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RESUMO EXTENDIDO 

 

Introdução 

Laser cladding é um processo de fabricação baseado em manufatura 

aditiva no qual um laser é utilizado para fundir material de adição sobre 

um substrato, sobre o qual uma poça fundida é formada e, desta, forma-

se um cordão de cladding. Dentre suas vantagens estão o baixo aporte 

térmico e elevada qualidade superficial de suas peças produzidas. Tal 

processo é, porém, altamente susceptível a perturbações, resultando em 

alterações da geometria final de seus produtos. O Laboratório de 

Mecânica de Precisão (LMP) na Universidade Federal de Santa Catarina 

(UFSC) possui um sistema laser de alta potência capaz de operar diversos 

processos de manufatura a laser, incluindo laser cladding. Neste sistema, 

busca-se compreender a influência dos parâmetros de processo sobre a 

geometria final dos cordões de cladding produzidos.  

 

Objetivos 

Propõe-se um método automático para a estimação da geometria final do 

cordão para um processo de laser cladding. Como objetivos secundários 

encontram-se a adequação do sistema para a aquisição das imagens, a 

medição real da geometria dos cordões de cladding e o desenvolvimento 

de diferentes arquiteturas de redes neurais convolucionais. 
 

Metodologia 

Primeiramente, são realizadas revisões bibliográficas sobre os principais 

conceitos das áreas de laser cladding e de redes neurais convolucionais. 

Em seguida, buscam-se aplicações de ambas as técnicas combinadas, 

novamente na literatura, de forma sistemática. Inicia-se, então, a 

adaptação do sistema de laser cladding para a aquisição das imagens da 

poça fundida. Os cordões de cladding são então fabricados e, 

posteriormente, medidos através de fotogrametria ativa. Finalmente, as 

redes neurais convolucionais são desenvolvidas na linguagem Python 3.6 

utilizando-se da biblioteca Keras. 

 

Resultados e Discussão 

As redes neurais convolucionais desenvolvidas são capazes de estimar a 
geometria final dos cordões com alta acurácia. O coeficiente de 

determinação entre os valores reais e estimados pelas redes ultrapassa 

0.95 para cada frame nos melhores casos. O erro médio, considerando 

todos os cordões, chega a valores tão reduzidos como 5 µm. Algumas 



 

 

arquiteturas são mais susceptíveis ao fenômeno de overfitting que outras, 

embora este fenômeno não seja suficiente para invalidar seus resultados. 

 

Considerações Finais 

Como uma primeira abordagem de monitoramento ótico inteligente no 

laboratório, os resultados foram muito positivos. O sistema laser foi 

adaptado para adquirir imagens do processo, enquanto as redes foram 

capazes de estimar a geometria final dos cordões de cladding com 

sucesso. Com este sistema, o laboratório está mais próximo da 

implementação de um futuro controle em malha fechada do processo. 

 

Palavras-chave: Redes Neurais Convolucionais, CNN, laser cladding, 

geometria de cordão, estimativa de geometria, monitoramento ótico. 

 

 



 

 

ABSTRACT 

 

Laser cladding is a complex manufacturing process which requires fine-

tuning to achieve the desired geometry. In order to further understand the 

process, an automated method for clad bead final geometry estimation on 

a laser cladding system is proposed. To do so, convolutional neural 

network architectures were developed. They receive the camera image 

and process parameters as inputs, yielding width and height of the clad 

beads as outputs. The optical monitoring system’s hardware was updated 

as well. The results of the network’s performances show coefficients of 

determination between the target and the estimated values above 0.95 for 

each frame on the best cases, while the error mean among all clad beads 

get to as little as 5 µm. Those results take the laboratory one step further 

into closed loop control for this process. 

 

Keywords: Convolutional neural network, CNN, laser cladding, bead 

geometry, geometry estimation, optical monitoring. 
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1 Introduction 

 

Laser cladding is an additive manufacturing process in which a laser 

beam melts feedstock material into a substrate, producing a clad bead. On 

the last decades, its usage has increased due to minimal thermal distortion, 

minimal dilution, and high superficial quality (TOYSERKANI, 2005). It 

is a highly multidisciplinary process, embracing subareas such as laser 

technology, numeric command, powder metallurgy, process control, and 

monitoring (TOYSERKANI, 2005). Coating, wear off parts repair, 

fabrication of parts with variable mechanical properties, and complex 

geometries are all suitable applications for this process. 

Together with this process’ boom came the need for its monitoring. 

Having such a complex physical nature, the understanding of this process 

is of high interest for its users. To identify the different aspects which 

influence a final part’s geometry is to enhance its efficiency, achieving a 

final geometry closer to the target one, thus, leading to less post-

processing time. 

The Laboratório de Mecânica de Precisão (Precision Mechanics 

Laboratory – LMP) on the Universidade Federal de Santa Catarina 

(Federal University of Santa Catarina – UFSC) possesses two laser 

processing units in which processes such as laser cladding, laser 

remelting, laser autogenous welding, laser-MIG hybrid welding, and laser 

superficial treatment are studied. One of the units utilizes a 10 kW laser 

source, in which most of those processes occur. In this unit’s setup, there 

is a camera which acquires images coaxially to the laser beam. Through 

this camera it is possible to acquire images of the molten pool – the region 

where the laser melts the feedstock material together with the substrate, 

forming the clad bead. This molten pool holds most of this process’ 

secrets, providing the most information out of it. 

An efficient way to gather information from the molten pool is to 

acquire its image. Using such a camera setup as described previously, one 

can acquire images of it which are normal to the substrate. Those images 

provide information on molten pool geometry and on its brightness. When 

properly analyzed, those images have the potential to yield information 

related to the clad bead’s geometry. 

Inspired by those who run the laser unit, a monitoring system, and its 
software are here proposed. It aims the understanding of the process just 

as operators do. A glance at the molten pool’s image during the process 

is all that it is needed for an experienced operator to identify an overly 

heated molten pool, which they easily correct by adjusting laser power. If 



22 

 

the human neural network can perform it, this is certainly an inspiration 

for artificial networks to do so. 

Taking a step further, not only could a neural network identify an 

over – or under – heated molten pool, but, perhaps, the very geometry of 

the clad bead. As the superficial tension of the molten pool drops with 

temperature, so does the height of the bead – as the material flows further 

over the substrate, increasing bead width.  

For such a daring task, the chosen neural network architecture once 

more follows the human sight. Inspired by the vertebrae cortex, the 

convolutional neural network is the perfect match for this challenge, 

nevertheless, this combination of laser cladding and convolutional neural 

networks is yet to be found in the literature. 

 

1.1 Objectives 

 

The main objective of this work consists of the following: 

“To develop an automated method for clad bead final geometry 

estimation on a laser cladding system” 

In order to do so, some steps were identified as essential to this work, 

which are here named as secondary objectives:  

• To analyze the current optical system and, if necessary, propose 

suitable modifications to it 

• To develop a methodology for the reliable measurement of the 

final clad bead geometry 

• To develop different convolutional neural network architectures 

for clad bead geometry estimation 

 

1.2 Contributions 

 

The execution of this work results in the first assault towards 

intelligent process monitoring for the laboratory. It opens research lines, 

which enables future works to be executed in these fields. Besides that, it 

leaves the laboratory one step further to process control, as process 

monitoring is the key for such. For the scientific community, this works 

contributes with yet another possibility of process monitoring, leaving 

room for many optimizations. 
 

1.3 Text Structure 
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The first step of this work was to research literature on laser cladding 

and convolutional neural networks for their fundamentals, in chapter 2. 

Later, another literature research was performed, this time looking for the 

efforts made on laser cladding process optical monitoring and on neural 

network applications for clad bead estimation since the beginning of the 

technology, on chapter 3.  

After the research was concluded, the optical system adequation 

which would allow image acquisition initiated. The usage of different 

lenses, filters, and cameras was analyzed, and a final setup was 

implemented. Then, the clad beads were deposited, their images, 

acquired. The beads were measured through active photogrammetry and 

the images were preprocessed on the Python 3.6 language using the 

OpenCV library. Six different convolutional neural network architectures 

were then developed under the Python 3.6 language by using the Keras 

library with the TensorFlow backend. Metrics were also developed 

aiming to enhance the architecture’s comparability. Other libraries such 

as Numpy, Scipy, Pandas, and Glob were also used for support operations 

and file management. These development and implementation steps are 

in chapter 4. 

The results are presented in chapter 5. There, the architecture’s 

performances are compared. Chapter 6 concludes this work, analyzing its 

successes and failures, as well as presents suggestions for those who dare 

to follow the path this work initiated. On chapter 7, the references used 

throughout this work as listed. 
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2 Theoretical background 

 

This chapter is designed to explain the major areas of this work. It is 

performed with a standard, exploratory research on the most consolidated 

literature on the area, along with community used reference websites. The 

first section details how the laser cladding process works and its most 

important features, while the last section explains how a convolutional 

neural network is structured and how it operates on images.  

 

2.1 Laser Cladding 

 

Even naming this technology has proven to be a complex task. Laser 

cladding, laser metal deposition, laser coating, laser powder deposition, 

laser surfacing, laser direct deposition or even laser additive 

manufacturing are all usual names for such a process. Laser cladding is 

an interdisciplinary laser-based technology, which can also embrace 

CAD/CAM software, robotics, sensors and control, and powder 

metallurgy technologies (TOYSERKANI, 2005). 

The growth of laser cladding technology increases among other 

manufacturing technologies due to its advantages, such as enhanced 

thermal control, reduction of production time and unique, smart structures 

production (TOYSERKANI, 2005). 

This section explains how laser cladding works as a plant to be 

controlled, which means, with a black box point of view. No 

phenomenological details are studied as they are not the focus of this 

work. As so, a quick overview of the process setup is presented. 

Subsequently, the molten pool is defined and detailed. After that, the main 

input and output variables are listed. Finally, the final product – the clad 

bead – is presented and detailed. 

 

2.1.1 Laser Cladding Setup 

 

Laser cladding is a laser-based additive manufacturing process where 

a laser beam is used to melt feedstock material over a substrate to build 

structures. The purpose of those structures can range from a surface 

coating to complex geometric build-up, being possible to select their 
chemical composition throughout a broad spectrum. There are many 

options or possibilities regarding feedstock material feeding setup, being 

the powder coaxial feeding method the one of interest in this work. In this 

method, the laser beam travels inside the laser cladding head, while 
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powder is blown coaxially to it from a ring-shaped aperture. An inert gas 

acts as a powder carrier gas, protecting it against oxidation. The laser 

cladding head in Figure 1a illustrates such setup.  

 
Figure 1 - Laser Cladding Setup (a) and optical path schematic (b). 

(a) 

 

(b) 

 
  

  
Included in this system there is a camera set coaxially to the laser 

beam, which allows visualization of the molten pool – the region where 

the laser melts powder and substrate, further detailed on section 2.1.2. For 

acquiring molten pool images, firstly, its radiation and laser reflections 

travel into the cladding head. While the laser wavelength (1070 µm) 

passes straight through the beam splitter – a half mirror – visible and 

shorter IR wavelengths are reflected by it. Without this beam splitter 

filtering out the laser radiation, any camera would suffer damage from it. 

Another mirror directs the shorter wavelengths to the camera. This optical 

path is illustrated in Figure 1b.  

 

2.1.2 Molten pool 

 

During the process, the laser beam melts powder and substrate, 

forming the molten pool. A strong metallurgical bond is then formed. This 

is crucial for adhering the newly deposited layer over the substrate. An 

image of a molten pool can be seen in Figure 2.  
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Figure 2 - Molten pool image, 1750W, 800mm/min. On this image, the cladding 

head is traveling to the right relative to the substrate, parallel to it. 

 
 

The molten pool image brings information on the resulting structure.  

The brighter the image, the hotter the molten pool is. The temperature can 

relate to the resulting microstructure, leading to different mechanical 

properties. Its geometry is also relevant for the resulting clad bead 

geometry, as explained in section 2.1.3. 

 

2.1.3 Clad Bead 

 

A clad bead is the simplest product from a laser cladding process. It 

is constructed by moving the cladding head over the substrate on a 

cladding direction while keeping the laser beam on and feeding powder. 

After molten pool solidification, the resulting structure is a bead made of 

a mixture of substrate and powder materials. A schematic of such a 

manufacturing process can be seen in Figure 3. 
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Figure 3 - Clad bead manufacturing schematic. 

 
 

On additive manufacture, a structure is built in layers. Clad bead 

height is directly related to layer height, which usually diminishes on the 

later layers due to thermal build up. A good estimation of clad bead height 

allows a better in process control. Also on this process, clad bead width 

influences in surface quality. To maintain the same bead width throughout 

a process with considerable thermal buildups, which are usual, is to 

considerably improve the surface quality and layer consistency. Both 

dimensions are also important in coating processes. 

There are other dimensions or features relevant to the clad geometry 

on the literature, such as penetration depth, bead area, and dilution. Those 

dimensions are not the focus on this work, thus, they will not be defined 

here.  

Nonetheless, to achieve any desired geometry, process tuning is 

mandatory. Its input parameters need to be comprehended. A highlight of 

its most important parameters can be seen in the next section, 2.1.4. 

 

2.1.4 Process Parameters 

 

For achieving different clad bead geometries, process parameters 

need to be altered accordingly. Laser power, travel speed, powder flow, 
laser focus spot size, and laser beam energy density are just some 

examples. On this work, the foci are the laser power and travel speed 

parameters. 

Cladding direction 
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Each of those parameters has a different influence on the clad bead. 

More laser power leads to higher temperatures, which increases molten 

pools wettability, thus, reducing clad bead height and increasing clad bead 

width. Faster travel speeds reduce the quantity of deposited material on 

the clad bead, shrinking all dimensions. 

The influence of process parameters on clad bead dimensions is quite 

clear. What links them both is the molten pool. Acquired by a coaxial 

camera, its imaging can provide insightful information regarding the 

process and its outcomes. An efficient way to extract this information is 

through artificial intelligence, with the use of convolutional neural 

networks.  

This specific type of neural network fits this problem because of its 

property of having the raw image as an input, with no need for further 

image preprocessing. There is also no need for defining any descriptors 

for the molten pool, e.g area, width, nor length. The CNN is explained in 

the next section, 2.2. 

 

2.2 Convolutional Neural Networks 

 

Convolutional neural networks (CNN) are inspired by the 

vertebrate’s visual cortex. It is a hierarchical architecture focused on 

image and audio analysis in which lower layers identify simple patterns, 

outputting feature maps. Those maps are then fed to higher layers, which 

identify more complex patterns, and so on.  

Although fairly used in many fields to this day, the creation of the 

CNN basics is almost four decades old. With the name of s-layers and c-

layers on the “Neocognitron”, the convolution and pooling layers were 

firstly drafted (FUKUSHIMA, 1980). As the research continued, a 

receptive field – which today is known as a kernel – was used to scan the 

image, achieving pattern shift invariance (LE CUN, 1989). The main 

architecture of CNN was then created. 

A CNN is composed of two main types of layers: convolution and 

pooling layers, which always comes in pairs. The following sections, 

2.2.1 and 2.2.2, explain each of those layers. A CNN can have one or 

many convolution-pooling layer pairs, but after those, there are always 

densely connected layers. Those layers outputs can be either a 
classification or a regression, as discussed in section 2.2.3. Finally, the 

CNN learning mechanism is briefly explained in section 2.2.4. 
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2.2.1 Convolution Layer 

 

As the name may suggest, convolution layers are the heart of CNN. 

They perform the convolution operation across an image. This operation 

consists of multiplying each element of the kernel – a small matrix with 

predetermined values – times the pixels in a region of the same size in the 

input image. Then, the values from the resulting matrix are added and 

stored in an equivalent position on a feature map. This algorithm is 

illustrated in Figure 4. Later, the kernel is shifted to an adjacent position 

– defined by a stride value, which is the number of cells to shift – where 

the algorithm is repeated, and a new value is stored in an adjacent position 

in the feature map. The output is the feature map matrix (INC., 2018) 

 
Figure 4 - Convolution operation. 

  
 

One can think that this operation alters the image size. There are 

options for it not to happen. The padding type defines it, where zero 

values are annexed on the sides of the image so that the kernel 

multiplication can be performed. Another viable padding option is to 

discard the edge values. 

This operation can be performed with one or many kernels. Each 

kernel then detects a different feature on the image, e.g. straight edges, 

shapes, etc. With multiple kernels, the resulting feature maps gain an 

additional dimension. The resulting output has four dimensions: height, 

width, color space and feature maps.  

It is a good practice to use normalized data. As neural networks are a 

matrix multiplication based algorithm, non-normalized data can induce 

mathematical complications to it. Batch normalization layers are usually 
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added right after the convolution layers for batch-wise data normalization. 

Batches are sets of images fed together to the network, improving training 

performance, but increasing memory usage. The batch normalization 

layers subtract the batch mean value from all the images, and divide them 

by their standard deviation (DOUKKALI, 2017). This operation is also 

performed on the input data. 

The next step is to feed this normalized result in the pooling layer. 

 

2.2.2 Pooling Layer 

 

After the convolution operation, the feature maps are fed into the 

pooling layer. What happens in this layer is a simple undersampling. The 

feature maps are then scaled down on their height and width dimensions 

but kept unchanged on their color space and feature maps dimensions. 

This allows a next convolutional layer to convolve on a larger area on the 

original image. Some details are lost with the increase in area, but those 

details have already been processed by the previous convolutional layer. 

There are many ways to perform the pooling operation. Two usual 

ways are max pooling and average pooling. In both ways, an area is 

replaced by a single value that represents it. On the average pooling 

method, the average pixel value from the feature map is chosen to replace 

the whole area. On the max pooling method, the max value of the area 

replaces it, signing that a feature was detected. Both cases of the pooling 

operation are depicted in Figure 5. 

 
Figure 5 - Pooling operation.  

   
 

2.2.3 Dense Layers and Output 
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After the convolutional and pooling layers, the feature maps enter a 

densely connected network. This type of network has connections from 

every neuron on one layer to every neuron on the next layer. Each 

connection has a weight, which is a value that is multiplied by the input. 

The weights give more significance to some inputs than to others, 

although the weight values differ for every neuron. 

To connect the CNN architecture to a densely connected network, the 

data needs to be flattened, turning into a single column array. This data 

array is then fed to the dense layers, which calculate the output of the 

CNN.  

There are mainly two types of operations a CNN can perform: 

classification and regression. The classification operation returns a class 

in which the image may belong, while the regression operation returns a 

value instead. How these outputs are calculated is explained in section 

2.2.4. 

 

2.2.4 Learning 

 

CNN is a supervised learning algorithm, meaning it needs the 

expected network output in order to learn. A training phase is required for 

both classification and regression operations. Thus, it is necessary to split 

the available data into at least two sets correspondent to the two learning 

phases: training and testing. 

The training phase’s objective is to minimize the error between the 

network outputs and their target values by changing the weights between 

neuron connections. The training starts with the network having random 

weight values, thus random output values. A function which compares 

this estimated values to the real ones is a loss function. To minimize this 

function’s output – named the loss value – is the aim of the training phase.  

The CNN weights are adjusted in order to minimize the loss value. 

This adjustment is made by an optimizer algorithm, responsible for 

finding a local minimum for the loss function. Each weight adjustment 

and loss value recalculation have the name epoch. A CNN training ends 

after a predetermined number of epochs. 

For the sake of visualization, metrics can be used. Those do not 

interfere with the training itself but serve as a way for the developer to 
further understand how well is the network training. 

After this, starts the testing phase. The CNN then calculates the 

output from new input. Both results are compared, and the loss value is 

calculated, along with any other desired metrics. For classification 
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problems, it is usual to build a matrix with the predicted and actual results 

– one on each axis – named confusion matrix. For regression, however, it 

is more usual to make a graph with the predicted and actual results – also 

one on each axis –, calculate the best fit line and its R² factor. 

Once understood the main concepts on the laser cladding and neural 

network areas, what has been done when one combines both technologies 

can be discussed. The state of the art for neural network usage on laser 

cladded bead geometry estimation, as well as the first image based 

monitoring systems for such a process,  can be acknowledged in chapter 

3. 
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3 State of the Art 

 

Laser cladding process monitoring has been a field of research for at 

least two decades. During this period, many systems and strategies were 

developed to better understand this process, thus improve its quality. The 

papers here presented include research on the image acquisition system, 

molten pool segmentation and temperature, bead and molten pool 

geometries, as well as machine learning-based approaches on bead 

geometry estimation. Such chapter had its papers searched, selected and 

studied through a systematic approach (FERENHOF; FERNANDES, 

2018).  

The state of the art research was set to be a combination of two 

different research queries, the first focused on optical monitoring systems 

for the laser cladding process, and the later, on artificial intelligence 

applied to the process. Both research querries were applied on the Scopus, 

Web of Science and Compendex databases. Those queries can be seen 

below in Figure 6. 

 
Figure 6 - Search queries for optical system monitoring (left) and artificial 

intelligence for laser cladding (right). 

( "laser cladding" OR "laser 

deposit" OR "laser deposition" 

OR DMD OR LBAM OR LMD 

OR "metal deposition" ) 

AND 

( camera* OR ccd OR cmos OR 

video ) 

AND 

(pool OR clad OR bead* OR 

track* OR melt* OR molte*) 

AND 

(geometr* OR profil* OR shap* 

OR heigth) 

AND 

(measur* OR monitor* OR 

metrology OR sensor* OR 

control* OR optimiz*) 

 ( "laser cladding" OR "laser 

deposit*" OR DMD OR LBAM 

OR LMD OR "metal deposition" 

) 

AND 

(geometr* OR profil* OR shap* 

OR heigth) 

AND 

(measur* OR monitor* OR 

metrology OR sensor* OR 

control* OR optimiz*) 

AND 

("neural network" OR AI OR 

"machine learn*") 

   
On the first research, by the date 27/02/2018, the Scopus database 

returned 74 entries, Web of Science returned 49 and Compendex, 71, with 
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a total of 194 results, 91 eliminating duplicates. After filtering by interest 

field, 24 entries remained, but only 17 of those had full text available. 

On the second research, by the date 27/11/2018, the Scopus database 

returned 27 entries, Web of Science returned 11 and Compendex, 35, with 

a total of 73 results, 48 eliminating duplicates. After filtering by interest 

field, 9 entries remained, but only 6 of those had full text available. One 

more paper was incorporated to complement the results, based on 

exploratory research. Both research querries had one entry in common.  

This chapter presents works on those fields dating from 1996 to 2018, 

in chronological order. 

Meriaudeau et al (MERIAUDEAU; RENIER; TRUCHETET, 1996; 

MERIAUDEAU, FABRICE; TRUCHETET, FREDERIC, 1996; 

MERIAUDEAU, F.; TRUCHETET, F., 1996; MERIAUDEAU et al., 
1996), in his four papers from the year 1996, used two CCD cameras 

directed to the molten pool, one in a shallow, almost horizontal angle, and 

the other on a 45° angle, to acquire process information.  

 
Figure 7 - System with two cameras, one on a shallow angle and the other on a 

45° angle 

 
Source: (MERIAUDEAU, F.; TRUCHETET, F., 1996) 
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This camera positioning makes this system dependent on cladding 

direction. The shallow angle camera acquired the bead geometry during 

its formation. Bead height and width were measured in real time with a 

simple edge detection algorithm. The powder flow was also observed 

from this camera. The 45° camera was used as a spectral thermometer, 

converting the image luminosity (gray level) on temperature, as there is a 

linear relationship between the two quantities. On the resulting image 

histogram, two peaks can be seen, one relating to the image background 

color, and the other to the molten pool temperature. System resolution 

was of 5°C, and maximum errors of 15°C. Future works aimed at powder 

particle speed acquisition. 

Hu et al (HU; MEI; KOVACEVIC, 2002; HU; KOVACEVIC, 2003) 

used two CCD cameras, one capturing infrared (IR) images coaxial to the 

laser beam, and the other being a high-speed camera (800 fps), on a near 

vertical angle. This camera is synchronized with a short-wavelength 

stroboscopic illumination, yielding a clear bead geometry image, on 

Figure 8a. The IR camera is filtered with a long pass 700 nm optical filter, 

acquiring only infrared frequencies, related to temperature. The resulting 

image gray level can be related to temperature, but not a precise contour 

for the molten pool can be seen (Figure 8b). Merging both images reveals 

the molten pool borders on the IR image. A grey level threshold can then 

be defined, relating to the material’s melt point isotherm, as in Figure 8c. 

The molten pool is then segmented. The number of pixels inside the 

molten pool is counted and used as the control variable in a closed loop. 

A PI controller successfully controls the molten pool size by variating the 

laser power. 
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Figure 8 - Molten pool images: (a) high-speed camera image; (b) infrared 

coaxial camera image; (c) molten pool isotherm  

 

 

 

(a) (b) (c) 

  
Source: (HU; KOVACEVIC, 2003). 

 

Toyserkani et al (TOYSERKANI; KHAJEPOUR, 2006) utilized a 

CCD camera on a shallow angle and a halogenic lamp for a side image of 

the molten pool. Once again, this disposition choice makes this system 

dependent on cladding direction. This camera was equipped with a 

magnifying lens and many optical filters. After the acquisition, the image 

has its brightness and contrast adjusted and is converted to gray level. It 

is then binarized with a fuzzy threshold technique, also developed by the 

authors. Finally, the molten pool is segmented. This side view of the 

molten pool allows the measurement not only of the bead height but the 

solidification angle as well, making it possible to estimate the generated 

microstructure. System resolution is of 0.02 mm for bead height, with a 

0.1 mm uncertainty. A PID controller closes a loop for bead height control 

by variating laser power. This control loop enhanced bead quality by 

eliminating disturbances during the process. Future works aimed at 

adapting the system to work with any cladding direction, incorporating a 

total of 3 CCD cameras on a radially symmetric arrangement, centered at 

the molten pool.  

Xing et al (XING; LIU; WANG, 2006) measured molten pool 

temperature through colorimetric methods. The system has an alternating 

filter device with two bandpass filters (790 nm and 921 nm). Those filters 

are alternated in front of the CCD camera synchronously to the camera 

frames. The ratio between the different image intensities for each 

frequency allows temperature measurement. Moreover, a laser line 

projection allows bead height measurement by the light triangulation 

method. Once the molten pool temperature is known, it is successfully 
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controlled by a fuzzy logic controller, acting on both laser power and 

travel speed. Future works aimed at implementing stochastic models and 

neural networks. 

Hofman et al (HOFMAN; DE LANGE; MEIJER, 2006) developed a 

camera-based feedback control system for the laser cladding process, 

aiming at energy usage optimization. The system consists of a coaxial 

CMOS camera arrangement, which is optically filtered to gather mostly 

infrared (temperature related) wavelengths. Then, the image is processed 

with an algorithm that can be described as blurring, thresholding for 

molten pool boundary identification, ellipse fitting, ellipse feature 

extraction – area, length, width, and rotation angle –, and the pixel to mm 

and mm² conversion. It was observed that there is an almost linear 

relationship between the molten pool width and the bead width, although 

there is no apparent relation between bead height and molten pool width. 

It was also observed that there is a molten pool width threshold. While 

the molten pool is narrower than this threshold, molten pool depth is 

nearly zero. After that limit, it increases rapidly. For the control logic, the 

molten pool width is used as the control variable while laser power is 

variated to compensate heat effects, as an effort to keep molten pool width 

constant. A digital PID controller is thus implemented, successfully 

achieving minimal dilution. 

Iravani-Tabrizipour et al (IRAVANI-TABRIZIPOUR; ASSELIN; 

TOYSERKANI, 2006; IRAVANI-TABRIZIPOUR; TOYSERKANI, 

2007) continued Toyserkani’s research (TOYSERKANI; KHAJEPOUR, 

2006) developing a system with 3 CCD cameras on a radially symmetric 

arrangement, centered at the molten pool, as seen in Figure 9, achieving 

the proposed clad direction independence. Magnifying lenses and 

bandpass 700±40 nm filters were equipped on the cameras. On each 

moment, only two out of the three camera images are processed, 

depending on actual cladding direction, to reduce total image processing. 

The molten pool is segmented from the images with the same fuzzy 

threshold method from the previous work. Each molten pool image is 

fitted to an ellipse, then, merged with a coordinate transformation. The 

ellipse features are fed into a recurrent neural network (Elman RNN) that 

outputs bead height. This network was trained by the error 

backpropagation algorithm. Its structure naturally diminishes noise 
influence. The average error is 12.5%, and the system uncertainty is 

around 0.15 mm. Future works aim at bead height measurements for 

curved tracks. 
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Figure 9 - Schematic of the trinocular CCD based detection system. 

  
 
Source: (IRAVANI-TABRIZIPOUR; TOYSERKANI, 2007). 

 

Lei et al (LEI; WANG; LIU, 2010) achieved a molten pool image 

acquisition on a CO2 laser-based cladding process. The biggest challenge 

for this type of laser is the non-transparency of glasses for its wavelength, 

thus, a coaxial camera coupling is not possible. The camera was then 

coupled on a 25° angle from the laser beam. The acquired molten pool 

was fitted to an ellipse, and through its brightness, it was possible to 

measure molten pool temperature. 

Mondal et al (MONDAL; BANDYOPADHYAY; PAL, 2010) aimed 

at finding a relation between bead geometry (height and width) and 

process input parameters (laser power, travel speed, and powder flow). 

To this end, many beads were cladded with different process parameter 

values. Those values were chosen according to the Taguchi design of 

experiment method. The beads were cut, and their cross section, 

measured. With the values of height, width, laser power, travel speed and 

powder flow for each bead, this data was fed into an artificial neural 

network (ANN), where the process parameters were the input, and the 

bead geometry, the output. A deviation occurs between prediction and 

target values due to modeling or experimental errors, yielding an R² of 

0.981 for the best fit line. This result shows that the predicted values were 

in great agreement with the experimental outcomes. 
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Barua et al (BARUA; SPARKS; LIOU, 2011) presented a low-cost 

alternative for the molten pool visualization problem. According to the 

black body theory, there is no ultraviolet radiation emitted from the laser 

cladding process. Ultraviolet LEDs were then used to illuminate the 

molten pool. A CMOS webcam, optically filtered with a UV bandpass 

filter, acquired the images. The whole setup can be seen in Figure 10. The 

CMOS technology was found to be more sensitive to the UV spectra than 

the CCD technology. After preprocessing, segmentation and perspective 

correction, the molten pool was measured. The above-mentioned 

algorithm was developed with the OpenCV library. Information extracted 

from the image includes molten pool size and circularity. Measurement 

errors were identified coming from an automatic white balancing function 

of the webcam. Also, a loss on the resolution was identified, what could 

be corrected by stronger illumination. Future works aim at a control 

system with the Labview language to reject process disturbances, as well 

as pore detection and bead height monitoring. 

 
Figure 10- Experimental setup with a webcam and UV illumination. 

  
Source: (BARUA; SPARKS; LIOU, 2011) 

 

Davis et al (DAVIS; SHIN, 2011) utilized a CCD camera and a laser 

plane to measure the height of the newly formed bead by the laser 

triangulation principle, 5 mm after the molten pool. The laser plane and 

the camera are angled at 55°. To avoid measurement errors, it was 

observed that the perpendicularity between the bead and the laser plane is 

crucial. Even at higher speed, the system errors are about only 50 µm. 

Future works consist of a closed loop control system with the LabView 

language. 
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Liu et al (LIU; WU; WANG, 2012) approached the molten pool 

segmentation problem by a previous calibration methodology. This 

methodology consists of previous laser cladding of beads. Those beads 

are then cut, and their cross sections measured, acquiring bead width. 

Theoretically, bead width equals molten pool width. This width value 

allows a gray level threshold value to be set on the image, segmenting the 

molten pool. The image acquisition system consists of a CCD camera on 

a 20° angle from the laser beam. Errors on this methodology vary from 

0.56% to 5.33%, which came from image scaling, thresholding or 

vibrations. 

Doubenskaia et al (DOUBENSKAIA et al., 2013) present a 

methodology for molten pool temperature distribution acquisition by 

black body calibration. The system consists of an infrared camera on a 

40° angle from the laser beam. In this work, the image emissivity is 

calculated from the solid-liquid interface of the molten pool, where the 

melting point is known. The system successfully acquired process 

temperature distributions and cooling rates. 

Arias et al (ARIAS et al., 2014) developed a system with a dynamic 

laser spot size. Coaxially to this system, there is a CMOS camera with a 

final resolution of 10 µm. The optical filters on the system allow only the 

wavelengths between 2450 and 950 nm to be acquired. This system is 

FPGA-based, making use of all its speed and processing capacity. The 

image processing algorithm is based on blob detection, where the biggest 

blob on the image refers to the molten pool. Features extracted from the 

blob include blob center and size. With the biggest blob width 

measurement corresponding to the molten pool width, it is possible to 

implement a control loop when altering laser power. 

Ocylok et al (OCYLOK et al., 2014) utilized a coaxial CMOS camera 

to acquire molten pool images. A threshold operation was enough to 

segment the molten pool. Molten pool width, length, and area were 

measured. The author presents a study on the influence of process 

parameters (laser power, travel speed, and powder feed rate) on molten 

pool geometry. Conclusions are that the least affected molten pool 

dimension is its area, apart from laser power, with which this dimension 

is linearly related. 

Moralejo et al (MORALEJO et al., 2017) developed a closed loop 
control system to control molten pool geometry in real time. For this 

purpose, the authors developed a PI controller with feedforward action 

based on the molten pool width measurement from a coaxial CMOS 

camera. A derivative control action was not considered due to powder 
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noise. The feedforward action became necessary to speed up the PI 

response. Molten pool width was the most stable molten pool dimension; 

therefore, it was chosen as the control variable. An investigation on 

optical filters leads to an optimal combination consisting of a notch filter 

on the laser beam frequency (1064 nm) and a long pass filter of 700 nm. 

The threshold value was chosen from images of the process without 

powder flow. For validation, a part with width variating on a sinusoid 

shape was cladded. The system presented a standard deviation of 3.5 

pixels. 

Aggarwal et al (AGGARWAL; URBANIC; SAQIB, 2018), targeting 

at bead geometry optimization, developed predictive models to select 

input process parameters on both single and overlapping laser clad beads. 

On this work, three approaches were taken – one experimental, the second 

on predictive models, and lastly an artificial neural network (ANN) 

approach with the MATLAB toolkit. The experimental approach consists 

of varying a set of five input parameters over 5 levels, on the single bead 

case and on the 40, 50 and 60 percent overlap cases. The data here 

acquired was also used on the following approaches. The predictive 

model approach was subdivided into another two methods: an ANOVA 

approach (quadratic model) and a physics-based model related to travel 

speed, laser power, as well as observed data trends. Finally, an ANN 

approach is taken, inputting the desired geometry and resulting in the 

appropriate process parameters. Results show that the classic method for 

this problem, the ANOVA analysis, yielded the worst results, while the 

ANN results have 96.3% of confidence level, the best of the approaches. 

Future works direct to the study of different material, dilution 

minimization, and bead width variation while keeping constant bead 

height, for complex shapes. 

Caiazzo et al (CAIAZZO; CAGGIANO, 2018) developed an ANN-

based process parameters estimation method. Acquiring cross-section 

data, each set of bead height, width, and depth was joined with its 

corresponding process parameters (laser power, travel speed, and powder 

flow rate) and fed into a three-layer cascade-forward backpropagation 

ANN. Different neural network architectures were tested aiming at 

finding the optimum network for the system. The Levenberg-Marquardt 

algorithm was chosen as the ANN training function. A total of 90 samples 
were used for training, and the evaluation occurred in terms of root mean 

square error between predicted and target values. On the first phase, the 

neural network was used to predict bead geometry from the process 

parameters. Once the architecture was selected, inputs and output were 
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reversed, estimating process parameters from bead geometry. Results 

show that the ANN was able to accurately estimate the correct process 

parameters necessary for the desired bead geometry, with mean absolute 

percentage errors as low as 2% for laser power, 5.8% for travel speed and 

5.5% for powder feed rate. An example of this ANN estimation can be 

seen in Figure 11. 

 
Figure 11 - Experimental average and ANN predictions for depth. 

  
Source: (CAIAZZO; CAGGIANO, 2018) 

 

Huaming et al (HUAMING, 2018) predicted the geometric 

characteristics from the input process parameters with a genetic algorithm 

and backpropagation neural network-based approach (GA-BPNN). For 

the data, experiments were performed varying sets of laser power, travel 

speed and powder thickness over three levels, on a pre-placed powder 

setup. After the cross-section acquisition, three main parameters were 

chosen as outputs, being bead height, width and contact angle. After 

acquiring the data, a genetic algorithm is used to optimize a 

backpropagation neural network architecture. Each population consists of 

different neural networks, which are trained and tested. The fittest 

network is chosen to generate a new population of networks, a process 

that continues for 50 generations. Before optimization, the neural network 

took 40 epochs to achieve its best training performance. After 

optimization, it only took 12 epochs for much better performance. The 

best results were on width predictions, where the R² factor of the scatter 

graph between prediction and target values was 0.982 on training and 
0.999 on testing, as seen in Figure 12. Conclusions point to the GA-BPNN 

approach being an effective tool to correlate process parameters and bead 

geometry, with the ANN error being significantly reduced after GA 

optimization. It was also observed that the double hidden layer 

architecture has a smaller relative error than the single hidden layer one. 
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Additionally, a network outputting only a single parameter performs 

much better than one with multiple outputs. 

 
Figure 12 - Scatter diagram with the best fit of GA-BPNN prediction vs. 

experimental. (a) training patterns (b) test patterns. 

  
Source: (HUAMING, 2018) 

 

It can be observed a difference in the papers before and after the year 

2010. The early works rely heavily on hardware, often using more than a 

single camera or demanding external lighting. The software development 

was limited and with low complexity. Despite those limitations, the 

information there acquired was crucial for this technology’s development 

in the later years. From the year 2010 onwards, different approaches were 

taken with significantly less hardware. The post-processing analysis of 

cross-sections became a trend. However, most of the analysis relied solely 

on cross-section measurement, which implies a single measurement for 

the whole clad. Information on process oscillations is, thus, lost. 

Those approaches have reported both image acquisition followed by 

processing, or cross-section measurements fed to machine learning 

algorithms. An approach where both data are fed into a machine learning 

algorithm, especially to state-of-the-art structures such as convolutional 

neural networks, was not present in this research. Such an architecture is 

capable of taking the raw image as an input, without the need for 

extensive preprocessing, e.g. to fit the molten pool to ellipses, to acquire 

any molten pool length or width nor to measure any areas. The very 

architecture is responsible for defining the main features to be identified 

on the image for further geometry values estimation. Besides that, such 

an approach requires nothing more than a computer, a camera, and filters. 

The implementation of this approach is explained in the following 

chapter. 
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4 Implementation 

 

This chapter details how each step on this work is performed. For 

neural networks to be developed and trained, many steps needed to be 

taken. It starts with an analysis of the initial optical setup and which 

components needed to be replaced for image acquisition, as well as setup 

adequation, which are detailed in section 4.1. Next, the laser clad bead 

deposition process is described in section 4.2. Later, it is discussed the 

procedure on clad beads geometry measurement, in section 4.3. After that, 

the image preprocessing is described in section 4.4. Finally, all necessary 

data is now available, providing the networks with both inputs (molten 

pool images and process parameters) and outputs (geometry 

measurements). the choices on language and libraries are presented for 

CNN development, as well as metrics are defined for its performance 

evaluation, and its different architectures, compared, in section 4.5. 

 

4.1 Optical system adequation 

 

Prior to this work, the system contained a coaxial powder cladding 

head, with such an optical setup as described and depicted on section 

2.1.1, along with a manual aperture close to the beam splitter on the 

camera’s optical path. This camera, however, was an analog camera, 

model CF 8/5 MX from the Kappa company, on Figure 13a. With a series 

of embedded functions to improve image visualization on different light 

intensities, this camera is a perfect match for its current purpose, which is 

to watch the process molten pool on a monitor screen. However, acquiring 

digital images from it has proven not to be the easiest task.  

An approach has been made to digitalize this analog camera’s image. 

For this purpose, the Video-to-USB 2.0 converter on Figure 13b, from 

The Image Source company, was used. To do so, all image improving 

functionalities from the camera were shut off, keeping the image constant 

even when there was variable light intensity. The converter digitalized the 

image to a size of 640x480 pixels, on a frequency of 30 fps. A digitalized 

image sample from this setup can be seen in Figure 14. 
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Figure 13 - Analog camera, model CF 8/5 MX from Kappa (a). Image 

converter, model Video-to-USB 2.0 converter from The ImageSource (b). 

  
(a) (b) 

  
Source: (IMAGINGSOURCE; KAPPA, 2006) 

 
Figure 14 - Digitalized image from the analog camera.  

 
Source: Author. 

 
This is the image from the inside of the laser cladding head. The 

molten pool can be seen in the middle, while the white halo around it 

represents laser and other sorts of reflections on the inside of the cladding 

head. The camera is off-center at this image, but the whole molten pool is 
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still visible. The high saturation levels on the image can also be noted, as 

well as how small the molten pool is when compared to the whole image. 

From this image, the interlacing effect can be observed. It happens 

because of the digitalizing process, where even-numbered and odd-

numbered pixel rows are alternated to form consecutive frames, resulting 

in horizontal lines. It can also be seen that there is an image duplication, 

as if two images were horizontally misaligned, blurring the near vertical 

edges. This does not happen due to the analog camera but to system innate 

characteristics. 

After acquiring those images, some improvements were planned: 

• Reduce saturation with optical filters: A filter support was 

manufactured by FDM, illustrated in Figure 15. It was 

placed below the camera, without the need for further 

adaptations;  

• Increase image magnification: An optical system to magnify 

the image was designed and then manufactured through 

FDM, but it was concluded that due to machine vibrations, 

focusing difficulties, and lack of system rigidity make it 

unpractical and unusable;  

• Replace the analog camera with a digital camera – A digital 

camera, model BFLY-PGE-20E4M-CS from PointGrey, 

with a resolution of 1600x1200 and 50 fps, replaced the 

analog camera. 

  
Figure 15 – Designed filter support. It fits up to two 25.4 mm (1 inch) diameter 

filters. 
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Despite the magnification, all improvements were implemented.  The 

increased resolution of the digital camera was used to compensate for the 

magnification absence. This new system is now able to acquire images at 

much higher speed and resolution than the previous one, besides having 

a steadier light level than when using the analog camera. There remained 

a certain saturation level, although it kept away from the borders of the 

molten pool, which was considered acceptable. 

 

4.2 Laser clad processing 

 

After setup adequation, the clad beads could be deposited. Feeding 

powder consisted of AHC 100.29 Höganäs manufactured iron (99,98%) 

powder, fed with 6.51 g/min. The substrate is composed of ASTM A36 

steel, with the 50 mm x 200 mm x 9.52 mm dimensions. Clad beads were 

20 mm long. Laser power and travel speed values can be seen below in 

Table 1. Those values were chosen based on previous experience taken 

from other laboratory research lines.  

 
Table 1 - Input process parameters. Source: Author 

Laser Powers (W) 350 700 1050 1400 1750 2100 

Travel Speeds (mm/min) 300 800 1300 1800   

 

Beads were placed over the substrate according to Figure 16. On this 

figure, each column has a different speed value, while each row represents 

a different laser power value. The whole experiment was repeated 3 times 

to increase data volume, resulting in a total of 72 clad beads.  

 
Figure 16 - Clad bead layout. 

   
 

A top view of the cladded beads is depicted in Figure 17, in which 

the top left 24 clad beads (in blue) do not make part of this work, as they 
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were performed without powder. However, the remaining three sets of 24 

clad beads are, therefore, this work’s object of study, each of them 

following the parameter distribution presented previously in Figure 16 

and highlighted in red in Figure 17. 

 
Figure 17 - Cladded beads. Clads deposited on red rectangles correspond to the 

three sets of data used in this work. Marks on the blue rectangle were made 

without powder. 

 
 

It can be observed some misaligned clads on the top rows, 

corresponding to 350 W for laser power. On those beads, there was not 

enough energy to weld them on the substrate, thus leading to their 

detachment. Later on, those beads were glued back to their positions to 

allow further analysis. Such an unusual procedure did introduce errors in 

measurement, as will be explained in the next section. 

The images were acquired with the Spinview software, also from 

PointGrey, with its gain set to 15. The aperture was adjusted, though no 

numerical value could or can be read to quantify it. Metallic neutral 

density filters from Newport were used, with combined optical densities 

of 2. The Maximum Transmit Unit (MTU) of the connection between 

camera and computer was set to 9000.  
Once the process is done, the next step clad beads measurement, on 

section 4.3 
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4.3 Clad bead geometry measurement 

The clad bead consists of a single 20 mm-long cladded line. Although 

simple in geometry, the clad bead characteristics vary greatly from one 

another. Each clad has a height and a width. On this work, those 

dimensions are defined as follows:  

• Height – the biggest distance between substrate level and the 

clad bead surface, perpendicular to the substrate 

• Width – the biggest distance between points on the clad bead 

surface that have at least 5% of the clad bead height, parallel 

to the substrate.  

Those dimensions are depicted in Figure 18.  

 
Figure 18 - Clad bead height and width geometries. 

   
 

After the beads are manufactured, they are measured to extract its 

height and width dimensions. For such a task, an ATOS Gom system 

(Compact Scan model) was used. This system scans 3D parts based on 

active photogrammetry with fringe projection. The result is a dense data 

cloud in the shape of the part’s surface, seen in Figure 19.  

For acquiring clad bead height and width values, the first step is to 

position the coordinate system. It was set with the X-axis parallel to the 

clad beads, not to the side of the substrate, as both are not perfectly 

aligned. The Y-axis is then placed so that the XY-plane is coincident to 
the surface of the substrate.  

It can also be observed that most beads cladded with the lowest power 

(top row of Figure 19) are not parallel with the remaining beads, even 

missing parts when cladded with the highest speed (top right bead on 
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Figure 19). Those were beads without any metallurgical bond, thus, they 

have detached. This displacement does not interfere much on the height 

dimension but does introduce an error on width. Without any 

metallurgical bond, those are not desirable geometries, thus, those errors 

can be neglected. This is also the case for the missing part of the top right 

clad bead. However, they do introduce errors on the following neural 

networks training. An attempt to completely dispose of those beads was 

made, although leading to worse results. 

 
Figure 19 - Clad beads data cloud. 

  
 

The clad beads need to be sectioned. During the process, the camera 

acquired a number of frames for each bead. Each of those frames needs a 

matching height and width value. Each bead was then sectioned into the 

theoretical number of frames for its speed, which is calculated by dividing 

its length by its travel speed and then dividing this result by 0.02 seconds 

(50 fps). The theoretical number of frames for each speed is presented in 

Table 2, while the beads with their sections are shown in Figure 20. 

 
Table 2 - Theoretical number of frames for each travel speed. 

Travel Speed (mm/min) 1800 1300 800 300 

Theoretical Number of Frames 18 48 78 108 

 

The extracted data consists of 3-dimensional coordinates of every 

point belonging to each section. Then, they were split into sections of 

individual clad beads, and their height and width dimensions, calculated 
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according to the definition in Figure 18. Finally, the numbers of frames 

and sections for each bead are manually evened. This matching is not 

precise, introducing errors on the following network's training as well.  
Figure 20 - Clad beads with sectioning. 

  
 

The clad beads are now measured, leaving only the images to be 

preprocessed before all data can be fed to neural networks. The image 

preprocessing is discussed in the following section, 4.4. 

 

4.4 Image preprocessing 

 

During the process, there was no synchronized mechanism to turn the 

camera on with the laser. So, the camera kept recording during the whole 

process, acquiring images from all clad beads. This video file needed then 

to be split into individual clad beads. After that, it was again split into 

training and testing sets. As the set of 24 different clad beads was repeated 

3 times – resulting on 72 clad beads – one of these sets was kept as testing 

data.  

As the camera kept recording in between clad beads – when the laser 

was off – there were many black frames. Those were filtered out based 

on image pixel mean value. Every image with its mean pixel value below 

1 was discarded. This filtering discarded 1584 images out of a total of 

5956 images from the training data, remaining 4372 images. For the test 

data, 484 images were deleted, with 2189 images remaining. A sample of 

the image after this selection can be seen in Figure 21. 
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As can be observed, most of the image is a black background. This 

area was simply cropped out of the images, resulting in the cropped image 

area in Figure 21, of size 540 x 540 pixels. Then, a small area between 

the nozzle area and the cropped image borders remaining. This area was 

masked out, as the pixels there represent reflections on the inside of the 

nozzle, which can be considered noise. Finally, the image was scaled 

down to 128 x 128 pixels to save processing time and space.  

All of this image preprocessing was performed on the Python 3.6 

language through the ipython platform. The libraries used for such are 

OpenCV and Numpy, both open source and widely available. The Glob 

library was also used for file management. The final result is in Figure 

22. On this stage, the image is ready to be processed by convolutional 

neural networks. No further image preprocessing is needed. The next step 

is to develop those networks, on section 4.5. 

 
Figure 21 - Image from training set before preprocessing. Nozzle area and 

cropped image regions. 1050W, 300mm/min. 1200 x 1600 pixels. 

   
 
Figure 22 -Figure 21 after cropping, masking and rescaling. 128 x 128 pixels. 
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4.5 Neural network development and evaluation 

 

For developing convolutional neural networks (CNN), the Python 

language was chosen due to its many available libraries on the machine 

learning field. One of those many libraries is Keras – here used with the 

Tensorflow backend – presenting a simple interface for developing the 

CNN. However, before the network could be developed, the data needed 

to be adjusted for such. Image, input parameter, and output of each frame 

need to be related to each other. This is performed by a custom image 

generator, explained in section 4.5.1. With the input defined, the main 

body of the convolutional neural network can be developed, on section 

4.5.2. Finally, the methods used for convolutional neural network 

evaluation are described in section 4.5.3. 

 

4.5.1 Image Generator 

 

To set images as input for a convolutional neural network (CNN), the 

Pandas library was used. Two CSV files relating the image file paths, 

input process parameters and output geometry values were used to create 

pandas dataframes, one for training and the other for testing, on lines 1 

and 2 of Erro! Autoreferência de indicador não válida.. On line 4, a 

standard image generator is created, which will load the images and 

rescale their pixel value from the 0-255 range to the 0-1 range. In line 6, 

the proper custom image generator is created. Lines 36 and 37 show its 

usage, with the standard generator, dataframe, path and shuffle mode as 

arguments.  

Lines 7 to 18 are the call to the flow_from_dataframe method of the 

Keras ImageDataGenerator class (VIJAYABHASKAR, 2018). This 

method purpose is to select the images contained on a provided dataframe 

– along with its related numerical values, here input parameters and 

output values – and feed it in batches to the CNN. The arguments for this 

method are explained in the library documentation (KERAS, 2018).  

The highlights are the x_col and y_col arguments, which represents 

respectively the inputs and the outputs of the neural network, although the 

method does not support more than one input type. Those arguments are 

set, therefore, with the image file as the input (x_col) and both process 
parameters and output values as outputs (y_col). This will be corrected 

later on the code. 

Another point to highlight is the class_mode argument, which is 

related to the neural network operation. There is no specific value to use 
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on the regression operation, so “other” is recommended by the software 

development community. This is what sets the neural network to operate 

a regression, not a classification operation. 

 
Figure 23 - Image generator code. 

1. train_df=pd.read_csv(top_path+"train.csv", sep=';')   
2. test_df=pd.read_csv(top_path+"test.csv", sep=';')   
3.    
4. imgen = ImageDataGenerator(rescale = 1./255)   
5.    
6. def generate_generator_multiple(generator,df, path, shuffle):   
7.     genX1 = generator.flow_from_dataframe(   
8.         dataframe=df,   
9.         directory=path,   
10.         x_col=filename,   
11.         y_col=outputs + inputs,   
12.         has_ext=True,   
13.         batch_size=batch_size,   
14.         shuffle=shuffle,   
15.         class_mode="other",   
16.         color_mode='grayscale',   
17.         target_size=IMAGE_SIZE   
18.     )   
19.     while True:   
20.             X1i = genX1.next()     # img, [inputs, outputs] 
21.             i1 = np.array(X1i[0]) - 0.5   
22.             labels = np.array(X1i[1])   
23.             o = labels[:,0:len(outputs)]   
24.             i2 = labels[:,len(outputs):len(outputs + inputs)]   
25.                
26.             # normalization   
27.             # (x - xmin) / (xmax - xmin) - 0.5   
28.             normP = np.vstack(((i2[:,0])-

np.full(i2[:,0].shape, min_inputs[0]))/   
29.             (max_inputs[0]-min_inputs[0])-0.5)      
30.             normS = np.vstack(((i2[:,1])-

np.full(i2[:,1].shape, min_inputs[1]))/   
31.             (max_inputs[1]-min_inputs[1])-0.5)   
32.                
33.             i2 = np.hstack((normP, normS))   
34.             yield [i1, i2], o      # [img, inputs], outputs   
35.                
36. train_generator=generate_generator_multiple(generator=imgen, df=tra

in_df, path=train_path, shuffle=True)   
37. test_generator=generate_generator_multiple(generator=imgen, df=test

_df, path=test_path, shuffle=False) 

  
Finally, the shuffle mode argument differs between the training and 

the testing phases.  It is desirable for the training data to be as random as 
possible, although the testing data should be kept in order to evaluate the 

network always on the same way, this explains the shuffle values on lines 

36 and 37.  

The data generator yields data in the shape of (inputs, outputs). Due 

to the x_col and y_col values set earlier, the result has the shape of 
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(inputs=image, outputs=[parameters, dimensions]). If that was correct, 

the process parameters would be set as network outputs, which is not their 

intended role. The correct shape is (inputs=[image, parameters], 

outputs=dimensions). That way, the neural network can be fed with the 

inputs and learn from the outputs correctly. The lines 19 to 34 correct 

such.  

The while loop on line 19 combined with the yield statement on line 

34 transform this method on yet another generator. It starts on line 20 by 

calling the generator created on line 7. On line 21, the images pixel values 

are reduced by 0.5, which results on they ranging between -0.5 and 0.5, 

thus being normalized. Line 23 extracts the dimensions (outputs) values, 

which does not need any more preprocessing. Line 24 extracts the input 

parameters, which need normalization, done in lines 28 to 33 according 

to the formula on line 27. After that, all inputs – images and process 

parameters – have their values in between the -0.5 to 0.5 range. Finally, 

the result is yielded on the shape of (inputs=[image, parameters], 

outputs=dimensions), a tuple with an array of the actual inputs as the first 

element, and the array of outputs as the second element. 

With the inputs and outputs correctly arranged, the main body of the 

convolutional neural network can be developed, on section 4.5.2. 

 

4.5.2 Convolutional Neural Network Layers 

 

The convolutional neural network (CNN) architecture consists of two 

branches, one for the image input and the other for process parameter 

inputs. A schematic can be seen in Figure 24. 
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Figure 24 - Schematic for CNN architecture 

 
In this schematic, it can be observed that the network has two 

different input types, both images and process parameters. The code for 

the convolutional branch – the one that processes the images – can be 

found in Figure 25, while the dense one for the parameter branch, in 

Figure 26. Both branches are then merged into one dense layer, which its 

code is presented in Figure 27. The outputs of the network appear from 
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the two output neurons: one for the width dimension, the other for the 

height one. 
 

Figure 25 – Image branch code. 
1. actfunc = 'linear'   
2.    
3. i1 = Input(shape=(IMAGE_SIZE[0], IMAGE_SIZE[1], 1))   
4.    
5. x = Conv2D(filters=8, kernel_size=(3, 3), padding='same')(i1)   
6. x = BatchNormalization()(x)   
7. x = Activation(actfunc)(x)   
8. x = MaxPooling2D()(x)   
9.    
10. x = Conv2D(filters=16, kernel_size=(3, 3), padding='same')(x)   
11. x = BatchNormalization()(x)   
12. x = Activation(actfunc)(x)   
13. x = MaxPooling2D()(x)   
14.    
15. x = Conv2D(filters=32, kernel_size=(3, 3), padding='same')(x)   
16. x = BatchNormalization()(x)   
17. x = Activation(actfunc)(x)   
18. x = MaxPooling2D()(x)   
19.    
20. x = Conv2D(filters=64, kernel_size=(3, 3), padding='same')(x)   
21. x = BatchNormalization()(x)   
22. x = Activation(actfunc)(x)   
23. x = MaxPooling2D()(x)   
24.    
25. x = Conv2D(filters=128, kernel_size=(3, 3), padding='same')(x)   
26. x = BatchNormalization()(x)   
27. x = Activation(actfunc)(x)   
28. x = MaxPooling2D()(x)   
29.    
30. cnn = Flatten()(x) 

  
The image branch has an input layer. It is then followed by sets of 

convolutional, batch normalization, activation, and pooling layers – 

convpool layers for short – ending with a flattening layer. The code for 

this CNN brach can be seen in Figure 25. Every convolutional layer has 

the same kernel size and the same padding type – which were defined 

experimentally – however, different quantities of filters. All neural 

network architectures here experimented have the first three convpool 

layers on lines 5 to 18. Architectures with 4 convpool layers also have the 

layers on lines 20 to 23, and the ones with 5 convpool layers include all 

the previous ones. 

The parameter branch, however, has a single set of dense and 

activation layers after its input layer. The number of neurons here was 

chosen as the same number of neurons from the imaging branch after 

flattening, aiming to balance both branches. The code for this branch can 

be seen in Figure 26. 
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Figure 26 - Input parameters branch code. 
1. i2 = Input(shape=(len(inputs),))   
2. x = Dense(units = 2048)(i2) 
3. dense = Activation(actfunc)(x)   

  
Both branches are concatenated together, then followed by sets of 

dense, activation and dropout layers, with a fixed number of neurons. The 

last pair of dense and activation layers returns the result of the network, 

in Figure 27.  

 
Figure 27 - Merging branch code. 

1. x = concatenate([cnn, dense])   
2. # x = Dense(units=500)(x)   
3. # x = Activation(actfunc)(x)   
4. # x = Dropout(0.5)(x)   
5. x = Dense(units=200)(x)   
6. x = Activation(actfunc)(x)   
7. x = Dropout(0.5)(x)   
8. # x = Dense(units=20)(x)   
9. # x = Activation(actfunc)(x)   
10. # x = Dropout(0.5)(x)   
11. x = Dense(units=len(outputs))(x)   
12. x = Activation(actfunc)(x)   
13.    
14. model = Model(inputs=[i1, i2], outputs=x) 

  
All activation functions were set as linear mode, which is an identity function. 

For the loss function, the mean squared error was used. The optimizers used 

were both the Adam optimizer and the Adadelta optimizer. For metrics, both the 

mean absolute error and a custom percentage function – defined in  

Figure 28, lines 1-2 – were used. The mean square error and the mean 

absolute error functions can be found on keras documentation, as well as 

on the equations of Erro! Fonte de referência não encontrada.. Erro! Fo

nte de referência não encontrada. also presents the custom percentage 

function used as a metric. 

The architectures were developed, firstly, experimentally. Convpool 

layers, dense layers, loss functions, optimizers, activation functions, and 

batch normalization layers were changed until a good performance was 

achieved. This was when the architecture of network A was found, in 

Table 4. By experimenting with different convpool layer quantities, 

networks B and C were created. After choosing the neural network with 
the best performance, its dense layer quantities were variated, creating the 

networks D and E. Finally, again by choosing the network superior on 

performance, the same architecture with a different optimizer was tested, 

creating the network F. Each network was trained for 200 epochs – a value 
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found experimentally. Their predictions are gattered and their 

performance evaluated in section 4.5.3. 

 
Table 3 - Mean squared error and mean absolute error functions. 

Mean squared error (mse) 𝑚𝑠𝑒 =  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ((𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒)
2

) 

Mean absolute error (mae) 𝑚𝑎𝑒 =  𝑎𝑣𝑒𝑟𝑎𝑔𝑒(|𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒|) 

Percentage (p) 𝑝 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (100 ∗
𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒

𝑦𝑡𝑟𝑢𝑒

) 

 

Figure 28 - CNN loss, optimizer, and metrics. Source: Author. 
1. def percentage(y_true, y_pred):   
2.     return k.mean(k.abs(100*(y_pred-y_true)/y_true))   
3.    
4. compileConfig = {   
5.     'loss':'mse',   
6.     'optimizer':'adam',   
7.     'metrics':['mae', percentage],   
8.     'percentage':'return k.mean(k.abs(100*(y_pred-y_true)/y_true))'   
9. }   
10.    
11. model.compile(   
12.   loss=compileConfig['loss'],   
13.   optimizer=compileConfig['optimizer'],   
14.   metrics=compileConfig['metrics']   
15. ) 

  
Table 4 – Convolutional Neural Network Architectures. 

 A B C D E F 

Convpool 

Layers 
5 4 3 5 5 5 

Filters 
8, 16, 32, 

64, 128 

8, 16, 

32, 

64 

8, 16, 

32 

8, 16, 

32, 64, 

128 

8, 16, 

32, 64, 

128 

8, 16, 

32, 64, 

128 

Hidden units 

for 

parameters  

2048 4096 8192 2048 2048 2048 

Dense layers 1 1 1 3 2 1 

Hidden Units 200 200 200 
500, 

200, 20 
200, 20 200 

Optimizer Adam Adam Adam Adam Adam Adadelta 

On this table, filters correspond to the number of feature maps after 

the convolution operation, not directly the kernel number. The number of 

hidden units for the parameter branch is the number of neurons on the 

dense layer of the input parameter branch. Finally, the hidden units’ entry 

stands for the neurons in each of the dense layers after the concatenation 

of both branches. 
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4.5.3 Convolutional Neural Network Evaluation 

 

For evaluating the neural networks, their predictions must be 

gathered. The method get_predictions on line 1 from Figure 29 is 

responsible for such.  

This method uses the same custom image generator of section 4.5.1. 

It gets the input (x) and target (y) values from the generator (gen) in 

Figure 29, line 5. Based on the input, a prediction is made on line 6. Both 

prediction and target values are stored in variables on lines 7 to 14. The 

method stops once the number of predictions made reaches the data size, 

on lines 15 and 16. Predictions are gathered both for the training and the 

testing data sets.  

 
Figure 29 - Convolutional neural network prediction gathering code. 

1. def get_predictions(df, path, N):   
2.     predictions = np.array([])   
3.     targets = np.array([])   
4.     gen = generate_generator_multiple(generator=imgen, df=df, path=pa

th, shuffle=False)   
5.     for x, y in gen:   
6.         p = model.predict(x)   
7.         if predictions.size == 0:   
8.             predictions = p   
9.         else:   
10.             predictions = np.concatenate((predictions, p))   
11.         if targets.size == 0:   
12.             targets = y   
13.         else:   
14.             targets = np.concatenate((targets, y))   
15.         if len(targets) >= N:   
16.             break   
17.     return predictions, targets   
18. train_pred, train_targ = get_predictions(train_df, train_path, len(im

age_files)) 
19. test_pred, test_targ = get_predictions(test_df, test_path, len(test_i

mage_files)) 

  
An error can be calculated from the prediction and target values. By 

using the norm class from the scipy library, this error mean and standard 

deviation can be calculated and then compared. Besides plotting normal 

curves, the plot_error_norm method on Erro! Autoreferência de 

indicador não válida. calculates those values, on line 7. 
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Figure 30 - Error mean and standard deviation calculation. 

1. from scipy.stats import norm   
2.    
3. def plot_error_norm(predictions, targets, title=None):   
4.     error = predictions - targets   
5.     plt.figure(figsize=(16,6))   
6.     plt.xlim(-1,1)   
7.     mu, std = norm.fit(error)   
8.     t = np.linspace(mu-3*std, mu+3*std, 100)   
9.     p = norm.pdf(t, mu, std)   
10.     h = plt.plot(t, p, linewidth=2)   
11.     plt.grid()   
12.     plt.annotate(xy=(mu, max(p)), s=("{:.4f} ± {:.4f}".format

(mu,std)))   
13.     if len(outputs)>1:   
14.         plt.legend("Width and Height error distribution")   
15.     else:   
16.         plt.legend(outputs+" error distribution")   
17.     if title:   
18.         plt.title(title)   
19.     return mu, std 

  
The coefficient of determination (R2) from the target versus 

prediction values was also calculated and used as a mean of comparison 

between network performance. Those results can be seen in chapter 5. 
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5 Results 

 

This chapter presents the performance results for all developed 

convolutional neural networks. The training results are discussed in the 

first section, 5.1, presenting the resulting loss and metrics values. The 

subsequent section, 5.2, shows the performance of the neural networks on 

estimating the width and height values. Firstly, the plots of the target 

versus prediction values are presented, along with their coefficient of 

determination (R2) values, on section 5.2.1. The R2 values are then 

compared for all networks. Later, on section 5.2.2, the error between 

target and prediction values is evaluated for both training and testing 

phases and their mean and standard deviation values are discussed.  

 

5.1 Training results 

 

The first aspects in which one can evaluate how well did a neural 

network train is the loss value, along with any further metric values. 

Watching how fast the loss value decreases throughout the epochs is the 

measurement of how fast the neural network learns the data.  

This learning speed is reflected in the loss curves in Figure 31. Here, 

all networks have both width and height values as outputs. As explained 

before (Erro! Fonte de referência não encontrada.), the loss value is a 

mean squared error, calculated by averaging the squared errors between 

the target and the predicted values. Each data point represents the loss 

value on the end of each epoch for each convolutional neural network 

architecture. Starting from the first epoch, the value rapidly decreases on 

the first 10 epochs. Beginning on around 30 epochs, all networks descend 

their loss value steadily until the end of the 200 epochs. The fastest learner 

is the network F, closely followed by network A, both with 5 

convolutional layers and a single dense layer with 200 neurons. This 

difference in speed appears due to the different optimizers for networks 

A (Adam) and F (Adadelta). The slowest learner is network D, also with 

5 convolutional layers but 3 dense layers. A larger network takes longer 

to train, leading to the result mentioned before. 
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Figure 31 – Loss value from 200 epochs training of all neural networks with 

both width and height outputs. 

  
 

Figure 32 – Loss value from 200 epochs training of all neural networks with 

width as output. 

  
 

Networks which outputs only one of the width and height dimensions 

were also trained, their results on Figure 32 (width) and Figure 33 

(height). The performances followed the behaviors of the previous case 

(Figure 31) but most of them achieved lower values than on the multiple 

output case.  
 

 



67 

 
Figure 33 – Loss value from 200 epochs training of all neural networks with 

only height as output. 

  
Although directly related to the training performance, the loss value 

does not have a direct physical meaning of the current error levels of the 

networks. Metrics can help with this visualization. The mean absolute 

error progression throughout the epochs for the networks with both 

outputs can be seen in Figure 34. It is similar in shape with the loss graphs, 

however, it brings an order of magnitude. The network F, for example, 

has an average error of more than a millimeter on the first epoch. It means 

that the estimated dimensions are, on the average, more than a millimeter 

either larger or smaller than their real measurement. This error reduces to 

less than 0.2 millimeters on epoch 10, and to around 0.06 millimeters by 

epoch 200.  
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Figure 34 – Mean absolute error values from 200 epochs training of all neural 

networks with both width and height as outputs, in millimeters. 

  
As happened with the loss values, the mean absolute error from single 

output networks presented a similar behavior than from the multiple 

output ones, on Figure 35 (width) and Figure 36 (height). It can be 

observed that the networks with height as output achieved slightly lower 

error values. Again, network F with the height output presented the lowest 

error value – under 0.03 mm by epoch 200. This is already really close to 

the values found in the literature (TOYSERKANI; KHAJEPOUR, 2006). 

 
Figure 35 – Mean absolute error values from 200 epochs training of all neural 

networks with width as output, in millimeters. 
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Figure 36 – Mean absolute error values from 200 epochs training of all neural 

networks with height as output, in millimeters. 

  
This metric does help the visualization of the results of the networks, 

but still tricks the viewer. The errors on height are smaller because it has 

smaller values than the width dimension. Because of that, the width error 

of 0.1 millimeters for a bead 0.5 millimeter tall is way bigger than for a 3 

millimeter wide clad bead. The real dimensions of the clad bead should 

be taken into account, either width or height.  

The last metric solves this problem by measuring the average error in 

proportion to the real dimension, resulting in a percentual error. Its 

equation was already presented in section 4.5.2 (Erro! Fonte de 

referência não encontrada.). This metric can be seen in Figure 37 for 

the multiple output networks, and in Figure 38 (width) and Figure 39 

(height) for the single output networks. 
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Figure 37 – Percentage error values from 200 epochs training of all neural 

networks with both width and height as outputs. 

  
 

Figure 38 – Percentage error values from 200 epochs training of all neural 

networks with width as output. 
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Figure 39 – Percentage error values from 200 epochs training of all neural 

networks with height as output. 

  
 

From this metric, it can be observed the opposite behavior. Here, the 

width dimension percentual error achieves the lowest value among all, 

bellow 3% for network F by 100 epochs, while the percentual error of the 

height dimension remains by around 9% on the same time. The network 

with multiple outputs stays in between, with around 7%. This proves that 

the width dimension is easier to learn than the height dimension. This is 

a logical conclusion, as the width of the molten pool can be seen on the 

images fed to the networks, although height can not. As explained in 

chapter 3, molten pool width and clad bead width are in a close 

relationship (HOFMAN; DE LANGE; MEIJER, 2006). Molten pool 

height, however, can be only inferred from the size and the brightness of 

the molten pool. 

After analyzing those results, it is expected for the width estimation 

to have the best performance, followed by both dimensions estimation, 

and, lastly, by the height estimation. The actual network results are 

presented in section 5.2. 

 

5.2 Estimation performance 

 

Even better than to analyze the loss value and metrics from the 

training is to analyze the outputs themselves. As cited before, each one of 

the six networks was executed with the three different outputs – clad bead 

width, height and both simultaneously. Their results can be compared to 
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the target values, which they were supposed to yield, those graphs being 

on section 5.2.1. Then, the error between both values is analyzed in 

section 5.2.2. 

 

5.2.1 Target and Prediction values 

 

Perhaps the most straightforward way to visualize the networks' 

performance is to plot their predicted values – the network outputs – 

versus the target values. To enhance the networks comparability even 

further, coefficients of determination (R²) for each of those plots were 

calculated. Regarding this coefficient, the best and worst plots from both 

training and testing phases can be seen in Figure 40 for the networks with 

both width and height outputs. 

 
Figure 40 – Best and worst network performances from both testing and training 

phases. Top row: Training phase. Bottom row: Testing phase. Left column: Best 

performance. Right column: Worst performance.  
Training phase – best performance – R² = 0.9978

 
 

Training phase – worst performance – R² = 0.987

 
 

Testing phase – best performance – R² = 0.9859 

 

Testing phase – worst performance – R² = 0.9742

 

  
Those graphs show the best and the worst performance for the 

beforementioned outputs. One can notice how higher the R² coefficients 

are on the training phase. It is only natural for it to happen due to the very 
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training mechanism, where the same images with the same target values 

are repeated over and over again, throughout the epochs, until the network 

learns them. On the testing phase, however, it is the first time the network 

sees each input image, only guessing what the target value could be. The 

testing performance achieved an R² value of 0.986, which is even superior 

to some of the results presented in the literature (MONDAL; 

BANDYOPADHYAY; PAL, 2010; HUAMING, 2018). 

Another remarkable note is that the training procedure was stopped 

before a 100% accuracy on the training dataset. It did not make sense to 

train it until perfection on an imperfect dataset, due to the errors 

previously mentioned in section 4.3. 

The next fact that can be observed is the superiority of network A (5 

convpool layers and a single hidden-units layer) when compared to the 

other networks.  

Having more convolutional layers does not mean that network A is 

the biggest. As seen in Table 4, the C network has the same amount of 

hidden-units (neurons) as the A network but has 2 convpool layers less 

than it. After flattening, this leads to 4 times more neurons than the 

network A, taking way longer to process. One may think that a solution 

to this is to increase the number of epochs. This, although, could lead to 

overfitting, which happens when the network memorizes most of the 

dataset. An overfitted network performs superbly on the training set, yet 

poorly on the testing set. 

The network E has the same amount of convpool layers than the 

network A but has a single hidden-units dense layer more than it, as seen 

in Table 4. This extra layer reduced the network’s training performance 

to the point it became the worst, yet closely followed by the performances 

of networks D and C, as seen in Table 5. The networks C, D, and E are 

the largest of them, taking longer to train. They could have a better 

performance if the number of epochs was increased, but networks can not 

train forever. As mentioned before, increasing the number of epochs 

could lead to overfitting. 

 
Table 5 – R² value for the networks with both width and height outputs. 

 Width and Height 
 A B C D E F 

Train R² 0.9978 0.9958 0.9887 0.9876 0.9870 0.9971 

Test R² 0.9859 0.9834 0.9742 0.9831 0.9793 0.9851 
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Regarding the single output networks, for the width output case, the 

F network performance outstands. It has the same architecture as network 

A but was trained with a different optimizer. The worst performances on 

the training phase were from networks D and E, which are the largest 

networks as well. On the testing phase, the D network performed way 

better than it was expected for its size. As the network weights are all 

initialized at random values, it could be the case that this network started 

its training with weights closer to the optimum values than the rest of the 

networks. It still did not outperform the F network. Those performances 

are shown in Table 6. 

 
Table 6 – R² value for the networks with width output. 

 Width 
 A B C D E F 

Train R² 0.9867 0.9912 0.9836 0.9629 0.9626 0.9954 

Test R² 0.9404 0.9369 0.9315 0.9465 0.9336 0.9496 

 

A more consistent performance could be observed from the networks 

with only the height output. The larger networks had the worst 

performance in both training and testing phases. For the best performance, 

there was a tie between networks A and F on the testing phase. Those 

performances can be seen in Table 7. 

 
Table 7 – R² value for the networks with height output. 

 Height 
 A B C D E F 

Train R² 0.9947 0.9845 0.9635 0.8823 0.9475 0.9951 

Test R² 0.9593 0.9483 0.9363 0.8491 0.9193 0.9593 
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Figure 41 - R² for the multiple output networks, calculated for both outputs 

(top), only for width (bottom left) and only for height (bottom right). 

R² = 0.9978 for both width and height values 

 

R² = 0.9932 for only the width value 

 

R² = 0.9879 for only the height value 

 

 
 

When comparing both results, one can infer that the networks with 

single outputs performed better than the multiple output networks. To do 

so, one must compare not the R² presented in Table 5, which consists of 

both width and height values, but splitting them both into two different 

plots for each variable, as seen in Figure 41. 

From those values, a fair comparison can be made. On Table 8, it can 

be observed the R² values for both the networks with multiple outputs – 

calculated individually for each dimension – and the ones with a single 

output. On average, the single output networks achieved a slightly higher 

R² value than the multiple output ones, with some exceptions. This is a 

logical outcome, once a neural network with a single output can specialize 

itself over it, instead of performing averagely for both outputs. Regarding 

architectures, the networks A and F keep on the lead of performance. 
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Table 8 – Individual height and width R² for all networks. 

  Multiple Output R² Single Output R² 

  Train Test Train Test 

  Width Height Width Height Width Height Width Height 

A 0.9932 0.9879 0.9445 0.9558 0.9867 0.9947 0.9404 0.9593 

B 0.9836 0.9841 0.9366 0.9429 0.9912 0.9845 0.9369 0.9483 

C 0.9752 0.9108 0.9218 0.8594 0.9836 0.9635 0.9315 0.9363 

D 0.9587 0.9367 0.941 0.9279 0.9629 0.8823 0.9465 0.8491 

E 0.9633 0.9183 0.9319 0.9007 0.9626 0.9475 0.9336 0.9193 

F 0.9888 0.9886 0.9404 0.9549 0.9954 0.9951 0.9496 0.9593 

 

The R² value can express well how each neural network performed, 

although it is not the only possible way to do so. By subtracting the target 

values from the estimated values, an estimation error is calculated. An 

analysis of this error value is in section 5.2.2. 

 

5.2.2 Estimation error 

 

The difference between the estimation and the target values is the 

estimation error, yet another way to evaluate a neural network’s accuracy. 

By considering the data to be normally distributed, this error can be fit 

into a Gaussian distribution, thus, a mean and a standard deviation can be 

calculated. Those gaussian distributions for the networks with multiple 

outputs can be seen in Figure 42, the left graph standing for the training 

phase and the right, for the testing phase. 

The first difference to be observed on those graphs is their 

magnitudes. The networks A, B, and F have peaked on their training 

phases, thus, a lower standard deviation, as seen in Table 9.  On their 

testing phases, however, they perform similarly to the remaining 

networks. This is a clear indication of overfitting.  

Those networks have memorized the training dataset. Usually, this 

means the network would perform poorly on the testing phase, even so, 

they are still the top performance networks. One viable explanation is the 

similarity of the images between training and testing data sets. Perhaps a 

better approach on dataset splitting, instead of splitting them experiment-

wise, would be to merge all of the data and let the built-in keras algorithm 

split a percentage of the dataset into testing data. 

The remaining networks performed slightly worst on their testing 

phase, as expected due to the learning mechanism. Regarding the mean 
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value, all values remained below 0.1 mm, which indicate a mean value 

tending to zero, as expected on a normal distribution. 

 
Figure 42 – Gaussian distributions of the estimation error for the networks with 

multiple outputs on their training phase (left) and testing phase (right). 

 
 

Table 9 – Mean and standard deviations for the estimation error on both training 

and testing phases for the multiple output networks. 

  Width and Height Error (µm) 

  Train Test 

  Mean  Standard deviation  Mean  Standard deviation 

A 6.56 50.72 5.29 130.85 

B -25.65 66.50 -24.95 139.93 

C -8.54 116.28 -14.52 176.80 

D 3.50 122.04 0.56 143.47 

E 49.49 114.37 45.94 152.08 

F 5.16 59.00 2.42 134.84 

 

For the width output networks, a similar behavior happens. The F 

network outstands on its training phase. On the testing phase, the network 

D falsely surpasses network F due to its luckiest initial set of weights. 

Despite that, networks A and F remain on the lead. This behavior can be 

observed in Figure 43. The mean values stay under 0.1 mm, again 

indicating that this value tends to zero, thus, the data is normally 

distributed. 

On those graphs, the standard deviation values are lower on their 

training phase than for the multiple output networks, but slightly higher 

on the testing phase, as seen in Table 10. It implies the presence of even 

more overfitting than before. It relates to the fact that the network only 
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needs to learn one output, not both. It is then easier for it to memorize the 

data. 

 
Figure 43 – Gaussian distributions of the estimation error for the networks with 

the width output on their training phase (left) and testing phase (right). 

  
 

Table 10 – Mean and standard deviations for the estimation error on both 

training and testing phases for the width output networks.  

  Width Error (µm) 

  Train Test 

  Mean Standard deviation Mean  Standard deviation 

A -48.27 59.74 -49.14 159.98 

B -7.37 62.20 -11.80 171.71 

C 35.39 77.56 33.844 176.19 

D -49.31 118.33 -53.07 149.41 

E -22.85 126.78 -25.32 174.85 

F 1.12 45.00 -5.10 153.75 

 

Finally, for the height output case, even more overfitting occurs. The 

F network presents the highest peak – thus the lowest standard deviation 

– but only on the training phase. This behavior can be observed in Figure 

44. Opposing network F, the D network presents the lowest peak, which 

is the highest standard deviation. The standard deviation value from the 

network F is the lowest among all training graphs, while the standard 

deviation value from the D network is the highest among all – those values 

in Table 11. It means that this output was the easiest to memorize for 
network F, but the hardest to learn for network D. 
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Figure 44 – Gaussian distributions of the estimation error for the networks with 

the height output on their training phase (left) and testing phase (right). 

   
Table 11 – Mean and standard deviations for the estimation error on both 

training and testing phases for the height output networks. 

Height Error (µm)  

  Train Test 

  Mean Standard deviation Mean Standard deviation 

A -4.01 30.66 -8.38 86.67 

B 12.01 51.65 6.03 97.97 

C 18.43 79.25 11.84 108.30 

D -21.86 144.39 -24.70 165.81 

E 80.36 55.24 78.73 94.01 

F 17.678 23.97 10.91 86.35 

Regarding the mean values, again, they tend to zero, indicating the 

normal distribution of the data. Even with strong overfitting, the networks 

with more convpool layers and less densely connected layers (A and F) 

yielded the best results, for all output types. On the present case, the 

overfit did not degrade the testing dataset measurements, because of its 

similarity to the training dataset. When processing with different input 

parameters than the ones here presented, however, those networks’ 

performances will need re-evaluation. 

As it was observed, the data fits into normal distributions. When 

observing only the test phases of networks A and F, one obtains the 

information in Table 12. The lowest standard deviation value, 86 µm, is 

from network F, with only the height output. This value indicates that 
95% of the measurements have an error under 172 µm. Although it 

already represents a small error, it is important to remember what this 

error means.  

The networks estimate the width and the height dimensions for each 

frame. When averaging this error along the length of the clad bead, it 
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shrinks considerably. The error means in Table 12 reflect this effect, 

although those are not the values of each individual clad bead. When 

analyzing the averages, the maximum average error value shrinks to 

49 µm, which are comparable to the literature (DAVIS; SHIN, 2011). It 

also implies a better performance for slower beads, as there would be 

acquired more frames per unit length. 

 
Table 12 – Error mean and standard deviation of the test phases from networks 

A and F for all output types.  

  
Width and Height 

Error (µm) 
Width Error (µm) Height Error (µm) 

  Mean  
Standard 

deviation 
Mean  

Standard 

deviation 
Mean  

Standard 

deviation 

A 5.29 130.85 -49.14 159.98 -8.38 86.67 

F 2.4 134.84 -5.10 153.75 10.91 86.35 

 

Apart from that, the dimensions of the clad beads vary significantly. 

A standard deviation of 130 µm may be seen too large for a bead 1 mm 

wide although it is not that big for one which is 4.5 mm wide. The best 

way to compensate for the bead dimensions is to calculate the error as a 

percentage of the bead’s dimensions, which can be simply made by 

dividing each error value by the corresponding target value, as shown in 

Table 13. 

 
Table 13 - Percentual error definition. 

 

By calculating the errors from the A and F networks in a similar 

fashion that in Table 12, one obtains Table 14. There, error average 

remains below 3%, way lower than some works found in literature, 

(IRAVANI-TABRIZIPOUR; ASSELIN; TOYSERKANI, 2006; 

IRAVANI-TABRIZIPOUR; TOYSERKANI, 2007), and with fewer 

resources. The width dimension appears as the dimension with the lowest 

standard deviation, which means it is the most stable, in agreement with 

many authors in the literature (HOFMAN; DE LANGE; MEIJER, 2006; 

MONDAL; BANDYOPADHYAY; PAL, 2010; ARIAS et al., 2014; 

MORALEJO et al., 2017). It is logical for width to be the most stable 

dimension, once it is observable in the molten pool image, what is in 

agreement with the conclusions in section 5.1. The networks which 

Percentual error 
𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡

𝑦𝑡𝑎𝑟𝑔𝑒𝑡
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outputted both dimensions simultaneously have the highest standard 

deviation, which is also expected, as the networks could not specialize on 

both dimensions as well as they did to only one of them, which is again 

in agreement with the literature (HUAMING, 2018). 

 
Table 14 – Percentual error mean and percentual error standard deviation of the 

test phases from networks A and F for all output types. 

 Test Phase Percentual Error (%) 

  Width and Height Width Height  

  Mean  
Standard 

deviation 
Mean  

Standard 

deviation 
Mean  

Standard 

deviation 

A 0.96 26.57 2.47 7.55 1.71 18.34 

F 2.66 23.05 0.20 6.63 -1.59 13.74 

 

Finally, after analyzing all of the obtained results, one can infer if this 

is a viable method of process monitoring, along with its advantages and 

disadvantages. This method estimated all of the dimensions with rather 

an accuracy, equiting itself with the results obtained in the literature. It is 

noticeable how little hardware was needed when comparing it to the 

previous molten pool image-based approaches, especially the ones on the 

early days of the technology.  

The next chapter is dedicated to further conclusions of this work. 
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6 Conclusion 

 

This work consisted of an implementation of a monitoring system for 

a laser processing unit. The first step taken for its execution was to build 

a background on the main fields of the project, thus, leading to the 

research lines presented in chapter 2. After this, systematic research was 

performed aiming to find applications of convolutional neural networks 

on laser cladding process monitoring, however, it was unsuccessful. 

Many other works related to the area were presented in chapter 3 but none 

corresponded exactly to the research line. With the researches concluded, 

the implementation process started. From the hardware choice to the 

libraries used on each CNN architecture development, everything was 

detailed in chapter 4. After execution, the results were presented in 

chapter 5, where it was observed which architectures had a better 

performance for the acquired dataset. Those were the architectures with 

the most convpool layers and the least densely connected layers. 

Although strong overfitting was observed among those networks, it did 

not demote their performances on their testing phases, keeping their 

performance on the lead. 

The proposed system and the developed CNN architectures were able 

to satisfactorily estimate the clad bead geometries. The best coefficient of 

determination values prevailed over 0.99 for the training dataset and over 

0.95 for the testing one. After the error analysis, the same networks 

remained as the most accurate ones, with the least error mean and standard 

deviation values. 

What did not work as expected was the physical setup. A 

magnification system was designed and manufactured to increase the size 

of the molten pool on the image acquired by the camera. Due to 

complications in the manufacturing process and flaws on the design, the 

system did not operate as expected, leading to blurry images. It was later 

observed how disposable this system was, as the molten pool image did 

not need magnification as it was even shrunk down to be fed to the CNN. 

Another aspected that could be further explored was the CNN 

architectures themselves. There were many other parameters on their 

structures that could have been explored such as the number of hidden 

units – especially on the input parameter branch – and the filter numbers 
on the convolutional branch. On the training procedure, there were the 

loss function, optimizers, the batch size, and larger epoch number, that 

could also have been experimented with. 
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There are many other suggestions for future works to be studied 

bellow: 

• To better match cross sections and frames: the approach here 

taken introduced errors on the data as the cross sections were not 

acquired simultaneously to the frames. A laser triangulation 

system is suggested for an in-process geometry measurement. 

• To exclude the lowest power clads: There is no need to work with 

clad beads that detach themselves from the substrate. On this 

work, they were not discarded because it would be left way too 

little data for a network to be properly trained. 

• To try for other parameter ranges: The most data, the better it is 

for network training. It is highly recommended to invest in data 

acquiring, trying to diversify the input parameter combinations 

as much as possible.  

• To try other material compositions: In the laboratory, no research 

has been conducted yet neither on different compositions of 

feedstock nor substrate material and how they interfere on the 

clad bead geometry 

• To reduce the number of neurons for input parameters: The 

neuron number used for the input parameter is way larger than it 

is necessary, although this parameter was not explored in this 

work. 

• To increase the number of epochs for all networks: All networks 

here presented were trained for 200 epochs. There is always the 

possibility to train further. 

• To try for genetic algorithms for achieving optimal network 

architecture: As suggested in the literature review (HUAMING, 

2018), an approach based on genetic algorithms could find the 

most optimized architecture for this problem.  

• A better training/testing dataset splitting: To separate an entire 

24 clad beads with unique parameters for the testing data set 

resulted on this set being really similar to the training one. A 

better approach would be to let the algorithm randomly decide 

which ones are used for the testing dataset, controlling only the 

percentage of the whole dataset to be used as testing.  

• To use this CNN to train another CNN which takes images and a 

desirable clad bead geometry as input and outputs the process 

input parameters. This second CNN could be a strong tool for a 

closed loop control of the process. 
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• To evaluate CNN real-time implantation viability: It is known 

that neural networks are slow algorithms. Once trained, however, 

they may be fast enough to even be used as a control algorithm 

for such a process. This is a huge field of interest for the future 

of this application. 

The overall result of this work is very positive for the laboratory. 

Being its first ever project on this area, it opens paths of the process 

monitoring field that are yet to be explored, leading to many new research 

lines. For the scientific community, it represents yet another alternative 

to the intelligent process monitoring field. 
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