that e is a partial action of H on A. This
follows directly from the fact that - is a partial action of H on A.
Finally, it remains to verify that A and A generate the same coho-

mology groups, that is, for any n € N we have H,,,.(H, A) = pm.(H A).
In fact, what we are going to prove is that H,,, (H, A) = pa'r‘(H A),

which implies our result.
First note that, for any n € Nand h! ® --- ® h™ € H®" we have

Xen(hlw_,hn) :Xhl.(__'(hn.lA)___) Zhlﬂ(. . .(hnOXlA) .. .)Zth(. . .(hn01g) .. )

For each n € N, a reduced partial n-cochain f € pm(H A) generates a
partial n-cochain f € cr.(H, A) given by f(h!,... k") = Xiit, . hm)-

On the other hand, each n-cochain g € CZ (H A), in order to be

par

convolution invertible, must be of the form g(h!,...h") = Xg(ht,....hn)s
for some g € C7,,.(H, A), for each h' @ --- @ h" € H®” Therefore, one

can define, for each n € N, two mutually inverse well defined morphisms
of abelian groups ® : H" (H, A) — H", (H, A) given by ®([f]) — [f]

par par
and U : H;LM(H, A) — H;LM(H, A) given by ¥([g]) — [g]-
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These maps produce the isomorphism between the cohomology
groups Hp,.(H,A) and H,, (H,A), and consequently between

H?,.(H,A) and HI,, (H, A). |
Remark 4.6 For the classical case of a global action of a cocommu-
tative Hopf algebra H on a commutative algebra A, [30], one can still
construct this Hopf algebra A, and in this case, as h -1, = er(h)ly,
the base subalgebra E(A) coincides with the base field. Therefore, the
Hopf algebra A is a commutative and cocommutative Hopf algebra over
k which gives the same classical cohomological theory as A. The proper-
ties of this Hopf algebra and its role in the classical cohomology theory
18 still an interesting topic to be explored.



Chapter 5

Twisted partial actions
and crossed products

In reference [5], the authors introduced the notion of a twisted par-
tial action of a Hopf algebra H over an algebra A and described the
construction of the crossed product by a 2-cocycle. They introduced
also the notion of symmetric twisted partial Hopf actions and in this
context, they were able to decide whether two twisted partial actions
give rise to the same crossed product. Recall that, in the classical
case, two crossed products are isomorphic if, and only if, the associ-
ated twisted (global) actions can be transformed one into another by
some kind of coboundary (see [28], Theorem 7.3.4). So, it’s analogue
the partial case takes the form: two crossed products are isomorphic if
their associated cocycles are related by a linear map which has proper-
ties similar to a convolution invertible 2-coboundary. Nevertheless, the
authors of [5] still did not have a cohomology theory underlying those
crossed products. In what follows, we shall see that in the case of co-
commutative Hopf algebras acting partially over commutative algebras
the crossed products are indeed classified by the second cohomology
group,as defined before.

Definition 5.1 [5] Let H be a Hopf algebra and A be a unital algebra

(with unit 14). Let - : H® A — A and w: H® H — A be two linear

maps. The pair (-,w) is called a twisted partial action of H over A if,
(TPA1) 1y - a = a, for every a € A.

(TPA2) h-(ab) = (h1) - a)(h() - b), for every h € H and a,b € A.
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(TPA3) (h(l) . (l(l) . a))w(h(g),l@)) = W(h(1)7l(1))(h(2)l(2) . a), for
every h,l € H and a € A.

(TPA4) w(h, l) = w(h(l), l(l))(h(g)l(g) : 1,4), for every h,le H.
In this case, we say that (A,-,w) is a twisted partial H-module
algebra.

Definition 5.2 [5] Let H be a Hopf algebra and (A, ,w) be a twisted
partial H-module algebra as above. Define over A® H a multiplication
given by

(@@ h)(b@l) =Y alhq) - bw(he),ly) © hale)

for every a,b € A e h,l € H. We define the partial crossed product as
A#,H=(A® H)(14 ® 1g).

Proposition 5.3 [5] Given a Hopf algebra H and a twisted partial H-
module algebra (A, -,w), the partial crossed product A#.,H is unital if,
and only if,

wh,1g) =w(lg, h) =h-1a,  Vhe H. (5.1)

Moreover, the crossed product is associative if, and only if

(hay -w(ly,mey)w(hzy,liymea) =why,la)w(heliz),m), Vh, 1, m(e H)
5.2
O

A linear map w : H®2? — A satisfying (5.1) and (5.2) of the above
Proposition is called a normalized cocycle.
We denote by a#h the element

(a@h)(la®1y) = a(h(l) la)® h(2) € A#,H.
One can easily deduce that
a#h = a(h(l) . 1A)#h(2).

There is an injective algebra morphism ¢ : A — A#,H, given by
i(a) = a#l, this endows the crossed product A#,H with a left A-
module structure. Also one can show that the linear map

p: A#,H — A# H®H
a#h — a#h(l) ® h(g)
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defines a right H-comodule algebra structure on A#,H. This left A-
module and right H-comodule structures on the partial crossed product

will be important in order to relate crossed products with extensions
of Aby H.

Definition 5.4 [5/ Let A = (A,-,w) be a twisted partial H-module
algebra. We say that the twisted partial action is symmetric if

(i) The linear maps é 2,62 :HQH— A, given by & 2(h,) = (h-14)e(l)
and éx(h,l) = hl - 14 are central idempotents in the convolution
algebra Homy(H ® H, A);

(i) The map w satisfies the cocycle condition (5.2) and it is an in-
vertible element in the ideal (€12 % é2) C Hom(H ® H, A).

(iii) For any h,l € H, we have
ea(h, 1) = (h-(1-14)) = > (ha)-1a)(hz)l-1a) = (é12 % €2)(h, 1)

The algebra A is called, in this case, a symmetric twisted partial
H-module algebra.

For the case of a cocommutative Hopf algebra H and a commutative
algebra A, every symmetric twisted partial action of H over A is in fact
a partial action.

Proposition 5.5 Let H be a cocommutative Hopf algebra and A be a
commutative symmetric twisted partial H-module algebra, then A is a
partial H-module algebra.

Proof: Indeed, by axiom (TPA3) from Definition 5.1,

> (hay - Uy - )by L) = Y wlbay, i) (hole) - a),

we conclude that

D (h-(t-a) = Y wlhayln)(hele) - aw (b))
= D wlhay o)™ (e ko) (hele) - a)
= ) (hay - (@ - 1a) ()l - a)
= D (hay - La)(hla) - 1a)(hizle) - a)
= ) (b 1a)(h)l - a).
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By the commutativity of the convolution algebra Hom(H ® H, A),
we also conclude that h - (I-a) = (h)l-a)(h@)-14). Therefore, Ais a
partial H-module algebra.
[
In the case of H being a cocommutative Hopf algebra and A being a
partial H-module algebra, we can still define a partial crossed product
for each 2-cocycle w € Z2,.(H, A). In fact, all possible partial crossed
products which can be constructed in this case are classified by the
second cohomology group H2,,.(H, A).

par

5.1 Partial crossed products and H?, (H, A)

par

Theorem 4.1 from reference [5] gives a necessary and sufficient con-
dition on two different symmetric partial actions of a Hopf algebra H
over an algebra A to have isomorphic crossed products.

Theorem 5.6 [5] Let A be a unital algebra and H o Hopf algebra with
two symmetric twisted partial actions, h®a+— h-a and h®a+— hea,
with cocycles w and o, respectively. Suppose that there is an isomor-
phism

b A# ,H — A#,H

which is also a left A-module and a right H-comodule map. Then there
exist linear maps u,v € Homy(H, A) such that for all h,k € H, a € A

(i) uxv(h) =h-1a;
(i) u(h) = u(hay)(he) - 1a) = (hay - La)u(ha));
(iii) hoa=u(hay)(he - a)ulhe)
(iv) o(h,k) = v(h@))(he) - v(h@))w(hs), ke))ulhaks);
(v) (a#tuh) = au(ha))#oha).

Conversely, given maps u,v € Homy,(H, A), satisfying (i), (i), (iii)
and (i) and, in addition u(ly) = v(ly) = 1la, then the map ®, as
presented in (v), is an isomorphism of algebras.

]

For the case of a cocommutative Hopf algebra H and a commutative
algebra A, items (i) and (ii) imply that w is the convolution inverse of
v in the ideal e; * Homy (H, A). Item (iii), in its turn, implies that the
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two partial actions e and - are equal. Finally, item (iv) can be rewritten
as

g * wil(h, k) = (h(l) . v(k(l)))u(h(g)k@))v(h(g,)) = 51 (’U)(h7 k)
Therefore, one can rewrite Theorem 5.6 as:

Theorem 5.7 Let H be a cocommutative Hopf algebra and A be a
partial H-module algebra. Then, given two partial 2-cocycles w,o €
Zgar(H, A), the associated partial crossed products A#,H and A#,H
are isomorphic if, and only if, w and o are cohomologous, that is, they

belong to the same class in the cohomology group Hgar(H, A).

O

In order to conclude that the second partial cohomology fully clas-
sifies all the isomorphism classes of partial crossed products, it remains

to check that every class in Hgar(H , A) contains a normalized 2-cocycle.

Proposition 5.8 Given a partial 2-cocycle w € Z72, (H, A), there ex-
ists a normalized 2-cocycle w € Z*(H,A), which is cohomologous to
w.

Proof: Indeed, take a 2-cocycle w, then w satisfies

(hqry - w(kqy, la)))w(h), k)le) = wlhay, ka))w(he) k), ).

Putting h = 1y in the expression above , we have

(g - w(kay, lay))w(le, koyl2) = w(la, kqy)w(Lake), 1)
= w(k@y, l))w(lm, koyl2) = w(lu, kqy)wke), 1)
= Wkl k) l@)w U ke)le)=w L ka)wke)lo)oks)le)
= kay - () - 1a)w(ly, koyle) = w(la, ko) (ko) - () - 14))

kgH(l(l) Aa)w(lg,le) =wlg, 1g) - (- 1a).

As w g, lg)wlgly)=1g-14=14, we conclude that w(ly,1y) € A*.
Then, one can define &(h, k) = w(h, k)(w(ly, 1)) . It is easy to see
that @(1g,1) = (I-14).

On the other hand, putting [ = 15 in the 2-cocycle condition, we
have
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(hqr) - w(kqy, 1a))w(hiz), k) = w(hay, kqy)w(hoke), 1)
hqy - w(kqy, 1u))w(hiz), ke))w(he), ka) =

= W(hay, k@y)w(hey, key)w(h@) ks, 1m)
(hery - w(ky, La) (h2) - (k@) - 1a)) = (b - (k) - 1a)w(h@) ko), 1)
(hy w(kay, 1m) (k@) 1A)):(h(1) 14) (k) k) - 1a)w(h)ke),1a)
(h-w(k,1g) = (ha) - La)w(h)k, 1a)
= w(lg, 1) = (k@) - 1a)w(he), 1a)
= h-w(ly,ly)=wh,1q).

4

4

Tl

Therefore, h - W(1lgy,1g) =h-(1g-1a) =h-14 =w(h,1g).

Finally, let us verify that w is cohomologous to w, that is, there
exists ¢ € C},,.(H,A) such that @« w™' = §;¢. Indeed, on the one
hand, note that

S(hay, kay)w™ () k) = (b (k- 12)(w(la, 1))~
On the other hand,
5¢(h, k) = (hqy - d(k@)))o ™" (R k() o (hs)-
Then, if we define ¢(k) = (k- 14)(w(1z, 1)) "", we have

5p(h, k) =hay - (k) - 1a)(w(1y, lH))_l)(h(Q)k(z) 1) (w(ly, 1g)
(hes) - 1a) (@, 1)) ™"
= (b (kgry - La)) @l 1)) ™ By - 1a) (o - 1a)
= (b - (kay - 1a)(@(La, 1)) ™

This concludes our proof.
|

5.2 The Hopf algebroid structure of the par-
tial crossed product

We saw that the cohomology theory for a cocommutative Hopf al-
gebra H acting partially over a commutative algebra A is equivalent to
the cohomology theory of the same Hopf algebra H acting on a com-
mutative and cocommutative Hopf algebra A whose base ring is the
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commutative algebra F(A). This replacement gives us a deeper un-
derstanding about the structure of crossed products. In fact, we shall
see that the crossed product has a structure of a Hopf algebroid over
the base algebra F(A). Let us recall briefly the definition of a Hopf
algebroid, for a detailed presentation, see the reference [11].

Definition 5.9 [11] Given a k-algebra A, a left (resp. right) bialge-
broid over A is given by the data (H, A, s;,t;, A e;) (resp. (H, A, st A er))
such that:

1. H is a k-algebra.

2. The map s; (resp. s.) is a morphism of algebras between A and H,
and the map t; (resp. t,.) is an anti-morphism of algebras between
A and H. Their images commute, that is, for every a,b € A we
have s;(a)t;(b) = t;(b)s;(a) (resp. s-(a)t.(b) = t.(b)s-(a)). By
the maps s;,t; (resp. sr,t,) the algebra H inherits a structure of
A-bimodule given by a>h ab = si(a)t;(b)h (resp. a » h €4 b=

hsr(b)tr(a))'

3. The triple (H, Ay, e;) (resp. (H,A,,e.)) is an A-coring relative
to the structure of A-bimodule defined by s; and t; (resp. s,, and

ty).
4. The image of A; (resp. A,) lies in the Takeuchi subalgebra

%AX%:{Zhi®kiEg'f®A,>qj‘f|

Zhitl(a) ®k; = Zhi ® kisi(a) Ya € A} ;
respectively,

}CXA}CZ{Zhi®ki€9{®A,><}C|

> sp(@)hi @ ki =Y hi ® tr(a)k; Ya € A} :

K2

and it is an algebra morphism.

5. For every h, k € 3, we have g;(hk) =¢,(hs;(e1(k))) =ei(hti(e1(k))),
respectively, e.(hk) = e.(sr(e-(h))k) = e, (t-(e-(h))k).
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Given two anti-isomorphic algebras A; and A, (i.e., A = A°), a
left A;-bialgebroid (H, Ay, si,t1,Ar,e1) and a right A,-bialgebroid
(H, Ay, Spytr, Aryer), a Hopf algebroid structure on 3 is given by an
antipode, that is, an algebra anti-homomorphism 8 : H — H such that

(i) sjoe oty =t., {1008 = 8, Sp0€.0t; =1, and t.o0e. 08 = §;
(i) (D@4, Do, =({I®4,Ar)00; and (IR4, Ao, = (Ar®@a,1)o;

(iit) 8(ti(a)ht (b)) = s.(V')S(h)si(a), for all a € A}, b € A, and
h e XH;
(iv) paco(8®a, I) oAy =s.06. and pyco (I ®4, S)o A, =so0¢;.

In our case, both algebras, A; and A,, coincide with the commuta-
tive algebra E'(A) and the crossed product A#,H will play the role of
the Hopf algebroid H of the previous definition.

Theorem 5.10 Let H be a cocommutative Hopf algebra and A be a
commutative partial H-module algebra. Consider the commutative and
cocommutative Hopf algebra A, constructed in Theorem 4.5, over the
commutative algebra E(A), which is also a partial H-module algebra.
Then, the crossed product g#wH, in which w is a partial 2-cocycle from

2 _ e . .
H?, (H,A) = H?, (H,A), is a Hopf algebroid over the base algebra
E(A).

We note that in this demonstration we used an abuse of notations

by writing w(h, k) to understand X, i) in the crossed product.

Proof: The source and target maps, both left and right, are defined by
the restriction to E(A) of the canonical inclusion of A into the crossed
product
Si,ty, Spytr s E(A) — g#wH
a —  a#lg

We have already seen that this inclusion is an algebra map and by
the commutativity of A, the images of source and target maps commute
among themselves. Note that, even though the left and right sources

and targets are equal, their associated bimodule structures are different
nonetheless. Indeed, for a,a’ € E(A) and b#h € A#,H we have

a> (b#h)<a’ = (a#1y)(d' #15)(b#h) = aa'bi#th,

and

aw (b#h) «ad’ = (b#h)(a#1n) (@ #1u) = b(hq) - ad’)F#h).
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The left and right comultiplication maps are defined, respectively,
as _ _ _
Ay A#H — A#,HQ A#,H
a#h = am)y#ha) Opa)s < a2)#he)

and ~ _ ~
A,: A#H — A#H@ A#H
a#h = aq)#ha) Opa)e <« 4@ Fho)

in which the tensor product ® g(4) . (resp. ®g(a),» «) is balanced with
respect to the E(A)-bimodule structure implemented by s;,t; (resp.
Srytr). It is easy to see that

(A1 @payp« ) oAy = (IQgu)palr)ol
(I ®E(A),> | Al) © Ar = (Ar ®E(A),|><1 I) o Al.

One can see also that, for any a € E(A),

Ai(si(a)) = si(a) @ La#1ly), and  A(t(a)) = 1a#ly) @ ti(a).

This is because any element of E(A) is a linear combination of
monomials of the form (h'-14)...(h" - 14), for R',... A" € H, and
then

Az(Sl((h1 14)...(h"-14))) =
hiyy - 1a) .- (hiyy - 1a)#1m @ (higy - 1a) .. (hiy) - 1a)#1n
hiyy-1a). (i - 1) #1E @ (Rlgy - 14). .- (hlyy - 1A)#1m) (La#1m)
hiny-1a) .- (h(yy - L) #1a@si((hig) - 1a) - .. (hlyy - 14))(La#lm)

1
(
1
a
1
a
1
a

(
(
(
(htry-1a) - (W) - 14)#1a © () - 1a) - (Alyy - 1)) > (La#1p)
((h{yy-1a) .. (hn La)#1u) A ((hiyy-1a) .- (hiy) - 1a) @ La#la
t;
(
(
(n'

((higy-1a) - (Ao -1a))((h{yy-1a) .. (h{yy - 1a)#1m) @ La#ly

(hiyy-1a) .. (hiyy - 1A)#1a) (A1) 1a) - (A - 1) #1a) @ 1a#ly

(h(1) La) .o (h{yy - 1a)(higy - 1a) - (Rlyy - La)#1m) @ La#tly
1a) ... (R" - 14)#1g @ La#ly

l((h 1a)... (A" -14)) ® 1a#1p.

From this we deduce that A; is a morphism of E(A)-bimodules with
the bimodule structure given by > and «.
The same occurs for A, that is, for any a € F(A), we have

Ar(tr(a)) =tr(a) © (La#lm), and  Ar(sp(a)) = (La#lu) @ sr(a),
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and then A, is a morphism of F(A)-bimodules, with the bimodule
structure given by » and «.

The image of the left comultiplication A; lies in the left Takeuchi
product A#,H gy x A, H. Indeed, for a#th € A#,H and b € E(A),
we have

(ay#h@))ti(b) @ a@)#he) = (aqy#ha)) (0#1x) @ a@)#he)
= a)(hqy - D)wlhie), La)#hE) @ a@)#hay
=aq)(hq) - b)(he) - 1a)#hE) © a@)#ha)
= (hq) - b)aq)#h) @ a@)#hs)
= ((hq) - 0)#1m)(aq)#h(2) @ a@)#hs)
= ti(h() - D) (aq)#he)) ® a@)F#hs)
= ay#he) @ si(ha) - b)(a@)#hs))
= amy#h2) @ ((ha1y - 0)#1a)(a@)#hs))
ay#th) ® ae)(h) - 0)#hs)
= a)#ha) @ (a@)F#h)) (0#1)
= a)#ha) @ (a@)F#h())s1(b)-

Moreover, A; is a morphism of algebras. Take any a#th, b#lE/Nl#wH ,
then

Ai((as#th)(b#1)) = Al(a(h(l) “bw (h(z 1))#h(3)l 2))

=(a(h@)-b)w(h@),ln)) o #(heE)le) o @@t -bw(he),lm) @#(hele) e
=a(1)(hq)-ba)w(h), L) #he) ) ®ae) (he) - be)w(hay, L2)#he) k-

On the other hand,

Aq(a#h)A(b#1) = (a@y#ha) @ a@)#he)) (ba)#l ) @ by #l(2))
=(ay#h))(bn)y#l 1)) @ (a@)F#h2) (b2)#l(2)
=a)(hq)-da)w(he),! 1>)#h<s>l(2>®a<2>(h<4> ba)w(h(s): () #he)la)

The equality follows from the co-commutativity of H.

Analogously, one can prove that the image of the right comultipli-
cation lies in the right Takeuchi product A#,H X g4y A#.H, and it
is an algebra morphism.

The left and right counits are defined, respectively, as

e1: A#,H — E(A)
a#h = e(a#th) =cz(a)(h-14)
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and
e A#,H — E(A)
a#h  —  ep(a#h) :=S(h)-ez(a)

First, both are morphisms of E(A)-bimodules, with their respective
structures. Take a,a’ € E(A) and b#h € A4, H, then

gi(av (b#h)ad’) = e((aa’b#h)) = e z(aa")e 3(b)(h - 14)
ag 7(b)(h - 14)a’ = ag;(b#h)d’,

and

ci(a » (b#h) «a’) = e (b(hqy - ad’)#h )
=S(h@) - (e5(b)e z(h) - aa’)) = (S(hez)) - € ())( (h<2))-(h<1>' aa’))
=(S(hz)) -€5(0)) S(hu))h@) aa’) = (S(h) - b)aa’ = ae, (b#h)d’

/\\_/

One can easily verify the compatibility relations with the left and
right counits and the left and right source and targets, that is,
sjog ot =t,, ;o€ 08 =S8, Sp0e,0t; =t; and t,.0¢e, 05 = 5.

Let us verify that (ﬁ#wH,Al,el) and (g#wH, A,,g,) are corings
over F(A) with their respective bimodule structures. We have already
seen that A;, &, A, and &, are morphisms of F(A) bimodules. It is
easy to see that the left and right comultiplications are coassociative.
It remains to verify the counit axiom for both structures. Take
a#h € A#,H, then

(61 ®p(aypa D) 0 Ar(a#th) = er(ay#ha)) > (a@)#h)
= (ez(a) (b - 1a)#1m)(a@)#h)
ezlaq) )( a@y(hay - 1a)#he))
(h(l )#h(z )
= a#h.

Using the cocommutativity of H and the commutativity of A it is
also easy to see that

(I @B (a)pacl) © Ai(a#th) = ath.

Therefore, (Z#WH,A“&Z) is a coring over E(A). For the right
structure, for a#th € Z#UJH, we have
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(er @B(a),pa L) 0 Ar(a#th) = er(ayF#hay) » (a@)#h())

= (a@2)#h(2))
= (a@)#h@))
= Q(2) (h(l) (
= ag)(ha) - ( €1

= a)(ha)S(hay) - ez(aq)
=a@)(ha)S(h2))-€z(aq))

(S(hqy) -
(S(h)) -

(h(4)) 5,4(
S(ha))-ez(a

eilam))#1m)
ezlaq)))#1m)

)))w(h(z), Lg)#hs)
am))))(h) - La)#h)
) (h(2) - 1a)#hs)
)by La)#h)

(
(

= a(2)e 5(a)) (hq) - 1A)#h(2

= a(hq)

“1a)#h2))

= a#h.

Analogously, one can prove that

(I ®p(a),p<&r) 0 Ar(adth) = ath.

Therefore, (A#,H,A,,e,) is a coring over E(A).
Let us verify now that

ei((a#th)(b#k)) = ei((a#th)si(e1(b#k))) = er((agth)ti(e1(b#k))),

and

er((a#th) (b#k)) = e, (sr(er(adEh)) (b#k)) = er(t,(er(aFth)) (b)),
for any a#th, b#k € g#wH . For the left counit, on the one hand,

ei((a#th) (b#k)) = er(a(hqy - D)w(hiz), k@) #hs) k)

= ez(a)ez(hay - b)ez(w(ha), k@) (ha)ke) - 1a)

ez(a)(hay -ez(0))(he) - (k- 1a))(h@)yke) - 1a)
e x(@)(hqr) - £1(0) (e - (- 1a))
ezla)(h-(ez(0)(k - 14))).

On the other hand

eil((a#th)si(ei(b#k))) = ei((ath)si(e 7(b) (k- 14)))
ei((a#h)(ez(0)(k - 14)#1m))

el(alhqy - (ex(0)(k - 1a))w(h(2), L) #h(3))
ei(alhqy - (ex(0)(k - 14)))(he2) - L) #th(s))
ezlathqy - (5(0)(k-14))))(h2) - 14)
ez(a)(hq) - (e5(0)(k - 14)))(h2) - 14)
ez(@)(h-(ez(0)(k - 14)))-
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Therefore, &;(a#h)(b#k) =< ((a#th) si(e1(b#kK)) =ei((aFh)t (€1(bH#k))).

For the right counit, on the one hand

er((a#th)(b#k)) = er(alhqy - D)w(h(z), k) #hs) k)

= S(h@ke) - e 5(alhqy - D)w(h), ka)))

= S(h@)k@)) - (e5(a)(hay - €7(0))(h) - (

(S(h) k) €x(a) (S (hakas): (hay- €A(b)))( (h@k@)- (ha)- (k) -14))

Z(S(h<5 1)) € 5(a))(S(hyk@)ha) € 5(0)) (S(he )’f@))h@)'(’fu)'lfx))

= (S(k)S(hes)) - €5(a)(S (k(3)) (hay)hqy - € 5(b))
(S(k(2))S(h(z))he) - (kay - 1a))

= (S(k4))S(hsy) - € 7(a)(S(kes))S(h))hay - €5(b))

(S(k2))S(hay)he) - (kay - 1))

kay - 1a))

= (S(k@))S(h) - e5(a))(S(kes)) - £ (b)) (S(k(2)) - (k) - 1))
= (S(k@))S(h) - e5(a)(S(kes)) - € (b)) (S(k2))ka) - 1))
= (S(k))S(h) - € z(a)) (S(ks)) - € 2(0)) (S(k(1))k2) - 1))

= (S(k2)S(h) - e 5(a)(S(kq)) - £ 5(b))

= (S(k@) - (S(h) -e5(a)))(S(kq)) - 5(b))

= S(k) - ((S(h) - £ z(a))e 5(b)).

On the other hand,

er(sr(er(atth)) (b##k)) = e-((S(h) - € 5(a))#1u ) (b#F))
= &r((S(h) - e z(a))b#k)
= S(k)- ((S(h) - e5(a))e 7(b))-

Therefore,
er((a#th)(b#k)) = er(sr(er(adth)) (b#k)) = e, (tr(er(adth)) (b#K)).
Finally, we define the antipode as

S: A#,H — A# H
a#th = (Sg(hg) - Sz(a)w (S (he)), b)) #Su(ha))

Take b,c € E(A) and a#h € Z#wH, then, one can prove that

8(t(b)(a#th)t(c)) = s(c)S(azth)s(b)-



74 Chapter 5. Tuwisted partial actions and crossed products

Indeed,

(ti(b)(a#th)t,(c)) = S((0#1m)(a#th)(c#1n))
((ba#th)(c#1m))

S(balh(y - )w(h(zy, L) #h(s))

= 8(ba(hqy - c)#h))

(S(hqy) - Sz(bahay - €)))w ™ (S(hs)), his))#S(hz))
(S(

S(hea)) - ((hqry - ©)S5(a)b))w™ (S(h3)), hs))#S (hz))

Il
)

—~
*
~

in which the equality () is valid because Sy restricted to the base
algebra F(A) is equal to the identity. On the other hand.

sr(c)8(a#th)s;(b) =

= (c#1m)((S(h(s)) - S5(a)w™ (S(he)), heay)#S (h1)) (b#11)
= (c(S(he)) - S (a))w H(S(hz))s hes))w (L, S(hz)#S (hr))) (b#L1)
=(c(S(h) - Sz(a))

w ™ (S(2)), hay)#S (1)) (b#15)
=c(S(h(y) - S3(a)w™ ' (S(he)), his)) (S(hz) - D)#S (1))
(S(h(6))-b)(S(hs))-S7(a) (S (hs))heay - dw™ (S (hz)), hir)#S (hy)
(S(he))- B(S(hz)-S7(a) (S (he) - (heay - Dw™ (S(hz)); ) #S(ha))
(S(he))-b)(S(h(s))-S 7(a)(S(heay) - (hy-e)w ™ (S (h(s), hr)#S (h2)
(S(h(y) - ((hqry - ©)S 5(@)b))w ™ (S(hs)), his))#S (hz))-

It remains to check that

M(S ®E(A),D<1 Id) © Al =S8r0¢&r
and
pld@pa)paS) 0 Ar =506
Take a#h € A#,H, then

(8 ®p(a)pa Id) 0 Ar(adth) = S(aq)#h))(a@) #h2))

= (S(hs)) - Szla@y)w™ " (S(h)), heay) #S (b)) (a@) #hs))

= (S(h)-Silag)w™ " (S(hw), he) (S (h@)-a@)w(S(he),hm)#S(hw)he
(S(hw)-Sz(aw) (S (ha) -ag)w™ (S(he) he)w (S (hay), he)#S (hm)he)
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1(Id @pa)y e« 8) 0 Ar(a#th) = (awy#h))S(a@)#h)

(aqy#h(1))(S(hwy) - Sila)w ™ (S(he), his)) #S(h2)))

(a@ (- (S(he)-Silag)w ™ (S(h@): hig))w(he, Sths) #he S (ha)

(a@(hay- (S(he) - Szlae) (e w ™ (S(he), ha)w(he), S(ha) #1 0
(aqy(hqy- (S(hw) -Sila@)) (hg - w ™ (S(he) ha)w(hay, S(he)#1a

=(a@ (hqShe)-S ( ) (hz) - w ™ (S(h), he))whay, S(he)#1a

=a(1)Sz(a))(ha) - S(hiay)s his)))wlhiz), S(h)))#1m

-1
1@ (S (heg) hio)wby, () hao)e (e, S (he)wlhiy, S ()L i
)

[l
)

a)w ™ (h(1)S(he)), hiry)w(hizy, S (hs) ) his) (hezy - (S(hay) - 1a) #1a
a)w ™ (h1yS(hs)), hey)w(hizy, S(heay) by ) (hes) - 1a)#1u
J(heay - 1a)#1n

ng(
=¢ 5(a)
=¢ z(a)w ™ (hayS(h)): hir))w(hs). S(hes))hs)
= z(a)w™ (g, hez))w(h), 1H)(h(2) “1a)#1y
=ez(a)(h- 1A)#1H = s; o g(a#th).

The equality (*) we used that, for any h, k,l € H, we have
h-w (k1) = w™ (haykay, Lay)w(he), keyle))w™ (ha), ke))-
This follows easily from
h- (w(ky, lay)w ™ (k@) b)) = h- (k- (- 14)),
and
hew(k, 1) = w(hy, kay)w ™ (he), kelay)w(he ke, L),

which, in its turn is an immediate consequence of the 2-cocycle identity.
Therefore, (A#.,H,si,t1, Sr,tr, A1, Aryer,60,8) is a structure of a
Hopf algebroid over E(A).
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Chapter 6

Partially cleft extensions
and cleft extensions by
Hopf algebroids

In [5], the authors introduced the notion of a partially cleft exten-
sion of an algebra A by a Hopf algebra H, and proved that partially
cleft extensions are related with partial crossed product. In our case,
which means H cocommutative and A commutative, the results deve-
loped in [5] remain valid, so, using the Hopf algebroid structure of the
crossed product, one can rethink partially cleft extensions of commu-
tative algebras by cocommutative Hopf algebras in a broader scenario,
namely, the theory of cleft extensions of algebras by Hopf algebroids
developed by G. Béhm and T. Brzezinski [12].

Definition 6.1 [5] Let H be a Hopf algebra, and A C B be an H-
extension, that is B is a right H-comodule algebra and A = B . The
extension A C B is partially cleft if there exists a pair of linear maps
v,5 : H — B such that:

(i) v(1u) = 1p;

(ii) The following diagrams are commutative

2|

Y

H B H B
T
HH——B®H H®H——B®H

Y®Idy @5



Chapter 6. Partially cleft extensions and cleft extensions by Hopf
78 algebroids

(iii) (y*7)ow is a central element in the convolution algebra Homy(H ®
H,B), in which p: H® H — H is the multiplication in H and
(F *v)(h) commutes with every element of A, for each h € H,
and, for all b € B, h,l € H, if we write e, = (v *7)(h) and
en = (7 xv)(h), then:

(iv) 32 b)7(b1)) V(b)) = b;
(v) v(h)er =3 eny v (h2));
(vi) F()en = > eniy,V(l2))s
(vii) Y- y(hlay)ei,, = 3 eny,v(h)l).

Partially cleft extensions are related to partial crossed products, as
one can see in the next two results.

Proposition 6.2 [5] If (A,-, (w,w™1)) is a symmetric twisted partial
H-module algebra with a 2-cocycle w, then, A C A#,H is a partially
cleft H-extension.

O

For the crossed product A#,H, the cleaving maps 7,7 : H —
A#,H are given by

v(h) = 1a#h, and 75(h) = w ™ (S(h()), b)) #S(ha)).  (6.1)

Theorem 6.3 [5] Let B be H-comodule algebra and A = B, Then
the H-extension A C B is partially cleft if, and only if there is a
symmetric twisted partial action - : H ® A — A with a 2-cocycle
w: HR®H — A such that B is isomorphic to the partial crossed product
A#,H.

O

In the case of a cocommutative Hopf algebra H acting partially over
a commutative algebra A, we have already seen that we can replace A
by a commutative and cocommutative Hopf algebra A with the same
cohomology theory. Then, we observe that Hom(H ® H, A) is a com-
mutative algebra, so, (iii) in Definition 6.1 becomes trivial and €, = ep,.
By (iv), b@eyqy = b and we conclude that 7 = v~ in the ideal (e).

Moreover, the crossed product AV#MH has a structure of Hopf alge-
broid over the base algebra E(A). Then it is interesting to see whether
one can replace the crossed product A#,H by the crossed product

g#wH in the analysis of cleft extensions by the Hopf algebra H. First
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note that the H-comodule structure on both crossed products is the
same, namely p(a#h) = a#h1) ® h(2). Furthermore (A#,H)“" = A
and (Z#wH yeoH o~ A, then both crossed products are H-extensions of
their respectives algebras of coinvariants. Finally, the cleaving maps
~v,5: H— A#,H, given by (6.1), take their values actually in A4, H.

In what follows, we shall see that there exists a Hopf algebroid 3
such that the crossed product A#.,H can be viewed as a cleft extension

of A by H. For this purpose, it is important introduce some results
about the theory of cleft extensions for Hopf algebroids developed by
G. Bohn and T. Brzezinski in [12].

Definition 6.4 [12] Let (f}(’ L, R, SL, tL, SR, tR, AL, AR, €1,€R, S) be a
Hopf algebroid and A be a right H-comodule algebra. Denote
by nr(r) = r-14 = 14 -r the unit map of the corresponding R-ring
structure of A. Let B be the subalgebra of Hgr-coinvariants in A. The
extension B C A is called H-cleft if

(a) A is an L-ring (with unit n;, : L — A) and B is an L-subring of

J

(b) there exists a convolution invertible left L-linear right XH-
colinear morphism ~ : H — A.

A map ~ satisfying condition (b) is called a cleaving map.

Remark 6.5 Some small remarks have to be made about this defini-
tion.

(1) First is that the structure of right H-comodule algebra on A is
related to the base ring R, that is p : A — A Qg H is a right
R — R-bilinear map in the sense that, for every a € A and r € R,

p(nr(r)ang(s)) = a® @g sp(r)aMsg(s).

(2) The map v : H — A being H-colinear implies that it is right R-
linear in the sense that v(hsg(r)) = v(h)nr(r) and left R-linear in
the sense that v(sg(r)h) = nr(r)y(h), for any a € A and r € R.

(8) The notion of a convolution invertible map v : H — A, in which A
is both L-ring and R-ring, means that there is a unique 7y : H — A
such that [12]

pao(Yy®r¥Y)oAr = npoeg
pao(Y®Ly)oAL = mnroeg.
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(4) The left L-linearity of the map ~ in condition (b) of Definition 6.4
means, that the cleaving map satisfies v(sp(D)h) = np(D)y(h), for
any a € A andl € L.

The lemmas below show us the behaviour of the convolution inverse
of a cleaving map (%) with respect to (1) and (2) of Remark 6.5. We
suggest [12] for details of proofs.

Lemma 6.6 [12] Let 3 be a Hopf algebroid and B C A an H-cleft
extension, with a cleaving map . Then,

F(tr(r)h) =F(h)ng(r), forallr € R,h € H. (6.2)
0

In the case of a Hopf algebra cleft extensions, the convolution inverse
of a cleaving map is a right colinear map, where the right coaction is
given by the coproduct followed by the antipode and a flip. So, since we
have two coactions in the Hopf algebroid case, one for each constituent
bialgebroid, the next Lemma follows:

Lemma 6.7 [12] Let H be a Hopf algebroid and B C A an H-cleft
extension with a cleaving map . Then, for all h € H,

pA(F(h)) = () @r S(h)), (6.3)
and
A F(h) =) @ S(hY), (6.4)

where p* and ¥ are the right coactions of the constituent right and
left bialgebroids, respectivelly.
O

To conclude our preliminaries, we recall that Doi and Takeuchi,
in [15], characterized Cleft extensions as Galois extensions with the
normal basis property when H is a Hopf algebra. A similar result is
obtained in this context of Hopf algebroids. The main difference with
the regular case is that a Cleft H-extension is a Galois extension with
respect to the right bialgebroid H g but it has a normal basis property
with respect to the base algebra L of the left bialgebroid H . By Galois
extension, we understand that,
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Definition 6.8 [12] Let H be a Hopf algebroid, A be a right H-comodu-
le algebra and B be the subalgebra of Hg-coinvariants in A. The ex-
tension B C A is called H-Galois if the canonical map

cang: ARpA — ARy H

a®@pd — adl @4 oM

The next two lemmas give to us the idea of how to prove the result
mentioned above.

Lemma 6.9 [12] Let 3 be a Hopf algebroid and B C A an H-cleft
extension with a cleaving map . Then, for all a € A, a(Y5(aM) € B.
0

Lemma 6.10 [12] Let H be a Hopf algebroid and B C A an H-cleft
extension. Then the inclusion B C A splits in the category of left
B-modules. If, in addition, the antipode of H is bijective, then the

inclusion B C A splits also in the category of right B-modules.
|

Theorem 6.11 [12] Let H be a Hopf algebroid and B C A a right
H-extension. Then the following statements are equivalent:
(1) B C A is an H-cleft extension.
(2) (a) The extension B C A is Hg-Galois;
(b) A~ B®p H as left B-modules and right H-comodules.
0

In our case, for a cocommutative Hopf algebra H acting partially
upon a commutative and cocommutative Hopf algebra A, the base al-
gebras L and R will coincide with the commutative subalgebra E(A)
of A and then many distinctions between the left and right structures
will coalesce. The Hopf algebroid is given by the partial smash product
E(A)#H. For a proof that this partial smash product is in fact a Hopf
algebroid over E(A), see reference [9], Theorem 3.5. The extension
to be considered is the previously defined partially H-cleft extension
A C A#,H. Then we have the following theorem.

Theorem 6.12 Let H be a cocommutative Hopf algebra acting par-
tially on a commutative and cocommutative Hopf algebra A and let w
be a partial 2-cocycle in H2, (H,A). Then the partial crossed product

par

/Nl#wH is a right H = E(A)#H-module algebra with A (E#wH)COj{.

Moreover, the extension Ac Z#wH is H-cleft in the sense of Defini-
tion 6.4.
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Proof: First, define the linear map

P A#,H — A#,H@pa) e« BA#H
a#h — a#h(l (h(g) 1A)#h(3)

Note that the expression of p(a#h) can also be written as

pla#th) = a#thy @ 1gay#the) = aftha) @ Lafth),

that is because

a#h(l) ® (h(g) . 1A)#h(3) = a#h(l) & (1A#h(2))(1A#1H)
= a#h(l) ® (IA#h(g)) 41y = a#h(l) ® (1A#h(2)).

It is easy to see that (P @p(a),p«ld)op = (Id@p(a)r< AT) op, in
which A, is the right comultiplication in H, given by

A, (r#h) = r#h1) @ La#th), Vr € E(A),Yh € H.

Also, one can check that the map p is E(A)-bilinear. Indeed, for
a#th € A#,H and r,s € E(A) then

p((r#1m)(a#th)(s#1m)) = p(ra(hq) - $)#h(2))
= ra(hq) - 8)#he) @ La#the) = (ra#thay) 45 @ 1a#he
= raftha) ® s » (La#he)) = raftha) ® (La#he)) (s#1m)
= a(h@)S(he)) -r)#h@E) @ (LaFthu ) (s#1m)
= a(h@) - (S(he)) - 7)#he) @ (Lattha))(s#1n0)
= (a#hq)) «(S(he)) 1) @ (La#the))(s#1n)
= a#tha) ® (S(he)) 1) » (Ladthe))(s#1n)
= a#thq) 1A#h @)((S(he)) - m)# 1) (s#1m)
= a#ha) @ ((ha) - (S(hw) - 7))#he) (s#1m)

® (

® (
(

a#hiy @ ((h2yS(hey) - 7)#hs)) (s#1m)
(
(

—

= a#ha) @ (r#h))(s#1m)
= a#h(1)® T#lH)(lA#h(Z))(S#lH)'

Denote by €. : E(A)#H — FE(A) the right counit of the partial
smash product E(A)#H, given by €.(a#h) = S(h)-14. Then, we have

(Id @p(a),p« &) © plaFth) = (afth)) €€ (1aFth())

(a#h))((S(h2)) - 1a)#1m) = alhq) - (S(h)) - 1a))#h)
a(h(1)S(h)) - La)#h@s) = a#th.
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Finally, for a#h, b#k € A#,H, we have

P((a#th) (b#EK)) plalhqry - D)w(ha), k1)) #ha) kee))
a(hqy - b)w(h(z), k1)) #h) k) @ Latthaks),

on the other hand,

pla#h)p(b#tk) = (a#hq)) (b#ka)) @ (LaF#h))(LaF#k())
(h(1 b)W(h(Q 1))#h(3 k) @ (h 4) 14)#h )k (3)
(hay - D)w(h2y, kay)#he k) @ (hayki)S(kay) - 1a)#he ki)
(h(1) b)w(h(zy, k) #h@y k) @ (hayka) - (S(kay) - 14))#he) k)
(h(1y - D)w(h(2), b)) # ) k) @ (S(kw)) - 1a) » (La#huykes))
(hay - b)w(hizy, ka))#h@ k) 4 (S(k)) - 1a) ® Lagthw ke
(h(l) bw(hay, k@y) (hayke) - (S(k)) - 1a))#hay k) @ La#hs) k)
1 bw(h(z), k(1))(h(3)k(2)5(k(3 )-1a)#h 4)/€(4))®1A#h(5)k(5)
1))
1)

P

w

Il I
89@99

I
= 2
A

>
’S

y - D)w(hay, k1)) (hesy - La)#Ehay k) @ LaFths)k
) 'b)w(h( #hs) k) @ LaFthayks).

|
)
NN
=
=

Therefore, the crossed product A#wH is a right H-comodule al-
gebra. It is obvious that i(A) C (A#.H)%, now take Y, ai#th; €
(A#w )¢ then

Zai#hi(l)®1A#hi(2) = Zai#hi®1A#1H € E®H®E(A)E(A)®H.

_ Applying Id® ey ® Id® Id to this identity and identifying
A®pa) E(A) =2 A, we obtain

Zal#h fZazeH D #

Therefore i(A) = (A#,,H)",

In order to see that the H-extension is cleft, one needs only to define
the cleaving map, as item (a) of Definition 6.4 is automatically satisfied,
since L = R = E(A). Define the maps

3: E(A#H — A#,H
r#h —  r#h

and _ ~
5. BE(A#H — A#,H
T#h = rw  (S(h), b)) #S (b))
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Note that a#h in the domain of ¥ means something quite different
from a+#h in the image because the first is in the partial smash product,
while the second lies in the partial crossed product. It is easy to see
that 7 is left F(A)-linear. Indeed, for r € E(A) and a#h € E(A)#H,

we have

V(si(r)(azth)) = F((r#1lu)(a#h)) = (ragth)
= rajth = (ri#lu)(a#h).

Also, the cleaving map is a morphism of right H-comodules. Con-
sider a#th € E(A)#H, then

poy(a#th) = plafth) = afthqy @ LaFth)
= F(a#h) @ 1a#he) = (Y Qpa)p« 1d) o pladth).

Finally, let us check that the maps 7 and 5 are mutually inverse by
convolution in the sense that

MO(:Y®E(A),><§)OKT = io¢g
p’o(§®E(A),l><1§)OA = {0¢€.

Consider a#th € E(A)#H, then

10 (Y @p(ayea) 0 Dr(a#th) = F(attha))FV(1atth )
= (a#thy) (W (S(hes)), hay) #S (b))
=a(hqy - w ' (S(he@), hp)w (), S(hs))) #his) S (b))
=a(hy - w (S(hw), his))w(he), S(hs))#1
=aw™ " (h1)S(h(9)), h10))w(h(2), S(hes))hany)w ™ (b, S(hery))

w(hs), S(he)))#1u

= aw™ " (h)S(he))s huzy w2y, S(his) ) his) ) (hsy - (S(hay) - 1a))#1m
=aw ™ (hayS(he); hiry)w(hes), S(hes)hie)) (hay - La)#1a
=a(h-14)#1py
=i(&(a#h)).
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Also, we have

po (¥ QEA),» )O 1(a#th) =

1o (F @p(a)ypa¥)(a#h1) © Lath)

po (¥ ®E(A) ba Y )((1A#h y) <a® 1agthz))
1o (Y @paypa¥)(La#ha) @ a> (La#h)))

o (Y ®p(a)ysa ) (Lattha) © a#thz))

(L a#ha))F(atha))

(W (S (h2), hs) #S(h))) (a#tha)

aw™ (S (h))s 1)) (S(hs)) - a)w(S(ha)), o)) #S (hay)
aw ™ (S(hs)), hiey)w(S(hay), b)) (S(hs)) - a)#S(h(1)) )
(S(he)) - (h(zy - 14))(S(hqr)) - a)#lm
(S(h) - a)#1g = i(€.(a#h)).

Therefore, Ac E#wH is a E(A)# H-cleft extension.

The following is an immediate consequence of the last theorem and
Theorem 6.11, and show us that partially H-cleft extensions are related
with the theory of H-Galois extensions if H is a cocommutative Hopf
algebra and A is a commutative algebra.

Corollary 6.13 Let H = E(A)#H be the Hopf algebroid given above

and A C A#wH a right H-extension. Then, the following statements
are equivalent:

1. Ac E#WH is an H-cleft extension;

2. (a) The extension A C A#,H is H-Galois;

(b) A#wH A ®@pa) E(A)#H as left A-modules and right H-
comodules.

O
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Chapter 7

Conclusions and outlook

In this work, we introduced a cohomology theory for partial ac-
tions of Hopf algebras, extending the results of [30] and [19]. Also we
are able to give a cohomological notion for the partial crossed product
introduced in [5], since that we considered H a cocommutative Hopf
algebra and A a commutative algebra. Furthermore, we have unexpect-
edly shown that the theory of partial cleft extensions for Hopf algebras
[5] can be understood in the context of cleft extensions theory for Hopf
algebroids in [12].

In addition, in association with Professor Joost Vercruisse (ULB),
we tried to investigate whether there would be a general cohomological
theory, with arbitrary H and A, but, as well as for the cohomological
theory for Hopf algebras, we did not obtain some results.

However, we observe that all the cohomology theory done in this
tesis was done over cocommutative Hopf algebras acting partially over
commutative algebras. This can be generalized for cocommutative Hopf
algebra objects and commutative algebra objects in braided monoidal
categories.

Lastly, we present some directions for next works:

- One topic of interest is to relate this cohomology for partial ac-
tions and the cohomology for its globalization, then constructing
a bridge between this theory and the classical Sweedler’s theory.

- The last theorem placed the notion of a partially cleft exten-
sion within the context of cleft extensions for Hopf algebroids.
This suggests, perhaps, that this entire cohomological theory can
be understood properly as a cohomological theory of Hopf alge-
broids.
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- Another topic to be explored in further research can be the obs-
truction theory for the existence of partially cleft extensions and
its relation with the third cohomology group in the same spirit of
[29].
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