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Resumo

Neste trabalho consideramos modelos de evolucao o sob o efeito
de um termo de amortecimento representado pela agao do operador
laplaciano com poténcia fraciondria e coeficiente dependendo do tempo
dado por b(t)(—A)%u;. O objetivo do trabalho é obter taxas de de-
caimento do tipo LP — L7 com 1 < p < 2 < ¢ < oo para a solugao e
sua primeira derivada no tempo, considerando baixa regularidade no
coeficiente b = b(t).

Escrita de maneira equivalente, uma importante conjectura afir-
mava que: “Para 0 = 0, quando o coeficiente do amortecimento é efe-
tivo, mesmo sem assumir hipoteses sobre a derivada do coeficiente, é
possivel obter as mesmas taxas de decaimento para o problema”. No
presente trabalho fornecemos uma resposta a conjectura, mostrando in-
clusive que hé outras situagoes na qual a conjectura também permanece
véalida. Por exemplo, 6 # 0 ou ainda em casos em que a dissipacao é

nao-efetiva.

Palavras Chave: Equacao da onda; Equagao de placas; Dissipagao
friccional; Dissipacao viscoeléstica; Dissipacao fracionaria; Taxas de de-
caimento "sharp"; Dissipacao nao-efetiva; Dissipacao efetiva; Métodos

dos multiplicadores; Espaco de Fourier.






Resumo Expandido

Introducao

Neste trabalho consideramos modelos de evolucao o sob o efeito
de um termo de amortecimento representado pela acao do operador
laplaciano com poténcia fracionaria e coeficiente dependendo do tempo
dado por b(t)(—A)%u,.

Objetivos

O objetivo do trabalho é obter taxas de decaimento do tipo LP — L4
com 1 < p <2 < g < oo para a solugao e sua primeira derivada no

tempo, considerando baixa regularidade no coeficiente b = b(t).

Metodologia

Através de uma revisdo bibliografica, chegamos & seguinte hipotese
de pesquisa: “Nao é necessario assumir hipoteses sobre a derivada do
coeficiente no termo dissipativo, para obter as mesmas taxas de de-
caimento para modelos de evolucao o com dissipacao fracionéria cujo
coeficiente é bem regular.” Nesse sentido, baseado em trabalhos prece-
dentes, criamos um novo método de multiplicadores para obter taxas de
decaimento no espacgo de Fourier e entao provar a hipdtese de pesquisa
para exemplos importantes de coeficiente b = b(t). Utilizamos resulta-
dos conhecidos de “Anélise”.

Resultados e discussao

Considerando um ty adequado, tomamos b(t) “confinada” na curva
g(t) == (1 4+ t)*In7(1 4 t) para t > ty. Além disso, no intervalo [0, to]



assumimos b positiva e que satisfaca condigbes adequadas para garantir
existéncia de solucao. Nesse contexto, quando comparadas a resultados
anteriores que assumem mais regularidade na funcao b, obtemos as
mesmas taxas de decaimento para solucdo quando v = 0 e obtemos
taxas melhores quando v # 0. Para a primeira derivada no tempo da
solucao, obtemos taxas melhores inclusive quando v = 0.

Escrita de maneira equivalente, uma importante conjectura afir-
mava que: “Para 0 = 0, quando o coeficiente do amortecimento é efe-
tivo, mesmo sem assumir hipoteses sobre a derivada do coeficiente, é
possivel obter as mesmas taxas de decaimento para o problema”. No
presente trabalho fornecemos uma resposta a conjectura, mostrando in-
clusive que hé outras situagoes na qual a conjectura também permanece
véalida. Por exemplo, § # 0 ou ainda em casos em que a dissipacao é
nao-efetiva.

Consideragoes finais

Nos casos abordados neste trabalho, mostramos ser verdadeira a
conjectura que afirmava que nao é necessirio assumir hipoteses sobre
as oscilagoes da funcao b para obter os mesmos resultados j& conhecidos.
Considerando que assumimos b com baixa regularidade, isto é, poucas
hipéteses, o método que desenvolvemos sugere que a conjectura é valida

em um contexto mais geral.

O modelo que foi estudado neste trabalho pode representar uma
equagao da onda ou uma equacao de placas com dissipacdo cujo co-
eficiente depende do tempo. Mais importante ainda é que o método
desenvolvido pode ser estendido e aplicado a outros modelos, como IBq

ou equacao de placas com inércia rotacional.

Palavras Chave: Equacao da onda; Equagao de placas; Dissipacao
friccional; Dissipacao viscoeléstica; Dissipagao fracionaria; Taxas de de-
caimento "sharp"; Dissipacao nao-efetiva; Dissipacao efetiva; Métodos

dos multiplicadores; Espaco de Fourier.



Abstract

In this work, we consider o—evolution models under effects of a
damping term represented by the action of a fractional Laplacian op-
erator and a time-dependent coefficient b(t)(—A)%u;. The objective of
this work is to obtain LP — L9 decay rates, with 1 < p < 2 < ¢ < 0, for
the solution and its first derivative in time, considering low regularity
in the coefficient b = b(t).

Written in a equivalent manner, an important conjecture was assert-
ing: “For # = 0, when the coefficient of the damping is effective, without
further assumptions on derivatives of the coefficient is still possible to
achieve the same known decay rates for the problem”. In the present
work we provide an answer to the conjecture, showing, in addition,
that there are other situations in which the conjecture remains valid,
for example 6 # 0 or even in the case that the damping is non-effective.

Key-Words: Wave equation; Plate equation; Frictional damp-
ing; Viscoelastic damping; Fractional damping; Sharp decay rates;
Non-effective damping; Effective damping; Multiplier method; Fourier

space.
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Introduction

We consider, for 0 < 6 < o, the initial value problem for a

o—evolution equation with fractional damping in R™:
utt(tﬂ :L’) + Aau(tv I) + b(t)Ae’u,t(t, :L’) =0, (tv ‘r) € (Oa OO) x R"® (1)

with initial data

w(0,2) = ug(x), w(0,2) = ui(x), r e R”, (2)
n 82
here A= -A=-) —.
where 2 o272

The fractional power operator A° : D(A%) C L*(R") — L?*(R")
(6 > 0) with its domain D(A%) = H*(R"™) is defined by

Alv(e) = F P F)(©)(2), veH?R"), zeR",

where F denotes the usual Fourier transform in L?(R") and |-| denotes
the usual norm in R™. The operator A? is nonnegative and self-adjoint
in L?(R") and the Schwartz space S(R™) is dense in H?’(R"). Note
that A' = A and A° = I. For B € N", say, 8 = (B1,...,53,) we
also define D? := 896?8}7-[):99653"’ in which |3] := Z;-lzl Bj. The results
obtained in this work can be applied to several initial value problems
associated to second-order equations, as for example, wave equation,
plate equation, among others.

We assume, for a sufficient large to > 0, that b ~ g in [t, 00), in
other words, there exist a; > 0 and as > 0 such that a;g(t) < b(t) <
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asg(t) for all t > tg, in which g(t) = (14 ¢)*In7 (1 +t). In addition, we
consider b(t) > 0 for t € [0, %) and one of the following hypotheses:

Hypothesis A: For 0 < 6 < o, let a € [-1,1) and v € R satisfying
one of the following:

(i) a € (-1,1) and o(1 + &) < 26;

(i) v € (-1,1), y <0 and o(1 + o) = 20;

(iii) o = —1 and v > —1. In particular (1 + «) < 26.

Hypothesis B: For 0 < § < o, let « € (—1,1] and v € R satisfying
one of the following:

(i) e« € (-1,1) and o(1 + &) > 26;
(ii) a € (-1,1),y >0 and o(1 + o) = 26;
(iii) o = 1 and v < 1. In particular o(1 + o) > 26.

The cases (6,«) = (0,—1) and (0,«) = (0,1) are not included in
our hypotheses since its decay rates depends on a; and as. For suitable
constants, our method could be applied achieving sharp decay rates,
but in general is not possible, since our method abuse in the use of
constants when applying the multipliers. That is, the technique is still
valid but must be improved in order to achieve sharp decay rates.

We can consider b a simple function such as b(t) = 2 + cos(t) (case
a =~ = 0) or more complicated functions. To illustrate an interesting
example for b, we can consider the following (for simplicity we assume
a < 0and v > —1if py # 0, but similar examples can be made for the

other cases):

b(t) = wT(A+7, —aln(l+1t))+ peg(t)sin((1+t)")
+ g (t)cos(1+ 1)) + pag(t), 3)

for t > to big enough, where I'(s,x) := [ y*~le ¥dy is the upper
incomplete gamma function, 7;, p; € Rforall2 <¢<3and 1< j <4,
and at least p; or py is big enough. The definition for b in [0,%) can
be anything that make b non-negative. To see why this function can be
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applied, we apply Lemmawith fly) =y te7¥ and ¥(y) = —1
to obtain: T'(s,z) ~ 2~ te~®. Therefore I'(1 + 7, —aln(l +t)) ~ g(t)
for t > tg big enough. Since p1 or u4 is big enough, we have b ~ g. We
can construct several examples with special functions of physical math-
ematics, like Bessel functions or W-Lambert functions (see Appendix
C), just proceeding as made for b in equation (3). That is, asymptot-
ically several special functions reduce to the case b ~ g. To calculate
decay rates for the solution of (1)-(2) for such b, is straightforward by
applying Theorem [I.3.T] or Theorem 2.1.1]

The asymptotic profile of — for o > 0, 8 € (0,0), b(t) =
2u(1 4+ )%, p > 0 and a € (—1,1), was investigated by D’Abbicco-
Ebert in [8]. They proved an anomalous diffusion phenomena for this
equation and introduced a classification based on it: the damping is
said effective when the diffusion phenomenon holds and non-effective
otherwise. This concept generalized the classification introduced by J.
Wirth for 8 = 0 in [23] (non-effective case) and [24] (effective case).
Furthermore, D’Abbicco-Ebert reported that when 260 < o(1 + «) the
damping is effective and non-effective if 260 > o(1 + «). The case
20 = o(1 + «) is treated as a critical case and they do not discuss.
In addition, is expected that their work could be extended for a more
general class of coefficient b in terms of the following limits:

If + ¢ L' and tlim tl_ZT?b(t) = 00, the damping is effective;
—00

Ifb¢ L' and Jim 1= b(t) = 0, the damping is non-effective.

Going back to Hypothesis A and based on the last classification
introduced, except for the case o(1 + @) = 20 and v = 0 (critical
instance), we have exactly the non-effective damping case. On the other
hand, Hypothesis B corresponds to the effective case. Our classification
however, is not motivated by whether the asymptotic profile of the
solution of the problem has or not an diffusion phenomena, but rely on a
new classification in which will be motivated and introduced next. The
connection between our new classification and the diffusion phenomena
is a open question.

In the case of b = 1 and o = 1, equation (I)-(2) turns to a wave
equation with fractional damping. This equation was approached by
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Tkehata-Natsume [I3] using the energy method in Fourier space, a tech-
nique due to Umeda-Kawashima-Shizuta [22]. However, since the men-
tioned result was not optimal for 0 < 0 < %, the method was im-
proved by Chardo-da Luz-Ikehata [2] by using integrable properties of
the equation. In this context, the key inequality (together with other
techniques) to find the (almost) optimal decay rates for that equation

with 0 < 6 < 3 is given by Lemma 3.2 of [2]:
€[ 1a® < Jel*fiol® + Jan]?,  forall J¢| <1, (4)

in which improves the standard inequality given by the energy equation
(o0 =1):

€127 la()* < |€l*7laol® + |aa|*,  for all ¢ < 1. (5)

The comparison between the powers 20 = 2 and 46 lead us to separate
in two cases: 0 < 0 < 5 and 3 <6 <1 = 0. The first case is when
inequality () gives a improvement of inequality (5] and second case is
when inequality is sufficient to obtain the optimal decay rates.
The method developed by Chardo-da Luz-Ikehata [2] was also ap-
plied in an abstract second order equation [6] and further in a plate
equation with a increasing time-dependent coefficient [7]. In the last
case, the decay rates using the energy method hold for a general in-
creasing function but the equivalent inequality was not sufficient to

ensure the (almost) optimal decay rate for the particular case
b(t) =1+, p>0 and a € (0,1] (6)

in some cases of . However, in the same work, they also considered
the particular case @, obtaining optimal decay rate by using the di-
agonalization procedure. The enhancement for this specific case cast
doubts concerning the improvement of the standard inequality given
by energy inequality (with o0 = 2 in the case of plate equation)
for a time-dependent context. This conclusion lead us to consider the

steps in diagonalization procedure to get some relevant information for
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a better understanding of the problem.

The diagonalization procedure was successfully used in several pa-
pers to obtain decay rates for equation (I)-(2). For instance, Wirth in
[23] and [24] considered this equation with o = 1, # = 0 and b(¢) al-
lowing small oscillations but close related to p(1+1t)* with o € [—1,1).
A less restrictive oscillations for b, that is, less control on %b was ob-
tained by Hirosawa-Wirth [II] but still not too much general as we
would like. For ¢ = 1, 8 € (0,1) and b(t) = u(l + ¢)®, diagonaliza-
tion procedure was used by Lu-Reissig [I8] (decreasing case) and by
Reissig [19] (increasing case). More recently, the result was extended
by Kainane-Reissig [15] and [16] for o > 1, 6 € (0,0) and b satisfying
suitable conditions but very similar to p(1+¢)*InY(1+1t) and requiring
a high control on %b.

All the mentioned papers not only show the interest in equation
— but also reveal a good acceptance of the diagonalization proce-
dure as a suitable method. However, it should notice that this method
usually require considerable control on oscilations of b. On the other
hand, the method due to Chardo-da Luz-Ikehata [2], [6] and [7] in gen-
eral is not enough to obtain the optimal decay rates in the case of
a time-dependent coefficients, moreover only L? norms estimates are
possible.

In addition, is well known (see [9], [10], [20], [2I]) that oscillations
in the coefficient can deteriorate or even destroy the decay structure of
the equation:

ugs — a*(t)Au = 0. (7)

Without control over oscillations of a2, it is also possible to show results
of blow-up of solution of equation (7)), (see [4], [5]). Under suitable
conditions, defining A(t) := 1+ fg a(s)ds and v(t,z) := u(A~1(t), z),
equation ([7) is transformed into:

Vet — Av + i)(t)vt = 0, (8)

~ ’ -1
where b(t) := %. Therefore, taking in account the results con-
cerning equation (7)) and its relation with (8), it was not clear if equa-
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tion — admits decay rates allowing substantial oscillations for b
and if it has influence in the decay. Indeed, for 6 = 0 and o = 1 there
is a conjecture [25] concerning equation (I)-(2) : “We conjecture that
the results of [24] (where only very slow oscillations were treated and
decay results of the same structure were obtained) can be extended to
general dissipation terms with tb(t) — oo without further assumptions
on derivatives”.

In the present work we provide an answer to the conjecture, showing,
in addition, that there are other situations in which the conjecture
remains valid, for example, 6 # 0 or even in the case that the damping
is non-effective. Thereby, the objective of this work is to develop a
method (inspirit on the works cited above), to obtain sharp decay rates
LP— L1 for the solution of —, with 1 < p <2 < g < o0, considering
only b(t) ~ (1 + t)*In7(1 +1t) =: ¢g(t) and b non-negative, that is,
no control in %b will be assumed. In particular, we will prove that
%b has no influence in the decay rates. Going back to the relation
between equations (7)) and (8), our hypothesis b ~ g does not contradict
the results concerning the control over the coefficient of . Indeed,
b(t) = G4 and b ~ g implies in a/(A\(1)) ~ a®(A~(£)g(1),
that is, we still have some control in the oscillations of the function a.

Furthermore, it should be noticed that this work can be extended for
a more general class of functions g, but for the sake of brevity, we avoid
this extension since there is specific calculations required depending on
g (for example, see Proposition . In addition, our method can be
applied to other equations, for example, plate equation under effects of
rotational inertia.

To develop our method, we go back to the origin of the energy
method in Fourier space but at the same time considering the knowl-
edge provided by the diagonalization procedure and the method due
to Charao-da Luz-Ikehata. For this sake, we consider hyperbolic and
elliptic zones similarly as considered in the diagonalization procedure,
see for example [14], [I5] and [I6]. In the diagonalization procedure the
zones came from WKB analysis, in our case the zones comes together
with a energy multiplier, that is, comes from an algebraic understand
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of the problem (see Proposition in which has been motivated by
the method due to Chardo-da Luz-Ikehata [2] and [6]). For each £ such
that 0 < |¢] < R, we consider (&) := [£|*%g(t¢), where t¢ separates
low zone from elliptic and hyperbolic zones (see Sections 1.1 and 2.2
for further details). We introduce a new classification based on the
comparison between |£]|7 and ().

The aim of the Chapter 1 is to investigate, for small frequency,
the case max {|¢]|7, (&)} = [¢]|° which correspond to our assumptions
made on 0,0, and 7 in Hypothesis A. On the other hand, for small
frequency, the case max {|£|7, ¥ ()} = ¥ (&) correspond to Hypothesis
B and will be treated in Chapter 2.

Throughout this work, we do not discuss the existence of solution
to (1)-(2). Therefore, in addition to the conditions aforementioned,
we assume suitable condition on b, ug and u; that ensure existence of
solutions v and wu; that make possible the method described in this

work.
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Useful Functions

Consider typ > 0 big enough. Throughout this thesis, the following

functions will be widely used:

g(t) == (1+6)%n"(1+1),

(1 + ) Fn7(1+¢t), if a>-—1,

o(t) =< In't(1+1), if a=-1and v> —1,
In(ln(1+1)), if a=-1and y=-1.

1+t n=7(1 +1), if o<1,

(t) == ¢ In*=7(1+1), if a=1and v<1,
In(ln(1 +1t)), it a=1 and v=1.

In addition, we assume b ~ g in t > tg, that is, there exist ¢; and
¢o positive, such that ¢1g(t) < b(t) < cag(t) for all ¢ > tg.

For each ¢ € Br := {£{eR"\{0}:[{| <R}, we define
te := p H(N|€|72%). We introduce 1 : B — [0, 00) defined by

W(€) = glte)|€]*.
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Chapter 1

o - evolution models with
low regular
time-dependent structural

damping I

1.1 Main Estimates in the Fourier Space

In this section, we can assume that the initial data are sufficiently
smooth and apply the density argument. Let u = u(¢,x) be the corre-
sponding solution of —.

We take the Fourier transform in the both sides of . Then in the
Fourier space one has the reduced equation:

A (8,€) + €270, ) + b(O)IE[ 2 (8,€) = 0, (£,€) € (0,00) x R™.
(1.1)
The corresponding initial data are given by

ﬁ(oag) = ﬂo(f)a ﬁt(oag) = ﬂl(g)v § e R™. (1'2)
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Throughout this section we shall omit the dependence in ¢ inside
the functions 4(t) = a(¢,£), @ (t) = 0:(t,€) and the density energy
E(t) = E(t, &), which will be defined further ahead.

When we obtain important estimates in order to prove our results,
we apply the multiplier method in Fourier space. Take Z C [0, 00) x R™
and K : Z — [0,00). We multiply both sides of by 4, and further
by K(t,&)4. Then, taking the real part of the resulting identities we
have (formally):

{la@®F + €2 la(t) +o0)ela®P =0 (1.3)

N =
SN

and

K€ Rei (1) 5(0) )+ DUV (1,16 Rl (1)
K (1 €)[€27 at)?

= K(t, )]0 (t)]* + {iK(t,f)} Re(t,(t) a(t)), (1.4)

for each (t,£) € Z that it makes sense. We define the energy density
as:

B() = {la®f + PP} vizo

By integration the equation (1.3)) in [S, T, it follows:
T
B(T)+ [ bo)le (o) ds = E(S). (15)
S

Proposition 1.1.1 Let & = 4(t,&) the solution of —, Z C
[0,00)xR"™ and K : Z — [0, 0), where K (t,-) is mensurable and K (-,§)
is a C1 piecewise function for each (t,£) € Z. Suppose that there exist
A1, A2 and Az > 0 such that K and Z satisfies, for all (¢,€) € Z:

(0) If (s1,€),(s2,8) € Z then (s,&) € Z for all s1 < s < s9;
(1) K(t,€) < Mb(t)|€*;

(2) b K (£ OIEP? < Aal€]>7;

(3) (LK(16)" < Asb()K (L, )|+
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Then, there exists C > 0 such that:

T
LIW%MWWﬂ%ﬁCﬂﬁ (16)

for all (5,8),(T,&) € Z such that T > S.

Proof. Fix (S,€),(T,€) € Z such that T > S. Since inequality (1.6) is
trivial if £ = 0, we suppose £ # 0. By hypothesis (0), (s,£) € Z for all
s €[S, T).

Observe that conditions (1) and (2) imply that K(s,&) < vVA1A2 (€7
for all (s,&) € Z. Thus,

| K (5, &) Re(ite(5) i(s))] < v/ Mida|Re(tu(s) [€]7(s))] < v/ Adz E(s)
(1.7)
for all s € [S,T].

By (1), (2) and by density energy equation (|1.5)):
T

/ K(s,8)|ts(s)|ds < )\1/ b(s)|€|%% |t (s)2ds < M E(S)  (1.8)
s

an

T
|/S b(s)K (s, €)I€[* Re(iue(s) a(s)) ds

T

s&Ab@m%wndqu b5, 6] (s) s

< ME(S /K €)[€[27 |u(s)[2ds. (1.9)
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Using hypothesis (3), we have:

/T{ZK“fﬁRdm@a@ms

S

= Ts 20pe | 4,(s Mas s

T T (dp 2
< [ woleP P+ - [ (dg(s)(|2’§3) a(s)|ds
T
<MES)+ 7 [ KOl ds (1.10)
S

By integrating equation (|1.4)) and applying inequalities (1.7)-(1.10) we

have:

r 20| 2 c 1 r 20 |5 2
| Kol laPds < TES) + 5 [ K0 lals) s,
S S

with C := 2(A1 + 2v/ A1 A2 + A2 + A3). This finish the proof.
O

Definition 1.1.1 We say that K : Z — [0, 00) is a multiplier of energy
in Z C [0,00) x R™ if K and Z satisfy the conditions of Proposition
711

If we had a global multiplier of energy K with Z = [0, c0) x R™ and
at same time sharp, it would be possible to prove the main results of this
work using equation (1.5), Proposition Lemma [1.1.1 and Propo-
sition [[.1.3] Even though global multiplier are possible, they usually
does not lead us to sharp decay rates. Therefore, we will separate the
problem in zones to find the sharp multiplier of energy in each region.
It worth to highlight that these zones are pretty similar to works that
use the diagonalization procedure, see [14], [I5] or [16] for example.

Let ¢ as defined in Theorem [[.3.1] We fix R > 0 whose choice
will be clear in the course of the section. It will satisfy Remark
and, in addition, will satisfy the following restrictions if « € (—1,1):

fulfill inequalities (T.16) and (T17) if v < 0, R < 1if v = 0, and
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realizes inequality if v+ > 0. Furthermore, except for the case
o(1+a) =20 and v = 0, if g is increasing we assume also the inequality
([T.19).

For each ¢ € Br = {£eR™\{0}:|{| <R}, we define
te ==~ 1(|€]72%). We consider ¢ : Br — [0,00) defined by

D(€) = [€[7g(te). (1.11)
We shall deal with the problem using the following separation zones:
High Zone: 2" .= {(t,¢) € [tg,00) x R™ : |¢| > R};
Hyperbolic Zone:

Znyp = {(t,€) € [to,00) x Br : [¢[*¢(t) > 1 and [¢]77% > g(t)};
Elliptic Zone:

Zew := {(,€) € [to,00) x Br : [§[*’p(t) > 1 and [¢]77% < g(t)};
Low Zone: Zipw := {(t,€) € [to,0) x B : [¢[*o(t) < 1}.

Remark 1.1.1 The number tq is chosen such that (to) > 1, g(to) < 1
if g is non-increasing, g(top) > 1 if g is increasing, b ~ g for t > to,
lg' ()] < (%) g(t) for t >ty and such that ¢ and g are monotone
(without change of monotonicity) for t > to. Furthermore, throughout
this chapter we will assume ty big enough to ensure the application of

the results of the Appendiz.

The next proposition provide us the multiplier of energy in each
zone, with exception to low zone. Actually, it is possible to find a
multiplier of the energy in this zone, but it is not necessary. This is
because we have the frequency variable satisfying: || < @(t)_ﬁ. Using
boundness for || and |@,| (given for example by equation (1.5)) and by
integration in £ in this region, a natural decay rates appear due to the
radius go(t)*%. This process is made in details in Proposition m
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Furthermore, we disconsider Z.;; for &« = —1 because it is empty if ¢g

is big enough.

Proposition 1.1.2 We have the following multipliers of energy:
Hyperbolic Zone: In Z,,, K(t,£) := g(t)|£]*;
1
g(t)
High Zone: In Z"9" K(t,¢) := min {ﬁ,g(t)} |¢|min{20 20,20}

Elliptic Zone: In Z.; and o # —1, K(t,§) := |§|20729.

2

Proof. To each zone, we must to verify conditions of Proposition [1.1.1
We notice that condition (0) is satisfied by the fact that g and ¢ are
monotone. Also, we have g ~ b and |¢'(t)] < (f:Tf’t)g(t) in [tg,00). For
a # —1, we have ¢(t) = (1 +t)g(t) and therefore:
1
(1+1)

< g, (1.12)

for all (t,€) € Zeyy U Zpyp. For oo = —1 (and 6 # 0), we have:

26

e+ = [0+ 0% |7 2 [ePew]* 21, (113)
for all (¢,€) € Zpyp- In Z"9" similar inequality is also true:
€17(1+1) > R°. (1.14)

To verify condition (3) of Proposition [L.1.1} we use inequalities
(1), (C13) and (TT9).

First consider the hyperbolic zone:
(1) K(t,) = g(t)[€]*" < b(1)I€]**;

(2) DK (L, IEP =b(t)g(t)IE[*" < g(t)*[€* < €[>



In hyperbolic zone for a # —1,

d 2
K -
@) (57.)
S
S
S
S
In hyperbolic zone for a = —1,
d 2
3) | =Kt =
@) (Gr9)
S
S
S

g'(t)%1¢["

1 2 4
alele”
)?1€[* g (2)|€[*
VK (t,

VK (t,

(

&)ler>

1
g(t
g(t
bt

oG

e 0N
9K (2, €) g2
K (1€

Now, let us consider the elliptic zone with o £ —1:

(1) K(1,€) = e < g(1)[eP? < b(t)|e[*:

g(t)
(2) b(t) K (t,€)|¢)* =

S

(t

~—

~

/\/-\

7
2 2
() (Gr9) = L0 s

(£, €)l&[>*+27.

S KIS b(HK

~

Finally, consider Z"%9", In this region, the right side of the inequal-

ities can depend on R:

(1) K(t.€) < g€ < b(t)I€**;
b(t)

€177 < L€

[
= (1 1)2g()?[€]*

(2) b Kt OIE* S —CIE* < 1>

9(t)

)|£|29+20'

)|§|29+20'.

31
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(3) In this region, we have:

dt ST
<d1)2 S S s S e
®)) ~ gnF < g@RaeE < geE

Therefore,

d ’ 1 2 20 (¢|2mi
_ i _1 o min{20—260,20}
( dtK(t,@) < min { S g0} I€*7l¢)
< b(t) min{g(lt)7g(t)} || min{20—20,20} | ¢ jmin{40—20,20+27}

SO (t,€)[E[* 2.

~

Note that in Z"9" we have:

‘§|min{29,20—29} _ 195 if o> 260
20—260
[3 if o <20,

1 —L_if ¢ is increasin
min{,g(t)} _Jaw Y &
g(t) g(t) if g is non-increasing.

This allow us to calculate the multiplier in Z"*" in each case. More-

over, this multiplier can be improved but we avoid this procedure. Even

though the multiplier is not sharp, the decay rates obtained in the high

zone are better than the decay rates of the another regions. The ex-

planation for this behaviour is because our equation has not regularity

loss property. For a more general class of equations this point must be

considered and improved.

The following lemma plays a fundamental role in order to prove

Proposition [[.1.3] This result is a suitable adaptation of some ideas of

[17].
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Lemma 1.1.1 Let E : [Sp,00) — [0,00) differentiable and
non-increasing, f : [So,To) — [0,00) continuous, where Sy € R and
So < Tp € RU{o0}. Suppose that exists C > 0 such that

To

f(s)E(s)ds < CE(S), VS e€][Sy,To),
s

then, for every 0 < € < 1 holds: E(t) < El(fsg)e_éfsto f(s)ds, for all
t e [SQ,T()).

Proof. Define p(t) := % tTO f(s)E(s)ds for t € [Sy,Tp). For 0 < e < 1,

consider the “Lyapunov” function L£(t) := (1 — €)E(t) + ep(t), for t €
[So,Tp). Therefore:

L'(t)=(1—)E'(t) +ep(t) < —gﬂt)m) < —gm)ﬁ(t),

for t € [So, Tp).
That is, L(t) < 5(50)67%‘[50 Heds gor ¢ € [So,Tp).  Since
(1-€e)E(t) < L(t) < E(t), the result follows.
(|

Proposition 1.1.3 For a fized £ € R™ and given zone Z, we define
So(€) = inf{s € [tg,00) : (s,€) € Z}, To(§) = sup{s € [ty,0) : (s,&) €
Z} and v := min {20 — 20,20}. Then, there exists C > 0 independent
of & such that:

B(t) 5 ¢ I minlat s (o) for ail (1,6) € ZMon.

If Zy,p has no zero measure, E(t) S el fsto(@g(s)dsE(So(f))
for all Sp(&) <t < Tp(€).

If Zoy; has no zero measure, E(t) < eI 500 ﬁdsE(So(f))
for all Sp(&) <t < Tp(€).

Proof. Let K : Z — [0,00) a multiplier of energy in Z C [0,00) x R™.
By Proposition [1.1.1} we know that:

T
/ K(s, )¢ |a(s)2ds < E(S), V(S.€),(T.€) € Z with T > 5.
S
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Further, by equation (1.5 and by property (1) of multiplier of energy:

/K |ds</ b(s) €2 4 () [2ds < E(S).

for all (S,¢),(T,¢) € Z with T > S.

Therefore fST K(s,&)E(s)ds < E(S), for all (S,€),(T,€) € Z with
T > S. Fixing £ € R", such that {t € [tg,00) : (t,€) € Z} has non-zero
measure, we apply Lemma, and conclude:

E(t) S e @ o0 K01 pigy (e)), (1.15)

~

for all Sp(&) <t < Tp(§). Using Proposition we know that the
corresponding multiplier of energy in each zone, applying in inequality

(1.15) we conclude the result.
O

Remark 1.1.2 In the last proposition, when To(§) < oo the inequal-
ities also hold for t = Ty(£). Furthermore, the estimates for E(t) =
E(t,€) are uniform in &, that is, the constants in the right side of in-

equality does not depends on &.

A careful analysis of Proposition [I.1.3] makes us observe another
interesting detail: in the first inequality the integral begins in ¢y while
in the remaining inequalities the integral begins in Sy(¢). Furthermore,
the energy in the right side of first inequality is valued in zero, while in
the other cases is valued in Sp(€). In this context, the £ independence
(in the range of integration of ¢ and in the time variable of E) of the
first inequality make the pointwise estimates in Fourier space for Z"9"
ready to be integrated and conclude the estimates (see Proposition
1.2.3). From now, our idea is improve the estimates in Z,, and Z,
in such a way that it has the desired independence on £ in time variable.
The Proposition will be fundamental for this upgrade.

We have defined t¢ as the unique solution of |¢|??¢(t) = 1 and
P(€) = [€]*%g(t¢), and now we want to investigate max{|¢|7,¥ (&)} in
Bpg. In this chapter, we consider the case max{|£|7, ¥ (&)} = |£|° for
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small frequencies. For the remaining case, it is necessary an improve-
ment of the estimates in elliptic zone using a substantially different
method, this is the reason why we treat it in Chapter 2. Furthermore,
this justify the new classification introduced based in that maximum.
In this sense, the restrictions assumed in Proposition [I.1.4] comes from

this classification.

Proposition 1.1.4 Let o« > —1, v, 0 and o satisfying Hypothesis A.
Thus, there exists small R > 0 such that (&) < |£|° for all § in Bg,
except for the case v = 0 and o(1+ «) = 20 such that holds ¥(§) = |£|7
for all € € Bp.

Proof. For & # 0, let t¢ be the unique solution of the equation (1 +
te) T nY (1 4+ t¢) = [€]72%. Applying Lemma with 7 = 14 t¢,
p=14a, B=~and A= [¢]72, we have for a # —1:

(5 5 [ ()] <
(1+te) = { ||~ if7=0
(1+a> e €| Tre { (HTG|§|—%)]_1T” if v>0,

where Wy, W_; are the two real-valued branches of W-Lambert’s func-
tion (see Appendix C for further details concerning this special func-
tion). To carefully apply Lemma |[C.1.4) we need to consider the follow-

ing condition:
[v]

1 20
R< ((Tf‘)e> , ify <0, (1.16)
Y
Case v < 0: In this case o < 2. Since 9(¢) = % = ﬁ, we
have:
[v] ol

v = (550) T e (REeH) | T

for £ € Bg, R small enough. By Corollary we have the limit:

o]

THa
lim 7o~ T¥a {—Wl (—Mrlzve>} = 00,
r—0t o
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therefore, there exists R(v, a,0,0) > 0 such that:

20 1 T+ 1 ey
s o (S)] - (552) .

for all 0 < || < R. That is, ¥/(§) < |£|° for all £ € Bp.

Case v = 0: (&) = 2 = [¢[*.

If (1 + «) = 20, trivially (&) = [£|° for £ € Bgr. In the case
o(l+ «) < 20, we have for R < 1, ¥(§) < |£]? for all 0 < |£] < R.

Case v > 0: In this case, necessarily o < 1=~ Since ¥(§) = ﬁ, we

[m(“”a”ﬂ”ﬁ

furthermore, by Corollary the following limit holds:

have:

w©=(7 yma%

1+«

26
r? " Ita

lim = 400

r0+ {W (1+a ,ﬁ)}ﬁ
0

In this case, there exists R(v,«,o,60) > 0 such that:

7 - >< i >11a (1.18)
[y (Kejg %)™ M

for 0 < |¢] < R. Then, (&) < |£]7 for all £ € Bg.

O

The last proposition is necessary to treat the estimates in elliptic
zone, in special to deal with the separation line between elliptic zone
and hyperbolic zone. As mentioned before of Proposition the
elliptic zone is empty if @« = —1 and therefore, even though the same
proposition holds in this case, the result of Proposition [I.1.4] is not
necessary.
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L 4s also

Remark 1.1.3 We know that ¢ is increasing (therefore o~
increasing). Thus, if R < ©(t)~ 20, we have te = o7 1(|¢]7%) >
0o Hp(to)) = to, for all & € Bg. Furthermore, taking in account
the definition of the zones, given { € Bpg, t > t¢ if, and only if
(t,8) € Zey U Zpyp and to < t < te if, and only if (£,£) € Ziow.

This remark will be widely used in demonstrating the next proposition.

When [£|7~2 is in the domain of g1, we define ¢1(£) := g~ ! (|¢|7~27).
The number ¢;(§) is precisely the point where occur a change between
hyperbolic behaviour and elliptic behaviour. But sometimes ¢; (&) sim-
ply does not exists, in which means that elliptic zone or hyperbolic zone
has zero measure. Since we are interested in applying Proposition|1.1.3]
we must to care about the lower Sp(§) and up bounds Tp(§) limits of
the proposition. Therefore, throughout the demonstration below, the
existence of t1(€) is discussed only when ¢;(&) plays role to calculate

So(§) or Ty(§)-

Proposition 1.1.5 There exists C > 0 such that the following esti-
mates hold:
—Lgpo2e ft 1 s

If Z.;; has no zero measure, E(t) Se © to 9 F(0),

for all (t,€) € Zey.
20 t

If Zhyp has no zero measure, E(t) < e T L g(s)dsE(O),

for all (t,€) € Zpyp.

Proof. By Proposition [1.1.4] we know that (&) < |£]° for all £ € Bg.
Initially we consider the case ¥(§) < |]? for all £ € Bg and the case
a=—1.

Case g increasing:

In this case, we have 0 < a < 1 (with v > 0 if @ = 0) thus o < 26.
Since g can be seen as a bijection between [¢g, c0) and [g(to), 00), t1(§)
is well defined if |£]72% > g(¢t,) for all £ € Bg, that is, if:

R < g(to) 7. (1.19)
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Since (&) < |£]7 for all £ € Bpg, it follows directly from the def-
inition of ¢ that t¢ < ¢1(§) for all £ € Bg. Therefore, for each fixed
€ € B, [to,0) = [to, te] U [te, t1(§)] U [t1(€), 00), where (s,£) € Ziow
for s € [to,te], (5,€) € Zpyp for s € [te, t1(€)] and (s,§) € Zey when
s > t1(§). That is, Sp(§) = te and Tp(§) = t1(€) in hyperbolic zone,
So(&) = t1(€) and Tp(&) = oo in elliptic zone.

By LemmalA.1.2] ¢2° [ g(s)ds < €] (1+te)g(te) = €[ o (te) =
1. Applying Proposition in the hyperbolic zone we have (for any
C>Cy):

~

__1 jg|20 ft s)ds 1 t $)ds
B(t) S e T e IO gy < o B S 908 goy - (1.90)

for all (¢,£) € Zpyp. On the other hand, choosing C; > C'QSJFZ) (with

C1 and Cs greater than or equal to the constant appearing in Proposi-

tion [1.1.3) and using Lemma |A.1.2] we have:

Lo 1L ey (MO
gl [t [ e
(BT

< _ ‘§|20 20

+ Cy,
Tty !

for all ¢ > ¢1(€). Thus, using inequality (1.20)) in ¢t = ¢;(§) by applying
Proposition [1.1.3|in Z.;:

B() 5 e T o it e (6))
< 6_071|£|20729 Fieo ﬁd‘ge_élglze fttol(g) g(s)dsE(O)
S e*%s|§|26726 (;m) E(O)
< 6_%‘5‘%729 iy gty s E(0),

for all (t,g) € Zyy-

Case g decreasing:

For a # —1, by definition of ¢ and due the fact ¥(§) < [€]7, follows
t1(§) < te for all € € Br. Furthermore, this implies Z.; = @. Applying
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Proposition [I.1.3] in hyperbolic zone:

_11£129 [t g(s)ds
B(t) S e O et g

)

for all (¢,£) € Zpyp. By Lemma , we have that |¢[* tt; g(s)ds <
1€]29(1 + t¢)g(te) S 1, and therefore:

B(t) e ¢l o 90 )

9

for all (t,€) € Zpyp.

The case @ = —1 is similar, applying Corollary instead of
Lemma [A.1.2)

Case g = 1:
By Proposition [1.1.4] we have o < 26. In this case Z.; = &. Since
1€]2%(1 + t¢) = 1, applying Proposition in Zj,, we have:

E(t) 5 e—%lf\% f#g g(s)dsE(tE) 5 6_%|5|29 ftto g(s)dsE(O)

for all (¢,£) € Znyp.

Let us consider the case (&) = |¢|° for all £ € Bpg, that is, by
Proposition is the case o(1 +a) = 20, v = 0 and o € (—1,1).
Furthermore, || = ¢(§) implies ¢ = t1(§). For g decreasing, the
proof is the same as in the case ¥(£) < |£|°. When g = 1, the proof is
again as in the case ¢(§) < [£|7, the only difference is that Z.;; = Zp,yp.

Finally, for the case g increasing, Zj,, has zero measure. Indeed, if
£ > te then g(t) > glte) = 9(t1(€)) = €720, Thus [tg, o) = [to, te] U
[te, 00), where (s,8) € Zjoy if s € [to,te] and (s,&) € Zegy if s € [te, 00).
Using the Lemma we have:

1 e [P0 1 g (L+2t) 1 o (L+2¢)
o 52(7 29/ —ds < —— 520 26 R 520 2
R T G e

< —l|§|20—29 /t g L (1.21)
- c to 9(s) Co’ '
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because

20—20(L+te) _ 2 U+te) 20 _qe20 _
I3 o) P(§) gt 1612 g(te) (1+te) = [€0p(te) = 1.

By applying Proposition and inequality ([1.21)), we have for all
(t,6) € Zeu:

(14te)

1

B(t) < e*%\ﬁ\%_% ftts ﬁdﬁE(tg) < e,%m%—w ffo 9(5)dsE(0).

1.2 Integration in each zone

In this section we will apply the pointwise estimates in Fourier space
of the previous section, fix the time variable and integrate & in R™. This
procedure is make by considering the zone separation introduced in the
beginning of Section 1.1 and a proof divided in several propositions to
deal with each zone. During the step of integration in &, we often use
results of Appendices A and B.

To proof the results, we shall consider in this section ¢ conjugate
of g € [2,00], that is ¢ € [1,2] and % + % = 1. Furthermore, ug,u; €
LP(R™) and s conjugate of p € [1,2], that is, s € [2,00] and therefore
s > G. We define r := co if p+¢ = pg and r := m > 1if p+q # pq.
That is, r is conjugated of %, since @ + g = 1. In addition, we
take p, 8 € N" and ¢ = ¢(t) given by (L.27). In this section several
times will appear the condition |3| — o + %(p + ¢ —pg) > 0, which

is equivalent to condition |3| + n (% - l) > ¢ that rises in Theorem

q
31
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Proposition 1.2.1 Consider the conditions above. Let u(t,x) the so-
lution of —, then the following estimates hold for t > tg:

7<é\u\+éa+%(p+éfpé)> A
/ Eia, (o) ide < p(t) 29 luol|2,
Ziow

alul+ 3 (p+a—pd)

+<p(t)_< * >||ul||%p.

Let |5|—0+%(p+q—p(j) >0i4fu; #0 and any B8 € N* if u; =0,
then:

4181+ 3 (p+a—pd)

/Z €198 a(t, €)|9de < M,( * )Huon‘%p

low
Q\/ﬂ—fiﬂ-%—%(p-%—@—pé)

+s0(t)7< v >|IU1II%p~

Proof. Let 7 := @(t)~25. Since |di,(£)|9 < |€]9]dio|9 + |@1|9, we have:

/ €7y (1, €)|de < / g[alkl+7 g g + / €Jlmay e
Ziow

Zlow Zlow
< ||y jalul+ao NI H jalul I
Sreree| L taoltg 11|l

Using Hausdorff-Young inequality (see [I]) and Lemma with
k = g|lu| 4+ o for the first term on the right side of above inequality,
k = §|u| for the second term, we have

7<Q\M\+éd+%(p+éfpri)> .

|7 ay (¢, 6)7dE S p(t) ¥ lluol |
Z,
low

G\M\Jr%(eréfM)

+sﬁ(t)7< v >|IU1II%p7

for t > tg.
Let |B] —o+ 2-(p+q—pd) > 0if uy # 0 and any 8 € N" if u; = 0.

n
p
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Thus,

/ €178 a(r, €)| de < / €78 o |7 + / ¢8I0 |, g
Ziow

Ziow Ziow

Sl Nl [ @]l

L™ (B,) | L™ (B,)

By Hausdorff-Young inequality and Lemma[B.1.3| we have for ¢ > t,:
@\ﬁH—%(:D'F@—P@)

/Z €1 ae, €)dg < @(t)7< Y >|Iuoll‘§p

low

6\/3\—664—%(1@4—6—?@)

+s0(t)7< v >Hull\ip.
O

Proposition 1.2.2 Under the conditions of Proposition the fol-
lowing estimates hold for t > tq:

é\ld+f§d+%(?+é—p@)

/Z |8 g (2, €)|9dE < w(t)_< * >\|uo|\%p
hyp
Q\M+%(p+(i—pé)
+so(t)< * >||u1||%p;
7<é\u\+r§a+%(p+é—p@)>
/Z €Ty (L) 1de < (1) : ol 12,
ell

alul+ 3 (p+a—pd)

+so(t)7< v >|Iull|ip~

Let\6|—a+%(p+d—p(j) >0 ifu; #0 and any B € N" jfu; =0,
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then:

alBl+ 4 (p+a—pd)

/ €19 a(t, €)1%ds < () ( 29 >HUOI|qu
Zhyp
7(‘?\5\*404’%(1)*"?*?@)) A
+¢(t) ’ [ullZ3
alBl+ 5 (p+a—pd)

/Z €17P e, €)|%de < so(t)’( * >\|uo||%p

QlBl—do+ 3 (p+a—pd)

+<p(t)7< v )Ilmllip.

Proof. Let ¢(t) := (1 +)'=%In=7(1 +t) and ¢ as before. Taking in
account the Hypothesis A, we have for § € (0,0) and for all n > 0:
d(t)" 77 < (t)"20 for all t > ty. The last inequality will be useful
for the sake of simplicity.

In Z.; we initially consider o # 6 (in the hyperbolic zone this
restriction is not necessary). Using Proposition and Corollary
ATT

N . . . G |¢120—-26 pt _1 N
/ |§|¢I|H||at(t’ o)|ide < / |§‘q\u\+qae—z‘1c|£| Jio 6] d3|ﬁ0|11d§
Zel

Zell
. q c—20 [t .
b [ g IS g
Zen

< H| - |alul+ao g=es(B)]-27 77

~ 114
ooy 011

4 H| . ‘é\u\e—w(t)l'l%*ze : HﬁlHqs (1.22)

L7 (R™

and
/ €19y (2, €)|9de < / jgilnl+ar =3B €% Jig 9 1d ge
Z

hyp Zhyp

~ q o rt ~
- / jgfele™ 5616 g 9000 7
Z

hyp
< |y . jalnltio g~ Gl
s [ oy N10l1E-
.dlule—csa(t)\‘lze s 119 . (1.23
)i+ gy 11152 (1.2
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Using Hausdorff-Young inequality and Lemma with k; =
glul + go or k1 = §lu|, k2 = 20 — 20 and T = c¢(t) in inequality
(11.22) or ko = 26 and T = cp(¢) in inequality (1.23)), we have

alul+do+ 2 (p+d—pd)

/Z le|qm a2, €)|%de S a&(t)*( )Huouf’;p

7<tﬂu\+%(p+éfm)) A
+ o(t) o [uallZ

quanr%(pM—pé)

<P(t)7< v >HUOHE

A

qlpl+ 3 (p+d—pd)

+s0(t)7< Y >|IU1II%p

and
7<Q\M+r§0+%(p+d—pé)> .
[ emaone s e & luoll3,
Zhyp
7<é\url+%(p+(i—p@)> X
+ (1) * [ua||Z0,
fOI'tZto.

Let |8 —o+ Je(p+d—pd) > 0if uy # 0 and any 3 € N" if ug = 0.
Thus, using Proposition [I.1.5] and Corollary [A-T.1}

s ~ ~ q 20—260 N
/ |€|qll3\|a<t7§)|qd§ < / |§‘q\l3\€*%|£| I ot ds|@0|qd€
Zell Zell

+/ jg|i181=do ¢~ 36 1€ iy Gt s age
Zell

N

1. (1.24)

H| (@18l gmea®)l-277>

.

T(Rn)
NP |20—26 5

+H|.|q|ﬁ| G0 —co(t)] Q

gy 011
L7 (R")
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and

. . . 4 #1206 [t S)dsi~ 14
/Z €198 a(t, €)|1de < /Z €| 18l 2E 18 Jeg 902 3 e

hyp hyp

~ ~ 4 |¢120 pt .
+/ |¢|181=a7 g2 617 ey 908 1 ge
Z

hyp
< . |a1Bl p—ce(B)]-% Ak 1.25
< |i-pele ey 0llE (125)
* HI L |@lBl=do oo (t)]-1* laa |9,
Lr(Rn) L

Using Hausdorff-Young inequality and Lemma with k1 = ¢|f|
or k1 = §|5| — go, ke = 20 — 20 and T = c¢(t) in inequality (1.24) or
ko = 20 and 7 = cp(t) in inequality (1.25]), we have:

_<a\m+§(p+é—pé)> X
[ 1giaoria < o0\ T i,
Zen
_(d\ﬁ\*écﬂr%(;ﬂrdfpé)) .
+o(t) [uall %
tﬂﬁH’%(P‘FQ*P@)

@(t)_< i >|Iuo||%p

A

tﬂﬁ\*éa+%(17+t?*:mi)

+<p(t)_< v >|Iu1llip

and

4181+ 3 (p+d—pd)

/Z €128 a(t, €)|9de < so(t)‘( * )||uo||‘ip

Q\ﬁ‘*§5+%(P+Q*P§)

+go<t>‘< ¥ >||u1||%,,

for t > tg.
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For the case Z¢; with 0 = o, we directly apply Proposition [1.1.5]
/ €17 a1, €)|
Zen

§/ Iflﬁ‘“‘ﬁ(’e*%ﬁoﬁdslaoﬁdw/ gl e™ 26 Jio 5795 g
Zell

Zell

<e%%¢mOw@m¢
~

Goll4. H.éIMIH a4
LT(BI)H ollZs + || -1 LT(BI)H Iz

4 [t _1_ p 5
S e % o w7 (Jugl|Z, + lluallf )
alul+do+ 3 (p+i—pd) alul+ 3 (p+a—pd)

sﬂ(t)f( Y )HUOII‘L +s0(t)7( Y >\IU1|\%p,

A

in which the penult inequality is given by Hausdorff-Young inequality,
4t
and the last inequality is provided that e 2¢ o 5795 ig 2 exponential-

type decay while ()1 is algebraic or logarithmic decay.

Let \6|70+ (p+q pq) > 0if u; # 0 and any 5 € N if u; =0,
using again Prop051t10n and Hausdorff-Young inequality:

|1 ac ias

Zen

< e*% ftto ﬁds/ ‘€|d|ﬂ||ﬁ0|ﬁd§ + e*% ftto ﬁds/ |§|é|ﬂ|—do|a1|dd§
11

e ell
a rt N
< 56 Jiy gy ds ) NI
Ne 0 ( Lr(Bl)HulHLS)

<e Prel fto g() (HuoHLp+||u1HLP>

|qIBIH Iuol\L +H| |d181—do

alBl+ 4 (p+a—pd) qlBl—Go+ 2 (p+3i—pa)

so(tf( v >|IUoII%p +<p(t)7( v >II’Ltlllip-

N
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Proposition 1.2.3 Consider the conditions of Proposition[I.2.1. Then,
there exists t§ > to such that the following estimates hold for t > tj:

If0+o,

7<Q\B\+%(p+é7m§>> A
q ~ q 260
[ i ol < et ol 4

alBl—go+ 3 (p+a—pa)

+90(t)_< v >|Iulllip

and

alul ) Qe < —("**%8””) .
Zh.h\fl [a(t,€)7dE < (1) ol
ig

alul+ 3 (p+a—pd)

+<p(t)7< Y )IIMIIC‘LP.

If0 =0 and w > %(p-i-(j—PQA);

R R 7<é\ff\+%(p+é—pé)> A
Lo e olias < o0\l
vig
tﬂﬁ\*daJr%(eréfpti))

+ <p(t)_< “

s |(11/V\m—a+w,p

and

é\u\+éu+%<p+é—pé))

L i glide < oy (T

ol I({J/I/\ul+d+w,p

p

- sa(tf( 29

Q\M-%-ﬂ(ﬂ-%—é—pé))

[ [Gy 1

Proof. In this proof we fix f(t) := g(t) is g is non-increasing and f(¢) :=
ﬁt) if g is increasing. Let v := min{20 — 26, 20}. Using Corollary ,
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we have:

676% ftto f(s)ds

e—c1+) T In T (14) if 0<a<lora=0 and v>0,
e~cH) NI+ - if 1 <a<0ora=0 and v <0,
~) eelnt T, if a=-1and~y> —1,
e—cinln(1+41)) if a=-1and~y=-1.

Therefore, given n > 0, for a sufficient big t{;, we have for all £ > ¢§:
¢ T S TGS < iy, (1.26)

Initially, let 0 # o and ty > to such that ft s)ds > 1 (this
number exists because E and g ¢ L'(R)) and such that inequality

(1.26)) is satisfied. For t > t, by Proposition we have:
[ 1€ a, olias
Zhigh
< / |§|Q\B|e o= el fto f(s)dsl ‘qdf
~ Zhigh

+ /Z,. NS g[lBl=io =1 iy £ yage
high

< e S F0d / €[5l e~ 3 181" | g |9
Zhigh
+ e_% o f(S)dS/ |§|é\ﬁ|*éoef%|£\”|ﬁ1|éd§
Zhigh
(élﬁl-%—%(p-%—d—pd))
< " - 20 H i qs
< el | N [
7(élﬁ|ﬂic+%(1)+éfpé)>
+ ot 20 H . jdlBl=do o5k 2
(1) N .

Let || —o + 2 (p+q—pq) > 0if u; # 0 and any § € N" if
uy; = 0, using Lemma with 7 = % (in this case k2 = v # 0) and
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Hausdorff-Young inequality:

7<ﬁ\5\+%(ﬁ+é*?§)> A
(t) 29 ol |7,

[ maeone 5 o
Zhig
alBl—gGo+ 3 (p+d—pa)

+<P(t)_( v >|\U1H%p.

Suppose now 6 = ¢. In this case, since wg > 2(p+q —pj) = 2, we
’“’qHLT(Rn\BR) < 1. Using inequality |i Holder inequality
and Hausdorff-Young inequality we have:

have ||| - |

| ki, o)t

Zhigh
< e*%ffof(s)ds/ €17 | 3de
~ Zhigh

+ e_% I f(S)dS/ |£‘é\ﬁ\*é0|ﬂ1|éd§

Zhigh
7(qwm+%(y+a—pa>> P
26 —wg Bl+w
S el T 17 2 e ‘Hl | wUOHLS
7(r§|ﬂ\—éo+%(p+r§—pé)> g
20 —wd — ~
+ o(t) (1 e P ""Iﬂl T HL
_(aww%(pﬁ—pa)) .
5 Sﬂ(t) * ||u0||(11/{/\/3\+w,p
_(dlﬁ\*écﬂr%(ﬁdﬂné)) .
+ (1) * Hul\l‘émfw,p'
The proof of estimate for /}‘ } €] qy (¢, €)|9d€ is analogous.
Zhigh
O

1.3 Main Theorem

Using the results of the last section, we are able to prove the fol-

lowing theorem:
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Theorem 1.3.1 Letn > 1 and 0, o, «, v satisfying Hypothesis A. Let
1<p<2<qg<oo, B, e N and B satisfying |B|+n<f—7> > o if
uy # 0. Consider the function

(L+t) 7 (1 + 1), if a>-—1,
p(t) = In't7(1+1), if a=-1 and v> —1, (1.27)
In(In(1+1)), if a=-1 and v=—1.

Then there exists t§(0,0,a,, B, 1, to) > to, such that the solution
u(t,z) of - satisfies, for all t > t§:
(1) If 0 < 0 < 0 and ug,uy € LP (R™), then

(IBHn(%— ))
20
ID%u(t, )la S @(t) l|uol|ze
18l—o+n (L

)
+<p(t)< " >|u1|m,

hQ =

20

-~ \M+o+n(% %)

[[DFug(t,)|Le < o(t) ( >|UO|LP
tn(3-1)

-l-cp(t)( * >||u1||Lp.

(i) /0 = o, w>n (5= 1) m o= max{|ul,|8] — o} +w and [uo, ] €
Wmtop (RP) x WP (R™), then

(g2)
B sl v vl
IDu(t, e < o(t) lluollwis1+e.m
18l—o+n(L-1
20

_ )
+¢(t) ( )||U1||Wlﬁl—o+wm

(et

20
1D ug(t,)l[e < () (

>||U0||Wu|+u+w,p

1_
M+n(p
20

i)
+¢(t) ( >||u1||w|u|+w,p-
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Proof of Theorem : Let ¢ conjugate of ¢, v € {u,u;} and
n € {B, u}, by Hausdorff-Young inequality, we have:

D%t Mles S - Pote e 5 ([ 1o epae) " 12s)

It should be noticed that if n = 8 and u; # 0, we have the restriction
IBl—o+n (% — %) =|8l—oc+ %(p—l—(j—pcj) > 0. For each fixed ¢, we
separate the integral in inequality in four parts, that is, low zone,
elliptic zone, hyperbolic zone and high zone. By applying Propositions
[1.2.1] [1.2.2] and [1.2.3| the theorem follows. O
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Chapter 2

o - evolution models with
low regular
time-dependent structural

damping 11

2.1 Main Theorem and comparison with pre-

vious works
In this chapter we shall discuss the following theorem:

Theorem 2.1.1 Letn > 1 and 6, o, o, v satisfying Hypothesis B. Let
1<p<2<g<oo, B,ue N Consider

o(t) = (L + )T (1 + 1) (2.1)



o4

and
A+t n=7(1+1), if a€(—1,1),
(t) == ¢ In*=7(1+1), if a=1 and v<1, (2.2)
In(in(1+1)), if a=1and v=1,

defined for t > to and to big enough. Then, there exist M = M(ay) >
0 and t§ > 0 both depending on 0,0,c,v, B, 1 and to, such that the
solution u(t,x) of — satisfies, for all t > t§:

(i) For 6 #0, uy and ug in LP:

If|ﬁ|+n(f—7)>1+—aandu17§0 or any f € N" if u; =0,

(el
IDPu(t, )[a < o(t) [[uol[Lr

1_1

20 L,

roy TEE) (57 ) e

p q

]f|6|+n(%—%) :1-Ta and v > (1+«) (7—1),
6 oy 4(1i_1 t
107t 1S 660) T g+ G ) (52 ) s

1 1 20
If|ﬂ|+”(;—5) < e

) (|;L|+2a 20+n %—l)>
-\ T 20—20
|| D uy(t,)||le < @qs(t) ||uol| e

R e [
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1
If|#\+”(5 )>m,

(1m0 29+n(% %))
3520 ||u0||LP

= (20 ) e

(ii) For 6 =0, w > n (% %), ug and uy in the required space:

p 1
1D ur(t, )l |La S o) (t)

() l4)

20—26

Lo
+ wﬂs(t)

IDPu(t, )]s S &(t) 0 (lwollwisi+wr + [|Jut]lwisi—etws) -
Ifaoe(—1,1):

|| D" (t, )| La

\ur\+2a+n(%—%)

1 _( 25 )
S @Cb(t) ([lwollwini+otw.r + wt]|win+ws) -
Ifa=1
||D“ut(ta ')”Lq
] (\u|+26+n(%—%))
I T
< 5! Uo||wini+20+w.p + [[UL] W inltoter) -
PO (Ilo 1y [ )

Comparison with previous works: The Theorem [2.1.1]| general-
izes and improves some previous results. In the case § = 0, we general-
ized the coefficient b for a more general class in the cases of Hypothesis
B and extended the result for ¢ > 0, instead of the previously o = 1,
see Theorem 21 of [24]. Using Corollary [A.1.1]we can see that the decay
rates achieved in this chapter are the same of [24]. The only disavan-
tage of our results is that for & = 1 we required additional regularity
in the initial data. The reason for assuming this technical hypothesis,
it is because we avoid to separate high zone in elliptic and hyperbolic
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zones, as we have made in low frequency (see next section). Therefore,
for the sake of brevity, we postpone this more complete approach for
0 = 0 for a forthcoming work, in which will include a treatment of a
more general classes of functions b.

For v = 0 and 6 € (0,0), in the cases that ||D%u(t,-)||r« — 0, our
decays rates for u match with the decay rates of [8]. In addition, in
that paper b is asssumed to be well behaved, that is, b(t) = p(1 + ¢)?,
while in this work b is assumed to be asymptotically equivalent to
g(t) = (1 +¢)*In7(1 +¢). In [8] the authors also proved the diffusion
phenomenon, but did not discuss decay rates for u;.

In [I5] and [16] is discussed the case § € (0,0) and also decay
rates for u;. Is in comparison with these works that lies the most
interesting examples. For simplicity, we shall consider the case where
g is increasing (in which corresponds to b(t) increasing in [16]). The
comparison for the case where ¢ is decreasing is similar and corresponds
to [15].

Hypothesis B corresponds to the effective damping case, which is
treated in Theorem 2.1 and Theorem 2.3 of [I6]. They considered
monoticity and other hypothesis on function b. One of them is the
following classification for b with 7 € (0, 53]

1+1¢ 1+t
B6) S, := qb(t) : limsup ——— < oo, limsup ———= =00 V3 <
( ) n { ( ) t~>oop Al(t)n t~>oop Al(t)ﬂ ﬂ T]}
in which Ay(¢) :== 1+ fot b(s)ds. In addition, they consider As(t) :=
t 1 . . . .
1+ fo @ds. Since b ~ g, using Corollary is not difficult to see
that Ay ~ ¢ and Ay ~ ¢ for ¢t > tj big enough, ¢ and ¢ given by
Theorem Therefore, we can rewrite condition (B6) replacing Aq
by ¢ and lim sup by liém. In addition, we have:
lim 1+t <ooif1+%<1/orl_%a:1/and'720,

=00 p(1)” | = 0o otherwise.

Therefore, if v > 0, we have b € Sﬁ' However, if v < 0 there is
no 7 such that b € S;. In this case, the results in [16] does not work
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for v < 0 and therefore our work gives on more contribution, allowing
the case v < 0.

Using that A; ~ ¢ and Ay ~ ¢ for t > tj big enough and the
notation of Theorem by Theorem 2.1 and Theorem 2.3 of [16],
for |8] > max{26,0} and |u| > 0, it follows for ¢ > ¢§:

plts - (m)
1D%u(t, )| 2aS (t) CW)HUOHW"WJFW) T fwms
(2.3)
and
<|H|+2(T—1af}a+w(% %))
1D u(t, )|Le < (t) o o [ (2.4)

(b)) (o))
-\ 20 - 20— 29
+max { (1) (1) el fwn

Initially we emphasize that the rescrition |3 > max{26, 0} is tech-

nical and we have assumed [3| + n (% - é > %, which is less re-
strictive since due to Hypothesis B we have ¢ > 11—9&. It should be

notice however, that in [§] they achieved the same resctrition to ensure
[|DPu(t,-)||pa — 0, but they only considered the case v = 0. In addi-
tion, the norms on the right side of inequalities (2.3)) and . are in
the Sobolev space WP with p beeing the same of Theorem [2.1.1] and
suitable m > 0. In other words our result shows an interesting prop-
erty of the equation for 6 € (0,0): we proved a smooth effect, that is,
a regularity gain of the solution for ¢ > ¢§. Again, in [8] they achieved
the same property only for v = 0. Finally, let us compare the decay
rates in inequalities and with our results in Theorem m
For simplicity we will consider only the decay rate associated to term
uq in the right side of the inequalities.

For v > 0 our decay rate for ||D’u(t,-)||z« has an improvement in

% . We remember that

the decay given by the extra term In~ e
the case v < 0 is not considered in (2.3). To see the improvement in

the decay rates for u; we consider the case |u| +n (% — 7> > 1+7a and
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€ [0,1). In the notation of Theorem we have:

i _ (b(t)*zUlze(@)ln*ﬁ(l +1).

Since

2+a 11 o
20 — 20 - —= 20 — 260
|| + 20 <1+a>+n(p q)+(0 )170[

- [|u|+za_4‘9+n<1_1ﬂ
1+« D q

+[20(1 4 a) — 46] m

Using the last two equalities, we have:

o— 24a) (1 _1
qu(t) lnl+2 29(20+20)+ (p Q)ln_Hia (gb(t)) _
g(t) M
nl+20—20 (22 ) 4n(L - L) 4(20—20) Lo .
(Zs(t)* 1+ 5550 - ln*ﬁ(l th)ln*p%a <¢()) _
M
lpl+20—40_ 4n(L_L1 . .
(e e i) et -y s (ﬁ)

= w(t)

Since we are considering the case g increasing, that is, &« > 0 or
a = 0 with v > 0 and we have assumed the Hypothesis B, the function

1
P >

1+a’ a < 1 and u; # 0, Theorem improves the inequality 1.}
provided by Theorems 2.1 and 2.3 of [16].

The rest of the chapter is devoted to the proof the Theorem [2.1.1

( ) — 0 when ¢ — oo. Therefore, for g increasing, |u| +n (l -

2.2 Main Estimates in the Fourier Space

In this section, we can assume that the initial data are sufficiently
smooth, say (ug,u1) € S(R™)xS(R™) because of the density argument.
Let u = u(t, ) be the corresponding solution of (I))-(2).

We take the Fourier transform in the both sides of . Then in the
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Fourier space one has the reduced equation:

ﬂtt(tvg) + |€|20’&<t,f) + b(t)|§|29at(t7£) =0, (tvg) € (07 OO) x R™
(2.5)
The corresponding initial data are given by

7:”(075) = ﬂO(g)v ﬂt(oag) = ’&1(6) §€ R™. (26)

Throughout this section we shall omit the dependence in ¢ inside
the functions 4(t) = 4(t,&), a:(t) = u:(t,€) and the density energy
E(t) = E(t,£), which will be defined further ahead.

When we obtain important estimates in order to prove our results,
we apply the multiplier method in Fourier space. Take Z C [0, c0) x R™,
K and J defined in Z — [0,00). We multiply both sides of by
J(t,€)0; and further by K(t,£)d. Then, taking the real part of the
resulting identities we have (formally):

3 {J(t,f)lat(t)|2 + J(t,§)|§\2"|ﬁ(t)\2}+J(t’ )b(1) |2 (1)
- % {;lt‘](t’g)} (I + [€*7at)[?) 2.7)

and

{K (t,§) Re (i (t) @(t)) } +b(t) K (¢, €) |€[* Re (s (t)a(t))
+K(t,9)61*|a (t)l2
d
= K] + { 7 K(1,€)  Re(an(t) (1)), (2.8)
for each (t,£) € Z that it makes sense. We define the density energy

as:
*{Iut P+ lgPola))} vt >o0.

By integration equation (2.7)) in [S,T7], follows:

E(T) + /S b(s) €% lie(s)ds = E(S). (2.9)
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Let ¢ and ¢ as by Theorem We fix R > 0 and N > 0 whose
choice will be clear in the course of the section.

We shall deal with the problem using the following separation zones:
High Zone: ZhM9h .= {(t ¢) € [tg,00) x R™ : |¢| > R};
Hyperbolic Zone:
Znyp = {(t,€) € [to,00) X Br : [£[*¢(t) > N and [¢]77%" > g(t)} ;
Elliptic Zone:
Zen i={(t,€) € [tg,00) x Br : [€]*p(t) > N and [¢]72% < g(t)};
Low Zone: Z;,, := {(t,g) € [to,00) x Br : [€[¥(t) < N}.

Remark 2.2.1 The number ty is chosen such that ¢(to), @(to) > 1,
g(to) < 1 if g is non-increasing, g(to) > 1 if g is increasing, b ~ g
fort > to, |g'(¥)| < (W) g(t) for t > ty and such that ¢, ¢ and
g are monotone (without change of monotonicity) for t > to. Further-
more, throughout this work we will assume ty big enough to ensure the

application of the results of the Appendiz.

In Chapter 1, we choose N = 1 in the definition of Z.;;(N), Zpy,(N)
and Zj4,(N). However, without loss of generality, following the same
steps of Proposition [[.1.2] Proposition [[.1.3|and Lemma[T.1.1] we have
the following uniform estimates in &:

Proposition 2.2.1 For a fired £ € R™ and given zone Z, we define
So(€) = inf{s € [tg,00) : (8,§) € Z}, Tp(§) = sup{s € [to, ) : (s,€) €
Z} and v := min {20 — 20,20}. Then, there exists C > 0 independent
of €& such that:

E(t) < e Sl Ly min{ﬁ’g(s)}d‘gE(O) for all (t,&) € ZMah,

If Zpyp has no zero measure, E(t) < eI féo@)g(s)dsE(So(ﬁ))
for all So(§) <t <Tp(§).
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If Z.;y has no zero measure, E(t) < eI Lsgce) ﬁdﬁE(So(f))
for all Sp(€) <t <Tp(€).
When Ty (§) < oo, the last estimates also hold for t = Ty(§).

Even though in Chapter 1 we assumed Hypothesis A and now we
are treating Hypothesis B, it is worth to mention that the results of
Proposition [2.:2.1] still hold for this case. That is, there is no restriction
concerning Hypotheses A or B in this result.

The key point for the meticulous reader is the fact that the estimates
for Z.; of Proposition [2.2.1] are not sharp in the case of Hypothesis
B. For a while, let us suppose that estimates of the Proposition [2.2.1]
hold for ¢, instead of Sp(§). Using Corollary we would have for
(t,€) € Zen:

€l < El) < e e G st g
o—26 “

< e BT (122 + Jug 7). (2.10)

For each ¢ € Br = {£eR™\{0}:|{| <R}, we define

te == H(N|€|72%). We introduce v : B — [0,00) defined by

b(€) = glte) €[> (2.11)

Taking in account the definition (2.11)), in Proposition we will
prove, for (t,&) € Zey:

Y(E)2[a(t)? < e EET0 ()22 + fur ) . (2.12)

Since Hypothesis B implies |£]|7 < () (it will be proved in Propo-
sition , inequality show us that inequality is not
sharp. In fact, repeating the same steps of Chapter 1, our draft version
of results was worse than others one already know, for example in [§],
[14], [15] or [I6]. This compelled us to improve the Energy method,
using a very different and new technique.

The following proposition not only inform us that max{|¢|7, ¥ (&)} =
¥(€) for all £ € Bg, but also plays a fundamental role to obtain the
desired estimates in Fourier space.
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Proposition 2.2.2 Assume that o, v, 0 and o satisfy Hypothesis B.
Thus, there exists small R > 0 such that |7 < ¥ (&) for all £ in Bg.

Furthermore, the following estimates hold in Br:

el |in (ﬁ)]“i“, if 00,
1, if 0=0.

(&) ~

Additionally, for « =1 (and 0 < o), we have:

E127In(1 +te) S¥(€)* ifv <1,
[E127In(in(1 + te))in(1 + te) S () if y=1.

Proof. For £ # 0, let t¢ be the unique solution of the equation (1 +

te)!TnY (1 +te) = N|¢|72%. Applying Lemma with 7 =1+ ¢,
p=1+a, B=vand A= N|{|72% we have:

(L4te) =
e B 1 _%
(%)™ Nl [owy (<N )] T iy <o,

N[ if y =0,

(L) ™" NI o (N F)] T ity >0,

where Wy, W_1 are the two real-valued branches of W-Lambert’s func-
tion (see Appendix C for further details concerning this special func-
tion). To carefully apply Lemma|C.1.4]) we need to consider the follow-

ing conditions on R and N:

If 6 0,

[v]

1 — 20
R<N$((tﬁk> ify <0,

If 0 =0,

17l
1
N>((Fﬁk) . ify<o0.
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Furthermore, for § = 0, we have 1 +t; = C(v,a, N), and assuming

A\
r<(g)

in which imply [£]7 < R" < ¥ = % = (), for all ¢ € Bp and
trivially ¢ ~ 1.

In the rest of the proof we consider the case 6 # 0.

Case v < 0: Since ¢¥(&) = %, we have for £ € By:
14+« e 1+« 120 1
e 260
¥(&) = <> N e |g|Tre [—W_l (— Nw§|w|>} .
] vl
By Hypothesis B, it follows that o > ﬁ_ea. By applying Lemma

[C11] we conclude:

e
lim 7o Ta [W_l <1+aNir2ve>] =0.
r—0+ 7]

Therefore, there exists R(v, «, N, 0,0) > 0 such that:
_ 20 1+a, 1 200\ ]TF> 14+ a) T+ o
|€]7 T+a {—W1 <_N Bl |§|7>:| < () NTt+a,
v v
for all 0 < [§] < R. That is, [£|7 < ¢(&) for all £ € Bg. By us-

ol

ing Lemma C.1.1, it follows that v(¢) ~ &%= [1n (g~ %)] 7 ~

€| 7%= [ln (%ﬂ ™% for all € € B

Consider o« = 1. Since 0 < o we have

1=y
lim r20-26 {W_l (QNir—?”)] =0. (2.13)
Y

r—0+

_2

Since (&) = %, we have (1 +t¢:)" 7 = N*%w(g)%. By definition of

te, we have (1 +t¢)%In7 (1 + t¢) = N|¢|72% and therefore In(1 +t¢) =
1 20 2

N™7|E]” 7 (€))7 . In addition, using limit 1) the following estimate
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holds for all 0 < |¢| < R:

€271 +te) Y aeae 2 12w\
bor 2w {‘Wl <7N”'5' )] o
(2.14)

ey 20
Case v = 0: ¥(&) = % = NTHa |¢|T+a.
20

In this case, by Hypothesis B follows o > 7. Assuming the
following inequality R < N70%e1-20 | follows that |¢]7 < (£) for all
¢ in Bg. Furthermore, since v = 0, we have 9(§) = Nﬁ\ﬂl% ~

e S
€| [ln (%)} " for € € Bp.
Consider now aw = 1 (¢ > ). Taking in account the limit:
lim 27 201p, (N%r_(;) =0,
r—0+

the following estimate holds for all 0 < || < R:

€2 In(1 + te) = %m?“-%ln (N%I£I‘9) »(€)? S P(€)*

Case v > 0: Since ¢(&) = %, we have:
Y TE . a0 l4a 1 _2\]7"
— Nital|é|Tte |[WWo | —— N~ ¥ .
w© = (125) 1 [wo (FEN g ¥ )]
By Hypothesis B, we know that o > {22. By applying Lemma
holds:
ro e
lim =0

-
r—0+ 1 20 1+
[Wo (L;CYNW‘ g )} :

Therefore, there exists R(v, «, N, 0,0) > 0 such that:

g
Bl <<1_Z > lj:aa
anlie—20\] T @
[WO(I%N”W ”)}

for all 0 < |¢| < R. That is, |¢|7 < 1(¢) for all £ € Bpg.
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By Lemma Wy behaves asymptotically like the function In.

Therefore, it holds uniformly in &:

5
20 _20\]THa 20 1\]™=
(&) ~ 1617 [in (1 7%)] 77 ~ g1 [ln (KI)}
for £ in Br. Consider « =1, 0 > # and 0 < v < 1. Taking in account
the limit
: 2020 2 1w\
lim r Wo | —Nr—~ =0,
r—0+t Y
and similarly to the inequality (2.14)), the following estimate holds for
all 0 < [¢] < R:

290n(1 + ¢ -7 1 _ 2 120\
|£| ( E) _ (1) N‘£|2U ZOWO (7N7§| 7) <1.

¥(€)? 2
(2.15)
Consider now v =1 and a = 1. In this case, we have:
lim 72~ 20n(2Nr=20) = 0. (2.16)

r—0+

Using the definition of ¢¢ and 1, we have

2 1
In(1 4 1) = 3158 = Wa(2NIel ).

Applying the property In(Wy(z)) = in(x) — Wy(z) for > 0 (see
Appendix C), and due the fact that Wy(x) > 0 for > 0, we have:

In(Wo(2N1¢]72%)) — In(2)
In(2N¢]7%) = Wo(2N[¢]7%°) < In(2N¢]727).

In(In(1+t¢))

IA

By the last calculations, by inequality (2.15]), and by limit (2.16]),
we have for 0 < [¢] < R:

€127 In(In(1 + te))in(1 + t¢)
P(£)?

1 _ -
< GIEPTTHmEN ) <1
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The following lemma will be fundamental in order to obtain sharp
estimates in the elliptic zone and in the high zone. A careful reader
will perceive that up to now we have used similar strategies of Chapter
1. It should noticed, however, that from now on all the techniques are
completely different and start to be far of the standard energy method.

Lemma 2.2.1 Let a; > 0 such that a1g(t) < b(t) and co such that
lg' ()] < ﬁg(t) for all t € [tg,00). Furthermore, consider M > 0,
A >0 and f: [tg,00) — [0,00) differentiable, such that, given £ € R™,
satisfy:

)\+CM0<CL1

/()] < MEPPg(t) f(), Ve Q) (2.17)

in which Q&) C D(§) := {s € [to,00) : [£]*(1 + s)g(s) > M} and
satisfy the property if (s1,€) and (52, €) € Q(E), then (5,£) € Q(€) for
all s € [s1,s2]. Then, for Iy and J¢ defined on Q(£)3, hold:

t
Ii(s1,sm,t) = / I PO 1)y

S1
c2 F@) e rt b(rydr
_ @) e, 7
1 —coX [€]2g(t)

t _ 20 n T T
Tysnsat) = [ O pay

S1

Co f(Sl) e,|5|29 f:21 b(r)dr
L—coN [€[*g(s1) ’

for all s1, so and t € Q(&), where co = alﬁ

Proof. Throughout this proof, we consider s1,s2 and ¢ in Q(£). By
hypothesis, all the integrals are well defined. Let Ny := % < a1.
Therefore, we have for ¢ € Q(&):

lg'(1)] < g(t) < Nol¢[*g(t)>.

(1+41¢)
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Let f = 1. Thus,

" le [ b(rydr
Ii(s1,892,t) = /e 52 dn

S1

t
d (e [2 b(r)dr 1
= — e s —d ,
/ dn ( ) BEOOR

and
no< / t % (elef™ 2 v . |g|;979(n) dn
@ \a;@g(i) O 4 2 / o flg‘;%)z o
alm;g(t)ew@ S b ];7—1011-
Solving for I; we conclude that:
Ii(s1,52,t) < KPE%SWG J2 bydr (2.18)

for all s1, s9 and tin Q(&), with ¢o := a1—1N0 is independent of €. For the
general case, using inequality (2.18]), (2.17)) and integration by parts:

n=t t
If = Il(Sl,SQ,ﬂ)f(n) _/ 11(81732777)fl(17)d77

n=s1 S1

@) jee st w(ryar
Co——"—¢ s2 + oMl y.
“Teog(t) 2

Solving for Iy we conclude that:

[ f(@) € L, by

I t) <
$(s1:82,8) S 7705 Teg0)

for all s1,s9 and t in Q(&).
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On the other hand,

e g by
Ji(s1,892,t) = /e 52 dn

S1

t
d (e o emary L
= — (e s2 — d ,
L m< %me”

we have:
t
(1P [ by 1
I S/ ——(e L )76577
s dn a1 [€[*g(n)
1 —Je® [5b(ryar | /t e 7 oryar |9’ (n)]
< ——e s2 + — e s2 dn
a1€1*g(s1) a1 /s, €29g(n)?
1 —1e1% Jzv(ryar | No
< e + =2y
a1\5|209(31) a !
Solving for J; we conclude that:
Ca e[ [21 b(r)dr
Jl 81,52775 S —5 <€ 52 s 2.19
(51,920 < ferg ) (219

for all s1,s9 and ¢ in Q(§). From now on, we consider the general case

¢ L .
for J¢(s1,82,t) = f51 —f(n)d%Jl(n,sQ,t)dn. Using inequality l)
(2.17) and integration by parts, we have:

n=t

Jy

=1 (777 52, f)f(ﬁ)

cziﬂsl) I8 S b coAJy.

€129 (s1)

Solving for Jy the result follows.

t
+/Lm@wfmm

N=s1 81

g

Before Proposition [1.1.2| we mentioned that in Zj,,, it is not neces-
sary a multiplier, only a boundedness for |@| and |i;| given by energy
equation . In the present work however, by assuming Hypothesis
B, Proposition ensures [£|7 < (&) for all £ € B, with ¢ given
by ([2.11). Therefore, one may wonder if |¢|7|a(t)| < [€]7]do| + |@y| is
a sharp estimate. Actually, the next proposition show us that we need
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to replace |£]7 by ¥(§) in order to achieve an improved estimate.

Proposition 2.2.3 Assuming Hypothesis B, the following estimate holds
fOT (t,f) € Zlow"
Y(EIa)] < v(&)laol + |-

Proof. Fix ¢ € Br and let t¢ > 0 as defined before. By integrating
equation (2.8) in [0,], for ¢ < t¢ and K(¢,€) := (1 + t)1(£)?, we have:

FUOPAOP + [ (1+9)(ein(s) s

= S0 (€)*fio]* — ¥(€)*Re(t1 o) +1(§)* Re((1 + )i () a(t))

t

+ | b(s)[€]° Re(iin(s) (1+ s)p(€)*als))ds
ot
+ [ olerueracs) s
0
By Young inequality and by Proposition [2.2.2] we have:
LHEPIOE < V(€ ol + Lo©)inl? + Nae(t)

+ OO + 287 [ HleP o) ds

1ts 26 2|a(s)|?ds
+3 | i) P

+ / (14 $)()2(E)[a(s) ds,
0

because [(1 + )1 ()] < [(1 + te)y(€)]? = N2. Due the fact that
()] + fot b(s)|€1%| 0. (s)|>ds < E(0), applying Gronwall Lemma, it
follows:

Y(E)2[a(t)|? S e3P s b H20+0" 0O Ty ()2 (| |2 + [aa]?) + E(0)]
(2.20)
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for all (¢,€) € Zjpw. By using Lemma

t t t

€7 | bs)ds =16 [ b(s)ds € [ bleyds S 1HIEP 1t)g(0) S 1
’ ’ " (2.21)
for all (t,£) € Zjpw. Since (1 + )(&) < 1 in Zw, [€]%|d0]? <
P(€)?|tio|? (Proposition[2.2.2) and applying inequality in inequal-

ity , the lemma is proved.
g
In the following stages of this work, we shall improve the estimates
of energy method in elliptic zone. We start by improving the estimates
for |£]?7|4(t)|? and then using it to improve the estimates for | (t)]2.
The idea is to define a suitable F'(t) = F(t,€) := c[¢]*7]a(t)| + Ro(t, &)
such that we have some control on < F(t) and satisfying for a suitable

K:

/ K(s,€)F(s)ds < CF(S),
for (S,¢) and (T, €) in Z.;;. One may wonder why we want to find again

a multiplier for |¢|??|a(¢)|?. Let us recall the previous estimate, given

by standard energy method. Using Proposition for (¢,€) in Zey
(in this case Sp(§) = t¢):

ol —i|5|20720f: g%ds
€P7lat))? SBEt) S Elte © ¢ 9t

~ N 7;|£|2a—29 t %d
(|£‘20|u(t§)|2 + |Ut(t§)|2)e = ftg g(s) S_

N

Taking in account the improvement provided by Proposition [2.2.3]
since we assumed Hypothesis B, one may wonder if is not possible to
improve also the inequality above, replacing || by 1(&)2. Therefore,
instead of the standard energy method of Chapter 1 that we simply
used ¢ = 1 and Ro(t,€) = 1|a:(t)|?, we have now to find Ro(t,£) such
that Ro(tE, ) S \§|2"|u(t§)|2+ |5| PG | (te)|>. Assuming such existence,
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we expect the following;:

W) < fgf)

_b(E?
~ e

< (WENalte)? + [a(te)P)e T I 7 (9,09

F(t)

20—-260 [t
_élgl ff,g g(ls)ds

F(t&)@

This construction, however, is far from easy and there are several trou-
bles to overcome. In the next two propositions, we provide the desired
proof.

In the lemma above, 0 < a; < ag are such that a1g(t) < b(t) <
asg(t) for all t > . Furthermore, ¢ is such that |¢’(¢)] < (1+t)g( ) for
all ¢ 2 to.

Proposition 2.2.4 Let a(t,§) the solution of -@),
N > max{4co 3eg Lap } Consider F(t) = F(t,£) = %¢[*|a(t)]* +
1

K (£,€) Re(i(£) (1)) + Ny Sl B (,€), where K (t,€) == (N =
% and a4 := as +

|§|2a 260

e
Assuming Hypothesis B, for az := a3 —

azco Co
N7’

(l1N
as :=1— % and ag := Niai — N}VC” — 1, we have:
SR +asK (L OIEP7 ()P + asK (1, 6)la(0)
— b(r)dr N —=
< aafePre O | Reay 1) Tee)))
—1€)%° [t b(r)dr ¢ 20 "b'rd'r
Han = ag)lgpre O [ ) 2,

te

for all (t,&) € Zey, with as, a4, as, ag positive constants. In addition,
there exists C' > i > 0 such that:

/ K(s,€)F(s)ds < CF(S),

for all (T,€),(S,€) € Zey such that T > S.

Proof. Let (t,£),(S,&) € Zo with ¢t > S. Using equation (2.8) with
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Ko(t,&) = elé”’ JSo(MdT e have:

d 20 rt ~ = 20 [t p(r)dr ol
el SO et (0)(1))} + €l SO i)
= S JEomdT g ()2,
By integrating in [S,¢], multiplying both sides by e 1€ J5b(r)dr
and rewriting the equation, it follows:
Re(ity (1) (1)) — eI S0 Re(ity(S) ()

t

20 [t 20 [0 p(r)dr | 5

_elel fsb“)‘”/ R ONREY
S

t
—1€129 [t b(+)dr 26 T)dT o
e i /S €I ST €22 |4y () 2y

<o. (2.23)
For K(t,€) := % and (t,€) € Zey we have
d Co Co 20 Co 20
G0 < (TSR < a0l K6 < SR ().

Defining Q(t, &) := b(t)|¢|* K (t,£)— L K (t, &), due the fact that a,[£[*7 <
b€V K (t,€) < az|€]?7, we have:

0<aleP < (1= ) bl K (6 < QO < arle. (220

Using inequalities (2.24) and (2.23|) we have:

(s01€PR (1.6 - 5 K(.) Relan () (0)
~Q(1,€) e IS Re (i (5) a(S))

t
Qg IS 20 IS )y
S
> agl€[?” Re(as(t) @) — aalé[>7e 167 Js ¥ Re(, () @(S))

t
20 [t 20 .
—agg[2oe e S br)ar / e T2V gy () 2y,
S
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Thus using (2.24) we have

d

( e K e - Lr, 5)) Re(it(t) (1))

Qg Ud ~ o —1€12° [t b(r)dr R —
> Ugp dt|u<t>|2—a4|§|2 eI L0007 | Ry (S)(S)|
t
0 [t 0 n .
(s — ag)|¢[Foe 16 S5 brir / S TV g () Py, (2.25)

Applying  inequality  (2.25) in  equation  (2.8)  with
K(t,§) := ﬁ|§|20—29, we have:
d R — a o1~ ol
DK (€ Re(an(1)5(0)) + S e a0) 2} + K (1, €2 a0
< K(6O)lin(0) + aalel*7e S 5O [Re(iy(5)a(S))|

t
20 [t 26 N
+(ag — ag)[¢e ¥ Js b / €SSO g, () Py, (2.26)
S

‘5‘20 40

g(t)?

On the other hand, define J(¢,£) := Ny Kz(ﬁf) =N . There-

[

fore,
d E(t.§) _ Nico K2(t,€)
KO = g e

Nlco 9( )[€[% Nico
S N e N K(t,€) (2.27)

1|d
2’cltJ(t7£)‘ N1

K2(t,6) =

and

ILON il
T OB =N o=

Applying inequalities (2.27)) and (2.28) in equation (2.7)), it follows:

jt {Nl KZiLg)E(t,é“)} + (N1a1 = N;\f“) K (t, &)lan(t)?

Nic
< 1€

> Nia1 K (t, ). (2.28)

K (t,)lel* (). (2.29)
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By adding inequalities (2.26) and (2.29)), we have:

d Nico oA
GF0 + (1= ) KOl a2
N100

N <N1a1 _ Mieo _ 1) K (4,602
< a4|£|2”e_|5|29 Jsb(r)dr ‘Re(ﬁt(S) 5(5’))|

Haa - ag)fgfre e S [

S

t
el 130T 4, () [2dn, (2.30)

for all t > S such that (t,€),(S,€) € Zey. Since (1 + t¢)g(te)|€|?) = N
and by Proposition we have |€]7 < (&) = g(t¢)|€]??, therefore
(te,€) € Zey for all € € Bp. By setting S = t¢ in inequality we
prove the first part of the proposition.

Consider (T,&), (S,€) € Zy. Using Lemma [2.2.1] we have:

T 20 s
7 [ e O R (5)7(5))| s
AT
= g () A )

# 20 m 2 ‘5'20-_40 i 2
= =) (I§| [(S)P + = e ()] ) (2.31)

Using integration by parts and Lemma [2.2.1] (in the integral from
S to s) again:

T 20 s s 0 N
|€|20/S e-|§\ fs b(r)dr (/ 6‘5‘2 fé’ b(T)dT|ut(n)2d’l7) ds
S

T T
:/ |§|2‘7 (/ e—|§|29 gb(T)de"]> e|§|29 Js b(T)dT|at(S)|2dS
S s

1 T
= | K(s,9)lau(s)*ds. (2.32)

Since a5 = 1—% and ag := Nlal—%—l— 4= by integrating
Py

inequality (2.30) in [S,T] and applying inequalities 1) and ([2.32),
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it follows:

T T
F(T) + a5 /S K (s,€)\¢[*(s) 2ds + ao /S K (s,6)[ie(s) ds

a o, lg]P

SF(S) + s ([EP71a(S)P + = gl (S))* ) . (2.33)
2(0/1 N) g(S)

2
Note that by the conditions on N we obtain Na%Jrc—“ > %Naer%Na% >
2a1co + 4% > 2a1¢9 + as + “200 , therefore ag > 0.

‘£|4a 46

Since in the elliptic zone holds K(t,€)? = OB

for (t,&) € Zeu:

< 1€/ we have

Fit.6) = ISP + K ORe(au()70) + M2 B0,

N1 +1K2(t,€)
2 135

2
TP, (239

<

|y ()]

(as + 1) P a(0) P + L0 ©la(n)P +

l\.’)\»i N

(N1 au+ 1) P ()P + 5 (3 + 1)

Since a7 := min {“2—4 — Ni NT} > 0 follows:

reg = (-5 )leioor+ 2L wor

90~ 2 ‘£|20 460 )
or (Ie i + L), (2.35)

for all (¢,£) € Zoy;- On the other hand, using inequalities (2.33)), (2.34))

v
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and ([2.35)), we have:

/STK(S

T T
<Mrar / K(s, [€*lis) Pds + / K (s,6)|au(s)ds

1 <a5/ K (s, &)l |a(s )|2d3+a6/ K (s,8)] (s )|2d8>

< P8+ s (I iats) + €7 (s s))
= 2 (a — %) g(5)2
as

<“Q+mmlw9””

for all (T,¢),(5,§) € Zg such that T > S, where

Ni+as+1 Ni+1
2(15 ) 2(15 °

Ch = max Finally, for

C := max {01 (1 + ‘Ii“p) i} and the proposition is proved.

2a7(a1—4) )’ a1
]

Remark 2.2.2 Since ¢ is increasing, ¢~ is also increasing. Thus, if

N > ¢(to) and R < 1, te = o (N|¢]72) > o (p(to)) = to, for all
¢ € Bp.

Proposition 2.2.5 Let @ = u(t,) the solution of (2.5)-(2.6) and as-
sume Hypothesis B. Therefore, there exists C > 0 such that the follow-
ing estimates hold:

Ea)| S e TlTTTO0 ((e)ao| + finl)
1720 —21elPe 2050 (1e1ora g 4 JE]
ol < 9 (I tiol + o).
()] S e e (1g)7 o] + |an])
LT g0 (et + i),
¥(€)g(t)

for all (t,€) € Zey.-
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N

Proof. Since Hypothesis B holds, by Proposition we have |£]?
¥(&) for all £ € Bg. Therefore, fixing £ € Bgr, To(§) = sup{t >
te @ (t,€) € Zeoy} is such that Tp(§) = oo if ¢ is increasing or g =
1 and Tp(§) = t1(§) if ¢ is decreasing, in which ¢1(£) is such that

g(t1(€))|€]%% = |€|°. Strictly speaking, the existence of t;(¢) for g de-
creasing is proved in the following way: by Hypothesis B, we have
20 < 0(1 4 «) < o, and therefore, assuming;:

R < g(t)7™,

follows that ¢ (&) := g~ (]€]772%) is well defined.
Define the following function for ¢ such that (¢,£) € Zgy:

To (&)
L) = 2P+ —— /t K(s,€)F(s)ds,

2C 202
with K (t,&) = ler > (t) , C anf F given by Proposition [2.2.4 (C' = C)
and the convergence of the improper integral (when Tp(§) = o0) is

ensured by Proposition By Proposition we have S F(t) <
L(t) < %F(t), for all (t,£) € Zy;. Using again Proposition , we
have:

d 1 d 1

T (t) = %aF(t) - ﬁK(taﬁ)F@) < R(t,8) — = K(t,§)L(),
(2.36)

where

Rt €)== S K (a0 + S feloe O Regire) )

(as —az) |, 105 —I€? [L b(rydr [* JE g by
‘FTW2 e ¢ | () |*dn.

te

Rewriting inequality (2.36) and multiplying both sides by the term

K(s,§)ds
620 f'£ (=) , we have:

d % t S S % t S S
pn (E(t)e"’c Ji K(s:0)d ) < e2¢ Jig K(s:0)d R(t,¢),
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— L[t K(s,6)ds
and by integration in [t¢, t] and multiplying both sides by e 2¢ Jig Ks:8)ds

we have:

L) < Lte)e 76 Jie KOs

—L1 rt s s ¢ L [n s s
+e 2¢ Jig K(s:8)d / e3¢ Jig K= R(n, &)dn.

te

(2.37)

Let D(€) := {s € [to,00) : |¢]?’(1 + s)g(s) > N} and Q(§) := {s €
[to,0) : (8,€) € Zeu} = [te, To(€)), in which the last equality is possible
by Remark and the interval include Ty (&) when To(§) = t1(£). In
this case, Q(&) C D(¢) and f(n) = e% Jig K05 50 Gell defined in
Q(¢). By Proposition holds ¢' > L, and by the definition of
elliptic zone, we have |f'(n)| < A¢[*g(n)f(n), with A = %4, for all
n € Q(§). Furthermore, assuming N as in Proposition we have
N > %0 and therefore we can apply the second inequality of Lemma

P21 with M = N, 51 = s5 = le:

¢ f" K(s,8)ds —|§|26 " b(r)dr

G | Re(iun(te) ate))| d
< 16 | re (@at@g) a(@)]
< lePlate) + f('g) n(te) . (2.38)

On the other hand, by Proposition [2.2.4] 44=% = g5 —ag < ag. By

al—

integration by parts and by applying second inequality of Lemma [2.2.1]
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with Q(§) as before, f =1, A=0, M =N, s; = s and sy = t¢:

(as —az) .o /t —1€1*? [, b(r)dr /s €12 [ b(r)dr
_ o e te te d
B €] ; e (n)|*dn

te

as

K(n, &)\t (n)[*dn

aq4 o k _|§|29 ! b(T)dT |§|29 b(r)dr
-l ) )mz J ([ ) SO
£ S

ag “ 2
- K L) d 2.39
2 /., (1, )|t (n)|"dn (2.39)

< =) s lats)ds — 5 [ K launldn <o
= 2ar — 2)0 /s, 2C Ji, -

By inequality (2.34) follows:

‘ |2a

£
¥(&)?

L(te) S F(te) S 1177 lalte)|* + [t (te)|*.

Furthermore, using inequality (2.35]), we have

20| 5 2 |£|2(7 40 2 < <
€177 a(®)” + FOE ()" < F(t) S L().

Therefore, applying inequalities (2.38)) and (| in inequality ([2.37] -,

we have:

o, lg]P

€12 la(t)* + POE e (t)|?

_ 1t s s ¢ 1 s s
< L(te)e 20 e K8y =36 Ji K(=20)d / ¢3¢ Je K8 By yan

te

< (|§|20|a(t )|2 + |§|20 |a (t )|2> e_mz‘g * ftg a(s )ds (2 40)

~ ORI '
for all (¢t,£) € Z.;. Note that we have already reached the goal of
inequality (2.22). From now, we want to apply the glue procedure to
remove the dependence of t¢ in the right side of inequality (2.40). We
will use several times the Remark [2.2.2] that is, t¢ > ¢, for all £ € Bp.
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Consider —1 < o < 1, by applying Lemma [AT.2}

— te 1 (1+t ) |€|20_
20—260 — ds < 20—260 13 < <1 f I .
6 | S S T S g S e §€( "
2.41

Consider now o = 1 and v < 1. In this case, by direct integration and
using Proposition 2:2.2]

20—20 1 po 201 1
g /t (1—|—s)lm(1+5)d8 SN In' =Y (1+te)  (2.42)
|£20‘
S i 1

for ¢ € Bg. Using again Proposition 2.2.2] for « = 1 and v = 1 we
have:

te 1
20—260 20—260
7 [ iy § ) (243
1>

S In(In(l+te))in(1 +t£)1/)(§) <1,

for ¢ € Bg.
Using inequalities (2.40), (2.41), (2.42) and (2.43)), and applying
Proposition [2.2.3

YOIW < O] + it e T e T
< WOlio] + lin) e LT ST (2.4
and similarly,
el < L wienacol +aon e et
< (1ol + B ) 5 s

for all (¢,€) € Zey. Applying Corollary we conclude that the

two first estimates of the proposition hold. Finally, let w := 4; and
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rewriting equation ,
wi(t,€) + bO)[E[* w(t, €) = —[¢[*7a(t,€),  t € [te, To(E)),
and solving this first order ODE in w, we find:
W (t,§) = ﬁt(t£7f)€7‘£‘29 Jig pende
1P S e)ds /’5 67 i b e 2000 )

te

(2.45)

7.

By using inequality (2.44)), applying the first inequality of Lemma

2.2.1) with M = N, Q(¢) C D(&) both as defined before inequality
e ‘20' 20
2.38), with f(n) := I 9<S>ds A := % and by Corollary|A.1.1

we have for a suitable C > 0:

€l S b(o)ds [T 1P [ bs)ds o
|e etnts [ O i, €

123
20—260 2026
< (W(©)liol + ) M SR s
|§|20—29 14120 —26
S (W& lao| + [dn]) Me_ﬁm ¢(t), (2.46)

for all (t,§) € Zey. On the other hand, since [¢|?’ [ b(s)ds < 1, by
energy equation (2.9) and by Corollary |A.1.1} for a suitable C' > 0, we
have for (¢,€) € Zey:

(s)ds

y(te, €)e 1T IO < (g7 ag) 4 i) e BT (2.47)

Applying inequalities (2.46} - and (2.47) in inequality ([2.45) - the result
is proved for ;.

|

In the next proposition, we use the standard energy method, that is,
the Proposition with Proposition in order to obtain decay
rates for the solution in hyperbolic zone. It should be noticed that

an additional glue step is necessary to obtain the desired estimates.
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Furthermore, if g is non-decreasing and since we are using Hypothesis
B, by using Proposition we have: given { € Bg and ¢t > tq,
implies that ¢(1)|[2 > N and g(t) > g(te) = 55 > [¢]7~%, that is
(t,€) € Zey. Therefore, in this case we have Zj,, = @. That is, to
obtain the desired estimates in Zj,, is sufficient consider the case g

decreasing.

Proposition 2.2.6 For g decreasing, the following estimates hold in

Zhyp: 20
P(E)|a(t)] < em @ (y(&)]ao| + |t ]) ,

i (1)) S e EEe® ((&)aao] + [nl) -

Proof. Since g is decreasing, we have —1 < o < 0 (with v < 0if & = 0)

and therefore by Hypothesis B we have ¢ > 26. Since g can be seen as
a bijection between [tg,c0) and (0, g(to)], t1(£) = g~1(]€]772%) is well
defined if [€]7=20 < g(t,) for all £ € B, that is, if R < g(to)7 7.

Since [£|7 < ¥(&) for all £ € Bpg, it follows directly from the def-
inition of ¢ that t¢ < ¢1(§) for all £ € Bg. Therefore, for each fixed
& € Bg, [to,00) = [to, te] U [te, t1(§)] U [t1(§), 00), in which (s,&) € Zjow
for s € [to,te], (s,€) € Zey for s € [te, t1(€)] and (s,§) € Zp,yp when
s > t1(€). That is, in the notation of Proposition So(€) = t1(8)
and Tp(€) = oo in hyperbolic zone. Since (t1(£),€) € Zey, by applying
Proposition in t =t1(£), we have for 2Cy > C:

Pl )] < '5(' IO (4ol + ),

(01 ()] < %e‘@'f'2“29¢<tl<f>> (W(E)laol + )

therefore

1 (¢)20—26 20
Bt (6) 5 ¢ 97O E (ool + ). (249

By using Proposition [2.2.1f we have for C; > max {3(217%, C}:

E(t) S e @l o 9008 gy, (¢)), (2.49)

~
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for all (t,€) € Zpyp.

Since Cy > 528 and [€%(11(€)) = [P 6(11(€)), by using
Lemma [A.1.2] we have for a suitable C' > 0:

L 20 ! L PR
e [ oloyds = il o ©)
1 20 2 1 20—26
< —5|§| o(t) + (3(1+Q)C1 - C’g) €] P(t1(8))
< —ZIEP(t) (2.50)

for all t > ¢1(£). Finally, using inequality in inequality
and considering , the proposition is proved.

O

Differently of Chapter 1, in the Z"*9" is important to improve the

estimates of Proposition [2.2.T] for & = 1. Actually, we prove an general

improved estimate for ¢ increasing.

Proposition 2.2.7 Suppose that g is increasing. Let v := min{20 —
20,20} and C big enough. Therefore, there exists t§ > to such that the
following estimate holds for || > R and t > t§ :

o v _BY rt _1_gg oA ~
€17 1alt, )] S e e e T Jio T (g7 dio| + )
|t (2, )] < (e TIEe®

_l’_ [ —
Proof. Using equation (2.5 and solving for 4, in [to,t] we find:

'Ilt (t, é-) _ at (t07 f)eilél% ftto b(s)ds
C1E (s [T IEP0 [T b(s)ds| o 20
W L S LB R . (2.51)

to

ds > 1, whose existence is ensured

Let t7 > to such that ft g(s)

due the fact that % is not in L'. By the same reason, and due our
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hypothesis on g also holds tlim g(t) = 00, we can assume:
—00

p(t7) > maX{ 5 S ,R”‘”} and g(t7) > 1. (2.52)
R ap — el
In addition, holds
|f‘ fto g(s )d‘S =e c‘E‘ fo g(lg) c‘f‘ ft* g( ) e*%‘g‘u’

for all ¢ > t}. By Proposition [2.2.1] we have for t > ¢}, |{| > R and C
big enough:

2t 1 N 9
e~ "l 5% (€17 o) + i)

<
v _RY [t _1_ ~ 3
< el e o T (167 itg| + Jaul),

€17 1a(t, €

and therefore

¢ 20 1 p(s)ds N
/ €7 T3y b 612014 )1y
3

20 [t o [t et L b(s)ds |, 10
— e i voya / S M 22y, £ iy (2.53)
3

1

26 t% Ele?0 17 b(s)ds e . .
< elél™ Ji b (/ IV ) e R €17 (€1 o) + Ja])
i

1

— B g 26
for all t > 5, where f(n) :=e < Jto 9%, Let M := R*"p(t}) and

A == gms— < a1 for C big enough. For each £ € R™\ Bg, we
have Q(€) := [t},00) C {s € [to,0) : [€]*°(1 + s)g(s) > M}. Since
g(n) > g(t) > 1, we have |f'(n)] = \—%{n)f( )| < AgP?g(n) f (1) for
all n € Q(&). Since A < aq, by condition we have A\ + £ < a4
and by Lemma [2.:2.1] follows:

t
€12 J7% b(s)ds 1 B
e’ T f(m)dn S rmgome 7 e o
/t; [€17%9(t)

for all t > t7. By applying inequality (2.54) in inequality (2.53)), we

20 rt
€|£| fq b(s)ds’ (254)
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have:

20 [m b(s)ds Eaps
[ s iy, e an (2.55)
21

< 6|5|29 ft,to b(s)d5|§|0729 1 e~ c fto Fo) ds 7E|§| (|§|6|ﬁ0| + |ﬂ1|)

g9(t)

Furthermore,

4 €129 [ b(s)ds 20 [ pisyas [0
/ P s o ey < 6 bleds / € i, €)ldn

<
to to
20 t1
< leloel™ e PO (g1 g |+ [ay ).
(2.56)
By using inequalities (2.55) and (2.56), we have for t > ¢7:
t
—1€1%? [t b(s)ds 20 7'bsds o
eI e [l B M 2o, )
to
TP [ g,
to
t 20 (1 p(s)d
+/ el i M 2, )y
ty
_1£]20 [t
S fgpoe ! fti""s)d8<\s|”|ao|+|a1|> (2.57)
LIPS
g7 e € i T e E I (117 g | + [aa])
i (1|

Using that ¢(t}) > R*~2% in which imply that ¢(¢)|¢|?? > |¢]¥, and

by applying Corollary (with ¢} instead of #g) in inequality (2.57)),
there exists t§ > t] > ¢y such that:

TIPS b o 21e20() < o~ LIl - 1€ (0). (2.58)
0 v
In particular, holds ¢ IE S bs)ds < e wlile=Tle? e for ¢ > .
Using that |4 (¢, &)| S (1€]7|to| + |@1]), using 1 < |€]7, using inequality
(2.57) and inequality ([2.58]) in equation ([2.51) the result follows.
(|
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2.3 Proof of Results

In this section we prove the main result of the chapter. We have to
apply the pointwise estimates in Fourier space of the previous section,
fix the time variable and integrate £ in R™. This procedure is make by
considering the zone separation introduced in the beginning of Section
2.1 and a proof divided in several propositions to deal with each zone.
During the step of integration in &, we often use results of Appendices
A and B.

To proof the results, we shall consider in this section ¢ conjugate
of ¢ € [2,00], that is ¢ € [1,2] and % + % = 1. Furthermore, ug,u; €
LP(R™) and s conjugate of p € [1,2], that is, s € [2,00] and therefore
s> q. Wedeﬁner'—ooifp—l—(j:p(jand?“—p+q - > 1if p+q¢ # pq.

That is, r is conjugated of %, since p+q Pd 4 q = 1 In addition, we

take pu, 8 € N™ o = ¢(t) given by (2.1] and ¢ = ¢(t) given by (2.2) in
Theorem [2.1.1] In this section several times will appear the expression

2 (p+ 4 — pg), which is equivalent to n (% — %) that rises in Theorem

21T

Proposition 2.3.1 Consider the conditions above, 6 # 0 and assume
the Hypothesis B. Then, there exists t§ > to such that the following
estimates hold for t > tj:

@\H‘+§U+%(P+@*PQ)

/ |8 g (8, €)|9dE S so(t)‘( * >\|uo|\%p

low

qlul+ 3 (p+a—pd)

JrsO(t)_< v )IIU1II%p.

Ifur # 0 and |B] — 2% + 2 (p+ G — pg) > 0 or uy = 0:
X A _(qlﬁH»%(erQ*P@)) .
/Z €781 e, €)[de < (1) T ) fluol[2,
low

oty () (52) thall
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Ifui 0, 8] — 2% + L (p+4—p§) =0 and y > LFeleti=rd),

€98t ©)|%de S ()T [fuol |4,

Ziow
_ 4y | ptd—pd t q
kL [T

NE

Proof. Let 7 := N2ogp(t)~
have:

Since | ()7 < |€]97 0|7 + |a1]9, we

/ €Tyt ) < / €[aln7 | o |de
Ziow Ziow

+ / €0y e
7

low

A

H| - |dlil+ao q
Ls

U
ooy I

. é\u\” NI
oo (IR P 4

Using Hausdorff-Young inequality (see [I]) and Lemma with
k1 = §lu| + go or k1 = §|p| and k2 = 0 in both cases:

alul+do+ 2 (p+i—pd)

/ 18 g (2, €)|9dE S so(t)_< ¥ >||uo|\‘ip

alul+ 5 (p+d—pd)

+s0(t)_( v >Hu1|\‘ip-

for t >t > ¢ Y(N).

By Proposition [2.2.2) we have () ~ |§\1?Tealn14%a (%) Applying
Proposition [2.2.3] we have:

[ tiia olide (2.59)
Zlow
N N A 42 ay 1 5
5/ |§|qll3\|a0|qd§+/ |§|q\ﬁl—1+filn—m (> |y |9dg
Zlo'w Zlow |£‘

< H| . |é\l3\) ‘| L P <|1|)

||

lao||7- +
) L™(B,)

L7 (B,
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Using Hausdorff-Young inequality and Lemma with k1 = ¢|p]
and ko = 0 for the first term on the right side of inequality (2.59),

ki = q|B] — q% and ko = —‘j—” for the second one, we have:
i) If uy # 0 and |6|—1i—9a+ (p+q pg) > 0 or uy =0, for ¢t > tg:

ql81+ 3 (p+d—pd)

/Z €197 (e, €)]7dg < so(tf( Y >IIW\I%I)

low
o (o(t) j
o (52)

i) Ifur #0, 8] - 25 + Z(p+G¢—pg) =0and v > w, we
have, for ¢ > t§:

q\ﬂ\*%Jr (p+d— pq))
29

+go<t>_<

5181 A G __a_ G _ v 4 p+a=pa [ p(T 5
It 1 S o(t) e lluol |, + tn 7T (}V))Hulnip.
low

In which ¢ is chosen to ensure conditions on 7 of Lemma for

2|ko

18— 2+ L (p+G—pg) > 0,7 = N2rgp(t) "= € (O,e_k”?”‘“’@)) &

460]7|
(Ne'ﬁ'“*“)29*1@“*‘”“’*""‘”). On the other hand, if |3] —

> ¢~
+2(p+3—pi) =0,7=Nwp(t) 2 € (0,1) &t > e '(N).
O

i
+

Proposition 2.3.2 Under the conditions of Proposition [2.3.1] there
exists t > to such that the following inequalities hold for t > t§:

Ifﬂ#Oand|ﬁ|—%+ . (p+G¢—pjd) > 0 and u; # 0 or any
B8N ifu; =0,

alBl+ 5 (p+a—pd)

/Z|§Iq'ﬁ'|ﬁ(t,§)lqd£§¢>(t)_( o >Huo|\%p

r¥e (‘z}\(;)) lui]|2,.  (2.60)

- fii +%(p+éfpé)
20 —26

+¢>(t)(w
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U@#Omﬁ“ﬂ—%%+£ﬂp+Q—M):0mm7>£ﬁﬂ%¥j@7

N N 46 N
/Z T8, Olide < G(t) T uol |2,
ell

_ Gy 4 pti—pd t p
Ol U T RCT

If0 #0 and |p| — 2% + J&(p + 4 —pg) <0,
alpl+24(e—0)+ 2 (p+d—pd)

g(t)qw)( =) i,

/ €T iy (1, ) 7de <
Zell

qlpl+ 3 (p+d—pd)

+w@f<4‘4?f4‘jﬂuﬂ@p
260 n ~ P
If0 #0 and |p| — 2% + 5 (p + 4 —pd) > 0,

1 _ qlnl+24(c—0)+ 3 (p+d—pd)

¢(t) o >\|uOH%p

+ i R
i (G lall.

o
[ e, e £ o

alul+2d0-2q0 (2 ) 2 (p+4-pa) )

¢<t)_<

g(t)d
If0 =0,

alBl+ 4 (p+d—p9)

/ |§|‘?'ﬁ'|ﬂ<t,s>|ﬁdfs¢<t)_< v >(||uo|%p+||u1||%p),
Zell

/ €M (2, €)] e

Zell

qlul+2qo+ 2 (p+d—pd)

g(t)m(t)(za) <||u0||%p + ||u1||%p) .
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Proof. Initially consider 6 # 0. By Proposition [2.2.2] we have (&) ~

|§\1%lnl+% (%) and by applying Proposition [2.2.5, we have:

|1 ac. ¢
Zell
</ (€[181e= 216772000 g g
Zen
s [ e e (1) i
Zen ‘€|

q
Ls

< H| . |alBle= 21 127 ()

U
L’"(BR)” o
HuAlH%S'

N H| (181~ B =1 P60y~ <1>
L7 (Br)

|-
Using Hausdorff-Young inequality and Lemma (case I) with
k1 = ¢|B| and ke = 0 for the first term on the right side of above
inequality, whereas we take k; = §|8| — (jli—ga and ko = —li—"a for the
second one, inequalities (2.60) and (2.61) follows.
Let us consider estimates for 4; with # # 0. Using Propositions
2.2.2(and [2.2.5] we have (&) ~ \§|1%lnl+ia (i) and:

/ €M (¢, €)| e
Zenl

</ g alil+i0 = &1 0(0) o) e + / gl 218 |7
ZE” Zﬂ”
1

g(t)d

1 - Ao\ 230 §s|20—26 _ av 1 s
+W/ |f|qm‘+2q(g %) Itae clél ¢(t)ln 1ta (|§|> |U1|qd§.
Zenl

N / |§|@\m+2c§(a—0)e—§\5\2"’294)(”|ﬁo|qd€ (2.62)
Zen

To estimate the two first integrals, we consider Z.; C Q1(t) :=
{€ € Br: €l ¢(t) = M}UQ2(t) := {§ € Br : [§]*"¢(t) < M}, where
in Q; we use Lemma as mentioned and in Q3 we proceed as in
Proposition[2.3:T]and M is provided by Lemma[B.1.4 with the following
parameters: k1 = §|u| + go for the first integral and ky = ¢|u| for the
second, with ko = 0, w = 20, 7 = ¢(t) in both cases. Furthermore, by
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applying Hausdorff-Young inequality, we have:
/ (g lnlHao = 16200 g 4 e
Zen
</ |€|alul+io = E 1600 o |age
Q1(t)

+/ € |almltao o= &I e (1) |dgg
Q2(t)

<1 e g0 g,
~ L7 (Q1 (1))
~ ~ G 20 4
+H Jdll+ao ;=& 1170 e(t) aoll4,
-] Lr(%(t))ll 13
7(é\ul+év+%(p+éfpé)> A
S () 29 [luollZ0 (2.63)

and similarly,

qlul+ 3 (p+d—pd)

/Z j€|dele=E1E 0014, dge < so(t)*< * )||u1\|%p(2-64>
ell

for t > t5 > ¢~ 1(M) and M given by Lemma
For the third integral, we apply Lemma with k1 = ¢|p| +
24(o — 0) and ko = 0, therefore for t > t§:
1
g(t)
<

; (o p) _d|g|20—26 o h
/Z (€|l 2a(0—0) o= L1E17 2 6(0) | g 1 e
ell

1

H| : |q|u|+24<a—e>e—%\~|2“*29¢(t)‘ i,

ol
"(Br)

g(t)d

dlul+2d(e—0)+ 5 (p+da—pd)

¢(t) ( o >|IUoII%p- (2.65)

=

A

(t)7

To estimate the last integral of inequality (2.62]) we separate in six
cases. Remember that this estimative is only necessary when u; # 0.

Q

Let k1 = §|p| + 2§o — 246 ﬁ—g s ke = —7% and v = v(t) as in
Lemma [B.1.10} By Lemma (consider B(t), case I and case II as
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in the mentioned lemma) and by Hausdorff-Young inequality, we have:

1 2026 1 N
I := _ / §|q|u|+2q(o ‘9)_1+ae dig| #(t) () | |9de
907 7., €
Ll [Fre= €177 0 ke (i)‘ || if case I holds
9(@)? ' L"(BRr) ’
~ 4|.120—26 “ 5.
||l e T e ke (ﬂ)( 1y 1l if case IT holds.
Therefore,

alpl+24o— 2‘79(11 )+ (p+3—pq)
2020

‘ 1~¢<t)<

__dy
=7 (42) llullg,

fk1+%>0,

p+<1 Pq t 7]
S (4
if k1 + =0 and k2<—7
_<a\m+2q’o—2as(ﬁ—§)+%(p+q pq)>

s e(®)

20

7 (2 ] 4,
if K+ % <0,
gln s (ln (M) lurll%,, ki +2 =0 and ky = —1

1 1 R
I~ T LR J\W) )4,

Q(t)q N%gqb(t) To-38
if ky+2=0and — 1<k <O,
_ 4y p+q g t)
S (2 1,

if k&4 + 7 =0 and —%§0<kg7

dlpl+24o— 249(11 )+"(p+q pq)>

wﬁ(t)(

), () .
if k1 + % > 0,
q
) (G ) halld, if 1t =0,
(|#\+20729(?ig)Jrﬁ(PJrQ*P@)) H
- g 2y t q
PO 20) I e (%> [l

if k1+%<0.

(2.66)
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Applying Lemma(B.1.6/and Lemma|B.1.10| with w = [u|+ % (p+¢—
pg) in inequality (2.66), since w = |pu|+ J=(p+q—pg) = 20 <2+a> —20
if k1 + % = 0. Therefore:

1 / 24(0—0)— 21272 0(t)p,— 125 (L) 14,14
_ |€|q|u\+ q 1+ae cle In"TFe | — | |G1]9d€
g(t)q Zel |€|

(qlul+2q0 2q9(11 )+ (p+d— pq))
- 20—20
7o (t)

_ 4y
L =75 (42) [l

5 if k1 4+ 2 > 0,
_<é\u\+%(p+é*pé)> X
(1) * ual|Zs, if ky+ 2 <0.
(2.67)

Using inequalities (2.62)), (2.63), (2.64)), (2.65) and (2.67)), we have
for 6 # 0 and t > t§:

| temane o piae
Zen

\u\+a+ﬁ(p+éﬂm§)
,Smax{gp(t)_( ’ ),

1 _ ( \u\+2a—2e+ﬁ<p+é—pq)) % X
o(t) } [luoll%»

g(t)?
\HH%(N@*M))

+maX{<P(t)_( ’ ;

g
2

((1n+20—20( 3 )+ ﬁ(p-%—@—pd))
ol ( o s (G0) Tl
We calculate the maximum in the last inequality using Lemma[B.1.7]
with w = |u\ + 0+ 35(p+ ¢ — pg) for the term associated to ug and
Lemma with w = [u| + 25(p + ¢ — pq) for the term associated to
Uy- Therefore, the result is proved for 6 # 0.
Finally, let 6 = 0. By Proposition 1 ~ 1, using Proposition

2.2.5, using Lemma with k1 = §|5| and k2 = 0, and applying
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Hausdorff-Young inequality:

/ €178, €)|7de < / €918l E1EP700) ()4 4 |y |0)de
Zen

Zen
Gnl|d q)
. (1ol ?

et

alBl+ 5 (p+d—pd)

so (T ® >(||uO||%p+||ul||%p)

and

/ €[2[0, (1, £)|dg < e Ee® / €1 (Jao|? + Ja|) de
Zen

Zen

1 l2de LT (e 1 L e G

g(t) / |§|q|u|+2qoe &l 77 8(t) (|uO|q+|ul|q) d¢

ell

< 7%90 t) ‘ q“‘“H ( N q -~ li ) 2-68
Se |- DQMIWMU+HMMF (2.68)

1 g a2 A A

||y janl+2d0 o~ &1 ¢(w‘ ( S a1 qs>.
oy [ e N (PR

The first member of the right side of inequality has a exponen-
tial decay, in which is always less than a algebric-logarithmic decay. To
estimate the second member, we use Lemma [B.1.5|with &y = q|u|+2¢c
and ko = 0, and by Hausdorff-Young inequality the result follows.

O

Proposition 2.3.3 Under the conditions of Proposition [2.3.1), there
exists tf > to such that the following inequalities hold for t > t§:

If 6 £ 0,

Q\M\+é6+%(p+«ifpé)

/Z el 9l (2, €))2dE < so(tf( * >||uo||%p

alul+ 3 (p+a—pd)

+so<t>’< * >\|ul|\%p.
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If0#£0,u; #0 and|ﬁ|—1i—‘9a+ . (p+¢—pgd) >0 oru; =0:

alBl+ 3 (p+a—pd)

ué EWWUML£WW§59%U7< Y )HUMEP

hyp
e (60N g
e (50) L.

If0 # 0, w1 #0, |Bl- 2% + 2 (p+4—pg) = 0 and y > w:

alpl— f_?_i-*— (p+d—pq)
26

+p(t) (

el . e N _ v | p+d—pd 4 G
€11, 917d€ S ) 75 uall -+ tn 555 (B Y1

Zhyp

Ifo =0,

/‘ €197 a(t, €)1 %de < e fuol|F, + e &P W Jual |,
h

yp

/1 €17 a2, €)|7dE S ™ €7D uol 10 + €= EF O fu ||,
h

yp

Proof. For g non-decreasing Zp,, = @ and the result is trivial. So
in this proof we assume g decreasing. By Proposition and by
Proposition [2.2.2] we have:

. N ; N ) 418 )
a1 < 60 (1ali + S o0

¥(&)
and
|§|4|“||ﬂt(t)|‘j < Ji!?‘ie_éf?wu) (\§|’i|”|1p(§)‘3|110|4 + ‘§|Ii|u||@1|d)
S e BIETe (Jgjarranlgg |1 4 fe[Hl|ay|7) - (2.70)

for all (t,£) € Znyp. The estimates for u, and 6 # 0 is achieved by
using the same calculations as made in inequalities (2.63) and -
since that calculations only require |¢| < R and |§|29 () > N, i

which is also true for hyperbolic zone. In the case of 4 for 6 # 0, using
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inequality (2.69) and Proposition [2.2.2] we have:

[ emac e

hyp

5/ _%‘g‘zego(t)‘5|Ii|ﬁ||ﬁ0|éd§+/ o Llel o 1117 |§‘ | |qd§
Zhyp Zhyp ( )
5/ e*%\f\”w(t)‘£|é|ﬁ||a0|éd£
Zhyp
+/ €091 55 = &1 o)y~ (1) [ | 7. (2.71)
Zhyp |£|

To estimate the first term of inequality we just use the same
argument as is in inequalities and , since it only requires
the restriction |¢| < R and [£[*¢(t) > N, in which is also true for
hyperbolic zone. For the second term we fix k; = §|8] — 249 and

1+«
ko =

— 7L +a , therefore:

/ (€[0161- 225 o~ 16l 0(0) 1y~ 75 (1
Znuy €]

< H| |Frem I P ek (1>
|-
and for M > N big enough we have:
H| . |k16*%|'|29w(t)lnkz (1)
| ' | L"'(BR)

< H| |Frem &It ke (1)
|1 e eeBa: g2 <)

q 1
et (1)

To estimate the first term of the last inequality, we proceed as in
inequality (2.59)). For the second we apply Lemma and using that

) |11 |9d€

a0 (272

|J1 |
L™(Br)

Lr(§€BR: €120 (t)>M)
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ko < ko + %, follows:

H| . |k1 —&117%0( ) ke (1)
L1/ e (B

ot (M)lfk1+%>07
lnk2+ (¢(t)) fky+2=0, and kp < —1,

T

applying last inequality in , further applying in inequalities
and applying the Hausdorff-Young inequality the result follows.

For # = 0, by Proposition We have ¢ (£) ~ 1 and therefore the
result is straightforward for both cases: by using inequality or
inequality (2.69), the exponential part does not depend on & and the
right side can be estimated using Hausdorff-Young inequality.

|

In the next proposition we obtain decays rates for Z"9". However,
it should be noticed that we do not cared about the sharp decay rates
in this region, our idea is only to ensure that the decay rates will be
determined by the Z.;.

Proposition 2.3.4 Consider the conditions of Proposition|2.5.1. Then,
for every n > 0, there exists t > to such that the following estimates
hold for t > t§:

1040,
[ a0, 91 S o6 uall -+ 660
/Z o N e €)1 < o) uolIF, + 6t "l
If6 =0 andw> 3(p+q—pj),
[ a0, 1 S 60l + 6Ol

/Zh' .\ |€|Q|H||ﬂt(t7£)|qd€ 5 d)(t)inHuOH?/VIuHUJrW,p + ¢(t)7n||u1‘|?/v\u\+w,p'
igh
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If a =1 and 0 # 0, we also have:

ilul | () TN SR ) () BT
éhigh |£‘q‘ﬂ‘|ut(t7§)|qd£§ g(t)‘j Hu0‘|%p+ g(t)d ||U1||%p

Ifa=1,0=0and w > %(ertj*pé), also holds:

€l (1, ) e < PO g o)

— ||ug||2 + —||u a .
hiun g(t)q H 0||W|u\+2o+w,p g(t)q || 1||W\u\+o+w,p

Proof. In this proof we fix f(t) := g(¢) is ¢ is non-increasing and f(t) :=

ﬁ if g is increasing. Let v := min{20 — 26, 20}. Using Corollary ,
we have:
e_%l f:’o f(s)ds

—e(14+)' M7 (1) if 0<a<lora=0and v>0,

if —1<a<0ora=0 and v<0,

A

e

e—c(1+t)1+alm(1+t)
)

efclnlf"’(l%»t)

e

; if a=1and vy <1,
—cln(in(1+1)) if a=1andy=1.

Therefore, given 1 > 0, and sufficient big ¢, we have for all ¢t > ¢§:

¢ T S T < gy, (2.73)

Initially, let 6 # 0 and £} > to such that [0 f(s)ds > 1 (this number
exists because é and g ¢ L'(R)) and such that inequality (2.73) is
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satisfied. For t > t§, by Proposition [2.2.1] we have:

/Zh. h|§|élﬁl|ﬁ(t’§)|éd§5/zh. |§|QI6|6 s el [ s)ds| |qd€

+/ ‘€|Q|ﬂ| QU€ 2c|§| ftof(s ds‘ ‘qdf
Zhigh

GRrRY

< M(s)s/ €18l =35 1El" g dde
Zhigh

GRY

_ t d R R IR PUT/R
4o 50 Jiy F) / €[ 181=d7 =26 11" |y, [9de
Zhigh

ML

Sot) |- [#le=t

+ ()" H| . |¢i\ﬂ|*éae*%\-\”’

LA (R™)

It (2.74)

L (R™)

Using Lemma with k1 = ¢|B8| or k1 = §|B| — Go, ko = 0,
w=v>0,17= % and Hausdorff-Young inequality:

e eide 5 60wl + o0l (273

Suppose now 6 = 0. In this case, since wg > (p +4—pj) =2, we
have H| . HLT(RH\BR) < 1. Using inequality (|2 , Holder mequahty
and Hausdorff-Young inequality we have:

€11 a(t, &) 7dg S e i SO / €191 dio|7dg (2.76)

Zhigh Zhigh
+e 20 Jio f(s)dS/ |£‘é\ﬁ\*q‘0|ﬂ1|éd€
Zhigh
- —w" Bltwy
S./ (b(t K ||| : q‘ L7 (R"\BRr) || ‘ || ! Uo ||q
RO | K il PR | N L et IV

S D) ol [fy 510 + SO Mt 5o

The proof of estimate for / €191 4y (2, €)|9d¢ is analogous, ex-
Zhigh
cept for a = 1.
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For this last case, since || > R, we apply Proposition m
[t e, oltde
Zhigh
S e‘%sz)/ jg|alul+2odo =2 1el" 5o dqg (2.77)
Zhigh

+e—%R%(t)/ g|ilul+oe= I o, e
Zhigh

+ 0k *%Ruftto ﬁds/ |§|é\u\+d(20—29)6—%\5\"|ﬁ0|f§d§
g Zhigh

" (1)«?6’1’%"&0 q<>d/ |l +alo—20) o= EIE | g,
qg Zhigh

Taking in account that e~ &%) has an exponential behavior, for

t > t§ holds:
e ERo(0) < ST (2.78)

~og(t)

For 0 # 0, using inequality , inequality and proceeding
in a similar way as in inequalities and the result follows.
To conclude the proof for § = 0, we use inequality (2.77), inequality
and proceed in a similar way as in inequality (taking care

with the different regularity) and therefore the result follows.
O

Proof of Theorem : Let ¢ conjugate of ¢, v € {u,us} and
n € {8, n}, by Hausdorff-Young inequality, we have:

D%t Mles < 1 Pote e 5 ([ 1o epae) " (o)

It should be noticed that if n = 8, v = v and uy # 0, we have the
restriction |3| — %—i—n (7 - 7) 18] — % + 25 (p+d—pg) > 0 with
the strict inequality or equality depending on the case. For each fixed
t, we separate the integral in inequality in four parts, that is, low
zone (for 0 # 0, otherwise low zone is empty since tg is large), elliptic
zone, hyperbolic zone (if g is decreasing) and high zone. By Hypothesis
B we have ¢(t)7 % < ()2 and applying Propositions
233 and E:3.4] the theorem follows.
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Appendix A

Lemma A.1.1 Let t} > to, I = (tp,0) or I = (to,t), f € CHI,R)N
C(I,(0,00)) and ¢ € C*(I,R) N C(I,R) with i € L}, .(I,R) such that

there exists Co < 1 satisfying:

@)
ft)

1—'(t) w(t)’ < Cy, Vt>tp.

Thus,

1 t
s TN — f@w(a) / £(s)ds

1
< 1Ta {f®)(t) = fla)y(a)},

IA

for allt > a >ty such thatt € I.

Proof. Let \(t) := elio w7, Thus,

t

IO s = 1O

J::/a f(s)ds = V() = )\’(s))\(s)

+ / o(3)/ (5)ds,
’ (A1)

A A// ’ A ’
where p(t) = [ ((Q(t))(zt) - ﬁ(g))\,gﬂ =1-9'(t)— ff(—(tt))w(t). Therefore,

a

J < fO)Y(t) — fla)y(a) + CoJ.
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Solving for J, we conclude that:

/a fs)ds < 1= (FOU(0) - F@v(@).

On the other hand, by equation (A.1)
J = f()v(t) — fla)y(a) — Co.

Again, solving J we conclude the result.
O

Lemma A.1.2 Let §(t) := (14+¢)*InY(1+t), with o,y € R and defined
for t >ty big enough.

If a <1,

[N}
—
—~

—_

+

~

S—

—

+

&
——

INA

2 1 1+a
oo ooy

S Tl i

2|~
forallt>a >ty > e“ja) — 1. On other hand, if o > —1,

e {1 +6)3t) — (1+a)ja)}

< [ i < G {04030 - (1 + a)g(a).

2||

forallt>a >ty >e@F) —1.

Proof. For the first part, choose f( )= ﬁ and ¥(t) := 11+i , for the
second part choose f(t) := and P(t) = L

1+a
A.1.1] for both cases with C’O =1

and apply Lemma

O
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Corollary A.1.1 Let g(t) = (1+¢)¥InY(1+1t), defined for t > ty, with

e(-1,1) andyeR, a=—-1andy> -1 ora=1andy <1. For
@(t) as defined in Theorem |2.1.1} there exist co and c1 postive, such
that:

cop(t) < /t ﬁds < c1o(t),

for allt >t} > ¢~ (2¢(ty)). On the other hand, there exist co > 0 and
c1 > 0 such that

cop(t) < / g(s)ds < crp(t),

to

for all t > t5 > =1 (2p(tg)), where ¢ is defined in (1.27).

Proof. For a € [—1,1), to estimate the right side of the first inequality
we just apply Lemma[A-T-2] The left side is obtained also using Lemma
and using that, for t > t% we have %(;a’;) - (;azg) = 1o(t) —
i) > 0.

For the case a = 1, we observe that ft 1 ds = ivlnl_"y(l +1)—
1ivln1 Y(14tg)if v < 1, fto g(s)ds = ln(ln(1+t))—ln(ln(1+t0)) ify =
1, the left side is proved using again the restriction ¢ > ¢~ (2¢(t9)).
On the other hand, the estimate of the right side is trivial.

For the right side of the second inequality and « € (—1,1) we again
apply Lemma For the left side, we use that for ¢ > ¢ holds
3(L+1)g(t) — (1 +t0)g(to) = 5¢(t) — ¢(to) > 0.

Finally, for the second inequality and o = —1 we observe that
ft s)ds = j_,ylnH”’(lth) — ﬁlnH”’(ltho) if vy > —1, ft s)ds =
ln(ln(l + 1)) — In(In(1 + t9)) if v = —1, the left side is proved using
again the restriction t > ¢ =1 (2¢(t9)). The estimate of the right side

is trivial.
O
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Appendix B

Lemma B.1.1 For 7 >0, r € [1,00] and k4 2 > 0 holds:
I1- 1]

Proof. Initially, consider r € [1,00). Therefore,

|k = kr % — ! kr .
11 HLT(B,) (/BT [3 df) </0 </{95(0’p)p dSp> dp)

1
T r
_ o)} ( / p’”*“dp) < cln,r, k) THE
0

< gkt
Ly ST .

For r = 0o by symmetry is sufficient see that sup z* = 7".

0<z<rt

|

Lemma B.1.2 For 7 >0, r € [1,00], k1 + % > 0 and ky > 0, holds:

”‘ ' |k167|"k27

Lr(R") ~
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Proof. Initially, consider r € [1,00). Therefore,

— / |€|k17'6—7'|f|k2‘rd€ B
LT (R™) Rn
1
/oo / pklre—'rkaTdS dp
0 95(0,p) ?

o0 G
Co(n)% (/ pklr-‘rn—le—rpk%—dp) . (B.1)
0

H| : |kle_|"k27

1
Making s = p*27, we have p = (£)*2, dp = L-p' " ds and there-
_ kir+n kir+n

fore pF1rtn—1dp = éT s k2 s, Applying this change of vari-

able in equation (B.1)), we have:
1
T k42 0 r4n
= (co(n)) T > (/ sklk; le_rsds)
Lr®m)\ ko 0

To estimate the integral in the right side of equation (B.2]), we just
remember that for ¢ > —1,

1 1
/ sle™"ds < / s9ds < oo.
0 0

Furthermore, floo sle™"ds < oo. Since kl]’;% — 1> —1, these remarks
with equation finishes the proof for r € [1, c0).

For r = oo, by symmetry is sufficient consider v(z) := ak1e==""
with z > 0. Notice that v(0) = 0, and v/(z) = 22 (k; — kora*?)

x

S

H| : |k1€_Hk2T

(B.2)

k1

1
% ) and is decreasing for
2T

therefore v is increasing for x < z. := (

T > x.. In this circumstances x. is a global maximum of v. Therefore,

ky

supv(z) = v(xe) = c(ky, k2)T F2.
x>0
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Lemma B.1.3 Consider r € [1,00]. Interpreting é as 0, let 7 €

_ 2|ka]
(0,70) in which g < e "7 if ki+% >0, 70 <1ifki+2% =0. Then,

o
|- |

B R ON
L™(B,)

Inr+*2 (L) if ki +2 =0 and ke < —1.

(B.3)

Furthermore, setting By ., = {€€R":7 < |¢| <7}, and 70 <
2|ka|

ekt s if ki + 7 <0, To<1ifk1—|—%=()andk2>—%, T0<%if
ki+2 =0 and ky = }n Therefore,

) 1
- ()]
5 (Brry)

TRt E ke (1) f by 2 <0,
<< dnrthe (L)) ifki+2=0 and ks > -1, (B4)
v (In (L)),  fhki+2=0 and ko= 1.

If, in addition, r < oo, k1 + 7 =0 and —% < ko <0, we have:

G
|- |

Proof. Estimates in B, for 1 < r < oo:

1 1 ’
. kll ko [~ _ klrl kot <> d
[ () LT(BT)</5|<T5' g f)

T 1 B
</ (/ pklrlnkzr () dSp) dp)
0 85(0,p) P
= Cpyr (/ prirn=lipker <1> dp) ' (B.6)
0 p

1
Cnvr </1 (1 + S)i(klr+n+1)lnk2r (1 + S) dS)
-1

< Iprthe (@) . (B.5)
L7 (Br ry) T

in which the last equality is given by the transformation 1 + s = %

For the case k17 +n > 0, we set ks :=kir+n+1> 1, ky := kor,
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f(s) := (14 s)7*3ink+(1 + 5) and ¥(s) := — 12;3. The idea is to apply
Lemma [A-T.T
f(s) kyq 1 1
1 — — = —— 4+ —.
V) - T S L s T h
Liea | Liea]
Since 7 < e T = e :3f1, we have In(1+s) > In (1) > % and
taking Cp = % (1 + 1713> < 1, we conclude for s > 1 —1:
f'(s) ky 1 1
1—/(s) — |- L Cl<q,.
‘ YOO T v | =
By Lemma we have:

¢
/ (14 s)~RartntDpker (1 4 g) ds
1

T

1
S Tk1r+nlnk2r () _ (1 4 C)—(k1r+71)lnk2r (1 + €)7
T

making ¢ — oo and replacing in equation the result follows.

Now, consider k17 +n = 0 and kor < —1, therefore:

/C L In*" (1+s)d
;,11+sn s)as

-

1 1 1
— l 1+kaor 1 o l 1+kor [ =
1—|—k2rn (1+0) 1—|—k‘2rn T)’

since 1 + kor < 0, making ¢ — oo and replacing in equation we
conclude the proof of inequality (B.3)) for r € [1,00).

Estimates in B, for r = oo: Let k&1 > 0 and k> € R or k; =0 and
ko < 0. Define

0, if 2 =0,

w(x) =
() k1 ink2 (%), fo<z <.

Then, considering our restrictions in 7, is not difficult to see that
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w is increasing on (0,7) and that w is continuous on [0, 7]. Therefore,

— that is. ||| - 117 kz(i H — k1pk2 (1) and
o w(r) = w(r), thatis, || L) R O

inequality (B.3) is proved.

Estimates in B.,.,To for 1 < r < oo: Similarly to equation , we

have:
i (757)
|1 (3, 1)
1_1q %
=cCpr / (1 + s)~RartntDppkar (1 4 g)ds |.
51
Consider the case k1 + 2 < 0. Setting a := —(kir +n+1) > —1,
7 := kor and using second inequality of Lemma, witha == - —1 >
2|kg|r 2|~y|

e Firdn — 1 = eTfa — ] :

1
-t ()]
L7 (Br.ry)

11
= Cpr (/ (1 + s)~FartntDpker (1 4 o) ds)

1
E

< TRtk <1> :
T

Now, consider k; + 2 = 0 and k2 > —%. Therefore,

[ v (75)
AL
1_q 1 %
- (/11 1+slnk2r (1+5s) dS)

70

1
1 1 1 1 r
=cChr l 1+kor - _ l 1+kor
Cn, <1+k2Tn T 1+/€2?"n T0

< lprthe (1> . (B.7)
T

i
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Consider k1 + 7 = 0 and ky = —%. In this case,

o () (L )
(o)) (2)))
e (n(2)

To prove inequality , we use the follow inequality In“(z) —
In“(y) < In¥ (%) forallx >y >1and 0 < w < 1. To check this
inequality fix y > 1 and define h(z) := (In(z)—In(y))* —In® (x)+In*(y),
straightforward calculations shows that h(y) = 0 and A'(z) > 0 for
x > y and therefore the inequality is proved. Using this inequality

with * = %, y = ?10 and w = 1+ kor < 1 and proceeding as first

equality used to prove inequality (B.7) we have:

o ¢
N

l_l s
g 1
= Cn,nr </ 1 lnkQT (1 + 8) d8>
1 (B Lo s
1
1 1 "
= Cnrks (lnl+k2r () — Intther <>>
T T0

5 ln%-ﬁ-kz (E) .
T

Estimates in BT,.,.O for r = o00: For 0 < 7 < x < 79, consider

w(z) := z*nk2 (1) Since w is non-increasing on (7,7), then

sup  w(x) = w(r).
o<r<z<Tto

That is,

|- [Frink (W) HLW(BT,TO)

= 7hipk2 (%)



111

Lemma B.1.4 Let r € [1,00], k1 and ko real numbers, c¢,w > 0 and
1
R< (%) “. Then, there exists M > 0 such that, for all T > 1,

1 *k1+%l ko = . 1
H| Rt e () < { TStk (5p) if re o),
1 ey | 7= inke () if =00,
(B.8)
where Q(7) = Q(r, M) :={¢ € Br : [¢|“T = M}.
Proof. Initially, consider r € [1,00). We have:
ki ,—ct||¥ 7, k2 1
|- "te In™ ( — (B.9)
1 e

w 1
_ / |£‘k:1refcr-r\§\ lnkzr () df
Q) €l
R “ 1
— / . ) / pklre—cm-p lnkgr () dSp dp
Murw 85(0,p) P
(B “ 1 ’
_ Co(’n); / ) . pk1r+nflefcr7'p lnrk}g <> d,O )
Mwr™ W p

1
Let s = 7p“. Therefore p = (£)“ and dp = —=p'~“ds. After

TW

=

straightforward calculations, we conclude that

_ 1 _kirdn kyrinm
prrtn ldp:;T s w s,

Applying this change of variable in equation (B.9), we have:
H| Rremerl ¥ ke <1>
1@

1N® eom)\T _men (R on (T
= - —— ] 7T / s w e pheT <7) ds | .
w w M s

In the next step we shall estimate the integral in the right side

of equation (B.10). The idea is apply Lemma let f(s) :=

sPe~95nd (g) with p := ’“CJJ —1, q == cr and j := kor. In this

(B.10)
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case,

’ 1 2p 2j

1
Since R < (1) ¢, in the limits of integration of integral (B.10) we
have s < 1 =7. Thatis, 0 <y =L Furthermore, set M > %H) =

2( ; +|k2|>

kit %
e

. Since in the integral (B.10) holds s > M, we have:

2 %
3qs  3gsin (%)

< 2(|p|+|J|)} 1
S

3q 3

('.O

Applying last inequality in equation (B.11]) and using Lemma
with I := [M,7R*], we conclude:

1
TR B
kirdn 4 _ T
/ Pl 16 crslnkgr (7> ds
M S

< 3% (F(M)(M))
_ <2) ML oM ks (&) (B.12)

Using inequality (B.12) in equation (B.10]), we have:

e )
VAP

1
- (M> MU Mt ke (D) (B3)

r

By inequality (B.13) the result is proved for r € [1, 00).
For (ki,ks) = (0,0) the inequality (B.8) for » = oo is trivial. If
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(klv k2) 7& (Oa 0))

kit 1
w I

Flkal) 2 (14 k)

)

lim 2<

r—00 C C

and therefore there exists a uniform lower bound M*(ki, ke, w) such

that:
Fit? 1
w I

2( +|k2|)
M>M* >

c
for all r big enough. Now, the restriction in M doesn’t depend on r
and we have the limit:

1
ko) \ T . kit
lim <Cl(”’°"’ 2)> Mo %o M — pde—eM, (B.14)

r—00 r

Since 7 > 1, follows 7727 < 1 for all r € [1,00). Using the

last inequality and the limit (B.14)) in inequality (B.13)), there exist
C(M,ky,w,c) and M > M*(kq, k2, w) such that

[ ()

for all r big enough. Since this estimate is uniform on r, the inequality

(B.15) holds for r = oc.

< O3 nk (%) ., (B.15)
L7 (@)

|

Lemma B.1.5 Let r € [1,00], k1 and ko real numbers, ¢ > 0 and
1

0 < 0 < 0. Then, there exist 0 < R < (%)2"*29, M > N >0 and

ty > to such that, for all t >t hold:

Case I: Let k1 + 7 >0 or ki + 2 =0 and ka2 < —%. Therefore:

H| el BT 00 ke <|1|>

k2
o) Tt (S2), if k42 >0,
Inkett (%) i kA =0 and ky < —1,

L™(Br)
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Case II: Let k1 + - <0 or ki1 + = =0 and kz > —%. Therefore, for
0 #0:
H| [ gmel 272000 () (B.16)
L1 By
()" ke (), i k2 <0,
S Itk (20 if ki+2=0 and ky > —1,

In> (l” (%))7 if ki +2=0 and ky = —1,

where B(t) := {¢€ € Br : |{/*p(t) > N}. If, in addition, r < oo,
ki + =0, —% < ko <0 and assuming Hypothesis B we have:

H| . |kle—C|'\2°729¢(t)lnkz <1>
1 e ()

M2750 ()~ 2779 p(t) 20

o— o— 260

< Ipithe ( ¢ . 2 ) . (B.17)
2

m"‘

Proof.
Case I: Let M > N as in Lemma Therefore in the case I we
set:

Br = {¢€Bgr:[¢77% () < MYU{¢ € Br: ([ *¢(t) > M}
= Q1(t) UQa(1). (B.18)
Estimates in Q1(t): Let 7:= (%)ﬁ7 0 <e kzl‘ﬁrz%l if ki +2 >0

and 79 < 1if k; + 2 = 0. In order to ensure the condition 7 € (0, 7o)
we need t > t5 > ¢! (_’_2071\/{29)
Assuming this restriction in t3, by applying Lemma that is,
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using inequality (B.3) , we have:

e (1)
< (3)

kq+7
o) =ik (4, if k142 >0,
Itk (40), i by + 2 =0 and ks < — 1.

L™(Q1(t))

(B.19)
L7(B.)

FEstimates in Q2(t): We consider 7 = ¢(t). Since ty is such that
o(t) > 1 for all t > tg (see Remark [2.2.1), making the restriction
1

ty > to, let w = 20 — 20 and since R < (1), applying Lemma

with Q(1) :=={¢ € Bg : [¢|> =21 > M}, follows:

H| . |k16—0|'\2”729¢(t)lnk2 <1>
RV ICRD)

o— 1
o B ()
L™(Q(7))

< g(t)” T In2 (ﬂ?) . (B.20)

k42
In the case k1 +2 = 0 and ky < —1 we have ¢(t) 2727 In*2 (%) =

itz (42) < v the (45) for ¢ > t5 > ¢} (eM). Considering the
intersection of the restrictions on t§ assumed in the estimates in Q(t)

and Q2(t), and by inequalities (B.19) and (B.20) the result follows for

the case L.

2|ka|
Case II: Let 79 := Rgp with Rg < min {e’”*:,R} if k1 + 2 <0,
Ry < min{l,R} if k1 + 2 = 0 and ky > —I, Ry < min{Z, R} if

1
ki+ 2 =0and ko = —%. Setting 7 := (%) * and applying Lemma
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B.1.3| with inequality |D we have for t >t > o1 (T%)
0

e (1)

L™(B(t)NBry,)
S ' R <1> (B.21)
1 5, 4)
k
p(t)" 2o o Ink2 (%) if ky+ 7 <0,
S Inrthe () if k1+;—0and ko > —1,
In* (zn(“t))), if ky+2 =0 and ky = —1

On the other hand,
s (1

Using inequalities (B.21) and (B.22) inequality (B.16) is proved.
To prove inequality (B.17) we consider Q; and Q. as in equality
(B18) and write: B(t) (B(t) N Q1) U (B(t) N Qa(t)).

< e eRTTH o)
L™ (B(t)n{¢€€BRr:|{|>Ro)

(B.22)

Estimates in B(t) N Q:1(t) = {¢ € Br : |{® () > N and

1 1
_ 260 20—20
E[20-206(t) < M} : Let 7 = (%) and 7y = (%) <1
for ¢t > t§ > np_l(M). Therefore in the notation of Lemma we

have B(t) N Q1(t) = B ., almost everywhere, and by 1nequa11ty
follows for ¢ > t§:

(o

o ()
1 (3, 1)
1 1 1
< nb+a <M2”—29¢( 0 ) |
~ Nz

(B.23)

L(B(6)NQ1(¢))

g~
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Estimates in B(t) N Q2(t): Since B(t) N Q2(t) C Q2(t) and ki + % =0,
proceeding in a similar way of estimates in Q3(¢) in the case I, we have
for t > t5 > to:

H JEr el BT 00) 1k <1>
1 Bwnas o)

< H| [l el 127260 ks (1)
VA FRERO)

< Inke (41’]\(;)) : (B.24)

Finally, since ko < 0 < % + ko follows that

e () (wab(t)_?“'?ew(t);") ,

because by Hypothesis B we have ¢(t) 2520 < cp(t)ﬁ. Therefore, con-
sidering the intersection of the restrictions on ¢j assumed in the esti-
mates in B(t)NQ1(t) and B(t) N Q2(t), and by inequalities (B.23) and

(B.24) inequality (B.17)) follows.
O

Lemma B.1.6 Let 0 < 6 < o and assume Hypothesis B. For g, p and
to given by Corollary[A.1.1] and w € R, the following estimate holds for
t 2 t() N

) B w+20720(ﬁ7§)>l

max FOE o(t) ’

w e () e § S el

Proof. Since g(t) = (14 t)*InY(14+t) and p(t) = (1 +¢)'T*n7 (1 +¢),
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we have g(t) = @(t) 75 InT#= (1 + t). Therefore,

T e e (=)

— SD(t)—‘s(p(t)(20914:)&) n~Tis (‘i@) In~ 7% (1+1). (B.25)

By Hypothesis B, 20 < o(1 + «) with 7 € R or 20 = (1 + «) with
~ > 0. Thus, for all ¢ > tg:

() t
o(t) " e (""J<V)> nTre (14+1) < 1.

Applying the last inequality in equation (B.25)) the result follows.
O

Lemma B.1.7 Let 0 < 6 < w and assume Hypothesis B. For g, o, ¢
and to given by Corollary[A.1.1], the following estimate holds for t > ty:

B = S IANET e M C )
max{ 000 073} 5 ol |
Proof. Initially, let o € (—1,1). Since g(¢t) = (1 4+ t)*In"(1 + ¢),
o(t) = (1 + )" (1 4 t) and ¢(t) = (1 +t)'=*In~"7(1 + t), we have
g(t) = o(t) ™5 InT4= (1+1) and (1) = o(t) T« In~ T¥a (1+¢). Therefore,

wto—20 w (w=0)(c(1+a)—20)

¢(t>‘(W) = sg(t)_ﬁgo(t) (T+a)(c—6)0 ln(lféf(;i)e) (1 + t)_

g(t)?
(B.26)

By Hypothesis B, o(14+«) > 260 or o(1+ «) = 20 with v > 0. Since
w > 6, in both cases holds:

(w—=0)(o(1+a)—26) 2~(w—0)

Sp(t) (I+a)(c—0)0 ln<1+(5><a—6> (1 +t) 2 1,

for all ¢ > tg. By the last inequality and by equality (B.26) the result
follows.
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Finally, let o = 1. In this case, we have:

w+o—26 w w+o—26

o) (55 = ()~ Fop(t) T I (1 + )t~ (),
(B.27)

g(t)?

Remembering the definition of ¢, we know that for & = 1, ¢ has a
logarithmic behaviour. Therefore, since w > 6 and due the fact that ¢

has a polynomial-logarithmic behaviour, for ¢t > ¢y follows:

w+4o—26

() T I (1 + (1) (FE) 2 1.

Applying the inequality above in equation (B.27)), the result follows.
(|

Lemma B.1.8 Let w > 0, and assume Hypothesis B. For g, p, ¢ and
to given by Corollary[A-1]], the following estimate holds for t > to:

w+2(r—29( 2ta

max 1¢<t>_<"_sl+a)> T (ﬁ?) ()

g(t)?
)77, if w< £
5 <w+20729(f13)>
o e ) BN .
ﬁ(b(t) In~ T (Ho(t), if w> li—ea.

Proof. Initially, consider v € (—1,1). In this case, we have g(t) =
o(t)TFa inT= (1 +t) and ¢(t) = w(t)%lnfl% (14 t). Therefore,

L () e (57)

g(t)?
— o(t)" % (t) " TFmE= ((

29*0‘(1«}»@)) 20
260

wto-BE)w(t),  (B.28)

where
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For a = 1, we have g(t) = (14 )in7(1 +t) = @(t)2In3 (1 + t),
therefore:

o) () — o736 T 0, (B29)

w(t) = o)~ T ) IV (1 + )in (M) :
M
Remember that, for a« = 1, ¢(t) = In'~7(1 +¢) with v < 1 and
o(t) = In(ln(1 + t)) when v = 1. Thus, for « € (—1,1] w has a
logarithmic behaviour.

L 2 20—o(1+a) 20
Define ¢q := —TFa (=0 (( 0 )w + 0 — 175 )- Note that
q= “’TTQ when a = 1. Taking in account equations 1) and 1)
we conclude that:

w+20728(%

_(ere(e)
9(1)2 B(t) ( o’ >ln_1% (%\?) = (1)~ 7 p(t)Tw(t).

Therefore,

w+20—29(2+70‘

_(erree(ie)
max gé)ng(t) ( o’ >ln71% (QZ}\(;)),QO(IS)

= max {(p(t)fggo(t)qw(t), <p(t)7% } . (B.30)

€

That is, to prove the result is sufficient analyze ¢(t)?w(t). Furthermore,
for a € (—1,1), we have:

In(l+t 1
lim n(Jr):

tﬂool?”A(M) 1l -«

M

and therefore there exist 0 < C7 < Cs such that, for all t > ¢q:

Cyln (ﬁ) <In(1+1t) < Cyln (%) . (B.31)
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Case w > 117001 and 20 < o(1 + a):

In this case, ¢ > 0 therefore ¢(t)%w(t) 2 1 for t > tg. By equation

(B.30) the result follows.

Casew>a'=1i_—9a, 20 = o(1+4+ «) and v > 0:

By Hypothesis B, in this case o € (—1,1). By equivalence (B.31))
we have in (2 6(t)) < In(1+t). Therefore for ¢ > t:

20
2y [ Y"1ta

w(t) :zn”“< o >(1+t)znf+”a(1+t)ln—f+”a (ﬁ) > 1.

By equation (B.30]) the result follows.

Case w = li_—ea and 20 < o(1 4+ o):

Now ¢ = 0 and therefore we must to study the behaviour of w. First,
consider the case o € (—1,1). Since w = % and using equivalence
(B:31), follows that w(t) < 1 for ¢ > to. Therefore, max{w(t),1} <1
and by equation the result follows.

Consider @ = 1 and v < 1. Now, ¢(t) = In'77(1 + ) and w(t) =
=21+ t)in™" (359(t)). In addition, for 0 < v < 1 is easy to see
that w(t) < 1 for all t > to. For v < 0 just use that ;¢(t) < (1+1)
and therefore w(t) < In"2(1 +¢) < 1. In the case of @« = 1 and

v =1, we have ¢(t) = In(In(1+t)) and w(t) = In2(In(1+t))In" (1 +
t)in~! (% . It’s very easy to see that w(t) < 1. In all cases, by
equation (B.30) the result follows.

Case w < lﬁ_—ea and 20 < o(1 4+ o):

In this case, ¢ < 0 therefore ¢(¢)%w(t) < 1 for t > to. By equation

(B.30) the result follows.
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Casewga'zli—ea, 20 = o(14+ «) and v > 0:

In this case ¢ = 0 and we have to analyze max{w(t),1}. By Hy-
pothesis B, we have « € (—1,1). Furthermore, by equivalence (B.31)),

14+

follows: (W,%
w(t) Slin

Since w < 13_—90, follows that w(t) < 1. Therefore by equation |D

the result follows.
O

Lemma B.1.9 Let us assume Hypothesis B. For g, ¢ and ty given by
Corollary[A11), for t > to, holds:

max{go(t)—liaznlla (“’](V”) ,g(lt)w(t)—("ee)}

S oty mmnris (A7),

Proof. We have the following equalities:

o(t) T nTie <‘P]$)> = (14t)"Yn~ = (14t)InT= (ﬁ?) (B.32)

ﬁap(t/)*(‘%g) = (1407 (1 +1)

If 20 < o(1 + «), for t >ty we have:

cr(1+c;)729)

In=% (1+t). (B.33)

oc(14a)—260
1+t _( G )
(1+1) N

By using the inequality above and equations (B.32) and (B.33|), the
result follows for 20 < o(1 + «). Finally, let 20 = 0(1 + o) and v > 0.

. ) " . .
Since § = 12, rewriting equation (B.33), we have:

lrf%(l +1) < ln_lﬁ(l + t)lnu%a <<'0(t)> )

1 .
—— o) () = (1 + )" Hin~T¥e (1 + 1), (B.34)
9(t)
Since lnf%(l +1) < In"Ta (1 4+ t)InTia (%) for v > 0, the result
follows.
U
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Lemma B.1.10 Consider the Hypothesis B, g, ¢, ¢ and ty given by
Corollary |A.1.1. Consider w := 26 <2+") — 20, p,g € [1,2] and the
following function, defined for t > tq:

i~ TR @D (S0) f > G (4G pg) > 0,
Vs (1” (“’z(vt))) if v="22(p+q-pg) >0,
y(t) = { it A (th)—%lw(t 5
if 0<y < (p4g—pg),
In~ Tt (p+d—pd) (%) if v <0.

Then, ﬁu(t) S o)™ forallt > t.

Proof. We have 2o = 2 (0(1 4+ a) — 26) + %(1 + o), therefore

o = (07 HOCE o) =03 (1 4 ),
g

<€

Then, v (t) = (1 + 1)~ 5 (0 (14e)=20) 1, (W=20)F (1 1 ) () p(t) ™
If 260 < 0(1 4 «), by the limit:
lim (1 + ¢)~ 5@+ =20)p, (0=20)3 (1 4 4y, (¢) = 0,
t—o0
there exists ¢ > 0 such that (1+¢)~7(C0+a)=20)1,(@=20)5 (1 L )y (¢) < ¢
for t > tg and therefore the lemma follows.

Now, considering the case 20 = o(1 + ), by Hypothesis B we have
~v > 0 and therefore:

v(t) = In~T5s (1+ v (t)p(t) 7. (B.35)
In this case, holds the limit:

lim In~ 7% (1 + t)u(t) = 0. (B.36)

t—o00

In fact, if v > %(p + ¢ — pg) > 0, this is true because v(t) =

2y 42 G—pd
I T (R (%) and —£2L + 2(p+ ¢ — pg) < 0. For y =
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(Ha) (p + ¢ — pg) the limit li holds because v(t) has a log o log
1ncreas1ng type, in which always lose for a logarithmic rate. Finally, if
0 <7< L (p+ g —pg), since ¢(t) "7 T (1) = In77 23 (1 +1),
again v(t) has a log o log increasing type, in which imply that limit
holds.
Using equation , in particular ln_l%(l + t)v(t) is bounded,
and applying in equation the result follows.
O
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Appendix C

Consider the following functions: f_; : (—oo,—1) = (—1,0) and
fo : (=1,00) = (=1,00), both defined by the rule: x ~ xe”. These
functions are bijective and therefore admits an inverse. Therefore, we
can define W_; := (f_1)”" and Wy := (fo) ', both known as W-
Lambert’s function. Actually, in a more general sense, are the two real-
valued branches of W-Lambert’s function. The W-Lambert’s function
plays a fundamental role in this thesis: it is used for explicit calculate ¢,
and ¥(&). Since the explicit representation of ¢ and t¢ is not sufficient
by itself, in the following are some useful results to prove Propositions

and The proof of Lemma can be found in [3], and of
Lemma in [12].

Lemma C.1.1 For u > 0, we have:
2
1+ vV2u+ gu < -W_4 (—e_(“+1)) <1+4++V2u+u.

Corollary C.1.1 For 0 <wv < e%, we have:

%Zn (i) < —W_i(—v) < (2 + x/i) In (i) .
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Proof. Define u := —(1 + In(v)), therefore e~(“*1) = v, Notice that
u > 1 and by applying Lemma [C.1.1}

2 (1= In()) <1+ VEu+ Su < ~Woy(~0)

3
< (2 + \/5) (—1—lin()) < (2 + \/5) In (i) .

Since 2 (=1 — In(v)) > 3in (1) for 0 < v < Z, we conclude the result.

O

Lemma C.1.2 For every u > e, holds:

In(u) —In(ln(u)) < Wy(u) < lIn(u) — %ln(ln(u))

We immediately conclude that W, behaves like the function In:

Corollary C.1.2 For every u > e, holds:

%ln(u) < Wo(u) < In(u).

Lemma C.1.3 The following properties hold:

(1) W_y(zinz) = In(x), for z € (0,1);

(2) Wo(alnz) = In(z), for x> 1;

(3) W_i(z) = In(—z) — In(—W_1(2)), forz € (—21,0);
(4) Wo(x) = In(x) — In(Wo(zx)), for x> 0.

Proof. Let W € {W_1,Wy}. Since W is the inverse function of y — ye?,
given x such that zin(z) is in the domain of W, define y := In(x).
Therefore: W (zin(z)) = W(ye¥) = y = In(z). Taking care with the
domain of W, we conclude (1) and (2).

On the other hand, let = € (—é,O) ifW=W_jand z>0if W =
Wo. We have z = W (W(x)) = " "W (). That is, e"'(*) = 5o
and therefore W (z) = In(|z|) — In(|W (x)]).

]
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Lemma C.1.4 Let yu > 0 and B € R. Consider h(t) = t*InP(t)
defined for t > 1 and let A > 0 such that:

)T we<o
1 if B=0.
Then, 7 := h=Y()\) is well defined and
#5<0, 7= (~8)" 3t [-wiy (2aF)] 7,
ifB=0,7=A",
if >0, 7= (g)é AE W, (gA%) .
Proof. The proof for § = 0 is trivial. Now, consider 5 # 0,

inf(r) =X & Thin (T%> = %)\%. (C.1)

8
For 3 < 0, since h(t) = t"In”(t) is increasing for ¢ > () > 1, we
have:

)\>(|u;|>mh<(i>ﬂ> & Th1(>\)>(i>ﬁ & r%<£.

Using (1) and (3) of Lemma and equation (C.1)), we have:
£ Tji n Tji 8 Y
o (e (h) i ()
8 _8
JTANZENEY [Tt m
—= ] AR | =W_q | SAF
( 6) [ 1(6 )]

For 3>0,A>0=h(1) & 76 >1> 1. Using properties (2) and
(4) of Lemma and equation (C.1]), we have:

T = egWO(%Aﬁ) = (u>ﬁ)\}*Wo (Iu)\é)_ﬁ .

B 8

=
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