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RESUMO

Historicamente, o processo convencional de producéo de lentes consistia na moagem
e no polimento de vidro de forma a atingir os requisitos de projeto. No entanto, o esforco
de fabricacao de lentes por meio do processo convecional aumenta significativamente
com a complexidade de projeto das lentes. Devido a grande demanda do mercado por
lentes com cada vez mais alta precisao, novos processos de manufatura tornaram-se
mais relevantes.

A moldagem de precis&o de vidro emergiu como um desses processos, oferecendo
uma alternativa economicamente viavel para a producao em massa de componentes
opticos de alta precisdo. O processo consiste em uma prensa inserida em um ambiente
com temperatura controlada, onde um molde é utilizado para moldar o vidro sujeito a
condicoes especificas de temperatura e pressao. Apds o vidro ser moldado, 0 mesmo
passa por uma etapa de resfriamento. O resultado do processo € um componente
optico pronto para ser utilizado.

Embora o processo ofereca muitas vantagens, alguns desafios devem ser abordados,
como vazao imprevista de vidro para fora do molde e o encolhimento da lente dentro
do molde, que podem resultar em ma qualidade Optica. As solucées ad-hoc para
esses problemas consistem no projeto repetitivo das lentes e na manufatura iterativa
de moldes, representando, portanto, um alto custo tanto financeiro quanto de mao-de-
obra. A alternativa para resolver essas questdes de forma menos custosa consiste em
utilizar simulagdo por elementos finitos para melhor entender como o vidro se comporta
durante o complexo processo de moldagem.

A simulacao atual do processo consiste de um modelo mecanico e um modelo térmico.
O primeiro permite realizar uma anélise de tensao-deformacéo do vidro, enquanto o
segundo permite avaliar a distribuicdo de temperatura dentro da maquina. O modelo
térmico envolve um conjunto the fendmenos termodindmicos complexos que ocorrem
simultaneamente. Alguns desses fendmenos podem ser modelados matematicamente,
no entanto com parametros desconhecidos. A fim de permitir a otimizacao do processo,
a modelagem correta desses fendmenos térmicos é necessaria.

Este relatério aborda a identificacdo de parametros térmicos para a simulacdo do
processo de moldagem de precisédo de vidro utilizando otimizagdo baseada em simu-
lacédo juntamente com dados experimentais. A arquitetura proposta para identificagéo
desses parametros consiste em integrar o software de simulagdo com um médulo de
otimizacao, responsavel por alterar os arquivos de simulacdo com os parametros a
serem testados. Primeiramente, um plano de experimentos foi feitos de forma a iden-
tificar os parametros desconhecidos do processo. Foram definidos experimentos de
resfriamento a vacuo, resfriamento por nitrogénio, e experimentos de aquecimento.

Apos isso, utilizou-se a simulagdo atual como base para o desenvolvimento de uma
nova simulacédo que descreve os experimentos feitos. De forma a integrar a simu-
lacdo com o médulo de otimizagdo, um projeto de software foi realizado utilizando
a metodologia de desenvolvimento baseado em funcionalidades. O resultado foi um



script na linguagem Python responsavel por integrar o pacote de otimizacao Nevergrad
com o software de simulacéo Abaqus.

Como existem multiplos algoritmos de otimizacdo que podem ser utilizados nesse
caso, foi proposta uma comparacdo entre multiplos algoritmos de otimizacdo sem
utilizacdo de derivada, visto que a simulagdo ndo computa esses valores. Apds definir
um algoritmo a ser utilizado para os experimentos, a identificagdo dos parametros foi
feita utilizando diferentes hip6teses de modelagem de cada experimento.

Para os experimentos de resfriamento a vacuo, os fendmenos térmicos existentes
sdo: perda de calor por conducao pelas flanges, perda de calor por radiagao para o
ambiente, e conducao na interface entre as placas de resfriamento e o molde. Analisou-
se duas hipbteses de modelagem a partir disso. A primeira buscou identificar apenas o
coeficiente de condugéo pelas flanges e a emissividade de radiacédo para o ambiente,
assumindo que a condutancia na interface mantinha-se constante. A segunda hipétese
assumia que a condutancia na interface também deveria ser identificada. A segunda
hipétese foi capaz de explicar os dados experimentais com baixo erro.

Os experimentos de resfriamento por nitrogénio apresentam os seguintes fenémenos
térmicos: perda de calor por conducao/conveccao, perda de calor por radiacao para
0 ambiente, conveccdo na lateral do molde, e conducao na interface. Multiplas hipote-
ses foram analisadas, no entanto apenas uma foi capaz de explicar bem os dados
experimentais. A mesma assumiu que o coeficiente de convecgao superior € inferior, 0
coeficiente de conveccao lateral e a condutancia na interface deveriam ser identificadas.
Além disso, multiplos pontos de operacao (vazao de nitrogénio) foram analisados e
tiveram seus respectivos coeficientes identificados utilizando a mesma hipétese de
modelagem. Posteriormente uma analise de regresséo foi feita de forma a encontrar
uma fungdo que descreva como as variaveis identificadas variam com o ponto de
operacao.

A partir dos parametros identificados e da analise de regressdo, uma avaliagdo ex-
perimental do método foi feita tanto em pontos de operagao conhecidos quanto de-
sconhecidos. A avaliagdo em um ponto de operagédo conhecido consistiu em repetir
um experimento de resfriamento por nitrogénio e utilizar os parametros identificados
previamente para verificar se a simulagao ainda era capaz de explicar os dados do
novo experimento. A avaliagao para o ponto de operacao de 20 I/min retornou bons
resultados.

A avaliacado experimental do método em pontos de operacao desconhecidos também
foi feita. A partir dos modelos de regressao, os parametros térmicos para uma vazao
de 30 I/min foram obtidos e avaliados. Os parametros obtidos geraram uma curva de
simulacao que nao teve boa concordancia com a curva experimental. Como a analise
de regressao havia sido feita com poucas observacgdes, assumiu-se que as curvas
ajustadas foram afetadas por ruido e podiam nao ser estatisticamente significativas.
Dessa forma, o processo de identificacdo foi feito proximo a regido apontada pela
regressao e atingiu bons resultados. Isso mostrou que a regressao estava direcionando
0s parametros para a regiao correta, no entanto, para o ponto errado. A partir disso,



concluiu-se que mais observacdes sao necessarias para que a regressao seja efetiva.

Por fim, a abordagem sugerida provou ser viavel e apresentou bons resultados para ex-
perimentos de resfriamento a vacuo e resfriamento por nitrogénio. Os resultados estao
de acordo com a teoria e os dados experimentais. A conducéao na interface identificada
mostrou concordancia com artigos que abordam o mesmo topico, porém utilizando
diferentes abordagens de identificacdo. Futuros trabalhos envolvem realizar a identi-
ficacdo dos modelos relacionados aos experimentos de aquecimento, e a avaliacao
experimental das fungbes que descrevem as variaveis identificadas nos experimentos
de resfriamento por nitrogénio nos pontos de operacao restantes.

Palavras-chave: Moldagem de precisao de vidro. Identificacao de parametros. Otimiza-
¢ao baseada em simulagéo.



ABSTRACT

Precision glass molding emerged as a powerful and economically viable alternative for
the mass-production of high-precision optical components. Even though the process of-
fers many advantages, some challenges must be addressed, such as unpredicted glass
flow in the machine and shrinkage of the lens inside the mold. In order to solve these
problems, finite element simulation is used. The current simulation of precision glass
molding consists of mechanical and thermal models. The thermal simulation involves a
set of complex thermodynamic phenomena which take place simultaneously. Some of
the phenomena can be mathematically modelled, but the coefficients of the model are
not trivial to be obtained. In order to allow process optimization, the correct modeling
of these thermal phenomena is required. This report addresses the identification of
thermal parameters for the precision glass molding simulation using simulation-based
optimization together with experimental data. To accomplish this, a study of the ther-
mal model, development of a FEM simulation and a software project to integrate the
simulation software with the optimization architecture, as well as the analysis of the
identification approach for two cooling scenarios (heat losses to the environment and
nitrogen cooling) were carried out. The results proved that the proposed approach is
feasible, the identified parameters agree with theory and experimental data. The iden-
tified gap conductance for vacuum experiments showed an agreement with papers
addressing the same topic, however using different identification approaches.

Keywords: Precision glass molding. Parameter identification. Simulation-based opti-
mization.
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1 INTRODUCTION

Optical components have been used by society for several millennia, from read-
ing stones, to glasses, microscopes, telescopes, cameras and endoscopes (WIND-
HOEK, 2015). The idea of "bending" light has always been an important vector for the
development of new technologies. 24chemicalresearch (2019) states that the global
market for precision glass molding has an expected Compound Anual Growth Rate
(CAGR) growth of 33% by 2025. An increasing demand for more complex optical com-
ponents offering higher precision and lower costs is the cause of this expected growth.

Historically, the conventional process for production of lenses consisted of grind-
ing and polishing glass (YAN et al., 2009). However, following the market demands, new
manufacturing processes have become more relevant for the production of complex
optical components. PGM emerged as a powerful and economically viable alternative
to conventional processes. This is due especially to the fact that PGM relies on a
small process chain compared to the conventional production process chain. Figure 1
compares the two process chains.

Figure 1 — Process chain comparison between conventional glass lens manufacturing
and precision glass molding.
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Also, in the conventional manufacturing of lenses, the grinding and polishing
steps are performed in each lens. If the shape of the designed lens is complex, these
steps take great effort. As for PGM, the complexity of the lens depends completely
on the mold shape, which can be used to produce many lenses. Therefore, for mass-
production of high-precision optical components, the replicative approach offered by
PGM reduces significantly the manufacturing effort, as shown in Figure 2, therefore
reducing the total costs.

Even though PGM offers many advantages, some challenges must be addressed,
such as the shrinkage of the lens inside the mold or the unpredicted glass flow in the ma-
chine, what results in bad quality of imaging. The ad-hoc solutions for these problems,
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Figure 2 — Comparison between complexity of lens design with its manufacturing effort
in replicative and conventional lens production processes.
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depicted in Figure 3, are the repetitive mould design and iterative mold manufactur-
ing. However these solutions are cost and labor intensive. Since the molding process
cannot be directly measured - that is, the state of the glass during the process is not
observable - FEM simulation provides a manner of understanding the complex molding
process, hence offering universal guidelines for RD activities (LIU, 2018).

Figure 3 — Challenges for PGM, such as shrinkage of the lens inside the mold and
unpredicted glass flow in the machine.
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The thermal simulation of the PGM consists of a complex thermodynamic prob-
lem comprising interactions between radiative, convective and conductive thermal trans-
port phenomena. Some of these phenomena can be mathematically modeled, but the
models rely on unknown coefficients. The importance of correctly modeling these phe-
nomena represents a great increase in the accuracy of the simulation, therefore en-
abling process optimization. Ostrouchov et al. (2011) addresses the identification of
gap conductance between mold and glass in the PGM simulation. Kannan (2009) uses
Computational Fluid Dynamics (CFD) to model the cooling phase of PGM.

1.1 OBJECTIVES

1.1.1 General Objective

Given the many advantages of improving the thermal simulation of PGM, the
general objective of the present work is to analyze the viability of using both experimen-
tal and finite element simulation data to identify the unknown thermal parameters of the
process.

1.1.2 Specific Objectives
» Analysis of the process and current simulation

 Proposal of an identification architecture

+ Design of experiments for the identification

FEM simulation design

Implementation of a software for integrating the identification module with the
FEM simulation

Identification of the parameters for each proposed experiment

Analysis of the results

1.2 THE RESEARCH INSTITUTE

This present work was developed inside Fraunhofer IPT (Figure 4), an institute
of the Fraunhofer Society for the promotion of applied research. Founded in 1949, the
Fraunhofer Society currently operates 74 institutes and research institutions throughout
Germany (IPT, 2020).

Located in the state of North Rhine-Westphalia, more specifically in the city of
Aachen, Fraunhofer IPT focuses on developing production system solutions for all fields
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Figure 4 — Fraunhofer IPT Building.

Source — (WIKIPEDIA, 2010)

in industry. Within IPT, research is divided between 4 main areas: Process Technology,
Production Machines, Production Quality and Metrology, and Technology Management.

Inside the area of process technology, the department of fine machining and
optics focuses on ultra-precision grinding and polishing, diamond machining and the
molding of high precision glass components.

The present report describes the state of the art (Chapter 2), the current envi-
ronment and the conceptual solution (Chapter 3), the software project for enabling the
identification of coefficients (Chapter 4), the analysis of the results (Chapter 5) and the
summary and outlook works (Chapter 6).
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2 STATE OF THE ART

This chapter presents the main concepts and background theories used in the
development of this work from section 2.1 to 2.6.

2.1 FINITE ELEMENT METHOD

In Mathematics, many problems can be solved by approximating a continuous
domain as a discrete domain with a finite number of parts. This strategy has been
extensively used throughout history. For example, the "Archimedes’ Problem" dated
from 250 B.C. consisted of approximating the ratio of the circumference of a circle to its
diameter by approximating a circle as a polygon with a large, but finite number of sides
(FELIPPA, 2004). The same principle is used to calculate the area of curves.

The FEM, sometimes referred to as Finite Element Analysis (FEA), is a compu-
tational technique used to obtain approximate solutions of boundary value problems in
engineering. In simple terms, a boundary value problem is a mathematical problem in
which variables must satisfy a differential equation everywhere in a defined domain, as
well as satisfying conditions on the boundary of this domain (HUTTON, 2003).

In other words, FEM is used to numerically solve partial differential equations
in complex domains, where the approach is to divide a complex domain into a set
of finite simpler sub-domains. Each sub-domain, denominated element, is solved by
differential equations which yield an approximate solution for that element. Elements
are connected by nodes, which guarantee the continuity of the field variable across inter-
element boundaries. Nodes avoid physically unacceptable solutions containing gaps or
voids in the domain. In heat transfer, a gap would represent different temperatures at
the same location (HUTTON, 2003).

To exemplify the method, Figure 5.a represents a tapered cylinder fixed in one
side and subiject to tensile loading on the other side. In order to solve the displacement
for this problem, FEM is used. Figure 5.b shows the problem discretized by one uniform
cylinder. Figure 5.c uses two elements with the same length. Improving the mesh,
Figure 5.d uses four elements to describe the tapered cylinder. The result of using
FEM to solve the problem with a different number of elements is depicted in Figure
6.a by comparing the exact and simulated displacement at the end of the cylinder for
each discretization. An increase in the number of elements, increased the accuracy
of the model. The four-element model is also able to well describe the displacement
throughout the whole length of the cylinder, as seen in Figure 6.b.
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Figure 5 — (a) Tapered cylinder under tensile loading: r(x) = rg—(x/L)(rg—r.). (b) Tapered
cylinder as a single element using an average area, while actual cylinder
geometry is shown as dashed lines. (c) Tapered cylinder modelled as two,
equal-length, finite elements. (d) Tapered circular cylinder modeled as four,
equal-length, finite elements.
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2.2 HEAT TRANSFER CONCEPTS

This section presents some of the heat transfer concepts used throughout this
document. These concepts are presented from section 2.2.1 to 2.2.3 and comprise the
topics of conduction, convection, radiation and gap conductance.
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Figure 6 — FEM results for tapered cylinder in tension of Figure 5. Displacement at x/L
for each discretization compared with the exact displacement (left). Compari-
son of the exact solution and the four-element solution throughout the length
of the cylinder (right).
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2.2.1 Conduction Heat Transfer

Conduction describes the energy transfer due to direct molecular contact at dif-
ferent temperatures (LEVENSPIEL, 2014). This phenomena was described by Fourier's
Law (see equation 1), which states that the conduction heat flux in a certain direction is
proportional to the negative temperature gradient with respect to that direction.

dar
o (1)
In equation (1), gx [W] represents the heat in direction x, k [EWR] represents the
thermal conductivity of the material, A [m?] represents the area normal to the x direction
and % [%] is the temperature gradient in the x direction (LEVENSPIEL, 2014).
The complete equation for steady-state heat conduction in any arbitrary direction
through an isotropic material, without heat generation, is:

Gx =—KA

g=—kAAT. 2)

Related to conduction heat transfer, a phenomena called gap conductance or
gap resistance is found when heat flows across two touching plane walls. Due to the
irregularities in the contact of both surfaces, an additional resistance is found at the
interface, causing a temperature drop between the surfaces (LEVENSPIEL, 2014). The
heat flow across the interface of surfaces A and B (Figure 7) can be described as

q=—hcA(Ty—Tp), (3)
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where he is the contact heat transfer coefficient. The value of h¢ is highly dependent on
the conditions of the interface. In cases where vacuum is present, the heat transfer in
the interface occurs via conduction through the real contact area between the surfaces,
which consists of a set of micro-contacts. In cases where gas is present at the interface,
the heat transfer occurs through the contact area, as well as conduction through the gas
filling the interface. In this case, the value of h¢ is also dependent on factors such as
contact pressure, micro-hardness, surface roughness, gas pressure and temperature,
and the the thermal conductivity of the gas (SONG; YOVANOVICH; NHO, 1992).

Figure 7 — Schematic of gap resistance between surfaces A and B.
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2.2.2 Convection Heat Transfer

Convection describes the energy exchanged by the movement of fluids in a
macroscopic scale. Convection can manifest itself as either forced convection or natural
convection. The latter is caused by an external factor, such as an imposed flow of fluid.
When the motion of the fluid is not caused by an external factor, only by difference
in density due to temperature variations, the phenomena is called natural convection
(LEVENSPIEL, 2014). Figure 8 depicts both of these phenomena.

The convection heat transfer can be modelled by

g=hcAAT, (4)

where hc [%] represents the convection coefficient of heat transfer.

2.2.3 Radiation Heat Transfer

Different from conduction and convection, radiation heat transfer does not de-
pend on a medium to occur. Radiation represents the thermal energy emitted from any
body in the form of electromagnetic waves and is caused by the oscillations of electrons.
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Figure 8 — Comparison between natural and forced convection modes.
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These oscillations are caused by the internal energy, hence the temperature, of matter
(BERGMAN et al., 2011). The heat emitted by radiation from a black body (also known
as ideal emitter) can be modelled by

q=0AT4, (5)

where o represents the Stefan-Boltzmann constant and T the body temperature, in
Kelvin.

When analyzing the thermal radiation between a surface and a black-body, the
following equation can be used:

g=0Ac(TH=T3). (6)

where € represents the emissivity of the surface. This value ranges from 0 to 1 depend-
ing on how close the surface is to a black body (GANJI; SABZEHMEIDANI; SEDIGHI-
AMIRI, 2018). For example, an object with emissivity 0 reflects all radiation, while an
object with emissivity 1 absorbs all radiation it receives.

2.3 PRECISION GLASS MOLDING

2.3.1 Precision Glass Molding Process

As introduced in chapter 1, precision glass molding emerged as an alternative
to roughing and grinding processes in the mass production of high-complex optical
components. PGM consists of a sequence of steps that have as result a ready-to-use
glass optic.

The process begins with the loading of the preform in the machine. Right after,
in order to prevent oxidization of the mold at high temperatures, oxygen is removed by
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nitrogen purging or vacuum. Then the machine is heated up to a specific molding tem-
perature (above the glass transition temperature). To guarantee isothermal temperature
condition between glass preform and molding tools, the molding process is delayed for
a couple of time in the step called "soaking". After molding is complete, the temperature
in the machine decreases at a constant rate due to the purge of nitrogen together with
the controlled lamp system. This step is important for it prevents any internal stresses
in the lens that might cause distortion or cracking (IQBAL, 2009). After the residual
stresses in the glass were already controlled, the machine is cooled down by a greater
flow of nitrogen. At this point, the glass returns to a solid state and the glass component
is taken out of the mold and further machining operations are no longer necessary.
Figure 9 depicts the detailed overview of the precision glass molding process and its
corresponding steps.

Figure 9 — Detailed overview of the precision glass molding process.
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2.3.2 Precision Glass Molding Simulation

Even though precision glass molding has been applied in industry for many
years, the absence of observation methods during the molding process strongly limits
the knowledge of the viscoelastic glass material flow, influence of process parameters
and shrinkage of glass lenses during molding. For this reason, many process design de-
cisions can only be done by trial-and-error (LIU, 2018). This approach is extremely time
and resource-consuming. For this reason, FEM simulation is used to better understand
the process and how the glass behaves under extreme molding conditions.
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The simulation of PGM is divided in mechanical and thermal models. The first
model results in a stress-strain analysis in the glass. The second results in the tem-
perature distribution inside the machine and glass. Many studies have been conducted
in order to study the mechanical model of the precision glass molding, such as Liu
(2018), Li (2016) and Farghaly (2019), who studied the fracture behavior of glass within
precision glass molding.

The current thermal precision glass molding simulation is done by using the finite
element method to solve the partial derivative heat transfer equations together with the
boundary conditions that describe the heat transfer phenomena present in the process.
The following phenomena are considered:

« Conduction between the parts in the mold assembly;
» Convection between the nitrogen flow and the upper and cooling plates;

+ Radiation between infrared lamps and mold assembly;

Contact conductance between cooling plates and mold assembly and glass pre-
form and mold;

The most important thermal steps in the process are heating and cooling. For this
reason, transient simulation for both these steps are done. A geometrical representation
of the simulation model is presented in Figure 10.

2.4 PARAMETER IDENTIFICATION PROBLEM

In order to better understand the parameter identification problem, it is neces-
sary to first introduce the concepts of direct and inverse problems. Generally, modeling
consists of finding a relation between a set of observation data d and physical param-
eters characterizing a model, m. Assuming the fundamental physics are adequately
understood, and that a function G may be specified relating m and d, such as:

G(m) =d. (7)

A direct problem, or forward problem, can be defined by finding d given m. This
typically consists of solving a differential equation or an integral equation. Alternatively,
an inverse problem consists of finding m given d. The task of finding G, given exam-
ples of m and d is defined in the literature as model identification problem (ASTER;
BORCHERS; THURBER, 2018).

Parameter identification or parameter estimation can be classified as an inverse
problem, where the objective is to find a discrete set of parameters that characterize
a model. These parameters can represent physical properties of the modeled system
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Figure 10 — Thermal model of precision glass molding process.
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(such as density, heat transfer coefficients) or can represent abstract concepts (ASTER;
BORCHERS; THURBER, 2018).

For parameters that represent a physical property of a system, in some cases
parameter identification is not necessary due to theoretical or experimental determina-
tion of the parameters. However, in many cases not all system parameters are known
a priori and cannot be determined by conventional techniques. Unknown parameter
values can be determined through experiments with the real-world system. This can,
in principle, be done through evaluation of the data measured at the system input and
output by the use of the parameter-identification method. Moeller (2004) classifies the
method into two architectures: direct (Figure 11) and indirect (Figure 12).

From the indirect approach, it is possible to define the parameter identification
problem as an optimization problem with the objective of reducing the residual error
between system output and model output:

mpin E(Ysystem: Ymode!(P)) (8)

where p represents a vector of parameters, Ysystem represents the output of the system,
Ymodel represents the model output, that is a function of p, and E represents a function
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Figure 11 — Direct parameter identification method.
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Figure 12 — Indirect parameter identification method.
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that computes the error between two values.

2.5 SIMULATION-BASED OPTIMIZATION

Computer simulations are broadly used to model real systems and evaluate
them. Although choosing optimal simulation parameters can lead to improvements,
the process of configuring them presents itself as a challenging problem. Historically,
choosing simulation parameters consisted of selecting the best from a set of candidate
parameters. Simulation-based optimization seeks to integrate optimization techniques
into simulation analysis (DENG, 2007).

In a conventional optimization scenario, this process is usually automated by
coupling a simulation program and an optimization module (NGUYEN; REITER; RIGO,
2014). The most typical architecture can be seen in Figure 13, having an optimization
module and a module for the dynamic generation of simulations.
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Figure 13 — Simulation-based optimization loop.
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Nguyen, Reiter, and Rigo (2014) presents the major phases for simulation-based
optimization. These phases are preprocessing, which consists in the formulation of the
optimization problem; the optimization phase, which consists of running the optimiza-
tion algorithms, monitoring convergence and possible errors; and the post-processing
phase, consisting of the analysis of results.

Analogously to the concept of indirect parameter identification presented in Fig-
ure 12, simulation-based optimization also presents itself as an optimization problem.
However, simulation-based optimization is used as a general approach to optimize a
simulation using any objective function. Assuming that the objective function is the resid-
ual between experimental and simulation data, that is the error presented in Figure 12,
it is possible to use simulation-based optimization to identify unknown parameters. This
approach is used in Kleinermann and Ponthot (2003) to identify the material parameters
in metal forming simulation using experimental and FEM simulation data. Lecompte
et al. (2007) also uses the same strategy to identify the four in-plane orthotropic engi-
neering constants of composite plate materials.

2.6 OPTIMIZATION ALGORITHMS

Since simulation-based optimization presents itself as an optimization problem,
optimization algorithms need to be used. In order to choose a set of algorithms, the
objective function needs to be taken into account.
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Within simulation-based optimization, the objective function is an associated
measurement of an experimental simulation. Due to the complexity of the simulation, the
objective function may be difficult and expensive to evaluate. Also derivative information
is typically unavailable in FEM simulation software (DENG, 2007). For this reason,
derivative-free optimization algorithms are typically applied.

2.6.1 Nelder-Mead

Nelder-Mead or Downhill Simplex is a derivative-free direct search optimization
algorithm invented in 1965 by Nelder and Mead. The method is based in a structure
called simplex. A simplex in R is defined as the convex frame of n+1 vertices xg,...,Xn €
Rn. For instance, a simplex in R? is a triangle, and a simplex in RS is a tetrahedron
(Figure 14) (SINGER; NELDER, 2009). The general algorithm is given by

» construct an initial simplex S;
* repeat the following steps until the termination test is satisfied:

— calculate the termination test information;

— if the termination test is not satisfied then transform the working simplex;

» return the best vertex of the current simplex S and the associated function value.

Figure 14 — Simplex in R? (left) and in R® (right).
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The transformation of the simplex consists of substituting the worst vertex by
using reflection, expansion or contraction with respect to the best vertex (SINGER;
NELDER, 2009).
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2.6.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) algorithm is an evolutionary meta-heuristic
algorithm proposed in Kennedy and Eberhart (1995). In PSO a number of particles,
or candidate solutions, traverse through the search space, and each evaluates the
objective function at its current location. Each particle then determines its movement
through the search space by combining global and individual bests. Since both global
and individual bests are taken into account, eventually the swarm is likely to move close
to an optimum of the fitness function (POLI; KENNEDY; BLACKWELL, 2007).

Each particle is described by its position in the search space and its velocity.
Changes in a particle velocity are governed by:

Vig = Vig + ¢4 rand()(pig — Xig) + c2rand()(Pgq —Xia) (9)
Xid = Xid + Vid (10)

where vy represents the velocity of a certain particle, p;jy the best previous position,
Xjq the current position, pgy the best previous global position, ¢4 and ¢, are constants,
and rand() represents a function that returns a random number in the range [0,1].

In order to reach good results with the algorithm, the choice of the parameters
¢y and ¢, are really important since they decide how much the particle’s velocity will be
affected by its own best and the population global best. Also, the choice of population
size is an important step for the right tuning of PSO (SHI; EBERHART, 1999).

2.6.3 Bayesian Optimization

Bayesian Optimization (BO) is a stochastic optimization algorithm applied ex-
tensively to solve problems where the objective function is expensive to evaluate and
the goal is to find a global optimum. BO consists of two main components: a Bayesian
statistical model for modeling the objective function (typically a Gaussian Process), and
an acquisition function for deciding where to sample next (FRAZIER, 2018). The main
steps of BO are:

Initial points are sampled from the search space and evaluated by the cost func-
tion;

A surrogate model of the cost function is generated using the evaluated points,
therefore creating the posterior model;

« The acquisition function is used to decide where to sample next based on the
posterior model;

* New points are sampled based on the surrogate model;
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The tuning of BO is done by defining the parameters for the statistical model and
the acquisition function. Further analysis of the choice of parameters is developed in
(FRAZIER, 2018).
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3 CURRENT ENVIRONMENT AND RESEARCH APPROACH

This chapter presents the current PGM environment inside of IPT, as well as
the process data collection architecture, followed by the opportunities for the thermal
simulation model and the research approach for parameter identification.

3.1 CURRENT ENVIRONMENT

3.1.1 Glass Molding Machine: Toshiba GMP-211V

Precision glass molding is normally done using dedicated machines that imple-
ment the whole process. At the research institute, the Toshiba GMP-211V machine is
used for the molding of small lenses. The machine consists of a Computer Numerical
Control (CNC) that controls the main axis, therefore controlling the pressing, and a
Programmable Logic Controller (PLC) that is responsible for the discrete logic of the
process, as well as for the reading of sensors. The PGM molding machine can be seen
in Figure 15. The structure in the left of the figure is the machine control unit, where
molding programs can be inserted and the visualization of the process variables can
be done. The right structure is where the molding occurs. Figure 16 depicts with more
detail the inside of the chamber before the molding process. It is possible to see the
glass preform standing on top of the mold assembly. The chamber during molding can
be seen in Figure 17. The main specifications for the GMP-211V can be seen in Figure
18.

Figure 15 — Toshiba GMP-211V machine.

Source — (KLOCKE; STAASMEYER, 2015)
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Figure 16 — Toshiba GMP-211V before molding.
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Figure 17 — Machine during molding. The intense glow is due to the infrared lamps.
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3.1.2 Machine Data Collection

In order to provide support for the PGM process, a complete Information Tech-
nology (IT) architecture is set up to read the machine information and store it into a
database. The complete architecture can be divided into three software projects: Serial
Reader, WebAPI and WebApp.

Serial Reader is a piece of software deployed in a notebook and connected to the
serial port of the molding machine. This software is responsible for reading the sensor
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Figure 18 — Toshiba GMP-211V machine specifications.
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data from the machine using serial communication via Modbus and RS232. The read
data are then sent to the WebAPI via HyperText Transfer Protocol (HTTP) requests.

The WebApi is an Application Programming Interface (API) deployed in an in-
ternal server at the research institute. The read data are sent to the API, which is
responsible for storing the data in a database. The structure of the database can be
seen in Figure 19. Many tables exist in the database, however the table that is used in
this project is "Press_Logs", which stores the internal machine sensor data.

Finally, the WebApp is a web application used for visualization of live and stored
process data. It is normally used by machine operators and engineers to analyze past
and live processes. Figure 20 shows the visualization of a molding process in the
WebApp.

3.2 OPPORTUNITIES IN PGM SIMULATION

As described in section 2.3.2, the present thermal phenomena in the machine are
well known and can be described mathematically, though with undetermined coefficients.
That is the case for the convection coefficient in the machine, the gap conductance and
the emissivity factor of the radiation heat transfer.

However, for the lamp system, there is no mathematical description defined. In
the simulation, the radiative heat flux in the boundary is calculated by the following
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Figure 19 — Database schema.
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equation:

(11)

being e the emissivity, o the Stefan-Boltzmann constant, Ty, the estimated temper-
ature in the lamp, and T,,,4 the temperature measured in the measuring point (as
shown in Figure 10).

In order to calculate the heat flux in the boundary, the lamp temperature is
necessary. However, it is not possible to measure the temperature of the lamp because
the filament of the lamp is inside a quartz tube. The said temperature of lamps is
actually the temperature of the filament, which is physically isolated due to the quartz
tube. Since the quartz tube is transparent, the surface of the tube does not absorb the
heat radiated by the filament, therefore measuring the temperature in the surface of
the tube is also not possible. For this reason, the approach to estimate the heat flux

4 4
q=o¢( T/amp = Tmold)»
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Figure 20 — Process data visualization in the WebApp.
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is by using a PID controller that uses the error between simulation temperature in the
measuring point and the experimental measured temperature as input is considered.
Since the physical heat lamp system consists of a PID controller actuating on the power
applied to the lamps, the approach seems reasonable. However, this approach adds
dynamical error to the simulation. Also, modeling errors affect the control action of the
controller. That means that the controller will try to compensate any modeling errors
seeking to decrease the error by changing the lamp temperature. For example, Figure
21 shows the PID controller that is used for estimating the temperature of the lamps,
where Tm represents the measured temperature in the mold, Tjzmp the estimated
lamp temperature, hj,ss the convection coefficient, and Ts the simulation temperature.
Assuming that ¢ represents modeling errors in the convection coefficient, the controller
will try to compensate this error by changing the estimated lamp temperature, even
though the convection coefficient modeling error is independent of the lamp system.
For this reason, a set of parameters/process variables needs to be identified.

» System heat losses

The current simulation does not take into account the heat losses to the environment.
Therefore, it is necessary to identify: the conduction coefficient between mold system
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Figure 21 — PID architecture for estimating the lamp temperature.
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and environment through upper and lower flanges; the radiation to ambient through
lamp system (the emissivity coefficient); and the gap conductance.

* Nitrogen flow related losses

The current simulation uses only one value for convection coefficient, which is indepen-
dent of the nitrogen flow used in the process. Therefore, it is necessary to identify the
convection coefficient, as well as how it changes based on the nitrogen flow operating
point.

» Temperature of infrared lamps

The infrared lamp system is probably the most complex one. The emissivity needs to
be identified, as well as a model that relates the lamp temperature and power applied.

3.3 RESEARCH APPROACH

In order to identify the unknown thermal parameters of the precision glass mold-
ing model, simulation-based optimization is used. This section describes the identifica-
tion architecture, as well as the design of experiments.

3.3.1 Architecture

The proposed architecture for identifying the unknown parameters is based in
Figure 12. The core idea is to compute the error between the temperature curve solved
from the FEM software and the experimental temperature curve measured by a tem-
perature sensor installed in the machine (see Figure 22). Therefore, the idea is to use
the data from a temperature sensor located in the mold to identify the thermal model. If
the temperature obtained in the simulation is the same as the temperature measured
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by the real sensor, the model is assumed to be correct. Following this approach, the
following optimization problem is proposed:

n
m);n%;(rm—rs(x))% (12)

where n represents the number of points measured in the experiment, T, represents
the temperature measured by the sensor, Ts represents the temperature given by the
simulation, and x represents the unknown thermal parameters.

Figure 22 — Identification Architecture.
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This architecture enables finding a vector x that minimizes the error between
simulation and experimental data. The approach to identify the parameters is to decou-
ple the many thermal phenomena present in the process into different experiments (see
section 3.3.2), model the experiments in the FEM simulation software following some
hypotheses of which thermal phenomena occur in the experiment, identify the parame-
ters using the experimental and simulation data through optimization, and evaluate the
results.

The main limitation of this approach is the difficulty of creating a model that
imitates the dynamic behaviour of the system in a way that it can be considered good
enough for its representation. In other words, it is necessary that the designed model
is able to describe the process dynamics. A great advantage of this process is the fact
that it requires no extra instrumentation in the machine, hence making it a cost-effective
identification method.

The greatest challenge in this approach is the fact that FEM simulations can
take minutes. Therefore, in order to have an acceptable training time, the convergence
time (number of iterations for convergence) is reduced. Also, gradient information is
not available from the simulation, thus forcing the use of derivative-free optimization
algorithms, which take longer to converge.
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3.3.2 Design of Experiments

The precision glass molding process consists of many heat transfer phenom-
ena happening simultaneously, which makes the identification process much harder.
In order to solve this, the approach is to decouple the heat transfer phenomena of
the machine through well-designed experiments. Having identified the decoupled mod-
els/parameters, these can be later re-coupled in order to simulate the whole process.
After introducing the approach, the experiments to be conducted are:

 Vacuum cooling

This experiment consists in heating the machine (without glass preform) up to a high
temperature. Afterwards, the machine is cooled down by vacuum. The main goal of this
experiment is the identification of the system heat losses model.

+ Nitrogen cooling

This experiment consists in heating the machine (without glass preform) up to a high
temperature. Afterwards, the machine is cooled down by nitrogen (different nitrogen
flow setups will be used). The main goal of this experiment is the identification of the
convection heat losses, as well as their relation with the nitrogen flow operating point.

» Heating

This experiment consists in heating the machine (without glass preform) up to a high
temperature. The heating temperature curve will be used to identify the infrared lamp
model, as well as the emissivity of the radiation heat transfer.

The identification architecture presented in 3.3.1 is used to identify the unknown
parameters from the experiments described in the items above. However, in some
of the experiments, these parameters can vary depending on the operating-point of
the machine. For example, in the nitrogen cooling experiments, the nitrogen flow is
responsible for the cooling rate in the machine. Therefore, the cooling parameters will
vary depending on the operating-point. For this reason, an extended approach will be
used in order to identify operating-point related parameters.

The extended approach consists of using the identification approach in multi-
ple operating-points. Having multiple observations, it is possible to apply regression
techniques to identify an expression that relates each unknown parameter with the
operating-point. The proposed method for the identification can be seen in Figure 23.

3.3.3 Software Requirements

To allow the use of the architecture presented in Figure 22, the optimization
module needs to be created. The general software methodology for the development
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Figure 23 — Proposed method for identifying the unknown parameters in PGM.
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of this module was Feature-Driven Development (FDD), an iterative and incremental
software development process based on agile methods. This methodology was chosen
from the nature of the optimization module, which has clear sequential features that
must be developed to correctly integrate with the FEM software.

The process consists of breaking the project into multiple features that can be
individually developed and later integrated. The goal of the optimization module is
to generate simulation jobs based on the error between experimental and simulation
values. From this description, the following features are defined:

» Read experimental data from database

Read simulation temperature curves from the simulation software

« Generate simulation jobs dynamically

Calculate the error between experimental and simulation curves

Interface between simulation software and optimization algorithms

Chapter 4 describes how these features were developed and integrated with the
FEM simulation.
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4 DEVELOPMENT

This section comprises the description of how the finite element simulation was
modeled in the Abaqus simulation software and how the connection between FEM
simulation and optimization module was developed.

4.1 FINITE ELEMENT MODEL IMPLEMENTATION IN ABAQUS

The cooling model of the experiments described in section 3.3.2 is a subset of
the complete simulation of PGM. For this reason, the current model is used and only
a few changes were made. The main change is the removal of glass preform from the
simulation. A summary of the modeling steps is presented in the following sections.

411 Parts

This step consists in creating the geometry of the parts used in the simulation.
Since no glass preform is used in the experiments, this part was removed. The re-

maining parts are only the upper and lower cooling plates and the upper and lower
holders.

Figure 24 — Geometry of lower parts.

(a) Lower cooling plate geometry (b) Lower holder geometry
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4.1.2 Materials

In the materials section, the thermal and mechanical parameters for each mate-
rial are defined. The materials considered for the cooling plate and mold die (holder)
were FHR96 and TJFO0S, respectively. The material parameters were taken from the
material‘s datasheet (FUJILLQOY, 2008) and from Kannan (2009), and can be seen in
Table 1 and Table 2.
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Table 1 — Material parameters for FHR96

Property Value Unit
Conductivity 54 Wm~K
Density 17200 kgm™3
Young's Modulus 350 GPa
Poisson’s Ratio 0.28 -
Expansion Coefficient 5.4E-06 MK
Specific Heat 400 Jkg 1K1
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Table 2 — Material parameters for TJF03

Property Value Unit
Conductivity 43 Wm~'K-
Density 15400 kgm™3
Young's Modulus 670 GPa
Poisson’s Ratio 0.17 -
Expansion Coefficient 4 5E-06 MK~
Specific Heat 214 Jkg 'K

Source — Original

4.1.3 Assembly

The assembly section defines which parts are contained in the model and how
they are geometrically disposed. Also, contact surfaces can be defined, which are used
to define where the heat exchange occurs. Since the machine is symmetrical, it is
possible to use an axis-symmetric boundary. This reduces the amount of elements in
the simulation, therefore reducing total simulation time. The complete assembly can be
seen in Figure 25.

4.1.4 Interactions

Interactions in Abaqus represent any type of physical effects happening between
two or more surfaces. In the model, conduction (upper and lower), convection (up-
per and lower), radiation and contact conductance (upper and lower) interactions are
defined. The location of these interactions can be seen in Figure 10.

4.1.5 Steps

Steps represent a convenient phase of the process, in which an analysis is
done. The division of a simulation into steps enables sequential analyses of different
types (e.g. a transient heat analysis followed by a static stress analysis). In the current
simulation, the steps are: initial, heating and cooling. Since the first experiments defined
in section 3.3.2 consist of cooling only, the defined steps are initial and cooling. The
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Figure 25 — Assembly.
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initial step is responsible for initializing the temperature distribution in the assembly and
any other initial conditions or interactions. During the cooling step, the interactions are
created.

After modeling, the analysis job can be performed. Under the hood, all of the
configuration and modeling done in the last steps is summarized in an input file. This
file contains all information about the model and can be submitted to the Abaqus solver,
which runs the job and generates an output file with the simulation output.

4.2 DEVELOPMENT OF THE OPTIMIZATION MODULE

Simulation-based optimization applied to parameter identification depends on
the existence of an interface between the simulation software (solver) and the opti-
mization module. The core concept is that the optimization module provides a vector x
containing the simulation parameters. After the simulation, the error between the exper-
imental curve and the simulation curve is later used to adjust the vector x. In section
3.3.3, a set of features was defined. Following the FDD methodology, each feature was
implemented individually.

The language chosen to implement the optimization module was Python, a
general-purpose high-level programming language. Python offers native support for file
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manipulation, extensive support libraries such as database drivers and optimization
packages. In addition, its simple syntax and scripting characteristic enables the fast
development of features, as the developed code is not compiled.

4.2.1 Read experimental data from database

As presented in section 3.1, the experimental data is stored in a SQL database.
Therefore, the process of reading the data is quite straightforward and consists of
performing a query informing the process ID and the upper and lower temperature
fields. However, the query result returns a list of tuples containing the time-step and the
temperature values. This format is inefficient and hard to manipulate. For this reason,
the database data are processed and stored in a new data structure. Figure 26 depicts
the UML class diagram representing the data structure that stores the experimental
data. This data structure is interesting for the application due to the fact that values from
a specified time-step can be retrieved from the structure in constant time complexity.

Figure 26 — UML class diagram representing the data structure to store the experimen-
tal data.
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4.2.2 Read simulation output

After running an analysis in Abaqus, it is possible to export the simulation output
to a report file (abaqus.rpt). This file contains the temperature measured in the sensor
position at every time-step of the simulation. The format of the report file can be seen
in Figure 27.

The approach used to transform the content from the report file into a format
that can be easily understood and manipulated by computer scripts is to read the
file line by line, parse the values and insert them into a data structure. Parsing is
done using regular expressions, a sequence of characters that define a search pattern.
This regular expression selects every number that it can find (including integers and
decimals). These values are stored in the same data structure presented in Figure 26.
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Figure 27 — Abaqus report file format.
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4.2.3 Dynamic generation of simulation jobs

Abaqus uses input files to describe the simulation job. This file is generated
using the Abaqus user interface, however its format is text-based and can, therefore,
be overwritten. For example, the following code defines a convection interaction in
the Abaqus input file. The first line describes the interaction name. The following line
defines which type of interaction occurs, in this case a convection interaction. The
last line defines the name of the surface where the interaction occurs, followed by the
film type label (F is used for a uniform film coefficient and FNU for a non-uniform film
coefficient), the sink temperature, and the convection coefficient. Altogether, the code
defines a uniform convection interaction named “Int-Cond-lower_Mold“ in the surface
“Surf-Conv-lower_CoolPlate* with sink temperature of 20°C and convection coefficient
of 239V
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Algorithm 1: Definition of a convection interaction in Abaqus input file
** Interaction: Int-Cond-lower_Mold
*Sfilm
Surf-Conv-lower_CoolPlate, F, 20., 239

Therefore, the approach to generate the simulation files dynamically is to create
a base input file with the description of the model and simulation parameters, which are
presented as markup variables. Taking the code above as an example, if the convection
coefficient ought to be changed dynamically, the base input file would look like this:

Algorithm 2: Definition of a convection interaction in Abaqus input file
with markup variable for convection coefficient

** Interaction: Int-Cond-lower_Mold

*Sfilm

Surf-Conv-lower_CoolPlate, F, 20., $alpha$

In order to run a simulation with a certain convection coefficient, the markup
variable can be replaced by the value and a valid input file is generated. This approach
can be extended for multiple markup variables. The function that generates the input
receives a base file and a dictionary of markup variables with the markup as key and
the value to be replaced as its value. The markup variables are replaced by the value
contained in the dictionary. The input file generation workflow is depicted in Figure 28.

Figure 28 — Workflow for the input file generation.
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4.2.4 Calculate the error between experimental and simulation curves

Since both experimental and simulation data are stored in the same data struc-
ture, calculating the error between curves consists of applying a metric algorithm to
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calculate the error between curves. There are various metrics to measure the similar-
ity between curves, such as Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE) and R-squared (MISHRA, 2019). MSE was cho-
sen due to the fact that it is simple to calculate and it over-penalizes the model for big
errors, since it squares the error.

4.2.5 Interface between Abaqus and optimization algorithms

Most implementations of optimization algorithms require a function that receives
an array with the candidate solution and returns the cost function. To comply with this
pattern, all of the latter features are sequentially integrated to generate the simulate
function. The workflow of the simulate function can be seen in Figure 29.

Figure 29 — Workflow of simulate function.
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For the optimization, derivative-free algorithms are used (as discussed in section
2.6). Nevergrad, a Python package created by Facebook, was chosen because it is
specially focused on derivative-free optimization algorithms (FACEBOOK, 2019). In ad-
dition, the implementation of the algorithms already use a predefined set of parameters,
thus avoiding the effort of testing multiple parameter setups. Since the simulations take
long time, having to benchmark multiple algorithms with multiple parameter setups is
a time-consuming task. This design choice is a key-point to the future analysis of the
algorithms. Since there is a trade-off between parameter tuning and time, and the time
factor was considered more relevant, it is not possible to claim a certain method to be
inefficient based on the benchmark results.

The approach to choose the algorithm to be used was to perform a benchmark
with a predefined set of parameters. Based on the results, the best algorithm was
used for the rest of the experiments. Section 2.6 presented a set of derivative-free
optimization algorithms, which were tested in the algorithm benchmark.
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4.2.6 Helper functions

In addition to the features described before, a couple of helper functions were de-
veloped to facilitate the automation of the simulation. These functions are necessary for
the identification process. However their implementations did not require any software
modeling, therefore being called helper functions.

The first developed helper function was responsible for cropping an interval of
the experimental data. This is required because the identification is not done throughout
the whole experiment, but only during an specific step (e.g. in cooling experiments, the
cooling step is the only interval that is useful for the identification).

Another helper function was built to fix any missing values in the database. In
case there is any missing temperature measurement in the database, a linear interpo-
lation is applied in order to fill the missing data.

Also, memoization was developed in order to prevent the optimization algorithm
from simulating the same simulation more than once. Memoization is a process of
storing the results of expensive function calls and returning the stored result if the
function is called with the same input. Every time a simulation is done with a certain set
of candidate parameters, the corresponding error result is saved into a JSON file. The
structure of the JSON file is depicted in Figure 30.

Figure 30 — Memoization data structure.
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When there is a simulation request, the script will open the memoization file and
check if those parameters were already tested. If so, the result will be fetched from the
file. Otherwise, the simulation will be completed.

4.2.7 Complete Optimization Architecture

Integrating the previous features, the complete software architecture for identi-
fication can be set. Figure 31 presents the complete software architecture. A defined
experiment is fetched from the database, followed by the preprocessing of the data
(described in 4.2.6). After the preprocessing, the control of the application is transferred
to Nevergrad, which calls the simulate function and receives the error. In case the error
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value exists in the memoization layer, no simulation is required. If not, the simulation is
ran and the error is calculated from the Abaqus report file.

Figure 31 — Complete optimization architecture.
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This section presented the main steps in the modelling of the cooling experi-
ments, as well as the software development for integrating the simulation software with
the optimization module. The complete architecture will be used in chapter 5 to identify
the parameters for each type of experiments presented in section 3.3.2.
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5 RESULTS AND ANALYSIS

The present section presents the algorithm benchmark proposed in section 4.2.5,
the identification results and analysis for vacuum cooling experiments, in section 5.1,
and for nitrogen cooling experiments, in section 5.2.

5.1 VACUUM COOLING EXPERIMENTS

This experiment consists in heating the machine (without glass preform) up to a
high temperature. Afterwards, the machine is cooled down by vacuum. The main goal of
this experiment is the identification of the system heat losses model. Within this exper-
iment, the following thermal phenomena are involved: conduction heat loss, radiation
heat loss, and contact conductance. The model for the vacuum cooling experiments
can be seen in Figure 32.

Figure 32 — Thermal phenomena in vacuum cooling experiments.
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From these phenomena, the following thermal parameters can be identified:
upper and lower conduction coefficients of heat loss (h,¢s), emissivity of radiation heat
loss (e/0s5) and contact conductance (hg).

As explained in section 4.2.5, a benchmark was done in order to decide which
algorithm would be used in the identification process. The benchmark consists in the
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optimization of the thermal parameters for the first model hypothesis in the vacuum
cooling experiment. This hypothesis assumes that conduction coefficient (hj,ss) and
emissivity (€/oss) are learned and the contact conductance remains at a constant value
of 2400 . This value is the one defined in the current simulation and was identified
in Vu et aI. (201 9). In order to reduce the complexity of the benchmark, the optimization
was carried only using the lower mold temperature data. The results are presented in
Figure 33 and show that the best MSE was reached by PSO. For this reason, it was
decided that PSO would be used in the further experiments.

Figure 33 — Algorithm benchmark results.
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Even though PSO presented the best result, the MSE found in the first hypothesis
was too high, meaning that the model does not represent the experimental data well.
The second hypothesis consists in learning the contact conductance value as well. The
comparison between hypotheses can be seen in Figure 34.

Figure 34 — Comparison between multiple vacuum cooling model hypotheses.
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Hypothesis 2 yields a result that is able to describe the experimental curve. A
comparison between the lower mold temperature curves can be seen in Figure 35 and
the upper mold temperature curves can be seen in Figure 36.

The reason for identifying such a small contact conductance is due to the fact
that there is vacuum between the surfaces, which reduces significantly the area of
contact. In the measurements done in Vu et al. (2019), the mold chamber was not
under vacuum, meaning that there was gas filling the gap between the holder and
cooling plate. The presence of gas at the interface increases the contact area, therefore
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Figure 35 — Comparison between lower mold experimental temperature curve and both
hypotheses.
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resulting in a bigger contact conductance. The identified value for gap conductance lies
in the same range of the data presented in Ostrouchov et al. (2011), where a mixed
numerical-experimental approach was used to identify the gap conductance between
mold and glass under vacuum. The small emissivity value can be explained by the
thermal isolation of the machine, which reflects most radiation back to the machine.

5.2 NITROGEN COOLING EXPERIMENTS

This experiment consists in heating the machine (without glass preform) up to
a high temperature. Afterwards, the machine is cooled down by nitrogen (different
nitrogen flow setups will be used). The main goal of this experiment is the identification
of the convection heat losses, as well as their relation with the nitrogen flow operating
point.

Within this experiment, the following thermal phenomena are involved: conduc-
tion heat loss, nitrogen convection heat loss, radiation heat loss, and contact conduc-
tance. The model for nitrogen cooling experiments can be seen in Figure 37.

From these phenomena, the following thermal parameters can be identified:
upper and lower conduction/convection coefficients of heat loss (h,g) (Since both con-
duction and convection have linear boundary conditions and occur in the same surface,
it is assumed that conduction and convection can be modeled together), emissivity of
radiation heat loss (ej,55), contact conductance (hc), and natural convection (hpgt).
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Figure 36 — Comparison between upper mold experimental temperature curve and both
hypotheses.
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The first hypothesis consists in assuming that the parameters remain the same
ones identified in the vacuum cooling model, except for the convection coefficient, which
is expected to increase. As a second hypothesis, it is assumed that there is also natural
convection occurring in the side of the mold assembly. Hypothesis 3 assumes that there
is no natural convection and the contact conductance changes. At last, hypothesis
4 assumes that there is natural convection and contact conductance changes. The
comparison between the hypotheses can be seen in Figure 38 for an experiment with
a nitrogen flow of 60 I/min.

Hypothesis 4 yielded a good result that is able to represent the experimental
curve. A comparison between the lower mold temperature curves can be seen in Figure
39 and the upper mold temperature curves can be seen in Figure 40.

Between the vacuum cooling model and the nitrogen cooling model, an increase
in the convection/conduction coefficient was expected due to the fact that there is nitro-
gen gas flowing in the machine. The approach also was able to identify the presence
of considerable natural convection in the side of the mold assembly.

Also, a great increase in the gap conductance value was found. This can be
explained by the fact that the nitrogen gas fills the gap between the surfaces, there-
fore, increasing the area of heat transfer. Since the parameters in nitrogen cooling are
operating-point dependent, other operating points were optimized. Figure 41 depicts
the identification results for each nitrogen flow value.
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Figure 37 — Thermal phenomena in nitrogen cooling experiments.
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Figure 38 — Comparison between multiple cooling model hypotheses for a nitrogen flow
of 60 I/min.
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It is possible to calculate the equivalent thickness of a thin nitrogen film using
the identified gap conductance using the equation
k

=}; (13)

where U is the conductance, k is the conductivity, and x is the thickness. Figure 42
presents the equivalent thickness for each operating-point presented in Figure 41. The
values range from 0.73 um to 3.49 um. The surface flatness provided by the manufac-
turing tolerance is close to 1.8 um. The explanation for the variance of x could be the
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Figure 39 — Lower mold temperature comparison between multiple cooling model hy-
potheses for a nitrogen flow of 60 I/min.
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change of thermal conductivity of nitrogen in each operating-point, due to the pressure
increase. Also, the pressure increase can result in a decrease of the gap in the interface
between the cooling plate and holder.

Figure 43 and Figure 44 depict the lower and upper convection coefficient as
a function of the nitrogen flow, respectively. Both graphs have a positive derivative,
which means that increasing the nitrogen flow rate causes an increase in the convection
coefficient. These results agree with the theory, since a greater flow of nitrogen is able to
remove more heat from the surface. Graphically, the relationship between nitrogen flow
and convection coefficient appears linear between 10 I/min and 60 I/min. A regression
analysis was done using the identified data, reaching a coefficient of determination of
0.96 for the lower convection coefficient using equation

lowerhygs(x) = 4.22x +81.25, (14)

meaning that 96% of the variance in the convection coefficient can be explained by the
nitrogen flow values. For the upper convection coefficient regression, a coefficient of
determination of 0.99 was found using equation

upperh;,ss(x)=5.02x + 82.64. (15)

Figure 45 depicts the lateral convection coefficient as a function of the nitrogen
flow. The graph also presents a positive derivative (excluding the point between 10 I/min
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Figure 40 — Upper mold temperature comparison between multiple cooling model hy-
potheses for a nitrogen flow of 60 I/min.
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Figure 41 — Nitrogen cooling identification results for each operating-point.
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and 20 I/min, meaning that increasing the nitrogen flow causes an increase in the lateral
heat extraction. The points corresponding to the nitrogen flow rate of 10 I/min and 20
I/min present the same lateral convection coefficient. This might be a numerical error
and further experiments with these operation points are necessary to investigate these
results. A regression analysis was also done, reaching a coefficient of determination of
0.96 using equation

Anat(X) =0.21x+1.86. (16)

Figure 46 depicts the gap conductance as a function of the nitrogen flow. The
graph also presents a positive derivative, meaning that increasing the nitrogen flow
causes an increase in the gap conductance. This means that the heat transfer in the
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Figure 42 — Equivalent thickness of a thin nitrogen film for each nitrogen flow value.
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Figure 43 — Lower convection coefficient in function of nitrogen flow.
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interface increases by increasing the flow of nitrogen in the machine. The relation-
ship between gap conductance and nitrogen flow rate does not appear linear. Thus, a
second-order polynomial was used. A regression analysis was done and the coefficient
of determination found was 1.0 using equation

he(x) = 12.53x°—334.13x +9679.20. (17)

It is important to point that the identified parameters only represent numerical
optima and that further experiments in the same operating-points need to be carried
out and compared to the identified parameters. This method may determine whether
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Figure 44 — Upper convection coefficient in function of nitrogen flow.
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the current model is physically reliable and is able to describe the experimental curves.

Also it would be interesting to analyze more operating-points to have a better regression
analysis.

5.3 EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of the models identified in
section 5.2. The approaches for the evaluation comprise evaluating known operating-
points, in section 5.3.1, and unknown operating-points, in section 5.3.2.

5.3.1 Known operating-point analysis

In section 5.2, a set of parameters were identified for the nitrogen cooling ex-
periments in each operating-point. The best MSE for these experiments was found at
20 I/min. For this reason, the experiment was repeated in this operating-point and the
approach was to evaluate if the parameters identified previously would be able to de-
scribe the new experiment. Figure 41 shows that the identified values in the experiment
were 164 % for the lower convection coefficient, 180 % for the upper convection
coefficient, 5 % for the natural convection, and 8566 % for the gap conductance.
Thus, these parameters will be used to compare the simulation data with the new
experimental data.

The MSE found for the new experiment was 4.13, while 1.62 was found for the
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Figure 45 — Lateral convection coefficient in function of nitrogen flow.
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first experiment. This difference might be due to small changes in the assembly of the
mold, in the temperature of the nitrogen gas or even in the ambient temperature. Figure
47 and Figure 48 show the comparison between the lower and upper mold temperature
of the simulation and the respective experimental mold temperature.

Finally, these results prove that the identified parameters are able to represent
the experimental curves and that the model is physically reliable in the evaluated
operating-point. Further experiments in the remaining known operating-points are nec-
essary to evaluate if the parameters can also describe the respective experimental
data.

5.3.2 Unknown operating-point analysis

In section 5.2, many operating-points had its corresponding thermal parameters
identified and a regression analysis was done. In order to analyze if the fitted curves
are able to describe how the thermal parameters vary with respect to the operating-
point, the proposed method was to run an experiment in an unknown operating-point
analysis. The selected operating-point to do this analysis was 30 I/min, due to the fact
that it is located in the mid-range of the previously identified operating-points. Using
the equations from section 5.2, the parameters to be tested were calculated. These are
shown in Table 3.

With the fitted parameters, the found MSE was 50.26. This value indicates that
the fitted parameters are not able to describe the experimental curves well. Figure 49
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Figure 46 — Gap conductance in function of nitrogen flow.
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Table 3 — Fitted thermal parameters for a nitrogen flow of 30 I/min.

Parameter  Value (=)

Lower hyggs 207.85
Upper hjgss 233.24
hnat 8.16

he 10932.3

Source — Original

shows the comparison between experimental data and simulation data in the upper and
lower mold. The greatest error is found in the upper mold temperature, meaning that
the regression model for the upper mold is worse fitted than for the lower mold.
However, this result does not completely exclude the regression approach. Since
the regression was done using few observations, the fitted curves are largely affected by
noise and might not be statistically significant. In order to evaluate this, an optimization
job was done close to the point suggested by the regression analysis. This approach
was able to find a set of parameters that yielded a MSE of 1.03. This means that the
regression was suggesting a good region, however due to noise and few observations,
the suggested point was yielding a poor MSE. A comparison between the fitted variables
and the later optimized variables can be seen in Table 4. It is possible to see that the
difference between most parameters is within 10%. Therefore the hypothesis that the
regression was pointing to the right region is validated. The only big difference between
the values occurs with the natural convection value, meaning that the relation might
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Figure 47 — Lower experimental evaluation at 20 I/min.
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not be linear (specially when analyzing the fact that the natural convection value for 10
I/min and 20 I/min was 5 %). Figure 50 and Figure 51 show respectively the lower
and upper temperature comparisons between experimental and simulation data using
the optimized parameters.

Table 4 — Comparison between fitted and optimized thermal parameters for a nitrogen
flow of 30 I/min.

Parameter Fitted (%) Optimized (%)
Lower hyggs 207.85 205

Upper hjoss 233.24 219

hnat 8.16 6

he 10932.3 9800

Source — Original

Finally, the presented results show that the regression analysis indicates the right
region for the analyzed operating-point. However, due to few observations, the model
is susceptible to noise and suggests an incorrect point. After running an optimization
job in the region suggested by the regression model, a set of identified parameters
were found. These were able to well describe the experimental data. Thus, further
operating-points need to have its parameters identified in order to increase the number
of observations in the regression analysis.
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Figure 48 — Upper experimental evaluation at 20 I/min.
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Figure 49 — Experimental evaluation at 30 I/min with fitted parameters.
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Figure 50 — Lower experimental evaluation at 30 I/min with optimized parameters.
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Figure 51 — Upper experimental evaluation at 30 I/min with optimized parameters.
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6 CONCLUSION AND FURTHER WORK

This report presented the development of a simulation-based optimization strat-
egy to identify unknown parameters for a precision glass molding thermal model. The
project consisted of an extensive analysis of the current thermal simulation, a software
implementation for the identification of parameters and a further analysis of the results.

The suggested approach proved to be feasible and presented good results for
vacuum cooling and nitrogen cooling experiments. The results agree with theory and
experimental data. The identified gap conductance showed an agreement with papers
addressing the same topic, however using different identification approaches. Also,
an experimental evaluation of the nitrogen cooling models was made for known and
unknown operating-points.

Due to the limited amount of time, as well as restricted access to the laboratory at
the time of this work’s development (due to the COVID-19 outbreak), some of the exper-
imental part of this project was delayed. Heating experiments were not addressed since
the identification of cooling experiments were simpler and would allow the experimental
evaluation of the proposed method. Also, heating experiments would require a slightly
different approach for the identification. Since the estimation of the lamp temperature
consists of a dynamic identification (meaning that the temperature of lamps change with
time), the proposed approach would be to assume the system as a nth order system
and the goal would be to identify its coefficients, which are static. In case the lamp
system is non-linear, these coefficients will change based on the operating-point and
the same approach used in the nitrogen cooling experiments can be used. Within the
constraints encountered during the time of this work, the main goals were achieved.

Further work consists of evaluating the identified models with experimental data
in the remaining operating-points. Also further operating-points for nitrogen cooling
must have its parameters identified in order to increase the number of observations for
the regression analysis. After validating the regression approach in multiple unknown
operating-points, heating experiments can be addressed.

The development of the present project was a very enriching experience, since
it allowed the author to deal with both practical and theoretical aspects related to the
Control and Automation Engineering Course in an international research institute. The
basis offered by the course, in addition to the guidance from both company supervisor
and university supervisor, were essential for the completion of the project.
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