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ABSTRACT

Well control optimization is a crucial task in the development and operation of petroleum
fields. It consists in adjusting the well controls such that the reservoir performance is
optimized over its producing time. Optimization of the well controls typically require the
simulation of fluid flow in the reservoir with the aim to evaluate the reservoir response
for different well controls over time. Although there are several simulators available in
the market, only a few provide gradient information with respect to the well controls.
Besides, even when the gradients are available, they may degrade due to inaccuracies
arising from control variable switching in the simulator or discontinuities in the feasible
space. Derivative-free optimization is a common alternative to circumvent such issues.

Derivative-free optimization can be broadly split into direct-search methods and model-
building approaches. The first optimize the function of interest without building a surro-
gate model (trust-region, for example) to guide the search. For this reason, the second
approach typically requires fewer simulations in the optimization. This is particularly
attractive for field development optimization problems such as well control optimization
because the simulations involved in such problems are computationally costly.

Due to the presence of geological uncertainty, the standard well control optimization
problem needs to be extended to consider the parametric uncertainty in the reservoir
model. This is typically done by creating a discrete set of equally probable reservoir
models to represent the geological uncertainty. Then a robust well control optimization
problem can be cast to improve the reservoir performance given an ensemble of reser-
voir models. The robust optimization problem has the same challenges of the standard
well control problem with the extra burden of simulating the whole ensemble of models
in each step of the optimization procedure.

We propose a method called ensemble trust-region optimization, which is a model-
building derivative-free optimization method that uses a trust-region to guide the opti-
mization of the average performance of an ensemble of reservoir models. The proposed
method is assessed in both a set of analytical functions and an ensemble of synthetic
reservoir models.

Keywords: Well control optimization. Geological uncertainties. Trust-Region Optimiza-
tion.



RESUMO

A otimizacao de controle de pogos é uma tarefa crucial no desenvolvimento e operacao
de campos de petréleo. Esta consiste em ajustar os controles dos po¢os para que o
desempenho do reservatorio seja otimizado ao longo do tempo de producgéo. A otimi-
zacao de controles de pogos normalmente requer a simulacao do fluxo de fluidos no
reservatdrio com o objetivo de avaliar a resposta do reservatoério para diferentes con-
troles ao longo do tempo. Embora existam varios simuladores disponiveis no mercado,
apenas alguns fornecem informacdes do gradiente com relagdo ao controle. Além
disso, mesmo quando os gradientes estado disponiveis, eles podem ndo ser confiaveis
devido a imprecisdes decorrentes da troca de variavel de controle no simulador ou des-
continuidades no espaco de solugdes. A otimizacao sem derivada é uma alternativa
comum para contornar esses problemas.

A otimizacdo sem derivadas pode ser amplamente dividida em métodos de pesquisa
direta e métodos que se baseiam na construcdo de modelos. Os primeiros métodos
otimizam a funcao de interesse sem criar um modelo substituto (regido confiavel, por
exemplo) para orientar a pesquisa. Por esse motivo, a segunda abordagem normal-
mente requer menos simulagdes durante a otimizacao. Isso é particularmente atraente
para problemas de otimizacdo de desenvolvimento de campo, como otimizacéo de
controle de pocos, porque as simulagdes envolvidas em tais problemas s&o computa-
cionalmente custosas.

Devido a presenca de incerteza geoldgica, o problema padrao de otimizacdo de con-
trole de pocos precisa ser estendido para considerar a incerteza paramétrica no modelo
do reservatorio. Isso geralmente € feito criando um conjunto discreto de modelos igual-
mente provaveis de reservatorios para representar a incerteza geoldgica. Em seguida,
um problema robusto de otimizagcao de controle de poco pode ser langado para me-
lhorar o desempenho do reservatério, dado um conjunto de modelos de reservatorio.
O problema de otimizacao robusto tem os mesmos desafios do problema de controle
de pocos padréo com a carga extra de simular todo o conjunto de modelos em cada
etapa da otimizagéo.

Propomos um método chamado Ensemble Trust-Region Optimization, que € um mé-
todo de otimizagao sem derivada do tipo constru¢cdo de modelo que usa uma regiao
de confianca para orientar a otimizagcdo da média de desempenho de um conjunto
de modelos de reservatério. O método proposto é avaliado tanto em um conjunto de
funcdes analiticas quanto em um conjunto de modelos de reservatorios sintéticos.

Palavras-chave: Otimizagao de controle de pocos. Incertezas geoldgicas. Otimizacao
Trust-Region.
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1 INTRODUCTION

Since its discovery, petroleum has being a key energy source in the modern
society. Its contribution had a great impact in the economic and social development.
The oil industry generates employment in diverse industry sectors such as energy
and technology. As one of the primary energy sources, oil consumption has increased
considerably during the past decades and its demand is still growing. It is the energy
source that dominated the 20% century and will continue to domain the most part of
21t The most versatile and political of energy sources. It makes countries go to war
(AMERICA IPAA, 2002).

Figure 1 — World total primary energy supply (TPES) by source.
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Nevertheless, there are a lack of electricity access for 850 million people around
the world (IEA, 2019) and, with the population increase, the number of people in this
situation tends to grow up even more.

Aim to mitigate the energy deficit in the world, global investments are being
designated to the improvement of renewable energies. Although this government effort,
as it can be seen in Figure 2, until 2019 the renewable energy consumption was around
4% and the estimated growth is of 15% by 2040. Also, Figure 1 shows that Oil and
Natural gas represents more than 54% of the current worldwide primary energy supply.
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Figure 2 — Forecast of energy consumption
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Font: Energy Outlook 2019 (BP, 2019)

The trend points out that renewable energy is the future of energy supply, but
fossil fuels still contribute, and will contribute for the next decades, with the majority
part of the total energy consumed by society. Also, the petroleum sector is the largest
industry in the world in terms of monetary value. Not only is fossil fuels the world’s
most important energy source, but oil is also the feedstock of a wide range of chemical
products that are critical in today’s society (MIDTTUN, 2015). Although there exists
reserves of unconventional hydrocarbons the mechanisms to recovery such resources
are nor economically attractive neither environmentally sensitive (ANN et al., 2014).

The union of these set of factors resulted in a considerable sum of investments in
the development of reservoir management strategies. Optimization methodologies have
gained space in petroleum engineering activities over the past years, particularly in the
called reservoir control optimization, which combines classical geosciences phenomena
with cybernetics engineering.

Mathematical optimization is showing its potential in reservoir management by
improving the production and collaborating with important decisions, such as number,
type, control and placement of wells. However, as the optimization decisions are based
on geological models, uncertainty has been the biggest concern in oil and gas pro-
duction. The model uncertainty might lead to constraint violations. As the objective is
generally to maximize the production, the system could select a set of controls that
extrapolates the operational capacity, which may lead to system failure. Also, the in-
crease of health, safety and environment requirements has increased the attention to
uncertainties in process models. That is why handling uncertainty is crucial and needs
to be performed effectively.

Indeed, handling uncertainty is becoming more relevant in most industrial sec-
tors. But handling uncertainty in reservoir management is a complex task. Geological
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uncertainty is quantified by generating a number of realizations for a reservoir model,
taking into account a discrete range for the uncertain parameters.

1.1 OBJECTIVES

The main objective of this work is to contribute to the field of production opti-
mization by proposing a derivative-free method that is capable of handling geological
uncertainties.

The specific goals are divided as follows:

1. Generate a set of realizations that simulates a real scenario of reservoir under
geological uncertainties.

2. Extend the trust-region method implemented in the open-source project to deal
with geological uncertainties.

3. Demonstrate the concept in a set of analytical realizations of well known functions.

4. Apply the proposed framework in a synthetic case with the set of geological
realizations produced on ltem 1.

1.2 DOCUMENT STRUCTURE

The first two Chapters 2 and 3 provide an overview of field development opti-
mization and derivative-free methods, which are the background for this work.

Chapter 4 contextualizes and explains the proposed method, i.e. ensembile trust-
region optimization. Further, it introduces the concept of geological uncertainty and
explains how it can be accounted for in the format of an ensemble of realizations.

A validation of the proposed methodology is presented in Chapter 5, where the
method is applied to a set of realizations which are generated empirically from two well
known analytical functions.

In Chapter 6 the methodology is applied to the production optimization under
geological uncertainty of a synthetic reservoir.

The conclusions of the work and future goals are provided in Chapter 7.
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2 FIELD DEVELOPMENT OPTIMIZATION

Petroleum field development encompasses operations involving a broad range of
engineering disciplines. Within various field development aspects such as drilling, facility
operation and/or reservoir production, a whole range of decisions can be supported
by solving associated optimization problems(BAUMANN et al., 2020). The initial phase
in the field development is the discovery of profitable petroleum reserves, which can
be composed of a single or a portfolio of reservoirs. Optimization routines start to play
an important role since the discovery phase, where decisions must be made regarding
the locations of the producers and injectors. The problem of deciding the trajectories
of the wells is referred to as well placement optimization. In the extraction phase, the
injectors and producers wells need to be controlled so that the reservoir can produce
their maximal capacity, injecting the wrong quantity of water can implicate negatively in
the amount of oil extracted. The latter problem is the focus of this work and it is called
well control optimization.

Well placement optimization is not that easy as it appears, i.e. finding the optimal
locations for producer and injector wells requires simulation studies which need to take
into account several aspects such as the type, number and operations settings of wells.
The main challenge of well placement problems is to decide the best well trajectories
into the reservoir, such that a stable water front is achieved and the NPV is maximized
over the reservoir producing time. So, it is also important to know reservoir proprieties
such as faults, geological proprieties, among others.

In this work, the derivative-free optimization (DFO) method will be applied to
a well control problem to optimize the oil production. The next section of Chapter 2
explains the well control optimization problem and presents the optimization method
applied for its solution.

2.1 WELL CONTROL

Well Control as a term and technical word suggests controlling the bottom hole
formation pressure being penetrated by the well (GRACE, 1977).

Oil and gas resources are generally contained in sandstones or limestones
beneath the earth surface, typically at a depth between 1-5 km (BROUWER, 2004). The
cross-section of an oil reservoir, presented in Figure 3, is composed by non-reservoir
rocks that has high porosity and permeability. The cap rock, impermeable to fluids, is
a natural cover to the reservoir. Water bearing zones as non reservoir rocks can also
bound the reservoir. Through the oil bearing rocks the well is drilled for oil production
which enables the flow of oil fluid to the surface.
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Figure 3 — Reservoir vertical cross-section
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Intuitively, well control optimization consists in controlling the bottom hole pres-
sure (BHP) of injectors and/or producers to extract the optimal amount of oil from the
reservoir. There are some reservoir proprieties that need to be considered, such as
rock and fluid proprieties. The BHP of the wells are the typical control variables of the
optimization problem, which seeks for improved reservoir performance by adjusting the
well controls over the reservoir producing time.

Figure 4 shows an illustration of a well control problem. It represents a reservoir
that has two injectors wells and one producer vertical well. There are three types of
conventional wells: vertical, deviated, horizontal and multilateral well, which are types
presented in Figure 5 that were obtained from (NEFT, n.d.). Observe that the water
is being injected by the injectors, while the producer is lifting oil out of the reservoir.
Physically the water injected by the injectors keeps the pressure inside the reservoir.
Because of the difference between the density of the elements (oil and water), the oil is
pushed toward the producer, given that it has a lower pressure which is controlled by
the bottom hole pressure (BHP).
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Figure 4 — Well control problem illustration
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The standard objective function employed in field development optimization prob-
lems is typically maximize the Net Present Value (NPV), but the cumulative oil produc-
tion (COP) is a common alternative. It contains parameters such as the cost related
to water injection and production and the oil price, which translates the economic gain
obtained of a given reservoir control strategy. For two-phase flow of oil and water, the
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NPV is defined as follows:
-

NPV(qu) =

t=1
Qu = (Gbp: Gy aL;) V=1, T. 2)

At
1+ d)t.At/T

t t t t t t
[rop'qop_rwp'qu_rwi'qwi (1)

where qy is a vector containing the total oil production rate q{)p, the total water produc-
tion rate q,’}vp, and the total water injection rate qf;w. for all time steps t € 1,...,T. The
parameters rbs, rly, and rl represent the revenue obtained with the selling of the oil,
the cost for water treatment, and the cost of water injection, respectively. The step size
is defined as At. T is a normalization term, commonly taken as the number of days in a
year, and d is a discount factor (SILVA et al., 2020).

2.2 WHY DERIVATIVE-FREE IN WELL CONTROL OPTIMIZATION?

As stressed in the previous section, well control is a simulated process. This
section focus in describing the reasons behind choosing a derivative-free approach.
Due to the wide usage of simulations the need of good derivative-free methods is still
present and increasing (ANDERSEN, 2018).

Typically, well control problems are smooth and continuous, i.e derivatives are
available. However, a process simulation is required to compute the cost function asso-
ciated to the controls. There are several simulators available for fluid flow simulation in
petroleum reservoir, but only few of them provide the sensitivities related to the control
variables, also known as the adjoint gradients. Solving a system of adjoint gradients is a
common alternative to obtain the gradients (JANSEN, 2011; KOUROUNIS et al., 2014).
When the gradients are available, (WANG et al., 2010; JANSEN et al., 2009; VAN ES-
SEN et al., 2011; SUWARTADI et al., 2011; CAPOLEI et al., 2013) show that good
result can be obtained in well control optimization by using adjoint-gradients. However,
reliable gradient information are typically unavailable in industrial large-scale simulation
systems due to the complexity and computational cost to implement such derivatives.

When the adjoint gradients are not available, a solution would be to estimate the
gradient by finite differences at each step. Yet, this alternative has its limitations. The
computational cost of this approach is elevated, which makes it infeasible for large-scale
problems.

Another issue related to gradient-based methods is that the derivatives need to
be calculated with respect to the control variables, for both the objective and the con-
straints (MIDTTUN, 2015). If the feasible bounds for the control variables are violated
during the simulation, an event called control switching might occur. The switching in
the control variables could degrade the accuracy of the gradients significantly, causing
complications for gradient-based methods.
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To circumvent the above mentioned issues, derivative-free methods can be uti-
lized to solve well control optimization problems. Since the simulations of fluid flow in
reservoir models are costly, the best suited method for such problems would be an
approach which requires fewer simulations in the optimization. The next chapter of-
fers an overview of derivative-free optimization methods in order to support our choice
regarding the optimization method.
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3 DERIVATIVE-FREE OPTIMIZATION

The main idea of derivative-free methods is to optimize functions without the use
of derivatives. Traditionally important information can be obtained from gradients, such
as the function curvature and descent direction, but in many cases the gradient infor-
mation might be unavailable or unreliable due to noise or discontinuities. The lack of
meaningful gradient information requires optimization without derivatives, which is usu-
ally challenging in computational sciences and engineering applications. Performance
issues also come about as derivative-based methods tend to be far more efficient than
derivative-free optimization methods (CONN et al., 2009).

Herein derivative-free optimization concerns the problem of minimizing a function
f(x) : R — R over a domain x € X. The function f is available as a black-box, whose
derivatives are either unavailable or unreliable (CONN et al., 2009; RIOS; SAHINIDIS,
2013). Such problems arise, for instance when the evaluation of f is subject to noise or
too costly for the application of finite difference methods.

Generally derivative-free methods can be classified as direct-search and model-
based methods. Direct-search methods are based on successive evaluations of the
cost function f based on some predefined sampling patterns. On the other hand, model-
based methods construct a surrogate for f around the current iterate, which is then
combined with standard algorithms to define the next iterate. The models are updated
iteratively to capture the behavior of f around the incumbent solution.

To provide an overview of the algorithm used and to contextualize the class of
methods in which it is included, this Chapter brings an explanation of derivative-free
methods.

3.1 DIRECT-SEARCH METHODS

Direct search methods, such as Hooke and Jeeves (HOOKE; JEEVES, 1961)
and Nelder-Mead (NELDER; MEAD, 1965) work based only on function evaluation,
without attempting to build any model. They describe direct-search as the sequential
examination of trial solutions generated by a certain strategy.

While in the 1960s these methods were heuristic, more recent variations have
proven global convergence. Direct-search methods can be divided into two main classes,
simplicial and directional (CONN et al., 2009).

» Simplicial method covers direct-search based on simplices and operations over
simplices, like reflections, expansions or contractions, for example Nelder-Mead
and the simplex method.

» Directional method addresses direct-search where sampling is guided by sets
of directions with appropriate features, like coordinate-search methods.
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The focus of this work is on model-based methods, more precisely on the Trust-
Region method described at the end of this chapter. For this reason the description of
the direct-search methods will be further elaborated here.

3.1.1 Simplicial Methods

The description of simplicial methods will be focused on one of the most popular
derivative-free methods, the Nelder-Mead algorithm. The simplex method of Nelder and
Mead utilizes a set of points to define a simplex at each iteration. This simplex is then
used to determine the next incumbent solution. The definition of simplex will be given
later. Various operations are performed around the centroid of the simplex in order to
produce an improved solution, with which the simplex is updated.

Simplicial methods which use the concept of Nelder and Mead are the Gener-
alized Pattern Search (GPS) (TORCZON, 1997), the Generating Set Search (GSS)
(KOLDA et al., 2003), and the Mesh Adaptive Direct Search (MADS) (AUDET; DENNIS
JR, 2006). At each iteration, these methods sample the objective in a finite number of
points around the current approximate solution. If the current iterate is still not optimal,
one of the search directions is guaranteed to be a descent direction. So descent may
be found for a sufficiently small step length.

Before present the Nelder-Mead algorithm, some definitions are needed. At each
iteration k, the algorithm has a set of (n + 1) points in R” which define a simplex, a set
Sk ={x}, x2, ..., x*1} that are affinely independent, meaning that

x,% —x,l, ...,x[(7+1 —x,l

is a set of linearly independent vectors in R”. The formal definition is presented as
follows.

The dimension of an affine set is the dimension of the linear subspace parallel to
it. Then, in R” we cannot have an affinely independent set with more than (n+ 1) points.

Definition. A set of n+ 1 points X = {x0,x",...,x} is said to be a affinely
independent if its affine hull aff(x®, x1, ..., x") has dimension n.

With the definition of affinely independence we can also define the convex hull.
The convex hull of a given S ¢ R” is always uniquely defined and consists of all linear
combinations of elements of S whose scalars are non-negative and sum up to one (i.e.,
such combinations are known as convex combinations).

Definition. Given an affinely independent set of points X = {xo,x1 s X}, it
convex hull is called a simplex of dimension n.

Geometrically, a bi-dimensional simplex is a triangle. The vertices of this triangle
are elements of X.
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Algorithm 1 Nelder-Mead in three fundamentals steps for a function in R2.

Initialization: Choose an initial simplex called Sg.
for k=0,1,2,...do

end

1. Ordering: Determine the indices 1, 2, 3, based on function values of the worst,

second worst and the best vertex, respectively, in the current working simplex
S. In other words, Sy = {S}, S2, S}, with n = 2, S} is the vertex with the best

function value, S,% is the second worst and SE is the worst vertex (highest function
value).

. Centroid: Calculate the centroid ¢ of the best segment, S} S2 .

. New simplex: Compute a new simplex from the current one. Try to apply the

Reflect, Expansion or Contraction operation with respect to the best segment,
to replace only the worst vertex Sﬁ If one of these three operations yields a
point with an improved objective value compared to the best vertex objective of
the current simplex, then that point is accepted, the worst vertex is spared and
the iteration is deemed successful. Otherwise, when all operations fail, a shrink
operation is performed whereby the best vertex is kept and the other two vertices
are produced by the operation.

Algorithm 1 brings the general idea of the Nelder-Mead method for a function in

RR2. First, the current simplex is ordered based on each vertex function value. Second,
the centroid ¢ is calculated with respect to the best segment, that is the segment
between xp and x,.4. Then, a new simplex is computed according with the operation
that is successful based on ¢ and vertex function values. The method has five different
operations: Reflect, Expand, Outside contraction, Inside contraction and Shrink, which
are applied to generate the new simplex.

To illustrate the Nelder-Mead algorithm, the Figure 6 applies the method to

minimize the function presented in Eq. (3). The initial simplex is the triangle with the
following vertices (0.0, 2.5),(0.1,2.7),(0.3,2.5). The solution value is indicated by the
red star at (3.0, 2.0) with the function value of —7.

f(x1,x2)=x12—4x1+x§—x2—x1x2 (3)
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Figure 6 — Nelder-Mead illustrative example

-0.5
-0.5

Observe that the Nelder-Mead method performs operations over the current
simplex trying to reach the best solution point. The stop criterion is associated with the
triangle size. When the simplex is enough small the algorithm stops and considers the
incumbent solution as the optimal solution.

3.1.2 Directional Methods

Consider the problem of minimizing a function f(x) : R" — R over a domain
x € X. Directional methods are derivative-free methods that sample the objective
function f at a finite number of times in each iteration. Solely based on this set of
function values the algorithm decides which step to perform without any explicit or
implicit derivative approximation or model building (CONN et al., 2009).

In this section we address one of the simplest directional direct-search meth-
ods, namely the coordinate or compass search. Of key importance to understand this
method are the concepts of positive spanning sets and positive bases, which are ex-
plained in what follows.

3.1.2.1 Positive spanning sets and positive bases

In directional methods the existence of a positive spanning set D c R guar-
antees that, given any nonzero vector v in R”, there exists at least one vector d in D
such that v and d form an acute angle. In optimization, the vector d indicates a descent
direction. Formally, a descent direction for a function f at point x means that there exists
an « > 0 such that f(x + ad) < f(x) for all x € (0, ®]. Then, there exists a point such that
the function decreases in the descent direction.
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Definition 3.1. A positive spanning in R" is a set of vectors whose positive span is R”.

The positive span of a set of non-negative vectors [v4, ..., V] in R is the convex
cone':
[veR" : v=aqvy+ - +amvm, & >0,i=1,..,m}.

Definition 3.2. A positive spanning set D in R” is a set of vectors whose positive span
is R, The set [vq,..., vm] is said to be positively dependent if one of the vectors is
a positive combination of the others; otherwise, the set is positively independent. A
positive basis in R" is a positively independent set whose positive span is R”.

Equivalently, a positive basis for R” can be defined as a set of nonzero vectors
of R whose positive combinations span R”, but for which no proper set exhibits the
same property. The following theorem indicates that a positive spanning set contains at
least n + 1 vectors in R

Theorem 3.3. If [v4,..., vm] spans R" positively, then it contains a subset with m— 1
elements that spans R".

The proof of this theorem can be found in Conn et al.(CONN et al., 2009). From
this theorem we can also show that a positive basis can not contain more than 2n ele-
ments. Then, the terms minimal and maximal positive bases are referred, respectively,
to positive bases with n+ 1 and 2n elements.

The positive basis that we are interested, used in the Compass Search method,
is formed by vectors of the canonical basis and their negative counterparts. It is also the
simplest maximal positive basis in R2, defined by the columns of the following matrix D.

10 -1 0
D=lo 10 —1] @

Basically, a positive basis and positive spanning guarantee the existence of at
least one vector d ¢ D that forms an acute angle with a nonzero vector v € R". Sup-
pose that the nonzero vector v is the negative gradient of a continuously differentiable
function f, then any vector d that forms an acute angle with v is a descent direction for
f. This guarantees that f decreases in direction d. In this context, D is a positive basis
and d a positive spanning.

3.1.2.2 Directional direct-search method

The concepts presented above are fundamental to understand the essence of
the directional direct-search method and mainly to perceive the difference between the

1

A nonempty subset X of R” is called a convex cone if for any elements x, y of X and a non-negative
number a, ax and x + y are contained in X(JAPAN, 1993).
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simple directional method, Compass search, and the OrthoMads method (explained in
the next section).

The main steps of the directional direct-search method are described in Algo-
rithm 2. The poll step calculates the set of trial points P, based on the positive basis
D and evaluate the function f for each point of Py, then, if there exists a poll point
(xx + o, d) that makes the function value decrease in relation to the current point xy, it
updates the current point (x,,1). If the poll step failed, the current point is kept at the
same position. The purpose of the mesh parameter update step is to decrease the step
size parameter « in order to ensure the convergence of the objective function to a
local minimum. The modification of «, depends on the previous poll step status.

A natural stopping criterion in directional direct search is to terminate the execu-
tion when «y < x4 , for a given o > 0 (For example, xz = 1073).

Algorithm 2 Simplified description of the directional direct-search method
Initialization: Choose xp, g > 0,0< 1 <o <1,andy > 1. Let D be set of positive
spanning bases.

for k=0,1,2,... do

1. Poll step: Choose a positive basis Dy from the set D. Set Py = {xx+od : d € Dy}.
Start evaluations of f at the poll points?, sample f(x) for all x € P. The iteration
finishes and the poll step is declare successful if a poll point x; + xxd is found
such that f(xy + e, d)<f(xx), then x4 = X, + x,d. Otherwise, declare the poll step
unsuccessful and set xy, 1 = Xx.

2. Mesh parameter update: If the iteration was successful, then maintain or in-
crease the step size parameter oy,1 € [k, Yk]- Otherwise, the mesh parameter
is decreased, oy, 1 € [B1xk, Pock]-

end

3.1.2.3 Compass Search Method

The Compass Search method, also known as Coordinate Search, is easier to
implement and understand than the Nelder-Mead method. It uses the same procedure
showed in the directional direct-search method with the positive basis being the columns
of the matrix D, presented in (4). The method is detailed in Algorithm 3.

The positive basis D allows a search in four different points surrounding the
current point. An illustrative example is presented in Figure 7, where the blue point
(central) is the current point, the black points are the trial points, and alpha (c«) is the
variable that defines the distance of the current point to the trials points (step size). The
stopping criterion is based on the step size, i.e. the algorithm stops when the variable
«y is less than a constant tolerance (o), typically set to «;,; = 1079,
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Algorithm 3 Compass search algorithm

Initialization: Choose xp, g > 0,0 < 1 < Bo< 1,y >1and oy > 0. Let D be a set
of positive spanning bases.

for k=0,1,2,... do

1. Stop criterion: If a, < &4, then terminate the execution of the algorithm. Other-
wise, evaluate the Poll step.

2. Poll step: Set P, = {x + a,d : d € Dy}. Evaluate f at each element of Py,
f(x), Vx € Py. If for some xi + x,d the function value is better than the value of
f(xx) in the current point, mathematically, f(xx + axd) < f(xk) for some xy + oxd €
Py, then update the current point, xx,1 = Xx + xxd. Go to step 3. Otherwise,
declare the poll step unsuccessful and maintain xj, ¢ = X.

3. Mesh parameter update: If the iteration was successful, then the step size pa-
rameter of the mesh parameter is maintained, namely «, 1 = «x. Otherwise, the
value of the mesh size parameter is decreased, namely oy, 1 = .

end

Figure 7 — Compass step example.

Py
. Mle o,
p} p2
Py

The Figure 8 shows the evaluation of the Compass search algorithm to the
illustrative example. The problem is to minimize the function indicated in Eq. (3), same
function used to exemplify the Nelder-Mead algorithm in the previous section. The initial
parameters were selected as follows, initial point as (0.0, 2.5), matrix D as the canonical
one and the initial step length as 0.5. The optimal solution is —7, indicated by the red
star at (3.0, 2.0). The algorithm was capable to find the optimum solution in few steps.

Beyond the CS method the class of directional direct-search methods has other
well known optimization algorithms. It is not the aim of this section to discuss all this
algorithms, the Compass Search was an example because is a easy method to under-
stand. The directional methods are basically differentiated by the mode to search points,
as saw CS search using the matrix D to search in canonical directions. Generalized
Pattern Search (GPS), introduced by (AUDET; DENNIS, 2000), does not have a fixed
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Figure 8 — Compass search illustrative example

matrix D instead of it, a set of positive bases is used. (AUDET; DENNIS JR, 2006)
proposes the Mesh Adaptive Direct Search (MADS), capable to converge in nonsmooth
problems, once the search for points is not restricted to a finite number of directions, as
D, MADS does a local exploration in the space of variables.

3.2 MODEL-BASED METHODS

Model-based methods firstly sample the function around the incumbent solution
to build an initial surrogate model of the function being optimized. The optimization
search is then conducted such that candidate solutions are then calculated with the
aid of this surrogate model. The evaluated points are accepted when there is an im-
provement in the objective, and rejected otherwise. The surrogate is then updated by a
model maintenance procedure, and the optimization continues.

Trust-region methods are model-based methods which rely on polynomial inter-
polation surrogates valid within the neighborhood of the current iterate, the so-called
trust-region. As models are used, these methods tend to be more efficient than direct
search methods in finding descent. But this comes at the expense of model mainte-
nance, a procedure that is costly. The size and position of the trust-region are adjusted
depending on whether or not the surrogate solution is accepted, and the ratio between
the predicted and actual function value decrease.

3.2.1 Trust-Region Algorithm

In this subsection we present a trust-region method for unconstrained derivative-
free optimization, which uses a quadratic polynomial interpolation to build a model into
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the trust-region, following Conn et al. (CONN et al., 2009) and Giuliani C. (GIULIANI,
2019). The method uses polynomial interpolation, but it could be done with polynomial
regression or any other approximation technique. The algorithm builds a model m that
approximates the function in a limited region (the trust-region) sampling the objective
function f around the incumbent solution x,. This model m is simply a known mathe-
matical model, which can then be optimized using traditional algorithms to generate a
new candidate solution Xy 4.

Before presenting the trust-region algorithm, let us define the concept of Fully
Linear.

Definition 3.4. A model m is said to be Fully Linear (FL) in the trust-region B(x, A) if
there exist g, Teg > 0 such that, for all y € B(x, A):

1Y) = m(y)|| < T2
IV(y) = Vm(y)| < Tegh

where B(x, A) is an ball of radius A with center at x. An explanation about the
values Tgr and Tgg can be found in (CONN et al., 2009) page 40. Now, consider the
nonlinear optimization problem

min f(x
xXeR”? ( )

In the first iteration the model contains only the initial point x4, and the trust-
region will be a ball surrounding it. More generally, in each iteration k, the trust-region
is a ball of radius Ay around the iterate (incumbent solution) x, as follows

B(xx, Ag) =1y = Iy —xkll < Ak}

with the the infinity norm ||.|~ being the usual choice. Once the region is defined,
the function f is sampled around the incumbent solution x4 to build the model my, a
quadratic polynomial in our case. To ensure that the model has good properties, a
criticality test is performed. After passing the criticality test, a trial point x; is obtained
by solving the trust-region subproblem, which is a quadratic optimization problem with
the objective function defined by the polynomial model my and the feasible space being
defined inside the bounded region B(xy, Ak), as follows:

X = arg)r(nin Mg (x)
s.t. ||X—Xk|| < Ag

After the calculation of the trial point x;7, the algorithm decides on the acceptance
of the trial point based on the function values of the incumbent and the trial points. After
calculating the trial point x; is in the k! iteration of the algorithm, the corresponding
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function value f(x;) is calculated and compared to the function value of the current
point f(xk). If there is a descent, the trial point x; is accepted as the next iterate
Xk+1, Otherwise the trial point x; is used to improve the model my,4 or cached by the
algorithm if it does not improve the model.

In general, the objective function f is evaluated at the trial point x;; and the
descent predicted predy is compared to the actual descent aredy. The trial point is
accepted or not based on the following measure of descent:

()
m(x;)

_aredi,  f(xg)
- predy  m(x)

This equation measures the decrease obtained at iteration k and how well the
model agrees with the objective function. If this value is sufficiently high (p > 14 > 0),
this means that the decrease was good and the model is close enough to the function,
then the trial point is accepted as the new iterate x,,4 and the trust-region center
now may be moved to this new point. If the model is already Fully Linear (FL) inside
the region B(xy, Ax) and has a smaller decrease (p > ng > 0) the point will also be
accepted. Otherwise, the trial point is rejected and the center is maintained at the same
point, i.e. Xy,1 = Xk.

If p < m¢ and the model is not Fully Linear, the algorithm will be perform one
or more improvement steps until the model becomes FL. Further, the value of p is
used to change the radius of the trust-region. If p > 14, the radius may be increased
for a factor yj,er > 1, then Ag, 1 = vinerQk- If p < mq and the model was FL, the
bounds of FL definition must be overly high, so the radius has to be decreased for
a factor ygeer € (0,1), then Ay, 1 = YgecrQk- When p < n4 and the model was not
FL, the reduction of the radius may not improve the model’s accuracy, so the radius is
maintained the same, i.e. Ag, 1 = Ag.

The algorithm proceeds through the iterations by maintaining the model updated,
adjusting the radius size when needed, and thereby obtaining candidate solutions until
the stopping criterion is reached.

3.2.1.1 lllustrative Trust-region algorithm

The illustrative example is showed in the sub-figures of Figure 9. Each sub-figure
represents an iteration of the algorithm. The code used to reproduce the Trust-Region
algorithm was the described in (GIULIANI, 2019). The aim is to minimize the function
indicated in EqQ. (3). The red star, located at (3.0,2.0) is the optimal solution for the
problem. The radius tolerance is 1€~ and the initial point is (0.0, 2.5).

In the first iteration, Figure 9a, the red circle indicates the trust-region center,
that means the current best solution. The area in gray represents the trust-region, were
the sub-problem will be procedure. The other blue circles are points used to build
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the polynomial model. The trial point are indicated by the orange circle. The red star
indicates the optimum solution.

Observe that the trial point was approved from the first to second iteration. Also,
the trust-region radius increased and the last center is incorporated to the model. In
iteration 4, indicated by the Figure 9d, the trust-region contains the solution and the
trial steps actually is the optimal solution. In the next iterations, the trust-region radius
is decreasing to improve the polynomial model until that one of the stop criterions is
achieved.

Figure 9 — Iterations of TR illustrative example

(a) Iteration 1 (b) lteration 2
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Figure 9 — Iterations of TR illustrative example

(e) Iteration 5 (f) lteration 6

3.2.1.2 Building the model

The trust-region algorithm can employ different approaches for building the sur-
rogate model. In this work we use a quadratic interpolation model. In the remaining of
this section we present the trust-region algorithm used in this work as well as some

model maintenance procedures.
Firstly, we define a polynomial space using standard linear algebra concepts.

The set which forms a basis for such space is composed of L = (1 + n)(2 + n)/2 terms in
R", being defined as the natural basis of monomials as follows:

1 1 1
®={®15®25“' 5®L}= {15X15X25“' 5an§x'125X1X25§X225“' an—1an§Xr27}

Then, any quadratic or linear polynomial m of R can be written as a linear
combination of the terms of this basis of monomials © as

m(x) = o @1(X) + ap@p(X) + - - + & @y (X)

L
= ®;(x).
i=1
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For instance, the function will have up to six points Y = {y',y2,...,y%} be-
longing to the model in each step for the space R2. Generally, for R”, assuming
that it is known L points Y = {y',y2,..., ¥} and their respective function value
f={f(y"), f(y2),...,f(yD)}, a model m can be obtained by determining the coefficients
«; for all the equations presented above that solve m(yX) = f(y*) for all yX € Y. No-
tice that this is a system of linear equations, which can be written in matrix form as
presented in the following:

M(®@, Y)xg = f(Y),

[<D1(y1> Oo(yly . <I>L(y1>] [f(w)]
Dy(y?) Da(y?) ... Oy f(y?)

O4(yh) 0200h) ... @] D)

This linear system can be solved if the matrix M(®, Y) is invertible, otherwise,
M(D, Y)ug = f(Y) will have either no solution, or an infinite number of solutions. In
addition of being invertible the matrix should also be well conditioned. This means that
for a small change in the independent variables, only a small change in the dependent
variables will be observed. The conditioning number of the matrix is a measure used to
indicate how hard it is to solve the system of linear equations. As the well conditioned
measure depends of the basis @ and the set of points Y, the basis will be chosen such
that the interpolations points yield a well conditioned matrix M(®, Y) and the polynomial
model approximates the functions sufficiently well.

In this work, the linear systems are solved with Gaussian elimination. This pro-
cedure which is formalized in Algorithm 4, which is presented in details in (GIULIANI,
2019).
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Algorithm 4 Model improvement.
Parameters: the threshold € > O for the selection of pivot-elements; Input: An initial
approximation for the pivot polynomials w;, possibly the base:

Wix)= @;(x),i=1,--,L=(n+1)(n+2)/2;

An initial set Y of interpolation points (possibly incomplete);
fori=1,---,Ldo
Find, if possible, j; € {i,-- -, L} such that ||u;(y/)|| > e.
if such a j; is found then
| Swap points y’ and y/i in the set Y.
else

Recalculate y' as ;
y' € argmax||;(x)||
xcB

end

if 1;(y")] < e then
| break.
else

end
forj=i+1,---,Ldo

end
end

The output of Algorithm 4 is the set of points Y modified with good geometry
independently of scaling. The algorithm also ensures that the model m, resulting from
polynomial interpolation, satisfies the definition of Fully Linear presented before.

The Newton Fundamental Polynomials approach guarantee that the model is
FL with (n + 1) points, so it is not needed to calculate the derivative of f or min the
formulations showed before.

The criticality test is a way to measure the stationarity of the model. When this
stationarity measure is close to zero the model become more accurate because the
method may be close to converge. The criticality step updates the trust-region radius
forcing it to converge to zero, thereby defining a natural stop criterion for the algorithm.

The main task of the criticality step is to reduce the radius if the iterate xj
appears to be close to converge, if the model gradient at that point is smaller than a
certain parameter |Vm(xx)|| < ec for a small e¢ > 0. So Algorithm 5 builds a new model
m(x;) over a smaller radius A such that A < uvm(x,) for > 0.
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Algorithm 5 Criticality step

Parameters: 1> 0, w € (0,1) and e¢ > 0;

Inputs: m2°! and AR,

fori=0,1,2,--- do
Call the algorithm of model improvement to improve the model m(=1), resulting a
model m' that if Fully Linear into the region of radius A'.
if AT < 1|V (x| or ||[Vm(x4)| > ec then

| Break;
else

| A = AT

end

Increase radius and set the model as my, = m’

Ak = min[max(A’, B Vm' (x)), AP

return Model my and radius Ag;
end
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Algorithm 6 Trust-Region
Parameters: 11 > 0,19 > 0, Yjner > 1, Ygecr € (0,1), u> B >0;
Inputs: x € R, Ag > 0, Amax > 0 and an initial point xg;
fork=0,1,2,--- do
Criticality test if [|[VmP°!|| < e then
If either the model is not Fully Linear (FL), or AQCt > u||Vm£Ct|| call the criticality
step.
else
| my = mPet,
end

Solve the trust-region subproblem for the model after the criticality test.
X = arg;nin My (x)
s.t. ||X—Xk|| < Ak
Evaluate the function f in the trial point x;/, then calculate the variable p.

Flxie) = Fxg
m(xc) — m(xg)

p:

if p>n4 orp>mng and model is FL then
The trial point is accepted as incumbent solution xx.1 = x;.

else
| Xke1 = Xk
end

if p <n¢ and the model is not FL then
The model improvement algorithm is called to improve the current model, return-
ing the next model mf<t,.
else
\ The current model is used as the next iteration model, mﬁfﬁ = M.
end

Update trust-region radius according with p.

if p >4 then
else if p < n4 and the model is FL then
A?iﬁ = YdecrDk
else
bet _
Ak+1 - Ak
end

end
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3.3 SUMMARY

In this Chapter was provided a complete overview of derivative-free methods.
It was explained the main aspects for each derivative-free class and subclass, also a
algorithm example was presented for each case, briefly, to clarify the importance and
the capability of this methods that do not use the derivative information to optimize. The
aim of next Chapter is to expose the optimization problem properly and to formalize the
concepts that include geological uncertainties in the implementation.
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4 ENSEMBLE TRUST-REGION OPTIMIZATION

Ensemble trust-region optimization is a combination of established strategies.
An Ensemble is known to represent the uncertainty in reservoir models, taking into
consideration uncertain geological parameters to better represent the reservoir. Trust-
region optimization is a derivative-free method that optimizes small regions to find the
optimal solution for the whole system. This concept is new in production optimization,
albeit it was already proposed in history matching problems.

As the objective function was presented in Chapter 2, Section 4.2 will reformu-
late the same objective function by this accomplishing its goal using the ensemble
knowledge, provided in Section 4.1. At the end, the chapter presents the entire imple-
mentation framework of the previous section, considering notions of optimization.

The use of ensemble began in History Matching, which is an optimization area
that focuses on modeling reservoirs based on information from inputs, outputs and
geological proprieties. One of the first articles that used ensemble in History Matching
were (CHEN, C. et al., 2010; CHEN, Y. et al., 2009; CHEN, Y.; OLIVER, 2010). Chen
et al. shows in (CHEN, Y. et al., 2009) an improvement of 22% compared to a reactive
strategy in the NPV results. They proposed was a closed-loop reservoir management
for data assimilation using an Ensemble Kalman Filter (EnKF) and for the model based
optimization a robust gradient-free also based on ensemble.

In Production Optimization, (VAN ESSEN et al., 2009) proposes to optimize the
Expected NPV over an ensemble of reservoir models using a gradient based method,
in which the goal is to reduce the risk that arises from geological uncertainty. The
work compares this procedure, called Robust optimization (RO) against a nominal
optimization (NO) and a reactive control approach. They used eight injectors and four
producers as control to optimize one thousand realizations of a tri-dimensional reservoir
modeling in a fluvial depositional environment with a known main-flow direction.

4.1 ENSEMBLE OF GEOLOGICAL REALIZATIONS TO CHARACTERIZE PARAMET-
RIC UNCERTAINTY

Often the reservoir performance is measured by flow simulation, which provides
the field rates to calculate objectives of interest such as the cumulative oil rate (COP)
and the NPV. Some of the parameters in a reservoir model are uncertain, i.e. there is
lack of assurance about the truth of the statement or about the exact magnitude of an
unknown measurement or number (OLEA, 1991). In reservoir model the uncertainty
is typically geological. To ignore uncertainty and assume perfect knowledge of the
reservoir is generally an unacceptable approach, since the production parameters are
highly dependent on uncertain reservoir geological properties, such as porosity or
permeability. So, it is important to incorporate uncertainty in the reservoir model.
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Under the perspective of reservoir management, the presence of uncertainty
means that there are infinitely many possible models that may represent the true reser-
voir. One alternative to handle uncertainty in reservoir modeling is to sample the proba-
bility distribution of the uncertain parameters in order to generate a finite set of possible
realizations, called ensemble realizations. Such realizations can be generated by an
expert in geology or by a computer program. In the present work the realizations will be
empirically created by using a baseline model as a reference and varying the uncertain
parameters to generate the other realizations. Notice that there are infinite possibilities
to combine the geological uncertainties within the feasible range for the uncertain pa-
rameters. Although the ensemble is created from a reference model, from the optimizer
perspective, it is impossible to know which realization represents the true reservoir.

4.2 ROBUST OPTIMIZATION USING THE EXPECTED VALUE

As the ensemble is a discrete representation of the geological uncertainty in
reservoirs, it enables the handling of uncertainty in a computationally feasible way in
optimization procedures. However, there are still some open questions related to the
efficient use of ensemble in optimization routines, e.g. how to aggregate the ensemble
into the optimization algorithm? This section comes to clarify this and other points.

There are several ways to use the ensemble inside an optimization algorithm.
The majority is related to the way of measuring the contribution of each element within
the entire ensemble. As an ensembile is a set composed of different functions or models,
each element will generate a value and there are different measures to calculate the
value of an ensemble. One of these measures is called the Expected Value. Beyond
the Expected Value, there are other measures in production optimization such as the
Worst-case scenario, Value-at-risk (VaR) and Conditional value-at-risk (CVaR). A brief
explanation about these measures is provided in (CAPOLEI et al., 2017). ;

This work uses the expected value as the measure to be optimized in the opti-
mization procedure. The expected value, which is also known as probability-weighted
average, is simply a way to measure the average of a discrete set of variables based
on their associated probabilities. The mathematical definition is given as follows:

n
Expected Value = E(X) =) piX; = p1Xq +PoXp + -+ + PnXn (5)
i=1

where X is a random value which can assume any value from a set of n values, X =
{X1,Xo, ..., Xn}, X; is the i element of the set and p; is the probability of the element x;
happening, i.e. the weight that this element has in the set.

As all the elements are assumed to have the same probability to happen, i.e. a
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uniform distribution, Eq. (5) is simplified as follows:
1
E@):EZyy (6)

where n denotes the number of elements in the set of variables.

Since the ensemble is a set of reservoir models that represent a model with
geological uncertainties, it is not possible to determine which model best describes the
real reservoir. Then, the expected value for a given measure z will be calculated with
the same probability as follows:

ExpLZ(0] =+ 2(%) 7)

where the ensemble is defined by the set Z = {z4, 25, . . ., Zp}, with z; denoting the ith
reservoir model and X being the set of optimization variables. Notice that z;(X) denotes
the NPV value for the model z; at X point.

4.3 ENSEMBLE TRUST-REGION OPTIMIZATION

The formulation of the standard well control optimization problem, inspired from
(SILVA et al., 2020), was presented in Chapter 2. Below follows the formulation of the
robust production optimization problem, using the definition of the expected value over
a discrete set, presented as ensemble.

max Exp(X)
v ®)
st Xp <X <Xy
where the objective function is the expected value for the ensemble considering as
control variable the set X. As constraints, it is considered the upper and lower bounds
that impose conditions over the control variable.
As discussed previously, the simulation is a black-box function. The Eqg. (9)
shows the relation between the nomenclatures, f; represents the function value for the
simulation of the i realization z; under the set of controls X.

fi — z;(X) (9)

The process that occurs in the algorithm is synthesized on Figure 10, where we
divided it in three processes, called Optimization, Simulation and Parametrization layer.
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Figure 10 — Formulation layer (Modified from (KRISTOFFERSEN et al., 2020))

The optimization layer has as the objective of maximizing the expected net preset
value (NPV) controlling a set of variables X. In our case, it will be used the production
bottom hole pressures (BHP) and consider fixed the other parameters, such as the rate
of water injection. The controls set X is sent to the simulation layer, which evaluates
X for all the models of the ensemble Z. Once the simulation finishes, the NPV of each
model fy, ..., fpis sent to the Parametrization layer that calculates the expected value to
be returned to the optimization layer. The algorithm repeats this process until reaching
the stopping criterion.
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5 SIMULATION ANALYSIS WITH EXPLICIT FUNCTIONS

In this Chapter we present a simulation analysis conducted with analytical func-
tions in order to demonstrate the correctness of the robust trust-region algorithm pro-
posed in the previous Chapter. To assess the method’s capabilities to deal with non-
convexities and noise we use two types of analytical functions, a smooth non-convex
function known as the Rosenbrock function, and a noisy function called the Rastrigin
function.

Firstly the analytical form of these functions will presented, and then we report
the results obtained with the application of the trust-region algorithm to the minimiza-
tion of the functions under uncertainty. Mathematically, the Rosenbrock and Rastrigin
functions are presented in the equations (10) and (11), respectively. In both cases we
utilize the domain in R2.

n-1
fosenbrack(X) = D [1000xi,1 = xP)2 + (x;=1)2| (10)
i=1
n
fRastrign(X) = 10+ >_ | x? ~ 10 cos(27x)) (11)
i=1
in which X = (x1,..., xp) is a vector with the function argument.

The surfaces of the functions in R? are shown in Figures 11 and 12. Notice that
the grids are different in these functions in order to enhance the main characteristics
of each function. Nevertheless the grids will be kept constant for all the experiments
presented throughout this chapter.

These functions were selected to test the algorithm because they have different
properties. The Rosenbrock function is a popular function for testing gradient-based
optimization algorithms for being a non-convex and unimodal’ function, with the global
minimum in a parabolic valley. This last aspect can cause trouble for the convergence of
standard optimization algorithms. On the other hand, the Rastrigin function is a typical
example of a non-linear multimodal® function. Because it is a noisy function, it has a
large number of local minima. In general, noisy functions are challenging problems for
optimization procedures, but this function in particular has one globally optimal solution
for the minimization problem, which is at the center of the grid, the point (0, 0). Finding
the global minimum is a challenging task for an algorithm, which would have to provide
a certificate that the solution has a better objective value than any another solution.

Ten variations of each analytical function, Rosenbrock and Rastrigin, were em-
pirically created to represent the parametric uncertainties of the model. This set of

1

According to Surhone, Tennoe and Henssonow (2010), a function f(x) is unimodal if for some value
m (the mode), it is monotonically increasing for x < m and monotonically decreasing for x > m.

2 A multimodal function is a function that has more than two local minima or maxima.
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Figure 11 — Rosenbrock function surface

Figure 12 — Rastrigin function surface

Function value
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functions containing variations of the original function form the ensembles for each
function, which are used in the optimization case studies later on.

As stressed, derivative-free optimization methods are rather dependent on initial
points for being local methods. Then, to validate the results some variations of the initial
point and Trust-Region radius were tested. One point in each quadrant was chosen
arbitrarily, which are indicated in sub-figures of Figure 13 as blue circles. Different initial
radius sizes are considered, namely Ry = 2, A> = 5, and Ry = 10 for Rosenbrock,
Ry =2 and Ry = 4 for Rastrigin. The reasoning behind these choices are the coverage
of specific regions of the domain, for example, in Rosenbrock case namely a radius
size of 2 covers one quadrant in the x-coordinate, whereas a radius size of 5 covers
the entire quadrant related to the y-coordinate, and 10 covers approximately the entire
domain. The initial points from which the algorithm starts from are indicated the following
Table 1.

Table 1 — Initial points

Name | Rosenbrock Rastrigin
P, (3.9,14.5) (3.8,3.5)
Ps (1.2,-0.8) (1.2,-0.7)
Ps (-4.0,-5.0) (-3.2,-3.0)
Py (-2.2,5.0) (-2.3,2.0)

Ps (0.0, 15.0) —

As each initial point is chosen to be at the center of one of the four quadrants
splitting the feasible domain, there is one additional point for Rosenbrock, Ps, which
was included in order to observe the behavior of the optimization algorithm starting
from the top of the function. In the sub-figures of Figure 13, the purple lines represent
the level curves for each respective standard function.
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Figure 13 — Initial point distribution

Once the initial set of parameters is created, the ensemble of functions is ob-
tained for each case, Rosenbrock and Rastrigin. Then, a minimization is performed
using the expected value as the objective function and the trust-region algorithm as the
solver. Some cases will be created varying the initial point and radius to assess the
capabilities of this approach. At the end, a discussion of the results will be presented.

5.1 ROSENBROCK ENSEMBLE

The Rosenbrock Ensemble is composed of a set of analytical functions which
are variations of the standard Rosenbrock function given in Eq. (10). Such functions
are presented in the Equations of Appendix B.1. As discussed before these functions
are obtained by varying certain parameters to represent the model uncertainties. The
ensemble of functions with the different parameters are represented in Eq. (12), where
XRo € [-6,6], Broy € [-1.8.4], YRro € [-0.8,0.7] and wpg, € [-0.3,0.8]. The actual pa-
rameters that define the functions of the ensemble are given Table 2. We assume these
ranges cover the uncertainty spectrum of all the parameters, such that the ensemble of
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functions constitute a discrete approximation of the parametric uncertainty.
n—1
2\2 2
>~ (100 + o) (i1 + Bro— (65 + YR0)2)? + (xi = 1+ W) (12)

i=1

Table 2 — Rosenbrock: parameters of the function ensemble

Element | «xp, Bro YRo “rRo
2 5 4 -08 0.2
Zo 3 03 04 O
z3 3 03 04 -02
2, 6 -1.8 -03 1.8
zs 2 0 07 13
Zs 5 18 05 0
2z 6 0 -07 08
Zg 4 4 0 -03
Zg 5 2 0 17
240 -10 06 -0.2 0

The surfaces of the ensemble members are depicted in Figure 14. Notice that
all the surfaces are plotted in the same grid which was used to illustrate the standard
Rosenbrock function. To highlight the differences between the surfaces, we show in
Figure 15 the surfaces of all ensemble members in one plot. To further illustrate such
differences, we present a 2D plot for a constant y-coordinate value (y = 0) in Figure
16a, and the level curves of the functions in Figure 16b. Notice that the parametric
uncertainty described by the ensemble introduced variations both in the neighborhood
of the original local optimum, and also in more distant regions, arguably making the
ensemble suitable for the studies conducted in this chapter.
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Main Function Variation z1 Variation z2 Variation z3

Figure 14 — Rosenbrock ensemble elements: Individual surface

Ensemble Functions Surface

Figure 15 — Rosenbrock ensemble elements: All surfaces in the same graph
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Figure 16 — Rosenbrock ensemble elements details

Figure 17 shows the expected value E(X) surface, assuming equal probability

for each element of the ensemble to occur. Then, mathematically, £(X) is defined as

in EqQ. (7). Notice that the expected value surface has the same characteristics (curve
format) observed in each one of the ensemble elements. This is not a general rule, and

therefore it can be considered just for this set of elements.
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Expected Value Surface

Figure 17 — Rosenbrock expected value surface

5.1.1 Results

The optimization results obtained in the minimization of the standard function
given in Eqg. (10), in other words with no ensemble, using the trust-region algorithm are
presented in Figure 18. The optimal function value of each individual function of the
ensemble is 0.0 despite the optimal points in the domain being different.

With the minimization results over the standard function, it is possible to analyze
the capabilities of the expected value approach by evaluating its performance for sev-
eral conditions. Each sub-figure in Figure 19 shows the evaluations for different initial
points and radius sizes. The color lines represent the respective function value for each
element of the ensemble Z = {z, 2y, 2o, 23, 24, Z5, Zs, 27, Z8, 29, Z10 }» While the curve in
black represents the expected function value. Notice that the optimum value, presented
in the legend as black, is the same independently of the initial parameters. Observe
that, despite the objective value and the solution point are the same for all the cases (Ta-
ble 3), the convergence curve changes, which happens because the algorithm follows
distinct ways during optimization.
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Table 3 — Rosenbrock optimal solutions.

Standard Rosenbrock | Rosenbrock Ensemble

Init. Radius Size Init. Point | Solution Point OFV | Solution Point  OFV
P4 (1.00, 1.00) 0.0 | (-0.228, 0.033) 345.74

Ps (1.00, 1.00) 0.0 | (-0.228,0.033) 345.74

R4 Ps (1.00, 1.00) 0.0 | (-0.228, 0.033) 345.74
Py (1.00, 0.99) 0.0 | (-0.228, 0.033) 345.74

Ps (1.00, 1.00) 0.0 | (-0.228, 0.033) 345.74

P4 (1.00, 1.00) 0.0 | (-0.228, 0.033) 345.74

P> (1.00, 0.99) 0.0 | (-0.228, 0.033) 345.74

Ro P3 (1.00, 1.00) 0.0 | (-0.228, 0.033) 345.74
Py (0.99, 0.99) 0.0 | (-0.228,0.033) 345.74

P (1.00, 1.00) 0.0 | (-0.228,0.033) 345.74

P (1.00, 1.00) 0.0 | (-0.228, 0.033) 345.74

Po (1.00, 1.00) 0.0 | (-0.228, 0.033) 345.74

R3 P3 (1.00, 0.99) 0.0 | (-0.228,0.033) 345.74
Py (1.00, 0.99) 0.0 | (-0.228,0.033) 345.74

Py (1.00, 1.00) 0.0 | (-0.228, 0.033) 345.74
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Figure 18 — Rosenbrock optimization results for different starting points and radius sizes
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Figure 18 — Rosenbrock optimization results for different starting points and radius sizes



Chapter 5. Simulation analysis with explicit functions

50

Point p1 Point p2 Point p3
— 34574 1750 — 34574
1750 | e  ——
| i 1500 ~ -
1500 [ \ e -
| L 1250 4
[ 1250
1250 |
/./ 1000 4 _—
1000
750
750 750
500 Ly (p— S E—— 500 S \
250 250+ 250 4
e e S
0 04 04 o -
5 10 15 20 25 30 35 40 5 10 15 20 25 30 15 20 25 30
Point p4 Point p5
1750 — 345.74 1750 4 — 34574
1500 BV 1500
1250 / 1250
1000 4 / w004 _/
750 7501
500 x 500
250 1 = 250
——
FYl 5= S S ——— —— ol <= —
5 10 15 20 25 30 35 5 10 15 20 25 30 35
Point p1 Point p2 Point p3
A — 345.74 — 34574 — 345.74
/) \ 2500
2000 2000 \
\ b
\ \ \ 2000
1500 ot 1500 4 - - -
1500 N
1000 1000
1000
500 500
e e
04 0 A=
T T T T T T r T T T v T T T T T r T T
10 15 20 25 30 35 40 a5 10 15 20 25 30 35 4 45 1 30 40 50
Point p4 Point p5
20001 (o - — 345.74 N —_ 34574
[ ™ 20004 —/
1750 | \
| \ \
[ N \
1500 | ~ \ -
) 1500 - \ ~—
1250 /
1000 1866
750
500 500 4
250
o 04

(b} Initial radius size R
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Figure 19 — Optimization results obtained with the Rosenbrock ensemble

As showed before, the function value obtained in the optimization without the
ensemble set was zero and the optimum solution value obtained considering the ensem-
ble set was 345.74. A large difference between these values can be attributed to the
high conservative behavior of the expected value optimization. Observing Figure 19a,
for example, it is possible to see that the function values have at least five ensemble
members lying above the final expected value, which indicates the conservativeness of
the expected value measure. However, the decrease of the objective function was of
about 40% in relation with the initial function value, showing a good performance of the
algorithm.

As stressed before, the approach will be validated using two well known functions,
Rosenbrock and Rastrigin. This section reported results from the Rosenbrock ensembile,
a non-convex and unimodal function, for which the algorithm worked well and obtained
solutions with a conservative measure. Therefore, the algorithm works well on this first
case. The same experimental procedure will be applied to the Rastrigin function in
the next section, which aims to study the approach behavior considering a non-linear
multimodal function with uncertainties.

5.2 RASTRIGIN ENSEMBLE

A variation set of the standard Rastrigin function was empirically generated
to compose the Rastrigin Ensemble. Such member functions are presented in the
equations of Appendix B.2 which represent the model uncertainties. The standard form
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of the Rastrigin function is the one given in Eq. (13) below:

n
fRastrign(¥) = 100+ Y |x? ~ 10cos(2%)| (13)

i=1

and its version with varied parameters in Eq. (14) that follows:

TRastrigin() = (10-+ &) 1+ (x+ Bh)® = (104 ,) cos (27 (x + i) +b5,)
+(y+ 5%3)2 —(10+ y}éa) cos(27(y + w},;a) + lb}lf?’a) (14)

which is varied according with the parameters xg,, Bra, YRa» WRa» and P g, Which
define the variations. Table 4 presents in the columns the numerical values of the
parameters «p, € [-5,5], B%, € [-0.6,0.3], v, € [-20,5], w§, € [-0.4,0.3], V%, €
[0,1], Bk, € [-0.5,0.2], 5, € [0,5], wh, € [-0.4,0.2] and V), € [0,0.5] which
correspond to each ensemble element (variation). The ranges were arbitrarily generated
to empirically cover the uncertainty spectrum of all the parameters.

Table 4 — Rastrigin: Ensemble functions parameters

X y

slement | &pa BPra YRa wpRa VRa| BPRa YRa WRa VARa
Z4 5 0 5 0 0 0 5 0 0
Zo 0 |-02 0 -0.2 0 0 0 0 0
Z3 0 0 0 0 04| 02 0 02 05
Zy 1 0 0 0 0.6 0.15 0 0.15 0
Z5 5 |-0.2 0 -0.2 0 0 0 0 0
Zg 4 0.3 0 03 0] -01 0 0 0
z7 -5 [-04 -20 -04 0| -04 0 -04 0
Zg 4 0.2 5 0 0] -0.2 5 0 0
Zg 3 0 0 0 06| 0.1 0 -0.2 0
Z10 2 | -0.6 0 0 1] -0.5 0 0 0

The ensemble members are plotted in Figure 20 using the same grid as the
surface of standard Rastrigin function. In Figure 21 the ensemble elements are showed
individually to highlight the variations between the surfaces. Such differences can be
better observed in Figure 22 that presents a 2D plot for a constant y-coordinate value

(y=0).
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The expected value function E(X), defined mathematically in Eq. (7), is shown
for the Rastrigin ensemble case in Figure 23a, where the E(X) surface is plotted.

In Rastrigin case, it is possible to hope for an expected value surface more
smooth than the standard surface, but as presented in Figures 23a and 23b the ex-
pected value formulation maintain the noisy characteristic of Rastrigin. In the 2D plot
presented in Figure 23b one variable was fixed at the origin (y = 0). This means that
the difficulties towards finding minima of the expected-value function remain unaffected
in relation to the baseline Rastrigin function.

Expected Value Surface

(a) Rastrigin expected value surface

Figure 23 — Rastrigin expected value
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Figure 23 — Rastrigin expected value

There exist an infinite number of possibilities to generate the ensemble, since
each ensemble member is varied empirically. As the expected value function is a com-
bination of the ensemble members, it is possible that the final formulation stays easier
to solve, once that the set of ensemble elements can generated an expected value
function smoother than the standard one.

5.2.1 Results

Figures 24a and 24b show the optimization results obtained by applying the trust-
region derivative-free algorithm to the minimization of the standard Rastrigin function,
given in Eq. (13). The optimal function value can be observed in the legend of each
function, which varies between 0 and 4.975.
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Figure 24 — Evaluation of Rastrigin function without ensemble

As stressed, the Rastrigin function has a global minimum at (0, 0). Under certain
initial conditions the algorithm was able to find the global optimum solution. Being a
kind of local search, the point to which the algorithm converges depends on the initial
guess and initial radius size.

The results from the minimization of the Rastrigin ensemble case are shown in
Figures 25a and 25b, where the a colorful curve represent the function value of one
ensemble member and the black line is the expected function value. The optimized
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solution (expected value) is indicated in the figure with the color black.

Observe that the objective value obtained using the Expected Value increased,
i.e is worse, comparing with the standard problem optimization, presented in Figures
24. This behavior was hoped once the measure is conservative. However, the optimal
function value in relation with the initial value had a good reduction, approximately
among 49% and 63%, as showed in Table 5.

Table 5 — Comparison between the initial and final value of Rastrigin optimization

Init. Radius Size Init. Point | IFV® OFV  Reduction (%)
P; 31.865 11.846 63
g P, 25.512 12.983 49
1 P 26.864 11.823 56
Py 27.544 10.844 60
P; 31.865 11.823 63
f P 25.512 12.963 49
2 P3 31.865 12.960 59
Py 27.544 12.960 53

Point p1 Point p2

— 11.846 — 12,983

5 10 15 20 25 30

Point p3

— 11.823 401

5 lb 15 20 25 30 5 10 15 20 25 30 35
(a) Initial radius size R;

Figure 25 — Evaluation of Rastrigin ensemble
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Figure 25 — Evaluation of Rastrigin ensemble

Table 6 presents the numerical results for the minimization of the standard and
expected-value formulation. Because the expected value approach considers uncer-
tainties in the reservoir model, the difference in final results can be disregarded. The
algorithm has the capabilities to find the best solution for an objective combining set of
several models and, in some cases, find the global optimum.

Table 6 — Comparison between the optimization results

Standard Rastrigin Rastrigin Ensemble

Init. Radius Size Init. Point | Solution Point OFV | Solution Point OFV
P4 (0.00,0.00) 0.00| (1.02,0.00) 11.84
= Po (0.99,-0.99) 1.99 | (1.02,-0.99) 12.98
1 Ps (-0.99,-0.99) 1.99 | (-0.96,0.00) 11.82
Py (0.00,0.00) 0.00| (0.03,0.00) 10.84
P, (-0.99,1.99) 498 | (-0.96,0.00) 11.82
= Ps (-0.99,-0.99) 1.99 | (1.02,-0.99) 12.98
2 Ps (0.99,0.99) 1.99 | (-0.96,-0.99) 12.96
Py (-0.99,-0.99) 1.99 | (-0.96,-0.99) 12.96

5.3 SUMMARY

The expected value approach was computationally validated using different well
known analytic functions. Two experimental cases were created to test the capabilities of
this methodology and, in this chapter, it was possible to demonstrate that the algorithm
optimizes considering uncertainties in the model. The next chapter will extend the
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results presented above, by considering the application of the trust-region derivative-
free algorithm to a representative oil reservoir model with uncertainties.
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6 SIMULATION ANALYSIS WITH RESERVOIR MODELS

This chapter addresses a case study regarding well control optimization of
petroleum reservoirs under geological uncertainty. The study assesses the performance
of the proposed ensemble trust-region algorithm, which is described in Chapter 4, in
the control optimization of an oil reservoir under geological uncertainty. The uncertainty
is represented with an ensemble of geological realizations, and the objective function
is taken as the expected NPV for a production time of 6 years with one constant control
during all the optimization time. The optimization variables in these type of problems are
the well controls over the production time. For simplicity, the water rates of the injection
wells are kept constant, and only the bottom hole pressures (BHPs) of the production
wells are regarded as control variables.

The study is split into two parts. In the previous Chapter, an ensemble of ana-
lytic models was built to analyze the capability of the ensemble trust-region algorithm
in explicit functions. The study shows the improvement achieved by the optimization
algorithm of at least 40% with respect to the initial solution.

This Chapter presents the reservoir model and the geological uncertainties de-
scribed as an ensemble of geological realizations. All simulations are performed with the
simulator OPM Flow', and the reservoir model is depicted using the visualization tool
ReslInsight2. The optimization method is implemented in the open-source framework for
field development optimization known as FieldOpt®, and the simulations were executed
in a Linux workstation equipped with an Intel Core i7-7500U CPU with 2.70GHz, 4
processors and 16GB RAM.

6.1 THE RESERVOIR MODEL

The reservoir model used in the simulations is illustrated in Figure 26. The model
is a cartesian box split in 3600 cells of dimension 60 x 60 x 1. All the wells are vertical
wells, of which two are injectors, INJ2 and INJ2, and eight are producers, from PROD1
to PRODS. The well locations are presented in Table 7 and can be observed in Figure
27.

OPM Flow is a open-source black-oil simulator avaiable in (OPM. .., n.d.)

2 Reslinsight is a software to visualize reservoir simulators, found in (RESINSIGHT.. ., n.d.)

3 FieldOpt is an open-source software of production optimization available on the GitHub platform
(FIELDOPT..., n.d.), which was developed at NTNU/Norway.
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Table 7 — Well locations

Name

X

y

INJ1
INJ2
PROD1
PROD2
PRODS3
PROD4
PROD5
PROD6
PROD7
PRODS8

8
51
4
11
18
25
32
39
46
53

56

N
~

NNNNNN NN

_L_L_L_L_L_L_L_L_L_LN

500 1200
‘ I
f 1

Cell Results:
SOIL

09005
08300
07400
06500
05600
04700
03800
02000

AT

b Lo

0.2000

Foo

500

Time Step: 0/218 11.0ct 2019
~ ECL_5SPOT_C04_FLOW_R001

Cell count. Total: 3600 Active: 3600
Main Grid 1,J,K: 60, 60, 1 Z-Scale: 5
IL

Statistics: Current Time Step and Visible Cells
Min PO Mean P10 Mas  Sum
0343504 0.889826 0.897713 0.894347 0.900477 3231.77
Mobile Volume Weighted Mean: 0.85728

|8

Resinsight v2019.12.1

Figure 26 — Reservoir model depicted in ResInsight: Oil Saturation

Sass )

Time Step: 0/218 11.0¢t 2019
~ ECL_SSPOT_C04_FLOW_R001 -

Cell count. Total: 3600 Active: 3600
Main Grid 1,J,K: 60, 60, 1 Z-Seale: 5
Cell Property: SOIL
Seatistics: Current Time Step and Visible Cels
Min  PSD  Mean P10 Max  Sum
0343904 0889112 0.879173 0.893822 0.899861 474753
Mabile Volume Weighted Mean: 0.870363

Cell Results:
SoIL
09005
08300
0.7400
06500

05600
04700
03800
0.2900
02000

1200

Resinsight v2019.12.1

Figure 27 — Reservoir model depicted in Reslnsight: well locations, and a geological

fault.

The permeability map is presented in Figure 28. As described in the Qilfield
Glossary of Schlumberger (OILFIELD.. ., n.d.), permeability means in reservoir produc-



Chapter 6. Simulation analysis with reservoir models 62

tion the capability to transmit oil and water through the rocks. In the figure the color red
means that the permeability is higher, which means, for instance, that the injection of
well INJT will reach the wells from PROD4 to PROD? faster.

Time Step: 0/218 11.0ct 2013

- ECL_SSPOT_C04_FLOW__R001 -~

Cell count. Total: 3600 Active: 3600
Main Grid 1,J.K: 60, 60, 1 Z-Scale: 5
Cell Property: PERMX

Mobile Volume Weighted Mean: 326.05

Cell Results:
PERMX
1

900

600 ;

450 1% }ﬁ@“ L

300 i b Lo Foo Lo ha0o Ts00 ! X
50

1 ResInsight v2019.12.1

Figure 28 — Reslnsight Reservoir: Permeability

In the ensemble, the parameter that changes was the permeability of the whole
field, and the variation from one realization to the other is an increase of 10% in the
overall field permeability.

A set of 10 geological realizations were generated. The permeability was changed
10% in the overall field from one realization to the other. These permeability changes
represent the model uncertainties. The optimization will be applied over this ensemble
of realizations and the results are presented in the next section.

6.2 TR-ENSEMBLE OPTIMIZATION RESULTS

In this section, the ensemble trust-region method will be applied to the ensemble
of 10 realizations of the presented model. The expected NPV is the adopted objective
function, and the BHPs of the producers are the optimization variables. The optimization
method is the same used in the Chapter 5 for the analytical experiments.

In order to assess the effectiveness of the ensemble trust-region algorithm, we
varied the initial parameters of the algorithm as well as the starting point. Two initial
points are considered, in which the BHPs of the producers are set to 120 psi and 150
psi. The initial trust-region radius is the parameters which varied. Two radius sizes were
considered, 25 and 50. Therefore, there are four cases to be evaluated indicated in the
following Table 8. The BHPs of the injectors are are not optimizing variables, and they
are kept fixed at 230 psi in all the cases.
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Table 8 — Reservoir optimization cases

Case | Initial Point TR Initial Radius Size
C; 120 psi 25
Co 120 psi 50
Cs 150 psi 25
Cy 150 psi 50

The optimization results obtained in the maximization of the expected NPV, for-
mulated in Eq. (1), using the Trust-Region algorithm are presented in Figure 29. In
the figure, the colored curves represent the evolution of the function values of each
ensemble member, whereas the black curve is the evolution of the objective function, i.e.
the expected NPV. Observe that the objective function had a good increment in all the
cases. The actual value can be seen in Table 9, where OFV is used to abbreviate objec-
tive function value. The improvement over the initial expected NPV lies between 14.5%
and 21.8%, being 17.6% on average. This improvement is significant and demonstrate
the benefit of the proposed approach.

1e9 Case C1 169 Case C2

1354 —— -1.273933e+09 135 —— -1.323661e+09 —

-
130 | 1.30 4

125

120

115

Expected NPV

110

105 I 1054 |
|

0 20 40 60 80 100 120 0 20 40 60 80 100 120 140 160
Iterations Iterations

19 Case C3 19 Case C4

— -1.295302e+09 —————— — -1.277833e+09
[

125

120

115

Expected NPV
Expected NPV

110

0 50 100 150 200 0 25 50 75 100 125 150 175 200
Iterations Iterations

Figure 29 — Trust-Region reservoir results

Table 9 — Numerical results of TR optimization

Case | Initial OFV Final OFV  Growth rate
C; 1086043524 1273932712 17.3%
Co, | 1086043524 1323660782 21.8%
C3 | 1108698985 1295302470 16.8%
Cys | 1115905205 1277832544 14.5%




Chapter 6. Simulation analysis with reservoir models 64

The Figure 30 presents the BHP control at each iteration step. In the legend is
indicated the producer that the BHP curve represents. Observe that any control reached
the saturation pressure at 200 psi.

Case C1 Case C2

— oDl \ — paoD1

180 - —
PRODZ PROD2
— PRODZ ) — Pa0D3
— 604
1604 rROD4 / raop4 \

150 — PRODI _%( 120 | — PRoDL
PROD2 Pa0D2 A
— PRODZ — paon3

100 — PRODA 1004 — PRoD4 | SU—
— ProDS — PR0DS [—"\—,—4
— Prope — P006
80- PROD7 80 PROD7 ‘
— ProDe — Props [\
eration: erations

Figure 30 — Producers BHP

6.3 SUMMARY

In this Chapter the trust-region DFO method is assessed in an ensemble of
synthetic reservoir models. In the first section the ensemble was presented using the
visualization software Resinsight. Then, Section 6.2 addressed the results obtained
in the robust well control optimization with the ensemble trust-region algorithm. The
results showed reasonable improvements in the objective function using the proposed
strategy.
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7 FINAL CONSIDERATIONS

7.1 CONCLUSIONS

This works focused on the well control optimization problem considering geolog-
ical uncertainty. Such problems have as control variables the bottom hole pressures
(BHPs) of injectors and/or producers over time. The objective function is generally the
net present value (NPV), which considers not only the total volume of produced oil, but
also costs related to the production process.

The main challenge in the project consisted in extending the open source frame-
work for field development optimization, FieldOpt, in order to optimize the reservoir
performance uncertainty. Due the challenges present in gradient-based well control op-
timization, the proposed strategy uses a derivative-free method. Among the derivative-
free methods, the Trust-Region method was chosen because its convergence proper-
ties.

The expected value was used to measure the performance over the ensemble
of geological realizations. Although the use of expected value brings conservativeness
to the optimization, the algorithm was capable of finding a solution which was 21.8%
better than the starting point for a set of synthetic reservoir models.

The proposed methodology, the ensemble trust-region optimization algorithm,
was demonstrated to be effective in well control optimization problems with geological
uncertainty. The approach improved the expected value of the objective function in
both analytical simulations and in synthetic reservoir models. The optimization presents
good potential for further application in more complex industrial cases.

7.2 FUTURE WORKS

The proposed method was assessed in a set of synthetic reservoir models for the
well control optimization problem. There are other interesting and challenging problems
in field development optimization, such as the well placement optimization problem.
This problem consists in optimization the trajectory of the wells for which there are
not derivatives available, making the trust-region method a good candidate for such
problems.

Another possible extension of this work is the use of different measures than the
expected value. An interesting alternative can be found in (CHEN, Y., 2008). Chen et al.
proposed an ensemble optimization method in which they use the stochastic gradient
to solve field development optimization problems. An adaptation of this approach to
derivative-free methods is a good direction for future research.
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APPENDIX A - IMPLEMENTATION CODES

The codes were implemented in Matlab and applied in the Eq. (15), the results
are presented during Chapter 3 as application examples to the fundamentals algorithms
of derivative-free. This Appendix Chapter is dedicated to show the implementation

codes to turns possible the reproduction of the presented examples.

minimize f(xq, Xo) = x12 —4xq1 + xg — Xo — X1 Xo
XCR?

A.1 NELDER-MEADS

Fundamental Nelder-Meads method

The Nelder-Meads method, based on (CONN et al., 2009) is presented below.

Q

; % function dimension

-

14
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2;
0
0

< X T B
I

= 0.01;
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$Initial condictions
S0 = {[x0,y0], [x1,y1],[x2,y2]};

-
~

18 F = [];

19 [S,F] = ordering(n, S0);

20 draw_triangle (S)

21

22 while(abs(F(1l))—abs(F(2)))>tol

23 xr = operation(p,S,n); %Reflect

24 fr = fun(xr(l),xr(2));

25 1f fr<F (1)

26 xe = operation(p=*x,S,n); S%$Expand
27 fe = fun(xe(l),xe(2));

28 if fe<fr %Accepting xe how new min vertex
29 [S,F] = accepting(xe, fe,S,F);
30 draw_triangle(S)

w
=

else
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32 [S,F] = accepting(xr, fr,S,F);

33 draw_triangle(S)

34 end

35 elseif F(1l)<fr<F(n) % Accepting xr how medium between x1,xn
36 F(n+tl) = F(n);

37 F(n) = fr;

38 S{n+l} = S{n};

39 S{n} = xr;

40 draw_triangle (3)

41 elseif F(n)<fr<F (n+l)

42 xc = operation(p+y,S,n); %Outside contraction
43 fc = fun(xc(l),xc(2));

44 if fec<fr %$Accepting xc

45 F(n+l) = fc;

46 S{n+l} = xc;

47 draw_triangle(S)

48 else %Compute Shrink

49 for i=2:n+1

50 S{i} = S{1} + s*(S{i}=S{1});
51 F(i) = fun(S{1i}(1),S{i}r(2));
52 end

53 draw_triangle(S)

54 end

55 else % Inside contraction

56 xc = operation(-y,S,n);

57 fc = fun(xc(l),xc(2));

58 1f fc<F(n+l)

59 F(n+tl) = fc;

60 S{n+l} = xc;

61 draw_triangle(S)

62 else % Compute Shrink

63 for i=2:n+1

64 S{i} = S{1} + sx(S{1i}—=8S{1});
65 F (i) = fun(s{i}(1),S{1}(2));
66 end

67 draw_triangle(S)

68 end

69 end

70 [$,F] = ordering(n, S);

71

72 end

73

74 %Ploting the function

75 f=0(x,y) X."2 — 4.xX + V.2 — Yy — X.*y;

76 [X,Y] = meshgrid(-0.5:0.01:3.5);

77 z = £(X,Y);

78 [C,hContour] = contour(X,Y,z,—6.8:0.6:9, 'ShowText', 'on'");
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79 %clabel (C,h, 'FontSize', 8, 'Color', "blue')

80 hold on

81 plot3(S{1}(1),S{1}(2),F (1), '—p', 'MarkerFaceColor', 'red’")

82 fprintf('Solution: (x1,x2) —> (%$2.4f,%2.4f), Function value:
2,457, 8{1}(1),S{1}(2),F (1))

83

84 % Update the contours immediately, and also whenever the contour is
redrawn

85 updateContours (hContour);

86 addlistener (hContour, 'MarkedClean', @ (h,e)updateContours (hContour));

87

88 function [s,f] = ordering(n,V0)
89 5 = VO0;

90 f = zeros(l,n+1l);

91 for i=l:n+l

92 £(1) = fun(vOo{i}(1),Vv0{i}(2));
93 end

94 for i=l:n+l

95 if 1>1 && f£(i)<f£(i-1)

96 f aux = £(i);

97 £(1) = £(i-1);

98 f(i-1) = f_aux;

929 $Reorganizing vertex
00 s_aux = s{i};

01 s{i} = s{i-1};

02 s{i-1} = s_aux;

03 end

04 if i==n+1 && f£(i-1)<£(1i-2)
05 f aux = f£(i-1);

06 £(i-1) = £(i-2);

07 f(i-2) = f_aux;

08 $Reorganizing vertex
09 s_aux = s{i-1};

10 s{i-1} = s{i-2};

11 s{i-2} = s_aux;

12 end

13

14 end

15

16 end

17 function y = fun(xl, x2)

18 y = x172 — 4xx1 + X272 — x2 — x1*x2;
19 end

20 function d = operation(p,S,n)

21 sum = 0;

22 for i=l:n

23 sum = sum + S{i};
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24 end

25 x_ = (1/n)*sum;

26 d = (l+p)*x_ — p*S{n+l};

27 end

28 function [s,f] = accepting(x_value, f_value,S,F)

29 5 = 5;

30 f =F

31 £(3) = £(2);

32 £(2) = £(1);

33 £(1) = f_value;

34

35 s{3} = s{2};

36 s{2} = s{l1};

37 s{l} = x_value;

38 end

39 function t = draw_triangle(S)

40 hold on

M t = plot ([S{1} (1) S{2} (1) S{3}(1) S{1} (1)1, [s{1}(2) s{2}(2)
S{3}(2) s8{1}t(2)1,'black");

42 end

43 3333333 3%3%%%3%%%%%% Only to draw better the level curve

44 function updateContours (hContour)

45 % Update the text label colors

46 drawnow; % very important!

47 levels = hContour.Levellist;

48 labels = hContour.TextPrims; % undocumented/unsupported
49 lines = hContour.EdgePrims; % undocumented/unsupported
50 for 1idx = 1 : numel (labels)

51 labelValue = str2double(labels (idx).String);

52 % avolid FP errors using eps

53 lineldx = find(abs(levels—labelValue)<1l0xeps, 1);

54 % update the label color

55 labels (idx) .ColorData = lines(lineIdx) .ColorData;

56 end

57 end

A.2 COMPASS SEARCH

The Compass Search based in (CONN et al., 2009) was implemented in Matlab
as showed as follows.

-

close all;

2 %Ploting the function

3 f=0@(x,y) .72 — 4.*%x + y."2 —y — X.*y;
4 [X1,Y1l] = meshgrid(1:0.01:4);
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74

z = £(X1,Y1);
[T, hContour] = contour(X1l,Y1l,z,—6.8:0.6:9, 'ShowText', 'on');

0w N o O

redrawn

9 updateContours (hContour);

10 addlistener (hContour, 'MarkedClean', @ (h,e)updateContours (hContour));

11

% Update the contours immediately, and also whenever the contour is

12 D= [1 0; 0 1; =1 0;0 —=11;

13 a = 0.5; % Alpha

14 tol = 0.1;

15 X = [2 3];

16

17 while a>tol

18 £ = fun(X(1),X(2));

19 P = X +a=*D;

20 plotSearchPoints (P,X, [0.65 0.65 0.65]);

21 F = [fun(P(1,1),P(1,2)) fun(P(2,1),P(2,2)) fun(P(3,1),P(3,2))
fun(P(4,1),P(4,2))1;

22 f_under = £;

23 for i=l:length(F)

24 if P(1)<f

25 £f = F(1);

26 X = [P(i,1) P(1,2)];

27 end

28 end

29 if f_under ==

30 a = a/2;

31 end

32 end

33

34 plotSearchPoints(P,X, 'red');

35

36 % Print solution

37 hold on

38 plot(X(l),X(2),'—-p', '"MarkerFaceColor', 'red', '"MarkerSize', 8)
39 fprintf('Solution: (x1,x2) —> (%$2.4f,%2.4f), Function value:
\n',X(1),X(2),L)

40

41 function y = fun(xl,x2)

42 y = x172 — 4xx1 + X272 — x2 — x1*x2;
43 end

44

45 function plotSearchPoints(P,X,color)
46 hold on
47 plot (X(1),X(2),'—0o'", 'MarkerFaceColor',color,

48 'MarkerEdgeColor',color, '"MarkerSize', 4)

$2.4f
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49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

81

82

83

84
85

22929

end

hold on

plot ([X(1) P(1,1)], [X(2) P(1,2)]1,'Color',color)
hold on
plot(P(1,1),P(1,2), " '—0o', "MarkerFaceColor', color,
'MarkerEdgeColor',color, '"MarkerSize', 4)

hold on

plot ([X(1) P(2,1)], [X(2) P(2,2)],'Color',color)
hold on

plot(P(2,1),P(2,2),"'—0', "MarkerFaceColor', color,
'MarkerEdgeColor',color, '"MarkerSize', 4)

hold on

plot ([X(1) P(3,1)], [X(2) P(3,2)],'Color',color)
hold on

plot (P (3,1),P(3,2), " '—0o', "MarkerFaceColor', color,
'MarkerEdgeColor',color, '"MarkerSize', 4)

hold on

plot ([X(1) P(4,1)], [X(2) P(4,2)]1,'Color', color)
hold on

plot (P (4,1),P(4,2),"'—0o', "MarkerFaceColor', color,

'MarkerEdgeColor',color, '"MarkerSize', 4)

F55%5%5%5%%3%%%%%%% Only to draw better the level curve
tion updateContours (hContour)
% Update the text label colors

Q

drawnow % very important!

levels = hContour.Levellist;

labels = hContour.TextPrims; % undocumented/unsupported
lines = hContour.EdgePrims; % undocumented/unsupported
for idx = 1 : numel (labels)

labelValue = str2double(labels (idx).String);
lineldx = find(abs(levels—labelValue)<1l0xeps, 1);

FP errors using eps

labels (idx) .ColorData = lines(linelIdx) .ColorData;
the label color
$labels (idx) .Font.Size = 8;

the label font size
end

Q

drawnow % optional

o
)

o

o

avoid

update

update




APPENDIX B — ENSEMBLE FUNCTIONS

B.1 ROSENBROCK ENSEMBLE ELEMENTS

Ensemble functions
Each function showed in the table of parameters 2 are mathematically presented
as follows in equations (16)—(25).

23|
weS |
w3 |
w3
a3 |

i=1

n—1

=3

i=1

%=

=1

n—1

Z10=Z

95(x;,1 + 4 — (x;— 0.8)2)2 + (x;— 0.8)2}
97(X;\q + 0.3 — (x;— 0.4)2)2 + (x; — 1)2}
103(x;,1 +0.3— (x; + 0.4)2)2 + (x; —1.2)2 + 1}
94(x;,1 —1.8— (x;— 0.3)2)2 + (x; + 0.8)2}

98(X;,1 — (x; + 0.7)2)2 + (x; + 0.3)2}

(95(x;,1 +1.8—(x;— 0.5)2)2 + (x; — 1)2}

106(x;,1 — (X — 0.7)2)2 + (x; — 0.2)2}

=1

96(xjy1 +4 - (x))? + (x;—1.3)2|

105(x;,1 —2— (x)2)2 + (x; + 0.7)2}

90(x;,1 + 0.6 — (x;— 0.2)2)2 + (x; - 1)2}

=1

B.2 RASTRIGIN ENSEMBLE ELEMENTS

Ensemble functions
Each function showed in the table of parameters 4 are mathematically presented
as follows in equations (26)—(35).

76

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)



APPENDIX B. Ensemble functions 77
2y = 15n+ x% — 15c0s(27x) + y? — 15¢c0s(2my) (26)
zo = 10n+ (x —0.2)% — 10cos(2n(x — 0.2)) + y° — 10cos(2my) (27)
zz3=10n+ X2 — 10cos(2rix + 0.4) + (y + 0.2)2 —10cos(27t(y + 0.2) + 0.5) (28)
Z=11n+ X2 — 10cos(2nx + 0.6) + (y + 0.1 5)2 —10cos(2n(y + 0.15)) (29)
Z5 =15n+ (x — 0.2)%2 —10cos(2n(x —0.2)) + y? — 0.5 — 10cos(2my) (30)
Zg=14n+ (x + 0.3)2 —10cos(2mt(x + 0.3)) + (y — 0.1)2 —10cos(2mty) (31)
z7 =50+ (x —0.4)% + 10cos(2n(x — 0.4)) + (y — 0.4)> —10cos(2n(y — 0.4))  (32)
Zg = 14n+ (x + 0.2)% — 15c0s(2nx) + (y — 0.2)% — 0.2 — 15c0s(27y) (33)
Zg = 13n+ X% —10cos(2nx + 0.6) + (¥ + 0.1)% — 10cos(2n(y — 0.2)) (34)

Z10 =12n+ (x—0.6)2 —10cos(2mx + 1) + (y — 0.5)2 — 10cos(2my) (35)
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