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RESUMO

Historicamente, o processo convencional de produção de lentes consistia na moagem
e no polimento de vidro de forma a atingir os requisitos de projeto. No entanto, o esforço
de fabricação de lentes por meio do processo convecional aumenta significativamente
com a complexidade de projeto das lentes. Devido à grande demanda do mercado por
lentes com cada vez mais alta precisão, novos processos de manufatura tornaram-se
mais relevantes.

A moldagem de precisão de vidro emergiu como um desses processos, oferecendo
uma alternativa economicamente viável para a produção em massa de componentes
ópticos de alta precisão. O processo consiste em uma prensa inserida em um ambiente
com temperatura controlada, onde um molde é utilizado para moldar o vidro sujeito a
condições específicas de temperatura e pressão. Após o vidro ser moldado, o mesmo
passa por uma etapa de resfriamento. O resultado do processo é um componente
óptico pronto para ser utilizado.

Embora o processo ofereça muitas vantagens, alguns desafios devem ser abordados,
como vazão imprevista de vidro para fora do molde e o encolhimento da lente dentro
do molde, que podem resultar em má qualidade óptica. As soluções ad-hoc para
esses problemas consistem no projeto repetitivo das lentes e na manufatura iterativa
de moldes, representando, portanto, um alto custo tanto financeiro quanto de mão-de-
obra. A alternativa para resolver essas questões de forma menos custosa consiste em
utilizar simulação por elementos finitos para melhor entender como o vidro se comporta
durante o complexo processo de moldagem.

A simulação atual do processo consiste de um modelo mecânico e um modelo térmico.
O primeiro permite realizar uma análise de tensão-deformação do vidro, enquanto o
segundo permite avaliar a distribuição de temperatura dentro da máquina. O modelo
térmico envolve um conjunto the fenômenos termodinâmicos complexos que ocorrem
simultaneamente. Alguns desses fenômenos podem ser modelados matematicamente,
no entanto com parâmetros desconhecidos. A fim de permitir a otimização do processo,
a modelagem correta desses fenômenos térmicos é necessária.

Este relatório aborda a identificação de parâmetros térmicos para a simulação do
processo de moldagem de precisão de vidro utilizando otimização baseada em simu-
lação juntamente com dados experimentais. A arquitetura proposta para identificação
desses parâmetros consiste em integrar o software de simulação com um módulo de
otimização, responsável por alterar os arquivos de simulação com os parâmetros a
serem testados. Primeiramente, um plano de experimentos foi feitos de forma a iden-
tificar os parâmetros desconhecidos do processo. Foram definidos experimentos de
resfriamento à vácuo, resfriamento por nitrogênio, e experimentos de aquecimento.

Após isso, utilizou-se a simulação atual como base para o desenvolvimento de uma
nova simulação que descreve os experimentos feitos. De forma a integrar a simu-
lação com o módulo de otimização, um projeto de software foi realizado utilizando
a metodologia de desenvolvimento baseado em funcionalidades. O resultado foi um



script na linguagem Python responsável por integrar o pacote de otimização Nevergrad

com o software de simulação Abaqus.

Como existem múltiplos algoritmos de otimização que podem ser utilizados nesse
caso, foi proposta uma comparação entre múltiplos algoritmos de otimização sem
utilização de derivada, visto que a simulação não computa esses valores. Após definir
um algoritmo a ser utilizado para os experimentos, a identificação dos parâmetros foi
feita utilizando diferentes hipóteses de modelagem de cada experimento.

Para os experimentos de resfriamento à vácuo, os fenômenos térmicos existentes
são: perda de calor por condução pelas flanges, perda de calor por radiação para o
ambiente, e condução na interface entre as placas de resfriamento e o molde. Analisou-
se duas hipóteses de modelagem a partir disso. A primeira buscou identificar apenas o
coeficiente de condução pelas flanges e a emissividade de radiação para o ambiente,
assumindo que a condutância na interface mantinha-se constante. A segunda hipótese
assumia que a condutância na interface também deveria ser identificada. A segunda
hipótese foi capaz de explicar os dados experimentais com baixo erro.

Os experimentos de resfriamento por nitrogênio apresentam os seguintes fenômenos
térmicos: perda de calor por condução/convecção, perda de calor por radiação para
o ambiente, convecção na lateral do molde, e condução na interface. Múltiplas hipóte-
ses foram analisadas, no entanto apenas uma foi capaz de explicar bem os dados
experimentais. A mesma assumiu que o coeficiente de convecção superior e inferior, o
coeficiente de convecção lateral e a condutância na interface deveriam ser identificadas.
Além disso, múltiplos pontos de operação (vazão de nitrogênio) foram analisados e
tiveram seus respectivos coeficientes identificados utilizando a mesma hipótese de
modelagem. Posteriormente uma análise de regressão foi feita de forma a encontrar
uma função que descreva como as variáveis identificadas variam com o ponto de
operação.

A partir dos parâmetros identificados e da análise de regressão, uma avaliação ex-
perimental do método foi feita tanto em pontos de operação conhecidos quanto de-
sconhecidos. A avaliação em um ponto de operação conhecido consistiu em repetir
um experimento de resfriamento por nitrogênio e utilizar os parâmetros identificados
previamente para verificar se a simulação ainda era capaz de explicar os dados do
novo experimento. A avaliação para o ponto de operação de 20 l/min retornou bons
resultados.

A avaliação experimental do método em pontos de operação desconhecidos também
foi feita. A partir dos modelos de regressão, os parâmetros térmicos para uma vazão
de 30 l/min foram obtidos e avaliados. Os parâmetros obtidos geraram uma curva de
simulação que não teve boa concordância com a curva experimental. Como a análise
de regressão havia sido feita com poucas observações, assumiu-se que as curvas
ajustadas foram afetadas por ruído e podiam não ser estatisticamente significativas.
Dessa forma, o processo de identificação foi feito próximo à região apontada pela
regressão e atingiu bons resultados. Isso mostrou que a regressão estava direcionando
os parâmetros para a região correta, no entanto, para o ponto errado. A partir disso,



concluiu-se que mais observações são necessárias para que a regressão seja efetiva.

Por fim, a abordagem sugerida provou ser viável e apresentou bons resultados para ex-
perimentos de resfriamento à vácuo e resfriamento por nitrogênio. Os resultados estão
de acordo com a teoria e os dados experimentais. A condução na interface identificada
mostrou concordância com artigos que abordam o mesmo tópico, porém utilizando
diferentes abordagens de identificação. Futuros trabalhos envolvem realizar a identi-
ficação dos modelos relacionados aos experimentos de aquecimento, e a avaliação
experimental das funções que descrevem as variáveis identificadas nos experimentos
de resfriamento por nitrogênio nos pontos de operação restantes.

Palavras-chave: Moldagem de precisão de vidro. Identificação de parâmetros. Otimiza-
ção baseada em simulação.



ABSTRACT

Precision glass molding emerged as a powerful and economically viable alternative for
the mass-production of high-precision optical components. Even though the process of-
fers many advantages, some challenges must be addressed, such as unpredicted glass
flow in the machine and shrinkage of the lens inside the mold. In order to solve these
problems, finite element simulation is used. The current simulation of precision glass
molding consists of mechanical and thermal models. The thermal simulation involves a
set of complex thermodynamic phenomena which take place simultaneously. Some of
the phenomena can be mathematically modelled, but the coefficients of the model are
not trivial to be obtained. In order to allow process optimization, the correct modeling
of these thermal phenomena is required. This report addresses the identification of
thermal parameters for the precision glass molding simulation using simulation-based
optimization together with experimental data. To accomplish this, a study of the ther-
mal model, development of a FEM simulation and a software project to integrate the
simulation software with the optimization architecture, as well as the analysis of the
identification approach for two cooling scenarios (heat losses to the environment and
nitrogen cooling) were carried out. The results proved that the proposed approach is
feasible, the identified parameters agree with theory and experimental data. The iden-
tified gap conductance for vacuum experiments showed an agreement with papers
addressing the same topic, however using different identification approaches.

Keywords: Precision glass molding. Parameter identification. Simulation-based opti-
mization.
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The thermal simulation of the PGM consists of a complex thermodynamic prob-

lem comprising interactions between radiative, convective and conductive thermal trans-

port phenomena. Some of these phenomena can be mathematically modeled, but the

models rely on unknown coefficients. The importance of correctly modeling these phe-

nomena represents a great increase in the accuracy of the simulation, therefore en-

abling process optimization. Ostrouchov et al. (2011) addresses the identification of

gap conductance between mold and glass in the PGM simulation. Kannan (2009) uses

Computational Fluid Dynamics (CFD) to model the cooling phase of PGM.

1.1 OBJECTIVES

1.1.1 General Objective

Given the many advantages of improving the thermal simulation of PGM, the

general objective of the present work is to analyze the viability of using both experimen-

tal and finite element simulation data to identify the unknown thermal parameters of the

process.

1.1.2 Specific Objectives

• Analysis of the process and current simulation

• Proposal of an identification architecture

• Design of experiments for the identification

• FEM simulation design

• Implementation of a software for integrating the identification module with the

FEM simulation

• Identification of the parameters for each proposed experiment

• Analysis of the results

1.2 THE RESEARCH INSTITUTE

This present work was developed inside Fraunhofer IPT (Figure 4), an institute

of the Fraunhofer Society for the promotion of applied research. Founded in 1949, the

Fraunhofer Society currently operates 74 institutes and research institutions throughout

Germany (IPT, 2020).

Located in the state of North Rhine-Westphalia, more specifically in the city of

Aachen, Fraunhofer IPT focuses on developing production system solutions for all fields
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Figure 4 – Fraunhofer IPT Building.

Source – (WIKIPEDIA, 2010)

in industry. Within IPT, research is divided between 4 main areas: Process Technology,

Production Machines, Production Quality and Metrology, and Technology Management.

Inside the area of process technology, the department of fine machining and

optics focuses on ultra-precision grinding and polishing, diamond machining and the

molding of high precision glass components.

The present report describes the state of the art (Chapter 2), the current envi-

ronment and the conceptual solution (Chapter 3), the software project for enabling the

identification of coefficients (Chapter 4), the analysis of the results (Chapter 5) and the

summary and outlook works (Chapter 6).
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2 STATE OF THE ART

This chapter presents the main concepts and background theories used in the

development of this work from section 2.1 to 2.6.

2.1 FINITE ELEMENT METHOD

In Mathematics, many problems can be solved by approximating a continuous

domain as a discrete domain with a finite number of parts. This strategy has been

extensively used throughout history. For example, the "Archimedes’ Problem" dated

from 250 B.C. consisted of approximating the ratio of the circumference of a circle to its

diameter by approximating a circle as a polygon with a large, but finite number of sides

(FELIPPA, 2004). The same principle is used to calculate the area of curves.

The FEM, sometimes referred to as Finite Element Analysis (FEA), is a compu-

tational technique used to obtain approximate solutions of boundary value problems in

engineering. In simple terms, a boundary value problem is a mathematical problem in

which variables must satisfy a differential equation everywhere in a defined domain, as

well as satisfying conditions on the boundary of this domain (HUTTON, 2003).

In other words, FEM is used to numerically solve partial differential equations

in complex domains, where the approach is to divide a complex domain into a set

of finite simpler sub-domains. Each sub-domain, denominated element, is solved by

differential equations which yield an approximate solution for that element. Elements

are connected by nodes, which guarantee the continuity of the field variable across inter-

element boundaries. Nodes avoid physically unacceptable solutions containing gaps or

voids in the domain. In heat transfer, a gap would represent different temperatures at

the same location (HUTTON, 2003).

To exemplify the method, Figure 5.a represents a tapered cylinder fixed in one

side and subject to tensile loading on the other side. In order to solve the displacement

for this problem, FEM is used. Figure 5.b shows the problem discretized by one uniform

cylinder. Figure 5.c uses two elements with the same length. Improving the mesh,

Figure 5.d uses four elements to describe the tapered cylinder. The result of using

FEM to solve the problem with a different number of elements is depicted in Figure

6.a by comparing the exact and simulated displacement at the end of the cylinder for

each discretization. An increase in the number of elements, increased the accuracy

of the model. The four-element model is also able to well describe the displacement

throughout the whole length of the cylinder, as seen in Figure 6.b.
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Figure 5 – (a) Tapered cylinder under tensile loading: r (x) = r0–(x /L)(r0–rL). (b) Tapered
cylinder as a single element using an average area, while actual cylinder
geometry is shown as dashed lines. (c) Tapered cylinder modelled as two,
equal-length, finite elements. (d) Tapered circular cylinder modeled as four,
equal-length, finite elements.

Source – (HUTTON, 2003)

2.2 HEAT TRANSFER CONCEPTS

This section presents some of the heat transfer concepts used throughout this

document. These concepts are presented from section 2.2.1 to 2.2.3 and comprise the

topics of conduction, convection, radiation and gap conductance.
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Figure 6 – FEM results for tapered cylinder in tension of Figure 5. Displacement at x/L
for each discretization compared with the exact displacement (left). Compari-
son of the exact solution and the four-element solution throughout the length
of the cylinder (right).

Source – (HUTTON, 2003)

2.2.1 Conduction Heat Transfer

Conduction describes the energy transfer due to direct molecular contact at dif-

ferent temperatures (LEVENSPIEL, 2014). This phenomena was described by Fourier‘s

Law (see equation 1), which states that the conduction heat flux in a certain direction is

proportional to the negative temperature gradient with respect to that direction.

q̇x = –kA
dT

dx
. (1)

In equation (1), q̇x [W] represents the heat in direction x, k [ W
mK ] represents the

thermal conductivity of the material, A [m2] represents the area normal to the x direction

and dT
dx [ K

m ] is the temperature gradient in the x direction (LEVENSPIEL, 2014).

The complete equation for steady-state heat conduction in any arbitrary direction

through an isotropic material, without heat generation, is:

q̇ = –kA∆T . (2)

Related to conduction heat transfer, a phenomena called gap conductance or

gap resistance is found when heat flows across two touching plane walls. Due to the

irregularities in the contact of both surfaces, an additional resistance is found at the

interface, causing a temperature drop between the surfaces (LEVENSPIEL, 2014). The

heat flow across the interface of surfaces A and B (Figure 7) can be described as

q̇ = –hcA(T ′′

2 –T ′

2), (3)
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where hc is the contact heat transfer coefficient. The value of hc is highly dependent on

the conditions of the interface. In cases where vacuum is present, the heat transfer in

the interface occurs via conduction through the real contact area between the surfaces,

which consists of a set of micro-contacts. In cases where gas is present at the interface,

the heat transfer occurs through the contact area, as well as conduction through the gas

filling the interface. In this case, the value of hc is also dependent on factors such as

contact pressure, micro-hardness, surface roughness, gas pressure and temperature,

and the the thermal conductivity of the gas (SONG; YOVANOVICH; NHO, 1992).

Figure 7 – Schematic of gap resistance between surfaces A and B.

Source – (LEVENSPIEL, 2014)

2.2.2 Convection Heat Transfer

Convection describes the energy exchanged by the movement of fluids in a

macroscopic scale. Convection can manifest itself as either forced convection or natural

convection. The latter is caused by an external factor, such as an imposed flow of fluid.

When the motion of the fluid is not caused by an external factor, only by difference

in density due to temperature variations, the phenomena is called natural convection

(LEVENSPIEL, 2014). Figure 8 depicts both of these phenomena.

The convection heat transfer can be modelled by

q̇ = hcA∆T , (4)

where hc [ W
m2K

] represents the convection coefficient of heat transfer.

2.2.3 Radiation Heat Transfer

Different from conduction and convection, radiation heat transfer does not de-

pend on a medium to occur. Radiation represents the thermal energy emitted from any

body in the form of electromagnetic waves and is caused by the oscillations of electrons.
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Figure 8 – Comparison between natural and forced convection modes.

Source – (LEVENSPIEL, 2014)

These oscillations are caused by the internal energy, hence the temperature, of matter

(BERGMAN et al., 2011). The heat emitted by radiation from a black body (also known

as ideal emitter) can be modelled by

q̇ =σAT 4, (5)

where σ represents the Stefan-Boltzmann constant and T the body temperature, in

Kelvin.

When analyzing the thermal radiation between a surface and a black-body, the

following equation can be used:

q̇ =σAǫ(T 4
1 –T 4

2 ). (6)

where ǫ represents the emissivity of the surface. This value ranges from 0 to 1 depend-

ing on how close the surface is to a black body (GANJI; SABZEHMEIDANI; SEDIGHI-

AMIRI, 2018). For example, an object with emissivity 0 reflects all radiation, while an

object with emissivity 1 absorbs all radiation it receives.

2.3 PRECISION GLASS MOLDING

2.3.1 Precision Glass Molding Process

As introduced in chapter 1, precision glass molding emerged as an alternative

to roughing and grinding processes in the mass production of high-complex optical

components. PGM consists of a sequence of steps that have as result a ready-to-use

glass optic.

The process begins with the loading of the preform in the machine. Right after,

in order to prevent oxidization of the mold at high temperatures, oxygen is removed by
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The simulation of PGM is divided in mechanical and thermal models. The first

model results in a stress-strain analysis in the glass. The second results in the tem-

perature distribution inside the machine and glass. Many studies have been conducted

in order to study the mechanical model of the precision glass molding, such as Liu

(2018), Li (2016) and Farghaly (2019), who studied the fracture behavior of glass within

precision glass molding.

The current thermal precision glass molding simulation is done by using the finite

element method to solve the partial derivative heat transfer equations together with the

boundary conditions that describe the heat transfer phenomena present in the process.

The following phenomena are considered:

• Conduction between the parts in the mold assembly;

• Convection between the nitrogen flow and the upper and cooling plates;

• Radiation between infrared lamps and mold assembly;

• Contact conductance between cooling plates and mold assembly and glass pre-

form and mold;

The most important thermal steps in the process are heating and cooling. For this

reason, transient simulation for both these steps are done. A geometrical representation

of the simulation model is presented in Figure 10.

2.4 PARAMETER IDENTIFICATION PROBLEM

In order to better understand the parameter identification problem, it is neces-

sary to first introduce the concepts of direct and inverse problems. Generally, modeling

consists of finding a relation between a set of observation data d and physical param-

eters characterizing a model, m. Assuming the fundamental physics are adequately

understood, and that a function G may be specified relating m and d, such as:

G(m) = d . (7)

A direct problem, or forward problem, can be defined by finding d given m. This

typically consists of solving a differential equation or an integral equation. Alternatively,

an inverse problem consists of finding m given d. The task of finding G, given exam-

ples of m and d is defined in the literature as model identification problem (ASTER;

BORCHERS; THURBER, 2018).

Parameter identification or parameter estimation can be classified as an inverse

problem, where the objective is to find a discrete set of parameters that characterize

a model. These parameters can represent physical properties of the modeled system





Chapter 2. State of the art 27

Figure 11 – Direct parameter identification method.

Source – (MOELLER, 2004)

Figure 12 – Indirect parameter identification method.

Source – (MOELLER, 2004)

that computes the error between two values.

2.5 SIMULATION-BASED OPTIMIZATION

Computer simulations are broadly used to model real systems and evaluate

them. Although choosing optimal simulation parameters can lead to improvements,

the process of configuring them presents itself as a challenging problem. Historically,

choosing simulation parameters consisted of selecting the best from a set of candidate

parameters. Simulation-based optimization seeks to integrate optimization techniques

into simulation analysis (DENG, 2007).

In a conventional optimization scenario, this process is usually automated by

coupling a simulation program and an optimization module (NGUYEN; REITER; RIGO,

2014). The most typical architecture can be seen in Figure 13, having an optimization

module and a module for the dynamic generation of simulations.
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Figure 13 – Simulation-based optimization loop.

Source – (NGUYEN; REITER; RIGO, 2014)

Nguyen, Reiter, and Rigo (2014) presents the major phases for simulation-based

optimization. These phases are preprocessing, which consists in the formulation of the

optimization problem; the optimization phase, which consists of running the optimiza-

tion algorithms, monitoring convergence and possible errors; and the post-processing

phase, consisting of the analysis of results.

Analogously to the concept of indirect parameter identification presented in Fig-

ure 12, simulation-based optimization also presents itself as an optimization problem.

However, simulation-based optimization is used as a general approach to optimize a

simulation using any objective function. Assuming that the objective function is the resid-

ual between experimental and simulation data, that is the error presented in Figure 12,

it is possible to use simulation-based optimization to identify unknown parameters. This

approach is used in Kleinermann and Ponthot (2003) to identify the material parameters

in metal forming simulation using experimental and FEM simulation data. Lecompte

et al. (2007) also uses the same strategy to identify the four in-plane orthotropic engi-

neering constants of composite plate materials.

2.6 OPTIMIZATION ALGORITHMS

Since simulation-based optimization presents itself as an optimization problem,

optimization algorithms need to be used. In order to choose a set of algorithms, the

objective function needs to be taken into account.



Chapter 2. State of the art 29

Within simulation-based optimization, the objective function is an associated

measurement of an experimental simulation. Due to the complexity of the simulation, the

objective function may be difficult and expensive to evaluate. Also derivative information

is typically unavailable in FEM simulation software (DENG, 2007). For this reason,

derivative-free optimization algorithms are typically applied.

2.6.1 Nelder-Mead

Nelder-Mead or Downhill Simplex is a derivative-free direct search optimization

algorithm invented in 1965 by Nelder and Mead. The method is based in a structure

called simplex. A simplex in Rn is defined as the convex frame of n+1 vertices x0, . . . ,xn ∈

Rn. For instance, a simplex in R
2 is a triangle, and a simplex in R

3 is a tetrahedron

(Figure 14) (SINGER; NELDER, 2009). The general algorithm is given by

• construct an initial simplex S;

• repeat the following steps until the termination test is satisfied:

– calculate the termination test information;

– if the termination test is not satisfied then transform the working simplex;

• return the best vertex of the current simplex S and the associated function value.

Figure 14 – Simplex in R
2 (left) and in R

3 (right).

Source – (SINGER; NELDER, 2009)

The transformation of the simplex consists of substituting the worst vertex by

using reflection, expansion or contraction with respect to the best vertex (SINGER;

NELDER, 2009).
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2.6.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) algorithm is an evolutionary meta-heuristic

algorithm proposed in Kennedy and Eberhart (1995). In PSO a number of particles,

or candidate solutions, traverse through the search space, and each evaluates the

objective function at its current location. Each particle then determines its movement

through the search space by combining global and individual bests. Since both global

and individual bests are taken into account, eventually the swarm is likely to move close

to an optimum of the fitness function (POLI; KENNEDY; BLACKWELL, 2007).

Each particle is described by its position in the search space and its velocity.

Changes in a particle velocity are governed by:

vid = vid +c1rand()(pid –xid )+c2rand()(pgd –xid ), (9)

xid = xid +vid , (10)

where vid represents the velocity of a certain particle, pid the best previous position,

xid the current position, pgd the best previous global position, c1 and c2 are constants,

and rand() represents a function that returns a random number in the range [0,1].

In order to reach good results with the algorithm, the choice of the parameters

c1 and c2 are really important since they decide how much the particle‘s velocity will be

affected by its own best and the population global best. Also, the choice of population

size is an important step for the right tuning of PSO (SHI; EBERHART, 1999).

2.6.3 Bayesian Optimization

Bayesian Optimization (BO) is a stochastic optimization algorithm applied ex-

tensively to solve problems where the objective function is expensive to evaluate and

the goal is to find a global optimum. BO consists of two main components: a Bayesian

statistical model for modeling the objective function (typically a Gaussian Process), and

an acquisition function for deciding where to sample next (FRAZIER, 2018). The main

steps of BO are:

• Initial points are sampled from the search space and evaluated by the cost func-

tion;

• A surrogate model of the cost function is generated using the evaluated points,

therefore creating the posterior model;

• The acquisition function is used to decide where to sample next based on the

posterior model;

• New points are sampled based on the surrogate model;



Chapter 2. State of the art 31

The tuning of BO is done by defining the parameters for the statistical model and

the acquisition function. Further analysis of the choice of parameters is developed in

(FRAZIER, 2018).
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3 CURRENT ENVIRONMENT AND RESEARCH APPROACH

This chapter presents the current PGM environment inside of IPT, as well as

the process data collection architecture, followed by the opportunities for the thermal

simulation model and the research approach for parameter identification.

3.1 CURRENT ENVIRONMENT

3.1.1 Glass Molding Machine: Toshiba GMP-211V

Precision glass molding is normally done using dedicated machines that imple-

ment the whole process. At the research institute, the Toshiba GMP-211V machine is

used for the molding of small lenses. The machine consists of a Computer Numerical

Control (CNC) that controls the main axis, therefore controlling the pressing, and a

Programmable Logic Controller (PLC) that is responsible for the discrete logic of the

process, as well as for the reading of sensors. The PGM molding machine can be seen

in Figure 15. The structure in the left of the figure is the machine control unit, where

molding programs can be inserted and the visualization of the process variables can

be done. The right structure is where the molding occurs. Figure 16 depicts with more

detail the inside of the chamber before the molding process. It is possible to see the

glass preform standing on top of the mold assembly. The chamber during molding can

be seen in Figure 17. The main specifications for the GMP-211V can be seen in Figure

18.

Figure 15 – Toshiba GMP-211V machine.

Source – (KLOCKE; STAASMEYER, 2015)
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Figure 16 – Toshiba GMP-211V before molding.

Source – (KLOCKE; STAASMEYER, 2015)

Figure 17 – Machine during molding. The intense glow is due to the infrared lamps.

Source – (KLOCKE; STAASMEYER, 2015)

3.1.2 Machine Data Collection

In order to provide support for the PGM process, a complete Information Tech-

nology (IT) architecture is set up to read the machine information and store it into a

database. The complete architecture can be divided into three software projects: Serial

Reader, WebAPI and WebApp.

Serial Reader is a piece of software deployed in a notebook and connected to the

serial port of the molding machine. This software is responsible for reading the sensor
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by the real sensor, the model is assumed to be correct. Following this approach, the

following optimization problem is proposed:

min
x

1

n

n∑

i=1

(Tm –Ts(x))2, (12)

where n represents the number of points measured in the experiment, Tm represents

the temperature measured by the sensor, Ts represents the temperature given by the

simulation, and x represents the unknown thermal parameters.

Figure 22 – Identification Architecture.

Source – Original

This architecture enables finding a vector x that minimizes the error between

simulation and experimental data. The approach to identify the parameters is to decou-

ple the many thermal phenomena present in the process into different experiments (see

section 3.3.2), model the experiments in the FEM simulation software following some

hypotheses of which thermal phenomena occur in the experiment, identify the parame-

ters using the experimental and simulation data through optimization, and evaluate the

results.

The main limitation of this approach is the difficulty of creating a model that

imitates the dynamic behaviour of the system in a way that it can be considered good

enough for its representation. In other words, it is necessary that the designed model

is able to describe the process dynamics. A great advantage of this process is the fact

that it requires no extra instrumentation in the machine, hence making it a cost-effective

identification method.

The greatest challenge in this approach is the fact that FEM simulations can

take minutes. Therefore, in order to have an acceptable training time, the convergence

time (number of iterations for convergence) is reduced. Also, gradient information is

not available from the simulation, thus forcing the use of derivative-free optimization

algorithms, which take longer to converge.
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3.3.2 Design of Experiments

The precision glass molding process consists of many heat transfer phenom-

ena happening simultaneously, which makes the identification process much harder.

In order to solve this, the approach is to decouple the heat transfer phenomena of

the machine through well-designed experiments. Having identified the decoupled mod-

els/parameters, these can be later re-coupled in order to simulate the whole process.

After introducing the approach, the experiments to be conducted are:

• Vacuum cooling

This experiment consists in heating the machine (without glass preform) up to a high

temperature. Afterwards, the machine is cooled down by vacuum. The main goal of this

experiment is the identification of the system heat losses model.

• Nitrogen cooling

This experiment consists in heating the machine (without glass preform) up to a high

temperature. Afterwards, the machine is cooled down by nitrogen (different nitrogen

flow setups will be used). The main goal of this experiment is the identification of the

convection heat losses, as well as their relation with the nitrogen flow operating point.

• Heating

This experiment consists in heating the machine (without glass preform) up to a high

temperature. The heating temperature curve will be used to identify the infrared lamp

model, as well as the emissivity of the radiation heat transfer.

The identification architecture presented in 3.3.1 is used to identify the unknown

parameters from the experiments described in the items above. However, in some

of the experiments, these parameters can vary depending on the operating-point of

the machine. For example, in the nitrogen cooling experiments, the nitrogen flow is

responsible for the cooling rate in the machine. Therefore, the cooling parameters will

vary depending on the operating-point. For this reason, an extended approach will be

used in order to identify operating-point related parameters.

The extended approach consists of using the identification approach in multi-

ple operating-points. Having multiple observations, it is possible to apply regression

techniques to identify an expression that relates each unknown parameter with the

operating-point. The proposed method for the identification can be seen in Figure 23.

3.3.3 Software Requirements

To allow the use of the architecture presented in Figure 22, the optimization

module needs to be created. The general software methodology for the development
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Figure 23 – Proposed method for identifying the unknown parameters in PGM.

Source – Original

of this module was Feature-Driven Development (FDD), an iterative and incremental

software development process based on agile methods. This methodology was chosen

from the nature of the optimization module, which has clear sequential features that

must be developed to correctly integrate with the FEM software.

The process consists of breaking the project into multiple features that can be

individually developed and later integrated. The goal of the optimization module is

to generate simulation jobs based on the error between experimental and simulation

values. From this description, the following features are defined:

• Read experimental data from database

• Read simulation temperature curves from the simulation software

• Generate simulation jobs dynamically

• Calculate the error between experimental and simulation curves

• Interface between simulation software and optimization algorithms

Chapter 4 describes how these features were developed and integrated with the

FEM simulation.
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Table 1 – Material parameters for FHR96

Property Value Unit

Conductivity 54 Wm–1K–1

Density 17200 kgm–3

Young‘s Modulus 350 GPa
Poisson‘s Ratio 0.28 -

Expansion Coefficient 5.4E-06 MK–1

Specific Heat 400 Jkg–1K–1

Source – Original

Table 2 – Material parameters for TJF03

Property Value Unit

Conductivity 43 Wm–1K–1

Density 15400 kgm–3

Young‘s Modulus 670 GPa
Poisson‘s Ratio 0.17 -

Expansion Coefficient 4.5E-06 MK–1

Specific Heat 214 Jkg–1K–1

Source – Original

4.1.3 Assembly

The assembly section defines which parts are contained in the model and how

they are geometrically disposed. Also, contact surfaces can be defined, which are used

to define where the heat exchange occurs. Since the machine is symmetrical, it is

possible to use an axis-symmetric boundary. This reduces the amount of elements in

the simulation, therefore reducing total simulation time. The complete assembly can be

seen in Figure 25.

4.1.4 Interactions

Interactions in Abaqus represent any type of physical effects happening between

two or more surfaces. In the model, conduction (upper and lower), convection (up-

per and lower), radiation and contact conductance (upper and lower) interactions are

defined. The location of these interactions can be seen in Figure 10.

4.1.5 Steps

Steps represent a convenient phase of the process, in which an analysis is

done. The division of a simulation into steps enables sequential analyses of different

types (e.g. a transient heat analysis followed by a static stress analysis). In the current

simulation, the steps are: initial, heating and cooling. Since the first experiments defined

in section 3.3.2 consist of cooling only, the defined steps are initial and cooling. The
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Algorithm 1: Definition of a convection interaction in Abaqus input file

** Interaction: Int-Cond-lower_Mold

*Sfilm

Surf-Conv-lower_CoolPlate, F, 20., 239

Therefore, the approach to generate the simulation files dynamically is to create

a base input file with the description of the model and simulation parameters, which are

presented as markup variables. Taking the code above as an example, if the convection

coefficient ought to be changed dynamically, the base input file would look like this:

Algorithm 2: Definition of a convection interaction in Abaqus input file

with markup variable for convection coefficient

** Interaction: Int-Cond-lower_Mold

*Sfilm

Surf-Conv-lower_CoolPlate, F, 20., $alpha$

In order to run a simulation with a certain convection coefficient, the markup

variable can be replaced by the value and a valid input file is generated. This approach

can be extended for multiple markup variables. The function that generates the input

receives a base file and a dictionary of markup variables with the markup as key and

the value to be replaced as its value. The markup variables are replaced by the value

contained in the dictionary. The input file generation workflow is depicted in Figure 28.

Figure 28 – Workflow for the input file generation.

Source – Original

4.2.4 Calculate the error between experimental and simulation curves

Since both experimental and simulation data are stored in the same data struc-

ture, calculating the error between curves consists of applying a metric algorithm to
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value exists in the memoization layer, no simulation is required. If not, the simulation is

ran and the error is calculated from the Abaqus report file.

Figure 31 – Complete optimization architecture.

Source – Original

This section presented the main steps in the modelling of the cooling experi-

ments, as well as the software development for integrating the simulation software with

the optimization module. The complete architecture will be used in chapter 5 to identify

the parameters for each type of experiments presented in section 3.3.2.
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5 RESULTS AND ANALYSIS

The present section presents the algorithm benchmark proposed in section 4.2.5,

the identification results and analysis for vacuum cooling experiments, in section 5.1,

and for nitrogen cooling experiments, in section 5.2.

5.1 VACUUM COOLING EXPERIMENTS

This experiment consists in heating the machine (without glass preform) up to a

high temperature. Afterwards, the machine is cooled down by vacuum. The main goal of

this experiment is the identification of the system heat losses model. Within this exper-

iment, the following thermal phenomena are involved: conduction heat loss, radiation

heat loss, and contact conductance. The model for the vacuum cooling experiments

can be seen in Figure 32.

Figure 32 – Thermal phenomena in vacuum cooling experiments.

Source – Original

From these phenomena, the following thermal parameters can be identified:

upper and lower conduction coefficients of heat loss (hloss), emissivity of radiation heat

loss (ǫloss) and contact conductance (hc).

As explained in section 4.2.5, a benchmark was done in order to decide which

algorithm would be used in the identification process. The benchmark consists in the
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optimization of the thermal parameters for the first model hypothesis in the vacuum

cooling experiment. This hypothesis assumes that conduction coefficient (hloss) and

emissivity (ǫloss) are learned and the contact conductance remains at a constant value

of 2400 W
m2K

. This value is the one defined in the current simulation and was identified

in Vu et al. (2019). In order to reduce the complexity of the benchmark, the optimization

was carried only using the lower mold temperature data. The results are presented in

Figure 33 and show that the best MSE was reached by PSO. For this reason, it was

decided that PSO would be used in the further experiments.

Figure 33 – Algorithm benchmark results.

Source – Original

Even though PSO presented the best result, the MSE found in the first hypothesis

was too high, meaning that the model does not represent the experimental data well.

The second hypothesis consists in learning the contact conductance value as well. The

comparison between hypotheses can be seen in Figure 34.

Figure 34 – Comparison between multiple vacuum cooling model hypotheses.

Source – Original

Hypothesis 2 yields a result that is able to describe the experimental curve. A

comparison between the lower mold temperature curves can be seen in Figure 35 and

the upper mold temperature curves can be seen in Figure 36.

The reason for identifying such a small contact conductance is due to the fact

that there is vacuum between the surfaces, which reduces significantly the area of

contact. In the measurements done in Vu et al. (2019), the mold chamber was not

under vacuum, meaning that there was gas filling the gap between the holder and

cooling plate. The presence of gas at the interface increases the contact area, therefore
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Figure 37 – Thermal phenomena in nitrogen cooling experiments.

Source – Original

Figure 38 – Comparison between multiple cooling model hypotheses for a nitrogen flow
of 60 l/min.

Source – Original

It is possible to calculate the equivalent thickness of a thin nitrogen film using

the identified gap conductance using the equation

U =
k

x
, (13)

where U is the conductance, k is the conductivity, and x is the thickness. Figure 42

presents the equivalent thickness for each operating-point presented in Figure 41. The

values range from 0.73 µm to 3.49 µm. The surface flatness provided by the manufac-

turing tolerance is close to 1.8 µm. The explanation for the variance of x could be the





















64

6 CONCLUSION AND FURTHER WORK

This report presented the development of a simulation-based optimization strat-

egy to identify unknown parameters for a precision glass molding thermal model. The

project consisted of an extensive analysis of the current thermal simulation, a software

implementation for the identification of parameters and a further analysis of the results.

The suggested approach proved to be feasible and presented good results for

vacuum cooling and nitrogen cooling experiments. The results agree with theory and

experimental data. The identified gap conductance showed an agreement with papers

addressing the same topic, however using different identification approaches. Also,

an experimental evaluation of the nitrogen cooling models was made for known and

unknown operating-points.

Due to the limited amount of time, as well as restricted access to the laboratory at

the time of this work’s development (due to the COVID-19 outbreak), some of the exper-

imental part of this project was delayed. Heating experiments were not addressed since

the identification of cooling experiments were simpler and would allow the experimental

evaluation of the proposed method. Also, heating experiments would require a slightly

different approach for the identification. Since the estimation of the lamp temperature

consists of a dynamic identification (meaning that the temperature of lamps change with

time), the proposed approach would be to assume the system as a nth order system

and the goal would be to identify its coefficients, which are static. In case the lamp

system is non-linear, these coefficients will change based on the operating-point and

the same approach used in the nitrogen cooling experiments can be used. Within the

constraints encountered during the time of this work, the main goals were achieved.

Further work consists of evaluating the identified models with experimental data

in the remaining operating-points. Also further operating-points for nitrogen cooling

must have its parameters identified in order to increase the number of observations for

the regression analysis. After validating the regression approach in multiple unknown

operating-points, heating experiments can be addressed.

The development of the present project was a very enriching experience, since

it allowed the author to deal with both practical and theoretical aspects related to the

Control and Automation Engineering Course in an international research institute. The

basis offered by the course, in addition to the guidance from both company supervisor

and university supervisor, were essential for the completion of the project.
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