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Abstract

The Universe, its origin and fate are the single most relevant sub-
jects that has been challenging human understanding throughout the
ages. From an infinitely tall pile of turtles, passing through the Newto-
nian action at a distance conception, up to the geometrization program
launched by Einstein and still unfinished in present times, many were
the proposed answers for such deep issues, one more speculative than
the other. Fortunately, with the advances of observational techniques
and the robust framework of General Relativity, we are able to navi-
gate more safely towards the desired solutions. In the present work we
adopt a more conservative approach: we shall review Gravitation the-
ory under the lens of Symmetry Groups presented in the literature and
which types of classifications might be conceived from the different de-
grees of symmetry the Universe manifests through observational data,
studying which characteristics we expect a given cosmological model
to exhibit. More specifically, we begin by first analyzing spacetimes
that admit the maximal number of symmetries; then we flexibilize to
those retaining only spatial homogeneity, where the Bianchi classifica-
tion naturally arises, coming up with the minimum allowed symmetries
for the curvature tensor, at the point where we shall be discussing the
Petrov classification related to the respective fundamental invariants.
After thoroughly studying these fundamental classifications, we will
have acquired the indispensible pre-requisites to pursue the more am-
bitious quest for a theory of Quantum Gravity.
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Resumo

O Universo, sua origem e destino são uns dos mais relevantes tópicos
que continuam desafiando a compreensão humana ao longo dos tem-
pos. Desde uma pilha infinita de tartarugas, passando pela concepção
da ação à distância Newtoniana, até o programa de geometrização ini-
ciado por Einstein e ainda inacabado no presente, muitas foram as
respostas propostas para estas questões profundas, uma mais espec-
ulativa que a outra. Felizmente, com o avanço de técnicas observa-
cionais avançadas e com o rebusto arcabouço da teoria da Relatividade
Geral, estamos aptos a navegar mais seguramente rumo às soluções tão
almejadas. Neste trabalho adotamos uma postura mais conservadora:
procederemos com uma revisão da teoria da Gravitação sob o prisma
dos Grupos de Simetria apresentados na literatura e quais tipos de
classificação podem ser concebidos segundo diferentes graus de sime-
tria que o Universo manifesta nos dados observacionais, estudando
quais caracterı́sticas esperamos que qualquer modelo cosmológico deve
exibir. Mais especificamente, começaremos com a análise de espaços-
tempo que admitem o número máximo de simetrias; depois flexibi-
lizaremos para aqueles que possuem apenas homogeneidade no setor
espacial, onde a classificação de Bianchi emerge naturalmente, seguindo
com apenas as simetrias permitidas pelo tensor de curvatura, no mo-
mento em que discutiremos a classificação de Petrov relacionado aos
respectivos invariantes fundamentais. Depois de estudarmos a fundo



essas classificações fundamentais, teremos adquirido os pré-requisitos
indispensáveis para desbravar a ambiciosa busca pela teoria da Gravitação
Quântica.
Palavras-chave: Gravitação Linearizada; Álgebras de Lie; Equações
de Einstein; Tetradas; Espaços de Bianchi; Classificação de Petrov;
Teoria Clássica de Campos
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Introduction

THE construction of knowledge and our better understanding of the
physical phenomena that manifests in Nature are one of the most

valuable assets of the human kind. Even back in the day when the
acquired knowledge was passed down to generations by the mythos –
the word of mouth –, explanations of the vastly unknown Nature arose.
Still it was not until the Greeks that deeper inquires about Nature and
her inner workings emerge. This “uneasiness” led to many questions
such as: Why do bodies move? Why do they stay put? What make
them move? Why do things “prefer” other things? Where are we living
in? What are those lights in the night sky? This pursuit resulted in
the very first rudimentary physical models, including models of the
Universe, in which the Earth resided in the center and everything else
revolved around it.

Roughly two millennia later, Nicolaus Copernicus, upset with
the strange aparent orbit of Mars and the increasing demand for the
addition of epicycles in order to correct the orbits of “errant stars”, or
planets, and to explain their retrograde motions in the celestial dome,
proposed a model of the Universe (namely, of our Solar system) where
the Sun was at the center instead and Isaac Newton formulated the
first mathematical model for gravitation via an inverse square action
at a distance law, where the first assertion of the Cosmological prin-
ciple appeared. The enormous success of Newtonian mechanics and
gravitation consolidated most of the physics for the next centuries, but
as technology improved, more it seemed that the Newtonian physics
lacked something.

Such discomfort drove the stark reformation of our very way of
thinking in the beginning of the 20th century. Challenging both the
fundamental premises which preceded all the contemporary theories
and our general understanding of them, the birth of disciplines such
as Quantum Mechanics and the physics of Relativity marked this new
era. Albert Einstein was one of the iconic figures whose concern about
the description of electromagnetic phenomena by families of inertial
observers led him to the reformulation of Galilean relativity, giving
rise to the Special Theory of Relativity11 and later on, going a step
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further towards gravitational effects, generalized his findings to what
we call General Theory of Relativity.12

To be more precise, Einstein was bothered by the discrepancies
that would be found by different inertial observers in the outcome of a
given eletromagnetic experimental apparatus, one at rest with it and the
other moving with a speed v relative to it, when the traditional Galilean
change of reference frame was performed to dinamical physical quan-
tities. In order to address that issue, he postulates two fundamental
premises that were very reasonable and were already sustained by ex-
perimental data:

1. Constancy of c: The speed of light c has the same numerical
value in all inertial frames of reference;

2. Principle of relativity: The laws of Physics must be the same
on all inertial frames of reference.

It was then possible to construct a new set of coordinate trans-
formations from the ground up in such a way that any theory build
with those two postulates in mind were automatically covariant, that
is, valid in every inertial frame of reference. However, that comes with
a price: the notion of absolute simultaneity is now broken, in such a
way that it depends on which frame you are in. That prompted a con-
struction of a new 4-dimensional space where now the time is treated
as a coordinate, so that the transformation of coordinates is now done
by the Lorentz transformations. That space was dubbed spacetime and
each point P � (ct , x) in it represents an event. Furthermore, this
spacetime structure naturally bears a causal structure of events.

Now, since the notion of absolute frames of reference is com-
pletely lost, it is necessary to construct invariant quantities that are
independent of an arbitrary choice of frame of reference. One of such
quantities is the so called interval ∆s2, which is a quadratic form with
a Lorentz signature and is characterized by the quadratic differences of
the space and time coordinates
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∆s2
� (c∆t)2 − ∆x2 .

Nevertheless, that still was not enough; the second postulate
above was too restrictive and incompatible while dealing with accel-
erated frames of reference, such as a falling frame on a gravitational
field. To address that, Einstein revisited the principle of relativity and
appended a few more reasonable others

1. Constancy of c: The speed of light c has the same numerical
value in all frames of reference;

2. Principle of General Relativity: The laws of Physics must be
the same on all frames of reference;

3. Principle of General Covariance: The mathematical equations
and their numerical constants must be invariant upon a change
of reference frame;

4. Equivalence Principle: All bodies are equally accelerated in
the presence of gravitational forces, following geodesic world-
lines, regardless of their nature;

5. Mach’s Principle: The spacetime structure is influenced by mat-
ter.

Just like what happened with the Special Theory of Relativity –
as we discussed above –, these postulates drastically changed how we
view the gravitational theory, as we will discuss later. Now, spacetime
itself was geometrized and gravitational forces were just a consequence
of it in the light of the fourth postulate, so there is a natural need to
introduce a Riemannian metric space to properly describe gravitational
phenomena.

This new formulation of gravity trigged a whole new era for
Cosmology where Newton’s cosmological principle broadens up to ac-
comodate the five postulates of General Relativity and reads as
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Cosmological Principle: The laws of Physics must be the same
everywhere in the Universe.

Many were the proposed relativistic cosmological models, each
and every one still challenged by the ever growing number of more
precise data and sophisticated and modern observational techniques,
two of such information indispensable for any model: the Universe is
expanding, as pointed out by the receding motion of galaxies discov-
ered by Hubble and Humason26 and the discovery and measurement
of the Cosmic Microwave Background46 (CMB), both making up the
strongest evidences supporting the big-bang.

Figure 1: Cosmic Microwave Background (From NASA3).

For instance, the Steady State model proposed by Bondi and
Gold6 is a theory where the Universe is stationary but still expand-
ing according to Hubble’s law. The authors propose what they call
the Perfect Cosmological Principle, extending the validity of the usual
Cosmological Principle to all epochs. However, their theory was fun-
damentally incompatible with the CMB discovery.

The most promising cosmological model to survive the trials
of Nature is that of Friedmann, Roberton, Lemaı̂tre and Walker in-
depently found between the 1920s and 1930s, together with the In-
flationary scenario proposed by Guth23, 34, 55 to address several perti-
nent issues of it, which constitutes the standard model for the Universe
nowadays, though it still under scrutiny. Another contesting model that
is still revisited is the Brans and Dicke Scalar Theory of Gravitation.7

In this one the authors attempt to fully integrate the Mach’s Principle
into the theory by the introduction of a scalar field in the place of the
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inverse of Newton’s universal gravitational constant, φ ∝ G−1.

In parallel with that, relativistic Field Theory and Quantum Me-
chanics got traction and, success after success, the Quantum Field The-
ory was developed, considered nowadays the most fundamental theory
where all others emerge at low-energy. Constructed upon the math-
ematical framework of Symmetry Groups and the Gauge principle, it
was found that three of the four fundamental interactions of Nature can
be accomodated in the so-called Standard Model, except for gravity.
This along with the apparent convergence of the coupling constants of
all fields at higher energies,9 including gravity, points out to a Theory
of Everything. At this point, the quest for Quantum Gravity begins.

Figure 2: The coupling constants of the fundamental interactions con-
verge at higher energies (Extracted from Boer9).

Started by Weyl in the late 1920s, the quantum gravity program
quickly became one of the main goals of modern physics but due to the
non-linearity of the Einstein equations and to mathematical inconsis-
tences in the quantization program of field theories, at least from what
we know thus far, of interacting particles of higher spins, such as the
spin 2 Graviton, via the gauge principle!

One promising approach to solve this conundrum seems to be
the description of gravitational phenomena in a weak-field approxima-
tion, where by working directly with Symmetry Groups and the asso-
ciated spacetime symmetries, it is possible to explore Gravitation in
a linear fashion, which, in our view, seems to be the most safe path
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towards quantization.

In the present work we adopt precisely this approach. By study-
ing the construction of the Classical Theory of Gravitation via Symme-
try Groups and by classifying all the possible algebras it comports and
their main properties, we prepare the groundwork with the indispens-
able tools to further pursue Quantum Gravity, resurrecting the most
important, and still mostly forgotten works spread over in the literature
on this subject.

Although important, this study does not focus on solutions to
Einstein equations to specific distributions of matter; our main interest
is instead the geometric aspect for models described by the three of
the most relevant degrees of symmetry in a descending order: from the
maximal amount possible to the least crucial symmetries any model
ought to have.

In the first chapter we make a comprehensive recapitulation of
the necessary tools, where we demonstrate the principal results of Dif-
ferential Geometry, introducing the notions of Killing vectors and local
inertial frames of reference defined by the N-Tuples.

Next, in chapter 2, we assume the spacetime to have the maxi-
mal number of symmetries, using the formalism of Killing vectors and
deducing its main properties. By demonstrating the subdivision theo-
rem, we show that the standard model of Cosmology follows from a
maximally symmetric 3-space, at the point where we discuss it a bit
and show some of the main results.

Moving forward to chapter 3, we consider only the homogene-
ity of the space sector of spacetime. There, in the local N-Tuple frame,
we show that the homogeneous 3-spaces defines surfaces of transitiv-
ity associated with a Lie group, reducing to one of the nine possible
classes of three parameter Lie groups, which makes up the Bianchi
classification.
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In chapter 4, we consider the inherently symmetries of the cur-
vature tensor, which has to be present in any theory of gravitation. By
studying the algebraic properties of this tensor, we can bring it down
to its principal axes related with the geometrical invariants, making up
the Petrov classification which contains three unique classes plus three
special degenerate ones.

Finaly, we present an overall discussion and close this mono-
graph point out some future perspectives of investigations.
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CHAPTER
1

Review

WE begin with a quite extensive yet comprehensible review of the
main underlying theories that permeates this work. All those

addressed subjects are vastly extense, so we will only construct the
most important results, but not in a shallow manner, and point the
reader to the already established literature if he wants to learn more
about them.



1.1 Differential Geometry

1.1 Differential Geometry

We start our description with a simple and ordinary point P in
a (N − 1)−dimensional Euclidian space Rn−1. By considering the
construction of it in the formalism of Vector algebra, endowed with
the usual inner product, we can characterize this point as a set of N −1
real parameters {x i} and N − 1 orthonormal basis vectors {ê0

i }, i �

1, . . . ,N − 1 by the position vector r by∗

r � x i ê0
i .

Figure 3: Orthonormal basis vectors on an (N − 1)-dimensional Eu-
clidian space.

Next we carry out a transformation of coordinates to another
system of coordinates by means of a diffeomorphism†, characterized
by the arbitrary set of basis vectors {e′

i
} and components

∗We are employing Einstein’s implicit sum convention throughout the entirety of
this whole work. Whenever repeated indices appears, it is undestood that there is a
sum spanning all the components of the space.
†A diffeomorphism is a bijetive differentiable map that takes one space into another

and it preserves the “smoothness” of the spaces.
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x′i � x′i(x j) , (1.1.1)

which is invertible if the Jacobian matrix

J �

[
∂x i

∂x′j

]
(1.1.2)

is not singular. That means we can express a change of coordinates as
the matrix relation composed of the differentials dx as

dX � JdX′ ↔ dX′ � J−1dX , (1.1.3)

where

dX �
©­­«

dx1

...
dxN−1

ª®®¬ , dX′ �
©­­«

dx′1
...

dx′N−1

ª®®¬
if detJ , 0.

In that spirit, we can introduce the infinitesimal vector dr �

dr(x i) that can be described by some local unitary basis {e j} posi-
tively oriented and defined by the tangent curves passing through P �

P(x). That is,

dr �
∂r
∂x i dx i

� dx i e i , (1.1.4)

where evidently

e i :�
∂r
∂x i , i � 1, . . . ,N − 1 . (1.1.5)

We call dx i the contravariant components dr (denoted by upper
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indices).

Similarly, we can decompose the vector into the dual basis {e i}
like

dr � dxi e i , (1.1.6)

where here we name dxi the covariant components of the same vector
(denoted by lower indices). We will see further ahead on (1.1.29) how
both basis vectors are related.

Figure 4: Representation of curvilinear unitary basis vectors on some
curved manifoldM. Now e i is a function of the point x onM.

Not only coordinate vectors are subjected to this type of decom-
position. In fact, we can apply the same formalism to any vector v
and decompose it into the tangent coordinate basis e i . So if v i are the
components of v in the said basis,

v � v i e i , (1.1.7)

or, for the dual basis,

v � vi e i . (1.1.8)
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The set of all tangent vectors passing through P defines the Tan-
gent space at P. Moreover, for an arbitrary set of basis vectors∗, not
necessarily mutually orthogonal, and given that the inner product is
well defined, the collection of tangent spaces of all points defines what
we call a Manifold, denoted byM(N−1, g), where N−1 is the dimen-
sion and g the inner product, as we will see next. While this definition
can be a bit more flexible regarding the inner product, it is, for all
intents and purposes, necessary to restrict that, since its fundamental
quality of measuring distances is what we are aiming for in this con-
struction. Such subclass of spaces are called Riemannian Manifolds.

Figure 5: Tangent space

Knowing how vector elements are described on a tangent frame
of reference, we are capable of constructing our first invariant quadratic
form; the line element†. This quantity is nothing more than the length
of a vector element.

ds2 :� |dr2 | � (dx i ei) · (dx j e j)
� (ei · e j)dx i dx j

� gi j dx j dx j , (1.1.9)

∗That is, arbitrary curvilinear vectors.
†This also known to be the first fundamental form on the more mathematical liter-

ature.
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where gi j is the metric tensor that represents g discussed above.

Figure 6: Some arbitrary line element onM.

We define the signature of the metric tensor as being the number
of positive and negative eigenvalues associated with gi j . Since we are
working with real and oriented basis vectors of Rn−1, the signature
(+ + . . .+) is all positive. In this case the metric receives the special
name of Riemannian metric.

The metric admits a matrix representation

gi j � (G)i j :� ei · e j (1.1.10)

which can be conceived in any coordinate system and is manifestly
symmetric from (1.1.9), where we can define its inverse by

g i j
� (G−1)i j (1.1.11)

so that

G−1G � 1 ⇐⇒ g i j g jk � δi
k ,

where δi
k is the Kroenecker delta.
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Now if we bring r into a Cartesian coordinate system and mak-
ing use of the Jacobian matrix components (1.1.2), we can promptly
verify that the metric tensor G can be written as

gi j � ei · e j

�
∂r
∂x i ·

∂r
∂x j

� (Jt)ia(J)a j

∴ G � JtJ (1.1.12)

which implies

detG � (detJ)2 �⇒ | detJ| � √g , (1.1.13)

where g :� detG.

Here we have to point out that while the above relation is indeed
correct for and only for Riemannian metrics, the same cannot be said
to metrics with no defined signature. For instance, let us consider the
3 + 1 (flat) Minkowski spacetime M4 with a Lorentz signature (+ −
−−), where “+” represents a time coordinate and the “−”ses the spatial
sector of the spacetime. By computing the metric determinant, we get
g � −1, which obviously break the validity of the left-hand side of
(1.1.13) if we consider real-valued coordinate functions. What should
we do then?

One solution would be to say everything constructed thus far
is valid, then to resolve this contradiction we have to define the time
coordinate as an imaginary number, so that when squared gives a neg-
ative number. If we opt to do that, the transformation Jacobian would
be written in matrix form as

15



1.1 Differential Geometry

J �

©­­­«
i 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

ª®®®¬ , (1.1.14)

so that G � diag(−1, 1, 1, 1) when the transformation x′0 � ict, with
t ∈ R, is performed from a pseudo-Euclidean (complex vector space,
with Euclidean metric) to M4, and everything will work out fine from
this point forward. This way of doing geometry was quite used in
the genesis of the whole discipline when the mathematical background
was not yet fully developed. The first to use the imaginary time com-
ponente were Poincaré and Weyl, in order to interpret Lorentz trans-
formations as complex rotations and show the relativistic invariance of
Maxwell electrodynamics (see Walter60)

Another approach, much more modern40 and unanimously adopted
in the present, is to redefine the inner product that yields metrics with
any signature, in particular, the Minkowski (− + ++) signature. With
that, the metric tensor has the form of

η ≡ G �

©­­­«
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

ª®®®¬ , (1.1.15)

which implies a line element∗

ds2
� −c2dt2

+ dx2 , (1.1.16)

the same used in Special Relativity and, since g � −1, we have to
adjust (1.1.13) to be always real, that is

∗In a Lorentzian metric, the line element is also called a spacetime interval, where
c is the speed of light.
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| detJ| :�
√
|g | . (1.1.17)

The above equation is useful when considering the invariant vol-
ume element

√
|g |dx4.

We remark that, as briefly discussed above, this cannot be a Rie-
mannian metric anymore, though the 3−dimensional spatial sector has
a signature (+ + +) corresponding to, in fact, a Riemannian metric.
Also, due to the square character of the line element, we can equiva-
lently use the mirrored signature (+ − −−) instead without breaking
anything, a convention commonly adopted by physicists and it will be
the one adopted in this work.

Points in this space gets the fancy name of events and are rep-
resented by the tuple (x0 , x i), with x0 � ct, and vectors that live in it
can be decomposed in a similar fashion (1.1.7) as

u � u0e0 + u i e i , i � 1, 2, 3

� uαeα , α � 0, 1, 2, 3 , (1.1.18)

where now we make the index distinction of latin letters (i jk � 1, 2, 3)
spanning through all spatial coordinates and greek letters (µνα �

0, 1, 2, 3) through all coordinates, including the “temporal” one. These
vectors get the name of 4-vectors in M4 or N-vectors in a broader
space.

Another peculiar property of those N-vectors is that their norm
is not always positive. In fact, this very property is suitable for de-
scribing the causal character of relativity. So, the N-vector u can be
classified as

17
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u �


timelike , | |u | | > 0
spacelike , | |u | | < 0
light-like , | |u | | � 0

. (1.1.19)

At the present, the construction of such inner product falls out of
the scope of this section, but we shall return to this in Section 1.2 when
we develop the tools necessary to redefine the inner product. Suffice
to say that we shall be adopting a more general spacetime Mn , which
has indefinite signature and metric gµν, with indices spanning from
µ � 0, . . . ,N − 1. In this space, eveything established so far is also
valid for greek indices.

Figure 7: Minkowski diagrams used in special relativity for the metric
of same name.

Now back to the main text.

With a defined metric tensor, we can see that the contravariant
(1.1.7) and covariant (1.1.8) components of a vector are linked by

18
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vµ � gµνvν (1.1.20)

or conversely

vµ � gµνvν . (1.1.21)

The two operations above are respectively called lowering/raising
operations and they play a fundamental role in differential geometry.

Now let us consider a coordinate transformation between two
coordinate systems xµ → x′µ(xν) that has non-singular Jacobian. We
can relate both vector basis {eµ} and {e′µ} by

e′µ �
∂r
∂x′µ

�
∂r
∂xν

∂xν

∂x′µ
�
∂xν

∂x′µ
eν , (1.1.22)

which allow us to establish the transformation rule of the metric tensor
(1.1.10)

g′µν �
∂xσ

∂x′µ
∂xρ

∂x′ν
gσρ , (1.1.23)

and the components of a vector (1.1.7)

v � vλeλ �

(
∂xλ

∂x′µ
v′µ

)
eλ

�⇒ vλ �
∂xλ

∂x′µ
v′µ . (1.1.24)

We would get exactly the same result by transforming dx into
the new coordinate frame, so by that reason we can say that contravari-
ant components transform like coordinate differentials.

Now, by using the transformation laws above, it can be readily
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shown how the covariant components transform,

vµ �
∂x′ν

∂xµ
v′ν . (1.1.25)

While the contravariant components transform as differential of
coordinates, we can get this transformation rule if we were to trans-
form a partial derivative of a test function f � f (x(x′)), so we say
that covariant compontents transform like partial derivatives of some
function of the coordinates.

Tensors of higher orders can be constructed by doing successive
tensor product operations on vectors, which expands the vector space
dimension as the product of the dimensions of each individual space.
By denoting this bilinear operation by ⊗ and grabbing two vectors u
and v from our N-dimensional space, we can define a tensor of rank
(2, 0) as

↔
T � u ⊗ v

� uµvνeµ ⊗ eν
� Tµνeµ ⊗ eν , (1.1.26)

or, if we get m vectors from our set, we define a tensor of rank (m , 0)

↔
T � u1 ⊗ . . . ⊗︸ ︷︷ ︸

m−1 times

um

� Tα1 ...αm eα1 ⊗ . . . ⊗ eαm . (1.1.27)

The rank notation employed here denotes the amount of con-
travariant and covariant components, respectively.

With that we can further generalize the transformation law for a

tensor with arbitrary rank. If
↔
T is a tensor of rank (m , n) with compo-
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nents Tα1 ...αm
β1 ...βn

, we can transform its coordinates as

↔
T � T′α1 ...αm

β1 ...βn
e′α1 ⊗ . . . ⊗ e′αm

⊗ e′β1 ⊗ . . . ⊗ e′βn

�

(
T′α1 ...αm

β1 ...βn

∂xρ1

∂x′α1
. . .

∂xρm

∂x′αm

∂x′β1

∂xσ1
. . .

∂x′βn

∂xσn

)
eρ1⊗

⊗ . . . ⊗ eρn ⊗ eσ1 ⊗ . . . ⊗ eσm

∴ Tρ1 ...ρm
σ1 ...σn � T′α1 ...αm

β1 ...βn

∂xρ1

∂x′α1
. . .

∂xρm

∂x′αm

∂x′β1

∂xσ1
. . .

∂x′βn

∂xσn
,

(1.1.28)

where here we made use of the dual basis {eµ} introduced in (1.1.8)
and defined by the identity

eν · eµ � gµκeν · eκ � gµκgνκ � δ
µ
ν . (1.1.29)

A (m , n) tensor is said to be contracted if it is written as a lin-
ear combination whose coefficients correspond to a pair of repeated
indices, covariant and contravariant, respectively, in its original com-
ponents, returning a (m − 1, n − 1) tensor as a result. For example,

Tα1 ...αm−1
β1 ...βn−1

:� Tα1 ...αm−1λ
β1 ...βn−1λ

Furthermore, the scalar product of two vectors u and v

u · v � uµvν(eµ · eν) � gµνuµvν � uµvµ

is invariant under coordinate transformations. Indeed,

u′µv′µ �

(
∂x′µ

∂xα
uα

) (
∂xβ

∂x′µ
vβ

)
� uαvβδ

β
α � uαvα . (1.1.30)
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So if we can construct good scalar quantities while developing
physical theories, it is guaranteed that those will be exactly the same if
seen from any frame of reference. The relevance of this will be evident
when we start dealing with contracted invariants later on.

Following the logical sequence, we are now apt to construct
derivative operations acting on objects in a curvilinear space. For that
sake, we take a vector (1.1.7) as a funcion of the x-coordinates and
compute a derivative with respect to xk . This operation takes a vector
(rank 1 tensor) and returns a tensor of rank 2,

u ,σ ≡
∂u
∂xσ

�
∂
∂xσ
(uµeµ) �

∂uµ

∂xσ
eµ + uµ

∂eµ
∂xσ

�

(
∂uµ

∂xσ
+ Γ

µ
σρuρ

)
eµ , (1.1.31)

where the Christoffel symbols of the second kind∗are defined by the

expansion of uµ
∂eµ
∂xσ

back into the {eµ} basis and appear as the con-
stants of that expansion. Those symbols are not tensors, so they will
not transform by a rule such as (1.1.28). That is not surprinsing, for the
defining relation explicitly shows their dependence on the coordinate
basis.

Those symbols are also the affine connection that properly de-
fines the derivative along a curve by means of parallel transportation, as
we will see shortly. To be more precise, the construction above defines
the affine connection which coincides with the Christoffel symbols of
the second kind.

Now, the term inside the brackets are the components of the
covariant derivative of a vector , which is commonly denoted as†

∗One other archaic notation that is eventually used in the literare is {µσρ}.
†The covariant and partial derivative shorthand notation {∇ ∂} → {; , } shall be

adopted further ahead when things rapidly start to go crazy and polluted notation-wise.
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uµ;σ ≡ ∇σuµ :�
∂uµ

∂xσ
+ Γ

µ
σρuσ . (1.1.32)

Now let us elaborate the Christoffel symbols a wee bit further.
First contracting the highlighted relation by a dual basis vector eλ we
get

uµ
∂eµ
∂xσ
· eλ � Γ

µ
σρuρ(eµ · eλ) � Γλσµuµ

and, since the uµ are independent,

Γ
µ
αβ �

∂eβ
∂xα
· eµ � gµλ

∂eβ
∂xα
· eλ . (1.1.33)

Moreover, if the basis vectors satisfy the integrability condi-
tions, then by (1.1.5)

∂eβ
∂xα

�
∂
∂xα

(
∂r
∂xβ

)
�

∂2r
∂xα∂xβ

�
∂2r

∂xβ∂xα
�
∂eα
∂xβ

. (1.1.34)

This enables us to write (1.1.33) as

Γ
µ
αβ � gµλ

∂eα
∂xβ
· eλ

� gµλΓαβλ , (1.1.35)

which is the usual form as defined in the literature and it is evident that
they are symmetric in αβ. The all-covariant

Γαβλ :�
1
2

(
∂gαλ
∂xβ

+
∂gβλ
∂xα

−
∂gαβ
∂xλ

)
(1.1.36)
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are called Christoffel symbols of the first kind∗. Now let us see how
those objects transfom under a general coordinate transformation.

Γ
µ
σρ � gµλ

∂eρ
∂xσ
· eλ

�

(
∂xµ

∂x′α
∂xλ

∂x′δ
g′αδ

)
∂
∂xσ

(
∂x′γ

∂xρ
e′γ

)
·
(
∂x′ε

∂xλ
e′ε

)
�
∂xµ

∂x′α
∂x′β

∂xσ
∂x′γ

∂xρ
Γ′αβγ +

∂xµ

∂x′α
∂2x′α

∂xσ∂xρ
. (1.1.37)

Alternatively we can use the following identity

∂σδ
µ
ρ ≡ 0 �

∂2xµ

∂x′β∂x′α
∂x′β

∂xσ
∂x′α

∂xρ
+
∂xµ

∂x′α
∂2x′α

∂xσ∂xρ

to bring (1.1.37) in the form

Γ
µ
σρ �

∂xµ

∂x′α
∂x′β

∂xσ
∂x′γ

∂xρ
Γ′αβγ −

∂x′β

∂xσ
∂x′γ

∂xρ
∂2xµ

∂x′β∂x′γ

�
∂x′β

∂xσ
∂x′γ

∂xρ

(
∂xµ

∂x′α
Γ′αβγ −

∂2xµ

∂x′β∂x′γ

)
, (1.1.38)

which clearly does not transform like a tensor. If we were interested in
a referential frame in which Γi

jk � 0, we would get from the expression
above the second order solution next to an arbitrary fixed point P

xµ − xµP � x′µ − x′µP +
1
2
Γ
′µ
βγ

��
P

(
x′β − x′βP

) (
x′γ − x′γP

)
. (1.1.39)

Such frame of reference is baptized Geodesic frame of reference.
It lies along geodesic lines and possesses the quality of being locally

∗Similar to the Chirstoffel symbols of second kind, these also have alternative
notations in other texts, such as the archaic {αβ, λ} but also written as Γλαβ , or with
a comma Γλ,αβ , Γαβ,λ . We shall denote without commas to not mix up with the
derivative notation and we put the “lowered index” at last. We judge this form to be
the clearest.
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flat, so no curvature is measurable in it, which is to be expected as we
will see shortly. This result is quite useful; it allows us to simplify our
calculations and then, thanks to the tensor character of the theory, will
be valid in all frames of reference.

Figure 8: Geodesic frame of reference around xµP .

We can construct the covariant derivative in tensor form as∗

∇ ⊗ u � (∇αuµ)eµ ⊗ eα � (gαβ∇αuµ)eµ ⊗ eβ . (1.1.40)

∗This is constructed by the tensor product of both ∇ and u expressed in their re-
spective basis.

25
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The covariant derivative is also applicable to general tensors as
well, if we impose the Leibniz rule

∇λ(uµvν) � (∇λuµ)vν + uµ(∇λvν)

�

(
∂uµ

∂xλ
+ Γ

µ
λκuκ

)
vν + uµ

(
∂vν

∂xλ
+ Γνλκvκ

)
�
∂(uµvν)
∂xλ

+ Γ
µ
λκuκvν + Γνλκuµvκ ,

so, if Tµν(x) � uµ(x)vν(x),

∇λTµν �
∂Tµν

∂xλ
+ Γ

µ
λκTκν + ΓνλκTµκ . (1.1.41)

Similarly, we can use the fact that scalar functions can be thought
of as a scalar product between two vectors, φ(x) � u(x) · v(x) �
uν(x)vν(x), to find the covariant derivative of covariant vectors. This
elegant way is only possible because the covariant derivative of scalar
fields are reduced to a partial ordinary derivative.

∇λ(uνvν) ≡
∂(uνvν)
∂xλ

� (∇λuν)vν + uν(∇λvν)

∴ ∇λvν �
∂vν
∂xλ
− Γκλνvκ , (1.1.42)

since uν is arbitrary. Covariant derivatives of tensors of higher or-
ders can be construed in a similar fashion by decomposing them into a
product of numerous vectors and applying the Leibniz rule along with

(1.1.32) and (1.1.42). So if
↔
T is a tensor of rank (m , n), then we have
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∇λTα1 ...αm
β1 ...βn

�

∂Tα1 ...αm
β1 ...βn

∂xλ
+ Γ

α1
λκTκ...αm

β1 ...βn
+ . . . + Γαm

λκTα1 ...κ
β1 ...βn

− Γκλβ1
Tα1 ...αm

κ...βn
− . . . − Γκλβn

Tα1 ...αm
β1 ...κ

.

(1.1.43)

With this we can study the metric tensor a bit more and derive
one great property it possesses. So, taking the covariant derivative of
it and according to (1.1.41) and (1.1.35), we have

∇λgµν �
∂gµν

∂xλ
+ Γ

µ
λκgκν + Γνλκgµκ

�
∂gµν

∂xλ
−
∂gµν

∂xλ
� 0 .

Finally, remembering that gµσgσν � δ
µ
ν ,

∇λδµν ≡ 0 � gµσ(∇λgσν) + (∇λg ισ)gσν
� gµσ(∇λgσν)

so

∇λgµν � 0 � ∇λgµν . (1.1.44)

This is particularly interesting because it enables us to raise and
lower tensor indices even inside a covariant derivative.

Now if we contract (1.1.32) by dxσ, we find the total variation
or the infinitesimal parallel transportation of uµ (denoted by Duµ),
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namely

Duµ ≡ dxσ∇σuµ � duµ + Γµσρdxσuρ , (1.1.45a)

Duµ ≡ dxσ∇σuµ � duµ − Γρσµdxσuρ . (1.1.45b)

Figure 9: What happens to a vector subjected to parallel transportation.

Considering instead a parametrized curve x � x(τ), we are able
to compute the variation of a vector along it with respect to the param-
eter τ. Thus, by denoting that as D

dτ and setting uµ as the tangent to
the curve, uµ �

dxµ
dτ , we have

D
dτ

uµ ≡ uσ∇σuµ �
duµ

dτ
+ Γ

µ
σρuσuρ

�
d2xµ

dτ2 + Γ
µ
σρ

dxσ

dτ
dxρ

dτ
. (1.1.46)

If the total change is such that D
dτuµ � 0, then

d2xµ

dτ2 + Γ
µ
σρ

dxσ

dτ
dxρ

dτ
� 0 , (1.1.47)

which is the geodesic equation whose solution, a geodesic curve, rep-
resents the “straightest” possible curve in a curved space and it also
describes the trajetory of test particles free falling in the presence of a
gravitational field. In the geodesic frame (1.1.39), we would have
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d2xµ

dτ2 � 0 ,

which has a linear solution

xµ � aµ + bµτ . (1.1.48)

That means the free fall of particles in the geodesic frame of ref-
erence is given by straight lines, exactly as it would as if no curvature
was present.

Some discussion follows.

In (1.1.45), the second term accounts for the deviation a vector
suffers when subjected to a parallel transport, commonly denoted by
δuµ. Its presence guarantees that when evaluating a derivative at xµ,
correspondind to the increment dxµ, we are actually evaluating the
change of that vector between uµ and uµ + duµ as expected.

In fact, on a flat Mn space, vectors do not change their geomet-
ric properties from point to point due to its inherent affine character,
but the same cannot be stated about generic manifolds. In general, a
vector subjected to a parallel displacement will not “point” to the same
“direction” when it goes around a closed loop along geodesic paths.

Enforcing that last bit, we have from (1.1.45b)

∂uµ
∂xν

� Γκµνuκ , (1.1.49)

so when we take the roundabout trip along C (see Fig. 10), we shall
get a variation ∆uµ. Since we are going around back to the starting
point, only the δuµ variation survives. Thus
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∆uµ �

∮
C
δuµ �

∮
C
Γκµνuκdxν .

Figure 10: Parallel transport of a vector field uµ around the circuit
C : ABC.

Applying Stokes’ theorem we get

∆uµ �

∫
S

dSσρ
(
∂(Γκµσuκ)
∂xρ

−
∂(Γκµρuκ)
∂xσ

)
,

where dSσρ �
1
2ε

σρ
αβdxαdxβ is the anti-symmetric surface element.

The values ui takes inside S are not unique, but they can be
approximated, in this infinitesimal regime, by their value on the border
without losing its validity. Doing that, results from (1.1.49)

30



1 Review

∆uν �
(
∂(Γµναuµ)
∂xβ

−
∂(Γµνβuµ)
∂xα

)
∆Sαβ

�

(
∂Γ

µ
να

∂xβ
uµ −

∂Γ
µ
νβ

∂xα
uµ − Γµνα

∂uµ
∂xβ

+ Γ
µ
νβ

∂uµ
∂xα

)
∆Sαβ

�

(
∂Γ

µ
να

∂xβ
uµ −

∂Γ
µ
νβ

∂xα
uµ − ΓµναΓεµβuε + Γ

µ
νβΓ

ε
µαuε

)
∆Sαβ

�

(
∂Γ

µ
να

∂xβ
−
∂Γ

µ
νβ

∂xα
− ΓµεβΓ

ε
να + Γ

µ
εαΓ

ε
νβ

)
uµ∆Sαβ

� Rµ
ναβuµ∆Sαβ

where

Rµ
ναβ �

∂Γ
µ
να

∂xβ
−
∂Γ

µ
νβ

∂xα
− ΓµεβΓ

ε
να + Γ

µ
εαΓ

ε
νβ (1.1.50)

is the Riemann-Christoffel curvature tensor∗, the main ingredient needed
to work with General Relativity. It is clear from this approach how we
can detect and quantify the curvature of Riemannian spaces, but there
is still another more direct way of determining that tensor, which is by
quantifying the amount of change accounted by two successive covari-
ant derivatives, i.e., a commutator. In general, those derivatives do not
commute, as we will verify promptly.

Firstly, let Tβν be the tensor constructed by a covariant derivative
of uν

Tβν � ∇βuν �
∂uν
∂xβ
− Γµβνuµ .

Then,

∗Sometimes the Riemann-Christoffel tensor is defined with the opposite sign.
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[∇α ,∇β]uν � ∇αTβν − [α↔ β]
� Rµ

ναβuµ (1.1.51)

which is precisely the same result as (1.1.50). It is important to note
that the Riemann-Christoffel tensor is, in fact, a tensor, even if it merely
depends on the Christoffel symbols. That happens because (1.1.51) is
an equality, so, since the covariant derivative gives a tensor, the right-
hand side of that equation must also be a tensor.

If we contract µβ in (1.1.50)

Rνα :� Rλ
ναλ �

∂Γλνα
∂xλ

−
∂Γλνλ
∂xα

− ΓεναΓλελ + Γ
ε
νλΓ

λ
εα (1.1.52)

we obtain the so-called Ricci tensor, which is symmetric in its indices.
In fact, the first, third and last terms follow immediately. To show that
the second is also symmetric, we recall (1.1.34),

Γλνλ,α �

(
gλκeν,λ · eκ

)
,α

� eλ,ν,α · eλ + gλκeλ,ν · eκ,α + ΓνλκΓαεσ
(
gλσgεκ + gκσgελ

)
,

which is clearly symmetric as well.

Resuming, by further contracting (1.1.52),

R :� gµνRµν , (1.1.53)

we define the Ricci scalar.

The Riemann-Christoffel tensor exhibits many helpful symme-
tries which shall be derived next. For this purpose we will be doing all

32



1 Review

our computations in the geodesic frame of reference.

From (1.1.50) it is immediate that

Rµ
ναβ � −Rµ

νβα . (1.1.54)

Now, lowering the first index, we have

Rµναβ � Γναµ,β − Γνβµ,α

�
1
2

[ (
���gνµ,α + gµα,ν − gνα,µ

)
,β−

−
(
���gνµ,β + gµβ,ν − gνβ,µ

)
,α

]
�

1
2

(
gµα,ν,β − gνα,µ,β − gµβ,ν,α + gνβ,µ,α

)
� −1

2

(
gµβ,ν,α − gνβ,µ,α − gµα,ν,β + gνα,µ,β

)
� −Rνµαβ , (1.1.55)

and, by the symmetry of the metric tensor and the partial derivatives,

Rµναβ �
1
2

(
gµα,ν,β − gνα,µ,β − gµβ,ν,α + gνβ,µ,α

)
�

1
2

(
gµα,ν,β − gµβ,ν,α − gνα,µ,β + gνβ,µ,α

)
�

1
2

(
gαµ,β,ν − gβµ,α,ν − gαν,β,µ + gβν,α,µ

)
� Rαβµν . (1.1.56)

There are also two important sum identities, those being the
cyclic sum of the covariant indexes and the same for covariant deriva-
tives of the Riemann-Christoffel tensor. Let us compute them:
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Rµ
ναβ + Rµ

αβν + Rµ
βνα

�

(
Γ
µ
αβ,ν − Γ

µ
αν,β

)
+

(
Γ
µ
βν,α − Γ

µ
νβ,α

)
+

(
Γ
µ
να,β − Γ

µ
βα,ν

)
� 0 , (1.1.57)

Rµ
ναβ;λ + Rµ

νβλ;α + Rµ
νλα;β

�

(
Γ
µ
να,β,λ − Γ

µ
νβ,α,λ

)
+

(
Γ
µ
νβ,λ,α − Γ

µ
να,λ,β

)
+

(
Γ
µ
νλ,α,β − Γ

µ
νλ,β,α

)
� 0 . (1.1.58)

Expressions (1.1.57) and (1.1.58) are respectively called First
and Second Bianchi Identities and since they constitute tensor equa-
tions, they are valid in all frames. Here it becomes evident just how
powerful the geodesic frame is; just imagine the absurd amount of
terms we would have if the most generic Riemann- Christoffel were
used.

From the second Bianchi identity, we can finally obtain the Ein-
stein field equations, which is the core equation of General Relativity
and Gravitation. To do that we contract it on the pairs µλ and να,
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0 � Rµλ
λν;µ + Rµλ

νµ;λ + Rµλ
µλ;ν

� Rλµ
νλ;µ + Rλ

ν;λ − Rλµ
µλ;ν

� Rµ
ν;µ + Rµ

ν;µ − R;ν

�

(
2Rµ

ν − δ
µ
νR

)
;µ

0 �

(
Rµ

ν −
1
2
δ
µ
νR

)
;µ

�: Gµ
ν;µ , (1.1.59)

where

Gµν :� Rµν − 1
2

gµνR (1.1.60)

is the Einstein tensor, so that (1.1.59) has the general solution

Gµν
� Λgµν + αTµν (1.1.61)

if and only if Tµν is a symmteric tensor such that Tµν;ν � 0. In the
context of General Relativity, the solution can be interpreted in light of
Mach’s Principle, so both Λ and Tµν must be associated with the mat-
ter content of the universe; in fact, the former is called the Cosmolog-
ical constant whereas the latter, Tµν, represents just that and receives
the name of energy-momentum tensor. Whilst it appears to be loosely
connected through Mach’s principle, we show in Appendix B that there
is a principle of minima shying away from us in the background; so,
by formulating this theory via the variational principle, those quantities
naturally emerge back to light. There we show that α �

8πG
3 , where G

is Newton’s Universal Graviatational constant.

We see how natural it is to construct all those essential quanti-
ties to work with geometry from the ground up, starting just with vec-
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tor definitions and coordinate transformations between two systems of
reference. It is remarkable how forthright the covariant derivatives and
Christoffel symbols came to be and how clearly the latter depends on
the variation of the coordinate basis vectors.

1.2 Local N-Tuples

One other remarkable formalism is the description of geometri-
cal objects, be it vectors, tensors and whatnot, on the locally inertial
frame of reference, in which the quantities in question are expressed in
a flat Minkowskian space Mn , at every point. Effectively, the tensor
components will be mapped to the each component of this new basis,
removing the coordinate characterization from them and thus virtually
transforming them into scalar fields within this frame, while the actual
coordinate information is carried by those components.

The components of said basis constitute what we call N-Tuples,
functions of the point and denoted by e(α)µ (x), with µ � 0, . . . ,N − 1
coordinate indices and (α) � 0, . . . ,N−1 N-Tuple component indices.
In a (3+1) spacetime those objects are also called tetrads and vierbein∗.

We start by decomposing the basis vectors (1.1.5) e(x) into a
local orthogonormal basis ê0 with a Lorentzian signature (+−− . . .−),

eµ(x) � e(α)µ (x) ê0
(α) , (1.2.1)

where clearly the N2 decomposition components e(α)µ are N ×N ma-
trices and depend on the point due to the cartesian basis being constant
vectors. It is crucial to understand that even though this basis does not
explicitly depend on the coordinates of the point, they are not the same

∗From german: four legs.
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on every point; in fact, we erect a whole new set of ê0 at every single
point of the manifold.

In order to recover the desired signature, we must enforce a new
inner product definition. Henceforth the vectors u, v and w of Mn ,
a ∈ R, the inner product u · v is a symmetric bilinear operation

u · v � v · u
(au + v) · w � a(u · w) + v · w , (1.2.2)

such that the N-Tuples satisfy∗

ê0
(0) · ê0

(0) � 1 ; ê0
(i) · ê0

( j) � −δi j

ê0
(0) · ê0

(i) � 0
, (1.2.3)

where ê0
(0) represents a time direction and can be thought of as a “time

versor” t̂ , whereas the other ê0
(i) are the usual cartesian versors x̂ i .

With that, if we employ (1.1.10),

ê0
(α) · ê0

(β) � ηαβ , (1.2.4)

we readly obtain the local Minkowski space. The norm of this space,
called the Lorentz norm, is defined as

| |u | | :� u · u � uµuνηµν
� (u0)2 − (u1)2 − (u2)2 − . . . − (un−1)2

� (u0)2 −
N−1∑
i�1

(u i)2 . (1.2.5)

∗In the case of any other type of signature, the numbers of positive and negative
eigenvalues are enforced analougously.
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1.2 Local N-Tuples

Now, according to (1.1.10) and (1.1.15), we can relate the actual
metric of the spacetime manifold with the local inertial frame metric
discussed, namely,

gµν(x) � eµ · eν
� (e(α)µ (x) ê0

(α)) · (e
(β)
ν (x) ê0

(β))

� e(α)µ (x) e(β)ν (x) (ê0
(α) · ê0

(β))

� ηαβ e(α)µ (x) e(β)ν (x) . (1.2.6)

In a similar fashion to (1.1.29), we can also define a dual N-
Tuple basis

eµ · eν ≡ δµν � (e µ

(α) ê0(α)) · (e(β)ν ê0
(β))

� e µ

(α) e(β)ν (ê0(α) · ê0
(β))

� e µ

(α) e(β)ν δαβ

� e µ

(α) e(α)ν , (1.2.7)

where we dropped the position dependency to clean things up a bit.
From this we can have some fun and obtain some nice properties. Thus,
by contracting the expression above with e ν

(β)

e µ

(β) � e µ

(α) (e
(α)
ν e ν
(β) ) ,

which is satisfied only if

e(α)ν e ν
(β) � δαβ , (1.2.8)

meaning that the N-Tuples are orthogonal, to one another, allowing us
to invert (1.2.6),
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ηαβ � gµνe µ

(α) e ν
(β) ,

and perform raising/lowering operations, since we know it is applica-
ble to coordinate indices

ηαβ � e(α)µ e µ

(β) (1.2.9)

or

ηαβ � e(α)µe(β)µ .

Now by contracting (1.2.9) with ηβγ and comparing with (1.2.8),

e µ

(α) (η
βγe(β)µ ) ≡ δ

γ
α � e(γ)µ e µ

(α) ,

yielding

ηβγe(β)µ � e(γ)µ

ηβγe(γ)µ � e(β)µ
, (1.2.10)

we see that N-Tuple indices can also be raised/lowered by the local
Minkowskian metric ηαβ.

A similar type of transformation akin to (1.2.6) is also valid to
any tensor field. To show that, we pick out one vector (1.1.7) and
express it both in the local inertial basis and the decomposed basis
(1.2.1),
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1.2 Local N-Tuples

v � v(α) ê0
(α) � vµeµ

� vµe(α)µ ê0
(α)

∴ v(α) � vµe(α)µ . (1.2.11)

The same can be done for covariant vectors

v(α) � vµe µ

(α) , (1.2.12)

and both transformation laws are valid to tensors of any rank due to
(1.1.27).

Synthetizing all that was discussed and considering a generic

tensor
↔
T of rank (m , n) to generalize the two expressions above, we

have

gµν � ηαβe(α)µ e(β)ν , (1.2.13a)

e µ

(α) e(α)ν � δ
µ
ν , (1.2.13b)

e µ

(β) e(α)µ � δαβ , (1.2.13c)

e µ

(α) e(β)µ � ηαβ , (1.2.13d)

Tµ1 ...µm
ν1 ...νn � T(α1)...(αm)

(β1)...(βn) ·

· e µ1

(α1) . . . e µm

(αm) e(β1)
νn . . . e

(βn)
νn

, (1.2.13e)

and their respective inverses. So, by (a) and (e), we can rewrite the
spacetime interval as
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ds2
� gµνdxµdxν

� ηαβ(e
(α)
µdxµ)(e(β)ν dxν)

� ηαβdx(α)dx(β) , (1.2.14)

where we defined the new forms

dx(α) � e(α)µdxµ .

If ϕ is a test function, we define the directional derivative along
the local (α) direction by projecting the directional derivative into a
N-Tuple

ϕ,(α) ≡
∂ϕ

∂x(α)
� e µ

(α)
∂ϕ

∂xµ
. (1.2.15)

It is useful to define the following quantities:

γαβγ :� e(α)µ;ν e µ

(β) e ν
(γ) , (1.2.16a)

Cαβγ :� γαβγ − γαγβ , (1.2.16b)

the former are called Ricci rotation coefficients and the latter will be
the structure constants of an associated Lie algebra later on.

Expression (1.2.16a) is promptly inverted, yielding a practical
way to evaluate the covariant derivative of N-Tuples

e(α)µ;ν � γαβγe(β)µ e(γ)ν . (1.2.17)

Let us work a bit with those definitions to find some symmetries.
First, we express the constants only using N-Tuples
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1.2 Local N-Tuples

Cαβγ � e(α)µ;ν [e
µ

(γ) e ν
(β)︸    ︷︷    ︸

µ↔ν

−e µ

(β) e ν
(γ) ]

�

[
e(α)µ;ν − e(α)ν;µ

]
e µ

(β) e ν
(γ) , (1.2.18)

which are clearly anti-symmetric on βγ.

Next, rearranging (1.2.16a), we obtain

γαβγ � e(α)µ;ν e µ

(β) e ν
(γ)

� −γβαγ ,

which is anti-symmetric on αβ. Summarizing,

Cαβγ � −Cαγβ

γαβγ � −γβαγ
. (1.2.19)

Finally, we shall invert (1.2.16b) and express γαβγ in terms of
the structure constants. To do that, we compute a cyclic sum in an anal-
ogous manner as done to the metric in the Christoffel symbols (1.1.35)

Cαβγ + Cβγα − Cγαβ � (γαβγ − γαγβ)
+ (γβγα − γβαγ)
− (γγαβ − γγβα)

∴ γαβγ �
1
2
(Cαβγ + Cβγα − Cγαβ) . (1.2.20)

Our aim is to describe the fundamental geometrical objects in
this frame of reference to eliminate the coordinate charactarization in
favor of a much simpler scalar quantity, but to do that we still have to
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establish how the covariant derivatives are projected onto this N-Tuple
frame. This is easily done with the help of (1.2.17),

Aµν;λ �

(
A(α)(β)e

(α)
µ e(β)ν

)
;λ

∴ Aµν;λe µ

(α) e ν
(β) e λ

(γ) � A(α)(β);(γ) + γδαγA(δ)(β) + γδβγA (δ)
(α) .

(1.2.21)

Back to (1.2.17), we precompute a second covariant derivative
that will be needed in a second

(e(α)µ;ν );λ � (γαβγe(β)µ e(γ)ν );λ

� γαβγ;λe(β)µ e(γ)ν

+ (γαβγγ
β
δε − γαδβγ

β
γε )e(δ)µ e(ε)ν e(γ)λ . (1.2.22)

Now the problem boils down to find the curvature tensor Rµναβ

by computing the commutator (1.1.51) using the above result. So,
without further ado

e µ

(γ) Rµναβ � e(γ)ν;α;β − e(γ)ν;β;α

→ R(α)(β)(γ)(δ) � (e(α)λ;µ;ν − e(α)λ;ν;µ )e
λ

(β) e µ

(γ) e ν
(δ)

� γαβγ;νe ν
(δ) − γαβδ;µe µ

(γ)

+ γαβλ (γ
λ
δγ − γ

λ
γδ )

+ γαλδγ
λ
βγ − γαλγγ

λ
βδ ,

but, since we are on the local tangent frame, the covariant derivatives
are reduced to the ordinary directional derivatives (1.2.15). Hence
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1.3 Killing Vectors

R(α)(β)(γ)(δ) � γαβγ,δ − γαβδ,γ
+ γαβλ (γ

λ
δγ − γ

λ
γδ )

+ γαλδγ
λ
βγ − γαλγγ

λ
βδ

< ++ > . (1.2.23)

We also wish to express the Ricci tensor in terms of the structure
constants (1.2.18). For this purpose, we contract the above obtained
Riemann tensor on αγ, employ (1.2.20) and, by using the symmetry
of the Ricci tensor, we get

∴ Rβδ � −
1
2

(
Cα

αβ,δ + Cα
αδ,β + C α

βδ ,α + C α
δβ ,α

+ Cα
αλC λ

βδ + Cα
αλC λ

δβ −
1
2

C λα
δ Cβλα

+ Cλα
δCαλβ + Cλα

δCλαβ

) . (1.2.24)

The utility of this result will become evident in Chapter 3, when
we use this formalism to work with Lie algebras, providing a direct
way to determine the curvature of the spaces knowing only the struc-
ture constants that characterize each algebra.

1.3 Killing Vectors

Usually, the treatment of the highly non-linear Einstein field
equations (1.1.59) is very difficult or even analytically impossible for
many problems, so it is indispensable that we formulate new ways and
tools to help us to gain some insight and make our computation much
less distressing and efficient.

One such way is to represent the fundamental quantities in the
local N-Tuple frame discussed in the previous section. Another inter-
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esting solution is to look up at the symmetries of the spacetime carried
out by the metric tensor, where the so-called Killing fields naturally
emerge and are the fundamental objects in this description, responsi-
ble for carring out said symmetries. In order to accomplish such task,
we shall borrow the already well established (infinitesimal) local ap-
proach from field theory.

We highlight that despite of the seemingly ideal aspects enclosed
in the motivation above, we have many empirical data that our Uni-
verse has a remarkable degree of symmetry regarding its spatial sector,
thus justifying the present treatment.

To do that we must construct a covariant toolbox that does not
depend on a particular choice of a frame of reference. So, we start
by defining the isometry of the metric tensor gµν as a transforma-
tion of coordinates that leaves its functional form intact. If we take a
diffeomorphism of the metric tensor to another system of coordinates
x → x′,

gµν(x) �
∂x′α

∂xµ
∂x′β

∂xν
g′αβ(x′) . (1.3.1)

the isometry condition will be given by

g′αβ(x′) � gαβ(x′) , ∀x′ . (1.3.2)

Metric tensors (and tensors in general) that satisfy this condition
are also called form invariant. Since isometries inherently represents
some kind of symmetry of the spacetime itself, it must be associated
to some symmetry group parametrized by, say, ε. That allows us to
exploit the formalism of small pertubations around the point∗. Then,
by considering a transformation of coordinates to the immediate neigh-
bouring of x,

∗A more careful and precise construction can be done if we define the called
Lie Transport, an operation that drags geometric objects along symmetry directions.
These linear approximations and the next results follows naturally in this formalism.
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1.3 Killing Vectors

x → x′ � x + δx ,

and setting a pertubation δx to the group transformation along with its
parameter,

δx � εξ(x) ,

where |ε | � 1, we can describe the infinitesimal coordinate transfor-
mation by

xµ → x′µ � xµ + εξµ(x) , |ε | � 1 . (1.3.3)

Now, we plug (1.3.3) into (1.3.1) to obtain

gµν(x) �
(
δαµ + εξ

α
,µ(x′)

) (
δ
β
ν + εξ

β
,ν(x′)

)
g′αβ(x′)

� g′µν(x) + εξα(x)g′µν,α(x)

+ ε

(
g′µα(x)ξα,ν(x) + g′αν(x)ξα,µ(x)

)

→ Lξ[gµν] � ξαgµν,α + gανξ
α
,µ + gµαξ

α
,ν ,

where we have made several expansions in Taylor series, discarted the
terms of order O(ε2) and defined the Lie derivative of a tensor T:

Lξ[T] � lim
ε→0

T(x) − T′(x)
ε

, (1.3.4)

which quantifies how “different” the tensor is in a point immeately next
to x. This operation maps the spacetime back into itself Lξ : M →
M, thus defining an automorphism, and respecting the Leibniz rule.
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Indeed, if T is a tensor of rank (0,m + n) whose components are

Tα1 ...αmβ1 ...βn
� f Aα1 ...αm

Bβ1 ...βn
,

we have
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1.3 Killing Vectors

Lξ[Tα1 ...αmβ1 ...βn
] � Lξ[ f Aα1 ...αm

Bβ1 ...βn
]

� ξλTα1 ...αmβ1 ...βn ,λ

+ Tλ...αmβ1 ...βn
ξλ,α1

+ . . .

+ . . . + Tα1 ...λβ1 ...βn
ξλ,αm

+ Tα1 ...αmλ...βn
ξλ,β1

+ . . .

+ . . . + Tα1 ...αmβ1 ...λ
ξλ,βn

� ξλ( f Aα1 ...αm
Bβ1 ...βn

),λ
+ f Aλ...αm

Bβ1 ...βn
ξλ,α1

+ . . .

+ . . . + f Aα1 ...λ
Bβ1 ...βn

ξλ,αm

+ f Aα1 ...αm
Bλ...βn

ξλ,β1
+ . . .

+ . . . + f Aα1 ...αm
Bβ1 ...λ

ξλ,βn

�
(
ξλ f,λ

)
Aα1 ...αm

Bβ1 ...βn

+ f Bβ1 ...βn

(
ξλAα1 ...αm ,λ

+

+ Aλ...αm
ξλ,α1

+ . . .

+ . . . + Aα1 ...λ
ξλ,αm

)
+ f Aα1 ...αm

(
ξλBβ1 ...βn ,λ

+

+ Bλ...βn
ξλ,β1

+ . . .

+ . . . + Bβ1 ...λ
ξλ,βn

)
� Lξ[ f ]Aα1 ...αm

Bβ1 ...βn

+ fLξ[Aα1 ...αm
]Bβ1 ...βn

+ f Aα1 ...αm
Lξ[Bβ1 ...βn

]
. (1.3.5)
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Immediately, the isometry condition (1.3.2) is codified such that
the Lie derivative of the metric tensor vanishes

Lξ[gµν] � 0 . (1.3.6)

Therefore, the Killing conditions are

ξαgµν,α + gανξ
α
,µ + gµαξ

α
,ν � 0 , (1.3.7)

or, in the covariant form,

∴ ξµ;ν + ξν;µ � 0 . (1.3.8)

Any N-vector field ξµ(x) that satisfies (1.3.8) gets the name of
Killing fields or simply Killing vectors, which are the generators of the
associated symmetry group that carries the symmetries of the space.
To determine all the isometries of the spaces, we just need to find all
the Killing fields that satisfy the condition above. Inasmuch as those
Killing fields represent the symmetries of the space, we also expect
them to be related to conserved quantities by virtue of Noether theo-
rem.

We pick the case of Killing fields associated with the conserva-
tion of the total linear momentum

Example:

Linear momentum and associated Killing vector:
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1.3 Killing Vectors

d
dτ

(
ξµPµ

)
� ξµ

dPµ

dτ
+

dξµ
dτ

Pµ

� ξµ

(
− 1

m
Γ
µ
αβPαPβ

)
+
∂ξµ

∂xν
dxν

dτ
Pµ

� −ξµ
1
m
Γ
µ
αβPαPβ +

1
m
ξµ,νPνPµ

�
1
m

(
ξµ,ν − Γαµνξα

)
PµPν

�
1
m

ξµ;ν︸︷︷︸
anti-sym

PµPν︸︷︷︸
sym

� 0

∴ ξµPµ � const ,

where we made use of the Geodesic equation (1.1.47),
dPµ

dτ
+

1
mΓ

µ
αβPαPβ � 0. �

In order to relate the Killing vectors to geometry, we will explic-
itly relate them with the curvature tensor by using (1.1.51) and, em-
ploying the first Bianchi identities (1.1.57), simplify the results. More
specifically, applying (1.1.51) to ξρ on [∇µ ,∇ν] and summing the re-
sults cyclically yields

ξµ;ν;ρ � ξρ;ν;µ − ξρ;µ;ν

� Rλ
ρνµξλ . (1.3.9)

In other words, only the Killing vectors and their first covariant
derivatives are independent; further covariant derivatives will always
be expressed in terms of ξµ and ξµ;ν only. Though extremely restritive,
we can use this fact for our benefit. For instance, if we know the values
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ξµ and ξµ;ν takes at some point x0, we can express any Killing vector
as a Taylor series around x0

ξn
µ(x , x0) � A λ

µ (x , x0)ξn
λ(x0) + B λσ

µ (x , x0)ξn
λ;σ(x0) , (1.3.10)

where n labels one of the N vectors ξµ or one of the 1
2 N(N − 1)

derivatives ξµ;ν in the spacetime and the coefficients A λ
µ and B λσ

µ
depend upon x0 and the metric gµν in some way but does not depend
on the Killing vectors ξλ(x0) and ξλ;σ(x0), so they are the same for
any and all Killing vector.

For (1.3.9) to be soluble, it needs to satisfy integrability condi-
tions, which can be found when we take the commutator of covariant
derivatives, but now of ξρ;µ. Using (1.3.9),

Rλ
ρσνξλ;µ + Rλ

µσν

−ξλ;ρ︷︸︸︷
ξρ;λ � ξρ;µ;σ;ν − ξρ;µ;ν;σ

∴

(
− Rλ

ρσνδ
κ
µ + Rλ

µσνδ
κ
ρ − Rλ

νµρδ
κ
σ + Rλ

σµρδ
κ
ν

)
ξλ;κ

� (Rλ
νµρ;σ − Rλ

σµρ;ν) ξλ .
(1.3.11)

This is yet another restrictive condition, but now it establishes a
link between the Killing vectors and their first covariant derivative.

1.4 Useful particular results

In this section we shall enumerate some more handy results that
we shall be using further throughout the work but are too specific to
deserve a whole section to elaborate them.
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1.4 Useful particular results

1.4.1 Proper time

The proper time of a physical entity is defined as the time mea-
sured by clocks in the frame of reference of that entity or, equivalently,
by the referential where this object is stationary. Thus, there are no
spatial variations and the line element reduces to∗

ds2
� dt2 ,

which can be inverted as

dτ ≡ dt �
√

ds2

or, in a path from A to B, considering τA ≡ 0 and τB ≡ τ,

τ �

∫ B

A

√
ds2 . (1.4.1)

We thus obtain a description that clearly is covariant, since ds2 is so.
For this reason, we distinguish it by using the symbol τ.

Figure 11: Proper time representation in a Minkowski diagram. It is
the time a clock displays in a frame of reference that moves along with
the particle.

∗From now on we shall adopt c � 1.
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1.4.2 Synchronous Frame of Reference

This frame of reference is characterized by a family of hyper-
surfaces in which all the “clocks” carried by the spatial points of ev-
ery sheet are synchronized among themselves. By virtue of that, the
hypersufaces are in free-fall, so they follow geodesic trajectories and
have the proper time τ as their time coordinate; we can say that time
and spatial coordinates do not mix up, effectively given the following
spacetime interval

ds2
� g00dτ2

+ gi j dx i dx j

� dτ2
+ gi j dx i dx j , (1.4.2)

where a simple redefinition of coordinates allows us to set g00 ≡ 1.
From that line element, we infer that the metric tensor has the compo-
nents

g00 � 1 ; g0i � 0 ; gi j ≡ −ζi j , (1.4.3)

in which we define the positively defined spatial metric tensor ζ of the
N−1 dimensional spatial sector of the space. By definition, the normal
N-vector for the hypersurfaces with τ � const is

nµ �
∂τ
∂xµ

which gives

nµ � nµ � (1, 0) , (1.4.4)

already properly normalized; both co- and contravariant representa-
tions are identical by (1.4.3).

In this frame of reference the N-velocities
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1.4 Useful particular results

uµ :�
∂xµ

∂s
(1.4.5)

point to the time direction, so they are all tangent to x i � const, coin-
ciding with the normal N-vector

uµ � (1, 0) , (1.4.6)

and thus following geodesic curves. Indeed, the geodesic equation
(1.1.47) is automatically satisfied, for

Γ
µ

00 �
1
2

gµσ
(
g0σ,0 + gσ0,0 − g00,σ

)
≡ 0 ; ∀µ ,

duµ

dτ
+ Γ

µ
αβuαuβ � 0

�⇒ duµ

dτ
� 0 ,

which is identically satisfied by nµ in (1.4.6).

Figure 12: Synchronous frame of reference spatial foliation.
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Enumerating all qualities that a synchronous frame of reference
must have, we can then always construct this frame for any spacetime
if we erect it employing the following methodology:

i. Choose a starting everywhere space-like hypersurfaceΣi such that
the normals nµ point to the time direction;

ii. Derive the geodesic curves normal to Σi;

iii. Set the time coordinate as the geodesic length s of those curves
measured from Σi .

It is important to remark that there are infinite ways of defining
a syncronous frame of reference thanks to the everywhere spatial sub-
space described by ζi j; any coordinate transformation of it will return
another syncronous frame.

To write the Einstein equations in this frame of reference, it is
useful to split the time and space components up, in particular defining
the time derivative of ζ as∗:

χab :� ∂tζab � −gab ,0 , (1.4.7a)

χab � χba , (1.4.7b)

χ a
a � ζab∂tζab � ∂t ln ζ , (1.4.7c)

where operations of lowering/raising indices are carried out by ζi j . The
Christoffel symbols take the form

Γ0
00 � Γ0

0i � Γ
i
00 � 0 ;

Γ0
i j �

1
2
χi j ; Γi

0 j �
1
2
χi

j ; Γi
jk :� Λi

jk . (1.4.8)

∗The last one is easily proved by using the identity log(detA) � tr(log A).
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where the last one are the purely spatial symbols formed by ζi j . With
that, we are able to adress the Ricci tensor (1.1.52),

Rµν � Γ
α
µν,α − Γαµα,ν − ΓεµαΓαεν + ΓεµνΓαεα ,

in this coordinate system. Doing all the calculations, one gets

R00 � −1
2
∂tχ

i
i −

1
4
χi

jχ
j
i , (1.4.9a)

R0k �
1
2

(
χi

k;i − χ
i
i;k

)
, (1.4.9b)

Ri j � Pi j +
1
2
∂tχi j +

1
4

(
χi jχ

l
l − 2χilχ

l
j

)
, (1.4.9c)

where Pi j is the totally spatial Ricci tensor built with ζi j and Λi
jk .

Finally, the Einstein equations (1.1.61) in mixed components reduce to
the following system of differential equations:

R 0
0 �

1
2
∂tχ

i
i +

1
4
χi

jχ
j
i � 8πG

(
T 0

0 −
1
2

T
)
, (1.4.10a)

R 0
k �

1
2

(
χi

i;k − χ
i
k;i

)
� 8πGT 0

k , (1.4.10b)

R j
i � −P j

i −
1
2
∂tχ

j
i +

1
4

(
2χilχ

l j − χ j
i χ

l
l

)
� 8πG

(
T j

i −
1
2
δ

j
i T

)
.

(1.4.10c)

One other feature of the synchronous frame of reference is that
gravitational fields cannot be stationary, because, if it is so,

χi j � 0 ,

causing a contradition to immerse in (1.4.10a) the matter content car-
ried by (or built-in) the energy-momentum tensor, so indeed the metric
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cannot be stationary. Moreover, from (1.4.10c), in the empty space, we
would have

Pi j � 0 ,

corresponding to a null curvature and thus a flatRn−1 Euclidian space.

Real particles also are not at rest in this frame of reference, be-
cause in general, the pressure exerted by the matter fields and the cos-
mological fluid have a spatial component which will not move along
the synchronous hypersheets.
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CHAPTER
2

Maximally Symmetric Spaces and
the Standard Model of Cosmology

SYMMETRIES became a rich soil upon which many physical theo-
ries sprout and are considered nowadays indispensible for any ab

initio theory. Those can be roughly defined by the invariance of some-
thing when some sort of transformation is applied to it; for instance,
we expect vectors to be the same upon translations in an affine euclid-
ian vector space, or the general principle of relativity to preserve the
laws of physics themselves by a general transformation of coordinates.
By those two simple cases, we can see how powerful and desirable it
is to accommodate symmetries in our theories.

The construction of a spacetime can be (and will be) done from
the ground up by explore the desirable symmetries that will take place
in the current chapter, where the main ingredients employed will nat-
urally be the Killing fields as they inheritely carry the aforementioned
symmetries. In addition to that, we will focus on the properties the
spacetime metric has when it admits the maximal number of symme-
tries, to which they attain the fancy name of Maximally Symmetric
Spaces (MS Spaces) and have great qualities such as a constant curva-
ture everywhere.



2 Maximally Symmetric Spaces and the Standard Model of Cosmology

Even though the vast majority of spacetimes does not possess
all the available symmetries, the same formalism can be applied to
broken down spacetimes, where one part will be MS whereas the other
will not. This will be the case for both spatial isotropy and homo-
geneity, where we will fully recover the famous Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) metric, that is, the standard cosmological
model at the present.

Firstly, we shall expand the theory of Killing vectors seen in
Section 1.3, to study the characteristics a MS spacetime has and to
construct the necessary framework of said spaces, then we will delve
a bit into some particular cases, concluding with a quick review on the
FLRW cosmology and some of its main results.
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2 Maximally Symmetric Spaces and the Standard Model of Cosmology

2.1 Maximally Symmetric Spaces

We begin by considering a N dimensional spacetimeM(N, g)
endowed with a metric g. As already discussed on Section 1.3, we can
express any Killing vector as an expansion around a point x0 (1.3.10)
if we know the values each ξn

λ and ξn
λ;σ take on such point, where,

remembering, n indicates the nth Killing vector from the pool of all
1
2 N(N + 1) vectors obtained by that expansion.

The maximum number of ways to erect (1.3.10) are precisely the
number of combinations we can build with ξn

λ and ξn
λ;σ. So, recalling

the anti-symmetry of the latter (1.3.8), we have

5 ξn
λ: N vectors;

5 ξm
λ;ν:

1
2 N(N − 1) vectors;

∴ 1
2 N(N + 1) independent Killing vectors.

We say that a spacetime is Maximally Symmetric if it has all the
1
2 N(N + 1) independent Killing vectors. This quality attributed to it is
not in vain; the linear independency of those vectors are characterized
by

∑
n

cnξ
n
λ(x) , 0 ;

∑
n

cnξ
n
λ;ν(x) , 0 ,

with constant coefficients cn , and valid everywhere. If we suppose that
we have M > 1

2 N(N + 1) vectors at some point x0 instead, then the
spare have to be linearly dependent, so they will obey

∑
n

cnξ
n
λ(x0) � 0 ;

∑
n

cnξ
n
λ;ν(x0) � 0

at x0. However, by virtue of (1.3.10), it must be satisfied everywhere,
thus being dependent everywhere, so 1

2 N(N + 1) is indeed the maxi-
mum number of Killing vectors a N-dimensional spacetime can bear.
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2.1 Maximally Symmetric Spaces

We shall break the maximal pool of independent vectors in two
subsets: the first corresponding to the N vectors ξµ, labelled by (λ),
and the second corresponding to the 1

2 N(N−1) anti-symmetric vectors
ξµ;ν, labelled by (αβ). The latter is also anti-symmetric in its label due
to the Killing condition (1.3.7).

We say a spacetime is homogeneous if there are isometries that
take x0 to x in its neighbourhood so that x � x0. These isometries
are generated by infinitesimal translations, which are transformations
(1.3.3) that take x0 into a point x in the immediate neighbourhood x0+

ε. Mathematically speaking, this condition is encoded by translations
with respect to the identity,

ξ(λ)µ(x0 , x0) :� δλµ , (2.1.1)

that is, when evaluated at x0, it must return the very point. Remem-
ber, here we are grabbing just a subset of N Killing vectors from the
maximal amount 1

2 N(N + 1), which is denoted by (λ) � 1, . . . ,N .

Since x0 is completely arbitrary, with no particular preference,
we can recursively go to infinitesimally neighbouring points by trans-
lating as we wish, thus covering the entire N-space, as we would ex-
pect from our intuitive notion of homogeneity.

Furthermore, this set of Killing vectors are evidently linearly
independent, since

cµξ
(µ)
ν(x , x0)

����
x�x0

� cµδ
µ
ν � 0

�⇒ cν � 0 , ∀ν .
On the other hand, a space time is named isotropic at x0 if there

are isometries that leave that point fixed, in a way that the derivatives
take all possible values. By leaving x0 fixed, we are essentially per-
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2 Maximally Symmetric Spaces and the Standard Model of Cosmology

forming an infinitesimal rotation in the neighbourhood of x0, condition
translated mathematically as

ξ
(αβ)

µ(x , x0) :� −ξ(βα)µ(x , x0) ,

ξ
(αβ)

µ(x0 , x0) :� 0 ,

ξ
(αβ)

λ;σ(x0 , x0) :�
[
∂
∂xσ

ξ
(αβ)

λ(x , x0)
]

x�x0

� δαλδ
β
σ − δασδ

β
λ ,

(2.1.2)

where in the last one the covariant derivative turned into an ordinary
one because locally the spacetime is flat.

The first represents the anti-commutativity expected from rota-
tions, the second is a consequence of the first, representing the fixed
point condition and the last one is the infinitesimal rotation generator.
The subset (αβ) may be thought as “two translations” along distinct
directions,

ξ
(αβ)
µ :�

[
ξ(α)µ

] (β)
,

spanning through all the anti-symmetric sector 1, . . . , 1
2 N(N − 1) of

(1.3.10). Those are also independent

dµνξ
(µν)
λ (x , x0) � 0 ,

for dµν anti-symmetric due to the anti-symmetry of (µν). In fact, de-
riving it covariantly with respect to σ,

dµνξ
(µν)
λ;σ (x , x0) � 0 ,

and evaluating it on x � x0, gives
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2.1 Maximally Symmetric Spaces

0 � dµν(δµλδ
ν
σ − δ

µ
σδ

ν
λ)

� dλσ − dσλ
� 2dλσ

�⇒ dλσ � 0 .

Taking one step further, we can determine a spacetime isotropic
everywhere. To do this, let us suppose that the same conditions (2.1.2)
are also valid for a point immediately close to x0, that is, ξ(αβ)µ (x , x0 +

dx0). If we are able to find a solution that maintains the same isotropic
qualities in an arbitrary neighbouring point, then it shall also attain the
homogeneity symmetry and thus be isotropic at every point.

Now, expanding ξ(αβ)µ (x , x0+dx0) around x0 up to the first order
of dx0,

ξ
(αβ)
µ (x , x0 + dx0) � ξ(αβ)µ (x , x0) +

∂
∂xσ0

ξ
(αβ)
µ (x , x0)dxσ0 ,

we see that
∂
∂xσ0

ξ
(αβ)
µ (x , x0) is a Killing vector by equivalence, con-

sidering that dx0 is arbitrary. So, to compute this derivative, we can
use the second property of (2.1.2), considering that x � x(x0),
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2 Maximally Symmetric Spaces and the Standard Model of Cosmology

0 ≡ ∂
∂xσ0

ξ
(αβ)

µ(x0 , x0) �
[
∂
∂xσ0

ξ
(αβ)

µ(x(x0), x0)
]

x�x0

+

[
∂
∂xσ0

ξ
(αβ)

µ(x(x0), x0)
]

x�x0

�

[
∂xλ

∂xσ0

∂

∂xλ
ξ
(αβ)

µ(x(x0), x0)
]

x�x0

+

[
∂
∂xσ0

ξ
(αβ)

µ(x(x0), x0)
]

x�x0

.

Since

xλ � xλ0 + ξλ(x(x0)) ; |ξ | � 1

�⇒ ∂xλ

∂xσ0
� δλσ +

∂ξλ

∂xσ0
(x(x0)) ,

we have

0 �

[
δλσ

∂

∂xλ
ξ
(αβ)

µ(x(x0), x0)
]

x�x0

+

[
∂
∂xσ0

ξ
(αβ)

µ(x(x0), x0)
]

x�x0

+ O
(
( ∂
∂x0

ξ)2
)

�⇒ ∂
∂xσ0

ξ
(αβ)

µ(x , x0)
����
x0

� − ∂
∂xσ

ξ
(αβ)

µ(x , x0)
����
x0

� −δαµδ
β
σ + δ

α
σδ

β
µ ,

where we discarted terms of the second order in
∂
∂x0

ξ. If we set a

Killing vector on x0 as
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2.1 Maximally Symmetric Spaces

ξµ(x � x0) � aµ

and contract ασ on the derivative with respect to x0 above,

∂
∂xα0

ξ
(αβ)

µ(x , x0)
����
x0

� −(N − 1)δβµ ,

we can construct Killing vectors

ξµ(x) �
aβ

N − 1
∂
∂xα0

ξ
(αβ)

µ(x , x0) (2.1.3)

that are connected, both homogeneous and isotropic at every point.
Thus, any spacetime that is isotropic everywhere is also homogeneous.
In this case the full linear independency can be written as

0 � cµξ
(µ)
λ(x , x0) + cαβξ

(αβ)
λ(x , x0)

i x�x0
� cµ ξ

(µ)
λ(x0 , x0)︸         ︷︷         ︸
�δ

µ
λ

+cαβ ξ
(αβ)

λ(x0 , x0)︸          ︷︷          ︸
�0

�⇒ cµ � 0

ii ∂ρ |x�x0 � cµ ξ
(µ)
λ,ρ(x , x0)

����
x0︸             ︷︷             ︸

�0

+cαβ ξ
(αβ)

λ,ρ(x , x0)
����
x0︸              ︷︷              ︸

�δ
αβ
λρ−δ

αβ
ρλ

� cλρ − cρλ
�⇒ cλρ � 0 ,

which is automatically satisfied by conditions (2.1.1) and (2.1.2). Then,
if a spacetime is homogeneous and isotropic at every point, it is MS.
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2 Maximally Symmetric Spaces and the Standard Model of Cosmology

The converse is also true. To demonstrate this we assume we
are in a MS spacetime and represent the linear independency as a
1
2 N(N + 1) × 1

2 N(N + 1) non-singular matrix ξ̂ composed of ξ(n)µ (x0)
and ξ(n)µ;ν(x0) ordered by µ > ν, where the last condition ensure we
will not overcount vectors. Such matrix has the form

ξ̂ �

©­­­­­­­­­­«

ξ1
1 · · · ξN

1 0 · · · 0
...

...
...

...
ξ1

N · · · ξN
N 0 · · · 0

0 · · · 0 ξ0
1;0 · · · ξ

1
2 N(N−1)

1;0
...

...
...

...

0 · · · 0 ξ0
N;N−1 · · · ξ

1
2 N(N−1)

N;N−1

ª®®®®®®®®®®¬
,

along with

d̂ �

©­­­­­­­­­«

c1
...

cN
d0
...

d 1
2 N(N−1)

ª®®®®®®®®®¬
â �

©­­­­­­­­«

a1
...

aN
b10
...

bN(N−1)

ª®®®®®®®®¬
,

such that we should be able to solve the system of equations

ξ̂d̂ � â

for d̂. Breaking into individual parts for ξµ and ξµ;ν,

67



2.1 Maximally Symmetric Spaces


∑
n

cnξn
µ(x0) � aµ(x0) ,∑

m
dmξm

µ;ν(x0) � bµν(x0) ,

for arbitrary aµ and bµν, with bµν � −bνµ and n � 1, . . . ,N and
m � 0, . . . , 1

2 N(N − 1). Given ξn
µ(x0) and ξn

µ;ν(x0), we feed them
back into (1.3.10) and determine ξn

µ(x) everywhere, but since aµ and
bµν are completely determined in a neighborhood of an arbitrary point
x0 through the previous equations, the whole spacetime has to be both
homogeneous and isotropic at every point.

As an example of MS spacetime, we make explicit the calcula-
tions for the flat spacetime

Example: Euclidian spacetime

Recalling (1.3.9)

ξµ;ρ;σ � Rλ
σρµξλ .

In an Euclidian spacetime, the Riemann tensor vanishes and the
covariant derivatives reduce to ordinary derivatives,

ξµ,ρ,σ � 0

�⇒ ξµ(x) � aµ + bµνxν ,

for aµ, bµν constants. From (1.3.8),
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2 Maximally Symmetric Spaces and the Standard Model of Cosmology

0 � ξµ;ν + ξν;µ

� bµσδσν + bνσδσµ
� bµν + bνµ

�⇒ bµν � −bνµ .

Chossing the 1
2 N(N + 1) Killing vectors as

ξ(λ)µ(x) � δλµ → infinitesimal translations ,

ξ
(αβ)

µ(x) � δαµxβ − δβµxα → infinitesimal “rotation”∗ ,

expression (1.3.10) gives

ξµ(x) � aλξ
(λ)
µ(x) + bαβξ

(αβ)
µ(x) .

Therefore the flat spacetime is indeed maximally symmetric.

We can also extend the notion of form invariant tensors now that
we know MS spacetimes are homogeneous and isotropic at every point.
Just like in (1.3.2), we define a form invariant tensor if

T′µν...(x) � Tµν...(x) ∀x (2.1.4)

is satisfied. In a similar fashion to (1.3.6), this condition is encoded as
the null Lie derivative under the infinitesimal transformation (1.3.3),
namely,
∗Note that those Killing vectors will only correspont to proper rotations for a flat

space. If we are instead working with spacetimes with no defined signature, those
“rotations” will correspond to boost components as well.
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2.1 Maximally Symmetric Spaces

Lξ[Tµν...] ≡ 0 � ξλTµν...,λ + ξλ,µTλν... + ξλ,νTµλ... + . . . .
(2.1.5)

We say T is Maximally Form Invariant if it has 1
2 N(N + 1)

Killing vectors satisfying (2.1.5). In that case, we are free to choose
Killing vectors ξµ(x0) and ξµ;ν(x0) such that

ξλ(x0) � 0 (2.1.6)

ξσ;ν(x0) � ξσ,ν(x0) �⇒ ξλ,ν(x0) � gλµ(x0)ξµ;ν(x0) .
(2.1.7)

This choice os Killing vectors represent the Geodesic frame of
reference; along the geodesic line there will be no translation (first
condition) and the spacetime is flat (second condition).

The isometry condition (2.1.5) at x0 then becomes

Lξ[Tµν...]
����
x0

� 0 � ξσ;τ(x0)
(
δτµTσν... (x0) + δτνT σ

µ ... (x0) + . . .
)
.

For this to be consistent for any x0, we remember the anti-
symmetry of the Killing condition (1.3.8) and impose that the term
inside the brackets is symmetric in στ. Consequently,

δτµTσν... + δ
τ
νT σ

µ ... + . . . � δ
σ
µTτν... + δ

σ
νT τ

µ ... + . . . , ∀x0 .
(2.1.8)

If this condition is satisfied, T will be a maximally form in-
variant tensor. Although this permits us to construct maximally form
invariant tensors of any order, we shall be only interested in tensors of
rank ≤ 2, except for the Riemann tensor.

5 Rank 1:
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2 Maximally Symmetric Spaces and the Standard Model of Cosmology

δτµAσ
� δσµAτ

NAσ
� Aσ

Aσ
�

{
0 ,N > 1 ,
any ,N � 1 .

5 Rank 2:

δτµBσν + δ
τ
νB σ

µ � δσµBτν + δ
σ
νB τ

µ ;

contracting τµ yields

(N − 1)Bσν + Bνσ � gσνBλλ . (2.1.9)

Anti-symmetrizing this expression,

(N − 2)(Bσν − Bνσ) � 0 ,

so that

�⇒ Bσν �

{
Bνσ ,N , 2
any ,N � 2

.

Let us consider cases for which N > 2, so plugging it back to
(2.1.9) gives

NBσν � gσνBλλ
∴ Bσν � f gσν , (2.1.10)
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2.1 Maximally Symmetric Spaces

where f is determined if we impose the form invariant condition
again,

Lξ[Bµν] ≡ 0 � Lξ[ f gµν]
� gµνLξ[ f ] + f Lξ[gµν]︸   ︷︷   ︸

�0

� gµνξλ f,λ

∴ f,λ � 0 �⇒ f (x) � const ≡ κ .

Therefore the only maximally form invariant rank 2 tensor is
the one and the same metric tensor apart from a multiplicative
constant.

Now, remembering the integrability conditions (1.3.11) and set-
ting the purely isotropical Killing vectors

{
ξµ(x) � 0
ξµ;ν(x) , 0

, (2.1.11)

we see that

(
− Rλ

ρσνδ
κ
µ + Rλ

µσνδ
κ
ρ − Rλ

νµρδ
κ
σ + Rλ

σµρδ
κ
ν

)
ξλ;κ � 0 ;

As a matter of fact, it is a maximally form invariant tensor, so, by
(2.1.8),

−Rλ
ρσνδ

κ
µ + Rλ

µσνδ
κ
ρ − Rλ

νµρδ
κ
σ + Rλ

σµρδ
κ
ν

� −Rκ
ρσνδ

λ
µ + Rκ

µσνδ
λ
ρ − Rκ

νµρδ
λ
σ + Rκ

σµρδ
λ
ν .

(2.1.12)
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2 Maximally Symmetric Spaces and the Standard Model of Cosmology

Contracting µκ gives

(N − 1)Rλρσν � Rσρgλν − Rνρgλσ . (2.1.13)

Since Rλρσν is anti-symmetrical in λρ,

Rσρgλν − Rνρgλσ � −
(
Rσλgρν − Rνλgρσ

)
;

contracting λν

NRσρ −���Rσρ � −
(
�
��Rσρ − Rλ

λgρσ

)

∴ Rσρ �
1
N

Rλ
λgσρ . (2.1.14)

Back to (2.1.13),

Rλρσν �
Rλ

λ

N(N − 1)

(
gσρ gλν − gνρ gλσ

)
, (2.1.15)

we get the curvature tensor only in terms of the Ricci scalar and the
metric tensor. Since MS spacetimes are isotropic at every point, the
Bianchi identities will be valid everywhere, which allows us to find the
Ricci scalar by returning (2.1.14) in
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2.1 Maximally Symmetric Spaces

0 �

(
Rµ

ν −
1
2
δ
µ
νRλ

λ

)
;µ

�

(
1
N
δ
µ
νRλ

λ −
1
2
δ
µ
νRλ

λ

)
;µ

�

(
1
N
− 1

2

)
δ
µ
νRλ

λ;µ

�

(
1
N
− 1

2

)
Rλ

λ,µ � 0

∴ Rλ
λ ≡ R � const �: N(N − 1)K ; N > 2 , (2.1.16)

where K is the curvature constant, N(N − 1) was put by hand to clear
(2.1.15) up a bit and it is valid for N > 2.

Finally, putting this back on (2.1.15) and (2.1.14) gives


Rλρσν � K

(
gνλ gρσ − gνρ gλσ

)
Rµν � (N − 1)K gµν

. (2.1.17)

Spacetimes that have those properties are called spacetimes of
constant curvature∗. Furthermore, this solution is also quite unique so
two “different” spaces with (2.1.17) are connected if and only if there
exists a diffeomorphism that takes x → x′, preserving the curvature
constant K, if both have the same metric signature.

To prove that, we consider two distinct curvature tensors

∗Another elegant way to determine this constant curvature tensor is to notice that
the curvature tensor itself is an isometry, that is, Lξ[Rµναβ] � 0, and solve the
equation to find (2.1.17).
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
Rλρσν(x) � K

(
gνλ(x)gρσ(x) − gνρ(x)gλσ(x)

)
R′λρσν(x′) � K′

(
g′νλ(x′)g′ρσ(x′) − g′νρ(x′)g′λσ(x′)

) .

Since the metric tensors have the same signature, there exists a
coordinate transformation that takes x → x′:

R′λρσν(x
′) � ∂xα

∂x′λ
∂xβ

∂x′ρ
∂xγ

∂x′σ
∂xδ

∂x′ν
Rαβγδ(x)

�
∂xα

∂x′λ
∂xβ

∂x′ρ
∂xγ

∂x′σ
∂xδ

∂x′ν
K
(
gδα(x)gβγ(x) − gδβ(x)gαγ(x)

)
� K

[(
∂xδ

∂x′ν
∂xα

∂x′λ
gδα(x)

) (
∂xβ

∂x′ρ
∂xγ

∂x′σ
gβγ(x)

)
−

(
∂xδ

∂x′ν
∂xβ

∂x′ρ
gδβ(x)

) (
∂xα

∂x′λ
∂xγ

∂x′σ
gαγ(x)

)]
� K

[
g′νλ(x

′)g′ρσ(x′) − g′νρ(x′)g′λσ(x
′)
]

� K
1
K′

R′λρσν(x
′)

�⇒ K′ � K .

To construct the line element and determine the MS metric ten-
sor, we shall employ the method of embedded spaces, in which we in-
sert the actual N-dimensional spacetime as the surface of a N−sphere
(or of an N−dimensional hyperboloid if K < 0) in a (N+1)−dimensional
space. By doing that, the intrinsic curvature properties will emerge as
external curvature, just as we see the inherit curvature of a 3D sphere,
for instance. That is done by adding a z coordinate that is constrained
by the unitary (N + 1)−sphere
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Khµνxµxν + z2
� 1 , (2.1.18)

giving the line element

ds2
� gAB dxAdxB , A, B � 0, . . . ,N

� Khµνdxµdxν + dz2

� hµνdxµdxν + K−1dz2 , µ, ν � 0, . . . ,N − 1 (2.1.19)

where a simple redefinition of xµ and z enables us to rearrange K and
hµν is some N × N constant metric tensor.

Differentiating (2.1.18),

0 � 2Khµνxµdxν + 2zdz

dz2
�

K2(hµνxµdxν)2

z2

�
K2(hµνxµdxν)2

1 − Khαβxαxβ

and plugging it back to (2.1.19), we obtain

ds2
�

[
hµν +

K
1 − Khαβxαxβ

hµσxσhνρxρ
]
dxµdxν (2.1.20)

∴ gµν � hµν +
K

1 − Khαβxαxβ
hµσxσhνρxρ , (2.1.21)

which is MS since hµν has N2/2 independent components and (2.1.18)
gives the other N/2.

As a freebie we get rotation symmetries around the (N+1)−sphere
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embedding, so the spacetime interval above has to be invariant under
transformations of the SO(N + 1) rotation group

{
xµ → x′µ � Rµ

νxν + Rµ
z z

z → z′ � Rz
νxν + Rz

z z
, (2.1.22)

where RA
B are constants. Thus, from (2.1.19),

ds′2 � hαβdx′αdx′β + K−1dz′2

�

(
hαβRα

µRβ
ν + K−1Rz

µRz
ν

)
dxµdxν

+

(
2hαβRα

σRβ
z + 2K−1Rz

σRz
z

)
dxσdz

+

(
hαβRα

zRβ
z + K−1(Rz

z)2
)

dz2 ,

or,

hαβRα
µRβ

ν + K−1Rz
µRz

ν � hµν ,

hαβRα
σRβ

z + K−1Rz
σRz

z � 0 ,

hαβRα
zRβ

z + K−1(Rz
z)2 � K−1 .

(2.1.23)

We split those transformations in two distinct simpler classes to
facilitate our understanding of them.

1 Rigid rotations on the actual coordinates
Rµ

ν � Rµν ; Rµν ∈ SO(N)
Rµ

z � Rz
ν � 0

Rz
z � 1
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�⇒
{

x′µ � Rµνxν

z′ � z
�⇒ hαβRαµR

β
ν � hµν .

(2.1.24)

2 Quasi-translations (aµ ∈ R)
Rµ

z � aµ

Rz
µ � −Khµνaν

Rz
z � (1 − Khαβaαaβ) 1

2

Rµ
ν � δ

µ
ν − bKhνρaµaρ ; b �

1−(1−Khαβaαaβ)
1
2

Khσρaσaρ ,

with Rz
z ∈ R �⇒ Khαβaαaβ ≤ 1

�⇒ x′µ � (δµν − bKhνρaµaρ)xν + aµz

x′µ � xµ + aµ
[
(1 − Khαβaαaβ) 1

2 − bKhνρaρxν
]

z′ � −Khµνaνxµ +
[
(1 − Khαβaαaβ)(1 − Khσρxσxρ)

] 1
2

.

(2.1.25)

The associated Killing vectors come from the infinitesimal group
elements of the transformations above

1 Infinitesimal transformation of SO(N)

Rµν � δ
µ
ν + εΩ

µ
ν ,

hµσΩ
µ
ρ + hµρΩ

µ
σ � 0 ,
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where |ε | � 1, Ωµν � −Ωνµ

�⇒


x′µ � Rµνxν

� xµ + εΩµνxν

x′µ � xµ + εξµ

∴ ξ
µ

iso(x) � Ω
µ
νxν . (2.1.26)

2 Infinitesimal transformation of TN

aµ → εαµ , |ε | � 1

�⇒


x′µ � xµ + εαµ(1 − Khαβxαxβ) 1

2 + O(ε2)

x′µ � xµ + εξµ

∴ ξ
µ

homo(x) � α
µ(1 − Khσρxσxρ) 1

2 . (2.1.27)

If we count all the free parameters we verify the maximum num-
ber of Killing vectors. Indeed

5 Ω
µ
ν: N × N anti-symmetric matrix �⇒ 1

2 N(N − 1)
independent entries;

5 αµ: N-dimensional vector �⇒ N independent entries;

∴ 1
2 N(N + 1) symmetries �⇒ MS.

We shift our focus now from the symmetry analysis to some
physical results
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Geodesic equations

From (1.1.47), with

Γ
µ
αβ �

1
2

gµν
(
gαν,β + gνβ,α − gαβ,ν

)
,

gµν � hµν +
K

1 − Khαβxαxβ
hµσxσhνρxρ ,

we get

Γ
µ
αβ � K gαβxµ , (2.1.28)

where we used

gµνhνσ � δ
µ
σ −

K
1 − Khαβxαxβ

gµνhναhσβxαxβ

to discover the inverse metric gµν contration with the original metric
hνσ.

When put back into the geodesic equation, it takes the simple
shape

d2xµ

dτ2 + K gαβxµ
dxα

dτ
dxβ

dτ
� 0

d2xµ

dτ2 + Kxµ � 0 , (2.1.29)

where we used the fact that uαuα � 1, and has the familiar solutions
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xµ �


{sin(
√

Kτ), cos(
√

Kτ)} , K > 0
{sinh(

√
−Kτ), cosh(

√
−Kτ)} , K < 0

aµ + bµτ , K � 0

. (2.1.30)

Here we verify once again that for flat spacetimes, the geodesics
are indeed straight lines.

Next we verify that the curvature tensor constructed with (2.1.21)
corresponds to the MS (2.1.17) found previously. Starting from

Rµ
ναβ � Γ

µ
να,β − Γ

µ
νβ,α + Γ

ε
νβΓ

µ
εα − ΓεναΓ

µ
εβ

� (Kxµgνα),β − (Kxµgνβ),α
+ (Kxεgνβ)(Kxµgεα) − (Kxεgνα)(Kxµgεβ)

� K
[
(gνβ,α − gνα,β)xµ − (δµα gνβ − δµβ gνα)

]
+ K2

[
gναgεβ − gνβgεα

]
xεxµ (2.1.31)

we obtain

Rµναβ � K
(
gµαgνβ − gµβgνα

)
, (2.1.32)

as desired. Therefore, the constant K put quite artificially into (2.1.19)
does in fact coincide with the curvature constant of MS spaces. More-
over, since hµν is an arbitrary metric tensor, after all, we can always
change it through diffeomorphisms. Due to that reason, we can impose
a particular form for that metric tensor with a Riemannian signature,
which shall be useful in the future, when we start dealing exclusively
with the space sector.

Enforcing
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hµν ≡
{
|K |−1δµν , K , 0
δµν , K � 0

(2.1.33)

into (2.1.21), we obtain

ds2
�


K−1

(
dx2 +

(x · dx)2
1 − x2

)
, K > 0

|K |−1

(
dx2 − (x · dx)2

1 + x2

)
, K < 0

dx2 , K � 0

. (2.1.34)

By a suitable change of coordinates, we are able to condense the
above conditions to

ds2
� dx2

+ k
(x · dx)2
1 − kx2 , (2.1.35)

where k is the curvature parameter and is normalized to the three pos-
sible values k � 0,±1, without loss of generality.

As a function of z, we get from (2.1.35)

ds2
�


K−1

(
dx2 + dz2

)
, K > 0

|K |−1

(
dx2 − dz2

)
, K < 0

. (2.1.36)

It is evident that it represents the surface of the (N + 1)−sphere
(hyperbole) with radius K−

1
2 and thus represents finite (infinite) spaces,

even when approaching the aparent singularity at x2 as seen in (2.1.35).
This last bit deserves a more commentary: a particle travelling around
the (N + 1)−sphere will swap to the other z solution when it passes
through the singularity, all thanks to an ambiguity of this coordinate in
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the quadratic interval (2.1.18).

2.1.1 Maximally Symmetric Subspaces

We have seen so far many of the great qualities a spacetime have
if it is MS, but although it is very tempting, most of the times the
whole space being MS does not represent the reality. Still, its valuable
properties are assured if subsets of the space are MS instead, which
in turn represents real physical conditions. In fact, the vast majority
of maximal symmetry is only applied to a restrict subspace of lower
dimension; in particular, in a usual 4-dimensional spacetime, the 3-
dimensional spatial sector might be MS whereas the time sector de-
couples from the whole description.

Figure 13: Subspaces diagram. Here we omitted the metric from the
notation for clarity.

This decomposition is actually a critical theorem of this whole
formalism and the proof of it will be the focus of this subsection. The
subdivision theorem is stated, mathematically, as

ds2
� gµνdxµdxν � gab(v)dva dvb

+ f (v) g̃i j(u)du i du j , (2.1.37)

with f (v) being a parametric scale factor of the MS metric tensor
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g̃i j(u).

So letM be a N−dimensional spacetime andS a M−dimensional
MS subspace with M < N , such that it admits 1

2 M(M+1) independent
Killing vectors. We label by u i the coordinates of the MS subspace S
and by va the coordinates of the complementary (N−M)−dimensional
subspace S̄, where i , j, k , . . . and a , b , c , . . . label the respective coor-
dinates. By hypothesis, we assume the full space to be invariant under
the following infinitesimal transformations:

u i → u′i � u i
+ εξ i(u; v) ,

va → v′a � va ,
(2.1.38)

where the Killing vectors ξ i(u; v) depends on the u-coordinates of S
and may depend parametrically on va .

Next, we break the metric tensor in three pieces – one purely
function of the u−coordinates, gi j , other only on the v−coordinates,
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gab , and a mixed one, gia , – and apply the isometry conditions (1.3.6):

Lξ[gi j] ≡ 0 � ξk(u , v)
∂gi j(u , v)
∂uk

+ gk j(u , v)
∂ξk(u , v)
∂u i

+ gik(u , v)
∂ξk(u , v)
∂u j

, (2.1.39a)

Lξ[gia] ≡ 0 � ξk(u , v)
∂gia(u , v)
∂uk

+ gka(u , v)
∂ξk(u , v)
∂u i

+ gik(u , v)
∂ξk(u , v)
∂va

, (2.1.39b)

Lξ[gab] ≡ 0 � ξk(u , v)
∂gab(u , v)
∂uk

+ gkb(u , v)
∂ξk(u , v)
∂va

+ gak(u , v)
∂ξk(u , v)
∂vb

. (2.1.39c)

Immediately we see that (2.1.39a) represents precisely the MS
condition of S, which is to be expected from our construction. Since
there are no v−coordinate derivatives, we conclude that this metric
depends parametrically on va ,

gi j(u , v) → gi j(u; v) → homogeneous and isotropic ∀v .

The other conditions mix up both derivatives with respect to the
S− and S̄−coordinates, that is, u and v respectively. To disentangle
them we can find a coordinate system such that g′ia � 0, which exists
if there is a change of coordinates such that
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g′ja(u
′, v′) ≡ 0 �

∂u l

∂u′j
∂uk

∂v′a
glk(u , v) +

∂u l

∂u′j
∂vb

∂v′a
glb(u , v)

+

�
�
��7

0
∂vb

∂u′j
∂uk

∂v′a
gbk(u , v) +

�
�
��7

0
∂vb

∂u′j
∂vc

∂v′a
gbc(u , v)

�
∂u l

∂u′j
∂uk

∂v′a
glk(u , v) +

∂u l

∂u′j
gla(u , v)

�
∂u l

∂u′j

(
∂uk

∂v′a
glk(u , v) + gla(u , v)

)
,

where we used the fact that v � v(v′) and u � u(u′, v′) from (2.1.38).
Then if

∂uk

∂v′a
glk(u , v) � −gla(u , v) , (2.1.40)

respecting the initial condition u(u0 , v0) � u0, we guarantee that
g′ia � 0. However, we still have to demonstrate that the above dif-
ferential equation always has a solution, which boils down to verify if
it satisfies the integrability conditions.

For clarity, we shall change uk by its uppercase counterpart Uk

and define the new quantity

∂Uk

∂va :� −Fk
a (U, v) (2.1.41)

(2.1.40)
�⇒ Fk

a (U, v) � g ik(U, v)gka(U, v) .

To demonstrate what is desired, we will work with a Taylor ex-
pansion of Uk in the neighbourhood of v0, proving by induction
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Uk
� ck

+ ck
a(v − v0)a + ck

ab(v − v0)a(v − v0)b + . . .

�

∑
n

1
n!

ck
a1 ...an
(v − v0)a1 . . . (v − v0)an ,

where the symbol ck
a1 ...an

is a shorthand collection of all the lower
rank constants with ck ≡ ck

0...0, ck
a ≡ ck

a0...0, and so on.

The initial conditions take the form

{
ck � uk

0

ck
a � −Fk

a (u0 , v0) .

We can also represent Fk
a as a series expansion

Fk
a (U(u0 , v), v) �

∑
n

1
n!

f k
ab1 ...bn

(v − v0)b1 . . . (v − v0)bn .

If Fk
a is valid up to the nth order, then, by (2.1.41), Uk must be

valid up to the (n + 1)th order. This term is given by

Uk
[n+1] �

1
(n + 1)! f k

ab1 ...bn
(v − v0)a(v − v0)b1 . . . (v − v0)bn .

From this, we get that the constants, f k
ab... have to be symmetric

in all of their lower indices (a and b’s). This condition can be stated as

∂Fk
a (U(u0 , v), v)
∂vb

�
∂Fk

b (U(u0 , v), v)
∂va ,

up to the (n − 1)th order. One of these derivatives can be written as
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∂Fk
a (U(u0 , v), v)
∂vb

�

[
∂Fk

a (u , v)
∂u l

∂u l

∂vb
+
∂Fk

a (u , v)
∂vb

]
u�U(u0 ,v)

(2.1.41)
�

[
− F l

b (u , v)
∂Fk

a (u , v)
∂u l

+
∂Fk

a (u , v)
∂vb

]
u�U(u0 ,v)

;

thus

−F l
b (u , v)

∂Fk
a (u , v)
∂u l

+
∂Fk

a (u , v)
∂vb

� −F l
a (u , v)

∂Fk
b (u , v)
∂u l

+
∂Fk

b (u , v)
∂va

. (2.1.42)

The last equation is always valid. Indeed, by the isometry rela-
tions (2.1.39a,2.1.39b), one can show that

0 �

{
Fk

a
∂Fm

b

∂uk
− Fk

b
∂Fm

a

∂uk
+
∂Fm

a

∂vb
−
∂Fm

b

∂va

}
∂ξ l

∂um

+

{
− Fk

a
∂2F l

b

∂uk∂um
+ Fk

b
∂2F l

a

∂uk∂um

+
∂Fk

b

∂um
∂F l

a

∂uk
− ∂Fk

a

∂um

∂F l
b

∂uk
− ∂2F l

a

∂vb∂um
−

∂2F l
b

∂va∂um

}
ξm

.

Since the Killing vectors are arbitrary and can be determined for
the entirety of the MS spacetime, we choose x0 such that

{
ξk � 0 ,
ξk;i � arbitrary ,

therefore
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0 �

{
Fk

a
∂Fm

b

∂uk
− Fk

b
∂Fm

a

∂uk
+
∂Fm

a

∂vb
−
∂Fm

b

∂va

}
∂ξ l

∂um

�⇒ Fk
a
∂Fm

b

∂uk
− Fk

b
∂Fm

a

∂uk
�
∂Fm

b

∂va −
∂Fm

a

∂vb
, (2.1.43)

which is exactly (2.1.42), so we can always find Fk
a satisfying (2.1.40)

such that

g′ia � 0 .

In this frame of reference, we can go back to (2.1.39) to deter-
mine the last two isometry conditions we have when decoupling the
MS subspace S from the whole space. Imposing

· Lξ[gia] � 0 � gik(u , v)
∂ξk(u , v)
∂va , det ĝ , 0

�⇒ ∂ξk

∂va � 0 �⇒ ξk
� ξk(u) (2.1.44)

and

· Lξ[gab] � 0 � ξk(u)
∂gab

∂uk
;

since ξk are arbitrary,

∂gab

∂uk
� 0 �⇒ gab � gab(v) . (2.1.45)

In other words, the Killing vectors are in fact function only of the
MS u−coordinates and the complementary S̄ metric gab is a function
only of its v−coordinates.
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It only remains to be shown what dependency the MS metric gi j
has on u and v. That can be easily done when we recall (2.1.10) from
the discussion of maximally form invariant tensors, writing

gi j � f (v) g̃i j(u) . (2.1.46)

Putting everything back together, we can finally construct the
spacetime interval

ds2
� gab(v)dva dvb

+ f (v) g̃i j(u)du i du j ,

which is the desired result, thus demonstrating the theorem.

Moreover, since g̃i j is MS, we can use the MS interval (2.1.34)
we previously found,

ds2
� gab(v)dva dvb

+ f (v)
[
du2

+ k
(u · du)2
1 − ku2

]
, (2.1.47)

where k � 0,±1. To finalize this study, we shall unwrap a few particu-
lar cases for some recurring scenarios, backed by two physical scenar-
ios of interest.

2.1.2 Particular Maximally Symmetric Subspaces

Whole 3 + 1−spacetime MS

From (2.1.21), imposing

hµν ≡ ηµν ,

where η is the Minkowski metric tensor, we get the following space-

90



2 Maximally Symmetric Spaces and the Standard Model of Cosmology

time interval

ds2
� dt2 − dx2

+
K

1 − Khαβxαxβ

(
tdt − x · dx

)2

. (2.1.48)

If K > 0 we can change the coordinates by


t → 1√

K

[
1
2 Kx′2 cosh(

√
Kt′) +

(
1 +

1
2 Kx′2

)
sinh(

√
Kt′)

]
,

x → x′ exp(
√

Kt′) ,

giving

ds2
� dt′2 − exp(2

√
Kt′)dx′2 .

Transforming once again by


t′′ � t′ − 1

2
√

K
ln

(
1 − Kx′2 exp(2

√
Kt′)

)
,

x′′ � x′ exp(
√

Kt′) ,

we get rid of all the time dependency on the spatial sector:

ds2
� (1 − Kx′′2)dt′′2 − dx′′2 − K

1 − Kx′′2
(
x′′ · dx′′

)2
. (2.1.49)

This is the well known (anti-)de Sitter universe for K > 0 (K <
0) expressed in hyperbolic coordinates.

MS 3-subspace with spherical symmetry and constant curvature

Assuming N � 3 dimensions in spherical coordinates and a
positive curvature k � +1. The angular S-coordinates {θ, φ} are MS
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whereas r is of S̄. So the spacetime interval (2.1.47) breaks down to


v ≡ r

u ≡ {θ, φ} �
{

u1 � sin θ cosφ
u2 � sin θ sinφ

so that

{
du1 � dθ cos θ cosφ − dφ sin θ sinφ
du2 � dθ cos θ sinφ + dφ sin θ cosφ

→ u2
� sin2 θ

→ du2
� dθ2 cos2 θ + dφ2 sin2 θ

→ u · du � dθ sin θ cos θ

∴ gi j du i du j
�

[
du2

+ k
(u · du)2
1 − ku2

]
� dθ2

+ sin2 θdφ2 ,

yielding

ds2
� g(r)dr2

+ f (r)
(
dθ2

+ sin2 θdφ2
)
,

where g(r), f (r) are compatible with metrics with positive signature.
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MS spacetime with spherical symmetry and constant curvature

Similarly to the previous example, we consider a spacetime of
N � 3 + 1 dimensions, positive curvature k � +1 and a Lorenzian
metric signature (+ − −−). The angular coordinates {θ, φ} are again
MS in S but now both {t , r} live in S̄.

{
v � {t , r}
u � {θ, φ}

∴ ds2
� gab dva dvb

+ f (r) g̃i j dx i dx j ,

where gab has a (+−) signature and

ds2
� gtt(t , r)dt2

+ 2gtr(t , r)dtdt + grr(t , r)dr2

− f (t , r)
(
dθ2

+ sin2 θdφ2
)

.

Spacetime with a MS spatial sector, spherical symmetry and arbi-
trary curvature

Now, the entirety of the spatial sector is MS, so {r, θ, φ} live in
S and only the time coordinate in S̄, with arbitrary constant curvature
k:


v � t

u � {r, θ, φ} �


u1 � r sin θ cosφ
u2 � r sin θ sinφ
u3 � r cos θ

so that

93



2.1 Maximally Symmetric Spaces


du1 � dr sin θ cosφ + dθr cos θ cosφ − dφr sin θ sinφ
du2 � dr sin θ sinφ + dθr cos θ sinφ − dφr sin θ cosφ
du1 � dr cos θ − dθr sin θ + 0

giving

ds2
� g(t)dt2

+ f (t)
(
du2

+ k
(u · du)2
1 − ku2

)
.

Defining

t′ ≡
∫

dt
√

g(t) → f (t) ≡ −S2(t) ,

we get

ds2
� dt2 − S2(t)

(
du2

+ k
(u · du)2
1 − ku2

)
.

Next, opening the scalar products inside the brackets,

u2
� r2

→ du2
� dr2

+ r2dθ2
+ r2 sin2 θdφ2

→ u · du � rdr ,

results in
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gi j du i du j
� dr2

+ r2dθ2
+ r2 sin2 θdφ2

+ k
r2dr2

1 − kr2

�
dr2

1 − kr2 + r2dθ2
+ r2 sin2 θdφ2

so that

ds2
� dt2 − S2(t)

[
dr2

1 − kr2 + r2(dθ2
+ sin2 θdφ2)

]
, (2.1.50)

which is none other than the Friedmann-Lemaı̂tre-Robertson-Walker
spacetime interval, the standard model of modern Cosmology.

It is remarkable that we could construct this line element from
the ground up in a solid and robust way by using just premises of sym-
metry, encoded within the Killing vectors and inherit to the isometries
of the metric tensor. We recall that by virtue of being MS, the spatial
sector is automatically homogeneous and isotropic about every point,
which are the basic heuristic ingredients frequently used in the litera-
ture of gravitation and Cosmology.

In the next section we will explore the main consequences and
results that we can extract from (2.1.50), comparing with the observa-
tional data, that makes this model the standard adopted by the cosmol-
ogists.

2.2 The Friedmann-Lemaı̂tre-Robertson-Walker Cosmology

Recalling the FLRW line element (2.1.50) derived above

95



2.2 The Friedmann-Lemaı̂tre-Robertson-Walker Cosmology

ds2
� dt2 − S2(t)

(
dr2

1 − kr2 + r2dΩ2
)
, (2.2.1)

where we interpret S2(t) as the conformal factor related to the scale
factor of the Universe (the Hubble constant), dΩ2 � dθ2 + sin2 θdφ2

is the element of solid angle, and

k �


−1, open space
0, flat space
+1, closed space

, (2.2.2)

is the curvature constant, remembering that any other value of it can be
brought to {0,±1} by a suitable coordinate transformation.

From this spacetime interval, we infer the metric

gµν �


1 0 0 0
0 − S2

1−kr2 0 0
0 0 −S2r2 0
0 0 0 −S2r2 sin2 θ

 , (2.2.3)

and its inverse

gµν �


1 0 0 0
0 − 1−kr2

S2 0 0
0 0 − 1

S2r2 0
0 0 0 − 1

S2r2 sin2 θ

 . (2.2.4)

By tediously calculating all the non-vanishing Christoffel sym-
bols, we get
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Γ1
01 � Γ2

02 � Γ3
03 �

ÛS
S

Γ0
11 �

S ÛS
1 − kr2 ; Γ0

22 � r2S ÛS

Γ0
33 � r2 sin2 θS ÛS ; Γ1

11 �
kr

1 − kr2

Γ1
22 � −r(1 − kr2) ; Γ1

33 � −r sin2 θ(1 − kr2)

Γ2
12 �

1
r

; Γ2
33 � − sin θ cos θ

Γ3
23 � cot θ

(2.2.5)

With those in hand, we are able to compute the Ricci tensors
(1.1.52) and then the Einstein equations (1.1.59):

Rµν � Γ
λ
µν,λ − Γ

λ
µλ,ν − Γ

ε
µλΓ

λ
εν + Γ

ε
µνΓ

λ
ελ , (2.2.6)

those resulting in

R0
0 � −

ÜS
S
,

R1
1 � R2

2 � R3
3 � −

ÜS
S
− 2 ÛS2 + 2k

S2 ,

Rµ
ν � 0 ; µ , ν ,

R � −6
( ÜS

S
+
ÛS2 + k

S2

)
(2.2.7)
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and

G0
0 � 3

ÛS2 + k
S2 � 8πGT0

0
, (2.2.8a)

G0
j � 0 � −8πGT0

j , (2.2.8b)

Gi
j � δ

i
j

( ÛS2 + k
S2 + 2

ÜS
S

)
� 8πGT i

j . (2.2.8c)

These are the Einstein field equations for the FLRW Universe
model. To study these equations more deeply, we have to specify an
energy-momentum tensor Tµν consistent with the actual observations.
One of such is the fluid energy-momentum tensor in equilibrium,

Tµν � (p + ε)uµuν − p gµν , (2.2.9)

in the perfect fluid approximation with constant pressure among parti-
cles, described by the conditions

T0
0 � ε ,

T1
1 � T2

2 � T3
3 � const � −p ,

Tµν � 0 , µ , ν ,

where ε is the energy density and p the pressure.

In this approximation, each galaxy of our Universe is, in fact,
treated as a “particle” while the constant pressure components are all
equal due to the spatial homogeneity and isotropy. While apparently
preposterous, this approximation is quite good; the observational data
indicate that this is the approximately the case, at large scale.

We also have to impose the Weyl postulate. It states that all
galactic motions are given in the time direction, mathematically ex-
pressed by the 4-velocity
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uµ � (1, 0, 0, 0) , (2.2.10)

which is also supported by observational data, up to a mean spatial
velocity of the order ṽ ∼ 1000 km · s−1. We shall discuss shortly the
validity of such approximations.

The energy-momentum tensor (2.2.9) gives the necessary equa-
tions of state for the field equations (2.2.8) above. Indeed, from (2.2.8a)
and using (2.2.8c), we get

∴
d

dS
(T0

0 S3) − 3T i
i S2

� 0 . (2.2.11)

Imposing the condition of non-interacting free-falling dust, given
by T0

0 � ε ≡ ρ and null pressures p � 0, gives

Tµν � εuµuν

�⇒ T00
� ε ≡ ρ ; T i j

� −p � 0 ; (2.2.12)

we further simplify the energy-momentum tensor, which enables us
to study the validity of those approximations at the present, past and
future.

Let us consider a spatial pertubation to Weyl’s postulate, intro-
ducing a 4-velocity of the order β̃ ∼ 10−2 and comparing it to the order
of magnitude of the pressure with relation to the energy density:

p ∼ β̃2ε

∼
(
10−2

)2

ε

∼ 10−4ε ,
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which is insignificant at the present epoch. To analize the validity of
this approximation in the past and future, we make use of the geodesic
equation (1.1.47) to find a conservation law relating the 4-velocity uµ

and the scale factor S, for u i � 1,

0 �
duµ

dτ
+ Γ

µ
αβuαuβ

�
duµ

dτ
+ 2δµi

ÛS
S

u i .

For the time and space components we have, respectively,

du0

dτ
≡ 0 � 0

d(ln u i) � d(ln S−2)

�⇒ u iS2
� const . (2.2.13)

Since S is present in the spatial sector of (2.2.1), the 4-velocity
in the comoving frame∗ also carries along a multiplicative factor so
that the proper 4-velocity, u i

proper, has to decrease with S−1 in order to
satisfy (2.2.13) at all epochs,

u i
proper � Su i ∝ S−1 .

Therefore, this pertubation tends to diminish in the future, guar-
anteeing the validity of the perfect fluid approximation. Nevertheless,
things were not so bright in the past, and we need another way to assess
it.

Consider then two distinct regimes, which we call radiation

∗A comoving frame is such that all the particles of the system are dragged along
the same time-like geodesic everywhere, being described by the spacetime interval
ds2 � dt2 − ζi j(x; t)dx i dx j . In the present context, the space metric ζ, parametrized
by t, reduces to the scale factor S(t).
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dominated era (p ∝ 1
3ε) and the matter dominated era (p � 0; ε � ρ),

inevitably passing through a phase transition at some point in the past,
when S � S0.

5 Matter dominated era:

This era is characterized by

p � 0 ; ε � ρ ; S > S0 .

From (2.2.11),

d
dS
(ρS3) � 0

and, integrating it over dS from S0 to S(t), where S0 � S(t0) is
the scale factor at the present time t0, results

ρ0S3
0 − ρS3(t) � 0 (2.2.14)

�⇒ ρ(t) � ρ0

(
S0

S(t)

)3

, (2.2.15)

meaning that ρ ∝ S−3 from now to the future S > S0.

5 Radiation dominated era:

The radiation era is fully described by significative radiation
pressure, equiparted due to isotropy

p �
1
3
ε ; S < S0 .

Hence, from (2.2.11),
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d
dS
(εS3) + 3(1

3
ε)S2

� 0 ;

multiplying by S,

S
d

dS
(εS3) + εS3

� 0 ,

d
dS
(εS4) � 0 ,

and integrating over dS yields

ε(t) � ε0

(
S0

S(t)

)4

. (2.2.16)

Therefore we get for the past S < S0 an order of magnitude of
ε ∝ S−4.

Observational data points to energy and matter densities of the
order ε0 ∼ 10−13 er g · cm−3 and ρ0 ∼ 10−10er g · cm−3 · c−2, so

ε0

ρ0c2 ∼ 10−3 .

Comparing both densities above (c � 1),

ε
ρ
�
ε0(S0/S)4
ρ0(S0/S)3

�
ε0

ρ0

S0

S

∼ 10−3 S0

S
,
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we conclude that the approximation in question is valid if the scale
ratio S0

S . 103, otherwise both radiation and matter will be indistin-
guishable, breaking the premises of the approximation and thus, the
validity of Weyl’s postulate.

By virtue of that, we have to keep in mind that the results hence-
forward are valid for epochs such that S0

S is small enough for matter to
be decoupled from radiation.

Before inserting the energy-momentum tensor (2.2.12) into the
Einstein equations (2.2.8), we need first to derive a necessary result,
to enable us to compare with real data; the redshift relations from the
FLRW line element (2.2.1).

Redshift

The redshift, of the Doppler effect of light, is characterized by
the broadening of electromagnetic wavelengths, i.e. light, due to the
constancy of the speed of light by the relative motion of the object
and its observer. If λe is the actual emitted wavelength and λo is the
observed quantity, then the redshift z is then given by

1 + z :�
λo

λe
.

This is of particular interest, since Edwin Hubble’s26 discovery
in 1929 that extragalactic objects are all distancing themselves away
from us, pointing to a Universe expansion; the greater the distance of
a given object, the greater is its redshift. His relation, coined Hubble’s
law, is a linear relation between the redshift itself and the luminous
distance D of the objects

z � H0D ,

where the constant of proportionality H0 is the so-called Hubble con-
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stant.

Although empirically found by Hubble, we can show that it can
be deduced from the FLRW spacetime interval (2.2.1) quite nicely.

Figure 14: Redshift observation.

Considering radial light rays (ds � 0; θ and φ constant) coming
from some galaxy located at a distance r, emitted at an instant t and
detected at t0. Since the space is homogeneous and isotropic every-
where, we can choose the origin at the emission point, in the galaxy, as
shown in Fig. 14. We can then compute the null-path the light travels,

ds2 ≡ 0 � dt2 − S2(t)
1 − kr2 dr2

dt � ± S√
1 − kr2

dr .

Integrating both sides and choosing the positive sign,

∫ t0

t

dt
S

�

∫ r

0

dr√
1 − kr2

. (2.2.17)

When the law was first discovered, the maximum observed red-
shift was of the order z ≈ 0.003, small enough to justify an expansion
of the integrands above. In this regime, S will barely vary, taking the
value S0 instead.
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Figure 15: Hubble’s law. The velocity on the y-axis can be encoded as
the redshift z (From E. Hubble26).

∫ t0

t

dt
S
≈ 1

S0

∫ t0

t
dt ≈ t0 − t

S0
.

The righthand side of (2.2.17) can be expanded for small r as
well,

∫ r

0

dr√
1 − kr2

≈
∫ r

0
dr(1 + O(r)) ≈ r

Comparing both expansions, we arrive at

D :� rS0 ≈ t0 − t , (2.2.18)

where D :� rS0 is the luminous distance of an object corrected by the
expansion factor.

Now, expanding S(t) in a Taylor series up to the first order,
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S(t) ≈ S0 +
dS
dt

����
t�t0

(t − t0)

≈ S0 −
ÛS
S

����
t�t0

(t0 − t) S0 ,

and considering the redshift correction

S(t) � S0

1 + z
≈ S0(1 − z) ,

both have to be consistent with each other, namely,

S0(�1 − z) � S0

(
�1 −
ÛS
S

����
t�t0

(t0 − t)
)

∴ z �
ÛS
S

����
t�t0

(t0 − t) .

Then, by (2.2.18), it is immediate that

z �
ÛS
S

����
t�t0

D (2.2.19)

� H0D , (2.2.20)

recovering the empirical law, as desired. Modern measurements of the
Hubble constant give H0 � h0×100 km · s−1 ·Mpc−1 with 0.5 ≤ h0 ≤
1.0.

Let us resume to the specific calculations of the Friedmann so-
lutions.
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Flat sector k � 0

For k � 0, we get from (2.2.8) the following Einstein field equa-
tions, considering the limit of the matter dominated era (2.2.15)

( ÛS
S

)2

�
8πG

3
ρ

�
8πG

3
ρ0

(
S0

S

)3

,

or yet

ÛS2
�

8πG
3
ρ0

S3
0

S
. (2.2.21)

Evaluating at the present epoch t � t0,

ÛS2
��
t0
�

8πG
3
ρ0S2

0 ,( ÛS
S

)2

t0

�
8πG

3
ρ0 ,

and noting that ÛSS

����
t0

� H0,

ρc :� ρ0 �
3H2

0

8πG
, (2.2.22)

where we define the critical density of matter ρc , which will become
clearer for the k � ±1 solutions.

Returning it to (2.2.21), gives

S ÛS2
� H2

0 S3
0 ,
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or, square rooting,

S
1
2 ÛS � H0S

3
2
0 ,

and integrating over dt:

∫ t0

t
dtS

1
2 ÛS︸       ︷︷       ︸

I

� H0S
3
2
0

∫ t0

t
dt .

We compute the integral I apart.

I �
∫ t0

t
dtS

1
2 ÛS

�

∫ t0

t
dt

d
dt
(S 1

2 S) −
∫ t0

t
dt

1
2
ÛSS−

1
2 S

� S
3
2
��t0

t −
1
2

∫ t0

t
dt ÛSS

1
2︸          ︷︷          ︸

�I

∴ I �
2
3

(
S

3
2
0 − S

3
2

)
.

Thus,

2
3

(
S

3
2
0 − S

3
2

)
� H0S

3
2
0 (t0 − t) ,

H0S
3
2
0 t − 2

3
S

3
2 � H0S

3
2
0 t0 −

2
3

S
3
2
0 ≡ C

∴ S(t) � S0

(
3H0

2
t
) 2

3

, (2.2.23)
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assuming that t → 0 �⇒ S → 0, so C � 0. This is the Big-Bang
scenario.

Inverting the relation above, we are capable of estimating the
age of the Universe, which at the present epoch gives

t0 �
2

3H0
. (2.2.24)

2.2.0.1 Closed sector k � +1

Similarly, for k � +1, we have from (2.2.8) the following Ein-
stein system of equations

ÛS2 + 1
S2 − 8πG

3
ρ0

(
S0

S

)3

� 0 , (2.2.25a)

2
ÜS
S
+
ÛS2 + 1

S2 � 0 . (2.2.25b)

By defining the Hubble “constant” H � H(t), not necessarily at
the present, and the deceleration factor q � q(t) associated with the
deceleration (or acceleration) of the Universe, respectively, as

H �
ÛS
S
,

ÜS
S
� −qH2 , (2.2.26)

(2.2.25) simplifies to

(2q − 1)H2
�

1
S2 . (2.2.27)

On the other hand, inserting the (2.2.25a) into (2.2.25b),
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2qH2
�

8πG
3
ρ0

(
S0

S

)3

,

and evaluating at the present epoch, we get

ρ0 �
3H2

0

8πG
2q0 , (2.2.28)

which when compared to (2.2.22) can be brought in the form

ρ0 � ρcΩ0 ; Ω0 :� 2q0 , (2.2.29)

where Ω0 is called density parameter; it assumes values in the range
Ω0 > 1 if q0 > 1

2 , for k � 1, when (2.2.27) is evaluated at the present
epoch, since S0 > 0.

Inserting into (2.2.25a),

ÛS2 + 1
S2 �

8πG
3
ρ0

(
S0

S

)3

,

ÛS2
+ 1 � 2q0H2

0

S3
0

S
,

and substituting with (2.2.27) evaluated at the present, gives
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ÛS2
+ 1 �

2q0H2
0

S
1

(2q0 − 1) 3
2 H3

0

�
2q0

(2q0 − 1) 3
2 H0

1
S

∴ ÛS2
�

Q+

0

S
− 1 , (2.2.30)

where the modified expansion factor Q+

0 :�
2q0

(2q0 − 1) 3
2 H0

assists us to

solve the equations. The last equation then can be solved by the simple
trigonometric substitution

S � Q+

0 sin2Θ (2.2.31)

dS � 2Q+

0 cosΘ sinΘdΘ ,

so that (2.2.30) can be rewritten as

dS
dt

(
S

Q+

0 − S

) 1
2

� 1 ,

so, when integrated over t, using (2.2.31),

t0 − t � Q+

0

(
Θ − 1

2
sin(2Θ)

)����Θ0

Θ

. (2.2.32)

At the present epoch, (2.2.31) can be rewritten in the form
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sin2Θ0 �
1
2

(
1 − cos(2Θ0)

)
�

S0

Q+

0

cos(2Θ0) �
1 − q0

q0
, (2.2.33)

so that

sin(2Θ0) �
√

1 − cos2(2Θ0)

�

√
1 −

(
1 − q0

q0

)2

�
(2q0 − 1) 1

2

q0
. (2.2.34)

Thus, evaluating (2.2.32) under the big-bang condition t → 0
and S → 0 �⇒ Θ→ 0, we get our estimation for the age t+ of the
Universe for a positive curvature k � +1,

t+ � Q+

0

(
Θ0 −

1
2

sin(2Θ0)
)

� Q+

0

(
1
2

arccos
(

1 − q0

q0

)
− 1

2
(2q0 − 1) 1

2

q0

)
∴ t+ �

q0

(2q0 − 1) 3
2 H0

(
arccos

(
1 − q0

q0

)
−
(2q0 − 1) 1

2

q0

)
. (2.2.35)

It is interesting to remark that there is a limit to the age of the
Universe in the closed space. This is due to the oscillatory behaviour
of (2.2.31). The universe reaches its peak size whenΘ0 �

π
2 , which, if

normalized by q0 � 1, corresponds to
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Smax � Q+

0 �
2q0

(2q0 − 1) 3
2 H0

�
2

H0
,

so the maximum size the Universe predicted by the k � +1 FLRW
model is double the current observed size. After reaching this apex,
the sign of ÛS flips and the Universe begins a great contraction until the
so-called big-crunch S � 0, which happens when Θ0 � π. Under
these conditions, the limit age tL of the Universe is estimated as the
full cycle

tL � Q+

0

(
Θ − 1

2
sin 2Θ

)����
Θ�π

� πQ+

0

�
2πq0

(2q0 − 1) 3
2 H0

,

where, for q0 � 1,

tL �
2π
H0

.
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2.2.0.2 Open sector k � −1

The open sector solution is given in an analogous fashion to the
previous section. From (2.2.8), with k � −1, we have

ÛS2 − 1
S2 − 8πG

3
ρ0

(
S0

S

)3

� 0 , (2.2.36a)

2
ÜS
S
+
ÛS2 − 1

S2 � 0 . (2.2.36b)

Introducing (2.2.26) again into (2.2.36b),

−2qH2 − 1
S2 + H2

� 0

1
S2 � (1 − 2q)H2 , (2.2.37)

and evaluating (2.2.36a) at the present, using (2.2.37),

H2
0 −

1
S2

0

�
8πG

3
ρ0 ,

H2
0 − (1 − 2q0)H2

0 �
8πG

3
ρ0 ,

or,

ρ0 �
3H2

0

8πG
2q0 �: ρCΩ0 . (2.2.38)

We define the other range of validity for (2.2.29), now with the
restrictions

q0 <
1
2

�⇒ 0 ≤ Ω0 < 1 , (2.2.39)
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imposed by (2.2.37). Here it is evident why we call ρC the critical
density of matter, for any value smaller than it defines an open space
whereas values greater than it defines the closed section, as (2.2.39)
and (2.2.29) respectively shows. The critical density is the value of the
density of matter that separetes the three distinct regimes.

Now, substituting (2.2.38) into (2.2.36a), results in

ÛS �

(
Q−0
S

+ 1
) 1

2

,

where we similarly defined Q−0 :�
2q0

(1 − 2q0)
3
2 H0

in order to perform

the substitution

S � Q−0 sinh2 ψ , (2.2.40)

dS � Q−0 sinhψ coshψdψ .

Next, integrating over t, we get

t0 − t �
∫ S0

S
dS

S
1
2

(Q−0 + S) 1
2

� Q−0

(
1
2

sinh 2ψ − ψ
)����ψ0

ψ

. (2.2.41)

At the present epoch, the hyperbolic substitution (2.2.40) reads

sinh2 ψ0 �
S0

Q−0
�

1
2
(cosh 2ψ − 1)

→ cosh 2ψ � 2
S0

Q−0
+ 1 ;

inserting (2.2.40) and (2.2.37) evaluated at the present, yields
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cosh 2ψ �
1 − q0

q0
. (2.2.42)

Using hyperbolic identities, we can rewrite the above expression
in the desired form

sinh 2ψ �

√
cosh2 2ψ − 1

�

√
(1 − q0)2

q2
0

− 1

�
(1 − 2q0)

1
2

q0
. (2.2.43)

When the big-bang conditions t → 0, S → 0 �⇒ ψ → 0
are imposed on (2.2.41), we determine the age t− of the Universe for
k � −1, only in terms of the Hubble constant H0 and the deceleration
parameter q0,

t− �
q0

(1 − 2q0)
3
2 H0

( (1 − 2q0)
1
2

q0
− arccosh

(
1 − q0

q0

))
, (2.2.44)

or, remembering that arccosh(a) � ln(a +
√

a2 + 1),

t− �
q0

(1 − 2q0)
3
2 H0

( (1 − 2q0)
1
2

q0
− ln

(
1
q0
(1 − q0 +

√
1 − 2q0)

))
.

(2.2.45)

The name “open” given to this Universe is specifically due to the
divergent hyperbolic functions; th hyperbolic Universe thus originates
from the big-bang singularity and expands indefinitely, never collaps-
ing back to the primordial singularity, as seen in the closing section.

We finish by showing the general aspect the plots of the Universe
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2 Maximally Symmetric Spaces and the Standard Model of Cosmology

age have for different values of q0, according to relations (2.2.22),
(2.2.29) and (2.2.39):

(a) k � 0

(b) k � +1

(c) k � −1

Figure 16: The Universe ages for different values of q0 and for the
different sectors k � 0,−1 and +1, normalized

2.3 Discussion

In this chapter we showed that the standard cosmological model
can be derived in an ab initio manner from symmetry groups for spaces
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admiting maximal symmetry, thus being both homogeneous and isotropic
about every point, instead of resorting to the usual heuristic construc-
tion found in most literatures. This noteworthy approach, established
on a solid mathematical ground, reveals how powerful the symmetry
group formalism can be when building up a theory and also shows how
Friedmann and Lemaı̂tre were in tune with their physical intuitions.

In addition, as briefly seen on (2.1.49), the Einstein-de Sitter
model is another important result that can also be derived on the same
footing, having merits of its own.

One cannot forgo mentioning that although adopted as the stan-
dard model of cosmology, the FLRW is not self-contained and it does
not fully describe the Universe history.

First of all, the observations of the Cosmic Microwave Back-
ground (CMB) done so far shows that the Universe is not perfectly
isotropic, as it can be seen in Fig. 1, so it cannot possible be fully
described by a maximal symmetric model that assumes isotropy about
every point. However, for all intents and purposes, it serves as an effec-
tive model, blurring all those local anisotropies out to give a somewhat
isotropic aspect.

Secondly, the FLRW solutions require the validity of the perfect
fluid approximation, which in turn stem from the Weyl postulate. As
discussed in the previous section, we can only guarantee the matter to
satisfy such approximation for scale ratios of S0

S . 103, when mat-
ter and radiation decouples. Thus, we cannot possibly have the whole
picture with this model; this restrict us to naı̈ve speculations by extrap-
olating the age back to early epochs.

These two problems give rise to one of the main shortcommings
of FLRW models: without being able to properly access the Universe
state at early epochs, how does it evolved with an exceptional degree
of homogeneity and isotropy? Moreover, it is possible to show by
simple extrapolation that different parts of the very early Universe, in
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the radiation dominated era, were causally disconnected, hence it is
quite improbable for it to evolve to what it is today. This issue is the
so-called Horizon problem. To address that and other drawbacks, Guth
proposed the Inflationary scenario34, characterized by a very hot rapid
expansion at a very early stage.

Thence, the problem is posed: is there a way to bypass these
difficulties or are there other models which could better describe the
Universe? To the former we presume that there are no trivial solu-
tions; fortunately, there still are models which does not require spatial
isotropy about every point and might be all compatible with the CMB
on their own, taking into account the possible local anisotropies. Re-
nouncing spatial isotropy, while still preserving homogeneity, is pre-
cisely the focus of the next chapter.
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CHAPTER
3

Bianchi Classification

AS great as the formalism of Maximally Symmetric spaces built in
the previous chapter reveals to be, giving fantastic results such

as the ab initio construction of the standard model of Cosmology, the
FLRW model, it still is very idealistically symmetric, and so, quite a
restritive theory, valid only to some remarkably special cases. There
exists situations where renouncing isotropy at every point has physical
utility. One of such is the mathematical modelling of the small, yet
present, anisotropies found in the Universe as, for instance, the Cosmic
Microwave Background (CMB).

By using the framework of N-Tuples elaborated in Section 1.2,
in the synchronous frame of reference introduced in Section 1.4.2,
while imposing isometry conditions in a similar fashion as in the previ-
ous chapter, we shall notice that a more fundamental structure emerges:
Lie groups and their associated group of motions inherited from the
corresponding isometries. Such groups will not be generic at all, and
it will be shown that there exists only a few non-redundant different
groups associated with the imposed homogeneity. Those distinct fam-
ilies compose what we call the Bianchi classification of homogeneous
spaces.



3 Bianchi Classification

Finally, we will expand a bit upon each type, listing their princi-
pal algebraic qualities, and then constrast some of them to well-known
cosmologies, such as the flat Euclidian space and the FLRW models.
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3 Bianchi Classification

3.1 Homogeneous spaces

As briefly said in the introduction, we shall construct the theory
exclusively in the syncronous frame of reference, that can be summed
up from Section 1.4.2 as a frame in which the clocks are syncronized
at all points, represented by the proper time τ, effectively decoupling
the time sector of the metric from the spatial counterpart. Thus,

ds2
� dτ2 − ζi j dx i dx j

� dτ2 − d`2 , (3.1.1)

where ζi j � ζi j(x; τ) :� −gi j(x; τ) is the positively defined spatial
metric, possibly parametrized by τ, and d` is the purely spatial line
element.

Then, we evoke the isometry condition (1.3.2) that preserves the
functional form of the metric when evaluated in a neighboring point,

g′µν(x′) � gµν(x′) , (3.1.2)

remembering that it formally represents an automorphism from M
back into itself.

The 3−dimensional spatial sector can be brought into the local
inertial frame of reference given by the 3-Tuples or triads e(a)i (x) dis-
cussed in Section 1.2. The choice of those triads is not unique; we can
always choose another set by means of a “coordinate transformation”,
so that the basis elements e(a) in (1.2.1) can transform into one-another
by a relation of the type

e(a) � Ab
a e(b) , (3.1.3)

with constant Ab
a .
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3.1 Homogeneous spaces

So, by virtue of (1.2.6), the isometry condition (3.1.2) is ex-
pressed as

ζ′i j(x
′) � ζi j(x′) ,

ηab e′(a)i (x
′)e′(b)j (x

′) � ηab e(a)i (x
′)e(b)j (x

′)

∴ e′(a)i (x
′) � e(a)i (x

′) . (3.1.4)

By the invariance of the line element (3.1.1), we have

d`2
� ζ′i j(x

′)dx′i dx′j � ζi j(x)dx i dx j ,(
ηab e′(a)i (x

′)e′(b)j (x
′)
)
dx′i dx′j �

(
e(a)i (x)e

(b)
j (x)

)
dx i dx j ,

which, by (3.1.4), results in

e(a)i (x
′)dx′i � e(a)i (x)dx i . (3.1.5)

Contracting it with e j
(a) (x

′), gives

(e(a)i (x
′) dx′i)e j

(a) (x
′) � (e(a)i (x) dx i)e j

(a) (x
′) ,

δ
j

i dx′i � e(a)i (x)e
j

(a) (x
′) dx i

∴ dx′j � e(a)i (x)e
j

(a) (x
′) dx i , (3.1.6)

which is valid if

∂x′j

∂x i � e(a)i (x) e j
(a) (x

′) , (3.1.7)

or, equivalently,
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3 Bianchi Classification

∂x i

∂x′j
� e(a)j (x

′) e i
(a) (x) , (3.1.8)

considering its reciprocal.

The set of equations (3.1.7) above only has a solution if it satis-
fies integrability conditions

∂2x′j

∂x i∂xk
�

∂2x′j

∂xk∂x i
, (3.1.9)

namely

(
∂e(a)k
∂x i (x) −

∂e(a)i
∂xk
(x)

)
e j
(a) (x

′)

�
©­«
∂e j
(b)

∂x′l
(x′)e l

(a) (x
′) −

∂e j
(a)

∂x′l
(x′)e l

(b) (x
′)ª®¬ e(a)k (x)e

(b)
i (x) ,

and, upon contracting both sides by e k
(c) (x)e

i
(d) (x)e

( f )
j (x′), using the

N-Tuple properties (1.2.13),

Function only of x︷                                            ︸︸                                            ︷(
∂e( f )k
∂x i (x) −

∂e( f )i
∂xk
(x)

)
e k
(c) (x)e

i
(d) (x)

�
©­«
∂e j
(d)

∂x′l
(x′)e l

(c) (x
′) −

∂e j
(c)

∂x′l
(x′)e l

(d) (x
′)ª®¬ e( f )j (x

′)︸                                                         ︷︷                                                         ︸
Function only of x′

.
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3.1 Homogeneous spaces

Since the lefthand side depends exclusively on x and righthand
side on x′, both must reduce to constants, independent of the frame of
reference,

(
∂e( f )k
∂x i (x) −

∂e( f )i
∂xk
(x)

)
e k
(c) (x)e

i
(d) (x) ≡ C f

cd , (3.1.10)

which are precisely identical to (1.2.18). Promptly, we see that the
constants are symmetrical in their covariant indices,

C f
cd � C f

dc . (3.1.11)

We conclude that the constants C f
cd do represent the structure

constants of the algebra associated with a Lie group. This will be evi-
denced next. Multiplying (3.1.10) by∗ e m

( f )(
e( f )k ,i − e( f )i ,k

)
e k
(c) e i

(d) e m
( f ) � C f

cd e m
( f )

→ e m,k

(d) e k
(c) − e m,i

(c) e i
(d) � C f

cd e m
( f ) , (3.1.12)

we can define the directional derivative operator Xa along a triad di-
rection (a)

Xa :� e i
(a) ∂i . (3.1.13)

The above-defined operator Xa also represents a Lie derivative
of a scalar field. This is expected since we are working in the N-Tuple
frame, so all the fields expressed in it are reduced to scalars, as dis-
cussed in Section 1.2.

When taking a commutator,

∗We dropped the point dependency for clarity.
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3 Bianchi Classification

[Xa ,Xb ] � e i
(a) ∂i

(
e j
(b) ∂j

)
− [a ↔ b]

∴ [Xa ,Xb ] � Cd
ab Xd . (3.1.14)

we see that it indeed satisfies a Lie algebra with structure constants
Cd

ab .

As a consequence, the Jacobi identity is automatically satisfied:

[[Xa ,Xb],Xc] + [[Xb ,Xc],Xa] + [[Xc ,Xa],Xb] � 0 , (3.1.15a)

[Cd
ab Xd ,Xc ] + [Cd

bc Xd ,Xa ] + [Cd
ca Xd ,Xb ] � 0 ,(

Cd
ab C f

dc + Cd
bc C f

da + Cd
ca C f

db

)
X f � 0 . (3.1.15b)

Instead of working with the 3 × 3 × 3 constants Cd
ab , we can

simplify our life by working with its dual counterpart, by introducing

Cc
ab :� εabd Cdc , (3.1.16)

where εabd is the totally anti-symmetric pseudo-tensor with ε123 ≡ 1.
Using that, the commutators and the Jacobi identity reduce to

εabcXb Xc � CadXd (3.1.17)

εbcd CcdCba
� 0 . (3.1.18)

The biggest advantage to work with the dual quantities is that it
becomes much easier to determine the constants, by decomposing the
two-indexed dual constants Cab into a symmetrical part, nab , and an
anti-symmetrical one, εabc ac , along with the arbitrary vector ac to be
determined
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3.1 Homogeneous spaces

Cab
� nab

+ εabc ac . (3.1.19)

These constants must satisfy (3.1.15b) in order to represent a Lie
algebra, which gives

nab ab � 0 . (3.1.20)

This is the characteristic equation that enables us to verify nab

and ac , thus fully determining Cab and, by (3.1.16), Ca
bc . Since the

triads are not unique, by means of (3.1.3), we can bring nab to a di-
agonal form, so ac corresponds to a nil-eigenvalue. Without loss of
generality, we set

ab ≡ (a , 0, 0) ; ni ≡ n ii , (3.1.21)

given that either a � 0 or n1 � 0, due to (3.1.20). Those two cases
define two classes of solutions: the former is called class A, while the
latter, B.

These constraints restricts the number of solutions, which can
be classified into all the possible combinations of a and ni . Plugging
these back into (3.1.14), one gets

[X1 ,X2] � −aX2 + n3X3 , (3.1.22a)

[X2 ,X3] � n1X1 , (3.1.22b)

[X3 ,X1] � n2X2 + aX3 . (3.1.22c)

Furthemore, all the ni can be normalized to ±1, by rescaling the
associated triads by means of a basis transformation (3.1.3). All in all,
there are nine different classes of solutions, which shall be called Types
is allusion to the original papers of Bianchi.4 All those types can be
arranged as
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3 Bianchi Classification

Class Type a n(1) n(2) n(3)

A

I 0 0 0 0
II 0 1 0 0
VII0 0 1 1 0
VI0 0 1 -1 0
IX 0 1 1 1
VIII 0 1 1 -1

B

V 1 0 0 0
IV 1 0 0 1
VIIa a 0 1 1
III (a � 1)

}
a 0 1 -1

VIa (a , 1)

Table 1: Bianchi Classification

and constitute the so-called Bianchi Classification of homogeneous
spaces.

The isometry condition (3.1.2) defines the group of automor-
phisms (or group of motions) with respect to the actions defined by the
scalar Lie derivative Xa (3.1.13), which represents nothing less than
the tangent vectors to a point x, which, in turn, are precisely the gener-
ators of translations. The invariance inherited from this kind of isom-
etry corresponds to the homogeneity condition (2.1.1), which defines
the whole spatial sector as a 3-surface of transitivity of the associated
Lie groups.

Furthermore, it is interesting to notice that when compared to the
Killing vector description, this formalism, in the local inertial frame,
has some interesting links. Consider for a moment the infinitesimal
transformations (1.3.3) and (3.1.7). Inserting the former into the latter,
results in

ξ
j
,i � ξ

k
(
e(a)i e j

(a) ,k
)
,
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3.1 Homogeneous spaces

which, by (1.1.33), can be expressed as

ξ
j
,i + Γ

j
ikξ

k ≡ ξ j
;i � 0

so the Killing vectors are parallel-transported along geodesics, as ex-
pected due to the very definition of local isometries.

It remains to be shown how the Einstein equations are written in
the locally inertial frame of reference. For this purpose, we recall the
projection rule (1.2.13e) and apply it to the Ricci tensor,

R(a)(b) � Rµνe µ

(a) e ν
(b) ,

and remember also the “synchronous metric time-derivatives” (1.4.7)

χab :� Ûζab , (3.1.23a)

χ b
a � ζbc Ûζac . (3.1.23b)

Picking (1.2.16a) up and returning it into (1.2.24), we can ex-
press the spatial Ricci tensor P(a)(b) only as a function of the structure
constants,

P(a)(b) � −
1
2

(
Ccd

b Ccda + Ccd
b Cdca

− 1
2

C cd
b Cacd + Cc

cd C d
ab + Cc

cd C d
ba

) ; (3.1.24)

by employing (3.1.16), its symmetry (3.1.11) and the transformation
law of the pseudo-tensor

ζadζbeζc f ε
de f

� ζεabc , (3.1.25)
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we can rewrite (3.1.24) as function of the duals Cdc . Hence, after
tedious algebra,

P (b)
(a) �

1
2ζ

[
2Cac Cbc

+ CbcCca + Cac Ccb

− Cc
c

(
Cb

a + C b
a

)
+ δb

a

(
(Cc

c)2 − 2CcdCcd

)] .

(3.1.26)

The other components of the synchronous Ricci tensor (1.4.10)
in the triad frame are given by

R 0
0 �

1
2
χ (a)
(a) +

1
2
χ(a)(b)χ

(b)
(a) , (3.1.27a)

R 0
(a) �

1
2
χ(c)(d)

(
Cd

ca − δd
a Cb

bc

)
, (3.1.27b)

R (b)
(a) � P (b)

(a) +
1

2
√
ζ
∂t (

√
ζχ (b)
(a) ) , (3.1.27c)

where we made use of (1.2.21) and

P (b)
(a) �

1
2ζ

[
2CbdCad + CdbCad + CbdCda

− Cd
d

(
Cb

a + C b
a

)
+ δb

a
( (

Cd
d

)2 − 2Cd f Cd f

) ] .
(3.1.28)
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Conformal symmetry

The ability to rescale the constants ni by rescaling the triads
themselves hint to an underlying conformal symmetry∗ the spaces may
possess. We show in this section that the homogeneity condition de-
scribed by the isometry condition (3.1.2) also entails a conformal sym-
metry. We say a space has a conformal symmetry if it is equipped with
an equivalence class of metric tensors differing only by a conformal
factor Ω2(x),

ζi j(x) → Ω2(x) gi j ; Ω2(x) > 0 . (3.1.29)

In order to show that, we shall employ the same isometry con-
dition mentioned above but we will now impose that it carries the con-
formal symmetry. We will see that all the results will be much similar
to those obtained previously, but with the addition of such conformal
factor.

By (3.1.2) in the local inertial frame of reference, we get

ζ′i j(x
′) � ζi j(x′) ,

Ω′2(x′)ηab e′(a)i (x
′)e′(b)j (x

′) � Ω2(x′)ηab e(a)i (x
′)e(b)j (x

′)

�⇒ Ω′2(x′)e′(a)i (x
′) � Ω2(x′)e(a)i (x

′) . (3.1.30)

Using again the invariance of the line element (3.1.1),

d`2
� ζ′i j(x

′)dx′i dx′j � ζi j(x)dx i dx j ,(
Ω′2(x′)ηab e′(a)i (x

′)e′(b)j (x
′)
)
dx′i dx′j �

(
Ω2(x)e(a)i (x)e

(b)
j (x)

)
dx i dx j ,

∗For more information regargin the Conformal symmetry, we refer the reader to
Appendix C.
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which gives

Ω2(x′)e(a)i (x
′)dx′i � Ω2(x)e(a)i (x)dx i (3.1.31)

∴ dx′j �
Ω2(x)
Ω2(x′) e

(a)
i (x)e

j
(a) (x

′) dx i . (3.1.32)

This change of coordinates is only valid if

∂x′j

∂x i �
Ω2(x)
Ω2(x′) e

(a)
i (x) e j

(a) (x
′) . (3.1.33)

Imposing again the integrability conditions (3.1.9), we find∗

∴
1
Ω2

[
∂e(a)e
∂x f

−
∂e(a) f
∂xe +

2
Ω

(
∂Ω

∂x f
e(a)e −

∂Ω
∂xe e(a) f

)]
e e
(b) e f

(c) ≡ Ca
bc ,

(3.1.34)

which are the structure constants of some Lie algebra as well, perfectly
consistent with (3.1.10) for Ω � 1. To see this, define instead the
operator

Ya :�
1
Ω2 e m

(a) ∂m , (3.1.35)

so its commutator results in

∗Refer to Appendix E for the explicit calculations.
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[Ya ,Yb] �
1
Ω2

{
1
Ω2

[
e d
(a) e c

(b) ,d − e d
(b) e c

(a) ,d

+ 2
Ω
,d

Ω

(
e c
(a) e d

(b) − e d
(a) e c

(b)
) ]}

∂c

. (3.1.36)

Note that, taking (3.1.34) and multiplying it by, e m
(a)

Ca
bc e m
(a) �

1
Ω2

[
e n
(b) e m

(c) ,n − e n
(c) e m

(b) ,n

+ 2
Ω,n

Ω

(
e m
(b) e n

(c) − e n
(b) e m

(c)

)] , (3.1.37)

that is precisely the last term of (3.1.36) sans 1
Ω2 . So, using (3.1.35),

we are left with

[Ya ,Yb] �
1
Ω2 Cc

ab e d
(c) ∂d � Cc

abYc , (3.1.38)

which does indeed characterizes a Lie algebra.

This means that all the results succeeding (3.1.14) are also valid
for the conformal symmetry and thus the Bianchi classification de-
scribed in Table 1 entails this symmetry as well, which might depend
on the point instead of just the constants as discussed in (3.1.3).

Now notice that the covariant derivatives of the Killing vectors
no longer vanish for the extended conformal symmetry

ξ
j
;i � −2ω,kξkδ

j
i , (3.1.39)

where ω � ω(x) comes from writing the conformal factor as an ex-
ponential Ω(x) � eω(x). This means that the Killing vectors are no
longer being transported along geodesics, those being crooked by the
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3 Bianchi Classification

non-zero covariant derivative.

Moreover, this gradient term ω,k is precisely the infinitesimal
conformal acceleration parameter bk (C.37) appearing in the conformal
Killing vectors (C.39)

ξ
j
;i � −2bkξ

kδ
j
i .

Also, in light of the equivalence principle, we can interpret the
deviations of the Killing vectors as coming from a gravitational field.
This might be a natural way to incorporate the equivalence principle
on a fundamental level.

Yet, we can also take notice that the gradient term can be rewrit-
ten as the d’Alembertian of a Killing vector (C.33)

∂2ξk � −2ω,k ,

which bears a striking resemblance to the Gauge transformation of the
electromagnetism. We see this as the most promising way to pro-
pose a Gauge principle to the Gravitation. Now, if we return with it
to (3.1.39), we obtain

ξ
j
;i � (∂

2ξk)ξkδ
j
i , (3.1.40)

purely determined by the Killing vectors themselves.

3.2 Bianchi classification

To further study the Bianchi classification of homogeneous spaces,
it will be important to first analyze some of the mathematical and phys-
ical properties that each type has, a way to ensure we are indeed safe
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3.2 Bianchi classification

to proceed in any eventual calculation. Having that in mind, we shall
make a list of the main characteristics from the Bianchi algebras bi ,
of the associate groups, and occasionally to which well known algebra
they might be isomorphic.

Though we have to proceed with caution, this kind of analysis
can easily go very deep into an abyss of formal mathematical defini-
tions and nuances that come with it, which fall off of the scope of this
work, so we shall just list those introduced in Appendix A, only detail-
ing some mathematical concepts when necessary, for completeness.

The main reference of this section is the great thesis of Allegra
Fowler-Wright.17 Her classification of finite dimensional Lie algebras
admitting three real parameters greatly differs from that of Bianchi’s,
where she employs a much more modern approach of classification,
shining new light and thus providing additional information.

In particular, we shall be interested in the following properties:
dimension and nature of the derived algebra, solvability, nilpotency,
identification of both the radical and the largest solvable ideal and its
center. We also will list the derived metric tensors, the corresponding
triads as shown by Taub58∗ and which Thurston geometry each type is
associated with, as well as some other physical qualities. The last of
those correspond to an alternative way to study homogeneous spaces
via topology, which has a direct map to the Bianchi algebras.

Briefly, the Thurston theorem54 states that every 3-dimensional
topology which possesses a maximal geometry G, that is, all the pos-
sible isometries of the covering space M̃, denoted by G :� ISO(M̃),
and if G has a subgroup Γ that acts onM as a covering group, i.e. the
quotient groupM/Γ is compact, then the topology is equivalent to one
of the eight minimal topologies listed on Table 2.

∗In the article, Taub constructed his theory using the Killing vectors instead of the
ortogonal frame triads, which is an equivalent construction. As a consequence, our
triads are precisely his Killing vectors and vice-versa.
∗Universal covering space of the unit tangent space ofH2.
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M G Obs
i. E3 E3 Euclidian geometry
ii. S3 SO(4) Spherical geometry
iii. Nil R × E2 Heisenberg group
iv. Sol ISO(Sol) Solvable group
v. H3 PSL(2,C) ×Z2 Hyperbolic geometry
vi. �SL(2,R) H2 ×R Special linear group in 2D∗

vii. H2 × E ISO(H2) × ISO(E) –
viii. S2 × E ISO(S2) × ISO(E) –

Table 2: Thurston topologies.

Although very interesting, we will treat them just as an addi-
tional information in our classification without getting much deeper
than this. We recommend the interested reader the literature19, 31, 32, 54

for further reading.

The classification is done based on the dimension of the derived
algebra b′, where the Bianchi types are divided as follows:

5 dim b′ � 0: Type I;

5 dim b′ � 1: Types II and III;

5 dim b′ � 2: Types IV–VII;

5 dim b′ � 3: Types VIII and IX.

We began with Type I for dim b′ � 0.
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3.2 Bianchi classification

3.2.1 Bianchi I – g � bI

[X1 ,X2] � 0 ,

[X2 ,X3] � 0 ,

[X3 ,X1] � 0 .
(3.2.1)

5 Properties:

L Unique up to isomorphisms.

L Abelian ,

XiX j � X jXi ; ∀Xi ∈ g .

L dim g′ � 0.

L Solvable and nilpotent,

R(g) � Z(g) � g .

L Thurston type: E3.

5 Remarks:

L Any Abelian commutative algebra of three parameters fit
in here.

5 Physical qualities:

L Metric

ds2
� dτ2 − A2(τ)dx2 − B2(τ)dy2 − C2(τ)dz2 .

L Flat, Euclidian metric up to scale factors.

L Not necessarely isotropic.

L A � B or B � C or A � C �⇒ axial symmetry,

ds2
� dτ2 − A2(τ)(dx2

+ dy2) − B2(τ)dz2 .
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3 Bianchi Classification

L A � B � C �⇒ isotropic,

ds2
� dτ2 − A2(τ)(dx2

+ dy2
+ dz2) .

] Corresponds to FLRW flat universe (k � 0):

[e i
(a) ] �

©­«
1 0 0
0 1 0
0 0 1

ª®¬ , [e(a)i ] �
©­«
1 0 0
0 1 0
0 0 1

ª®¬ .
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3.2 Bianchi classification

3.2.2 Bianchi II – g � bII

[X1 ,X2] � 0 ,

[X2 ,X3] � X1 ,

[X3 ,X1] � 0 .
(3.2.2)

5 Properties:

L Derived algebra g′ ⊆ Z(g).
L dim g′ � 1.

L g′ � X3.

L Non-abelian.

L Solvable ,

g(2) � [g′, g′] � [X3 ,X3] � 0 .

L R(g) � g.
L Nilpotent,

g3
� [g′, g] � [Z(g), g] � 0 .

L g ≈ h – Isomorphic to the Heisenberg algebra (represen-
tated by upper-triangular matrices).

L Thurston type: Nil.

5 Abstract example:

X2 �
©­«
0 1 0
0 0 0
0 0 0

ª®¬ , X3 �
©­«
0 0 0
0 0 1
0 0 0

ª®¬ , X1 �
©­«
0 0 1
0 0 0
0 0 0

ª®¬ .

5 Physical qualities:
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3 Bianchi Classification

L Metric

ds2
� dτ2 − R2(τ)dx2

− S2(τ)dy2 − 2S2(τ)xdydz

−
(
S2(τ)x2 − R2(τ)

)
dz2 ,

[e i
(a) ] �

©­«
0 0 1
1 0 x3

0 1 0

ª®¬ , [e(a)i ] �
©­«
−x3 1 0

0 0 1
1 0 0

ª®¬ .
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3.2 Bianchi classification

3.2.3 Bianchi III (a = 1) – g � bIII

[X1 ,X2] � −X2 − X3 ,

[X3 ,X1] � X2 + X3 ,

[X2 ,X3] � 0 .
(3.2.3)

Set

Y1 � X2 + X3

Y2 �
1
2 X1

Y3 � X2 − X3

 �⇒
[Y1 ,Y2] � Y1 ,

[Y3 ,Y1] � 0 ,

[Y2 ,Y3] � 0 .
(3.2.4)

5 Properties:

L g′ * Z(g).
L dim g′ � 1.

L g′ � Y1.

L g � s2 + Zg(s2), where s2 is the algebra of a 2-parameter
group of motions and Zg(s2) is the center of it with relation
to g, defined as

Zg(s2) :� {X ∈ g : [X,Y] � 0 ∀Y ∈ s2} .

L Z(g) � Y3 is one dimensional.

L Non-abelian.

L Solvable:

g(2) � [g′, g′] � [Y1 ,Y1] � 0 .

L R(g) � g.
L Non-nilpotent:

gn
� Y1 , 0 , ∀n ∈ N .

L Thurston type: H2 × E.

142



3 Bianchi Classification

5 Abstract example:

Y1 �

(
0 1
0 0

)
, Y2 �

(
−1 0
0 0

)
, Y3 �

(
1 0
0 1

)
.

5 Physical qualities:

L Metric

ds2
� dτ2 − A2(τ)dx2

− B2(τ)e−2ax dy2 − C2(τ)dz2 , a � const

L Related to Petrov∗ type D:

[e i
(a) ] �

©­«
0 0 1
1 0 x2

0 1 0

ª®¬ , [e(a)i ] �
©­«
−x2 1 0

0 0 1
1 0 0

ª®¬ .

∗We are going to study the Petrov classification shortly on Chapter 4.
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3.2 Bianchi classification

The next four Bianchi types are particular cases of the same al-
gebraic structure. We shall expand a bit on it and, next, on how and
where they differ among themselves.

Those are defined when the dimension of the derived Algebra is
dim g′ � 2, so it constitutes an algebra where, for X1 ,X2 ∈ g′,

[X1 ,X2] � 0 .

For the actual algebra g, we expand this basis further to acco-
modate X3 < g′, such that

[X1 ,X3] � aX1 + bX2 ,

[X2 ,X3] � cX1 + dX2 .

Theorem 3.1 from [17] guarantees that the Lie algebra is similar
to a unique block-diagonal matrix in its canonical form, formed by
the companion matrices which are comprised of monic polynomials
pk � xk + ak−1xk−1 + . . . + a0.

Since the derived algebra has only two dimentions, the only pos-
sible rational canonical forms are such that

adX3 :
{

A1 �

(
1 0
0 1

)
, A2,c �

(
0 c
1 0

)
, A3,d �

(
0 d
1 1

) }
,

where adX3 X � [X,X3], then the only algebras we can construct are

5 adX3 : A1 �: g1,

[X1 ,X2] � 0 , [X1 ,X3] � X1 , [X2 ,X3] � X2 ;
(3.2.5)
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3 Bianchi Classification

5 adX3 : A2,c �: g2,c ,

[X1 ,X2] � 0 , [X1 ,X3] � cX2 , [X2 ,X3] � X1 ;
(3.2.6)

5 adX3 : A3,d �: g3,d ,

[X1 ,X2] � 0 , [X1 ,X3] � dX2 , [X2 ,X3] � X1 + X2 .
(3.2.7)

Those are unique, since, by isomorphisms, the characteristics of
the matrices Ai are invariant.
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3.2 Bianchi classification

3.2.4 Bianchi IV – g � bIV

[X2 ,X3] � 0 ,

[X2 ,X1] � aX2 − X3 ,

[X3 ,X1] � aX3 .
(3.2.8)

Set

Y1 �
1
2 a−1X1

Y2 � −aX2 + X3

Y3 �
1
2 aX2

 �⇒
[Y2 ,Y3] � 0 ,

[Y2 ,Y1] � Y2 + Y3 ,

[Y3 ,Y1] � Y2 .
(3.2.9)

5 Properties:

L dim g′ � 2,

L The derived algebra g′ is abelian.

L The whole algebra g is non-abelian.

L Solvable:

g(2) � [g′, g′] � 0 .

L R(g) � g.
L Non-nilpotent gn , 0 , ∀n ∈ N.

L Z(g) � 0.

L Corresponds to g3,1 (d � 1) (3.2.7).

L Thurston type: none.

5 Physical qualities:

L Metric

ds2
� dτ2 − A2(τ)dx2 − B2(τ)e2x dy2 − C2(τ)e2x(xdy + dz)2 ,
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3 Bianchi Classification

[e i
(a) ] �

©­«
0 0 1
1 0 x2 + x3

0 1 x3

ª®¬ , [e(a)i ] �
©­«
−x2 − x3 1 0
−x3 1 0

1 0 0

ª®¬ .
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3.2 Bianchi classification

3.2.5 Bianchi V – g � bV

[X2 ,X1] � aX2 ,

[X2 ,X3] � 0 ,

[X3 ,X1] � aX3 .
(3.2.10)

Set

Y1 � aX1

Y2 � X2

Y3 � X3

 �⇒
[Y2 ,Y3] � Y2 ,

[Y2 ,Y3] � 0 ,

[Y3 ,Y1] � Y3 .
(3.2.11)

5 Properties:

L dim g′ � 2.

L The derived algebra g′ is abelian.

L The whole algebra g is non-abelian.

L Solvable,

g(2) � [g′, g′] � 0 .

L R(g) � g.
L Non-nilpotent gn , 0 , ∀n ∈ N.

L Z(g) � 0.

L Corresponds to g1 (3.2.5).

L Thurston type: H3.

5 Physical qualities:

L Metric

ds2
� dτ2 − A2(τ)dx2 − B2(τ)e−2ax dy2

− C2(τ)e−2ax dz2 , a � const .

L Corresponds to FLRW open universe (k � −1).
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3 Bianchi Classification

L Has exact solutions.

L Admits tilted solutions∗

[e i
(a) ] �

©­«
0 0 1
1 0 x2

0 1 x3

ª®¬ , [e(a)i ] �
©­«
−x2 1 0
−x3 0 1

1 0 0

ª®¬ .

∗This is a flexibility of Weyl’s postulate. We say a solution is tilted if the expansion
direction is not purely time-like, that is, it might have a residual spatial component,
thus being only approximately described by a synchronous frame of reference.
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3.2 Bianchi classification

3.2.6 Bianchi VI0 – g � bV I0

[X1 ,X2] � 0 ,

[X2 ,X3] � X1 ,

[X1 ,X3] � X2 .
(3.2.12)

5 Properties:

L dim g′ � 2.

L The derived algebra g′ is abelian.

L The whole algebra g is non-abelian.

L Solvable,

g(2) � [g′, g′] � 0 ,

L R(g) � g.
L Non-nilpotent gn , 0 , ∀n ∈ N.

L Z(g) � 0.

L Corresponds to g2,1(c = 1) (3.2.6).

L Thurston type: Sol.

5 Physical qualities:

L Metric

ds2
� dτ2 − A2(τ)dx2 − B2(τ)e−2ax dy2

− C2(τ)e2ax dz2 , a � const ,

[e i
(a) ] �

©­«
0 0 1
1 0 x2

0 1 0

ª®¬ , [e(a)i ] �
©­«
−x2 1 0

0 0 1
1 0 0

ª®¬ .
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3.2.7 Bianchi VI (a , 0) – g � bV I

[X2 ,X1] � aX2 + X3 ,

[X2 ,X3] � 0 ,

[X3 ,X1] � X2 + aX3 .
(3.2.13)

Set
Y1 � X1 ,

Y2 � a(2a − 1)X2 + (2a2 − a(1 + a2))aX3 ,

Y3 � (a − 1 + a2)X2 + (a2 − (1 − a)(1 − a2))X3 .

�⇒
[Y2 ,Y1] � aY3 ,

[Y2 ,Y3] � 0 ,

[Y3 ,Y1] � Y2 + Y3 .
(3.2.14)

5 Properties:

L dim g′ � 2.

L The derived algebra g′ is abelian.

L The whole algebra g is non-abelian.

L Solvable,

g(2) � [g′, g′] � 0 ,

L R(g) � g.
L Non-nilpotent gn , 0 , ∀n ∈ N.

L Z(g) � 0.

L Corresponds to g3,a (a , 0) (3.2.7).

L Thurston type: H2 × E (for a � −1 only).

5 Physical qualities:
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3.2 Bianchi classification

L Metric

ds2
� dτ2 − A2(τ)dx2 − B2(τ)e2x dy2

− C2(τ)e2ax dz2 , a from the algebra ,

[e i
(a) ] �

©­«
0 0 1
1 0 x2

0 1 ax3

ª®¬ , [e(a)i ] �
©­«
−x2 1 0
−ax3 0 1

1 0 0

ª®¬ .
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3.2.8 Bianchi VII0 – g � bV II0

[X1 ,X2] � 0 ,

[X2 ,X3] � X1 ,

[X1 ,X3] � −X2 .
(3.2.15)

5 Properties:

L dim g′ � 2.

L The derived algebra g′ is abelian.

L The whole algebra g is non-abelian.

L Solvable,

g(2) � [g′, g′] � 0 ,

L R(g) � g.
L Non-nilpotent gn , 0 , ∀n ∈ N.

L Z(g) � 0.

L Corresponds to g2,−1 (c � −1) (3.2.6).

L Thurston type: E3.

5 Physical qualities:

L Metric

ds2
� dτ2 − A2(τ)dx2

− (B2(τ) cos2 x − D2(τ) sin2 x)dy2

− 2 cos x sin x(B2(τ) − D2(τ))dydz

− (B2(τ) sin2 x + D2(τ) cos2 x)dz2 .

L Can be isotropic.

L FLRW solution for the flat sector (k � 0).

L Can be tilted,
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3.2 Bianchi classification

[e i
(a) ] �

©­«
0 0 1
1 0 −x3

0 1 x2

ª®¬ , [e(a)i ] �
©­«

x3 1 0
−x2 0 1

1 0 0

ª®¬ .
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3.2.9 Bianchi VII (a , 0) – g � bV II

[X1 ,X2] � −aX2 + X3 ,

[X2 ,X3] � 0 ,

[X1 ,X3] � −aX3 − X2 .
(3.2.16)

By a suitable change of basis, can be expressed as:

�⇒
[Y2 ,Y1] � aY3 ,

[Y2 ,Y3] � 0 ,

[Y3 ,Y1] � Y2 + Y3 .
(3.2.17)

5 Properties:

L dim g′ � 2.

L The derived algebra g′ is abelian.

L The whole algebra g is non-abelian.

L Solvable,

g(2) � [g′, g′] � 0 ,

L R(g) � g.
L Non-nilpotent gn , 0 , ∀n ∈ N.

L Z(g) � 0.

L Corresponds to g3,a (a , 0) (3.2.7).

L Thurston type: H3.

5 Physical qualities:

L Metric

ds2
� dτ2 − A2(t)(cosψdx − sinψdy)2

− B2(t)(sinψdx + cosψdy)2

− C2(t)dz2 , ψ � ψ(τ) .
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L Corresponds to the FLRW open universe (k � −1).

L Can be tilted,

[e i
(a) ] �

©­«
0 0 1
1 0 −x3

0 1 x2 + ax3

ª®¬ , [e(a)i ] �
©­«

x3 1 0
−x2 − ax3 0 1

1 0 0

ª®¬ .
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The two remaining types (VIII and IX) are classified by the au-
thor using quaternion algebra, which obviously goes way out of the
scope of this text. Having that in mind, we opt to just mention briefly
some of the formalism which allow us to classify the desired Bianchi
types. If the reader is interested in delving further into the quaternion
formalism, he can read the literature.10

Similar to what happened to the algebras IV to VII above, both
VIII and IX types are also related to a broader algebraic classification,
this being an algebra in which its derivation g′ has the same dimention
as the algebra itself, that is

dim g′ � 3 ⇐⇒ g′ � g ,

constituting a circular, all commutative algebra

[g, g] � g .

By virtue of g � g′, both the fields of g, described by {x , y , z},
and of g′ � [g, g], {[x , y], [y , z], [z , x]} can be used as a basis, so a
change of basis from on system to the other gives rise to the structure
matrix Mx yz , responsible for connecting both systems. This matrix
can be put into the canonical form

Mx yz � Diag(θ, ϑ, 1) ,

for some θ and ϑ, which is invariant under isomorphisms. Using that,
we can define the Killing form (A.12), represented by

〈u , v〉 :� tr(adu ◦ adv)
� uT diag(θ, ϑ, θϑ)v �: 〈θ, ϑ, θϑ〉

for some u , v ∈ g, defining the algebra gθ,ϑ. This spans the quar-
ternion algebra (−θ,−ϑ) with basis {1, i , j, i j}, such that
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3.2 Bianchi classification

i2
� θ , j2

� ϑ , i j � − ji ,

which in turn gives the Lie brackets

[X2 ,X3] � θX1 , [X3 ,X1] � ϑX2 , [X1 ,X2] � X3 .
(3.2.18)

This algebra belongs to the Brauer group (Br(R)). For further
detail, see [35].

Some of the general properties of gθ,ϑ are

5 g not solvable nor nilpotent; g(n) � g, gn � g , ∀n ∈ N.

5 g is simple.

5 Z(g) � 0.

5 R(g) � 0.

5 Isomorphic to gl(V), where V is a vector space.
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3.2.10 Bianchi VIII – g � bV III

[X1 ,X2] � −X3 ,

[X2 ,X3] � X1 ,

[X3 ,X1] � X2 .
(3.2.19)

5 Properties:

L dim g′ � 3.

L g′ � g.

L g is simple.

L Not solvable, g(n) � g , ∀n ∈ N.

L Non-nilpotent, gn � g , ∀n ∈ N.

L Z(g) � 0.

L R(g) � 0.

L g ∈ g1,−1 (θ � 1 , ϑ � −1).

L Isomorphic to gl(V), where V is a vector space.

L Thurston type: �SL(2,R).

5 Physical qualities:

L Metric

ds2
� dτ2 − S2(τ)dx2

− R2(τ)(dy2
+ sinh2 ydz2)

− S2(τ) cosh y(2dx + cosh ydz)dz ,

L May be thought as an “isotropic model with axis reflec-
tion”.

L Oscilatory solutions near the fundamental singularity (Mix-
master solution).
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3.2 Bianchi classification

[e i
(a) ] �

©­­«
e−x3

0 0
−(x2)2e−x3

0 ex3

−2x2e−x3
1 0

ª®®¬ , [e(a)i ] �
©­«

ex3
0 0

2x2 0 1
(x2)2e−x3

e−x3
0

ª®¬ .
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3 Bianchi Classification

3.2.11 Bianchi IX – g � bIX

[X1 ,X2] � X3 ,

[X2 ,X3] � X1 ,

[X3 ,X1] � X2

(3.2.20)

�⇒ [Xi ,X j] � εi jkXk .

5 Properties:

L dim g′ � 3.

L g′ � g.

L g is simple.

L Not solvable, g(n) � g , ∀n ∈ N
L Non-nilpotent, gn � g , ∀n ∈ N
L Z(g) � 0.

L R(g) � 0.

L g ∈ g1,1 (θ � 1 , ϑ � 1).

L Isomorphic to so(3).
L Thurston type: S3.

5 Physical qualities:

L Metric

ds2
� dτ2 − S2(τ)dx2

− R2(τ)(dy2
+ sin2 ydz2)

+ S2(τ) cos y(2dx − cos ydz)dz ,

L Corresponds to the FLRW closed universe (k � +1).

L Isotropic �⇒ Maximally symmetric.

L Group of motions SO(3).
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3.2 Bianchi classification

L Oscilatory solutions near the fundamental singularity (Mix-
master solution).

L The most interesting type studied in the literature,

[e i
(a) ] �

©­«
0 cos x2 − sin x2

1 − cot x1 sin x2 cot x1 cos x2

0 sin x2

sin x1
cos x2

sin x1

ª®¬ ,
[e(a)i ] �

©­«
0 1 cos x1

cos x2 0 sin x1 sin x2

− sin x2 0 sin x1 cos x2

ª®¬ .

We finalize this section by revisiting Table 1
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3.3 Discussion

3.3 Discussion

By just restricting the spatial sector to the constraint imposed by
homogeneity, we were able to describe the motions of the space by the
action in simply transitive (spatial) 3-surfaces of a (Lie) group of au-
tomorphisms,4 which in turn enabled us to derive the unique Bianchi
algebras the space admit. It is clear how varied each type can be when
compared to one another. It is also expected that within this classi-
fication we recover the maximal FLRW universes, as seen in the bI ,
bV , bVII0 , bVII and bIX algebras corresponding to the universes with
a curvature constant of k � {0,−1, 0,−1,+1}, respectively. The ho-
mogeneous and isotropic case has to be one of those subtypes after
all.

By flexibilizing the isotropic condition, we can, in principle, de-
scribe the local anisotropies of the CMB by one of these models. More-
over, the only conditions we implicitly imposed was the Weyl postu-
late, which allowed us to make use of the syncronous frame of refer-
ence (3.1.1) and, quite obviously, the Cosmological Principle, in con-
strast to the FLRW solutions, where more conditions were imposed.
This freedom should then allow us to get a full picture of the Universe,
in all epochs, if both of them hold.

In the literature, two were the predominant types of particu-
lar interest since the launch of the program by Bianchi: the types I
and IX. The latter was thoroughly, but independently, investigated by
Belinskii-Khalatnikov-Lifshitz2, 30 (BKL) and Misner,38 the first look-
ing for dynamical solutions whereas the second, the potentials.

They found out that the type IX model has oscilatory behaviour
near the fundamental singularity, at the very beginning of times (τ →
0), independently but erratically switching axial expansion to contrac-
tion, never fully collapsing to a point. To study this, the authors no-
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3 Bianchi Classification

ticed that the metric tensor can be expanded in a power series around
the singularity, where matter was so dense that it was approximately
homogeneous, such that an empty-space solution is valid; this solution
was first found by Kasner.29 This model was coined by Misner as the
Mixmaster universe, or simply the BKL model.

On the other hand, the former model, of type I, has the simplest
and most friendly of the algebras to work with, the Abelian algebra,
corresponding to a flat expanding universe, compatible with the de-
Sitter universe and very common nowadays, since observations indi-
cate that the Universe is practically flat.

MacCallum found out later,36 by studying the asymptotic be-
haviour of solutions of Einstein’s equations, that only the Bianchi types
corresponding to FLRW models (I, V , VII0, VII and IX) can evolve
into approximately FLRW solutions, with the gross resamblance of the
isotropy we witness today in our evolved Universe. All those types also
manifests the oscillatory behaviour of the Mixmaster universe.

Another advantageous aspect about the inheritely algebraic struc-
ture of these models is the easy straightforward way to incorporate
pertubations in the symmetry, that is, local inhomogeneities, by just
deforming the algebras by the inclusion of a small parameter |ε | � 1
into the commutation relations (3.1.22). This might lead to interest-
ing results, like the description of a universe without the need of dark
matter/energy.

Finally, the ab initio construction done in this chapter is the
natural pathway towards a local quantum field theory of gravitation,
since Lie algebras play a prominent role in the Standard Model of
electroweak and strong interactions. Furthermore, the extension of the
Bianchi classification to the conformal group presented in (3.1.38) sug-
gests that all those models lies, in fact, inside this 15-parameter group∗,
which might shed light on how to incorporate the gauge principle to
different classes of cosmological models, relating the equivalence prin-

∗See Appendix C.
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ciple to the conformal acceleration. This will be further investigated in
the future. Some attempts to quantize Gravitation has been done by
Misner himself39 on types I and IX and by Friedrichsen,18 among oth-
ers.
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CHAPTER
4

Petrov Classification

INSTEAD of imposing symmetries to the spacetimes directely and
classify all the unique kinds of solutions one gets from them, one

can work with the most general spacetime characterized by a generic
curvature tensor and investigate the possible solutions it inheritely pos-
sesses. Developing this kind of classification is precisely the focus of
this chapter.

By analyzing the called bi-vector structure of the Riemann ten-
sor, we will find that this tensor can only belong to one of three classes
of solutions, which in turn are associated with the number of eigen-
vectors of the characteristic equation that emerges naturally from the
algebraic properties of such tensor. This strongly constrains the types
of gravitational fields we can obtain from the theory.



4.1 Fundamentals

4.1 Fundamentals

As seen in Section 1.1, the Riemman-Christoffel tensor Rµναβ

has the following symmetry relations

Rµναβ � −Rµνβα , (4.1.1a)

Rµναβ � −Rνµαβ , (4.1.1b)

Rµναβ � Rαβµν , (4.1.1c)

Rµναβ + Rµαβν + Rµβνα � 0 , (4.1.1d)

with µ � 0, 1, 2, 4 in a 4-spacetime. Those symmetries suggest an un-
derlying structure within pairs of indices, so we can think the curvature
tensor as

R(µν)(αβ)

where each pair (µν) can be treated as individual entities altogether,
anti-symmetric between its constituent indices evidenced (4.1.1a) and
(4.1.1b). In this way we can introduce a new index that spans all the
possible combinations of µν that are anti-symmetric

A ≡ (µν) � {(01), (02), (03), (12), (23), (31)} , (4.1.2)

effectively giving rise to an equivalent 6 dimensional vector space
composed of bi-vectors∗, which will be labelled by uppercase latin
indices spanning A � 0, . . . , 5. Raising and lowering pairs of indices
is done with the rank 4 metric tensor

gAB ≡ gµνσρ :� gµσgνρ − gµρgνσ (4.1.3)

∗Bi-vectors are essentially the most natural way to codify planes. For more infor-
mation on the underlying theory, refer to Appendix D.
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4 Petrov Classification

which carries a signature (− − − + ++) due to the original signature
and to (4.1.2). We also shall break the 6-index family into two, each
one carrying each signed sector of the metric

A �

{
I :� {0, 1, 2} � {(01), (02), (03)}
X :� {3, 4, 5} � {(12), (31), (23)}

, (4.1.4)

where the former will be represented by letters starting from I (I , J, K, · · · )
and the latter starting from X (X,Y, Z, · · · ). This is completely analo-
gous to how we split the time components “0” from spatial ones “i” in
regular 4-spacetimes, which will become evident when we start work-
ing with those bi-vector objects.

From here on we will consider a locally inertial frame of refer-
ence, so

gµν → ηµν ,

which implies

gµναβ → ηµναβ ≡ ηAB .

Our interest lies on the vacuum solutions such that

Rµν � 0 ,

but this strongly restricts the class of solutions to a very particular case.
We instead will work with the Weyl tensor (C.29), which is constructed
in such a way that Cµν ≡ 0 for any geometry. One nice consequence
of using it is that all the results obtained in this chapter will also be
valid for the conformal group of transformations, expanding the valid-
ity of the theory. We leave the details of this symmetry group and its
construction to Appendix C, for now it is enough to just use the Weyl
tensor given by
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Cµναβ � Rµναβ +
1
2

(
Rµαgνβ + Rµβgνα − Rναgµβ − Rνβgµα

)
− 1

6

(
gµαgνβ − gµβgνα

)
R

.

(4.1.5)

Instead of working in a 6-dimensional space where the system of
equations will have the same dimension, we can complexify it, reduc-
ing the dimension by half. That is done by breaking the Weyl tensor
into three bits; each with a fixed number of time components. Natu-
rally, those three quantities will be labeled by spatial indices. Thus, we
define

Xi j :� C0i0 j

Yi j :�
1
2
εilmC0 jlm

Zi j :�
1
4
εilmε jrs Clmrs

, (4.1.6)

where both X and Z are symmetric and Y can be anything.

The vacuum condition Cµν � 0 is then codified as

Xii � 0 ; Yi j � Yji ; Zi j � −Xi j , (4.1.7)

so all of them are symmetric. Not only that, but they also have nil trace.
Indeed, X and Z are immediate, while

Yii � C0123 + C0231 + C0312 ≡ 0

due to the first Bianchi identity (4.1.1d).

Componentwise, we can rewrite (4.1.6) considering the symme-
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tries of the vacuum solution (4.1.7) as

[Xi j] �
©­«
C0101 C0102 C0103
C0102 C0202 C0203
C0103 C0203 C0303

ª®¬ (4.1.8a)

[Yi j] �
©­«
C0123 C0131 C0112
C0223 C0231 C0212
C0323 C0331 C0312

ª®¬ (4.1.8b)

[Zi j] �
©­«
C2323 C2331 C2312
C2331 C3131 C3112
C2312 C3112 C1212

ª®¬ � −[Xi j] , (4.1.8c)

which in the bi-vector space takes the form

[Xi j] �
©­«
C00 C01 C02
C01 C11 C12
C02 C12 C22

ª®¬ ⇐⇒ [CI J] , (4.1.9a)

[Yi j] �
©­«
C05 C04 C03
C15 C14 C13
C25 C24 C23

ª®¬ ⇐⇒ [CIX] , (4.1.9b)

[Zi j] �
©­«
C55 C45 C35
C45 C44 C43
C35 C34 C33

ª®¬ ⇐⇒ [CXY] . (4.1.9c)

Finally, the complexification is done by defining the complex
tensor

Wi j �
1
2

(
Xi j − Zi j + 2iYi j

)
such that, in the vacuum,
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Wi j � Xi j + iYi j , (4.1.10)

which is also nil traced, i.e. Wii � 0.

We also shall be needing the invariants associated with the cur-
vature tensor, but before doing anything, let us first digress a bit on
the electromagnetic case. There are only two unique invariants in this
case, which are given by

I1 � FµνFµν � E2 − B2 ,

I2 � Fµν ∗ Fµν � 2E · B

or in the bi-vector form

I1 � FAFA ; I2 � FA ∗ FA ,

where

Fµν �
©­­­«

0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

ª®®®¬
is the Maxwell tensor and

∗Fµν � 1
2
εµνσρFσρ → ∗FA

�
1
2
εABFB

is the Hodge dual Maxwell tensor, with the bi-vector Levi-Civita sym-
bol assuming the only possible values∗

∗It is interesting to note that in the bi-vector space the Levi-Civita is symmetric.
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εAB
�

{
ε05

� ε50
� 1, ε14

� ε41
� 1, ε23

� ε32
� 1

}
.

Now, if we construct the complex vector

F � E + iB

and take its square

F2
� F · F � (E2 − B2) + 2iE · B

� I1 + iI2 ,

so the complex vector carries both invariants within it. Returning to
the point in question, we expect the same behaviour to manifest with
the complex tensor (4.1.10). The curvature tensor has four invariants:

I1 � RABRAB ; I2 � RAB ∗ RAB

I3 � R B
A R C

B R A
C ; I4 � R B

A R C
B ∗ R A

C , (4.1.11)

with

∗RAB �
1
2
εACRC

B ,

and so do the Weyl tensor, since it has the same symmetries. The
complex invariants is then given by∗

I1 � I1 − iI2

I2 � I3 + iI4 , (4.1.12)

∗This is a construction, so the choice of ±i is arbitrary, but defining these invariants
in this form simplifies the results later on.
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which using (4.1.9) gives∗

I1 � 2 tr(X2 −Y2) + 4i tr(YX)
I2 � −2 tr(X3 − 3XY2) + 2i tr(3X2Y −Y3) . (4.1.13)

Back to the main focus. Since the complex tensor (4.1.10) fully
describes the curvature in vacuum, we can analize its algebraic struc-
ture in terms of the characteristic system associated with it,

Wn(k) � λ(k)n(k) , (4.1.14)

for some complex 3-eigenvector n(k)i associated with complex eigen-
values λ, corresponding to the invariants of W (and, by extension, of
Cµναβ). Petrov49 calls the eigenvectors the stationary directions asso-
ciated with the stationary curvatures.

It will be useful to separate the real and imaginary parts from
the eigenvalues

λ(k) � λ′(k) + iλ′′(k) .

Since W has nil trace, the eigenvalues are constrained among
themselves, that is,

λ(1) + λ(2) + λ(3) � 0 . (4.1.15)

There are only three possible classes of solutions of the char-
acteristic equation (4.1.14), depending on the number of independent
eigenvectors. Those classes define the types I-III of the Petrov classifi-
cation. There are also the subclasses D, N and O which are degener-
ated cases (one or more identical eigenvalues) of the former classes.

∗If z � a + ib and z′ � −a + ib, we see that I1 and I2 correspond to z2 and z′3,
respectively. We would expect this due to the complex structure of this representation.
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4.2 The classification

In this section we will derive all three canonical forms of (4.1.14),
what form W takes, which are the invariants, and what are the eigen-
vectors associated with them. We also will study if the characteristics
of the independent components X and Y recovers the complex solu-
tions ofW.

Finally, we shall realifyW to obtain the original 6−dimensional
system of equations, similar to those Petrov worked with, by construct-
ing the real matrix

WR
�

(
X −Y
Y X

)
,

which is pretty much the same as seen on Appendix A. There is also
another way to realify the equations by considering instead the matrix

WR
�

(
X Y

Y −X

)
.

This gives the results obtained by Petrov.

4.2.1 Type I

The first possibility is if all the eigenvectors are linearly indepen-
dent (LI), soW is non-singular. That means there exists a non-singular
unitary matrix P that bringsW into a diagonal form

P−1WP � W̃ ,
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4.2 The classification

where W̃ is diagonal, preserving trace and determinant. Then,

W̃ �
©­«
λ(1) 0 0

0 λ(2) 0
0 0 λ(3)

ª®¬ . (4.2.1)

Its eigenvalues and eigenvectors are evidently

EigW :



λ(1) � λ′(1) + iλ′′(1) 3 n(1) �
©­­«
1
0
0

ª®®¬
λ(2) � λ′(2) + iλ′′(2) 3 n(2) �

©­­«
0
1
0

ª®®¬
λ(3) � −λ(1) − λ(2) 3 n(3) �

©­­«
0
0
1

ª®®¬

, (4.2.2)

which are obviously diagonal.

SinceW � X + iY, both X̃ and Ỹ will also be diagonal

X̃ �
©­«
λ′(1) 0 0

0 λ′(2) 0
0 0 λ′(3)

ª®¬ ; Ỹ �
©­«
λ′′(1) 0 0

0 λ′′(2) 0
0 0 λ′′(3)

ª®¬
(4.2.3)

Both of them have the same eigenvectors as in (4.2.2).

The realified W̃ has the following form
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4 Petrov Classification

W̃R
�

©­­­­­­­«

λ′(1) 0 0 −λ′′(1) 0 0
0 λ′(2) 0 0 −λ′′(2) 0
0 0 −λ′(1) − λ′(2) 0 0 λ′′(1) + λ′′(1)

λ′′(1) 0 0 λ′(1) 0 0
0 λ′′(2) 0 0 λ′(2) 0
0 0 −λ′′(1) − λ′′(2) 0 0 −λ′(1) − λ′(2)

ª®®®®®®®¬
.

(4.2.4)

With X̃ and Ỹ we are able to compute the invariants (4.1.13),
which results in

II
1 � 2

{
(λ(1))2 + (λ(2))2 + (λ(3))2

}
II

2 � 6λ∗(1)λ∗(2)
(
λ∗(1) + λ∗(2)

) .

If λ(1) � λ(2) �: λ, then

X̃ �
©­«
λ′ 0 0
0 λ′ 0
0 0 −2λ′

ª®¬ ; Ỹ �
©­«
λ′′ 0 0
0 λ′′ 0
0 0 −2λ′′

ª®¬ ,
corresponding to the invariants

ID
1 � 12λ2

ID
2 � 12(λ∗)2

. (4.2.6)

This represents the degenerate Petrov type D.
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4.2 The classification

4.2.2 Type II

Here we have two LI eigenvectors (one independent and two
linearly dependent (LD) ), so one of the eigenvalues has multiplicity of
two associated with those two LD eigenvectors∗. Say λ(1) � λ(2) ≡ λ,
then by (4.1.15)

λ(3) � −2λ .

Without loss of generality, we say λ(3) corresponds to the eigen-
vector

n(3) � ©­«
0
0
1

ª®¬ ,
allowing us to breakW into smaller bits,

W �
©­«

a c 0
c b 0
0 0 −2λ

ª®¬ �

(
D 0
0 −2λ

)
.

Since both eigenvalues of D are the same and, with the trace
constraint,

trD ≡ a + b � 2λ ,

b � 2λ − a , (4.2.7)

we can determine two of the three unknowns, leaving one of them free.
So,

∗The proof of this claim is straightforward. Assume that n(1) and n(2) are LD, i.e.
n(1) � αn(2) for some α , 0. Return to the characteristic equationWn(2) � λ(2)n(2)

and verify that λ(2) � λ(1).
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4 Petrov Classification

det(D − λ1) ≡ 0 � (a − λ)(b − λ) − c2

�⇒ a � λ ± ic
(4.2.7)b � λ ∓ ic .

Choosing the lower sign, we then can write the complex matrix
W as

W �
©­«
λ − ic c 0

c λ + ic 0
0 0 −2λ

ª®¬ , (4.2.8)

which decomposes into

X �
©­«
λ′ c 0
c λ′ 0
0 0 −2λ′

ª®¬ ; Y �
©­«
λ′′ − c 0 0

0 λ′′ + c 0
0 0 −2λ′′

ª®¬ .

(4.2.9)

The eigenvectors ofW are

EigW :



λ 3 n(1)
W

� n(2)
W

�
©­­«
α

iα
0

ª®®¬ (multiplicity 2)

−2λ 3 n(3)
W

�
©­­«

0
0
γ

ª®®¬
.

(4.2.10)

Note that
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4.2 The classification

(n(1))2 � (n(2))2 ≡ 0 , (4.2.11)

so linearly dependent complex eigenvectors have nil square. This
seems to be a inherit property of complex eigenvectors for a complex-
ified system of equations.

On the other hand, the Type II invariants are

III
1 � 12λ2

III
2 � 12λ3 , (4.2.12)

and the corresponding realification is

WR
�

©­­­­­­­«

λ′ c 0 −λ′′ + c 0 0
c λ′ 0 0 −λ′′ − c 0
0 0 −2λ′ 0 0 2λ′′

λ′′ − c 0 0 λ′ c 0
0 λ′′ + c 0 c λ′ 0
0 0 −2λ′′ 0 0 −2λ′

ª®®®®®®®¬
.

(4.2.13)

In the degenerate case λ′ � λ′′ � 0, both invariants vanish

I1 � I2 � 0

in such a manner that we lose the means to detect the curvature. This
particular case is called the Petrov type N .

4.2.3 Type III

In the last case, all the eigenvectors are linearly dependent and
therefore all the eigenvalues; so, by (4.1.15), they are all equal to zero.

180
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Following the reasoning of nil squared LD eigenvectors (4.2.11), from
the previous type, we can assume it to be true in pairs. But since all
of them are LD among themselves, all the n(i) eigenvectors have nil
square. Thus,

n �
©­«
α
β
γ

ª®¬ ,
n2

� α2
+ β2

+ γ2 ≡ 0 .

Choosing γ � 0 leads to

β � iα ,

where we chose the positive sign. For a genericW we have

Wn � 0n

©­«
a d e
d b f
e f c

ª®¬ ©­«
α
iα
0

ª®¬ �
©­«
0
0
0

ª®¬
�⇒


aα + iαd � 0
dα + iαb � 0
eα + iα f � 0
a + b + c � 0 (From (4.1.15))

�⇒ a � b � c � d � 0 ,

f � ie .

Therefore,

181



4.2 The classification

W �
©­«
0 0 e
0 0 ie
e ie 0

ª®¬ , (4.2.14)

with the following eigenvectors

EigW :

0 3 n(1)
W

� n(2)
W

� n(3)
W

�
©­­«
α

iα
0

ª®®¬ (multiplicity 3) ,

(4.2.15)

and decomposed as

X �
©­«
0 0 e
0 0 0
e 0 0

ª®¬ ; Y �
©­«
0 0 0
0 0 ie
0 ie 0

ª®¬ . (4.2.16)

Since all the eigenvalues are zero, both Type III invariants van-
ish

IIII
1 � IIII

2 � 0 . (4.2.17)

The lack of invariants means that even though the space has a
curvature, there are no ways, mathematically speaking, to detect it.
Finally, the realifiedW is

WR
�

©­­­­­­­«

0 0 e 0 0 0
0 0 0 0 0 −e
e 0 0 0 −e 0
0 0 0 0 0 e
0 0 e 0 0 0
0 e 0 e 0 0

ª®®®®®®®¬
. (4.2.18)
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4.2.4 Type O

There is yet another rather different type that happens when the
full Weyl tensor vanishes altogether

Cµναβ � CAB ≡ 0 .

In this case,W is identically equal to zero and the characteristic
equation (4.1.14) stop making much sense, being automatically satis-
fied for any vector with null eigenvalue. The Petrov of type O is the
most degenerated case there is.

All FLRW models are of type O.

We see that the Petrov types are related between themselves by
the invariants, since the same invariants can correspond to different
Petrov types. This degeneracy trickles down to the level of degeneracy
of the eigenvectors and/or eigenvalues, so one type can be obtained by
another by the following degeneracy hierarchy:

I

II D

III N O

Eigenvalue degeneracy

E
ig

en
ve

ct
or

de
ge
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ra

cy

Figure 17: Petrov degeneracy hierarchy
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4.3 Discussion

This kind of classification follows directly from the Weyl tensor,
which in turn is fully dependents upon the curvature tensor and its con-
tractions. Therefore, every gravitational model has to belong to one of
the six possible Petrov types, be it a purely gravitational model or, in
our case, a cosmological one. This means that the Bianchi classifica-
tion (and hence the FLRW models) is within the Petrov classification.

In fact, we can promptly infer that, for example, the self-evident
case of the flat type O, related to the FLRW k � 0 Universe, is equiva-
lent to Bianchi type I.

Since the conception of this classification was completely anal-
ogous to the usual way to determine normal modes of oscillation in
classical mechanics, it is not surprising that the Petrov types naturally
encode within themselves the modes of gravitational radiation. Those
modes of oscillation correspond to the different polarizations, related
to discontinuities of the curvature tensor. This is one of Pirani’s cri-
teria.50 In the article, the author noticed that the discontinuities only
appear when null-directions are present, thus only the types II, III, N
and O can comport such modes.

L. Witten63 in 1959 noticed that the gravitational theory could
be described together with electromagnetism in an unified picture if
they are geometricized into their principal null directions, linked to the
Petrov types by none other than Penrose44 a year later, when he further
developed Witten’s null vectors into what became the spinor formalism
of gravitation. In this formalism, the tensor quantities are described in
terms of the null tetrads, which encapsulates the Petrov classification
in a natural manner and where the complexified quantities we studied
above (such as (4.1.10)) seamlessly belong in it.
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Conclusions and Future Outlooks

THIS work focused on the construction of a Classical theory of
Gravity from the ground up and the possible catalogations this

might admit through a symmetry group approach, which is, in our
view, essential for any physical theory and is the natural construct to-
wards a gauge theory, whilst never forgetting the true motivation of a
solidly formulated description of cosmological models that could de-
scribe our Universe up to lower orders of local pertubation theory, both
at classical and quantum level, where open questions still demand for
a more careful analysis.

We committed ourselves to re-visit the mainly forgotten liter-
ature on the topic, reviewing and compiling the essential pioneering
works, which are all scattered throughout the literature and are, nowa-
days, getting dust, laying those out in a comprehensive and self-contained
monograph. We also expect that this dissertation to be a helpful entry
point for anyone interested to begin working in this topic. In this aspect
we think our objective has been duly fulfilled.

In the first chapter we began outlining the fundamental back-
ground indispensable for the subsequent chapters. There we discussed
Differential Geometry, the formalism of the locally inertial frame of
reference consisting of the N-Tuple basis vectors, following by the
general theory underlying Killing vectors and their association with
spacetime symmetries, ending with the Synchronous frame of refer-
ence, essential for the codification of the Weyl postulate. Minor topical
fundamentals were left out in Appendices A – E.

The first catalogation class was done in chapter 2, for spacetimes
that admit a maximum number of symmetries. Using the Killing vec-
tors as the main ingredient responsible for all the possible motions of
the space, we deduced that such a class of spacetimes are both homoge-
neous and isotropic about every point and are described by a constant
curvature K. Afterwards we demonstrated the decomposition theorem
(2.1.37) which allows us to use the same toolbox developed to max-
imally symmetric subspaces as well. As an immediate consequence
of this, we derived both the Einstein-de Sitter metric and the standard
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model of cosmology, the Friedmann-Lemaı̂tre-Robertson-Walker met-
ric, those totally constructed from symmetry considerations only, not
heuristically as usually done in the literature.

Next, in chapter 3, we loosen the symmetry assumptions up
and considered the case of spaces manifesting only spatial homogene-
ity. Through the lens of the Weyl postulate, we considered that the
Universe essentially “moves” along time-like geodesics so the syn-
chronous frame is valid. By describing the geometrical objects in the
N-Tuple frame, we were able to associate the Lie derivatives to a Lie
algebra acting on the spatial 3-surface of transitivity. From this, we
showed that only nine unique Lie groups can be conceived, arriving at
the Bianchi classification of homogeneous spaces, all laid out in Ta-
ble 3. We finalized our discussion by listing the major qualities each
Bianchi type exhibit, in a systematic manner, and by discussing the
main implications and where the FLRW models fit it.

We also found out that the Bianchi classification holds for trans-
formations under the conformal group C, a new result that extends said
classification to a bigger symmetry group. We believe this discovery
is relevant, since the four parameter conformal aceleration might offer
the possibility of incorporating gravitation via a gauge principle in the
light of the equivalence principle. A paper containing this result and its
main implications will be elaborated and submitted in the near future.

We end in chapter 4 by classifying the absolute fundamental
symmetries of any gravitation theory. By studying the bi-vector struc-
ture of the Weyl tensor (thus indirectely the Riemann curvature ten-
sor), the algebraic decomposition into the “principal axes” took place,
where the Petrov classification was devised. The six different classes
contrast between themselves by the number of admissible independent
eigenvectors and by the degree of degeneracy of their eigenvalues, i.e.,
the invariants. We then showed the degeneracy hierarchy between the
Petrov types and how each type is related to the others by regarding
their invariants.
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Conclusions and Future Outlooks

This work prepared us with the necessary pre-requisites for study-
ing particular cases of the Bianchi and/or Petrov classifications with
proper depth. In a future study, we shall focus on the Bianchi types
I, V , VII0, VII and IX, all FLRW models, taking advantage of their
conformal structure, and what implications it might have on the stan-
dard cosmological model.

We also left for the future a more in-depth study of Thurston
topologies. We believe that this alternative formlation contains valu-
able nuggets of information that are invisible in the usual algebraic/geometric
way presented in here. This can possibly be of great help to our over-
all understanding as a tool in the search for solutions to the desired
Bianchi types mentioned above.

Finally, after exausting all this, we shall be able to further de-
velop the conformal Bianchi types to then study, and maybe even pro-
pose, new ways to incorporate the gauge principle to a theory of grav-
itation, looking at deviations of the standard cosmology from an al-
gebraic standpoint, where the generators of the isometries play a cen-
tral role. We expect the conformal symmetry to be of great revelancy,
since there exists no axiomatic quantization program which encom-
passes such symmetry, so it is necessary to revisit Wightman’s axioms
to include this symmetry to the respective vacuum states of the quan-
tized fields. For that, we require space homogeneity in order to pre-
serve the particle content of the theory, though it may not be a neces-
sary condition, if we impose the Wightman functions to be invariant.62

Furthermore, the breaking of the space homogeneity has as a direct
consequence the violation of microcausality, the main cornerstone of
the relativistic field theories, so we do not expect any theory to let go
of this symmetry.

188



Appendices

189





APPENDIX
A

Group Theory



A.1 Abstract Group Theory

The concept of groups in physics can be roughly thought as a
set of operations that leave something or some quality invariant. With
that in mind we can readily see how that is a fundamental ingredient
to incorporate in most, if not all, physical theories constructed ab ini-
tio. For instance, the principle of covariance may be understood in
that light, with the set of operations being a general transformation of
coordinates that leave the equations of motion invariant, that is, the
geodesics themselves, which are closely related with the associated
field equations and particle dynamics.

Group theory is a vast topic and treatises can be written about
it, so we will just focus on the concepts necessary to comprehend the
main subject of this monograph.

A.1 Abstract Group Theory

A set G of elements g endowed with a bilinear product opera-
tion G · G → G is defined as a group if all elements {gi} ∈ G (not
necessarely discrete) satisfy:

g1 · g2 ∈ G , (closure) (A.1a)

g1 · (g2 · g3) � (g1 · g2) · g3 , (associativity) (A.1b)

∃ e ∈ G ; g · e � e · g � g , (identity) (A.1c)

∃ g−1 ∈ G ; g · g−1
� g−1 · g � e . (inverse) (A.1d)

A subset of elements h ∈ G which satisfy all the group ax-
ioms (A.1) by themselves and inherits the same multiplication opera-
tion is called a subgroup of G, where evidently H ⊆ G. For example,
SO(n;R) is a subgroup of O(n;R), which in turn is a subgroup of
GL(n;R) (O(n;R) ⊆ SO(n;R) ⊆ GL(n;R)). Every group defines
its own subgroups.
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A map from a group G into another G′ preserving the multipli-
cation operation defines a homomorphismΦ : G→ G′. If the mapping
is one-to-one (both injective and surjective, admiting inverse), then it
gets called an isomorphism (G′ ≈ G). If G′ � G, the mapping is
called an endomorphism. If it is one-to-one, then it is called an auto-
morphism. The set of elements g ∈ G which maps onto e′ ∈ G′ is
called the kernel of the homomorphism.

The center Z of a group G is the set of all elements z ∈ G that
commutes with all the other group elements, i.e., z g � gz ∀g ∈ G. If
all the elements of G commute between themselves, the group is called
Abelian. Thus, by (A.1c), the identity e is always in the center of any
group.

For any given element s0 of any set S, we define the orbit of
s0 with respect to G as the subset of all elements that can be obtained
from s0 by the action of G, denoted by OG(s0), where the action is the
multiplication operation of the group in S.

One example to illustrate the last two concepts naturally emerge
from the particular group of rigid rotations∗ SO(n) acting on Rn: the
center of the group is the identity element e whereas the orbit are the
surfaces of the spheres of radius r, 0 ≤ r < ∞ in Euclidian spaces.

The surface of transitivity is defined such that any element s ∈
OG(s0) can be obtained from any other group transformation of an-
other element of the orbit, that is, s1 , s2 ∈ OG(s0) ; gs1 � s2 , ∀g ∈ G.

The transformation of the element g given by g → h gh−1 for
g , h ∈ G is called a conjugation. Similarly, a group conjugation occurs
when such transformation is applied to all elements of G, that is, g →
h gh−1 , ∀g ∈ G (symbolically G → hGh−1 for some h ∈ G). This
preserves the group multiplication

∗SO(n) is to be undestood as SO(n;R) henceforward, unless explicitly stated.
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A.1 Abstract Group Theory

g g′→ h(g g′)h−1

→ h(ge g′)h−1

→ h g(h−1h)g′h−1

→ (h gh−1)(h g′h−1) ,

for some g , g′, h ∈ G.

The conjugation of a fixed h ∈ G by the entirety of G, gh g−1 , ∀g ∈
G, defines the conjugation class of h, which clearly is an orbit of h
OG(h).

The conjugation permits us to finally define the normal sub-
group (or invariant subgroup) H of G, whose elements are invariant
under conjugation, i.e., h ⊆ gh g−1, ∀h ∈ H and ∀g ∈ G, symbol-
ically denoted by H ⊆ gH g−1. Now if the conjugation itself is in
H, that is, gH g−1 ⊆ H for all g ∈ G, then the the equality is in
place h � gh g−1 for some h ∈ H; this implies that h is in the center
h ∈ Z(G).

Yet still, we define the left (right) coset as the subgroup H ⊂ G
with respect to the left (right) multiplication if g1 and g2 are in the
same left (right) coset and if there exists h ∈ H such that g1 � h g2
(� g2h). The cosets of a groups are, by definition, orbits of H.

Now if H is a normal subgroup of G, the set of all cosets of G
with respect to H makes up a group. This group, denoted by Q :�
G/H, is called the quotient group of G and has H as its identity ele-
ment and its multiplation law is said to be induced by G. In general
the quotient group is neither a subgroup of G nor isomorphic to it.
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A.2 Lie Group Theory

Lie groups are those which contains a continuous “amount” of
elements and are locally Euclidian. This enables us to parametrize any
element by a finite number of continuous variables, g � g(a1 , . . . , ar),
where r is called the order of the group, corresponding to the minimum
number of parameters necessary to fully describe the group; {ak}, k �

1, . . . , r are continuous and, by convention, e ≡ g(0, . . . , 0). Every
Lie group is isomorphic to a matrix group near the identity, to what
Hall24 calls the Matrix Lie Group.

As a consequence of the continuous parametrization, the Lie
groups also defines a differentiable manifold G (orM as used in the
text) such that the bilinear group product G · G → G, the elements
and their inverses are all differentiable. Even stronger than that, the
following theorem guarantees that.

Theorem. Every matrix group is a smooth embedded submanifold of
M(N) and is thus a Lie group.

The smoothness of Lie groups is also preserved by the various
morphisms between Lie groups.

Some of the most common Lie groups in a matrix representa-
tion, with ordinary matrix multiplication as the composition law, are
given below.

For a given field∗ F

i. The General Linear Group GL(n;F) of all invertible n × n matri-
ces over F.

This corresponds to the group of matrices and their usual multipli-
cation.

∗Field is just the set of elements where the usual operations are defined, that is
{+,−,×,÷}, satisfying the field axioms. For example F � R or C (real or complex
numbers).
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ii. The Special Linear Group SL(n;F) of all the elements M ∈ GL(n;F)
with det M � +1.

iii. The Orthogonal Group O(n;F) of all n × n matrices M over F
with MT M � 1.

iv. The Special Orthogonal Group SO(n;F) of all the elements M ∈
O(n;F) with det M � +1,

This corresponds to the group of rotations over F.

v. The Unitary Group U(n) of all the n×n complex (F is necessarily
C) matrices M where M†M � 1.

vi. The Special Unitary Group SU(n) of all the elements M ∈ U(n)
with det M � +1.

vii. The Symplectic Group Sp(n;F) of all 2n × 2n matrices M over F

with MT JM � J, where J :�
(

0 1n
−1n 0

)
. The condition imposed

already implies det M � +1.

While it apparently looks like an uncommon group, it naturally
arises in the hamiltonian formalism of Classical Mechanics.

viii. The Lorentz Group∗ O(3, 1) of all real 4 × 4 matrices Λ with
ΛT η̂Λ � η̂, i.e., the group of general transformation of coordi-
nates that leave the metric tensor η̂ (and thus the line element)
invariant.

A Lie group G is said to be connected if we can transform one el-
ement g1 ∈ G into another g2 ∈ G through a continuous parametrized
path g(t), t1 ≤ t ≤ t2 where g(t1) � g1 and g(t2) � g2. Furthermore,
we say a Lie group is simply connected if it is connected and every
closed loop in G can be shrunk to a point in G.

∗O(n , k) is also called the Generalized Orthogonal Group with a metric signature
defined by the inner product [x , y]n ,k � x1 y1 + · · · + xn yn − xn+1 yn+1 − · · · −
xn+k yn+k .
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The simply connectedness condition is fundamental to get a one-
to-one correspondence between G and of its Lie algebra. In fact, the
Lie algebra is precisely the tangent space in the neighbourhood of the
identity, thus locally Euclidian. The connection between Lie groups
and algebras will soon become clear when we define the exponential
map. But first let us properly define what is a Lie algebra.

If Vn is a n−dimensional linear vector space endowed with the
closed bilinear multiplication [Vn ,Vn] → Vn , we say that Vn is a Lie
algebra g if for X,Y, Z ∈ Vn

[X,Y] � −[Y,X] , (Skew-symmetry)
(A.1a)

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y]] � 0 . (Jacobi Identity)
(A.1b)

We call this product a commutator or the Lie bracket of X and
Y. Usually Lie algebras are denoted by lowercase Fraktur letters. If
[X,Y] � 0, ∀X,Y ∈ g, we say that g is Abelian, similar to what we
have seen before.

If we take a complete basis {Xi} , i � 1, . . . , n for g we define
the structure constants ck

i j as

[Xi ,X j] � ck
i jXk , (A.2)

which are anti-symmetric in their lower indices ck
i j � −ck

ji and

cm
il c l

jk + cm
jl c l

ki + cm
kl c

l
i j � 0 , (A.3)

by virtue of (A.1). Upon a change of basis,
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X′a � d i
aXi , d i

j , 0

we see that the structure constants transform like a (1,2) tensor

c′ki j da
k � ca

bc db
i dc

j

�⇒ c′ki j � ca
bc dk

a db
i dc

j .

The exponential map of a one-parameter subgroup G of a Lie
algebra g associates a continuous element of that subgroup A(t) ∈ G
to its Lie algebra generator X ∈ g via

A(t) � e tX
�

∑
n

(tX)n
n!

, (A.4)

satisfying∗ for X,Y ∈ g, A(t), B(t) ∈ G

A(0) � e0
� I (A.5a)

A(t + s) � A(t)A(s) , ∀t , s ∈ R (A.5b)

A∗(t) � (e tX)∗ � e tX∗ (A.5c)

A−1(t) � (e tX)−1
� e−tX (A.5d)

A(t)B(t) � e tX e tY
� e tX+tY , if [X,Y] � 0 (A.5e)

| |A(t)| | � | |e tX | | � e t | |X | | (A.5f)

e tCXC−1
� Ce tXC−1 , C invertible , (A.5g)

where | | · | | is the norm of a n × n matrix M defined as

∗To not confuse the reader, we shall change the notation of the identity element e
by I.
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| |M | | � ©­«
n∑

i , j�1

|Mi j |2
ª®¬

1
2

.

In the case of noncommuting X and Y, with [X, [X,Y]] � 0,
(A.5e) becomes the famous Baker-Campbell-Hausdorff formula

A(t)B(t) � e tX e tY
� e tX+tY+

t
2 [X,Y] . (A.6)

Since the Lie algebra defines a smooth submanifold, then by
virtue of being analytical everywhere, the exponential map will also
define the same smooth submanifold, thus being differentiable. After
that, we can finally link Lie groups to Lie algebras by

d
dt

e tX
����
t�0

� X . (A.7)

This strong link between Lie groups and algebras guarantees
that most of the properties of Lie groups seen in Sec. A.1 have an
algebraic analog, as we will see next. But first let us also list the Lie
algebras associated with the most common groups

For a given field F

i. The General Linear Lie Algebra gl(n;F) of all invertible n × n
matrices over F with [X,Y] � XY − YX for X,Y ∈ gl.

ii. The Special Linear Lie Algebra sl(n;F) of all n × n matrices X
over F with tr X � 0.

iii. The Orthogonal Lie Algebra o(n;F) of all n × n matrices X over
F, which are anti-symmetric (XT � X−1)

iv. The Special Orthogonal Lie Algebra so(n;F) of all n×n matrices
X over F, which are anti-symmetric (XT � X−1) and have tr X �
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0.

v. The Unitary Lie Algebra u(n) of all the n × n complex matrices
X with X† � X−1.

vi. The Special Unitary Lie Algebra su(n) of all the elements X ∈
su(n) with tr X � 0.

vii. The Symplectic Lie Algebra sp(n;F) of all 2n × 2n matrices X

over F with XT J � −JX, where J :�
(

0 1n
−1n 0

)
.

The elements of this algebra are of the form

(
A B
C −AT

)
with A being an arbitrary n × n matrix and B and C arbitrary
symmetric matrices.

viii. The Lorentz Lie Algebra o(3, 1) (or l3,1) of all real 4 × 4 matrices
X with the Lorentz inner product and η̂XT η̂ � −X.

A Lie subalgebra q ⊆ g is a subset of elements in g that is closed
under the same multiplication operation [ , ], that is, for Q1 ,Q2 ∈ q,
then [Q1 ,Q2] ∈ q. For example su(n) ⊆ u(n).

We say q ⊆ g is an ideal of g if, for all X ∈ g and for all Y ∈ q,
[X,Y] ⊂ q (symbolically [g, q] ⊂ q). Ideals are also called invariant
subalgebras and are usually denoted by q / g.

Algebraic homomorphisms are linear maps between algebras ϕ :
g→ h such that the Lie brackets are preserved, so that, for X,Y ∈ g,

ϕ([X,Y]) � [ϕ(X), ϕ(Y)] . (A.8)

If the mapping is one-to-one, then it is called an isomorphism.
On the other hand, if the mapping takes g back into itself ϕ : g → g,

200



A Group Theory

we say it is an endomorphism. The set of elements that map into 0,
ϕ−1(0), is called the kernel of the homomorphism, denoted by kerϕ.

If an endomorphism is one-to-one, we call it an automorphism
and it represents the group of motions of the space. In this context, the
generators are called the actions or motions of the group.

A connected Lie group G̃ that has a homomorphic mapΦ : G̃→
G to a connected Lie group G is called a covering group if their asso-
ciated Lie algebras are isomorphic by the map ϕ : g̃→ g.

The center of g is the set of elements X ∈ g that commute with
all the elements Y ∈ g, defined as

Z(g) :� {X ∈ g : [X,Y] � 0 ∀Y ∈ g} . (A.9)

The centralizer of g with respect to s are those that commute
with all Y ∈ s

Zs(g) :� {X ∈ g : [X,Y] � 0 ∀Y ∈ s} . (A.10)

The special homomorphism of a Lie algebra g onto a general
vector space∗ V done by the linear map ϕ(X) : V → V , X ∈ g
(remember that a Lie algebra is, in fact, a vector space), so that ϕ(aX+

Y) � aϕ(X)+ ϕ(Y), is named a representation of g. A representation
ϕ is faithful if the kernel of it is precisely 0, i.e., kerϕ � 0.

The most usual representation of a Lie algebra is the adjoint
representation, denoted by adX , for X ∈ g, which takes g back into
itself, i.e. adX : g→ g, such that

adX Y :� [X,Y] .

∗Technically this homomorphism maps g onto the general linear algebra gl(V).
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This implies that the adjoint with relation to the commutator
satisfies

ad[X,Y] � adX ◦ adY − adY ◦ adX , (A.11)

where “◦” is the composition symbol. The kernel of adX is precisely
the center of g.

With that we can define the Killing form of g as the symmetric
bilinear form

〈X,Y〉 :� tr(adX ◦ adY) (A.12)

for X,Y ∈ g, which is invariant under all automorphisms, that is, if ϕ
is an automorphism

〈ϕ(X), ϕ(Y)〉 � 〈X,Y〉 .

Sometimes the Killing form is denoted by κ(X,Y).

If g1 and g2 are two distinct Lie algebras, we denote a composi-
tion of both vector spaces by the pair (X,Y), for X ∈ g1 and Y ∈ g2.
The direct sum g1 ⊕ g2 is then defined such that the bracket operation
is done componentwise

[(X1 ,Y1), (X2 ,Y2)] � ([X1 ,X2], [Y1 ,Y2]) , (A.13)

where we identify the components of each subalgebra g1 : (X, 0) and
g2 : (0,Y). Moreover, both subalgebras are ideals of the direct sum
(g1 / (g1 ⊕ g2) and g2 / (g1 ⊕ g2)), so they have null “intersection”
[g1 , g2] � 0.

If a Lie algebra g has an Abelian subalgebra, then we can always
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decompose it as

g � g0 + Z(g)

where g0 is the centerless subalgebra comprised of all the remaining,
non-commuting elements of g.

An algebra is called semi-simple if it has no Abelian ideals. Sim-
ilarly, an algebra is called simple if it has no ideals at all, except for the
trivial 0 and g.

The derived subalgebra g′ of the algebra g is the ideal of the
comutator, i.e. g′ / [g, g], spanning through the subspace of all [X,Y],
∀X,Y ∈ g. Specifically

g′ :� [g, g] .

The derived series is formed by successive derived subalgebras;
commutators within commutators g′′ :� [[X,Y], [A, B]], ∀X,Y,A, B ∈
g. Thus, for the r-th order

g(r) :� [g(r−1) , g(r−1)] . (A.14)

g is solvable if the derived series goes to 0 up to the r-th order,
that is, in that order, we reach an Abelian subgroup. All orders of the
derived series are ideals of g

g(r) / g(r−1) / . . . / g′ / g .

The lower central series is defined inductively by g1 :� g′
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gr+1 :� [g, gr]
:� [g, [g, gr−1]]
:� [g, [g, [g, [. . . [g, g] . . .]]] , (A.15)

or

gr
� adr

g g � (adg . . . adg)︸        ︷︷        ︸
r times

g ,

and are also all ideals of g. We say g is Nilpotent if gr � 0. If g is
Nilpotent, then it is also solvable.

The radical of g, R(g), is the ideal of g that contains all solvable
ideals, that is, it is the largest solvable ideal of g.

Finally, we define the complexification of a real Lie algebra g,
denoted by gC by composing a complex algebra as

Z � X1 + iX2 , X1 ,X2 ∈ g (A.16)

such that the bracket operation on g has an unique extension to gC as

[Z1 , Z2] � [X1 + iX2 ,Y1 + iY2]
� ([X1 ,Y1] − [X2 ,Y2]) + i([X1 ,Y2] + [X2 ,Y1])

for Z1 , Z2 ∈ gC and X1 ,X2 ,Y1 ,Y2 ∈ g. The Jacobi identity evidently
is preserved in this extension.

On the other hand, the realification or de-complexification gR of
a complex Lie algebra g can be done by observing that an element Z �

A+ iB, Z ∈ g where A, B are real matrices has a matrix representation
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Z �

(
A −B
B A

)
of double dimension, identifying who is A and B in that canonical
form. This can be thought as a decomposition into the basis of Pauli
matrices Z � σ0 ⊗ A − iσ2 ⊗ B, where ⊗ is the Kroenecker product of

matrices, and σ0 ≡ 1 �

(
1 0
0 1

)
and σ2 �

(
0 −i
i 0

)
.
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B Formalism of Variations

The Principle of Least Action is one of the hallmarks of physics
which enabled us to formulate and solve numerous mechanical sys-
tems of discrete particles in lagrangian and hamiltonian mechanics
and, later, to extend the approach to infinite degrees of freedom, in-
troducing the discipline of Classical Theory of Fields, thus giving a
new brath to the study of the fundamental interations of Nature.

We define the Action functional I as a parametric integral of
some function of parameter τ, the N−1 generalized coordinates q and
its velocities Ûq, denoted by L � L(q , Ûq; τ) between the interval (τ1 , τ2)
in a (N − 1)-dimensional space,

I[q] :�
∫ τ2

τ1

dτ L(q , Ûq; τ) , (B.1)

which define a trajectory between said interval in the configuration
space defined by the generalized coordinates. L is called the Lagrangian
of the system. It is also defined the operation of variation δ, which rep-
resents a small change of the object in question.

Figure 18: Of all possible trajectories, only one represents the actual
physical trajectory: the one that exttrimizes the action I.

The principle of least action is stated as: The physical trajectory
of any physical system is such that the action is stationary, i.e., δI � 0.

This condition is sufficient to find the equations of motion for
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pretty much any physical system in its most general form, taking into
account constraint forces and whatnot. As we will only be interested in
a particular subset of problems that does not have such peculiarities∗,
we can safely impose the usual extra condition of fixed endpoints, that
is,

δq(τ1) � 0 � δq(τ2) . (B.2)

When this principle is applied to (B.1), using condition (B.2),
we obtain the the famous set of N − 1 Euler-Lagrange equations

∑
i

∂L
∂q i −

d
dτ

(
∂L
∂ Ûq i

)
� 0 . (B.3)

If we consider the Lagrangian in the continuum, the number of
“discrete particles” (degrees of freedom) will go to infinity and the
usual sum over the i particles will transform into a spatial integral over
the whole space, effectively turning such functional into a density to
be integrated. This limit allows us to rewrite (B.1) as

I[T] :�
∫ τ2

τ1

dτ
∫

V
dN−1x L(T, ∂iT; τ) (B.4)

where L is the Lagrangian Density, function of some tensor field T
and the parameter τ, the proper time. However, this definition is not
invariant by a change of coordinates. Since there are (N − 1) difer-
entials dx i , to make it so, we have to take into account the Jacobian
(1.1.13) that will take care of any coordinate transformation. With all
that, (B.4) becomes

I[T] �
∫

V
dN x
√

g L(T, ∂µT, xµ) , (B.5)

∗We will only briefly study one such case in a moment.
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with µ � 0, 1, . . . ,N − 1, x0 ≡ τ, and now explicitly turns out to be
a function of the N coordinates. Furthermore, the condition of fixed
endpoints (B.2) gets replaced by a null variation on the border ∂V , that
is

δxµ
����
∂V

� 0 . (B.6)

So, by taking that into account and applying the principle of
least action, one gets the Euler-Lagrange equations for tensor fields

∂L
∂Tα...β...

− 1√
g
∂µ

(
√

g
∂L

∂(∂µTα...β... )

)
� 0 . (B.7)

Now let us return to the main chain of thoughts.

Since we are interested in physical trajectories, (1.1.9) is the
natural choice for the lagrangian L, because it already describes the
path some particle partakes and it is invariant. Hence by choosing

Ldτ � ds ≡
√

gi j dx i dx j

�

√
gi j

dx i

dτ
dx j

dτ
dτ

�⇒ L �

√
gi j

dx i

dτ
dx j

dτ
, (B.8)

and plugging it back into (B.3), remembering that gi j Ûx i Ûx j � c2 ≡ 1,
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∂L
∂ Ûxa � ga j Ûx j

→ d
dτ

(
∂L
∂ Ûxa

)
� ga j Üx j

+
1
2

(
ga j,k + gak , j

)
Ûx j Ûxk

and

∂L
∂xa �

1
2

gi j,a Ûx i Ûx j .

Therefore,

ga j Üx j
+

1
2

(
ga j,k + gak , j − gik ,a

)
Ûx j Ûxk

� 0

which multiplied by g ia gives

Üx i
+ Γi

jk Ûx
j Ûxk

� 0 .

This is precisely the geodesic equation (1.1.47) derived in the absence
of constraint forces, confirming that the shortest trajectory possible one
particle describes in free-fall on a Riemannian manifold is indeed the
geodesic curve.

Now, to properly formulate the Euler-Lagrange equations for
gravitational fields, we first need to choose a good candidate for the
Lagrangian and assure that it satisfies the desirable conditions of in-
variance, which has to depend on the fundamental quantity in ques-
tion, the metric tensor itself, of course. So by taking variations of it
and imposing the variational principle,

δI
δg

� 0 , (B.9)
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we shall get the field equations we are looking for. One such invariant
candidate is precisely the Ricci scalar R (1.1.53), which by construc-
tion depends solely on the metric and its derivatives, and is of class C2,
it is inherently invariant by virtue of it being a scalar and it is actually a
density just like the Lagrangian density. We then propose the following

L � R + αLM , (B.10)

where α is a constant and LM the Lagrangian density of matter to be
determined later on.

Expression (B.5) gets broken down into two separate actions to
be minimized,

I � IG + IM ; (B.11)

the geometrical term

IG[g] �
∫

V
dN x
√

g R , (B.12)

called Einstein-Hilbert action, and the generic matter term to be deter-
mined

IM[g] � α
∫

V
dN x
√

g LM , (B.13)

are both functionals of gµν. Let us first address the matter term. Ap-
plying a variation to it, we get
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δIM � αδ

∫
V

dN x
√

g LM

� α

∫
V

dN x
(
∂
√

g LM

∂gµν
δgµν +

∂
√

g LM

∂gµν,σ
δgµν,σ

)
� α

∫
V

dN x
[
∂
√

g LM

∂gµν
− ∂
∂xσ

(
∂
√

g LM

∂gµν,σ

)]
δgµν

+
∂
√

g LM

∂gµν
δgµν

����
∂V︸   ︷︷   ︸

�0

� α

∫
V

dN x
√

g Tµνδgµν , (B.14)

where we define the clearly symmetric energy-momentum tensor by

√
g Tµν :�

∂
√

g LM

∂gµν
− ∂
∂xσ

(
∂
√

g LM

∂gµν,σ

)
. (B.15)

Now, for IG,

δIG � δ

∫
V

dN x
√

g R

�

∫
V

dN x δ( √g R) ,

we need to elaborate a wee bit more. The variation in question has the
following form

δ( √g R) � δ( √g gµνRµν) � δ(
√

g gµν)Rµν +
√

g gµνδRµν ,

so more terms will pop out from it and shall be pre-computed next:
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δg � δ(detG)
� δe log detG

� e tr logGδ(tr logG)
� g gµνδgµν ,

δδ
µ
ν ≡ 0 � δ(gµλgλν)

� (δgµλ)gλν + gµλ(δgλν)

→ δgµν � −gµαgνβδgαβ .

Plugging everything back together yields

δ( √g gµν)Rµν �

[
(δ√g)gµν + √g(δgµν)

]
Rµν

� −√g
(
Rαβ − 1

2
gαβR

)
δgαβ . (B.16)

It remains to be shown that δRµν does not contribute in any-
thing, that is, it can be put on a total derivative so that it vanishes by
virtue of (B.6). To demonstrate this, let us again consider a geodesic
frame of reference, so that

214



B Formalism of Variations

gµνδRµν � gµνδ(Γλµν,λ − Γ
λ
µλ,ν)

� gµνδΓλµν,λ − gµλδΓνµν,λ

�
∂

∂xλ

(
gµνδΓλµν − gµλδΓνµν

)
�
∂wλ

∂xλ
,

where we temporarily defined the vector wλ as the expression inside
the brackets to save us some ink. This represents de divergence of wλ

in the geodesic frame, but since we are dealing with tensor equations,
the result is valid in all frames given that we use the generalized diver-
gence instead. So,

gµνδRµν �
1√
g
∂

∂xλ

(
√

gwλ

)
,

and, when going back to the action integral, we have

∫
V

dN x
√

g
(

1√
g
∂

∂xλ

(
√

gwλ

))
�

(
√

gwλ

)����
∂V
≡ 0 ,

since

wλ ∝ δΓλµν ∝ δgµν,κ ∝
∂
∂xκ

δgµν � 0 , on∂V .

Then, the variation of the geometric action becomes

δIG �

∫
V

dN x
√

g
(

1
2

gµνR − Rµν

)
δgµν . (B.17)

Finally, putting all together and applying the least action princi-
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ple on the full action (B.11),

δI � 0 �

∫
V

dN x
√

g
(

1
2

gµνR − Rµν
+ αTµν

)
δgµν

�⇒ Rµν − 1
2

gµνR � αTµν , (B.18)

which are the Einstein field equations in the presence of matter. The
only thing left behind was to determine α such that we recover the
classic non-relativistic Newton’s gravity law

∇2Φ � 4πGρM , (B.19)

where ρM is the density of matter and Φ is the static gravitational
potential. To do that we first have to note that (B.18) can be put in the
form

Rµν
� α

(
Tµν − 1

2
gµνT

)
, (B.20)

by simply contracting said equation with gµν∗ in order to determine R
and feed it back to it.

The energy-momentum tensor carries the sources that generate
the field. Now it suffices to say that the only relevant component in
the non-relativistic regime will be T00, which represents the rest-mass
density

T00 � ρM

Ti j ≈ 0 .

∗Remember that gµν gµν � tr1 � 4 in the (3 + 1)-dimensional spacetime.

216



B Formalism of Variations

In this regime, we still have the almost “Minkowskian” metric
gµν → diag(g00 ,−1,−1,−1), so that when returned into (B.20), it
gives rise to the only non-null Christoffel symbols, namely,

Γk
00 �

1
2

g ,k
00

Γ0
0k �

1
2

g00 g00,k .

Here we are only interested in the the dominant terms contained
in the Ricci tensor; for the 00 component we have

R00 ≈ Γk
00,k −��

�Γk
0k ,0

≈ 1
2

g ,k
00 ,k ,

where all the other terms have a time derivative ∂0 which vanishes for
static fields. This laplacian of g00 is still mysterious. To determine it,
we return to the geodesic equation (1.1.47) in the classical limit, where

uµ � (1, v) ; v i � 1 .

So, for spatial components

0 �
dvk

dτ
+ Γk

αβuαuβ

�
dvk

dτ
+ Γk

00u0u0
+ 2 Γk

0k︸︷︷︸
�0

u0uk
+ Γk

i j u i u j︸︷︷︸
≈0

�
dvk

dτ
+ Γk

00

�
dvk

dτ
− 1

2
g ,k

00 .
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Since F � −m∇Φ, we have

Φ � −1
2

g00 ,

so that

R00 � −Φ,k
,k .

Finally, going back to the Einstein equation,

R00 � α

(
T00 −

1
2

g00T
)

−Φ,k
,k � α

(
T00 −

1
2

g00 g00︸ ︷︷ ︸
�1

T00

)
� α

1
2

T00

→ −4πGρM �
α
2
ρM

∴ α � −8πG .

Now we are able to write the full Einstein equation:

Rµν − 1
2

gµνR � −8πGTµν , (B.21)

or

Rµν
� −8πG

(
Tµν − 1

2
gµνT

)
. (B.22)
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C Conformal Group

In the following years after the publication of Eintsein’s Spe-
cial Relativity paper,11 Minkowski studying electromagnetic theory,
first associated spacetime symmetries with those of the Poincaré group
(Lorentz transformation plus translations), which made up the maxi-
mal symmetry of the 4−dimensional spacetime. Yet, two years later,
in 1910, both Bateman1 and Cunningham8 independently found out
that electromagnetic phenomema (viz. the Maxwell equations) have
five other additional symmetries, extending the associated group to a
fifteen parameter group. Those symmetries correspond to scale invari-
ance and the so called conformal acceleration, a uniform acceleration
that leave physical theories invariant. The former transformation is a
one-parameter transformation whereas the latter corresponds to four-
parameter transformations. This brand new symmetry group is denom-
inated the Special Conformal group.

Conformal symmetry is a powerful tool in the study of gravita-
tional effects in the weak field approximation, to the lowest orders of
perturbation theory, aiming at infering the next to leading order con-
tributions by setting the renormalization group of equations and then
to establish a path towards quantum gravity. Leaving the open prob-
lems aside, let us develop the main results of this theory according to
Witten.20

First, let us begin exploring a rather elementary example. Sup-
pose that we have a rigid metal rod attached to a machine gear by one
of its edges, first at rest with a laboratory S and described by a set of
coordinates {x} (Fig. 19a). When we turn the machine on, the rod
starts rotating relative to the laboratory and is still described by the
{x}-coordinates by the transformation (Fig. 19)∗

x̄ → F(x) , (C.1)

for some F and x̄ still in S.

∗The space maps back into itself F :M →M, i.e., an automorphism.
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(a) Initial setup (b) Engine on

Figure 19: The initial conditions consist of a turned off machine on the
laboratory frame S (left); then the engine is turned on and its coordi-
nates according to S begin to change through F(x) (right).

Now suppose that we leave the engine turned off and spin the
laboratory itself instead, effectively defining a new frame of reference
S′ described by {x′}-coordinates. The rod will the start rotating rela-
tive to this frame by means of a change of coordinates of the form (Fig.
20)∗

x′ � f (x) , (C.2)

for some f and for x ∈ S and x′ ∈ S′.

Finally, let us suppose a mixed situation where the motor is
turned on (so (C.1) is in place) and we rotate the laboratory in a way to
cancel out its effects, i.e., rotate it such that the rod is at rest in S′. In
this case, we will have a relationship between f and F in the desired
manner (Fig. 20b),

x̄′ � F(x′) � F( f (x)) ≡ x , (C.3)

∗A one-to-one mapping between two spaces f :M →M′, i.e., an isomorphism.
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(a) Change of frame of ref-
erence

(b) Motor turned and change of coor-
dinates

Figure 20: Instead of turning the apparus on, we rotate the laboratory
itself, defining a spinning frame S′ where the bar is rotating relative to
it according to f (x) (left); finally we compose both transformations in
order to cancel out the effects of one another F( f (x)) (right).

where this is only valid for this change of frames of reference (S→ S′)
and it receives a special equality symbol

x̄′ .� x (C.4)

to emphasize it. We shall call this a point equality. Thus, for this
system of coordinates, F and f are inverses to one another.

A transformation in the molds of (C.1) is called an active or
point transformation. On the other hand, a passive or simply a coordi-
nate transformation is the one where (C.2) takes place. Lastly, trans-
formations like (C.3) does not have a particular name in this form, but
will later be called conformal transformations when it satisfies some
other conditions.

This example lays the groundwork to properly define conformal
transformations, essential to work with conformal groups.

Generally speaking, conformal transformations are, by defini-
tion, transformations that leave angles invariant. Since this is the only
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condition to make up this kind of transformation, we are free to change
the magnitude of the objects under it. This subtle consequence is of ut-
most importance. So, the angle between two displacements∗ dxµ and
δxµ,

cos θ :�
gµν(x)dxµδxν√

gαβ(x)dxαdxβ
√

gαβ(x)δxαδxβ
,

is left invariant whereas its magnitude is not necessarely preserved

gµν(x) → Ω2(x)gµν(x) . (C.5)

When plugged back into the angle expression above, we see that
the transformation (C.5) does indeed preserve angles forΩ , 0. These
type of transformations only makes sense when we transform the sys-
tem itself. In other words, those are active transformations (we do not
expect a mere change of coordinates to change the magnitude of the
objects).

Thus, in this framework, passive and active transformations of
the metric tensors are respectively given by†

gµν(x)
∂xµ

∂x′α
∂xν

∂x′β
� hαβ(x′) (C.6)

gµν(x)
∂xµ

∂x̄α
∂xν

∂x̄β
� Ω2(x̄)gαβ(x̄) . (C.7)

The latter is called a Weyl point transformation or just Weyl
transformation. Now like in our little example above, we can finally

∗Here we use two different symbols for the differentials just to explicit two differ-
ent displacements.
†We distinguish the passively transformed metric tensor by hαβ to remove any

sources of confusion. It then becomes evident that this kind of transformation is just a
change between spaces.
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define a covariant conformal transformation by successively applying
a Weyl transformation (C.7) and then changing the frame of reference
to undo it by means of a passive transformation (C.6). Thus, from (C.3)

x̄′ .� x �⇒ ∂x̄µ

∂xα
.
�
∂x̄µ

∂x̄′α
. (C.8)

Evaluating (C.6) on x̄ and using (C.8) and (C.7), one gets

hαβ(x̄′)
.
�Ω2(x)gαβ(x) . (C.9)

With that effect, the line element is no longer invariant under
conformal transformations

ds2(x̄′) .�Ω2(x)ds2(x) . (C.10)

This shows what we have been discussing above: lengths can be
changed under conformal transformations. The notation x̄′ is rather
cumbersome, so we shall be using an upper c to denote conformal
quantities. For example, (C.9) reduces to

gc
αβ � Ω

2 gαβ ,

evaluated at the same point in the context of point equality (C.4).

Conversely, it is immediate from orthogonality relations that

(gc)αβ � 1
Ω2 gαβ ,

and that the determinant of the metric tensor

g :� εαβ...g0αg1β . . .
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for an arbitrary N−dimensional spacetime transforms as

g → Ω2n g , (C.11)

where n is also called the conformal weight. We shall be considering
a 4−spacetime henceforward.

We have seen on (C.9) how the metric tensor transforms under
conformal transformations, but what about the other relevant objects
of differential geometry, namely the Christoffel symbols, covariant
derivatives, geodesics, the Riemann tensor and Ricci tensor and also
its scalar? Do they also transform like the metric tensor? Do they stay
invariant? The answer is no, those objects are not invariant under such
transformations, but knowing how the basic building block transforms
(i.e. the metric tensor itself), we are able to find out how all those ob-
jects transform and, then, propose a new affine connection that leave
them all invariant.

By directly substituting (C.9) into the Christoffel symbol defini-
tion (1.1.35), one obtains

(Γc)µαβ � Γ
µ
αβ +

(
δ
µ
αsβ + δ

µ
β sα − gαβsµ

)
, (C.12)

where sµ :� ∂µ lnΩ. With that in our hands, we can evaluate the
objects in question:

5 Covariant derivatives (1.1.32)

(∇νvµ)c � ∇νvµ +
(
δ
µ
ν vλsλ + vµsν − vνsµ

)
. (C.13)

5 Geodesic equation (1.1.47)
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d2xµ

dτ2 + Γ
µ
αβ

dxα

dτ
dxβ

dτ
+

(
2sλ

dxλ

dτ
dxµ

dτ
− sµgαβ

dxα

dτ
dxβ

dτ

)
� 0 .

(C.14)

5 Riemann tensor (1.1.50)

(Rc)µναβ � Rµ
ναβ+

[
δ
µ
αsνsβ − δµβ sνsα

+ gνβsµsα − gναsµsβ

+ gνα
(
δ
µ
β sλsλ + ∂βsµ

)
− gνβ

(
δ
µ
αsλsλ + ∂αsµ

) ]
. (C.15)

5 Ricci tensor (1.1.52)

Rc
µν � Rµν + 2

(
sµsν − ∂µsν

)
− gµν

(
2sλsλ + ∂λsλ

)
.

(C.16)

5 Ricci scalar

For this one we contract (C.16) with the conformal metric (gc)µν,
obtaining

Rc
�

R
Ω2 −

6
Ω2

(
sλsλ + ∂λsλ

)
. (C.17)
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5 Einstein tensor (1.1.59)

Gc
µν � Gµν + 2

(
sµsν − ∂µsν

)
+ gµν

(
sλsλ + 2∂λsλ

)
.

(C.18)

We see that Einstein equations are not invariant under conformal
transformations. In fact, none of the curvature objects are. Further-
more, all those transformations are function of the logarithmic deriva-
tive sµ � ∂µ lnΩ, so when it vanishes (constant scale factor Ω(x) �
Ω � const), we fallback to the usual objects as expected. Moreover,
the new term that appears in the geodesic equation (C.14) is associ-
ated with a constant acceleration (inertial force if you will), and it is
called the conformal acceleration. This, in turn, can be interpreted as
a constant gravitational field in the light of the equivalence principle.

Despite that, one can easily make all the above objects invari-
ant under conformal transformations simply by re-defining the affine
connection such that the spare terms in (C.12) vanish. Instead of be-
ing the Christoffel symbols, the new connection is coined as the Weyl
connection. This is a constructive process, so we first define

(Γc)µαβ :� Γµαβ −
(
δ
µ
ακβ + δ

µ
βκα − gαβκµ

)
(C.19)

incorporating the desired result, with κµ transforming as

κc
µ � κµ + sµ ; (κc)µ �

1
Ω2

(
κµ + sµ

)
. (C.20)

Since this makes up a new affine connection, the covariant deriva-
tive also changes

vµ|ν ≡ ∇
c
νvµ � ∂νvµ + (Γc)µνλvλ , (C.21)

where the symbol |ν ≡ ∇c
ν is the indicial notation for the Weyl covari-
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ant derivative. One immediate consequence is that (1.1.44) is no longer
valid,

gµν |λ � 2κλgµν . (C.22)

It only remains to find out what kµ is. For that, we contract
(C.19) in µβ

Γc
α ≡ (Γc)µαµ � ∂α ln

√
|g | − 4κα .

From the covariant derivative of the determinant of the metric,

∇c
µg � ∂µg − 2gΓc

µ �⇒ Γc
µ � ∂µ ln

√
|g | − ∇c

µ ln
√
|g | ,

and substituting it in the above expression,

κµ �
1
4
∇c
µ ln

√
|g | , (C.23)

we finally have the desired quantity that also transforms as expected
(C.20):

κc
µ �

1
4
∇c
µ ln(Ω4

√
|g |)

�
1
4
∇c
µ ln

√
|g | + ∇c

µ lnΩ

� κµ + sµ .

Established the functional form of the Weyl connection, we can
rewrite∗ all the objects listed above which are now conformally invari-
ant

∗Effectively we only need to change s → −κ in all of the expressions.
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5 Riemann tensor

(Rc)µναβ � Rµ
ναβ+

[
δ
µ
ακνκβ − δ

µ
βκνκα

+ gνβκµκα − gνακµκβ

+ gνα
(
δ
µ
βκλκ

λ − ∂βκµ
)

− gνβ
(
δ
µ
ακλκ

λ − ∂ακµ
) ]

. (C.24)

5 Ricci tensor

Rc
µν � Rµν + 2

(
κµκν + ∂µκν

)
− gµν

(
2κλκλ − ∂λκλ

)
.

(C.25)

5 Ricci scalar

Rc
� R − 6

(
κλκ

λ − ∂λκλ
)

. (C.26)

5 Einstein tensor

Gc
µν � Gµν + 2

(
κµκν + ∂µκν

)
+ gµν

(
κλκ

λ − 2∂λκλ
)

.

(C.27)

Since the Jacobian is not conformally invariant, the Einstein-
Hilbert action (B.12)

IG[g] �
∫

V
dN x

√
|g | R
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is also not invariant, so we need to construct a new action. This can be
done if we define an action of the form

I[C] :�
∫

V
dN x

√
|g | CµνσρCµνσρ

�

∫
V

dN x
√
|g | Cα

νσρCµ
βγδ gαµgβν gγσgδρ , (C.28)

where C is a tensor with all the properties of R and is conformally
invariant, and those metric tensors cancel out all the spare factors that
appear under a conformal transformation. It only remains to construct
C.

For it to hold the conformal symmetry, we require its first con-
traction to vanish (Cµ

αβµ ≡ 0), inheriting all the indicial symmetries
of the curvature tensor, through the ansatz

Cµναβ � Rµναβ + Aµαgνβ + Aνβgµα − Aµβgνα − Aναgµβ

where Aµν is a symmetric rank 2 tensor to be determined. Contracting
µβ and imposing Cνα � 0,

Cµ
ναµ ≡ Cνα � 0 �⇒ 1

2

(
Rνα − gναA

)
.

Further contracting the remaining indices,

A �
1
6

R ,

and substituting in the expression above gives

Aνα �
1
2

Rνα −
1
12

gναR
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and, finally,

Cµναβ � Rµναβ +
1
2

(
Rµαgνβ + Rµβgνα − Rναgµβ − Rνβgµα

)
− 1

6

(
gµαgνβ − gµβgνα

)
R . (C.29)

This tensor is the so-called Weyl tensor and it holds all the de-
sired symmetries, leaving (C.28) invariant under conformal transfor-
mations.

Conformal Group C

The set of all conformal transformations that takes x → x′ and
leaves the metric tensor invariant up to a scalar factor as seen in (C.9)
constitutes the conformal group C. In the case where such transforma-
tion equip Minkowski space with a point dependent metric

gc
µν(x) � Ω2(x)ηµν ,

that is, the point dependency is all inside the conformal factor Ω(x) �
eω(x), we define the special conformal group C0.

As briefly discussed in the beginning of this appendix, the Con-
formal group is an extension of the Poincaré group. This is promptly
seen if we take a unitary scale factor Ω(x) � 1, so all the transfor-
mations above falls back into the usual forms and are invariant under
general Poincaré transformations.

Now, as usual, we shall find the infinitesimal Killing vectors of
the conformal transformations, so we consider a conformal transfor-
mation (C.9) under x → x′ � x + εξ(x) for ε � 1

231



C Conformal Group

Ω2 gµν �
∂x′α

∂xµ
∂x′β

∂xν
gαβ

�

(
δαµ + εξ

α
,µ

) (
δ
β
ν + εξ

β
,ν

)
gαβ

� gµν + ε
(
ξµ;ν + ξµ;ν

)
+ O(ε2) .

Rewriting the scale factor asΩ2(x) � exp (2ω(x)) ≈ 1+2εω(x)
for ε � 1, we obtain the conformal Killing equation

ξµ;ν + ξν;µ � 2ωgµν , (C.30)

and its trace

ξα;α � 4ω . (C.31)

Assuming that we are on the locally inertial frame of reference
(g → η and ;→,) and deriving (C.30) once again, we get

ξµ,ν,ρ + ξν,µ,ρ � 2ηµνω,ρ ,

ξν,ρ,µ + ξρ,ν,µ � 2ηνρω,µ ,

ξρ,µ,ν + ξµ,ρ,ν � 2ηρµω,ν ,

which can be put in the form

ξρ,µ,ν � ηρνω,µ + ηµρω,ν − ηµνω,ρ , (C.32)

corresponding to

∂2ξρ � −2ω,ρ . (C.33)

Next, we derive (C.33) with respect to ρ and apply a d’Alembertian
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operator to (C.31)

4∂2ω � ∂2ξα,α

−2∂2ω � ∂2ξα,α
�⇒ ∂2ω(x) � 0 , (C.34)

so ω must be linear in x,

ω(x) � A + Bµxµ .

Since ξ is related to ω by one derivative, according to (C.30),
we infer that it must be of quadratic order,

ξµ � aµ + bµνxν + cµαβxαxβ , (C.35)

given cµαβ � cµβα. We proceed to further determine the constants by
comparison with a Taylor expansion

ξµ � aµ + ξµ,νxν + ξµ,α,βxαxβ .

Substituting (C.31) into (C.30),

ξµ,ν + ξν,µ �
1
2
ξα,αηµν

�⇒ bµν + bνµ �
1
2

bααηµν .

The simplest solution is given by the decomposition of b into
symmetric and anti-symmetric parts

bµν � αηµν + λµν , (C.36)

where α is a constant infinitesimal dilation parameter and λµν � −λνµ
is related to Lorentz transformations. For the remaining quadratic
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term, we contract (C.32) in µρ,

ω,β �
1
4

cααβ ≡ bβ , (C.37)

so that

cµαβ � bαηµβ + bβηαµ − ηαβbµ . (C.38)

With all that, the infinitesimal Killing vectors (C.35) become

ξµ � aµ + αxµ + λµνxν + 2bαxαxµ − bµx2 . (C.39)

Here the term aµ represents an infinitesimal translation, the α
parameter an infinitesimal dilation, the λµν are the infinitesimal Lorentz
transformations and 2bαxαxµ − bµx2 represents the four components
of the infinitesimal conformal acceleration.

The finite transformations are, respectively,

x′µ � xµ + aµ ,
x′µ � αxµ ,

x′µ � Λ
µ
νxν ,

x′µ �
xµ − bµx2

1 − b · x + x2b2 .

(C.40)

This set of transformations comprise the conformal group C0,
which is isomorphic to the special ortogonal group SO(5, 1) of fif-
teen parameters, composed of four translation generators Pµ, six of
rotations and boosts Mµν, one of dilation D and four related to the
conformal acceleration Kµ. Thus, for a general function ϕ(x), an in-
finitesimal conformal transformation is given by
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ϕ(x) → ϕ(x + ξ(x))

�

(
1 + iaµPµ − αD +

1
2
λµνMµν + ibµKµ

)
ϕ(x) , (C.41)

where the generators

Pµ � −i∂µ ,
D � −xµ∂µ ,

Mµν � i(xµ∂ν − xν∂µ) ,
Kµ � 2ixµxν∂ν − ix2∂µ ,

(C.42)

satisfy the Lie brackets

[D , Pµ] � Pµ ,
[D , Kµ] � −Kµ ,

[Kµ , Pν] � 2ηµνD − 2iMµν ,

[Kρ ,Mµν] � i(ηρµKν − ηρνKµ) ,
[Pρ ,Mµν] � i(ηρµPν − ηρνPµ) ,
[Mµν ,Mρσ] � i

(
ηνρMµσ + ηµσMνρ + ηµρMνσ − ηνσMµρ

)
.

(C.43)
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D Bi-vectors

From the basic Linear Algebra, we learn the fundamental con-
cept of vector spaces, which is the natural home of entities called vec-
tors that satisfy a set of axioms pretty similar to those of Group Theory,
which are, for three vectors u, v and w of a vector space V , endowed
with addiction and the multiplication by scalars, and for two scalars a
and b

u + v � v + u (commutativity) , (D.1a)

v + (u + w) � (v + u) + w (associativity) , (D.1b)

u + 0 � u (identity) , (D.1c)

u + (−u) � 0 (inverse) , (D.1d)

a(v + u) � av + au (scalar distributivity) , (D.1e)

(a + b)u � au + bu (distributivity of scalars) , (D.1f)

(ab)u � a(bu) (scalar associativity) , (D.1g)

1u � u (scalar identity) . (D.1h)

It is also seen two multiplicative operations between vectors, the
scalar product (also called dot product or inner product), a bi-linear
operation that takes two vectors into a number “·”: V × V → R, and
the vector product (or cross product), an anti-commutative bi-linear
operation that takes two vectors into another “×”: V × V → V . The
former allow us to define the norm (which is also called the magnitude
or length) of a vector by

| |u | | :�
√

u · u (D.2)

and the latter defines a vector perpendicular to the plane defined by two
vectors only in a 3−dimensional space

w � u × v ; w ⊥ u ,w ⊥ v , (D.3)
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where its norm

| |u × v | | � | |u | | | |v | | sin θ (D.4)

defines the area of the parallelogram delimited by both vectors and θ
is the angle between them. Also, the anti-symmetry defines an orien-
tation for the vector space.

Nevertheless, the vector product does not enjoy certain desirable
qualities. For instance, it cannot be defined in two dimensions (the
orthogonal would pop out into a higher dimentions) and perpendicular
vectors are only uniquely defined in three dimensions. The notion of a
bi-vector emerges to address these issues.

A bi-vector is defined by means of a new product of vectors,
the outer product (or exterior product) which is defined as a bi-linear
operation that takes two vectors into a bi-vector∗ “∧”: V × V → Bi
and it has the following properties, for u, v and w ∈ V ,

u ∧ v � −v ∧ u (anti-symmetry) (D.5a)

u ∧ (v + w) � u ∧ v + u ∧ w (distributivity) . (D.5b)

Figure 21: Geometrical representation of the outer product and its ori-
entation.

∗The “∧” (wedge) symbol is used to denote this multiplication and Bi is the vector
space containing all the bi-vectors.
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Those objects possess a natural way to encode geometrical infor-
mation. More precisely, we can associate each bi-vector to the oriented
plane defined by u and v, where the orientation can be seen by sweep-
ing one vector onto the other. The bi-vector space can be interpreted
as the set of all planes in the actual space.

Now, if we take both u and v and decompose them into a N−dimensional
basis {e i}, for i � 1, . . . ,N , then

u ∧ v � u i v j e i ∧ e j � U(i j)E(i j) , (D.6)

where the product U(i j) :� u i v j is necessarily anti-symmetric and

E(i j) :� e i ∧ e j (D.7)

form the 1
2 N(N − 1)-dimensional basis of the bi-vector space on the

anti-symmetric pairs (i j), consisting of primitive planes defined by the
basis vectors {e i}. We introduce a new family of indices A that runs
through all the possible 1

2 N(N − 1) combinations of the pairs (i j)

A :� {(01), (02), . . . , (0N),
(12), (13), . . . , (1N),
...

(N1), (N2), . . . , (N N − 1)} ,

such that

u ∧ v � UAEA . (D.8)

To consolidate all these abstract concepts, we finalize by con-
sidering a few examples in two, three and four dimensions.
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Example: Two dimensions

In this case we have only two basis vectors {e1 , e2}:

u ∧ v � u i v j e i ∧ e j

� (u1v2 − u2v1)e1 ∧ e2 ≡ U1E1

with

U1 ≡ (u1v2 − u2v1)
E1 ≡ e1 ∧ e2 .

We see that 1
2 N(N−1) for N � 2 really gives only one bi-vector,

as expected.

Example: Three dimensions

Next, for N � 3, we have three basis vectors {e1 , e2 , e3}.

u ∧ v � u i v j e i ∧ e j

� (u1v2 − u2v1)e1 ∧ e2

+ (u2v3 − u3v2)e2 ∧ e3

+ (u3v1 − u1v3)e3 ∧ e1

≡ UAEA ,

where A � 1, 2, 3 and
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UA ≡


(u1v2 − u2v1) , A � 1 � (12)
(u2v3 − u3v2) , A � 2 � (23)
(u3v1 − u1v3) , A � 3 � (31)

EA ≡


e1 ∧ e2 , A � 1 � (12)
e2 ∧ e3 , A � 2 � (23)
e3 ∧ e1 , A � 3 � (31)

.

Example: Four dimensions

Since we have not imposed anything about metric signatures in
this formalism, we will consider a basis containing a 0 component
{e0 , e1 , e2 , e3}. We make this choice instead of the usual all-spatial
vector spaces to illustrate the quantities we dealt with in Chapter 4, but
rest assured that this formalism is valid for all kinds of vector spaces,
which includes the Minkowski caseM4 of the aforementioned chapter.
Thus, we have six primitive basis planes and

u ∧ v � u i v j e i ∧ e j

� (u0v1 − u1v0)e0 ∧ e1

+ (u0v2 − u2v0)e0 ∧ e2

+ (u0v3 − u3v0)e0 ∧ e3

+ (u1v2 − u2v1)e1 ∧ e2

+ (u2v3 − u2v3)e2 ∧ e3

+ (u3v1 − u3v1)e3 ∧ e1

≡ UAEA ,

where evidently
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UA ≡



(u0v1 − u1v0) , A � 0 � (01)
(u0v2 − u2v0) , A � 1 � (02)
(u0v3 − u3v0) , A � 2 � (03)
(u1v2 − u2v1) , A � 3 � (12)
(u2v3 − u2v3) , A � 4 � (23)
(u3v1 − u3v1) , A � 5 � (31)

,

EA ≡



e0 ∧ e1 , A � 0 � (01)
e0 ∧ e2 , A � 1 � (02)
e0 ∧ e3 , A � 2 � (03)
e1 ∧ e2 , A � 3 � (12)
e2 ∧ e3 , A � 4 � (23)
e3 ∧ e1 , A � 5 � (31)

.

The formulation of the outer product generalization to arbitrary
dimensions, as seen in the examples above, alongside with the already
established inner product, enabled Grassmann to devise a whole new
branch of algebra, the Geometric Algebra,10, 22, 25, 35 mostly centered
around yet another kind of product, the geometric product, that is noth-
ing but adding together both inner and outer products.

While not taking flight at first, Grassmann’s pioneering works
were the rudiments for the theory of exterior algebra and, later on,
Clifford Algebra, no less, the latter being nowadays the backbone of
many fundamental theories, such as the Quantum Field Theory.
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APPENDIX
E

Conformal Bianchi Symmetry –
Explicit calculations

In this appendix we open up all the calculations involved in
the demonstration of the conformal symmetry for Bianchi spaces, dis-
cussed in 3.1. There, we found out that

∂x′j

∂x i �
Ω2(x)
Ω2(x′) e

(a)
i (x) e j

(a) (x
′) , (E.1)

similar to what is done in the usual process. Enforcing the integrability
conditions

∂2x′j

∂x i∂xk
�

∂2x′j

∂xk∂x i
, (E.2)

we get



E Conformal Bianchi Symmetry – Explicit calculations

∂

∂x i

(
∂x′j

∂xk

)
�

∂

∂x i

[(
Ω(x)
Ω(x′)

)2

e j
(a) (x

′)e(a)k (x)
]

�

(
Ω(x)
Ω(x′)

)2 [∂e j
(a)

∂x i (x
′)e(a)k (x) + e j

(a) (x
′)
∂e(a)k
∂x i (x)

]
+

∂

∂x i

(
Ω(x)
Ω(x′)

)2

e j
(a) (x

′)e(a)k (x)

�

(
Ω(x)
Ω(x′)

)2 [∂e j
(a)

∂x′m
(x′)∂x′m

∂x i e(a)k (x) + e j
(a) (x

′)
∂e(a)k
∂x i (x)

]
+ 2

(
Ω(x)
Ω(x′)

) [
1
Ω(x′)

∂Ω

∂x i (x)

− Ω(x)
Ω2(x′)

∂Ω

∂x i (x
′)
]
e j
(a) (x

′)e(a)k (x)

�

(
Ω(x)
Ω(x′)

)2{[(
Ω(x)
Ω(x′)

)2

e m
(b) (x

′)e(b)i (x)
] ∂e j

(a)
∂x′m

(x′)e(a)k (x)

+ e j
(a) (x

′)
∂e(a)k
∂x i (x)

}
+ 2

(
Ω(x)
Ω(x′)

) [
1
Ω(x′)

∂Ω

∂x i (x)

− Ω(x)
Ω2(x′)

∂x′m

∂x i
∂Ω
∂x′m
(x′)

]
e j
(a) (x

′)e(a)k (x)
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�

(
Ω(x)
Ω(x′)

)2{∂e(a)k
∂x i (x)e

j
(a) (x

′)

+

(
Ω(x)
Ω(x′)

)2 ∂e j
(a)

∂x′m
(x′)e m

(b) (x
′)e(b)i (x)e

(a)
k (x)

}
+ 2

{
Ω(x)
Ω2(x′)

∂Ω

∂x i (x) −
Ω(x)
Ω(x′)

Ω(x)
Ω2(x′)

[(
Ω(x)
Ω(x′)

)2

e m
(b) (x

′)e(b)i (x)
]
·

· ∂Ω
∂x′m
(x′)

}
e j
(a) (x

′)e(a)k (x)

�

(
Ω(x)
Ω(x′)

)2{∂e(a)k
∂x i (x)e

j
(a) (x

′)

+

(
Ω(x)
Ω(x′)

)2 ∂e j
(a)

∂x′m
(x′)e m

(b) (x
′)e(b)i (x)e

(a)
k (x)

+ 2
1
Ω(x)

∂Ω

∂x i (x)e
j

(a) (x
′)e(a)k (x)

− 2
(
Ω(x)
Ω(x′)

)2 1
Ω(x′)

∂Ω
∂x′m
(x′)·

· e m
(b) (x

′)e(b)i (x)e
j

(a) (x
′)e(a)k (x)

}
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→ ∂

∂x i

(
∂x′j

∂xk

)
�

(
Ω(x)
Ω(x′)

)2{[∂e(a)k
∂x i (x) +

2
Ω(x)

∂Ω

∂x i (x)e
(a)

k (x)
]
e j
(a) (x

′)

+

(
Ω(x)
Ω(x′)

)2 [∂e j
(a)

∂x′m
(x′) − 2

Ω(x′)
∂Ω
∂x′m
(x′)e j

(a) (x
′)
]
·

· e m
(b) (x

′)e(b)i (x)e
(a)

k (x)
}

i

→ ∂

∂xk

(
∂x′j

∂x i

)
�

(
Ω(x)
Ω(x′)

)2{[∂e(a)i
∂xk
(x) + 2

Ω(x)
∂Ω

∂xk
(x)e(a)i (x)

]
e j
(a) (x

′)

+

(
Ω(x)
Ω(x′)

)2 [∂e j
(a)

∂x′m
(x′) − 2

Ω(x′)
∂Ω
∂x′m
(x′)e j

(a) (x
′)
]
·

· e m
(b) (x

′)e(b)k (x)e
(a)

i (x)
}

�

(
Ω(x)
Ω(x′)

)2{[∂e(a)i
∂xk
(x) + 2

Ω(x)
∂Ω

∂xk
(x)e(a)i (x)

]
e j
(a) (x

′)

+

(
Ω(x)
Ω(x′)

)2 [∂e j
(b)

∂x′m
(x′) − 2

Ω(x′)
∂Ω
∂x′m
(x′)e j

(b) (x
′)
]
·

· e m
(a) (x

′)e(a)k (x)e
(b)

i (x)
}

ii

Equating both terms
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i � ii
[
∂e(a)k
∂x i (x) −

∂e(a)i
∂xk
(x)

+
2
Ω(x)

(
∂Ω

∂x i (x)e
(a)

k (x) −
∂Ω

∂xk
(x)e(a)i (x)

)]
e j
(a) (x

′)

�

(
Ω(x)
Ω(x′)

)2 [∂e j
(b)

∂x′m
(x′)e m

(a) (x
′) −

∂e j
(a)

∂x′m
(x′)e m

(b) (x
′)

− 2
Ω(x′)

(
∂Ω
∂x′m
(x′)e j

(b) (x
′)e m
(a) (x

′)

− ∂Ω
∂x′m
(x′)e j

(a) (x
′)e m
(b) (x

′)
)]
·

· e(b)i (x)e
(a)

k (x)

and multiplying by 1
Ω2(x) e

k
(c) (x)e

i
( f ) (x)e

(e)
j (x′)

1
Ω2(x)

[
∂e(e)k
∂x i (x) −

∂e(e)i
∂xk
(x)

+
2
Ω(x)

(
∂Ω

∂x i (x)e
(e)

k (x) −
∂Ω

∂xk
(x)e(e)i (x)

)]
e k
(c) (x)e

i
( f ) (x)︸                                                                          ︷︷                                                                          ︸

Function only of x

�

1
Ω2(x′)

[∂e j
( f )

∂x′m
(x′)e m

(c) (x
′) −

∂e j
(c)

∂x′m
(x′)e m

( f ) (x
′)

− 2
Ω(x′)

∂Ω
∂x′m
(x′)

(
e j
( f ) (x

′)e m
(c) (x

′) − e j
(c) (x

′)e m
( f ) (x

′)
)

e(e)j (x
′)
]

︸                                                                                    ︷︷                                                                                    ︸
Function only of x′
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∴
1
Ω2

[
∂e(a)k
∂x i −

∂e(a)i
∂xk

+
2
Ω

(
∂Ω

∂x i e(a)k −
∂Ω

∂xk
e(a)i

)]
e k
(b) e i

(c) ≡ Ca
bc .

(E.3)

Now, the commutator of

Ya :�
1
Ω2 e m

(a) ∂m , (E.4)

results in

[Ya ,Yb] �
(

1
Ω2 e i

(a) ∂i

) (
1
Ω2 e j

(b) ∂j

)
− [a ↔ b]

�
1
Ω4 e i

(a) ∂i

(
e j
(b) ∂j

)
+

1
Ω2 ∂i

(
1
Ω2

)
e i
(a) e j

(b) ∂j − [a ↔ b]

�
1
Ω4 e i

(a) e j
(b) �

��∂i∂j +
1
Ω4 e i

(a) e j
(b) ,i∂j

− 2
Ω2

Ω,i

Ω3 e i
(a) e j

(b) ∂j − ���
�[a ↔ b]

�
1
Ω2

{
1
Ω2

[
e k
(a) e j

(b) ,k − e k
(b) e j

(a) ,k

− 2
Ω
,k

Ω

(
e k
(a) e j

(b) − e k
(b) e j

(a)
) ]}

∂j

�
1
Ω2

{
1
Ω2

[
e k
(a) e j

(b) ,k − e k
(b) e j

(a) ,k

+ 2
Ω
,k

Ω

(
e j
(a) e k

(b) − e k
(a) e j

(b)
) ]}

∂j

�
1
Ω2 Cc

ab e j
(c) ∂j

� Cc
abYc . (E.5)
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