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Resumo

A indústria siderúrgica está em constante evolução. O processo de laminação a quente,

introduzido no início do século XX, revolucionou a indústria do aço, tornando o custo de

produção de laminas de aço significativamente menores. O processo consiste em transformar

grandes barras de aço em chapas extremamente finas através de uma série de rolos. Com

o advento dos sistemas de controle, a automatização do processo de laminação a quente

deixou o processo ainda mais eficiente e rápido. Novas tecnologias trazem novos desafios,

nos processos de laminação a quente atuais, os rolos compressores chegam a uma velocidade

de 120 metros por minuto. Nessas condições, qualquer defeito ou falha no sistema deve ser

detectado o mais rápido possível, para evitar danos ou produtos defeituosos. O presente

trabalho apresenta diferentes métodos para implementar um sistema de detecção de falhas.

Primeiramente é desenvolvido um sistema para detecção de falha nos "loopers". Esse

sistema consiste em analisar os sinais adquiridos nas fábricas com diferentes métodos

de processamento de sinal, notadamente estatística descritiva, STFT e EMD, e usando

técnicas de aprendizado de máquina, classificar as informações extraídas dos sinais em dois

grupos: nominal (quando o sistema está em seu funcionamento normal) e falho (quando há

alguma falha no sistema). Esse método provou-se eficaz na detecção de falhas. Em seguida,

foi proposto um método baseado em modelo para identificação de falhas no subsistema de

"strip steering". No entanto, a implementação desse método pode ser terminada devido a

ausência de dados experimentais, necessários para a validação do modelo matemático do

sistema.

Palavras-chave: Laminação a quente. Sistema de detecção de falhas. Processamento de

sinal. Aprendizado de máquina.





Abstract

The steel industry is constantly evolving. The hot strip mill process, introduced in the

early twentieth century, reshaped the steel industry, making the cost of producing steel

sheets significantly lower. The process consists in transform thick steel slabs into thin coils

using a series of compressing rolls. With the advent of control systems, the automation of

the hot rolling process has made it even more efficient and faster. Nowadays, the rolling

speed can reach 120 meters per minute. In this condition, any default or failure must be

detected as soon as possible to avoid damages and non-quality products. This document

present different method to implement a fault detection system. First, it is developed one

fault detection system on loopers. This system analyses the signals recorded by the plant’s

data acquisition system with data processing methods, notably descriptive statistics, STFT

and EMD. By using machine learning techniques, the features extracted from the signals

are separated into two groups: the nominal (when the system has no default) and the

fault (when the system has a fault). This method proved to be efficient for fault detection

on loopers. Then, it was proposed a model-based method for fault detection on the strip

steering subsystem. Although, the method implementation wasn’t possible due to the lack

of experimental data. Those data are necessary to validate the mathematical model of the

system.

Keywords: Hot strip mill. Fault detection system. Signal processing. Machine Learning
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1 Introduction

The 20th century lead the world to a new era with a chain of events that had a

great impact in our society. In the 1960s a big quantity of theories was developed and had

a great contribution in controls design. Nowadays, with the control theory consolidated

in the industry and the automation degree of process continuously growing, there is an

increasing demand for higher system perform and product quality. To increase the perform

of the system and the product quality, it is required more system safety and reliability.

One way to have a safer and more reliable process is by building a fault diagnosis

system. Those diagnosis systems are built to detect faults that a simply process monitoring

system would not detect, like sensor faults and actuator faults. A fault diagnosis system

can be developed in many ways, the main methods are the hardware redundancy schemes,

plausibility test, software redundancy schemes and by signal processing. During this project,

it was developed a fault detection system using the software-redundancy test and the

signal processing.

The fault diagnosis system aims to detect fault in a hot strip mill plant. The plant

transforms thick stabs of steel into thin coils. It is an expensive process because of the

wear of actuators, that must be often changed, and due to the size of the system, any

fault can be dangerous for the operators that are working next to it. The rolling process,

Fig. 1, is an important method in the metal industry. The product must have very precise

dimension, in the micro meter range.

1.1 Motivation of the project

The hot strip mill process consists hundred of sensors and actuators to ensure the

process operation. The rolling speed can reach up to 120m/min. At that speed, any fault

can have serious damages on the plant, and also have an influence on the product quality.

Even with the most advanced sensors and actuators, and making a regular maintenance of

the components, the process is not immune to faults.

According to a study made by SCHAFFLER on the ThyssenKrupp Steel Europe

AG’s facilities in Germany shown that one repair on the work rolls of the hot strip mil

plant costs around e21000 euros. In one year, this problem happened 5 times, totalizing

an extra charge of e105000 euros per year due to unplanned stoppage. Also, 5 unplanned

roller replacement of 7 minutes each costs e35000 euros. So, in this case, the unpredictable

faults in one hot strip mill during year costs around e140000 euros.
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steep products. The steel is produced all over the world. Europe is the biggest producer

corresponding to 47% of the steel production, the Americas produces 38% and the other

regions 18%. ArcelorMittal’s products are organised according to region, each region is

specialized in a set of products.

1.1.1.1 ArcelorMittal Global R&D

The research and development have a big importance in the ArcelorMittal’s strate-

gies. The main goal of the R&D sector is to realise ArcelorMittal’s ambitions in technological

innovation, and ensuring future growth with focus on sustainability. The company has

10 research centers distributed in North America, Europe and South America, with more

than 1400 researchers. The R&D is highly business oriented, it is focused on seven key

areas: automotive, packaging, construction, general industry, energy market, long prod-

ucts and special plates. Those centers ensures a shorter time to market and improved

competitiveness.

1.1.1.2 ArcelorMittal Maizières Research SA

The project took place in Maizières’s campus. The Maizière campus is the biggest

global R&D campus. With 24 hectares and 45.000 m2 of laboratories, the Maizière center

has 570 permanent employees and receives around 100 interns per year. The campus hosts

four different research centres: Maizière Process, Maizière Products, Maizières Mining

and Shared Services Unit (SSU). Those centres are specialized in automotive products,

packaging, process development and mining processing.

1.1.1.3 Measurement & Control department

The internship took place in the Measurement & Control Department (MC). The

department is part of the Maizière Process center. The MC department is composed of three

teams: Advanced Process Instrumentation and product non destructive evaluation; Surface

Properties, Image & Data processing; and COntrol, Simulation and MOdels (COSMO).

The main mission of those teams is to bring relevant solutions for the different process

involved in the productive chain of the steel products. Those solutions are searched in the

fields of process control, instrumentation and product inspection and evaluation.
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1.1.2 Project objectives

The objective of the internship is to carry out a feasibility of different fault detection

methods for hot strip mill process. The idea is to take advantage of the huge amount of data

that is recorded with the hot strip mill plant data acquisition system to perform an on-line

fault detection of the system. The methods can be model-based methods, data-oriented

method as well as knowledge-based methods. To develop such a system, the following

tasks are expected:

• Bibliography revision of preview works with the same subject

• Try different methods on real industrial historic data

• Develop a toolbox for facilitating further usage

• Establish a final report to capitalize the study

1.2 Structure of the document

This document is divided into six chapters. In chapter 1, the motivation of the

project and its main objectives is given. The enterprise organization and the details about

the place where the internship took place is also presented in chapter 1. Chapter 2 presents

the hot strip mill system and its components. It also contains the possible faults on hot

strip mill plant that were found in the bibliography revisions. In chapter 3 the fault

detection theory is presented, this chapters gives an overview on two different methods:

signal processing and model-based. Chapter 4 proposed a signal processing method for

fault detection, the method is applied for the looper subsystem and its results are analyzed.

In chapter 5 a model based method for fault detection on strip steering subsystem is

presented. Chapter 6 summarizes the main results of this project and presents and outlook

for future work.
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one closed loop structure as one output observer with the following structure.

ŷ(s) = Gyu(s)u(s) + L(s)(y(s) − ŷ(s)) (3.3)

Rewriting the previous expression in the state space model, we must define the L matrix

ensuring A − LC stable and with the desired dynamic. It was proven on [5] that the

residual of the closed loop structure presented can be expressed by the formula

r(s) = M̂u(s)y(s) − N̂u(s)u(s) (3.4)

where the transfer matrices M̂u and N̂u are the left coprime factor (LCF) of the Gyu(s)

function and can be obtained with the following expression.

M̂u = (A − LC, −L, C, I), N̂u = (A − LC, B − LD, C, D) (3.5)

This method is easy to design but it requires complex computation, which can difficult

the on-line realization. Choosing L is also a problem, and it was the subject of various

residual generation approached in the last three decades.

3.3.2.2 Optimal fault detection filter

In this section the optimal tuning of the fault detection filter is presented. This

regulation minimizes the set of disturbances that causes false alarms (SDFA) in function

of a given fault detection rate (FDR). Having the following state space system

ẋ(t) = Ax(t) + Bu(t) + Edd(t) + Eff(t)

y(t) = Cx(t) + Du(t) + Fdd(t) + Fff(t)
(3.6)

we must generate residuals using one FDF of the form

ẋa = Axa(t) + Bu(t) + L(y(t) − ya(t))

ya(t) = Cxa(t) + Du(t)

r(t) = V (y(t) − ya(t))

(3.7)

The optimal L and V gains can be obtained using the following equations

Lopt = (EfF ′

f + YfC ′)(FfF ′

f )−1

Vopt = (FfF ′

f )
1

2

(3.8)

with Yf being the solution of the Riccati equation

AYf + YfA′ + EfE ′

f − (EfF ′

f + YfC ′)(FfF ′

f )−1(FfE ′

f + CYf ) = 0 (3.9)

This function can be numerically solved using the function care from MATLAB®.

A′

eXEe + E ′

eXAe − (E ′

eXBe + Se)R
−1
e (B′

eXEe + S ′

e) + Qe = 0

Ae = A′ Be = C ′ Q = EfE ′

f

R = FfF ′

f S = EfF ′

f E = Isize(A)
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3.3.2.3 Parity space method

As shown on [11] parity equations are a straightforward method for fault detection.

Developed on the 80’s, this method is simple do construct and implement, it’s a method

indicated to detect additive faults and it has similar results of more complicated methods

presented in previous sections.

First we need a model Gm(s) of the process Gp(s). The residual can be calculated

by the following formula

r(s) = [Gp(s) − Gm(s)]u(s) + Gp(s)fu(s) + fy(s) (3.10)

If the model is accurate, Gm(s) = Gp(s), so the first part of the equation is equal

to zero. The residual value is only different to zero if the additive input fault fu(s) 6= 0

and the additive output fault fy(s) 6= 0

3.3.3 Fault detectability, isolability and identifiability

A model-based fault detection cannot detect all the faults of the system, there are

some conditions have to be validated to detect, isolate and identify a fault, in a FDI point

of view. The theorems used in this section were obtained on [5].

3.3.4 Structural fault detectability

A fault is detectable if its occurrence, independent of its size and type, would cause

a change in the nominal behaviour of the system output. To define in which conditions a

fault can be detectable, we recall the following theorem

Theorem 1. Given the system

ẋ = (A + ∆Af )x + (B + ∆Bf )u + Eff

y = (C + ∆Cf )x + (D + ∆Df )u + Fff

Where f is the additive fault vector and ∆Af , ∆Cf , ∆Bf and ∆Df are the multiplicative

faults given by

∆Af =
lA∑

i=1

AiΘAi
, ∆Bf =

lB∑

i=1

BiΘBi

∆Cf =

ICf∑

i=1

CiΘCi
, ∆Df =

lD∑

i=1

DiΘDi

An additive fault fi is detectable if and only if

C(sI − A)−1Efi
+ Ffi

6= 0
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with Efi
, Ffi

denoting the i-th column of matrices EfFf respectively, a multiplicative fault

ΩAi
is detectable if and only if

C(sI − A)−1Ai(sI − A)−1B 6= 0

a multiplicative fault ΘBi
is detectable if and only if

C(sI − A)−1Bi 6= 0

A multiplicative fault ΘCi
is detectable if and only if

Ci(sI − A)−1B 6= 0

A multiplicative fault ΘCi
is detectable if and only if

Di 6= 0

From Theorem 1 , we can conclude that an additive fault is detectable if the

transfer function between the fault and the system output is not zero. A multiplicative

fault ΘDi
is always detectable and the detectability of fault ΘBi

can be interpreted as

input controllability and the ΘCi
the observability. The multiplicative fault ΘAi

can change

the system dynamics.

It is evident that detecting additive faults can be realized independent of the system

input, and multiplicative faults is possible do be detected if the input signal is not zero.

This conclusion explain why sensor faults are usually modelled as additive faults and

actuators faults as multiplicative faults.

3.3.5 Structural fault isolability

In this context, it is considered a system with the influence of two faults, unknown

inputs are not taken into account. We take two faults, ξi ,ξj ,i 6= j are possible to isolate if

the changes in the system output caused by these two faults are distinguishable. To check

the conditions of fault isolability, we now use a the following corollary.

Corollary 1. Given the system used in theorem 1, then ξ with fault transfer matrix

Gξ(s) = [Gξ1(s)...Gξl(s)]

Is structurally isolable if and only if

rank(Gξ(s)) =
l∑

i=1

rank(Gξi(s))
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For additive faults for example, this result means that the faults are isolable only

if the number of faults is not larger than the number of sensors. With multiplicative fault,

the fault transfer matrix is different so it may demand more sensors. It is possible to

archive fault isolation even if this corollary is not satisfied by removing some assumption

as having previous knowledge of faults, or assuming that a simultaneous occurrence of

faults is impossible.

3.3.6 Structural fault identifiability

Fault identifiability characterizes the mapping from the system output to the faults

under consideration. If this mapping is unique, then the faults are identifiable. The formal

definition is presented below.

Definition 1. Given the system used in theorem 1, then ξ with fault transfer matrix

Gξ(s) = [Gξ1(s)...Gξl(s)]

the fault vector is called structurally identifiable if Gξ(s) is invertible and its inverse is

stable and casual.

It is a necessary condition the fault transfer function be invertible and stable,

otherwise the fault identifiability structure will be equivalent to the fault isolability

scheme.

3.4 Signal processing

The basic architecture for fault detection using signal processing is shown is Fig.

15. In this case we consider that the system’s outputs carry information about faults. The

symptom generation will catch all relevant information about the possible faults present

in the signal. Typical faults usually have influence on time domain functions, like mean

values, limit values, standard deviation or frequency domain functions like spectral power

densities, etc. The main drawback for signal processing methods is its inefficiency with

dynamic systems, where the input signals changes very often. In other hand, this method

is easy to implement and it does not requires much information about the system.
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The standard deviation calculates the amount of dispersion of a list of values

and can be calculated by the following formula

s =

√√√√ 1

N − 1

N∑

i=1

(xi − x̄)2

where x̄ is the arithmetic mean and N is the amount of values of the list.

• Variance

The variance is the expectation of the squared deviation of a random variable

from its mean [12].

V ar(X) = E
[
(X − µ)2

]

• Range

The range of a set of data is the difference between the largest and smallest values [12].

• Limit values

The maximum and the minimum value of a list of values.

3.4.1.2 Fast Fourier transform (FFT)

The fast Fourier transform is the discrete version of the Fourier transform. The

Fourier transform convert a signal in time domain into the frequency domain. The Fourier

transform plays a very important roll in signal processing because it represents a signal as

sum of complex sinusoids. Having a signal described as a sum of complex sinusoids, it is

possible to make a spectral analysis of the signal.

The spectral analysis is a important component of signal processing. For example,

it can give information on the wear of mechanical components of one system by monitoring

its vibration, and it can also identifies cyclic behaviours hidden in a signal.

The fast Fourier transform (FFT) is one algorithm to perform a Fourier transform

of a dataset. The FFT can be calculated by the following formula [13] with y(t) being the

signal.

Y (k) =
N∑

t=1

y(t)e−i2πkt/N k = 0, . . . , N − 1,

The fast Fourier transform is recommended for stationary signals because it applies the

formula over the entire signal.
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3.4.1.3 Short time Fourier transform (STFT)

The short time Fourier transform is another method based on the Fourier transform.

This method instead of applying the Fourier transform in the whole signal, as the FFT

does, it splits, over the time, the entire signal into smaller parts. So the FFT is applied for

each part of the signal.

This is a solution for spectrum analysis when it comes to non-stationary signals.

When we take the whole signal and divide it into smaller parts, each part is considered

to be stationary, so it makes sense to apply the FFT over the smaller part. As a result,

we can extract information about the evolution of the most important frequencies of the

signal over the time. The STFT is considered to be a time-frequency method because it

carries information about both variables.

The discrete STFT can be calculated with the following formula [2]

X(m, ω) =
∞∑

n=−∞

x[n]w[n − m]e−jωn

where X(m, ω) are the Fourier coefficients depending on time index m and frequency ω, x

is the signal and w is the window function.

3.4.1.4 Empirical mode decomposition (EMD)

The empirical mode decomposition is another time-frequency method for signal

processing of non-stationary signals. It’s an empirical method, different from STFT and

FFT, and it decomposes the signal into intrinsic mode functions (IMF).

IMFs represents specific oscillations of the original signal [2]. This method was

developed by NASA’s engineer Norden E. Huang on 1988. According to its definition, one

IMF should satisfy two conditions “... the number of extrema and the number of zero

crossings must either equal or differ at most by one” and “the mean value of the envelope

defined by the local maxima and the envelope defined by the local minima is zero” [14]

The EMD method can be perform by the following algorithm [15]

1. Initialize: r1 = x (t) , and i = 1

2. Extract the ith IMF

a) Initialize: hi(k−1) = ri, k = 1

b) Extract the local extrema and the minima of hi(k−1)

c) Cubic spline interpolation of local extrema from upper and lower envelopes of

hi(k−1)
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d) Calculate the mean mi(k−1) of the upper and lower envelopes of hi(k−1)

e) Let hik = hi(k−1) − mi(k−1)

f) If hik is an IMF then set IMFi = hik, else go to step (b) with k = k + 1

3. Define ri+1 = ri − IMFi

4. If ri+1 still has least 2 extrema then go to step (2) else decomposition process is

finished and ri+1 is the residue of the signal

Figure 16 – Empirical mode decomposition (Source: Towards Data Science)
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4 Development of an application for fault de-

tection

In this chapter, it is proposed a signal processing method for fault detection.

The method combine signal processing techniques with machine learning algorithms. Its

implementation for fault detection on loopers is shown in section 4.2. Then the results of

the validation are discussed.

4.1 The proposed signal processing method for fault detection

The hot strip mill plant, as presented on section 2, has a lot of sensor and actuators,

the signals transmitted and emitted by those components contains information about

the system state. On ArcelorMittal’s steel mills, those signals are stored using the IBA®

measurement system. The main idea is to take advantage of the huge amount of signals

that were record to build a signal processing fault detection system.

The proposal is to build a fault detection system that can be divided into three

parts:

1. Data reading

2. Data processing

3. Data classification

4.1.1 Data reading

This is the most simple task of the proposed method. The system will be developed

on MATLAB® platform, and the signals are recorded using the IBA® measurement system.

As the acquisition system is already complete and working, it’s just necessary to convert

the IBA® files into MATLAB® ".dat" format.

4.1.1.1 Pre-processing

The hot strip mill plant record hundreds of signals not all of them are useful or

contains information about the state of the system. In this part, the useful signals for fault

detection are selected and the useless part of those signals are removed. Some signals like
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the input of the motor that controls the looper for example, when the looper is not used,

the signal is zero and it doesn’t have any useful information.

The pre-processing take care of the useless signals. It is an important task because

the signal processing requires a considerable computational effort, like the Fourier or

Wavelet transforms. When the data is clean, less computational effort is required so the

system is more efficient and faster.

4.1.2 Data processing

The data processing is the most important part of the method. It’s necessary to

use the right methods for features extraction, so the data classification will have more

success and the fault detection system will be more precise and accurate.

For features extraction, the proposed technique is to try different methods studied

on section 3.4.1:

• Descriptive statistics

• Short time Fourier transform

• Empirical mode decomposition

Those three methods were chosen because they have completely different characteristics.

Descriptive statistics like the mean, variance and standard deviation are very easy to

calculate and can give a lot of information about the signal. The STFT is a theoretical tool

based on the Fourier transform and it’s possible to analyse the evolution of the frequencies

over the time of one signal. The EMD is different from both of them, it’s a empirical

method and can be useful when the signal is too complex or non-stationary.

4.1.3 Data classification

The features extracted by the methods presented in the previous section need to be

classified into fault or nominal data. As there’s an important amount of signals recorded,

it was chosen two machine-learning methods: support vector machine and classification

tree. The cross-correlation method is used to classify the EMD results, following the signal

processing method presented on [5]. In this section, a basic theory about those classification

method is given.
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4.1.3.1 Support Vector Machine (SVM)

The support vector machine is a learning model that can be used for data classi-

fication. In our case, we have to give the data from the feature extraction labeled into

two groups: the nominal and the fault data. The SVM algorithm will create an optimal

hyperplane to separate the both data. The optimal hyperplane created to separate the

training data can be used to classify new data. So, by using a big amount of labeled and

recorded data, it is possible to train a SVM model to classify the new data.

The mathematical basis to develop a system with such characteristics is given

by [16].

The data needed for training is given in the following form

(y1, x1)...(yn, xn) x ∈ R
n, y ∈ {−1, +1} (4.1)

The hyper plane is defined as

H(ω, b) = {∀x|ωT x + b = 0} (4.2)

where b is the parameter needed to calculate the normal distance of the hyperplane to the

origin and ω is the normal vector to the hyperplane. The prameters in Equation 4.2 are

scalable, meaning that

H(ω, b) = {∀x|cωT x + cb = 0} (4.3)

with c ∈ R and c 6= 0 lead to the same hyperplane as Equation 4.2 The optimal hyperplane

has to fulfil the condition below

minxi
|ωT xi|

!
= 1 (4.4)

The euclidean distance of a point xi to the hyper plane is

d(H; x) =
|ωT xi + b|

||ω||
(4.5)

The support vectors are the the data points xi closest to the hyperplane. The distance

between the data points and the hyperplane is called margin, must reach a maximum. The

distance can be calculated by the following formula

ζ(H) = minxi
d(H; xi) =

1

||ω||
[minxi

|ωT xi + b|] =
1

||ω||
(4.6)

The maximum ζ is reached when ||ω|| is minimized. The optimization problem below must

be solved

Θ(ω) = argminω,b[
1

2
||ω||2] (4.7)

The following constraint must be assumed to not violate the condition 4.4

yi((ω
T xi) + b) ≥ 1, i = 1, ...n (4.8)
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The optimization problem with constraints can be solved using the Lagrange’s method of

multipliers

ω =
n∑

i=1

αiyixi (4.9)

for ω, with αi being the Lagrange multipliers

b = −
1

2
ω[xr + xs] (4.10)

for b, where the indiced r and s indicate the support vectors

αr, αs > 0, yr = 1, ys = −1 (4.11)

finally, the optimal hyperplane is

f(x) = sign(ωT x + b) (4.12)

4.1.3.2 Classification Tree

The classification tree is a very simple and efficient tool that can be used in data

classification. The classification tree can be seen as a binary tree. Each root node of the

tree represents one input and the leaf nodes represents the output of the tree. The C4.5

algorithm [17] is one solution to implement a classification tree.

• Check for base cases

1. For each attribute a

a) Find the feature that best divides the training data such as information

gain from splitting on a

2. Let a best be the attribute with the highest normalized information gain

a) Create a decision node node that splits on a_best

• Recurse on the sub-lists obtained by splitting on a best and add those nodes as

children of node

4.1.3.3 Cross-Correlation

The cross-correlation function on signal processing tells the similarity of two given

signals. The function is defined by the following expression

Cx1x2
(σ) = lim

Tf →∞

1

Tf

∫ Tf /2

−T f/2
x1(t)x2(t + σ)dt (4.13)

The method proposed by [5] for fault detection using cross-correlation is to calculate the

auto-correlation between the IMF’s obtained with the EMD method, discussed on section
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3.4.1.4, in the feature extraction part. The auto-correlation is the cross-correlation function

applied to the same signal divided into two parts. Having the results of the auto-correlation,

the magnitude and the position where the correlation was more important is saved. Those

values gives information about the symmetry of the signal. If the highest magnitude of the

correlation is when the position is close to zero, it means that the IMF is highly symmetric.

The method proposes to use those symmetric information to define thresholds to classify

the data into two states.

In our case, instead of define thresholds to classify the data, we propose to use the

machine learning methods, SVM or classification tree. So, as training data, instead of the

features extracted by the data processing part, the machine learning methods used the

information about similarity of the IMFs obtained with the cross-correlation function.

4.2 Implementing the signal processing method for fault detection

on loopers

The signal processing method for fault detection on loopers was implemented using

the recorded data from 2016 to 2018 from Florange factory. The hot strip mill plant has

an iba® measurement system. This system acquires hundreds of signals during the whole

milling process. The signal-based fault detection model was made to identify fault on

loopers. In the looper subsystem, 18 signals are recorded by the iba® measurement system.

Some of the most important signals recorded are:

• Angular position measure/reference

• Speed measure/reference

• Torque measure/reference

• Servomotor reference

• Pression on hydraulic cylinder

There are 2297 files recorded in total. It’s known that 1827 files represent the

nominal behaviour of the system. The other 470 files were recorded when the system was

on its faulty state. It’s not defined the exact fault presented in the system, or how many

faults can be found on the faulty files. It is just known that those files don’t represents

the nominal behaviour of the system.
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4.5 Data Classification

After the feature extractions, the next step is the classification. To implement

different classification methods, it was used the MATLAB® Classification Learner app.

The basic statistical features were classified using SVM and classification tree. The STFT

results were sorted using classification three. The EMD results were first classified using

cross-correlation and then with SVM.

4.5.1 Classification Tree

The classification tree was applied to the basic statistics features and to the STFT

data. For the basic statistics features, each feature (mean, median, maximum value,

minimum value, standard deviation and variation) is an input to the classification tree, as

result, it indicates the state of the system. The STFT data were also used as input in the

classification tree. The results are presented in the next section.

4.5.2 Support vector machine

The SVM was used to classify the features extracted by the data processing methods

into the two system states. The classification tree has the same input as the SVM. So our

objective here is to compare which classification method is more efficient to identify faults

in the signal that is being used.

4.5.3 Cross Correlation

The features extracted using the EMD method were auto-correlated. From each

result of the autocorrelation it was extracted the maximum point of correlation. If the signal

is symmetric for example, the highest autocorrelation would be in 0. That information

was used as input for the support vector machine training.

4.6 Implementation results

In total, we had 2297 files recorded. Around 80% represented the system on its

nominal behaviour and the other 20% the system on its fault state. For modeling, 60% of

each type of file were used. So the other 40% were reserved to do the validation. The files

were chosen randomly, to minimize the influence of the period when the file was recorded.
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Table 1 – Numeric values of model validation

Model False positive rate True positive rate
Descriptive statistics - Tree 3.7% 99.0%
Descriptive statistics - SVM 4.2% 99.7%
STFT - Tree 52.2% 98.2%
EMD-CC-SVM 70.7% 97.8%

It’s clear that for fault detection, the best results are the combination between

basic statistics and a given classification method. The classification tree has a singly better

fault positive rate, and a worst true positive rate comparing to the SVM. Considering that

this is a fault detection system, it’s better to have a false alarm instead of doesn’t identify

one fault. So, the basic statistics features combined with SVM classifier is the best choice.

The other two model has shown worst results. It shows that for fault detection on

loopers, time-frequency analysis aren’t good methods for features extraction. However,

those methods should be considered when it comes to fault identification, but to perform

a fault identification it is required more information about the fault.

Another reason that should be considered to understand why the more complex

methods didn’t give good results is that is not known how many type of faults were present

on the files. Both features extraction systems, STFT and EMD, had a big false alarm rate.

It means that with the system is too sensible to identify faults.

So, the best signal processing method for fault identification on loopers are the

descriptive statistics combined with support vector machine or classification tree.

Table 2 – The most efficient techniques for fault detection on loopers

Model False positive rate True positive rate
Descriptive statistics - Tree 3.7% 99.0%
Descriptive statistics - SVM 4.2% 99.7%
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5 Model-based fault detection on strip steer-

ing

After speaks with specialists from the factories. It was noticed that the loopers

aren’t a big problem on the hot strip mill plant. Those faults are not the most frequent

and it’s not a reason for a big concern from the operators.

The most problematic part of the hot rolling process is the strip tracking. Usually

the strip gets out of its desired path, this deviation can cause serious faults like the ‘cobble’

which also very dangerous for the operators.

This chapter proposes a model-based fault identification system on strip steering.

5.1 The proposed model-based method for fault detection

Model-based methods are much more complex to develop than signal based ones. It

requires an accurate model of the system and the fault detection, isolation and identification

is much more complex. In other hand, those models are usually better on fault identification

and much more flexible to changes on the plant.

As seen in previous sections, there’s many ways to build a model-based fault

detection system. The proposed solution in presented below.

1. Build a dynamic model

• Validate the model

2. Study the faults on the system and build model for the faults

3. Linearize the system

4. Apply the methods presented on section 3.3.2

5. Validate the fault identification system with real data

5.2 Implementing the model-based method for fault detection on

strip steering

The first step to implement the proposed solution is to build a dynamic model for

the system. When the strip steering control, see 2.0.1.5, was implemented, one dynamic
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model was developed. The idea was to use the same model for fault detection on the strip

path.

5.2.1 Mathematical equations

Those equations were developed by ArcelorMittal’s engineers when the strip steering

control was developed [18]. The non-linear equations shows the relation between the

parameters presented on table 3.

Table 3 – Strip steering parameters

Parameter Description
∆Pj Differential rolling force
∆hj Strip thickness profile
∆Sj Stand tilting
∆Kj Differential stand stretch
∆T am

j Upstream differential of strip tension

∆T av
j Downstream differential of strip tension

Zj Strip off-centre
Ej Young’s module
sj Work roll speed
bj Work roll length
l0
j Inter-stand length

lv
j The screw inter-axis length

T av
j The front strip tension

T am
v The back strip tension

hj Strip thickness
wj Strip width

c
fh
j , c

fTam

j , c
fTav

j c
gh
j Constants to represent the gradient of the strip parameters

c
gTam

j , c
gTav

j , Kh
j , K

f
j , K l

j, Pj, gj Constants to represent the gradient of the strip parameters

The main equations governing the system are presented below.

The differential rolling force equation

∆Pj = c
fh
j−1∆hj−1 + cT am

j ∆T am
j + c

fT av
j ∆T av

j (5.1)

The exit stand wedge equation

∆hj =


 wj

(lv)2
jK

h
j

+
6wj

b2
jK

f
j


 (∆Pj − 2Pj) Zj +

∆Pj

K l
j

+
wj

lv
j

∆Sj −
wj

lv
j (Kh

j )2
Pj (5.2)
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6 Summary and future work

6.1 Summary

The project presents two different methods for fault detection on hot strip mill

plants: signal processing and model-based. The signal processing method was used for fault

detection on looper by analysing the servo-motor signal. The signals were firstly analysed

through short time Fourier transform, empirical mode decomposition and basic descriptive

statistics. Then the data was classified using machine-learning methods. The method that

combined descriptive statistics and support vector machine gave great results, with more

than 99% of true positive rate and less than 5% of false positive rate for fault detection.

The model-based method proposed for fault detection on strip steering system couldn’t be

finished due to lack of real data to validate the model of the process.

Most part of the project objectives were accomplished. An extensive bibliography

revision were made to study the techniques of fault detection in the steel industry. Two

different methods for fault detection were studied and one was successfully implemented.

A toolbox for facilitating further usage wasn’t developed because the fault detection on

loopers turned out to be an infrequent and not relevant fault. So it was made a decision

to don’t spend more resources on this subject.

6.2 Future work

The signal processing method for fault detection proved its efficiency. The same

method could be used for fault detection on other parts of the hot strip mill system.

The recorded data available was separated into two groups: fault and nominal, those

circumstances made impossible the development of a complete fault diagnostic system.

Organizing the fault data into subgroups, each one with one different fault, would allow

the implementation of a fault isolation and identification system.

The model-based method, the next step is to validate the existing model with real

data from industry. Having a valid model of the strip steering system, it’s possible to do

a study of the failures on the strip steering system and model it. With both models it’s

possible to build model-based fault diagnosis system with the techniques studied in this

project.
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