

UNIVERSIDADE FEDERAL DE SANTA CATARINA

PROGRAMA DE PÓS-GRADUAÇÃO EM AUTOMAÇÃO E

SISTEMAS

Denise Albertazzi Gonçalves

A CONVOLUTIONAL NEURAL NETWORK APPROACH ON

BEAD GEOMETRY ESTIMATION FOR A LASER CLADDING

SYSTEM

Dissertação submetido(a) ao Programa

de Pós-Graduação em Engenharia de

Automação e Sistemas da

Universidade Federal de Santa

Catarina para a obtenção do Grau de

Mestre em Engenharia de Automação e

Sistemas

Orientador: Prof. Dr. Marcelo Ricardo

Stemmer

Florianópolis

2019

Ficha de identificação da obra elaborada pelo autor

através do Programa de Geração Automática da Biblioteca Universitária

da UFSC.

This work is dedicated to my family

and to my laboratory coworkers.

ACKNOWLEDGEMENTS

The author would like to thank the Laboratório de Mecânica de

Precisão (Precision Mechanics Laboratory) staff for making this work

possible. She would also like to thank the Labmetro for the hardware

support.

The author would also like to thank her family for support during

those long two years.

The author would like to thank the Conselho Nacional de

Desenvolvimento Científico e Tecnológico CNPq for funding this work.

RESUMO EXTENDIDO

Introdução

Laser cladding é um processo de fabricação baseado em manufatura

aditiva no qual um laser é utilizado para fundir material de adição sobre

um substrato, sobre o qual uma poça fundida é formada e, desta, forma-

se um cordão de cladding. Dentre suas vantagens estão o baixo aporte

térmico e elevada qualidade superficial de suas peças produzidas. Tal

processo é, porém, altamente susceptível a perturbações, resultando em

alterações da geometria final de seus produtos. O Laboratório de

Mecânica de Precisão (LMP) na Universidade Federal de Santa Catarina

(UFSC) possui um sistema laser de alta potência capaz de operar diversos

processos de manufatura a laser, incluindo laser cladding. Neste sistema,

busca-se compreender a influência dos parâmetros de processo sobre a

geometria final dos cordões de cladding produzidos.

Objetivos

Propõe-se um método automático para a estimação da geometria final do

cordão para um processo de laser cladding. Como objetivos secundários

encontram-se a adequação do sistema para a aquisição das imagens, a

medição real da geometria dos cordões de cladding e o desenvolvimento

de diferentes arquiteturas de redes neurais convolucionais.

Metodologia

Primeiramente, são realizadas revisões bibliográficas sobre os principais

conceitos das áreas de laser cladding e de redes neurais convolucionais.

Em seguida, buscam-se aplicações de ambas as técnicas combinadas,

novamente na literatura, de forma sistemática. Inicia-se, então, a

adaptação do sistema de laser cladding para a aquisição das imagens da

poça fundida. Os cordões de cladding são então fabricados e,

posteriormente, medidos através de fotogrametria ativa. Finalmente, as

redes neurais convolucionais são desenvolvidas na linguagem Python 3.6

utilizando-se da biblioteca Keras.

Resultados e Discussão

As redes neurais convolucionais desenvolvidas são capazes de estimar a
geometria final dos cordões com alta acurácia. O coeficiente de

determinação entre os valores reais e estimados pelas redes ultrapassa

0.95 para cada frame nos melhores casos. O erro médio, considerando

todos os cordões, chega a valores tão reduzidos como 5 µm. Algumas

arquiteturas são mais susceptíveis ao fenômeno de overfitting que outras,

embora este fenômeno não seja suficiente para invalidar seus resultados.

Considerações Finais

Como uma primeira abordagem de monitoramento ótico inteligente no

laboratório, os resultados foram muito positivos. O sistema laser foi

adaptado para adquirir imagens do processo, enquanto as redes foram

capazes de estimar a geometria final dos cordões de cladding com

sucesso. Com este sistema, o laboratório está mais próximo da

implementação de um futuro controle em malha fechada do processo.

Palavras-chave: Redes Neurais Convolucionais, CNN, laser cladding,

geometria de cordão, estimativa de geometria, monitoramento ótico.

ABSTRACT

Laser cladding is a complex manufacturing process which requires fine-

tuning to achieve the desired geometry. In order to further understand the

process, an automated method for clad bead final geometry estimation on

a laser cladding system is proposed. To do so, convolutional neural

network architectures were developed. They receive the camera image

and process parameters as inputs, yielding width and height of the clad

beads as outputs. The optical monitoring system’s hardware was updated

as well. The results of the network’s performances show coefficients of

determination between the target and the estimated values above 0.95 for

each frame on the best cases, while the error mean among all clad beads

get to as little as 5 µm. Those results take the laboratory one step further

into closed loop control for this process.

Keywords: Convolutional neural network, CNN, laser cladding, bead

geometry, geometry estimation, optical monitoring.

IMAGE INDEX

Figure 1 - Laser Cladding Setup (a) and optical path schematic (b). 26
Figure 2 - Molten pool image, 1750W, 800mm/min. On this image, the

cladding head is traveling to the right relative to the substrate, parallel to

it. ... 27
Figure 3 - Clad bead manufacturing schematic. 28
Figure 4 - Convolution operation. ... 30
Figure 5 - Pooling operation. ... 31
Figure 6 - Search queries for optical system monitoring (left) and artificial

intelligence for laser cladding (right). ... 35
Figure 7 - System with two cameras, one on a shallow angle and the other

on a 45° angle .. 36
Figure 8 - Molten pool images: (a) high-speed camera image; (b) infrared

coaxial camera image; (c) molten pool isotherm 38
Figure 9 - Schematic of the trinocular CCD based detection system. ... 40
Figure 10- Experimental setup with a webcam and UV illumination. .. 41
Figure 11 - Experimental average and ANN predictions for depth. 44
Figure 12 - Scatter diagram with the best fit of GA-BPNN prediction vs.

experimental. (a) training patterns (b) test patterns. 45
Figure 13 - Analog camera, model CF 8/5 MX from Kappa (a). Image

converter, model Video-to-USB 2.0 converter from The ImageSource (b).

 ... 48
Figure 14 - Digitalized image from the analog camera. 48
Figure 15 – Designed filter support. It fits up to two 25.4 mm (1 inch)

diameter filters. ... 49
Figure 16 - Clad bead layout. .. 50
Figure 17 - Cladded beads. Clads deposited on red rectangles correspond

to the three sets of data used in this work. Marks on the blue rectangle

were made without powder. .. 51
Figure 18 - Clad bead height and width geometries. 52
Figure 19 - Clad beads data cloud. .. 53
Figure 20 - Clad beads with sectioning. .. 54
Figure 21 - Image from training set before preprocessing. Nozzle area and

cropped image regions. 1050W, 300mm/min. 1200 x 1600 pixels. 55
Figure 22 -Figure 21 after cropping, masking and rescaling. 128 x 128
pixels. .. 55
Figure 23 - Image generator code.. 57
Figure 24 - Schematic for CNN architecture ... 59
Figure 25 – Image branch code. .. 60

Figure 26 - Input parameters branch code. .. 61
Figure 27 - Merging branch code. ... 61
Figure 28 - CNN loss, optimizer, and metrics. Source: Author. 62
Figure 29 - Convolutional neural network prediction gathering code. . 63
Figure 30 - Error mean and standard deviation calculation. 64
Figure 31 – Loss value from 200 epochs training of all neural networks

with both width and height outputs. .. 66
Figure 32 – Loss value from 200 epochs training of all neural networks

with width as output. ... 66
Figure 33 – Loss value from 200 epochs training of all neural networks

with only height as output. .. 67
Figure 34 – Mean absolute error values from 200 epochs training of all

neural networks with both width and height as outputs, in millimeters. 68
Figure 35 – Mean absolute error values from 200 epochs training of all

neural networks with width as output, in millimeters. 68
Figure 36 – Mean absolute error values from 200 epochs training of all

neural networks with height as output, in millimeters. 69
Figure 37 – Percentage error values from 200 epochs training of all neural

networks with both width and height as outputs. 70
Figure 38 – Percentage error values from 200 epochs training of all neural

networks with width as output. ... 70
Figure 39 – Percentage error values from 200 epochs training of all neural

networks with height as output. .. 71
Figure 40 – Best and worst network performances from both testing and

training phases. Top row: Training phase. Bottom row: Testing phase.

Left column: Best performance. Right column: Worst performance. ... 72
Figure 41 - R² for the multiple output networks, calculated for both

outputs (top), only for width (bottom left) and only for height (bottom

right). ... 75
Figure 42 – Gaussian distributions of the estimation error for the networks

with multiple outputs on their training phase (left) and testing phase

(right). ... 77
Figure 43 – Gaussian distributions of the estimation error for the networks

with the width output on their training phase (left) and testing phase

(right). ... 78
Figure 44 – Gaussian distributions of the estimation error for the networks
with the height output on their training phase (left) and testing phase

(right). ... 79

TABLE INDEX

Table 1 - Input process parameters. Source: Author 50
Table 2 - Theoretical number of frames for each travel speed. 53
Table 3 - Mean squared error and mean absolute error functions. 62
Table 4 – Convolutional Neural Network Architectures. 62
Table 5 – R² value for the networks with both width and height outputs.

 ... 73
Table 6 – R² value for the networks with width output. 74
Table 7 – R² value for the networks with height output. 74
Table 8 – Individual height and width R² for all networks. 76
Table 9 – Mean and standard deviations for the estimation error on both

training and testing phases for the multiple output networks. 77
Table 10 – Mean and standard deviations for the estimation error on both

training and testing phases for the width output networks. 78
Table 11 – Mean and standard deviations for the estimation error on both

training and testing phases for the height output networks. 79
Table 12 – Error mean and standard deviation of the test phases from

networks A and F for all output types. .. 80
Table 13 - Percentual error definition. .. 80
Table 14 – Percentual error mean and percentual error standard deviation

of the test phases from networks A and F for all output types. 81

LIST OF ABBREVIATIONS AND ACRONYMS

ANN – Artificial Neural Network

CAD – Computer Aided Design

CAM – Computer Aided Manufacturing

CCD – Charged Coupled Device

CMOS – Complementary Metal-Oxide Semiconductor

CNN – Convolutional Neural Network

CSV – Comma Separated Values

FDM – Fused Deposition Modeling

FPGA – Field Programmable Gate Array

fps – frames per second

GA – Genetic Algorithm

GA-BPNN – Genetic Algorithm based Backpropagation Neural Network

IR – Infrared

LMP – Laboratório de Mecânica de Precisão (Precision Mechanics

Laboratory)

MAE – Mean Absolute Error

MIG – Metal Inert Gas

MSE – Mean Squared Error

MTU – Maximum Transmit Unit

PI – Proportional Integral

PID – Proportional Integral Derivative

RNN – Recurrent Neural Network

UFSC – Universidade Federal de Santa Catarina (Federal University of

Santa Catarina)

UV – Ultraviolet

INDEX

1 Introduction ... 21
1.1 Objectives.. 22

1.2 Contributions ... 22

1.3 Text Structure .. 22

2 Theoretical background.. 25
2.1 Laser Cladding .. 25

2.1.1 Laser Cladding Setup ... 25

2.1.2 Molten pool .. 26

2.1.3 Clad Bead ... 27

2.1.4 Process Parameters ... 28

2.2 Convolutional Neural Networks ... 29

2.2.1 Convolution Layer .. 30

2.2.2 Pooling Layer ... 31

2.2.3 Dense Layers and Output ... 31

2.2.4 Learning ... 32

3 State of the Art .. 35
4 Implementation ... 47
4.1 Optical system adequation .. 47

4.2 Laser clad processing .. 50

4.3 Clad bead geometry measurement .. 52

4.4 Image preprocessing ... 54

4.5 Neural network development and evaluation 56

4.5.1 Image Generator ... 56

4.5.2 Convolutional Neural Network Layers 58

4.5.3 Convolutional Neural Network Evaluation 63

5 Results .. 65
5.1 Training results ... 65

5.2 Estimation performance .. 71

5.2.1 Target and Prediction values ... 72

5.2.2 Estimation error .. 76

6 Conclusion ... 83
7 Bibliography .. 87

21

1 Introduction

Laser cladding is an additive manufacturing process in which a laser

beam melts feedstock material into a substrate, producing a clad bead. On

the last decades, its usage has increased due to minimal thermal distortion,

minimal dilution, and high superficial quality (TOYSERKANI, 2005). It

is a highly multidisciplinary process, embracing subareas such as laser

technology, numeric command, powder metallurgy, process control, and

monitoring (TOYSERKANI, 2005). Coating, wear off parts repair,

fabrication of parts with variable mechanical properties, and complex

geometries are all suitable applications for this process.

Together with this process’ boom came the need for its monitoring.

Having such a complex physical nature, the understanding of this process

is of high interest for its users. To identify the different aspects which

influence a final part’s geometry is to enhance its efficiency, achieving a

final geometry closer to the target one, thus, leading to less post-

processing time.

The Laboratório de Mecânica de Precisão (Precision Mechanics

Laboratory – LMP) on the Universidade Federal de Santa Catarina

(Federal University of Santa Catarina – UFSC) possesses two laser

processing units in which processes such as laser cladding, laser

remelting, laser autogenous welding, laser-MIG hybrid welding, and laser

superficial treatment are studied. One of the units utilizes a 10 kW laser

source, in which most of those processes occur. In this unit’s setup, there

is a camera which acquires images coaxially to the laser beam. Through

this camera it is possible to acquire images of the molten pool – the region

where the laser melts the feedstock material together with the substrate,

forming the clad bead. This molten pool holds most of this process’

secrets, providing the most information out of it.

An efficient way to gather information from the molten pool is to

acquire its image. Using such a camera setup as described previously, one

can acquire images of it which are normal to the substrate. Those images

provide information on molten pool geometry and on its brightness. When

properly analyzed, those images have the potential to yield information

related to the clad bead’s geometry.

Inspired by those who run the laser unit, a monitoring system, and its
software are here proposed. It aims the understanding of the process just

as operators do. A glance at the molten pool’s image during the process

is all that it is needed for an experienced operator to identify an overly

heated molten pool, which they easily correct by adjusting laser power. If

22

the human neural network can perform it, this is certainly an inspiration

for artificial networks to do so.

Taking a step further, not only could a neural network identify an

over – or under – heated molten pool, but, perhaps, the very geometry of

the clad bead. As the superficial tension of the molten pool drops with

temperature, so does the height of the bead – as the material flows further

over the substrate, increasing bead width.

For such a daring task, the chosen neural network architecture once

more follows the human sight. Inspired by the vertebrae cortex, the

convolutional neural network is the perfect match for this challenge,

nevertheless, this combination of laser cladding and convolutional neural

networks is yet to be found in the literature.

1.1 Objectives

The main objective of this work consists of the following:

“To develop an automated method for clad bead final geometry

estimation on a laser cladding system”

In order to do so, some steps were identified as essential to this work,

which are here named as secondary objectives:

• To analyze the current optical system and, if necessary, propose

suitable modifications to it

• To develop a methodology for the reliable measurement of the

final clad bead geometry

• To develop different convolutional neural network architectures

for clad bead geometry estimation

1.2 Contributions

The execution of this work results in the first assault towards

intelligent process monitoring for the laboratory. It opens research lines,

which enables future works to be executed in these fields. Besides that, it

leaves the laboratory one step further to process control, as process

monitoring is the key for such. For the scientific community, this works

contributes with yet another possibility of process monitoring, leaving

room for many optimizations.

1.3 Text Structure

23

The first step of this work was to research literature on laser cladding

and convolutional neural networks for their fundamentals, in chapter 2.

Later, another literature research was performed, this time looking for the

efforts made on laser cladding process optical monitoring and on neural

network applications for clad bead estimation since the beginning of the

technology, on chapter 3.

After the research was concluded, the optical system adequation

which would allow image acquisition initiated. The usage of different

lenses, filters, and cameras was analyzed, and a final setup was

implemented. Then, the clad beads were deposited, their images,

acquired. The beads were measured through active photogrammetry and

the images were preprocessed on the Python 3.6 language using the

OpenCV library. Six different convolutional neural network architectures

were then developed under the Python 3.6 language by using the Keras

library with the TensorFlow backend. Metrics were also developed

aiming to enhance the architecture’s comparability. Other libraries such

as Numpy, Scipy, Pandas, and Glob were also used for support operations

and file management. These development and implementation steps are

in chapter 4.

The results are presented in chapter 5. There, the architecture’s

performances are compared. Chapter 6 concludes this work, analyzing its

successes and failures, as well as presents suggestions for those who dare

to follow the path this work initiated. On chapter 7, the references used

throughout this work as listed.

24

25

2 Theoretical background

This chapter is designed to explain the major areas of this work. It is

performed with a standard, exploratory research on the most consolidated

literature on the area, along with community used reference websites. The

first section details how the laser cladding process works and its most

important features, while the last section explains how a convolutional

neural network is structured and how it operates on images.

2.1 Laser Cladding

Even naming this technology has proven to be a complex task. Laser

cladding, laser metal deposition, laser coating, laser powder deposition,

laser surfacing, laser direct deposition or even laser additive

manufacturing are all usual names for such a process. Laser cladding is

an interdisciplinary laser-based technology, which can also embrace

CAD/CAM software, robotics, sensors and control, and powder

metallurgy technologies (TOYSERKANI, 2005).

The growth of laser cladding technology increases among other

manufacturing technologies due to its advantages, such as enhanced

thermal control, reduction of production time and unique, smart structures

production (TOYSERKANI, 2005).

This section explains how laser cladding works as a plant to be

controlled, which means, with a black box point of view. No

phenomenological details are studied as they are not the focus of this

work. As so, a quick overview of the process setup is presented.

Subsequently, the molten pool is defined and detailed. After that, the main

input and output variables are listed. Finally, the final product – the clad

bead – is presented and detailed.

2.1.1 Laser Cladding Setup

Laser cladding is a laser-based additive manufacturing process where

a laser beam is used to melt feedstock material over a substrate to build

structures. The purpose of those structures can range from a surface

coating to complex geometric build-up, being possible to select their
chemical composition throughout a broad spectrum. There are many

options or possibilities regarding feedstock material feeding setup, being

the powder coaxial feeding method the one of interest in this work. In this

method, the laser beam travels inside the laser cladding head, while

26

powder is blown coaxially to it from a ring-shaped aperture. An inert gas

acts as a powder carrier gas, protecting it against oxidation. The laser

cladding head in Figure 1a illustrates such setup.

Figure 1 - Laser Cladding Setup (a) and optical path schematic (b).

(a)

(b)

Included in this system there is a camera set coaxially to the laser

beam, which allows visualization of the molten pool – the region where

the laser melts powder and substrate, further detailed on section 2.1.2. For

acquiring molten pool images, firstly, its radiation and laser reflections

travel into the cladding head. While the laser wavelength (1070 µm)

passes straight through the beam splitter – a half mirror – visible and

shorter IR wavelengths are reflected by it. Without this beam splitter

filtering out the laser radiation, any camera would suffer damage from it.

Another mirror directs the shorter wavelengths to the camera. This optical

path is illustrated in Figure 1b.

2.1.2 Molten pool

During the process, the laser beam melts powder and substrate,

forming the molten pool. A strong metallurgical bond is then formed. This

is crucial for adhering the newly deposited layer over the substrate. An

image of a molten pool can be seen in Figure 2.

27

Figure 2 - Molten pool image, 1750W, 800mm/min. On this image, the cladding

head is traveling to the right relative to the substrate, parallel to it.

The molten pool image brings information on the resulting structure.

The brighter the image, the hotter the molten pool is. The temperature can

relate to the resulting microstructure, leading to different mechanical

properties. Its geometry is also relevant for the resulting clad bead

geometry, as explained in section 2.1.3.

2.1.3 Clad Bead

A clad bead is the simplest product from a laser cladding process. It

is constructed by moving the cladding head over the substrate on a

cladding direction while keeping the laser beam on and feeding powder.

After molten pool solidification, the resulting structure is a bead made of

a mixture of substrate and powder materials. A schematic of such a

manufacturing process can be seen in Figure 3.

28

Figure 3 - Clad bead manufacturing schematic.

On additive manufacture, a structure is built in layers. Clad bead

height is directly related to layer height, which usually diminishes on the

later layers due to thermal build up. A good estimation of clad bead height

allows a better in process control. Also on this process, clad bead width

influences in surface quality. To maintain the same bead width throughout

a process with considerable thermal buildups, which are usual, is to

considerably improve the surface quality and layer consistency. Both

dimensions are also important in coating processes.

There are other dimensions or features relevant to the clad geometry

on the literature, such as penetration depth, bead area, and dilution. Those

dimensions are not the focus on this work, thus, they will not be defined

here.

Nonetheless, to achieve any desired geometry, process tuning is

mandatory. Its input parameters need to be comprehended. A highlight of

its most important parameters can be seen in the next section, 2.1.4.

2.1.4 Process Parameters

For achieving different clad bead geometries, process parameters

need to be altered accordingly. Laser power, travel speed, powder flow,
laser focus spot size, and laser beam energy density are just some

examples. On this work, the foci are the laser power and travel speed

parameters.

Cladding direction

29

Each of those parameters has a different influence on the clad bead.

More laser power leads to higher temperatures, which increases molten

pools wettability, thus, reducing clad bead height and increasing clad bead

width. Faster travel speeds reduce the quantity of deposited material on

the clad bead, shrinking all dimensions.

The influence of process parameters on clad bead dimensions is quite

clear. What links them both is the molten pool. Acquired by a coaxial

camera, its imaging can provide insightful information regarding the

process and its outcomes. An efficient way to extract this information is

through artificial intelligence, with the use of convolutional neural

networks.

This specific type of neural network fits this problem because of its

property of having the raw image as an input, with no need for further

image preprocessing. There is also no need for defining any descriptors

for the molten pool, e.g area, width, nor length. The CNN is explained in

the next section, 2.2.

2.2 Convolutional Neural Networks

Convolutional neural networks (CNN) are inspired by the

vertebrate’s visual cortex. It is a hierarchical architecture focused on

image and audio analysis in which lower layers identify simple patterns,

outputting feature maps. Those maps are then fed to higher layers, which

identify more complex patterns, and so on.

Although fairly used in many fields to this day, the creation of the

CNN basics is almost four decades old. With the name of s-layers and c-

layers on the “Neocognitron”, the convolution and pooling layers were

firstly drafted (FUKUSHIMA, 1980). As the research continued, a

receptive field – which today is known as a kernel – was used to scan the

image, achieving pattern shift invariance (LE CUN, 1989). The main

architecture of CNN was then created.

A CNN is composed of two main types of layers: convolution and

pooling layers, which always comes in pairs. The following sections,

2.2.1 and 2.2.2, explain each of those layers. A CNN can have one or

many convolution-pooling layer pairs, but after those, there are always

densely connected layers. Those layers outputs can be either a
classification or a regression, as discussed in section 2.2.3. Finally, the

CNN learning mechanism is briefly explained in section 2.2.4.

30

2.2.1 Convolution Layer

As the name may suggest, convolution layers are the heart of CNN.

They perform the convolution operation across an image. This operation

consists of multiplying each element of the kernel – a small matrix with

predetermined values – times the pixels in a region of the same size in the

input image. Then, the values from the resulting matrix are added and

stored in an equivalent position on a feature map. This algorithm is

illustrated in Figure 4. Later, the kernel is shifted to an adjacent position

– defined by a stride value, which is the number of cells to shift – where

the algorithm is repeated, and a new value is stored in an adjacent position

in the feature map. The output is the feature map matrix (INC., 2018)

Figure 4 - Convolution operation.

One can think that this operation alters the image size. There are

options for it not to happen. The padding type defines it, where zero

values are annexed on the sides of the image so that the kernel

multiplication can be performed. Another viable padding option is to

discard the edge values.

This operation can be performed with one or many kernels. Each

kernel then detects a different feature on the image, e.g. straight edges,

shapes, etc. With multiple kernels, the resulting feature maps gain an

additional dimension. The resulting output has four dimensions: height,

width, color space and feature maps.

It is a good practice to use normalized data. As neural networks are a

matrix multiplication based algorithm, non-normalized data can induce

mathematical complications to it. Batch normalization layers are usually

31

added right after the convolution layers for batch-wise data normalization.

Batches are sets of images fed together to the network, improving training

performance, but increasing memory usage. The batch normalization

layers subtract the batch mean value from all the images, and divide them

by their standard deviation (DOUKKALI, 2017). This operation is also

performed on the input data.

The next step is to feed this normalized result in the pooling layer.

2.2.2 Pooling Layer

After the convolution operation, the feature maps are fed into the

pooling layer. What happens in this layer is a simple undersampling. The

feature maps are then scaled down on their height and width dimensions

but kept unchanged on their color space and feature maps dimensions.

This allows a next convolutional layer to convolve on a larger area on the

original image. Some details are lost with the increase in area, but those

details have already been processed by the previous convolutional layer.

There are many ways to perform the pooling operation. Two usual

ways are max pooling and average pooling. In both ways, an area is

replaced by a single value that represents it. On the average pooling

method, the average pixel value from the feature map is chosen to replace

the whole area. On the max pooling method, the max value of the area

replaces it, signing that a feature was detected. Both cases of the pooling

operation are depicted in Figure 5.

Figure 5 - Pooling operation.

2.2.3 Dense Layers and Output

32

After the convolutional and pooling layers, the feature maps enter a

densely connected network. This type of network has connections from

every neuron on one layer to every neuron on the next layer. Each

connection has a weight, which is a value that is multiplied by the input.

The weights give more significance to some inputs than to others,

although the weight values differ for every neuron.

To connect the CNN architecture to a densely connected network, the

data needs to be flattened, turning into a single column array. This data

array is then fed to the dense layers, which calculate the output of the

CNN.

There are mainly two types of operations a CNN can perform:

classification and regression. The classification operation returns a class

in which the image may belong, while the regression operation returns a

value instead. How these outputs are calculated is explained in section

2.2.4.

2.2.4 Learning

CNN is a supervised learning algorithm, meaning it needs the

expected network output in order to learn. A training phase is required for

both classification and regression operations. Thus, it is necessary to split

the available data into at least two sets correspondent to the two learning

phases: training and testing.

The training phase’s objective is to minimize the error between the

network outputs and their target values by changing the weights between

neuron connections. The training starts with the network having random

weight values, thus random output values. A function which compares

this estimated values to the real ones is a loss function. To minimize this

function’s output – named the loss value – is the aim of the training phase.

The CNN weights are adjusted in order to minimize the loss value.

This adjustment is made by an optimizer algorithm, responsible for

finding a local minimum for the loss function. Each weight adjustment

and loss value recalculation have the name epoch. A CNN training ends

after a predetermined number of epochs.

For the sake of visualization, metrics can be used. Those do not

interfere with the training itself but serve as a way for the developer to
further understand how well is the network training.

After this, starts the testing phase. The CNN then calculates the

output from new input. Both results are compared, and the loss value is

calculated, along with any other desired metrics. For classification

33

problems, it is usual to build a matrix with the predicted and actual results

– one on each axis – named confusion matrix. For regression, however, it

is more usual to make a graph with the predicted and actual results – also

one on each axis –, calculate the best fit line and its R² factor.

Once understood the main concepts on the laser cladding and neural

network areas, what has been done when one combines both technologies

can be discussed. The state of the art for neural network usage on laser

cladded bead geometry estimation, as well as the first image based

monitoring systems for such a process, can be acknowledged in chapter

3.

34

35

3 State of the Art

Laser cladding process monitoring has been a field of research for at

least two decades. During this period, many systems and strategies were

developed to better understand this process, thus improve its quality. The

papers here presented include research on the image acquisition system,

molten pool segmentation and temperature, bead and molten pool

geometries, as well as machine learning-based approaches on bead

geometry estimation. Such chapter had its papers searched, selected and

studied through a systematic approach (FERENHOF; FERNANDES,

2018).

The state of the art research was set to be a combination of two

different research queries, the first focused on optical monitoring systems

for the laser cladding process, and the later, on artificial intelligence

applied to the process. Both research querries were applied on the Scopus,

Web of Science and Compendex databases. Those queries can be seen

below in Figure 6.

Figure 6 - Search queries for optical system monitoring (left) and artificial

intelligence for laser cladding (right).

("laser cladding" OR "laser

deposit" OR "laser deposition"

OR DMD OR LBAM OR LMD

OR "metal deposition")

AND

(camera* OR ccd OR cmos OR

video)

AND

(pool OR clad OR bead* OR

track* OR melt* OR molte*)

AND

(geometr* OR profil* OR shap*

OR heigth)

AND

(measur* OR monitor* OR

metrology OR sensor* OR

control* OR optimiz*)

 ("laser cladding" OR "laser

deposit*" OR DMD OR LBAM

OR LMD OR "metal deposition"

)

AND

(geometr* OR profil* OR shap*

OR heigth)

AND

(measur* OR monitor* OR

metrology OR sensor* OR

control* OR optimiz*)

AND

("neural network" OR AI OR

"machine learn*")

On the first research, by the date 27/02/2018, the Scopus database

returned 74 entries, Web of Science returned 49 and Compendex, 71, with

36

a total of 194 results, 91 eliminating duplicates. After filtering by interest

field, 24 entries remained, but only 17 of those had full text available.

On the second research, by the date 27/11/2018, the Scopus database

returned 27 entries, Web of Science returned 11 and Compendex, 35, with

a total of 73 results, 48 eliminating duplicates. After filtering by interest

field, 9 entries remained, but only 6 of those had full text available. One

more paper was incorporated to complement the results, based on

exploratory research. Both research querries had one entry in common.

This chapter presents works on those fields dating from 1996 to 2018,

in chronological order.

Meriaudeau et al (MERIAUDEAU; RENIER; TRUCHETET, 1996;

MERIAUDEAU, FABRICE; TRUCHETET, FREDERIC, 1996;

MERIAUDEAU, F.; TRUCHETET, F., 1996; MERIAUDEAU et al.,
1996), in his four papers from the year 1996, used two CCD cameras

directed to the molten pool, one in a shallow, almost horizontal angle, and

the other on a 45° angle, to acquire process information.

Figure 7 - System with two cameras, one on a shallow angle and the other on a

45° angle

Source: (MERIAUDEAU, F.; TRUCHETET, F., 1996)

37

This camera positioning makes this system dependent on cladding

direction. The shallow angle camera acquired the bead geometry during

its formation. Bead height and width were measured in real time with a

simple edge detection algorithm. The powder flow was also observed

from this camera. The 45° camera was used as a spectral thermometer,

converting the image luminosity (gray level) on temperature, as there is a

linear relationship between the two quantities. On the resulting image

histogram, two peaks can be seen, one relating to the image background

color, and the other to the molten pool temperature. System resolution

was of 5°C, and maximum errors of 15°C. Future works aimed at powder

particle speed acquisition.

Hu et al (HU; MEI; KOVACEVIC, 2002; HU; KOVACEVIC, 2003)

used two CCD cameras, one capturing infrared (IR) images coaxial to the

laser beam, and the other being a high-speed camera (800 fps), on a near

vertical angle. This camera is synchronized with a short-wavelength

stroboscopic illumination, yielding a clear bead geometry image, on

Figure 8a. The IR camera is filtered with a long pass 700 nm optical filter,

acquiring only infrared frequencies, related to temperature. The resulting

image gray level can be related to temperature, but not a precise contour

for the molten pool can be seen (Figure 8b). Merging both images reveals

the molten pool borders on the IR image. A grey level threshold can then

be defined, relating to the material’s melt point isotherm, as in Figure 8c.

The molten pool is then segmented. The number of pixels inside the

molten pool is counted and used as the control variable in a closed loop.

A PI controller successfully controls the molten pool size by variating the

laser power.

38

Figure 8 - Molten pool images: (a) high-speed camera image; (b) infrared

coaxial camera image; (c) molten pool isotherm

(a) (b) (c)

Source: (HU; KOVACEVIC, 2003).

Toyserkani et al (TOYSERKANI; KHAJEPOUR, 2006) utilized a

CCD camera on a shallow angle and a halogenic lamp for a side image of

the molten pool. Once again, this disposition choice makes this system

dependent on cladding direction. This camera was equipped with a

magnifying lens and many optical filters. After the acquisition, the image

has its brightness and contrast adjusted and is converted to gray level. It

is then binarized with a fuzzy threshold technique, also developed by the

authors. Finally, the molten pool is segmented. This side view of the

molten pool allows the measurement not only of the bead height but the

solidification angle as well, making it possible to estimate the generated

microstructure. System resolution is of 0.02 mm for bead height, with a

0.1 mm uncertainty. A PID controller closes a loop for bead height control

by variating laser power. This control loop enhanced bead quality by

eliminating disturbances during the process. Future works aimed at

adapting the system to work with any cladding direction, incorporating a

total of 3 CCD cameras on a radially symmetric arrangement, centered at

the molten pool.

Xing et al (XING; LIU; WANG, 2006) measured molten pool

temperature through colorimetric methods. The system has an alternating

filter device with two bandpass filters (790 nm and 921 nm). Those filters

are alternated in front of the CCD camera synchronously to the camera

frames. The ratio between the different image intensities for each

frequency allows temperature measurement. Moreover, a laser line

projection allows bead height measurement by the light triangulation

method. Once the molten pool temperature is known, it is successfully

39

controlled by a fuzzy logic controller, acting on both laser power and

travel speed. Future works aimed at implementing stochastic models and

neural networks.

Hofman et al (HOFMAN; DE LANGE; MEIJER, 2006) developed a

camera-based feedback control system for the laser cladding process,

aiming at energy usage optimization. The system consists of a coaxial

CMOS camera arrangement, which is optically filtered to gather mostly

infrared (temperature related) wavelengths. Then, the image is processed

with an algorithm that can be described as blurring, thresholding for

molten pool boundary identification, ellipse fitting, ellipse feature

extraction – area, length, width, and rotation angle –, and the pixel to mm

and mm² conversion. It was observed that there is an almost linear

relationship between the molten pool width and the bead width, although

there is no apparent relation between bead height and molten pool width.

It was also observed that there is a molten pool width threshold. While

the molten pool is narrower than this threshold, molten pool depth is

nearly zero. After that limit, it increases rapidly. For the control logic, the

molten pool width is used as the control variable while laser power is

variated to compensate heat effects, as an effort to keep molten pool width

constant. A digital PID controller is thus implemented, successfully

achieving minimal dilution.

Iravani-Tabrizipour et al (IRAVANI-TABRIZIPOUR; ASSELIN;

TOYSERKANI, 2006; IRAVANI-TABRIZIPOUR; TOYSERKANI,

2007) continued Toyserkani’s research (TOYSERKANI; KHAJEPOUR,

2006) developing a system with 3 CCD cameras on a radially symmetric

arrangement, centered at the molten pool, as seen in Figure 9, achieving

the proposed clad direction independence. Magnifying lenses and

bandpass 700±40 nm filters were equipped on the cameras. On each

moment, only two out of the three camera images are processed,

depending on actual cladding direction, to reduce total image processing.

The molten pool is segmented from the images with the same fuzzy

threshold method from the previous work. Each molten pool image is

fitted to an ellipse, then, merged with a coordinate transformation. The

ellipse features are fed into a recurrent neural network (Elman RNN) that

outputs bead height. This network was trained by the error

backpropagation algorithm. Its structure naturally diminishes noise
influence. The average error is 12.5%, and the system uncertainty is

around 0.15 mm. Future works aim at bead height measurements for

curved tracks.

40

Figure 9 - Schematic of the trinocular CCD based detection system.

Source: (IRAVANI-TABRIZIPOUR; TOYSERKANI, 2007).

Lei et al (LEI; WANG; LIU, 2010) achieved a molten pool image

acquisition on a CO2 laser-based cladding process. The biggest challenge

for this type of laser is the non-transparency of glasses for its wavelength,

thus, a coaxial camera coupling is not possible. The camera was then

coupled on a 25° angle from the laser beam. The acquired molten pool

was fitted to an ellipse, and through its brightness, it was possible to

measure molten pool temperature.

Mondal et al (MONDAL; BANDYOPADHYAY; PAL, 2010) aimed

at finding a relation between bead geometry (height and width) and

process input parameters (laser power, travel speed, and powder flow).

To this end, many beads were cladded with different process parameter

values. Those values were chosen according to the Taguchi design of

experiment method. The beads were cut, and their cross section,

measured. With the values of height, width, laser power, travel speed and

powder flow for each bead, this data was fed into an artificial neural

network (ANN), where the process parameters were the input, and the

bead geometry, the output. A deviation occurs between prediction and

target values due to modeling or experimental errors, yielding an R² of

0.981 for the best fit line. This result shows that the predicted values were

in great agreement with the experimental outcomes.

41

Barua et al (BARUA; SPARKS; LIOU, 2011) presented a low-cost

alternative for the molten pool visualization problem. According to the

black body theory, there is no ultraviolet radiation emitted from the laser

cladding process. Ultraviolet LEDs were then used to illuminate the

molten pool. A CMOS webcam, optically filtered with a UV bandpass

filter, acquired the images. The whole setup can be seen in Figure 10. The

CMOS technology was found to be more sensitive to the UV spectra than

the CCD technology. After preprocessing, segmentation and perspective

correction, the molten pool was measured. The above-mentioned

algorithm was developed with the OpenCV library. Information extracted

from the image includes molten pool size and circularity. Measurement

errors were identified coming from an automatic white balancing function

of the webcam. Also, a loss on the resolution was identified, what could

be corrected by stronger illumination. Future works aim at a control

system with the Labview language to reject process disturbances, as well

as pore detection and bead height monitoring.

Figure 10- Experimental setup with a webcam and UV illumination.

Source: (BARUA; SPARKS; LIOU, 2011)

Davis et al (DAVIS; SHIN, 2011) utilized a CCD camera and a laser

plane to measure the height of the newly formed bead by the laser

triangulation principle, 5 mm after the molten pool. The laser plane and

the camera are angled at 55°. To avoid measurement errors, it was

observed that the perpendicularity between the bead and the laser plane is

crucial. Even at higher speed, the system errors are about only 50 µm.

Future works consist of a closed loop control system with the LabView

language.

42

Liu et al (LIU; WU; WANG, 2012) approached the molten pool

segmentation problem by a previous calibration methodology. This

methodology consists of previous laser cladding of beads. Those beads

are then cut, and their cross sections measured, acquiring bead width.

Theoretically, bead width equals molten pool width. This width value

allows a gray level threshold value to be set on the image, segmenting the

molten pool. The image acquisition system consists of a CCD camera on

a 20° angle from the laser beam. Errors on this methodology vary from

0.56% to 5.33%, which came from image scaling, thresholding or

vibrations.

Doubenskaia et al (DOUBENSKAIA et al., 2013) present a

methodology for molten pool temperature distribution acquisition by

black body calibration. The system consists of an infrared camera on a

40° angle from the laser beam. In this work, the image emissivity is

calculated from the solid-liquid interface of the molten pool, where the

melting point is known. The system successfully acquired process

temperature distributions and cooling rates.

Arias et al (ARIAS et al., 2014) developed a system with a dynamic

laser spot size. Coaxially to this system, there is a CMOS camera with a

final resolution of 10 µm. The optical filters on the system allow only the

wavelengths between 2450 and 950 nm to be acquired. This system is

FPGA-based, making use of all its speed and processing capacity. The

image processing algorithm is based on blob detection, where the biggest

blob on the image refers to the molten pool. Features extracted from the

blob include blob center and size. With the biggest blob width

measurement corresponding to the molten pool width, it is possible to

implement a control loop when altering laser power.

Ocylok et al (OCYLOK et al., 2014) utilized a coaxial CMOS camera

to acquire molten pool images. A threshold operation was enough to

segment the molten pool. Molten pool width, length, and area were

measured. The author presents a study on the influence of process

parameters (laser power, travel speed, and powder feed rate) on molten

pool geometry. Conclusions are that the least affected molten pool

dimension is its area, apart from laser power, with which this dimension

is linearly related.

Moralejo et al (MORALEJO et al., 2017) developed a closed loop
control system to control molten pool geometry in real time. For this

purpose, the authors developed a PI controller with feedforward action

based on the molten pool width measurement from a coaxial CMOS

camera. A derivative control action was not considered due to powder

43

noise. The feedforward action became necessary to speed up the PI

response. Molten pool width was the most stable molten pool dimension;

therefore, it was chosen as the control variable. An investigation on

optical filters leads to an optimal combination consisting of a notch filter

on the laser beam frequency (1064 nm) and a long pass filter of 700 nm.

The threshold value was chosen from images of the process without

powder flow. For validation, a part with width variating on a sinusoid

shape was cladded. The system presented a standard deviation of 3.5

pixels.

Aggarwal et al (AGGARWAL; URBANIC; SAQIB, 2018), targeting

at bead geometry optimization, developed predictive models to select

input process parameters on both single and overlapping laser clad beads.

On this work, three approaches were taken – one experimental, the second

on predictive models, and lastly an artificial neural network (ANN)

approach with the MATLAB toolkit. The experimental approach consists

of varying a set of five input parameters over 5 levels, on the single bead

case and on the 40, 50 and 60 percent overlap cases. The data here

acquired was also used on the following approaches. The predictive

model approach was subdivided into another two methods: an ANOVA

approach (quadratic model) and a physics-based model related to travel

speed, laser power, as well as observed data trends. Finally, an ANN

approach is taken, inputting the desired geometry and resulting in the

appropriate process parameters. Results show that the classic method for

this problem, the ANOVA analysis, yielded the worst results, while the

ANN results have 96.3% of confidence level, the best of the approaches.

Future works direct to the study of different material, dilution

minimization, and bead width variation while keeping constant bead

height, for complex shapes.

Caiazzo et al (CAIAZZO; CAGGIANO, 2018) developed an ANN-

based process parameters estimation method. Acquiring cross-section

data, each set of bead height, width, and depth was joined with its

corresponding process parameters (laser power, travel speed, and powder

flow rate) and fed into a three-layer cascade-forward backpropagation

ANN. Different neural network architectures were tested aiming at

finding the optimum network for the system. The Levenberg-Marquardt

algorithm was chosen as the ANN training function. A total of 90 samples
were used for training, and the evaluation occurred in terms of root mean

square error between predicted and target values. On the first phase, the

neural network was used to predict bead geometry from the process

parameters. Once the architecture was selected, inputs and output were

44

reversed, estimating process parameters from bead geometry. Results

show that the ANN was able to accurately estimate the correct process

parameters necessary for the desired bead geometry, with mean absolute

percentage errors as low as 2% for laser power, 5.8% for travel speed and

5.5% for powder feed rate. An example of this ANN estimation can be

seen in Figure 11.

Figure 11 - Experimental average and ANN predictions for depth.

Source: (CAIAZZO; CAGGIANO, 2018)

Huaming et al (HUAMING, 2018) predicted the geometric

characteristics from the input process parameters with a genetic algorithm

and backpropagation neural network-based approach (GA-BPNN). For

the data, experiments were performed varying sets of laser power, travel

speed and powder thickness over three levels, on a pre-placed powder

setup. After the cross-section acquisition, three main parameters were

chosen as outputs, being bead height, width and contact angle. After

acquiring the data, a genetic algorithm is used to optimize a

backpropagation neural network architecture. Each population consists of

different neural networks, which are trained and tested. The fittest

network is chosen to generate a new population of networks, a process

that continues for 50 generations. Before optimization, the neural network

took 40 epochs to achieve its best training performance. After

optimization, it only took 12 epochs for much better performance. The

best results were on width predictions, where the R² factor of the scatter

graph between prediction and target values was 0.982 on training and
0.999 on testing, as seen in Figure 12. Conclusions point to the GA-BPNN

approach being an effective tool to correlate process parameters and bead

geometry, with the ANN error being significantly reduced after GA

optimization. It was also observed that the double hidden layer

architecture has a smaller relative error than the single hidden layer one.

45

Additionally, a network outputting only a single parameter performs

much better than one with multiple outputs.

Figure 12 - Scatter diagram with the best fit of GA-BPNN prediction vs.

experimental. (a) training patterns (b) test patterns.

Source: (HUAMING, 2018)

It can be observed a difference in the papers before and after the year

2010. The early works rely heavily on hardware, often using more than a

single camera or demanding external lighting. The software development

was limited and with low complexity. Despite those limitations, the

information there acquired was crucial for this technology’s development

in the later years. From the year 2010 onwards, different approaches were

taken with significantly less hardware. The post-processing analysis of

cross-sections became a trend. However, most of the analysis relied solely

on cross-section measurement, which implies a single measurement for

the whole clad. Information on process oscillations is, thus, lost.

Those approaches have reported both image acquisition followed by

processing, or cross-section measurements fed to machine learning

algorithms. An approach where both data are fed into a machine learning

algorithm, especially to state-of-the-art structures such as convolutional

neural networks, was not present in this research. Such an architecture is

capable of taking the raw image as an input, without the need for

extensive preprocessing, e.g. to fit the molten pool to ellipses, to acquire

any molten pool length or width nor to measure any areas. The very

architecture is responsible for defining the main features to be identified

on the image for further geometry values estimation. Besides that, such

an approach requires nothing more than a computer, a camera, and filters.

The implementation of this approach is explained in the following

chapter.

46

47

4 Implementation

This chapter details how each step on this work is performed. For

neural networks to be developed and trained, many steps needed to be

taken. It starts with an analysis of the initial optical setup and which

components needed to be replaced for image acquisition, as well as setup

adequation, which are detailed in section 4.1. Next, the laser clad bead

deposition process is described in section 4.2. Later, it is discussed the

procedure on clad beads geometry measurement, in section 4.3. After that,

the image preprocessing is described in section 4.4. Finally, all necessary

data is now available, providing the networks with both inputs (molten

pool images and process parameters) and outputs (geometry

measurements). the choices on language and libraries are presented for

CNN development, as well as metrics are defined for its performance

evaluation, and its different architectures, compared, in section 4.5.

4.1 Optical system adequation

Prior to this work, the system contained a coaxial powder cladding

head, with such an optical setup as described and depicted on section

2.1.1, along with a manual aperture close to the beam splitter on the

camera’s optical path. This camera, however, was an analog camera,

model CF 8/5 MX from the Kappa company, on Figure 13a. With a series

of embedded functions to improve image visualization on different light

intensities, this camera is a perfect match for its current purpose, which is

to watch the process molten pool on a monitor screen. However, acquiring

digital images from it has proven not to be the easiest task.

An approach has been made to digitalize this analog camera’s image.

For this purpose, the Video-to-USB 2.0 converter on Figure 13b, from

The Image Source company, was used. To do so, all image improving

functionalities from the camera were shut off, keeping the image constant

even when there was variable light intensity. The converter digitalized the

image to a size of 640x480 pixels, on a frequency of 30 fps. A digitalized

image sample from this setup can be seen in Figure 14.

48

Figure 13 - Analog camera, model CF 8/5 MX from Kappa (a). Image

converter, model Video-to-USB 2.0 converter from The ImageSource (b).

(a) (b)

Source: (IMAGINGSOURCE; KAPPA, 2006)

Figure 14 - Digitalized image from the analog camera.

Source: Author.

This is the image from the inside of the laser cladding head. The

molten pool can be seen in the middle, while the white halo around it

represents laser and other sorts of reflections on the inside of the cladding

head. The camera is off-center at this image, but the whole molten pool is

49

still visible. The high saturation levels on the image can also be noted, as

well as how small the molten pool is when compared to the whole image.

From this image, the interlacing effect can be observed. It happens

because of the digitalizing process, where even-numbered and odd-

numbered pixel rows are alternated to form consecutive frames, resulting

in horizontal lines. It can also be seen that there is an image duplication,

as if two images were horizontally misaligned, blurring the near vertical

edges. This does not happen due to the analog camera but to system innate

characteristics.

After acquiring those images, some improvements were planned:

• Reduce saturation with optical filters: A filter support was

manufactured by FDM, illustrated in Figure 15. It was

placed below the camera, without the need for further

adaptations;

• Increase image magnification: An optical system to magnify

the image was designed and then manufactured through

FDM, but it was concluded that due to machine vibrations,

focusing difficulties, and lack of system rigidity make it

unpractical and unusable;

• Replace the analog camera with a digital camera – A digital

camera, model BFLY-PGE-20E4M-CS from PointGrey,

with a resolution of 1600x1200 and 50 fps, replaced the

analog camera.

Figure 15 – Designed filter support. It fits up to two 25.4 mm (1 inch) diameter

filters.

50

Despite the magnification, all improvements were implemented. The

increased resolution of the digital camera was used to compensate for the

magnification absence. This new system is now able to acquire images at

much higher speed and resolution than the previous one, besides having

a steadier light level than when using the analog camera. There remained

a certain saturation level, although it kept away from the borders of the

molten pool, which was considered acceptable.

4.2 Laser clad processing

After setup adequation, the clad beads could be deposited. Feeding

powder consisted of AHC 100.29 Höganäs manufactured iron (99,98%)

powder, fed with 6.51 g/min. The substrate is composed of ASTM A36

steel, with the 50 mm x 200 mm x 9.52 mm dimensions. Clad beads were

20 mm long. Laser power and travel speed values can be seen below in

Table 1. Those values were chosen based on previous experience taken

from other laboratory research lines.

Table 1 - Input process parameters. Source: Author

Laser Powers (W) 350 700 1050 1400 1750 2100

Travel Speeds (mm/min) 300 800 1300 1800

Beads were placed over the substrate according to Figure 16. On this

figure, each column has a different speed value, while each row represents

a different laser power value. The whole experiment was repeated 3 times

to increase data volume, resulting in a total of 72 clad beads.

Figure 16 - Clad bead layout.

A top view of the cladded beads is depicted in Figure 17, in which

the top left 24 clad beads (in blue) do not make part of this work, as they

51

were performed without powder. However, the remaining three sets of 24

clad beads are, therefore, this work’s object of study, each of them

following the parameter distribution presented previously in Figure 16

and highlighted in red in Figure 17.

Figure 17 - Cladded beads. Clads deposited on red rectangles correspond to the

three sets of data used in this work. Marks on the blue rectangle were made

without powder.

It can be observed some misaligned clads on the top rows,

corresponding to 350 W for laser power. On those beads, there was not

enough energy to weld them on the substrate, thus leading to their

detachment. Later on, those beads were glued back to their positions to

allow further analysis. Such an unusual procedure did introduce errors in

measurement, as will be explained in the next section.

The images were acquired with the Spinview software, also from

PointGrey, with its gain set to 15. The aperture was adjusted, though no

numerical value could or can be read to quantify it. Metallic neutral

density filters from Newport were used, with combined optical densities

of 2. The Maximum Transmit Unit (MTU) of the connection between

camera and computer was set to 9000.
Once the process is done, the next step clad beads measurement, on

section 4.3

52

4.3 Clad bead geometry measurement

The clad bead consists of a single 20 mm-long cladded line. Although

simple in geometry, the clad bead characteristics vary greatly from one

another. Each clad has a height and a width. On this work, those

dimensions are defined as follows:

• Height – the biggest distance between substrate level and the

clad bead surface, perpendicular to the substrate

• Width – the biggest distance between points on the clad bead

surface that have at least 5% of the clad bead height, parallel

to the substrate.

Those dimensions are depicted in Figure 18.

Figure 18 - Clad bead height and width geometries.

After the beads are manufactured, they are measured to extract its

height and width dimensions. For such a task, an ATOS Gom system

(Compact Scan model) was used. This system scans 3D parts based on

active photogrammetry with fringe projection. The result is a dense data

cloud in the shape of the part’s surface, seen in Figure 19.

For acquiring clad bead height and width values, the first step is to

position the coordinate system. It was set with the X-axis parallel to the

clad beads, not to the side of the substrate, as both are not perfectly

aligned. The Y-axis is then placed so that the XY-plane is coincident to
the surface of the substrate.

It can also be observed that most beads cladded with the lowest power

(top row of Figure 19) are not parallel with the remaining beads, even

missing parts when cladded with the highest speed (top right bead on

53

Figure 19). Those were beads without any metallurgical bond, thus, they

have detached. This displacement does not interfere much on the height

dimension but does introduce an error on width. Without any

metallurgical bond, those are not desirable geometries, thus, those errors

can be neglected. This is also the case for the missing part of the top right

clad bead. However, they do introduce errors on the following neural

networks training. An attempt to completely dispose of those beads was

made, although leading to worse results.

Figure 19 - Clad beads data cloud.

The clad beads need to be sectioned. During the process, the camera

acquired a number of frames for each bead. Each of those frames needs a

matching height and width value. Each bead was then sectioned into the

theoretical number of frames for its speed, which is calculated by dividing

its length by its travel speed and then dividing this result by 0.02 seconds

(50 fps). The theoretical number of frames for each speed is presented in

Table 2, while the beads with their sections are shown in Figure 20.

Table 2 - Theoretical number of frames for each travel speed.

Travel Speed (mm/min) 1800 1300 800 300

Theoretical Number of Frames 18 48 78 108

The extracted data consists of 3-dimensional coordinates of every

point belonging to each section. Then, they were split into sections of

individual clad beads, and their height and width dimensions, calculated

54

according to the definition in Figure 18. Finally, the numbers of frames

and sections for each bead are manually evened. This matching is not

precise, introducing errors on the following network's training as well.
Figure 20 - Clad beads with sectioning.

The clad beads are now measured, leaving only the images to be

preprocessed before all data can be fed to neural networks. The image

preprocessing is discussed in the following section, 4.4.

4.4 Image preprocessing

During the process, there was no synchronized mechanism to turn the

camera on with the laser. So, the camera kept recording during the whole

process, acquiring images from all clad beads. This video file needed then

to be split into individual clad beads. After that, it was again split into

training and testing sets. As the set of 24 different clad beads was repeated

3 times – resulting on 72 clad beads – one of these sets was kept as testing

data.

As the camera kept recording in between clad beads – when the laser

was off – there were many black frames. Those were filtered out based

on image pixel mean value. Every image with its mean pixel value below

1 was discarded. This filtering discarded 1584 images out of a total of

5956 images from the training data, remaining 4372 images. For the test

data, 484 images were deleted, with 2189 images remaining. A sample of

the image after this selection can be seen in Figure 21.

55

As can be observed, most of the image is a black background. This

area was simply cropped out of the images, resulting in the cropped image

area in Figure 21, of size 540 x 540 pixels. Then, a small area between

the nozzle area and the cropped image borders remaining. This area was

masked out, as the pixels there represent reflections on the inside of the

nozzle, which can be considered noise. Finally, the image was scaled

down to 128 x 128 pixels to save processing time and space.

All of this image preprocessing was performed on the Python 3.6

language through the ipython platform. The libraries used for such are

OpenCV and Numpy, both open source and widely available. The Glob

library was also used for file management. The final result is in Figure

22. On this stage, the image is ready to be processed by convolutional

neural networks. No further image preprocessing is needed. The next step

is to develop those networks, on section 4.5.

Figure 21 - Image from training set before preprocessing. Nozzle area and

cropped image regions. 1050W, 300mm/min. 1200 x 1600 pixels.

Figure 22 -Figure 21 after cropping, masking and rescaling. 128 x 128 pixels.

56

4.5 Neural network development and evaluation

For developing convolutional neural networks (CNN), the Python

language was chosen due to its many available libraries on the machine

learning field. One of those many libraries is Keras – here used with the

Tensorflow backend – presenting a simple interface for developing the

CNN. However, before the network could be developed, the data needed

to be adjusted for such. Image, input parameter, and output of each frame

need to be related to each other. This is performed by a custom image

generator, explained in section 4.5.1. With the input defined, the main

body of the convolutional neural network can be developed, on section

4.5.2. Finally, the methods used for convolutional neural network

evaluation are described in section 4.5.3.

4.5.1 Image Generator

To set images as input for a convolutional neural network (CNN), the

Pandas library was used. Two CSV files relating the image file paths,

input process parameters and output geometry values were used to create

pandas dataframes, one for training and the other for testing, on lines 1

and 2 of Erro! Autoreferência de indicador não válida.. On line 4, a

standard image generator is created, which will load the images and

rescale their pixel value from the 0-255 range to the 0-1 range. In line 6,

the proper custom image generator is created. Lines 36 and 37 show its

usage, with the standard generator, dataframe, path and shuffle mode as

arguments.

Lines 7 to 18 are the call to the flow_from_dataframe method of the

Keras ImageDataGenerator class (VIJAYABHASKAR, 2018). This

method purpose is to select the images contained on a provided dataframe

– along with its related numerical values, here input parameters and

output values – and feed it in batches to the CNN. The arguments for this

method are explained in the library documentation (KERAS, 2018).

The highlights are the x_col and y_col arguments, which represents

respectively the inputs and the outputs of the neural network, although the

method does not support more than one input type. Those arguments are

set, therefore, with the image file as the input (x_col) and both process
parameters and output values as outputs (y_col). This will be corrected

later on the code.

Another point to highlight is the class_mode argument, which is

related to the neural network operation. There is no specific value to use

57

on the regression operation, so “other” is recommended by the software

development community. This is what sets the neural network to operate

a regression, not a classification operation.

Figure 23 - Image generator code.

1. train_df=pd.read_csv(top_path+"train.csv", sep=';')
2. test_df=pd.read_csv(top_path+"test.csv", sep=';')
3.
4. imgen = ImageDataGenerator(rescale = 1./255)
5.
6. def generate_generator_multiple(generator,df, path, shuffle):
7. genX1 = generator.flow_from_dataframe(
8. dataframe=df,
9. directory=path,
10. x_col=filename,
11. y_col=outputs + inputs,
12. has_ext=True,
13. batch_size=batch_size,
14. shuffle=shuffle,
15. class_mode="other",
16. color_mode='grayscale',
17. target_size=IMAGE_SIZE
18.)
19. while True:
20. X1i = genX1.next() # img, [inputs, outputs]
21. i1 = np.array(X1i[0]) - 0.5
22. labels = np.array(X1i[1])
23. o = labels[:,0:len(outputs)]
24. i2 = labels[:,len(outputs):len(outputs + inputs)]
25.
26. # normalization
27. # (x - xmin) / (xmax - xmin) - 0.5
28. normP = np.vstack(((i2[:,0])-

np.full(i2[:,0].shape, min_inputs[0]))/
29. (max_inputs[0]-min_inputs[0])-0.5)
30. normS = np.vstack(((i2[:,1])-

np.full(i2[:,1].shape, min_inputs[1]))/
31. (max_inputs[1]-min_inputs[1])-0.5)
32.
33. i2 = np.hstack((normP, normS))
34. yield [i1, i2], o # [img, inputs], outputs
35.
36. train_generator=generate_generator_multiple(generator=imgen, df=tra

in_df, path=train_path, shuffle=True)
37. test_generator=generate_generator_multiple(generator=imgen, df=test

_df, path=test_path, shuffle=False)

Finally, the shuffle mode argument differs between the training and

the testing phases. It is desirable for the training data to be as random as
possible, although the testing data should be kept in order to evaluate the

network always on the same way, this explains the shuffle values on lines

36 and 37.

The data generator yields data in the shape of (inputs, outputs). Due

to the x_col and y_col values set earlier, the result has the shape of

58

(inputs=image, outputs=[parameters, dimensions]). If that was correct,

the process parameters would be set as network outputs, which is not their

intended role. The correct shape is (inputs=[image, parameters],

outputs=dimensions). That way, the neural network can be fed with the

inputs and learn from the outputs correctly. The lines 19 to 34 correct

such.

The while loop on line 19 combined with the yield statement on line

34 transform this method on yet another generator. It starts on line 20 by

calling the generator created on line 7. On line 21, the images pixel values

are reduced by 0.5, which results on they ranging between -0.5 and 0.5,

thus being normalized. Line 23 extracts the dimensions (outputs) values,

which does not need any more preprocessing. Line 24 extracts the input

parameters, which need normalization, done in lines 28 to 33 according

to the formula on line 27. After that, all inputs – images and process

parameters – have their values in between the -0.5 to 0.5 range. Finally,

the result is yielded on the shape of (inputs=[image, parameters],

outputs=dimensions), a tuple with an array of the actual inputs as the first

element, and the array of outputs as the second element.

With the inputs and outputs correctly arranged, the main body of the

convolutional neural network can be developed, on section 4.5.2.

4.5.2 Convolutional Neural Network Layers

The convolutional neural network (CNN) architecture consists of two

branches, one for the image input and the other for process parameter

inputs. A schematic can be seen in Figure 24.

59

Figure 24 - Schematic for CNN architecture

In this schematic, it can be observed that the network has two

different input types, both images and process parameters. The code for

the convolutional branch – the one that processes the images – can be

found in Figure 25, while the dense one for the parameter branch, in

Figure 26. Both branches are then merged into one dense layer, which its

code is presented in Figure 27. The outputs of the network appear from

Process

parameters

Images

Outputs

C
N

N
 b

ra
n
ch

D
en

se
 b

ra
n
ch

D
en

se
 b

ra
n
ch

60

the two output neurons: one for the width dimension, the other for the

height one.

Figure 25 – Image branch code.
1. actfunc = 'linear'
2.
3. i1 = Input(shape=(IMAGE_SIZE[0], IMAGE_SIZE[1], 1))
4.
5. x = Conv2D(filters=8, kernel_size=(3, 3), padding='same')(i1)
6. x = BatchNormalization()(x)
7. x = Activation(actfunc)(x)
8. x = MaxPooling2D()(x)
9.
10. x = Conv2D(filters=16, kernel_size=(3, 3), padding='same')(x)
11. x = BatchNormalization()(x)
12. x = Activation(actfunc)(x)
13. x = MaxPooling2D()(x)
14.
15. x = Conv2D(filters=32, kernel_size=(3, 3), padding='same')(x)
16. x = BatchNormalization()(x)
17. x = Activation(actfunc)(x)
18. x = MaxPooling2D()(x)
19.
20. x = Conv2D(filters=64, kernel_size=(3, 3), padding='same')(x)
21. x = BatchNormalization()(x)
22. x = Activation(actfunc)(x)
23. x = MaxPooling2D()(x)
24.
25. x = Conv2D(filters=128, kernel_size=(3, 3), padding='same')(x)
26. x = BatchNormalization()(x)
27. x = Activation(actfunc)(x)
28. x = MaxPooling2D()(x)
29.
30. cnn = Flatten()(x)

The image branch has an input layer. It is then followed by sets of

convolutional, batch normalization, activation, and pooling layers –

convpool layers for short – ending with a flattening layer. The code for

this CNN brach can be seen in Figure 25. Every convolutional layer has

the same kernel size and the same padding type – which were defined

experimentally – however, different quantities of filters. All neural

network architectures here experimented have the first three convpool

layers on lines 5 to 18. Architectures with 4 convpool layers also have the

layers on lines 20 to 23, and the ones with 5 convpool layers include all

the previous ones.

The parameter branch, however, has a single set of dense and

activation layers after its input layer. The number of neurons here was

chosen as the same number of neurons from the imaging branch after

flattening, aiming to balance both branches. The code for this branch can

be seen in Figure 26.

61

Figure 26 - Input parameters branch code.
1. i2 = Input(shape=(len(inputs),))
2. x = Dense(units = 2048)(i2)
3. dense = Activation(actfunc)(x)

Both branches are concatenated together, then followed by sets of

dense, activation and dropout layers, with a fixed number of neurons. The

last pair of dense and activation layers returns the result of the network,

in Figure 27.

Figure 27 - Merging branch code.

1. x = concatenate([cnn, dense])
2. # x = Dense(units=500)(x)
3. # x = Activation(actfunc)(x)
4. # x = Dropout(0.5)(x)
5. x = Dense(units=200)(x)
6. x = Activation(actfunc)(x)
7. x = Dropout(0.5)(x)
8. # x = Dense(units=20)(x)
9. # x = Activation(actfunc)(x)
10. # x = Dropout(0.5)(x)
11. x = Dense(units=len(outputs))(x)
12. x = Activation(actfunc)(x)
13.
14. model = Model(inputs=[i1, i2], outputs=x)

All activation functions were set as linear mode, which is an identity function.

For the loss function, the mean squared error was used. The optimizers used

were both the Adam optimizer and the Adadelta optimizer. For metrics, both the

mean absolute error and a custom percentage function – defined in

Figure 28, lines 1-2 – were used. The mean square error and the mean

absolute error functions can be found on keras documentation, as well as

on the equations of Erro! Fonte de referência não encontrada.. Erro! Fo

nte de referência não encontrada. also presents the custom percentage

function used as a metric.

The architectures were developed, firstly, experimentally. Convpool

layers, dense layers, loss functions, optimizers, activation functions, and

batch normalization layers were changed until a good performance was

achieved. This was when the architecture of network A was found, in

Table 4. By experimenting with different convpool layer quantities,

networks B and C were created. After choosing the neural network with
the best performance, its dense layer quantities were variated, creating the

networks D and E. Finally, again by choosing the network superior on

performance, the same architecture with a different optimizer was tested,

creating the network F. Each network was trained for 200 epochs – a value

62

found experimentally. Their predictions are gattered and their

performance evaluated in section 4.5.3.

Table 3 - Mean squared error and mean absolute error functions.

Mean squared error (mse) 𝑚𝑠𝑒 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ((𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒)
2

)

Mean absolute error (mae) 𝑚𝑎𝑒 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(|𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒|)

Percentage (p) 𝑝 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (100 ∗
𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒

𝑦𝑡𝑟𝑢𝑒

)

Figure 28 - CNN loss, optimizer, and metrics. Source: Author.
1. def percentage(y_true, y_pred):
2. return k.mean(k.abs(100*(y_pred-y_true)/y_true))
3.
4. compileConfig = {
5. 'loss':'mse',
6. 'optimizer':'adam',
7. 'metrics':['mae', percentage],
8. 'percentage':'return k.mean(k.abs(100*(y_pred-y_true)/y_true))'
9. }
10.
11. model.compile(
12. loss=compileConfig['loss'],
13. optimizer=compileConfig['optimizer'],
14. metrics=compileConfig['metrics']
15.)

Table 4 – Convolutional Neural Network Architectures.

 A B C D E F

Convpool

Layers
5 4 3 5 5 5

Filters
8, 16, 32,

64, 128

8, 16,

32,

64

8, 16,

32

8, 16,

32, 64,

128

8, 16,

32, 64,

128

8, 16,

32, 64,

128

Hidden units

for

parameters

2048 4096 8192 2048 2048 2048

Dense layers 1 1 1 3 2 1

Hidden Units 200 200 200
500,

200, 20
200, 20 200

Optimizer Adam Adam Adam Adam Adam Adadelta

On this table, filters correspond to the number of feature maps after

the convolution operation, not directly the kernel number. The number of

hidden units for the parameter branch is the number of neurons on the

dense layer of the input parameter branch. Finally, the hidden units’ entry

stands for the neurons in each of the dense layers after the concatenation

of both branches.

63

4.5.3 Convolutional Neural Network Evaluation

For evaluating the neural networks, their predictions must be

gathered. The method get_predictions on line 1 from Figure 29 is

responsible for such.

This method uses the same custom image generator of section 4.5.1.

It gets the input (x) and target (y) values from the generator (gen) in

Figure 29, line 5. Based on the input, a prediction is made on line 6. Both

prediction and target values are stored in variables on lines 7 to 14. The

method stops once the number of predictions made reaches the data size,

on lines 15 and 16. Predictions are gathered both for the training and the

testing data sets.

Figure 29 - Convolutional neural network prediction gathering code.

1. def get_predictions(df, path, N):
2. predictions = np.array([])
3. targets = np.array([])
4. gen = generate_generator_multiple(generator=imgen, df=df, path=pa

th, shuffle=False)
5. for x, y in gen:
6. p = model.predict(x)
7. if predictions.size == 0:
8. predictions = p
9. else:
10. predictions = np.concatenate((predictions, p))
11. if targets.size == 0:
12. targets = y
13. else:
14. targets = np.concatenate((targets, y))
15. if len(targets) >= N:
16. break
17. return predictions, targets
18. train_pred, train_targ = get_predictions(train_df, train_path, len(im

age_files))
19. test_pred, test_targ = get_predictions(test_df, test_path, len(test_i

mage_files))

An error can be calculated from the prediction and target values. By

using the norm class from the scipy library, this error mean and standard

deviation can be calculated and then compared. Besides plotting normal

curves, the plot_error_norm method on Erro! Autoreferência de

indicador não válida. calculates those values, on line 7.

64

Figure 30 - Error mean and standard deviation calculation.

1. from scipy.stats import norm
2.
3. def plot_error_norm(predictions, targets, title=None):
4. error = predictions - targets
5. plt.figure(figsize=(16,6))
6. plt.xlim(-1,1)
7. mu, std = norm.fit(error)
8. t = np.linspace(mu-3*std, mu+3*std, 100)
9. p = norm.pdf(t, mu, std)
10. h = plt.plot(t, p, linewidth=2)
11. plt.grid()
12. plt.annotate(xy=(mu, max(p)), s=("{:.4f} ± {:.4f}".format

(mu,std)))
13. if len(outputs)>1:
14. plt.legend("Width and Height error distribution")
15. else:
16. plt.legend(outputs+" error distribution")
17. if title:
18. plt.title(title)
19. return mu, std

The coefficient of determination (R2) from the target versus

prediction values was also calculated and used as a mean of comparison

between network performance. Those results can be seen in chapter 5.

65

5 Results

This chapter presents the performance results for all developed

convolutional neural networks. The training results are discussed in the

first section, 5.1, presenting the resulting loss and metrics values. The

subsequent section, 5.2, shows the performance of the neural networks on

estimating the width and height values. Firstly, the plots of the target

versus prediction values are presented, along with their coefficient of

determination (R2) values, on section 5.2.1. The R2 values are then

compared for all networks. Later, on section 5.2.2, the error between

target and prediction values is evaluated for both training and testing

phases and their mean and standard deviation values are discussed.

5.1 Training results

The first aspects in which one can evaluate how well did a neural

network train is the loss value, along with any further metric values.

Watching how fast the loss value decreases throughout the epochs is the

measurement of how fast the neural network learns the data.

This learning speed is reflected in the loss curves in Figure 31. Here,

all networks have both width and height values as outputs. As explained

before (Erro! Fonte de referência não encontrada.), the loss value is a

mean squared error, calculated by averaging the squared errors between

the target and the predicted values. Each data point represents the loss

value on the end of each epoch for each convolutional neural network

architecture. Starting from the first epoch, the value rapidly decreases on

the first 10 epochs. Beginning on around 30 epochs, all networks descend

their loss value steadily until the end of the 200 epochs. The fastest learner

is the network F, closely followed by network A, both with 5

convolutional layers and a single dense layer with 200 neurons. This

difference in speed appears due to the different optimizers for networks

A (Adam) and F (Adadelta). The slowest learner is network D, also with

5 convolutional layers but 3 dense layers. A larger network takes longer

to train, leading to the result mentioned before.

66

Figure 31 – Loss value from 200 epochs training of all neural networks with

both width and height outputs.

Figure 32 – Loss value from 200 epochs training of all neural networks with

width as output.

Networks which outputs only one of the width and height dimensions

were also trained, their results on Figure 32 (width) and Figure 33

(height). The performances followed the behaviors of the previous case

(Figure 31) but most of them achieved lower values than on the multiple

output case.

67

Figure 33 – Loss value from 200 epochs training of all neural networks with

only height as output.

Although directly related to the training performance, the loss value

does not have a direct physical meaning of the current error levels of the

networks. Metrics can help with this visualization. The mean absolute

error progression throughout the epochs for the networks with both

outputs can be seen in Figure 34. It is similar in shape with the loss graphs,

however, it brings an order of magnitude. The network F, for example,

has an average error of more than a millimeter on the first epoch. It means

that the estimated dimensions are, on the average, more than a millimeter

either larger or smaller than their real measurement. This error reduces to

less than 0.2 millimeters on epoch 10, and to around 0.06 millimeters by

epoch 200.

68

Figure 34 – Mean absolute error values from 200 epochs training of all neural

networks with both width and height as outputs, in millimeters.

As happened with the loss values, the mean absolute error from single

output networks presented a similar behavior than from the multiple

output ones, on Figure 35 (width) and Figure 36 (height). It can be

observed that the networks with height as output achieved slightly lower

error values. Again, network F with the height output presented the lowest

error value – under 0.03 mm by epoch 200. This is already really close to

the values found in the literature (TOYSERKANI; KHAJEPOUR, 2006).

Figure 35 – Mean absolute error values from 200 epochs training of all neural

networks with width as output, in millimeters.

69

Figure 36 – Mean absolute error values from 200 epochs training of all neural

networks with height as output, in millimeters.

This metric does help the visualization of the results of the networks,

but still tricks the viewer. The errors on height are smaller because it has

smaller values than the width dimension. Because of that, the width error

of 0.1 millimeters for a bead 0.5 millimeter tall is way bigger than for a 3

millimeter wide clad bead. The real dimensions of the clad bead should

be taken into account, either width or height.

The last metric solves this problem by measuring the average error in

proportion to the real dimension, resulting in a percentual error. Its

equation was already presented in section 4.5.2 (Erro! Fonte de

referência não encontrada.). This metric can be seen in Figure 37 for

the multiple output networks, and in Figure 38 (width) and Figure 39

(height) for the single output networks.

70

Figure 37 – Percentage error values from 200 epochs training of all neural

networks with both width and height as outputs.

Figure 38 – Percentage error values from 200 epochs training of all neural

networks with width as output.

71

Figure 39 – Percentage error values from 200 epochs training of all neural

networks with height as output.

From this metric, it can be observed the opposite behavior. Here, the

width dimension percentual error achieves the lowest value among all,

bellow 3% for network F by 100 epochs, while the percentual error of the

height dimension remains by around 9% on the same time. The network

with multiple outputs stays in between, with around 7%. This proves that

the width dimension is easier to learn than the height dimension. This is

a logical conclusion, as the width of the molten pool can be seen on the

images fed to the networks, although height can not. As explained in

chapter 3, molten pool width and clad bead width are in a close

relationship (HOFMAN; DE LANGE; MEIJER, 2006). Molten pool

height, however, can be only inferred from the size and the brightness of

the molten pool.

After analyzing those results, it is expected for the width estimation

to have the best performance, followed by both dimensions estimation,

and, lastly, by the height estimation. The actual network results are

presented in section 5.2.

5.2 Estimation performance

Even better than to analyze the loss value and metrics from the

training is to analyze the outputs themselves. As cited before, each one of

the six networks was executed with the three different outputs – clad bead

width, height and both simultaneously. Their results can be compared to

72

the target values, which they were supposed to yield, those graphs being

on section 5.2.1. Then, the error between both values is analyzed in

section 5.2.2.

5.2.1 Target and Prediction values

Perhaps the most straightforward way to visualize the networks'

performance is to plot their predicted values – the network outputs –

versus the target values. To enhance the networks comparability even

further, coefficients of determination (R²) for each of those plots were

calculated. Regarding this coefficient, the best and worst plots from both

training and testing phases can be seen in Figure 40 for the networks with

both width and height outputs.

Figure 40 – Best and worst network performances from both testing and training

phases. Top row: Training phase. Bottom row: Testing phase. Left column: Best

performance. Right column: Worst performance.
Training phase – best performance – R² = 0.9978

Training phase – worst performance – R² = 0.987

Testing phase – best performance – R² = 0.9859

Testing phase – worst performance – R² = 0.9742

Those graphs show the best and the worst performance for the

beforementioned outputs. One can notice how higher the R² coefficients

are on the training phase. It is only natural for it to happen due to the very

73

training mechanism, where the same images with the same target values

are repeated over and over again, throughout the epochs, until the network

learns them. On the testing phase, however, it is the first time the network

sees each input image, only guessing what the target value could be. The

testing performance achieved an R² value of 0.986, which is even superior

to some of the results presented in the literature (MONDAL;

BANDYOPADHYAY; PAL, 2010; HUAMING, 2018).

Another remarkable note is that the training procedure was stopped

before a 100% accuracy on the training dataset. It did not make sense to

train it until perfection on an imperfect dataset, due to the errors

previously mentioned in section 4.3.

The next fact that can be observed is the superiority of network A (5

convpool layers and a single hidden-units layer) when compared to the

other networks.

Having more convolutional layers does not mean that network A is

the biggest. As seen in Table 4, the C network has the same amount of

hidden-units (neurons) as the A network but has 2 convpool layers less

than it. After flattening, this leads to 4 times more neurons than the

network A, taking way longer to process. One may think that a solution

to this is to increase the number of epochs. This, although, could lead to

overfitting, which happens when the network memorizes most of the

dataset. An overfitted network performs superbly on the training set, yet

poorly on the testing set.

The network E has the same amount of convpool layers than the

network A but has a single hidden-units dense layer more than it, as seen

in Table 4. This extra layer reduced the network’s training performance

to the point it became the worst, yet closely followed by the performances

of networks D and C, as seen in Table 5. The networks C, D, and E are

the largest of them, taking longer to train. They could have a better

performance if the number of epochs was increased, but networks can not

train forever. As mentioned before, increasing the number of epochs

could lead to overfitting.

Table 5 – R² value for the networks with both width and height outputs.

 Width and Height
 A B C D E F

Train R² 0.9978 0.9958 0.9887 0.9876 0.9870 0.9971

Test R² 0.9859 0.9834 0.9742 0.9831 0.9793 0.9851

74

Regarding the single output networks, for the width output case, the

F network performance outstands. It has the same architecture as network

A but was trained with a different optimizer. The worst performances on

the training phase were from networks D and E, which are the largest

networks as well. On the testing phase, the D network performed way

better than it was expected for its size. As the network weights are all

initialized at random values, it could be the case that this network started

its training with weights closer to the optimum values than the rest of the

networks. It still did not outperform the F network. Those performances

are shown in Table 6.

Table 6 – R² value for the networks with width output.

 Width
 A B C D E F

Train R² 0.9867 0.9912 0.9836 0.9629 0.9626 0.9954

Test R² 0.9404 0.9369 0.9315 0.9465 0.9336 0.9496

A more consistent performance could be observed from the networks

with only the height output. The larger networks had the worst

performance in both training and testing phases. For the best performance,

there was a tie between networks A and F on the testing phase. Those

performances can be seen in Table 7.

Table 7 – R² value for the networks with height output.

 Height
 A B C D E F

Train R² 0.9947 0.9845 0.9635 0.8823 0.9475 0.9951

Test R² 0.9593 0.9483 0.9363 0.8491 0.9193 0.9593

75

Figure 41 - R² for the multiple output networks, calculated for both outputs

(top), only for width (bottom left) and only for height (bottom right).

R² = 0.9978 for both width and height values

R² = 0.9932 for only the width value

R² = 0.9879 for only the height value

When comparing both results, one can infer that the networks with

single outputs performed better than the multiple output networks. To do

so, one must compare not the R² presented in Table 5, which consists of

both width and height values, but splitting them both into two different

plots for each variable, as seen in Figure 41.

From those values, a fair comparison can be made. On Table 8, it can

be observed the R² values for both the networks with multiple outputs –

calculated individually for each dimension – and the ones with a single

output. On average, the single output networks achieved a slightly higher

R² value than the multiple output ones, with some exceptions. This is a

logical outcome, once a neural network with a single output can specialize

itself over it, instead of performing averagely for both outputs. Regarding

architectures, the networks A and F keep on the lead of performance.

76

Table 8 – Individual height and width R² for all networks.

 Multiple Output R² Single Output R²

 Train Test Train Test

 Width Height Width Height Width Height Width Height

A 0.9932 0.9879 0.9445 0.9558 0.9867 0.9947 0.9404 0.9593

B 0.9836 0.9841 0.9366 0.9429 0.9912 0.9845 0.9369 0.9483

C 0.9752 0.9108 0.9218 0.8594 0.9836 0.9635 0.9315 0.9363

D 0.9587 0.9367 0.941 0.9279 0.9629 0.8823 0.9465 0.8491

E 0.9633 0.9183 0.9319 0.9007 0.9626 0.9475 0.9336 0.9193

F 0.9888 0.9886 0.9404 0.9549 0.9954 0.9951 0.9496 0.9593

The R² value can express well how each neural network performed,

although it is not the only possible way to do so. By subtracting the target

values from the estimated values, an estimation error is calculated. An

analysis of this error value is in section 5.2.2.

5.2.2 Estimation error

The difference between the estimation and the target values is the

estimation error, yet another way to evaluate a neural network’s accuracy.

By considering the data to be normally distributed, this error can be fit

into a Gaussian distribution, thus, a mean and a standard deviation can be

calculated. Those gaussian distributions for the networks with multiple

outputs can be seen in Figure 42, the left graph standing for the training

phase and the right, for the testing phase.

The first difference to be observed on those graphs is their

magnitudes. The networks A, B, and F have peaked on their training

phases, thus, a lower standard deviation, as seen in Table 9. On their

testing phases, however, they perform similarly to the remaining

networks. This is a clear indication of overfitting.

Those networks have memorized the training dataset. Usually, this

means the network would perform poorly on the testing phase, even so,

they are still the top performance networks. One viable explanation is the

similarity of the images between training and testing data sets. Perhaps a

better approach on dataset splitting, instead of splitting them experiment-

wise, would be to merge all of the data and let the built-in keras algorithm

split a percentage of the dataset into testing data.

The remaining networks performed slightly worst on their testing

phase, as expected due to the learning mechanism. Regarding the mean

77

value, all values remained below 0.1 mm, which indicate a mean value

tending to zero, as expected on a normal distribution.

Figure 42 – Gaussian distributions of the estimation error for the networks with

multiple outputs on their training phase (left) and testing phase (right).

Table 9 – Mean and standard deviations for the estimation error on both training

and testing phases for the multiple output networks.

 Width and Height Error (µm)

 Train Test

 Mean Standard deviation Mean Standard deviation

A 6.56 50.72 5.29 130.85

B -25.65 66.50 -24.95 139.93

C -8.54 116.28 -14.52 176.80

D 3.50 122.04 0.56 143.47

E 49.49 114.37 45.94 152.08

F 5.16 59.00 2.42 134.84

For the width output networks, a similar behavior happens. The F

network outstands on its training phase. On the testing phase, the network

D falsely surpasses network F due to its luckiest initial set of weights.

Despite that, networks A and F remain on the lead. This behavior can be

observed in Figure 43. The mean values stay under 0.1 mm, again

indicating that this value tends to zero, thus, the data is normally

distributed.

On those graphs, the standard deviation values are lower on their

training phase than for the multiple output networks, but slightly higher

on the testing phase, as seen in Table 10. It implies the presence of even

more overfitting than before. It relates to the fact that the network only

78

needs to learn one output, not both. It is then easier for it to memorize the

data.

Figure 43 – Gaussian distributions of the estimation error for the networks with

the width output on their training phase (left) and testing phase (right).

Table 10 – Mean and standard deviations for the estimation error on both

training and testing phases for the width output networks.

 Width Error (µm)

 Train Test

 Mean Standard deviation Mean Standard deviation

A -48.27 59.74 -49.14 159.98

B -7.37 62.20 -11.80 171.71

C 35.39 77.56 33.844 176.19

D -49.31 118.33 -53.07 149.41

E -22.85 126.78 -25.32 174.85

F 1.12 45.00 -5.10 153.75

Finally, for the height output case, even more overfitting occurs. The

F network presents the highest peak – thus the lowest standard deviation

– but only on the training phase. This behavior can be observed in Figure

44. Opposing network F, the D network presents the lowest peak, which

is the highest standard deviation. The standard deviation value from the

network F is the lowest among all training graphs, while the standard

deviation value from the D network is the highest among all – those values

in Table 11. It means that this output was the easiest to memorize for
network F, but the hardest to learn for network D.

79

Figure 44 – Gaussian distributions of the estimation error for the networks with

the height output on their training phase (left) and testing phase (right).

Table 11 – Mean and standard deviations for the estimation error on both

training and testing phases for the height output networks.

Height Error (µm)

 Train Test

 Mean Standard deviation Mean Standard deviation

A -4.01 30.66 -8.38 86.67

B 12.01 51.65 6.03 97.97

C 18.43 79.25 11.84 108.30

D -21.86 144.39 -24.70 165.81

E 80.36 55.24 78.73 94.01

F 17.678 23.97 10.91 86.35

Regarding the mean values, again, they tend to zero, indicating the

normal distribution of the data. Even with strong overfitting, the networks

with more convpool layers and less densely connected layers (A and F)

yielded the best results, for all output types. On the present case, the

overfit did not degrade the testing dataset measurements, because of its

similarity to the training dataset. When processing with different input

parameters than the ones here presented, however, those networks’

performances will need re-evaluation.

As it was observed, the data fits into normal distributions. When

observing only the test phases of networks A and F, one obtains the

information in Table 12. The lowest standard deviation value, 86 µm, is

from network F, with only the height output. This value indicates that
95% of the measurements have an error under 172 µm. Although it

already represents a small error, it is important to remember what this

error means.

The networks estimate the width and the height dimensions for each

frame. When averaging this error along the length of the clad bead, it

80

shrinks considerably. The error means in Table 12 reflect this effect,

although those are not the values of each individual clad bead. When

analyzing the averages, the maximum average error value shrinks to

49 µm, which are comparable to the literature (DAVIS; SHIN, 2011). It

also implies a better performance for slower beads, as there would be

acquired more frames per unit length.

Table 12 – Error mean and standard deviation of the test phases from networks

A and F for all output types.

Width and Height

Error (µm)
Width Error (µm) Height Error (µm)

 Mean
Standard

deviation
Mean

Standard

deviation
Mean

Standard

deviation

A 5.29 130.85 -49.14 159.98 -8.38 86.67

F 2.4 134.84 -5.10 153.75 10.91 86.35

Apart from that, the dimensions of the clad beads vary significantly.

A standard deviation of 130 µm may be seen too large for a bead 1 mm

wide although it is not that big for one which is 4.5 mm wide. The best

way to compensate for the bead dimensions is to calculate the error as a

percentage of the bead’s dimensions, which can be simply made by

dividing each error value by the corresponding target value, as shown in

Table 13.

Table 13 - Percentual error definition.

By calculating the errors from the A and F networks in a similar

fashion that in Table 12, one obtains Table 14. There, error average

remains below 3%, way lower than some works found in literature,

(IRAVANI-TABRIZIPOUR; ASSELIN; TOYSERKANI, 2006;

IRAVANI-TABRIZIPOUR; TOYSERKANI, 2007), and with fewer

resources. The width dimension appears as the dimension with the lowest

standard deviation, which means it is the most stable, in agreement with

many authors in the literature (HOFMAN; DE LANGE; MEIJER, 2006;

MONDAL; BANDYOPADHYAY; PAL, 2010; ARIAS et al., 2014;

MORALEJO et al., 2017). It is logical for width to be the most stable

dimension, once it is observable in the molten pool image, what is in

agreement with the conclusions in section 5.1. The networks which

Percentual error
𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡

𝑦𝑡𝑎𝑟𝑔𝑒𝑡

81

outputted both dimensions simultaneously have the highest standard

deviation, which is also expected, as the networks could not specialize on

both dimensions as well as they did to only one of them, which is again

in agreement with the literature (HUAMING, 2018).

Table 14 – Percentual error mean and percentual error standard deviation of the

test phases from networks A and F for all output types.

 Test Phase Percentual Error (%)

 Width and Height Width Height

 Mean
Standard

deviation
Mean

Standard

deviation
Mean

Standard

deviation

A 0.96 26.57 2.47 7.55 1.71 18.34

F 2.66 23.05 0.20 6.63 -1.59 13.74

Finally, after analyzing all of the obtained results, one can infer if this

is a viable method of process monitoring, along with its advantages and

disadvantages. This method estimated all of the dimensions with rather

an accuracy, equiting itself with the results obtained in the literature. It is

noticeable how little hardware was needed when comparing it to the

previous molten pool image-based approaches, especially the ones on the

early days of the technology.

The next chapter is dedicated to further conclusions of this work.

82

83

6 Conclusion

This work consisted of an implementation of a monitoring system for

a laser processing unit. The first step taken for its execution was to build

a background on the main fields of the project, thus, leading to the

research lines presented in chapter 2. After this, systematic research was

performed aiming to find applications of convolutional neural networks

on laser cladding process monitoring, however, it was unsuccessful.

Many other works related to the area were presented in chapter 3 but none

corresponded exactly to the research line. With the researches concluded,

the implementation process started. From the hardware choice to the

libraries used on each CNN architecture development, everything was

detailed in chapter 4. After execution, the results were presented in

chapter 5, where it was observed which architectures had a better

performance for the acquired dataset. Those were the architectures with

the most convpool layers and the least densely connected layers.

Although strong overfitting was observed among those networks, it did

not demote their performances on their testing phases, keeping their

performance on the lead.

The proposed system and the developed CNN architectures were able

to satisfactorily estimate the clad bead geometries. The best coefficient of

determination values prevailed over 0.99 for the training dataset and over

0.95 for the testing one. After the error analysis, the same networks

remained as the most accurate ones, with the least error mean and standard

deviation values.

What did not work as expected was the physical setup. A

magnification system was designed and manufactured to increase the size

of the molten pool on the image acquired by the camera. Due to

complications in the manufacturing process and flaws on the design, the

system did not operate as expected, leading to blurry images. It was later

observed how disposable this system was, as the molten pool image did

not need magnification as it was even shrunk down to be fed to the CNN.

Another aspected that could be further explored was the CNN

architectures themselves. There were many other parameters on their

structures that could have been explored such as the number of hidden

units – especially on the input parameter branch – and the filter numbers
on the convolutional branch. On the training procedure, there were the

loss function, optimizers, the batch size, and larger epoch number, that

could also have been experimented with.

84

There are many other suggestions for future works to be studied

bellow:

• To better match cross sections and frames: the approach here

taken introduced errors on the data as the cross sections were not

acquired simultaneously to the frames. A laser triangulation

system is suggested for an in-process geometry measurement.

• To exclude the lowest power clads: There is no need to work with

clad beads that detach themselves from the substrate. On this

work, they were not discarded because it would be left way too

little data for a network to be properly trained.

• To try for other parameter ranges: The most data, the better it is

for network training. It is highly recommended to invest in data

acquiring, trying to diversify the input parameter combinations

as much as possible.

• To try other material compositions: In the laboratory, no research

has been conducted yet neither on different compositions of

feedstock nor substrate material and how they interfere on the

clad bead geometry

• To reduce the number of neurons for input parameters: The

neuron number used for the input parameter is way larger than it

is necessary, although this parameter was not explored in this

work.

• To increase the number of epochs for all networks: All networks

here presented were trained for 200 epochs. There is always the

possibility to train further.

• To try for genetic algorithms for achieving optimal network

architecture: As suggested in the literature review (HUAMING,

2018), an approach based on genetic algorithms could find the

most optimized architecture for this problem.

• A better training/testing dataset splitting: To separate an entire

24 clad beads with unique parameters for the testing data set

resulted on this set being really similar to the training one. A

better approach would be to let the algorithm randomly decide

which ones are used for the testing dataset, controlling only the

percentage of the whole dataset to be used as testing.

• To use this CNN to train another CNN which takes images and a

desirable clad bead geometry as input and outputs the process

input parameters. This second CNN could be a strong tool for a

closed loop control of the process.

85

• To evaluate CNN real-time implantation viability: It is known

that neural networks are slow algorithms. Once trained, however,

they may be fast enough to even be used as a control algorithm

for such a process. This is a huge field of interest for the future

of this application.

The overall result of this work is very positive for the laboratory.

Being its first ever project on this area, it opens paths of the process

monitoring field that are yet to be explored, leading to many new research

lines. For the scientific community, it represents yet another alternative

to the intelligent process monitoring field.

86

87

7 Bibliography

AGGARWAL, K.; URBANIC, R. J.; SAQIB, S. M. Development of
predictive models for effective process parameter selection for single
and overlapping laser clad bead geometry. Rapid Prototyping
Journal, v. 24, n. 1, p. 214-228, 2018.

ARIAS, J. L. et al. Real-time laser cladding control with variable spot
size. Laser 3D Manufacturing, 2014. San Francisco, CA. SPIE.

BARUA, S.; SPARKS, T.; LIOU, F. Development of low-cost imaging
system for laser metal deposition processes. Rapid Prototyping
Journal, v. 17, n. 3, p. 203-210, 2011.

CAIAZZO, F.; CAGGIANO, A. Laser direct metal deposition of 2024 al
alloy: Trace geometry prediction via machine learning. Materials, v.
11, n. 3, 2018.

DAVIS, T. A.; SHIN, Y. C. Vision-based clad height measurement.
Machine Vision and Applications, v. 22, n. 1, p. 129-136, 2011.

DOUBENSKAIA, M. et al. Definition of brightness temperature and
restoration of true temperature in laser cladding using infrared
camera. Surface and Coatings Technology, v. 220, p. 244-247, 2013.

DOUKKALI, F. Batch normalization in Neural Networks. 2017.
Disponível em: < https://towardsdatascience.com/batch-
normalization-in-neural-networks-1ac91516821c >. Acesso em: Feb
15.

FERENHOF, H.; FERNANDES, R. Passo-a-passo para construção da
Revisão Sistemática e Bibliometria Utilizando a ferramenta
Endnote®. 3.06 2018.

FUKUSHIMA, K. Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift in

https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c
https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c

88

position. Biological Cybernetics, v. 36, n. 4, p. 193-202,
1980/04/011980.

HOFMAN, J. T.; DE LANGE, D. F.; MEIJER, J. Camera based feedback
control of the laser cladding process. ICALEO 2006 - 25th
International Congress on Applications of Laser and Electro-Optics,
2006. Scottsdale, AZ.

HU, D.; KOVACEVIC, R. Modelling and measuring the thermal
behaviour of the molten pool in closed-loop controlled laser-based
additive manufacturing. Proceedings of the Institution of
Mechanical Engineers, Part B: Journal of Engineering Manufacture,
v. 217, n. 4, p. 441-452, 2003.

HU, D.; MEI, H.; KOVACEVIC, R. Improving solid freeform fabrication
by laser-based additive manufacturing. Proceedings of the
Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture, v. 216, n. 9, p. 1253-1264, 2002.

HUAMING, L. X., QIN; SONG, HUANG; LEI, JIN; YONGLIANG, WANG;
KAIYUN, LEI. Geometry Characteristics Prediction of Single Track
Cladding Deposited by High Power Diode Laser Based on Genetic
Algorithm and Neural Network. International Journal of Precision
Engineering and Manufacturing, v. 19, n. 7, p. 1061-1070, 2018.

IMAGINGSOURCE, T. DFG/USB2pro Video-to-USB 2.0 converter.
Disponível em: <
https://www.theimagingsource.com/products/converters-
grabbers/video-to-usb-2.0-converters/dfgusb2pro/ >. Acesso em:
05/04/2018.

INC., L. P. Deep Learning: Convolutional Neural Networks in Python.
2018. Disponível em: < https://www.udemy.com/deep-learning-
convolutional-neural-networks-theano-tensorflow/ >.

https://www.theimagingsource.com/products/converters-grabbers/video-to-usb-2.0-converters/dfgusb2pro/
https://www.theimagingsource.com/products/converters-grabbers/video-to-usb-2.0-converters/dfgusb2pro/
https://www.udemy.com/deep-learning-convolutional-neural-networks-theano-tensorflow/
https://www.udemy.com/deep-learning-convolutional-neural-networks-theano-tensorflow/

89

IRAVANI-TABRIZIPOUR, M.; ASSELIN, M.; TOYSERKANI, E.
Development of an image-based feature tracking algorithm for real-
time clad height detection. 4th IFAC Symposium on Mechatronic
Systems, MX 2006, 2006. Heidelberg. PART 1. p.914-920.

IRAVANI-TABRIZIPOUR, M.; TOYSERKANI, E. An image-based feature
tracking algorithm for real-time measurement of clad height.
Machine Vision and Applications, v. 18, n. 6, p. 343-354, 2007.

KAPPA. CF 8/5 MX and DSP. 2006. Disponível em: <
https://www.cm-tech.at/upload/8598335-3583663-CF-8-5-MX-
E.pdf >. Acesso em: 05/04/2018.

KERAS. Image Preprocessing. 2018. Disponível em: <
https://keras.io/preprocessing/image/ >. Acesso em: 2018.

LE CUN, Y. Generalization and network design strategies. 1989.

LEI, J.; WANG, Z.; LIU, L. Design of forming shape measurement
system for laser molten pool in laser fabricating. International
Conference on Engineering Design and Optimization, ICEDO 2010.
Ningbo. 37-38: 327-330 p. 2010.

LIU, J.; WU, Y.; WANG, L. In-situ measurement based on prior
calibration with analogist samples for laser cladding. High-Power
Lasers and Applications VI, November 5, 2012 - November 5, 2012,
2012. Beijing, China. SPIE. p.The Society of Photo-Optical
Instrumentation Engineers (SPIE); Chinese Optical Society (COS).

MERIAUDEAU, F.; RENIER, E.; TRUCHETET, F. CCD technology applied
to laser cladding. In: ANAGNOSTOPOULOS CONSTANTINE, N.;BLOUKE
MORLEY, M., et al, Solid State Sensor Arrays and CCD Cameras, 1996.
San Jose, CA, USA. p.299-309.

https://www.cm-tech.at/upload/8598335-3583663-CF-8-5-MX-E.pdf
https://www.cm-tech.at/upload/8598335-3583663-CF-8-5-MX-E.pdf
https://keras.io/preprocessing/image/

90

MERIAUDEAU, F.; TRUCHETET, F. Control and optimization of the
laser cladding process using matrix cameras and image processing.
Journal of Laser Applications, v. 8, n. 6, p. 317-324, 1996.

MERIAUDEAU, F.; TRUCHETET, F. Image processing applied to the
laser cladding process. High-Power Lasers: Applications and
Emerging Applications, v. 2789, p. 93-103, 1996.

MERIAUDEAU, F. et al. Acquisition and image processing system able
to optimize laser cladding process. Proceedings of the 1996 3rd
International Conference on Signal Processing, ICSP'96. Part 1 (of 2),
1996. Piscataway, NJ, United States
Beijing, China. IEEE. p.1628-1631.

MONDAL, S.; BANDYOPADHYAY, A.; PAL, P. K. An experimental
investigation into the optimal processing conditions for the co2 laser
cladding of 20 MnCr5 steel using taguchi method and ANN.
International Conference on Modeling, Optimization, and
Computing, ICMOC 2010, 2010. Durgapur, West Bengal. p.392-398.

MORALEJO, S. et al. A feedforward controller for tuning laser
cladding melt pool geometry in real time. International Journal of
Advanced Manufacturing Technology, v. 89, n. 1-4, p. 821-831, 2017.

OCYLOK, S. et al. Correlations of melt pool geometry and process
parameters during laser metal deposition by coaxial process
monitoring. In: SCHMIDT, M.;MERKLEIN, M., et al, International
Conference on Laser Assisted Net Shape Engineering, LANE 2014,
2014. C: Elsevier B.V. p.228-238.

TOYSERKANI, E. Laser Cladding. 2005.

TOYSERKANI, E.; KHAJEPOUR, A. A mechatronics approach to laser
powder deposition process. Mechatronics, v. 16, n. 10, p. 631-641,
Dec2006.

91

VIJAYABHASKAR, J. Tutorial on Keras ImageDataGenerator with
flow_from_dataframe. 2018. Disponível em: <
https://medium.com/@vijayabhaskar96/tutorial-on-keras-
imagedatagenerator-with-flow-from-dataframe-8bd5776e45c1 >.

XING, F.; LIU, W.; WANG, T. Real-time sensing and control of metal
powder laser forming. 6th World Congress on Intelligent Control and
Automation, WCICA 2006, 2006. Dalian. p.6661-6665.

https://medium.com/@vijayabhaskar96/tutorial-on-keras-imagedatagenerator-with-flow-from-dataframe-8bd5776e45c1
https://medium.com/@vijayabhaskar96/tutorial-on-keras-imagedatagenerator-with-flow-from-dataframe-8bd5776e45c1

