
UNIVERSIDADE FEDERAL DE SANTA CATARINA
CENTRO TECNOLÓGICO

AUTOMATION AND CONTROL DEPARTMENT

Maria Laura Brzezinski Meyer

Artificial intelligence algorithms application to
the problem of automatic selecting integration

tests

Toulouse, France

2020



Maria Laura Brzezinski Meyer

Artificial intelligence algorithms application to
the problem of automatic selecting integration

tests

Monography submitted to the Federal Uni-
versity of Santa Catarina (Universidade
Federal de Santa Catarina) as a require-
ment to the course approval DAS 5511: Project
for End of Study from the course of Control and
Automation Engineering.
Supervisor: Fernand Cuesta
Co-supervisor: Joni da Silva Fraga

Toulouse, France
2020



Ficha de identificação da obra elaborada pelo autor,
 através do Programa de Geração Automática da Biblioteca Universitária da UFSC.

Meyer, Maria Laura Brzezinski
   Artificial intelligence algorithms application to the
problem of automatic selecting integration tests / Maria
Laura Brzezinski Meyer ; orientador, Fernand Cuesta,
coorientador, Joni da Silva Fraga, 2020.
   51 p.

   Trabalho de Conclusão de Curso (graduação) -
Universidade Federal de Santa Catarina, Centro Tecnológico,
Graduação em Engenharia de Controle e Automação,
Florianópolis, 2020.

   Inclui referências. 

   1. Engenharia de Controle e Automação. 2. Inteligencia
Artificial. 3. Teste de Softwares. 4. Data Science. 5.
Data Analysis. I. Cuesta, Fernand. II. da Silva Fraga,
Joni. III. Universidade Federal de Santa Catarina.
Graduação em Engenharia de Controle e Automação. IV. Título.



Maria Laura Brzezinski Meyer

Artificial intelligence algorithms application to
the problem of automatic selecting integration

tests

This internship report was evaluated in the context of the discipline

DAS5511: Project for End of Study and APPROVED in its original last

version by the course of Control and Automation Engineering.

Fernand Cuesta

Local Supervisor

Renault Software Labs

Toulouse, France

Toulouse, 16 of July of 2020 .



ACKNOWLEDGEMENTS

The author would like to thank Renault Software Labs for the resources neces-
sary and also the brazilian university UFSC (Universidade Federal de Santa Catarina),
the french college INP - ENSEEIHT (Institut National Polytechnique - École Nationale
Supérieure d’Électrotechnique, d’Électronique, d’Informatique, d’Hydraulique et des
Télécommunications) and the brazilian institute CAPES (Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior). Thanks also to the entreprise tutor Fernand
Cuesta, who guided me in this work, to Joni da Silva Fraga that oriented me from Brésil,
and César Slogo and my family for the support.



“I believe that the attempt to make a
thinking machine will help us greatly in

finding out how we think ourselves.”
(Alan M. Turing, 1951)



RESUMO

As mudanças que o modelo de gestão de projetos vem sofrendo traz grandes vanta-
gens às empresas, porém novas problemáticas são inseridas. Nos métodos clássicos
de desenvolvimento, um projeto é realizado na forma de cascata, ou seja, primeiro o
modelo é construído, depois é realizado o desenvolvimento e por último o projeto é
validado por testes. Esse modelo é custoso em termos de validação, pois as falhas
são encontradas apenas na fase final de produção, tornando a correção mais difícil e
cara. Atualmente o modelo dito ágil é utilizado, onde diversos ciclos de planejamento-
desenvolvimento-testes são realizados, tornando o processo mais rápido e flexível.

Contudo, esse modelo inviabiliza a execução de todos os testes necessários na pro-
dução de um veículo, pois não há tempo hábil para a execução deles, além de não
ser necessário testar certas funções em todas as etapas do projeto. Por exemplo,
testar o Bluetooth do carro antes mesmo do sistema multimédia ser implementado é
inconcebível. Visto a necessidade de selecionar uma quantidade limitada de teste para
cada etapa do projeto, o estudo de como selecionar de forma automática e segura é
necessário. O objetivo do projeto aqui apresentado é de estudar formas de selecionar
testes de acordo com as funcionalidades do software, bem como a relação entre a
confiabilidade do sistema em relação aos testes realizados.

O estágio foi realizado na empresa Renault Software Labs em Toulouse, uma divisão
de pesquisa e desenvolvimento do grupo Renault. Tal projeto é uma proposta de
tese de doutorado, portanto durante o estágio de 6 meses, as fases iniciais foram
desenvolvidas: coleta e preparação de dados. Os dados coletados são referentes à
descrição dos testes do catalogo da Renault, ao histórico de execução desses testes
e também aos defeitos encontrados por eles durante a fase de validação de softwares
para veículos conectados. Além disso, foi realizado um estudo bibliográfico inicial a
fim de identificar as diferentes abordagens e metodologias existentes. Por fim, foram
realizadas análises das informações adquiridas e da relevância de cada uma em
relação ao resultado dos testes.

Palavras-chave: Testes de Softwares. Testes de Integração. Seleção. Método Ágil.
Integração Contínua. Validação de Software. Inteligência Artificial. Segurança de Fun-
cionamento. Ciência de Dados.

N! Atenção: Os dados apresentados nesse documento não condizem à realidade. Por
questões de confidencialidade, os nomes dos testes, as escalas e os valores exatos
foram retirados ou modificados.



ABSTRACT

The changes that the project management model has undergone bring great advan-
tages to companies, but new problems are introduced. In the classic methods of devel-
opment, a project is carried out in the form a V form, that is, first the model is built, then
development is carried out and finally the project is validated by tests. This model is
costly in terms of validation, as the flaws are found only in the final stage of production,
making the correction more difficult and expensive. Currently, the so-called agile model
is used, where several planning-development-testing cycles are performed, making the
process faster and more flexible. However, this model makes it impossible to carry out
all the necessary tests in the production of a vehicle, as there is no time to execute
them, and it is not necessary to test certain functions at all stages of the project. Given
the need to select a limited amount of test for each stage of the project, the study of
how to select automatically and safely is necessary. The objective of the project pre-
sented here is to study ways to select tests according to the software’s functionalities,
as well as the relationship between the reliability of the system in relation to the tests
performed.

The internship took place at Renault Software Labs in Toulouse, a research and de-
velopment division of the Renault group. Such a project is a doctoral thesis proposal,
so during the 6-month internship, the initial phases were developed: data collection
and preparation. The collected data refer to the description of the tests in the Renault
catalog, the history of the execution of these tests and also the defects found by them
during the software validation phase for connected vehicles. In addition, an initial biblio-
graphic study was carried out in order to identify the different existing approaches and
methodologies. Finally, analyzes were performed on the information acquired and the
relevance of each in relation to the test results.

Keywords: Software Testing. Integration Testing. Selection. Method Agile. Continuous
Integration. Software Validation. Artificial Intelligence. Dependable Computing. Data
Science.

N! Attention: The data presented in this document do not correspond to reality. For
reasons of confidentiality, the names of the tests, the scales and the exact values have
been removed or modified.



RÉSUMÉ

Les changements de modèle de développement de projet logiciel apportent de grands
avantages aux entreprises, mais se heurtent à de nouveaux problèmes. Dans les mé-
thodes classiques de développement, un projet est développé en suivant le process en
cycle dit « V », c’est-à-dire que le produit est d’abord spécifié, puis le développement
est effectué et ce n’est qu’à la fin de ce cycle que tout le produit est validé par des
tests. Ce modèle est coûteux en termes de validation car la détection des fautes s’ef-
fectue qu’à la fin du processus de production, rendant la correction plus difficile et plus
coûteuse. Actuellement, les modèles appelés agiles commencent à être utilisés, où plu-
sieurs cycles de planification-développement-test sont effectués rendant le processus
de développement plus rapide et plus flexible. Cependant, l’exécution de tous les tests
nécessaires au test d’un véhicule devient impossible dans les temps impartis par les
cycles courts et successifs de ces méthodes agiles. Compte tenu de la nécessité de
sélectionner une quantité limitée de tests pour chaque étape du projet, il est nécessaire
d’étudier une méthode de sélection automatiquement de tests en prennent tenant en
compte les risques liés à la détection de défaut. L’objectif du projet présenté ici est
d’étudier les modalités de sélection de tests en fonction des fonctionnalités du logiciel,
ainsi que la relation entre la fiabilité du système par rapport aux tests effectués.

Le stage s’est déroulé au sein de l’entreprise Renault Software Labs à Toulouse, une
division de recherche et développement du groupe Renault. Le projet, dans son en-
semble, est une proposition de thèse. Le stage de 6 mois, préliminaire à cette thèse,
s’est concentré sur la phases initiales du projet : la collecte et la préparation des don-
nées. Les données collectées sont tirées de la description des tests dans le catalogue
de test Renault, de l’historique d’exécution de ces tests ainsi qu’aux défauts constatés
lors de leur exécution durant les phases de validation logicielle des véhicules connectés.
Dans un même temps, une première étude bibliographique a été menée afin d’identifier
les différentes approches et méthodologies existantes sur le thème de ce stage. En fin
de rapport, des analyses ont été réalisées sur les informations acquises, ainsi que sur
la pertinence de chacune par rapport aux résultats des tests.

Mots-clés : Test de Logiciels. Test d’Intégration. Sélection. Méthode Agile. Intégration
Continue. Validation des Logiciels. Intelligence Artificielle. Sûreté de Fonctionnement.
Science des Données.

N! Attention : Les données présentées dans ce document ne correspondent pas à
la réalité. Pour des raisons de confidentialité, les noms des tests, les échelles et les
valeurs exactes ont été supprimés ou modifiés.



LIST OF FIGURES

Figure 1 – Alliance logo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 2 – Renault Software Labs logo. . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3 – V model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 4 – Agile methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 5 – Continuous Integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 6 – Integration testing cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 7 – Test cycle example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 8 – Test cycle redistribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 9 – Changed based test selection. . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 10 – Reinforcement learning schema. . . . . . . . . . . . . . . . . . . . . . . 23
Figure 11 – Project overall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 12 – Data filtering process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 13 – Project pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 14 – API usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 15 – Data Frame example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 16 – Issues from Jira Project Settings. . . . . . . . . . . . . . . . . . . . . . . 31
Figure 17 – Main issues types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 18 – Jira data structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 19 – Structure of the Jira data collection code. . . . . . . . . . . . . . . . . . 33
Figure 20 – Silk Central data structure with example. . . . . . . . . . . . . . . . . . 35
Figure 21 – Time spent by data scientists. . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 22 – Automated and manual tests. . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 23 – Tests case status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 24 – Tests runs status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 25 – Clusters PASS/FAIL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 26 – Distribution of executions duration. . . . . . . . . . . . . . . . . . . . . . 40
Figure 27 – Top 10 tests cases for bugs founded. . . . . . . . . . . . . . . . . . . . 41
Figure 28 – Feature importance for all issues linked. . . . . . . . . . . . . . . . . . 42
Figure 29 – Feature importance for defects related issues. . . . . . . . . . . . . . . 42
Figure 30 – Tests case most used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 31 – Number of steps distribution. . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 32 – Feature importance for test case feature. . . . . . . . . . . . . . . . . . 45
Figure 33 – Feature importance for test executions tags. . . . . . . . . . . . . . . . 46



LIST OF TABLES

Table 2 – Approaches comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 3 – Tests main parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 4 – Vectors descriptive statistics. . . . . . . . . . . . . . . . . . . . . . . . . . 44



LIST OF ABBREVIATIONS AND ACRONYMS

APFD Average Percentage of Faults Detected
API Application Programming Interfaces
CFG Control Flow Graph
CI Continuous Integration
JSON JavaScript Object Notation
MLP NN Multi-Layer Perceptron Neural Network
REST Representational State Transfer
RSWLT Renault Software Labs Toulouse
SIT System Integration Team
SOAP Simple Object Access Protocol
XAI Explainable AI
XML Extensible Markup Language



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1 ENTERPRISE PRESENTATION . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 SUBJECT PRESENTATION . . . . . . . . . . . . . . . . . . . . . . . . . 14
2 PROJECT CONTEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1 SOFTWARE TESTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 CONTINUOUS INTEGRATION DEVELOPMENT . . . . . . . . . . . . . 17
2.3 TEST SELECTION PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . 18
3 STATE OF ART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 CHANGES BASED APPROACH . . . . . . . . . . . . . . . . . . . . . . 21
3.2 BLACK BOX APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 REINFORCEMENT LEARNING . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 COMPARISON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4 PROJECT OVERALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5 DATA COLLECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1 DATA FORMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 FIRST DATA SET - JIRA . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 NEW DATA SET - SILK CENTRAL . . . . . . . . . . . . . . . . . . . . . 34
6 DATA PREPARATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1 THE DATABASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2.1 Test run Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2.2 Test execution Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2.3 Issues funded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.4 Tests case Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.5 Tests case Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2.6 First vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 CATEGORICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.1 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 FINAL CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 47

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
APPENDIX A – JIRA’S DATABASE FEATURES . . . . . . . . . . . . 51





Chapter 1. Introduction 14

connected, autonomous and electric vehicles, strengthening the development of the
new software generation incorporated in its vehicles, capable of offering personalized
services, updating remotely, independently and in real-time. Renault Software Labs
Toulouse (RSWLT) defines its expertise on several domains, like embedded systems
architecture, integrated system and software, continuous integration and platforming,
eco-energy, cybersecurity, modeling and simulation, multi- media, mobile products and
internet of things, cloud, data management, artificial intelligence, machine learning and
security. This project is part of the System Integration Team (SIT), a group that is in
charge of multimedia and connectivity tests.

1.2 SUBJECT PRESENTATION

The change in the project management model brings great advantages, but
some flaws. In the classic methodology, a project was carried out following the “V”
model process, that is, first the model is specified, then development is carried out and,
lastly, the system is validated (figure 3).

Figure 3 – V model.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

This model is expensive in terms of validation because it is done at the end of
the product development, so if some flaws are found in the final production stage, their
corrections become highly difficult and expensive. Currently, an agile model named
continuous integration is used, where several planning-development-testing cycles are
performed, making the validation much easier for each cycle and the integration of all
subsystems became more flexible to construct. Figure 4 exemplifies three interactions
in agile methodology.



Chapter 1. Introduction 15

Figure 4 – Agile methodology.

Source: (PIVOTAL TRACKER, 2020).

Renault Software Labs uses this method, which will be explained in more detail
in the next chapter, for integrating software code. This technique makes it possible to
verify in each version of the source code if the modifications result does not produce a
regression in the developed system. Thus, a piece of code by piece of code, the system
is developed and validated in incremental steps. This concept, mentioned for the first
time by Grady Booch (BOOCH, 2004), aims to detect problems related to software
integration at the earliest time in the project development cycle. Problem detection is
made possible by the automation of test batteries that are triggered with each new
version of the software.

However, with the increase of complexity of new systems such there are been
seen in Automotive sector, the continuous integration model makes it impossible to
carry out all the tests necessary in a vehicle production with a reasonable time frame
delivered for the daily testing. Besides, during the development, some features are not
yet integrated, so there is no need to test it. For example, testing the car’s Bluetooth
before the multimedia system is even implemented is inconceivable.

Given the need to select a limited amount of tests for each stage of the project,
the study of how to select it automatically without compromise systems safely is neces-
sary. The goal of the project is to study ways to select tests according to the software’s
functionalities, as well as the relationship between the system’s reliability in relation to
the tests performed. The results of tests already performed will be used as a base to
select new tests for futures projects. To do so, the feasibility of implementing artificial
intelligence algorithms will be studied.



16

2 PROJECT CONTEXT

In order to understand the context of the project, definitions of where, how and
why the test selection algorithm will be developed will be explicit in this chapter.

2.1 SOFTWARE TESTING

The project domain is software testing, a crucial step in the development of any
product. The aim of a test is to certify that all functional and non-functional requirements
of the project are being respected. Therefore, tests are used to reduce software failure
risks, and to do so, they help to find and eliminate errors.

Functional requirements are linked to the system definition, describing the func-
tions that a software must perform, that is, inputs, behavior, and outputs. Functional
software requirements help to capture the intended behavior of the system, whether
expressed by the functions, services, or tasks that the system must perform. Non-
functional requirements are related to the software quality, being essential to guarantee
the usability and effectiveness of the entire system.

For example, in a car digital speed counter, it is necessary that a speed value is
shown in the display, this is its functionality. But it is also important to ensure that the
value shown matches the real car speed, so the software is delivering the correct work,
this is a non-functional requirement.

A test can be either manual, when a person is needed to execute testing actions
(like click on the Bluetooth button to check if a green light turns on), or automatic, when
a script is written to perform testing actions faster and repeatedly. There are three
methods to execute a test:

• Black box: it reviews only the application’s functionalities, behaving as a user,
what happens internally does not matter, only exits are verified.

• Grin box: a tester gives the system an input, verify if the result is like expected,
and also checks through which process this result was obtained. In this case,
the role of the system, its functionalities and its internal mechanisms are known,
however there is no code source access.

• White box: all software’s internal components are tested through its source code
in this method, so here tests have a developer view.

Tests are also differentiated by their degree of granularity, depending on the
development stage. Unit testing is used to verify individual components of a software,
then integration testing analyses the interaction between these components. Increasing
more the granularity degree, the next is system testings, where a complete and inte-
grated software is tested. Finally, acceptance testing is the process phase where the



Chapter 2. Project Context 17

system is tested by a black box test before its release to verify if all users case scenarios
are covered, that why it is also called validation testing. This project is concentrated in
the integration software testing stage, where the entire build is created.

2.2 CONTINUOUS INTEGRATION DEVELOPMENT

In software engineering, a new way of development is been implemented, it is
an agile method called Continuous Integration (CI). The term was described in Martin
Fowler’s blog publication in 2000 (FOWLER, 2006) and explored by many authors like
(ZHAO et al., 2017), it is a software development practice where work is frequently
integrated and validated.

The diagram in figure 5 shows how the software development process is done
using continuous integration practice. First, a development is done by one or many
developers, these new features or code changes are sent to a source control server
(normally a git repository), then the code is built and tested. These validation results
are sent to the development team, so issues can be fixed and then a new cycle can
begin.

Figure 5 – Continuous Integration.

Source: (FOO, 2016).

This process makes it easier to find and remove code bugs, because it searches
for fails in each change made. Besides, bugs are cumulative, so it is not fixed before



Chapter 2. Project Context 18

continuing development, it can affect the new part of the code and generate more
errors.

2.3 TEST SELECTION PROBLEM

Test selection problem is a well-known and central topic in software development
with the introduction of agile techniques that are increasingly reducing development
cycles. Continuous integration, in this context, faces this problem directly. Although test
selection has already been addressed in the literature, and many research projects
have gone as far as industrial deployment in this field, this remains a subject far from
being completed. As an example Test case prioritization is an issue widely studied in
regression testing (ROTHERMEL et al., 2001), this means that a test set is selected
among a group of already executed test cases to validate existing functionalities. This
problem is described mathematically as: given a test suite T S, a test set PT formed by
all possible permutation of T S, and a function Q that measures a test set performance;
a permutation T S′ of T S need to be founded such that Q(T S′) is maximized, that is,

∀T S ∈ PT : Q(T S′) ≥Q(T S) (1)

Although the prioritization problem is important, it is not the only one faced in this
project. Here the aim is to select tests among all test cases, so it can be implemented
more generically. Given a software to test, a test plan needs to be created in order to
find the largest number of failures as soon as possible. The integration test is performed
at Renault Software Labs in 3 stages like in figure 6: smoke, sanity and regression test.
The first stage called Smoke Tests is a small set of tests targeting enabler’s function-
alities to gate testing of strongly flawed software. Smoke Testing is a kind of Software
Testing performed after the software build to ascertain that the critical functionalities
(enablers) of the program is working fine. Smoke tests must be performed on each
integration cycle. This applies to new development and major and minor releases of the
system. This can applied also at each patch submitted by the developers.

The second stage is called Sanity Tests. Is also a small set of tests but selected
according to the integration plan and debug/fix activities. Sanity testing is a type of
software testing performed after receiving a software compilation to check for bug fixes
and new features added in the integration cycle. The goal is to determine that the
proposed functionality works roughly as expected. Sanity tests will change on each
build (needs to be planned) by targeting bug fixes and new features. In this stage tests
can be automatized or manual.

The last stage is the Regression Tests. This stage is an extract of the full test
plan to cover all the required tests for the integration cycle. The aim here is to find if
the new software parts (all patches include) generates a functional regression on the



Chapter 2. Project Context 19

Figure 6 – Integration testing cycle.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

system. The number of regression tests became high according to the life cycle of the
system. More the system becomes complex, more the number of regression tests is
high and the duration to perform this amount of tests is long. The test duration and
complexity increase in each step, it means that regression tests take more time.

Generally, the execution timing of these tests sets (called test campaign) depend
on the complexity and the time reserved to validate the system. Renault Software Labs
clocks these test campaigns like this: every night smoke tests and automatic sanity
tests are launched. A small part of the automatic regression test is performed. These
nightly tests are called short cycle test campaign. These tests are performed on the
latest build generated at 1:00 AM. This short cycle takes 1 to 3 hours and the cost to
perform them is reasonable.

A longer test campaign is performed more sparsely, like at each start of the
week, including all the system’s test catalog. This long cycle takes time to perform
(some days) because it aims to validate that all system’s parts, which became more
and more complex, doesn’t have any flaws. So, several numbers of test is performed, it
can be approximately 10000, so it may not have ended when a new cycle should begin.
The cost is also high because, not only the time to perform is long, but also this kind
of test includes more complex testing material, such as GPS simulator, multi-system
interactions, Multimedia actuators, and others. Figure 7 shows a clocking example for
these two cycles:

The idea of selecting tests is to find the right regression test that can be per-
formed into earlier steps in aim to catch errors as soon as possible and to reduce the
numbers of long cycle test campaign. For the previous example, one long cycle every



Chapter 2. Project Context 20

Figure 7 – Test cycle example.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

two can be removed as shown in figure 8. Doing this, a long cycle schedule can be
more sparse and it lets more time to perform some complex multi-systems tests that
cannot be done in just one week.

Figure 8 – Test cycle redistribution.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

In continuous integration software development, as the system is built, more
integration tests are added, keeping the development and test cycles shorter. However,
the system to be tested becomes more and more complex and the test times are longer.
This is the challenge faced in this project.



21

3 STATE OF ART

A study on test selection theme was carried out for the beginning of the research
and three mean approaches were founded: a changed based, a black box and a re-
inforcement learning approach. They will be explored in this chapter, thereby related
works can be analyzed and compared.

3.1 CHANGES BASED APPROACH

The most common approach in the literature is a changed based test selection
for regression testing. It is based on the analysis of what has been changed in the
software that is being tested in comparison with the precedent commit. Let’s call P the
state of the software in the first sprint, where a test set T was applied. In the second
sprint, the state is changed to P ′, so the algorithm will analyze the difference between
P and P ′ to select a new set T ′ to be executed, like the scheme of figure 9.

Figure 9 – Changed based test selection.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

A solution for the test prioritization problem, mentioned in chapter 2, is the mean
objective in this case. However, the order of testing is also important, introducing here
a sorting problem. In (RUTH et al., 2007), an Control Flow Graph (CFG) was used
to determine the relations between changes, where nodes represent code entities
(statements, methods, or components) and edges represent the control flow between
entities. With the graph constructed, it is possible to determine which test case covers
which entity by testing it. A comparison between P and P ′ is made so dangerous edges
can be highlighted, that is, entities that may behave differently in P ′. Based on this
information, tests case are selected to be rerun.

This approach has good results when applied in unit tests or in a test that
validates an accurate and known functionality. However, for integration testing, this
technique requires knowing the order in which tests are performed and, therefore, re-
testing the campaigns several times to determine the optimal order for a given software
patch. This is very expensive at test run times and it is not always possible to change



Chapter 3. State of Art 22

the order of test executions, so it can not be well adapted in Renault Software Labs.
That is why it won’t be much explored at the moment.

3.2 BLACK BOX APPROACH

Another way to select tests is based on past tests runs results, however, a lot
of data is required to do so. For a specific code that needed to be tested, machine
learning algorithms can select a test set that had a good result when used to test a
similar code in the past. This type of analysis is called black box here because the
intern process of selection is not known, only inputs and outputs are explicit. Although
the use of machine learning algorithms is not yet widely explored in this field, it is a
promising approach, since computers don’t think like human beings, thus they can find
patterns and links that an expert could not.

This method is widely required since the source code is not always available in
the testing phase. Supervised machine learning and natural language processing are
used in (LACHMANN et al., 2016) to prioritize test cases to be executed in regression
testing. Test experts decisions are used to rank a training set of test cases and then
machine learning tries to imitating the expert’s behavior. The words frequently found
in the description of steps to be taken in a test form a dictionary, thus information
about each test case can be learned, such as requirements coverage, revealed failures
(failure count, age and priority) and test execution cost. However, for each new code
functionality, a new training data need to be created to learn a new classifier and experts
are needed in creating its labels.

In (GÖKÇE; EMINLI, 2014), tests case are classified using a Multi-Layer Percep-
tron Neural Network (MLP NN) in aim to determine which test cases are more critical
and need to be executed first, increasing the possibility of finding faults earlier. Five
classes are defined to cluster test cases using a fuzzy scale, they are: very high priority,
high priority, middle priority, low priority, very low priority. A test set is used to train the
neural network, and then another set is used to test if it can cluster test cases by itself.

There are also heuristic approaches based on historical data that can be classi-
fied as Black Box methods because they don’t require access to the source code. One
example is the work developed in (NOGUCHI et al., 2015), where an ant algorithm is
used to prioritize tests case by their historical performance. With a fitness function, test
cases can be classified, and then a heuristic method can be applied to select the best
combination in aim to maximize the test set fitness value.

3.3 REINFORCEMENT LEARNING

Reinforcement learning is an artificial intelligence method based on oriented ob-
jectives that learns by experience feedback. It can begin with randoms actions to learn



Chapter 3. State of Art 23

what works and what doesn’t and this learning is done by incentives. So the algorithm
receives a reward every time it makes a decision considered correct and is punished for
erroneous actions. Figure 10 shows the five main terminology in reinforcement learning:
an agent that will learn in the process; an environment where the agent’s actions will
be performed; an environment state that will serve as input information for the agent; a
reward that will encourage or discourage the agent’s decisions; and an action (MONI,
2019).

Figure 10 – Reinforcement learning schema.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

This approach takes more time to adapt, it will do a decision, execute the tests
selected and then take feedback to adjust its previous decision. It was used to prior-
itize and select tests case in a continuous integration development by the authors of
(SPIEKER et al., 2018). As the code evolves over the CI cycles, they propose to solve
an adaptive test case prioritization problem applying a reward function that evaluates
a test schedule’s performance created by the agent. Their method is model-free and
doesn’t require access to the source code of the program to be tested, however, it takes
time to adjust and a significant amount of data needs to be stocked.

3.4 COMPARISON

As seen in the previous sections, there are several ways to approach the test
selection problem, which is a subject to be studied in more depth and careful way. To
sum up, a comparison between these three approaches can be explicit in a table format
to a better understanding, see table 2 below.

As seen in the previous chapter, the last two methods will be further explored.
For that, a history of Renault’s test executions must be collected, which is the subject
of the next chapter.



Chapter 3. State of Art 24

Table 2 – Approaches comparison.

Approach Data required Feedback Methods Referances
Changes

Based Source code No
Statistic and
optimization

(ROTHERMEL et al., 2001),
(RUTH et al., 2007)

Black Box
Tests case

descriptions and
/or past results

Optional
Machine Learning
and optimization

(GÖKÇE; EMINLI, 2014),
(LACHMANN et al., 2016),

(NOGUCHI et al., 2015)
Reinforcement

Learning
Tests case

descriptions Mandatory
Artificial

Intelligence (SPIEKER et al., 2018)

Source: BRZEZINSKI MEYER, Maria Laura (2020).



25

4 PROJECT OVERALL

The testing phase is crucial in every product development, finding defects can-
not be seen as a harmful result, but as an opportunity to improve quality and customer
experience. As explained in chapter 2, it is important to find errors as soon as possible,
giving more time to correct then and, doing so, increase its reliability. That’s why contin-
uous integration is implemented, even if efforts are needed to set the right tests to be
executed. In this context, the search for automatic test selection methods is extremely
important and it is becoming a broad field of study with artificial intelligence applicability.

This project has the aim to contour the time and cost challenge shown in the
previous chapter and it was divided into five phases as can be seen in figure 11: data
collection, data preparation, AI training, AI testing and architecture.

Figure 11 – Project overall.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

First of all, data needs to be collected to see what was going on in past test
executions, this is the data engineering phase for data collection. Among these data
and knowledge, there are:

• Test case catalog: composed by all Renault’s tests, including descriptions, do-
main, environment, requirements, steps to be reproduced, level, and others test’s
parameters;

• Defects: all software bugs reported, whether they are already fixed or not, their
priority and the way they interfere with the functioning of the system that was



Chapter 4. Project Overall 26

being tested;

• Design: understanding of the creating tests process and using of experts experi-
ence in the field to know how to analyze tests results;

• Factory: development method knowledge, division of Renault’s projects and tests
case applicability in each development step and for each project’s domain;

• Engineering and development: data about test plans and executions, as well as
tests run results obtained by tests case from the catalog.

All data collected in the previous phase is considered raw, thus a data prepa-
ration, using data science methods, must be done. When data is collected from other
platforms, it is gathered in a data-interchange format, like JavaScript Object Notation
(JSON) or Extensible Markup Language (XML), as will be explained in chapter 5. The
features that stand out in the data are selected, cleaned and passed to the numerical
format, creating data vectors to be used as input of the algorithms to select the tests
in the future. In this step, data mining is also done, which is a process where large
amounts of data are explored in order to find consistent patterns, such as association
rules or time sequences, to detect systematic relationships between variables. This
process is illustrated in figure 12, where data frames are a two-dimensional array-like
structure in which each feature is represented in columns and each row is an object, for
example, one test case per row.

Figure 12 – Data filtering process.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

Data analyzes help to decide how to approach the problem, so that associations
between features can be found to help in the future decision. A data mining technique
called featuring engineering is used, allowing to more accurately represent a data
structure, to prepare the input that will create the best artificial intelligence model to
select tests in the next phase. From then on, the entries will also be in the correct format
so that the model learns in the best possible way.

In the next step, intelligence artificial algorithms and statistical methods are
used to find patterns, cluster the data and make decisions. After studies and data



Chapter 4. Project Overall 27

analysis, algorithms models can be created in order to automate the test selection
process. Different models must be created and compared according to their precision,
so the hyper-parameters (such as the number of hidden layers in a neural network or
number of clusters in a K-Means algorithm) can be better adjusted and tuned.

In the phase called intelligence artificial testing, the models created previously
will be put into practice, that is, for a given code, a set of tests will be selected and
executed. At this stage it is very crucial to maintain feedback and a results record, so
the algorithm can improve during the process. The results will be analyzed by specialists
in software tests so that they can be validated. In this way, improvement strategies can
be taken, as well as adjustments to the models and inputs.

At the end, another data engineering phase must be done, the system architec-
ture. In this phase test planning and execution process will be automated, so that after
the selection of a test campaign by the algorithm, the selected tests will be executed
and final results collected. This process counts on the help of tools already used in
the company for planning and executing automatic tests, like the Silk Central, Jira and
Git Lab platforms, where Application Programming Interfaces (API) helps to execute
actions through requests in a script format.

Despite the division of the project into stages, which helps in the development of
the research, the phases previously described are extremely dependent and comple-
mentary to each other and some share similar techniques. As the project is complex, the
goal of the internship was focused on the first steps, that is, on the collection, analysis
and filtering of data. As will be explained in the following chapters, artificial intelligence
algorithms and statistical methods were also used to assist in the featuring engineering
step.

To sum up the project, a pipeline was created, as it can be seen in figure 13. All
the phases described above are represented in it and separated by colors, the arrows
show dependence between processes and the testing tools Jira and Silk Central are
also present.

First it is important to know the approaches already followed in the test selection
domain. Therefore, in the next chapter, the solutions proposed in articles to solve this
problem, previously explained in chapter 2, will be studied. Next in the chapter 5, the
data collection phase will be better detailed. The data format (JSON, XML and data
frames) and the tools from which they are extracted (Silk Central and Jira) will also be
explored. After, the work done in data preparation phase will be addressed in chapter 6.



Chapter 4. Project Overall 28

Figure 13 – Project pipeline.

Source: BRZEZINSKI MEYER, Maria Laura (2020).



29

5 DATA COLLECTION

Data collection is a very important phase for any project that involves artificial
intelligence, as it is through these collected data that the machine will learn to perform
the desired function. A large amount of data is required in the construction of a model
in machine learning, as the algorithm will learn through patterns found in these data
representing previous behaviors that need to be copied and improved.

In this context, the term big data is introduced, used in computing science for
large data sets that need to be processed and stored for future use. Big data main
aspects are usually described with the five V’s: volume (referring to data amount),
variety (different data types mixed), veracity (data authenticity and availability), velocity
(the speed at which new data is created) and value (regarding the data usage).

All the software testing phase information is collected from two platforms, initially
the data came from the Jira tool and a new platform, Silk Central, is currently being
implemented. The structure in which the data is stored on both platforms will be dis-
cussed in this chapter. In addition, how data collection is done and the formats of data
will also be explained.

5.1 DATA FORMAT

Before collecting the data, it is necessary to identify the formats in which they
are transmitted. The most practical way to request data from a server is through an
API, which is a set of routines and standards established by a software for the use of
its features by external applications that do not intend to be involved in implementation
details, but just want to use their services. This way, it doesn’t matter the language in
which the platform containing the data was built. When a request is made to an API, an
answer returns in a JSON or XML format, like illustrated in figure 14.

Figure 14 – API usage.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

JSON (JavaScript Object Notation) is a Java Script based data-interchange
format, it is simple to be read by human beings and to be parsed by machines. It is an
object-centric standard since it intends to describe an object’s parameters. JSON is a
lightweight format constructed by keywords and contents separated by curly braces, like:



Chapter 5. Data Collection 30

{"name": ‘John’, "Age": 10}, {"name": ‘Mary’, "Age": 15}. Thus it is simple to
find all values that describe people’s age in the previous example. JSON standard is
described in (CROCKFORD, 2000), where a schema of each data type structure can
be founded.

Extensible Markup Language (XML) is a widely used sub type of the interna-
tional standard SGML (Standard Generalized Markup Language) and it was developed
in 1998 by World Wide Web Consortium (W3C). It is typically used in complex data
representation that tends to be document-centric. XML data are organized in a hierar-
chical form using tags, and it must always begins with a single root tag that contains
all the other tags in the file. Taking up the example used to describe JSON format, in
XML "age" can be a child of "name", like: <People> <John> <Age>10</Age> </John>

<Mary> <Age>15</Age> </Mary> </People>. More information about this standard can
be obtained in (W3C, n.d.).

A Data Frame is a structure derived from the pandas library (NUMFOCUS,
2015) for python programming language used to manipulate data more easily. It is
a 2-dimensional labeled structure formed by columns with potentially different types
that describe each row. For the same example used in the two other formats, a Data
Frame is like:

Figure 15 – Data Frame example.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

5.2 FIRST DATA SET - JIRA

Jira is a platform developed by Atlassian that helps teams and enterprises to plan,
assign, track, report and manage work (ATLASSIAN, n.d.[a]). Currently, all activities are
planned with the help of Jira in Renault Software Labs. In this way, the creation, planning
and execution of all tests are monitored through this platform, making it possible to know
which test was used to validate certain components developed in a project and the result
of it. Such structure allows the use of the agile development method in continuous
integration, formed by cycles of planning, development, test and improvement.



Chapter 5. Data Collection 31

In Jira, all tasks are managed as issues like tickets and their types can be seen
in figure 16 below:

Figure 16 – Issues from Jira Project Settings.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

In figure 17 the main issues types are described. Four of them are directly
connected to Jira and are organized like this: an epic encompasses several issues of
the type story and / or tasks, which can be blocked by a bug. The other four are created
by a plug-in called Xray, that is a complete test management tool that transforms Jira’s
issues. It supports the entire testing life cycle, that is test planning, design, execution
and reporting. For each issue, there is an workflow where the progress to solve it is
traced.

For some issues implementation (Test, Pre-condition, Test set, Test execution
and Test plan), the plug-in uses Jira tickets, so entities can be created or updated
using Jira’s native API taking into account the custom Xray fields. Requests can be
done to this API using OAuth 2.0 authorization, which is an industry-standard protocol
developed by the IETF OAuth Working Group.

In addition, there is an API for Xray, named raven. It provides additional endpoints
specifically designed to handle test fields and entities. It is from raven that results from
running automated processes can be exported.

The two APIs used to collect data from Jira are based in a representational state
transfer (REST) structure, more about it and a comparison with another structure will
be described in the next section. For more information on the use of such APIs, see
the documentation for Xray in (ATLASSIAN, n.d.[c]) and documentation about the cloud
platform of Jira in (ATLASSIAN, n.d.[b]).

For this project, data from five tickets types will be necessary, they are: tests case,
test plan, test executions, test runs and bugs. Each test case describes all the steps for
such a test to be carried out, as well as the required parameters and environment. The



Chapter 5. Data Collection 32

Figure 17 – Main issues types.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

set of tests case form the Renault test catalog, from where the tests will be selected
to form a test plan. A test execution is created when a test plan is executed, each test
case execution forms a test run with a result. If an error is founded during testing, a
ticket but is created to be fixed in the future. Figure 18 illustrate these data structure:

Figure 18 – Jira data structure.

Source: BRZEZINSKI MEYER, Maria Laura (2020).



Chapter 5. Data Collection 33

To collect these data, a script is executed daily by the configuration file crontab,
which specifies shell commands to be executed periodically through a given schedule.
A first version of this script was developed by the previous intern Juan Martinez Gil (GIL,
2019) and the mentor Fernand Cuesta.

During this work, the script for the collection was adjusted according to data ac-
quisition interests, and also improved aiming saving time and code re-usability, resulting
in a modular project structured like in figure 19.

Figure 19 – Structure of the Jira data collection code.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

Some performance improvements were also applied, like executing some tasks
in parallel and updating the database using SQL commands instead of dumping the
entire table each time. The job previously performed in 4 hours, now takes approximately
15 minutes. Besides that, passwords and users used to logging into databases and Jira
are now encrypted. A new git directory was created, where a test pipeline is used to
verify the main code. Collection is done as follows:

1. Settings: where all variables are set, such as passwords, URL links to servers,
saving directories, and other variables for internal uses;

2. Jira access: a request is made to take all new data, that is, all tests executed in
the current day. These data is received in a JSON format and taken using the two
REST (Representational State Transfer) APIs described previously;

3. Dataframes: relevant data is extracted from the raw data collected previously, form-
ing five DataFrames, for issues information (DFmodule_BUGS), tests case (DF-



Chapter 5. Data Collection 34

module_CAT ), tests executions (DFmodule_TE), tests runs (DFmodule_Raven)
and test results metrics (DFmodule _TRDM);

4. Saving files: the JSON raw data is saved locally, and the five Data Frames are
saved locally and in a SQL based database (PostgreSQL).

There are two table types in the PostgreSQL database for each data frame
created. The first one is used to track all modifications made in the issues collected,
so there is a field to indicate whether this data is a new ticket created or is the update
of an existing one. The second one is used to keep only the most recent information
about each issue, it is called Last Info in this project.

5.3 NEW DATA SET - SILK CENTRAL

Silk Central is a test platform developed by the company Micro Focus that helps
in the management of quality control projects (MICRO FOCUS, n.d.). It uses collabora-
tive testing, making it possible to develop in continuous integration. Thus, all activities,
progress and results are accessible to the entire team. Both automated and manual
tests can be executed using this management system, and, after execution, reports
containing specific desired data can be generated.

Data organization is different from Jira, there are projects in Silk Central and
each one is composed by folders. One folder represents a domain, that is also divided
into sub-domains. Thus one test can be in more than one sub-domain, depending on
the need to use it.

There are four main elements in Silk Central structure: test cases, test executions,
requirements and reports. Tests case are the same as in Jira, they form the Renault test
catalog and are defined by many parameters, like a description of steps, environment to
execute, domain, version, type, level, and others. Test execution represents a campaign,
which is a set of tests case, that was executed in a certain product, thus results are
provided by each execution. The requirements are linked to test cases, they describe
all tests particularity to be executed. Finally, reports can be created with specific test
results from the test executions. Figure 20 illustrates the structure described with a
simple example.

In this platform, data collection can be done using two types of web drive proto-
cols:

• Simple Object Access Protocol (SOAP): it is a function-driven protocol based on
XML, since it transfers structured information. It acts through an envelope, that is,
defining the message’s content and informing how to process it; determining a set
of rules for data types; and adjusting the layout for call and response procedures.



Chapter 5. Data Collection 35

Figure 20 – Silk Central data structure with example.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

• Representational State Transfer (REST): created in 2000 by Roy Fielding, is it a
data-driven architectural style since its main function is to access a resource for
data. It is a faster, simple and lighter way to convey data then SOAP because it
doesn’t require an envelope structure. Normally data is in a JSON format.

The data storage procedure is the same as for Jira, after the collection, Data
Frames will be generated and stored in a database. This application is still under devel-
opment together with a team responsible for the integration between the automated test
execution platforms (such as Git and Artifactory) and those for managing executions
(such as Silk Central and Jira).

In this project, two collect approaches are implemented to explore all informa-
tion that Silk Central could provide. The first one is the use of the Requests library
(REITZ, n.d.) for python in order to make GET requests to Silk’s API, the result of this
development was a simple script that facilitates SOAP’s collection and a page on the
company’s wiki. The second approach was done using Selenium web driver (APACHE,
2018) for python with google chrome driver (GOOGLE, n.d.). This script simulates a
human action: it opens a google chrome, reaches the Silk Central site, log in, searches
for the information using pre-determined filters from Silk and download it.



36

6 DATA PREPARATION

For artificial intelligence algorithms to be able to learn through data, they must
be arranged in the correct format. That is why a preparation phase is needed, where
data is filtered, cleaned and mined. According to Gil Press survey about big data in
Forbes magazine (PRESS, 2016),

"Data scientists spend 60% of their time on cleaning and organizing data. Col-
lecting data sets comes second at 19% of their time, meaning data scientists
spend around 80% of their time on preparing and managing data for analysis."

Figure 21 shows the proportion of each step in data preparation.

Figure 21 – Time spent by data scientists.

Source: (PRESS, 2016).

As mentioned in chapter 3, the data preparation phase includes data cleaning,
filtering and mining. Data cleaning is a process in data science that aims to detect
corrupted or inaccurate records in a data set, table, or database to correct or delete
them. Such term refers to the identification of incomplete, incorrect, inaccurate, or
irrelevant parts of the data. Cleaning was done to have the correct information for each
test, rearranging the data into data frames.

The term data filtering is linked to the action of allowing only certain data to be
selected for later use. This is useful for focusing only on specific information in a large
data set or table. Filtering does not remove or modify data. The two main filters used
in the project were to filter automated tests from manual ones and to select test cases
from SWCAT-6 catalog, which is all integration tests used in the SIT team (its cycle was
described in figure 6).

Data mining is a method that groups tools and techniques capable of exploring a
large data set, extracting or highlighting patterns. These tools use learning or classifica-
tion algorithms based on neural networks and statistics, helping to discover knowledge.



Chapter 6. Data Preparation 37

The result can be presented by groupings, hypotheses, rules, decision trees, graphs or
dendrograms.

The principle of artificial intelligence algorithms is to make a decision based on
information about the data. For example, to find out if a fruit is an apple or not, you need
to know its color, size and perhaps even its taste. For a human being, this task is done
by the senses, which capture all information so that the brain can decide whether that
is an apple or not. For computers the process is similar, but many trials and errors are
needed to find out which features are most relevant to model a problem. That is where
featuring engineering, a data mining tool, is necessary.

Emre Rençberoğlu enumerate nine feature engineering techniques in
(RENÇBEROĞLU, 2019): Imputation to handle with missing values; Handling
Outliers to don’t have aberrant or atypical value in the set; Binning to categorize
data and avoid overfitting; Log Transform to adjust data magnitude order; One-Hot
Encoding that enables to transform qualitative data into binary; Grouping Operations
to handle with data groups, Feature Split, Scaling data, and Extracting Date.

Therefore a study and an analysis of the data collected from Jira was done to
better understand how it can be used to select tests to be executed in a project. Besides,
some features were better explored and analysis of the importance of each feature was
made. The book Python for Data Analysis (MCKINNEY, 2018) helped with the data
manipulation using the pandas and NumPy libraries.

6.1 THE DATABASE

For integration tests, there are 2000 test cases including different versions of
1500 unique test. These tests were executed 40000 times in the past three years, about
20000 executions if those linked to tests that are now obsolete are excluded. The main
parameters for each test can be seen in figure 3.

Table 3 – Tests main parameters.
TEST CASE TEST RUN

Summary
(unique) Key Status Domain

Creation
Date Level

Bugs/
Defects TE Keys TR Status

First/Last
Execution

Title or name
of each test case,
because they can
have more then

one version

Identifier of
each version

Released,
accepted,

draft,
in review,
rejected,
obsolete

Domain,
sub-domain,
meta-domain

Date when
each test

was created

Test
level

Number of
bugs

Identifier of
all test

executions
that use this

test case

Pass, fail,
to do, aborted,

blocked,
executing

Start date
of the

first/last
execution

of this
test case

Source: BRZEZINSKI MEYER, Maria Laura (2020).

In addition to the features described in the table above, there is other information
obtained, totaling 20 columns of information for tests case, 20 for tests run, 13 for
bugs, 30 for tests execution and 18 for metrics (see Jira’s feature tables in appendix A).



Chapter 6. Data Preparation 38

Automated tests represent about 45% of tests integration data set, the report between
automated and manual for integration tests is plotted in figure 22.

Figure 22 – Automated and manual tests.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

Each test case percentage concerning its status can be seen in the figure 23.
Obsolete tests should be filtered out as they can no longer be used, but they can still
provide information on past executions to help with decision making.

Figure 23 – Tests case status.

Source: BRZEZINSKI MEYER, Maria Laura (2020).



Chapter 6. Data Preparation 39

6.2 FEATURES

In this section, five characteristics will be better analyzed with the help of all data
preparation techniques mentioned in this chapter’s introduction.

6.2.1 Test run Status

The number of times that a test has failed or passed in past runs can be useful
in deciding which test to select. It is possible to observe the relationship between the
number of executions that passed with those that did not and the other results eventually
obtained in figure 24, like blocked, aborted, to do or executing.

Figure 24 – Tests runs status.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

If a test has already failed a lot in past runs to analyze a certain component, it
will likely fail if used again. This failure can mean two things, either the test is good at
finding defects or it is not adapted for such components. To help to know which case
fits a test, it is possible to analyze the relationship between the number of failed and
passed results. In figure 25, an unsupervised machine learning algorithm, K-means,
was used to group test cases into ten clusters depending on how many passed and
failed results each one had. A line was drawn to separate cases upper to separate
those that have more failed results than passed (above the line) and those that have
more passed than fail (under the line). Six clusters are above, so the tests that belong
to them are more likely to encounter a real error if the result is "fail".

6.2.2 Test execution Duration

The test run duration can provide information about the test’s ability to find errors
in the software being tested. A relationship between the result of the execution and



Chapter 6. Data Preparation 40

Figure 25 – Clusters PASS/FAIL.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

its duration was found when analyzing all the executions already made for each test
case. This relation can be seen in figure 26, which shows the distribution of executions
duration for a specific test case.

Figure 26 – Distribution of executions duration.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

In this case, more then 90% of the executions that took longer than the aver-



Chapter 6. Data Preparation 41

age duration to finish have failed the test. Also, more then 70% of the executions that
took less than the average duration to finish have passed the test. It reveals a strong
connection between executions duration and test result.

6.2.3 Issues funded

It is necessary to remember that if a test fails, it does not mean that a bug was
found. That is why the ticks related to each test case must be obtained to check if a bug
type ticket is linked to the test in question. The tests case that founded more bugs are
listed in figure 27:

Figure 27 – Top 10 tests cases for bugs founded.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

However, there is another way to find out what tickets were linked to a test
case, this field is called issues linked and it can be: Review, Version, Cloners, Tests,
Defect, Implementation, Relates, Blockers, Release, Resolve, Issue split, Structure Link,
Dependency Link, Blocks, Duplicate, Problem/ Incident. In figures 28 and 29, a decision
tree model was created using issues links as features, then it was possible to find out
the importance of each feature in this model to determine if the results would fail or
pass. It is possible to notice that the number of defects founded by a test case has a
big impact on the final decision.

6.2.4 Tests case Usage

The executions number of a test case does not indicate whether the test was
really used, there is no way to compare a newly created test with one created last year.



Chapter 6. Data Preparation 42

Figure 28 – Feature importance for all issues linked.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

Figure 29 – Feature importance for defects related issues.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

Therefore, it is necessary to normalize the data. To measure the use of each test, a
relationship was made between the number of executions and the released date of
each test.

In addition, it is necessary to verify the test case status, because if it was most
used in its draft phase, it means that it was tested a lot before realised. The test



Chapter 6. Data Preparation 43

Figure 30 – Tests case most used.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

versioning is also important, because it is possible that a new version of a test is not
used as much as its previous version. Figure 30 shows an example of two tests, each
one has three versions. For the first one, it can be seen that one of its previous versions
has been used approximately 136.8 times a month, but its newest version is not used
as much anymore. For the second example, it has been used approximately 87.7 time
and its newest version is still used as much as before.

6.2.5 Tests case Complexity

One test case may take longer to run than another because it is more complex.
In an attempt to measure the complexity of each test, the number of steps performed in
each run was calculated and the distribution of such metrics is illustrated by the graph
in the figure 31.

As the tests in this data set are of the integration type, it is normal that they have
mostly medium complexity. The smooth line is obtained using kernel density estimation,
and with it is possible to see that these tests are composed mostly by about five steps.

6.2.6 First vectors

Using the five features described previously, six vectors can be created. A de-
scriptive statistics is done for these vectors in figure 4, summarizing the central tendency,
dispersion and shape of a data set’s distribution for these features.

They can be used as inputs for preparing machine learning models in the next
stage of the project. The previous sections showed what each vector can provide as



Chapter 6. Data Preparation 44

Figure 31 – Number of steps distribution.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

information, and the use of artificial intelligence algorithms can help to combine such
information to improve the final decision. Since the analysis of just one factor is simple,
however when more than three vectors are used, it is not even possible to graphically
visualize their combination.

Table 4 – Vectors descriptive statistics.

Status FAIL Status PASS Duration Steps Usage Bugs
count 300 300 300 300 300 300
mean 60 90 2e+06 6 7000 15

std 70 180 1e+07 3 6000 20
min 0 0 5e+03 1 0 0
25% 20 10 3e+05 2 2000 3
50% 40 50 3e+05 5 6000 10
75% 100 90 5e+05 7 10000 15
max 470 1000 9e+07 15 17000 150

Source: BRZEZINSKI MEYER, Maria Laura (2020).

6.3 CATEGORICAL DATA

Most of the data obtained are not numerical, that is, they are words, phrases
or even text. Thus, the use of text mining was necessary to separate the data into
categories. Text mining is a process used to obtain important information in a text
automatically. This information is acquired by developing standards and trends that will
be compared with the text.

After mining all information desired, categories can be created using the one-
hot encoding techni- que, which transforms a string variable into dummy variables. In



Chapter 6. Data Preparation 45

data science, dummy variables are numerical variables that represent categorical data,
they are normally binary. The use of binary variables is necessary as it is possible
to introduce a false bias if each category is mapped as being a number from 1 to 9.
For example, for test case status, if the variables { Released, Accepted, In Review,
Draft, Rejected, Obsolete } are mapped into { 1, 2, 3, 4, 5, 6 }, the machine learning
algorithms will think that there is a distance of 2 between Released and In Review, but
a distance of 3 between Released and Draft, which is not true. Using the same method
as in section 6.2.3 to analyze features importance, it is possible to see the compare the
influence of 22 test case features formed by dummy variables in figure 32.

Figure 32 – Feature importance for test case feature.

Source: BRZEZINSKI MEYER, Maria Laura (2020).

For each test execution, there are related tags that form a string array, so one
test can have multiple tags. In this case it is very useful to apply a function called
MultiLabelBinarizer from the machine learning library scikit-learn (SCIKIT-LEARN:. . . ,
n.d.). It transforms all tags into columns, so if the test execution has the tag it’s value is
1 and if it doesn’t the value is 0. Using the same method as in section 6.2.3 to analyze
features importance, it is possible to see the 20 tags more relevant in figure 33.

Such analyzes allow the reduction of the number of features used as input to
the machine learning algorithms, because, as mentioned earlier, overfitting can occur if
many features are used. This means that the statistical model is very frightening to the
previously observed data set, but it is ineffective to predict new results.

However some features appear to be very relevant to select pertinent tests, these
vectors created with dummy variables are just a first version, more study and refinement
is needed before using such data.



Chapter 6. Data Preparation 46

Figure 33 – Feature importance for test executions tags.

Source: BRZEZINSKI MEYER, Maria Laura (2020).



47

7 CONCLUSION

7.1 FUTURE WORK

The work carried out during the internship opened several questions to be ex-
plored. The analysis of the features will be continued and deepened so that relevant
information is used to assist in the learning. In addition, the other three steps mentioned
in chapter 3 will be developed, so the objective of selecting tests to be executed earlier
can be achieved. Another important task will be to automate the process of creating test
campaigns and executing them. Besides, the feedback of the system with the results
obtained by the campaigns executed should enrich the database.

A new field in artificial intelligence is giving promising results, it is called Explain-
able AI (XAI). It is a method to use explain artificial intelligence algorithms decisions.
This technique can be very useful in the software testing context, so humans can under-
stand why such tests were chosen to be executed in a determinate time of development.

Regarding the validation of machine learning models eventually created, it is
possible to simulate code defects by injecting errors. Then select tests using the models
and compare then using the Average Percentage of Faults Detected (APFD) evaluation
method. This makes it possible to check the models most adapted to the problem.

7.2 FINAL CONSIDERATIONS

The problem developed here is complex and wide-ranging, initiating a larger
project. The complete development of the pipeline presented in chapter 3 will be done
during a thesis with the SIT team, starting in the year 2021. The work carried out
during the 6-month exchange allowed an initial analysis of the problem and possible
approaches to be followed. In addition, the available data could be better understood
and ways to explore them were implemented, as well as the constant feeding of a
database that will serve in the future.

The internship enabled the contact with five major areas of knowledge: agile
development method, because software development for Renault vehicles are made in
continuous integration; software testing, that is where the problem is in; interconnection
between programs and applications to collect data; data science to analyze and prepare
the inputs; and artificial intelligence, used to attack the problem.



48

BIBLIOGRAPHY

APACHE. Selenium. [S.l.: s.n.], 2018. https://www.selenium.dev/. Accessed:
2020-06.

ATLASSIAN. A brief overview of Jira. [S.l.: s.n.].
https://www.atlassian.com/software/jira/guides/getting-started/overview.
Accessed: 2020-06.

ATLASSIAN. Jira Cloud platform Developer. [S.l.: s.n.].
https://developer.atlassian.com/cloud/jira/platform/rest/v3/. Accessed:
2020-06.

ATLASSIAN. Xray Documentation. [S.l.: s.n.].
https://confluence.xpand-it.com/display/XRAY. Accessed: 2020-06.

BOOCH, Grady. Object-Oriented Analysis and Design with Applications (3rd
Edition). USA: Addison Wesley Longman Publishing Co., Inc., 2004. ISBN
020189551X.

CROCKFORD, Douglas. Introducing JSON. [S.l.: s.n.], 2000.
https://www.json.org/json-en.html. Accessed: 2020-06.

FOO, Daniel. Continuous Integration and Continuous Delivery with nuget.
[S.l.: s.n.], 2016. http://danielcoding.net/continuous-integration-and-
continuous-delivery-with-nuget. Accessed: 2020-06.

FOWLER, Martin. Continuous Integration. [S.l.: s.n.], 2006.
https://martinfowler.com/articles/continuousIntegration.html. Accessed:
2020-06.

GIL, Juan Martinez. Data Science for Test Selection. [S.l.: s.n.], 2019. Confidential
internship report.

GÖKÇE, Nida; EMINLI, Mübariz. Model-Based Test Case Prioritization Using Neural
Network Classification. Computer Science Engineering: An International Journal,
v. 4, p. 15–25, Feb. 2014. DOI: 10.5121/cseij.2014.4102.

GOOGLE. ChromeDriver - WebDriver for Chrome. [S.l.: s.n.].
https://chromedriver.chromium.org. Accessed: 2020-06.

GROUPE RENAULT Site. [S.l.: s.n.], 2020. https://group.renault.com/groupe.
Accessed: 2020-06.

https://www.selenium.dev/
https://www.atlassian.com/software/jira/guides/getting-started/overview
https://developer.atlassian.com/cloud/jira/platform/rest/v3/
https://confluence.xpand-it.com/display/XRAY
https://www.json.org/json-en.html
http://danielcoding.net/continuous-integration-and-continuous-delivery-with-nuget
http://danielcoding.net/continuous-integration-and-continuous-delivery-with-nuget
https://martinfowler.com/articles/continuousIntegration.html
https://doi.org/10.5121/cseij.2014.4102
https://chromedriver.chromium.org
https://group.renault.com/groupe


BIBLIOGRAPHY 49

LACHMANN, R. et al. System-Level Test Case Prioritization Using Machine Learning.
In: 2016 15th IEEE International Conference on Machine Learning and Applications
(ICMLA). [S.l.: s.n.], 2016. P. 361–368.

MCKINNEY, Wes. Python for Data Analysis: Data Wrangling with Pandas, NumPy,
and IPython. 2. ed. [S.l.]: O’Reilly, Oct. 2018. ISBN 978-149-195-766-0.

MICRO FOCUS. Silk Central. [S.l.: s.n.].
https://www.microfocus.com/en-us/products/silk-central/overview. Accessed:
2020-06.

MONI, Robert. Reinforcement Learning algorithms — an intuitive overview.
[S.l.: s.n.], 2019. https://medium.com/@SmartLabAI/. Accessed: 2020-06.

NOGUCHI, T. et al. History-Based Test Case Prioritization for Black Box Testing Using
Ant Colony Optimization. In: 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST). [S.l.: s.n.], 2015. P. 1–2.

NUMFOCUS. pandas - Python Data Analysis Library. [S.l.: s.n.], 2015.
https://pandas.pydata.org. Accessed: 2020-07.

PIVOTAL TRACKER. Why agile development is the right choice for your team.
[S.l.: s.n.], 2020.
https://www.pivotaltracker.com/agile/what-is-agile-project-management.
Accessed: 2020-07.

PRESS, Gil. Cleaning Big Data: most time-consuming, least enjoyable data
Science task. [S.l.: s.n.], 2016.
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-
time-consuming-least-enjoyable-data-science-task-survey-says. Accessed:
2020-07.

REITZ, Kenneth. Requests: HTTP for Humans TM. [S.l.: s.n.].
https://requests.readthedocs.io/en/master/. Accessed: 2020-06.

RENAULT Software Labs. [S.l.: s.n.], 2020.
https://group.renault.com/groupe/implantations/software-labs-toulouse.
Accessed: 2020-06.

RENAULT–NISSAN–MITSUBISHI Alliance. [S.l.: s.n.], 2020.
https://www.alliance-2022.com. Accessed: 2020-06.

RENÇBEROĞLU, Emre. Through Medium plataform. Fundamental Techniques of
Feature Engineering for Machine Learning. [S.l.: s.n.], 2019.
https://towardsdatascience.com/feature-engineering-for-machine-learning-
3a5e293a5114. Accessed: 2020-07.

https://www.microfocus.com/en-us/products/silk-central/overview
https://medium.com/@SmartLabAI/
https://pandas.pydata.org
https://www.pivotaltracker.com/agile/what-is-agile-project-management
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says
https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says
https://requests.readthedocs.io/en/master/
https://group.renault.com/groupe/implantations/software-labs-toulouse
https://www.alliance-2022.com
https://towardsdatascience.com/feature-engineering-for-machine-learning-3a5e293a5114
https://towardsdatascience.com/feature-engineering-for-machine-learning-3a5e293a5114


BIBLIOGRAPHY 50

ROTHERMEL, G. et al. Prioritizing test cases for regression testing. IEEE
Transactions on Software Engineering, v. 27, n. 10, p. 929–948, 2001.

RUTH, M. et al. Towards Automatic Regression Test Selection for Web Services. In:
31ST Annual International Computer Software and Applications Conference
(COMPSAC 2007). [S.l.: s.n.], 2007. P. 729–736.

SCIKIT-LEARN: Machine Learning in Python. [S.l.: s.n.]. https://scikit-learn.org.
Accessed: 2020-07.

SPIEKER, Helge et al. Reinforcement Learning for Automatic Test Case Prioritization
and Selection in Continuous Integration. CoRR, abs/1811.04122, 2018. arXiv:
1811.04122. Available at: http://arxiv.org/abs/1811.04122.

W3C. Extensible Markup Language (XML). [S.l.: s.n.]. https://www.w3.org/XML/.
Accessed: 2020-06.

ZHAO, Y. et al. The impact of continuous integration on other software development
practices: A large-scale empirical study. In: 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). [S.l.: s.n.], 2017. P. 60–71.

https://scikit-learn.org
https://arxiv.org/abs/1811.04122
http://arxiv.org/abs/1811.04122
https://www.w3.org/XML/


51

APPENDIX A – JIRA’S DATABASE FEATURES

Source: BRZEZINSKI MEYER, Maria Laura (2020).


	Title page
	Approval
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	Résumé
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Enterprise Presentation
	Subject Presentation

	Project Context
	Software Testing
	Continuous Integration Development
	Test Selection Problem

	State of Art
	Changes Based Approach
	Black Box Approach
	Reinforcement Learning
	Comparison

	Project Overall
	Data Collection
	Data Format
	First Data Set - Jira
	New Data Set - Silk Central

	Data Preparation
	The database
	Features
	Test run Status
	Test execution Duration
	Issues funded
	Tests case Usage
	Tests case Complexity
	First vectors

	Categorical data

	Conclusion
	Future Work
	Final Considerations

	BIBLIOGRAPHY
	Jira's database features

